1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/codeCacheExtensions.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/abstractCompiler.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/interpreterRuntime.hpp"
  40 #include "logging/log.hpp"
  41 #include "memory/universe.inline.hpp"
  42 #include "memory/metaspaceShared.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "prims/forte.hpp"
  45 #include "prims/jvmtiExport.hpp"
  46 #include "prims/jvmtiRedefineClassesTrace.hpp"
  47 #include "prims/methodHandles.hpp"
  48 #include "prims/nativeLookup.hpp"
  49 #include "runtime/arguments.hpp"
  50 #include "runtime/atomic.inline.hpp"
  51 #include "runtime/biasedLocking.hpp"
  52 #include "runtime/compilationPolicy.hpp"
  53 #include "runtime/handles.inline.hpp"
  54 #include "runtime/init.hpp"
  55 #include "runtime/interfaceSupport.hpp"
  56 #include "runtime/javaCalls.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/vframe.hpp"
  60 #include "runtime/vframeArray.hpp"
  61 #include "trace/tracing.hpp"
  62 #include "utilities/copy.hpp"
  63 #include "utilities/dtrace.hpp"
  64 #include "utilities/events.hpp"
  65 #include "utilities/hashtable.inline.hpp"
  66 #include "utilities/macros.hpp"
  67 #include "utilities/xmlstream.hpp"
  68 #ifdef COMPILER1
  69 #include "c1/c1_Runtime1.hpp"
  70 #endif
  71 
  72 // Shared stub locations
  73 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  74 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  75 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  76 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  77 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  78 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  79 
  80 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  81 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  82 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  83 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  84 
  85 #ifdef COMPILER2
  86 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  87 #endif // COMPILER2
  88 
  89 
  90 //----------------------------generate_stubs-----------------------------------
  91 void SharedRuntime::generate_stubs() {
  92   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
  93   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
  94   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
  95   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
  96   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
  97   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
  98 
  99 #if defined(COMPILER2) || INCLUDE_JVMCI
 100   // Vectors are generated only by C2 and JVMCI.
 101   bool support_wide = is_wide_vector(MaxVectorSize);
 102   if (support_wide) {
 103     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 104   }
 105 #endif // COMPILER2 || INCLUDE_JVMCI
 106   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 107   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 108 
 109   generate_deopt_blob();
 110 
 111 #ifdef COMPILER2
 112   generate_uncommon_trap_blob();
 113 #endif // COMPILER2
 114 }
 115 
 116 #include <math.h>
 117 
 118 // Implementation of SharedRuntime
 119 
 120 #ifndef PRODUCT
 121 // For statistics
 122 int SharedRuntime::_ic_miss_ctr = 0;
 123 int SharedRuntime::_wrong_method_ctr = 0;
 124 int SharedRuntime::_resolve_static_ctr = 0;
 125 int SharedRuntime::_resolve_virtual_ctr = 0;
 126 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 127 int SharedRuntime::_implicit_null_throws = 0;
 128 int SharedRuntime::_implicit_div0_throws = 0;
 129 int SharedRuntime::_throw_null_ctr = 0;
 130 
 131 int SharedRuntime::_nof_normal_calls = 0;
 132 int SharedRuntime::_nof_optimized_calls = 0;
 133 int SharedRuntime::_nof_inlined_calls = 0;
 134 int SharedRuntime::_nof_megamorphic_calls = 0;
 135 int SharedRuntime::_nof_static_calls = 0;
 136 int SharedRuntime::_nof_inlined_static_calls = 0;
 137 int SharedRuntime::_nof_interface_calls = 0;
 138 int SharedRuntime::_nof_optimized_interface_calls = 0;
 139 int SharedRuntime::_nof_inlined_interface_calls = 0;
 140 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 141 int SharedRuntime::_nof_removable_exceptions = 0;
 142 
 143 int SharedRuntime::_new_instance_ctr=0;
 144 int SharedRuntime::_new_array_ctr=0;
 145 int SharedRuntime::_multi1_ctr=0;
 146 int SharedRuntime::_multi2_ctr=0;
 147 int SharedRuntime::_multi3_ctr=0;
 148 int SharedRuntime::_multi4_ctr=0;
 149 int SharedRuntime::_multi5_ctr=0;
 150 int SharedRuntime::_mon_enter_stub_ctr=0;
 151 int SharedRuntime::_mon_exit_stub_ctr=0;
 152 int SharedRuntime::_mon_enter_ctr=0;
 153 int SharedRuntime::_mon_exit_ctr=0;
 154 int SharedRuntime::_partial_subtype_ctr=0;
 155 int SharedRuntime::_jbyte_array_copy_ctr=0;
 156 int SharedRuntime::_jshort_array_copy_ctr=0;
 157 int SharedRuntime::_jint_array_copy_ctr=0;
 158 int SharedRuntime::_jlong_array_copy_ctr=0;
 159 int SharedRuntime::_oop_array_copy_ctr=0;
 160 int SharedRuntime::_checkcast_array_copy_ctr=0;
 161 int SharedRuntime::_unsafe_array_copy_ctr=0;
 162 int SharedRuntime::_generic_array_copy_ctr=0;
 163 int SharedRuntime::_slow_array_copy_ctr=0;
 164 int SharedRuntime::_find_handler_ctr=0;
 165 int SharedRuntime::_rethrow_ctr=0;
 166 
 167 int     SharedRuntime::_ICmiss_index                    = 0;
 168 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 169 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 170 
 171 
 172 void SharedRuntime::trace_ic_miss(address at) {
 173   for (int i = 0; i < _ICmiss_index; i++) {
 174     if (_ICmiss_at[i] == at) {
 175       _ICmiss_count[i]++;
 176       return;
 177     }
 178   }
 179   int index = _ICmiss_index++;
 180   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 181   _ICmiss_at[index] = at;
 182   _ICmiss_count[index] = 1;
 183 }
 184 
 185 void SharedRuntime::print_ic_miss_histogram() {
 186   if (ICMissHistogram) {
 187     tty->print_cr("IC Miss Histogram:");
 188     int tot_misses = 0;
 189     for (int i = 0; i < _ICmiss_index; i++) {
 190       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 191       tot_misses += _ICmiss_count[i];
 192     }
 193     tty->print_cr("Total IC misses: %7d", tot_misses);
 194   }
 195 }
 196 #endif // PRODUCT
 197 
 198 #if INCLUDE_ALL_GCS
 199 
 200 // G1 write-barrier pre: executed before a pointer store.
 201 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 202   if (orig == NULL) {
 203     assert(false, "should be optimized out");
 204     return;
 205   }
 206   assert(orig->is_oop(true /* ignore mark word */), "Error");
 207   // store the original value that was in the field reference
 208   thread->satb_mark_queue().enqueue(orig);
 209 JRT_END
 210 
 211 // G1 write-barrier post: executed after a pointer store.
 212 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 213   thread->dirty_card_queue().enqueue(card_addr);
 214 JRT_END
 215 
 216 #endif // INCLUDE_ALL_GCS
 217 
 218 
 219 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 220   return x * y;
 221 JRT_END
 222 
 223 
 224 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 225   if (x == min_jlong && y == CONST64(-1)) {
 226     return x;
 227   } else {
 228     return x / y;
 229   }
 230 JRT_END
 231 
 232 
 233 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 234   if (x == min_jlong && y == CONST64(-1)) {
 235     return 0;
 236   } else {
 237     return x % y;
 238   }
 239 JRT_END
 240 
 241 
 242 const juint  float_sign_mask  = 0x7FFFFFFF;
 243 const juint  float_infinity   = 0x7F800000;
 244 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 245 const julong double_infinity  = CONST64(0x7FF0000000000000);
 246 
 247 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 248 #ifdef _WIN64
 249   // 64-bit Windows on amd64 returns the wrong values for
 250   // infinity operands.
 251   union { jfloat f; juint i; } xbits, ybits;
 252   xbits.f = x;
 253   ybits.f = y;
 254   // x Mod Infinity == x unless x is infinity
 255   if (((xbits.i & float_sign_mask) != float_infinity) &&
 256        ((ybits.i & float_sign_mask) == float_infinity) ) {
 257     return x;
 258   }
 259   return ((jfloat)fmod_winx64((double)x, (double)y));
 260 #else
 261   return ((jfloat)fmod((double)x,(double)y));
 262 #endif
 263 JRT_END
 264 
 265 
 266 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 267 #ifdef _WIN64
 268   union { jdouble d; julong l; } xbits, ybits;
 269   xbits.d = x;
 270   ybits.d = y;
 271   // x Mod Infinity == x unless x is infinity
 272   if (((xbits.l & double_sign_mask) != double_infinity) &&
 273        ((ybits.l & double_sign_mask) == double_infinity) ) {
 274     return x;
 275   }
 276   return ((jdouble)fmod_winx64((double)x, (double)y));
 277 #else
 278   return ((jdouble)fmod((double)x,(double)y));
 279 #endif
 280 JRT_END
 281 
 282 #ifdef __SOFTFP__
 283 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 284   return x + y;
 285 JRT_END
 286 
 287 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 288   return x - y;
 289 JRT_END
 290 
 291 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 292   return x * y;
 293 JRT_END
 294 
 295 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 296   return x / y;
 297 JRT_END
 298 
 299 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 300   return x + y;
 301 JRT_END
 302 
 303 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 304   return x - y;
 305 JRT_END
 306 
 307 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 308   return x * y;
 309 JRT_END
 310 
 311 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 312   return x / y;
 313 JRT_END
 314 
 315 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 316   return (jfloat)x;
 317 JRT_END
 318 
 319 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 320   return (jdouble)x;
 321 JRT_END
 322 
 323 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 324   return (jdouble)x;
 325 JRT_END
 326 
 327 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 328   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 329 JRT_END
 330 
 331 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 332   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 333 JRT_END
 334 
 335 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 336   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 337 JRT_END
 338 
 339 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 340   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 341 JRT_END
 342 
 343 // Functions to return the opposite of the aeabi functions for nan.
 344 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 345   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 346 JRT_END
 347 
 348 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 349   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 350 JRT_END
 351 
 352 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 353   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 354 JRT_END
 355 
 356 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 357   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 358 JRT_END
 359 
 360 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 361   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 362 JRT_END
 363 
 364 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 365   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 366 JRT_END
 367 
 368 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 369   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 370 JRT_END
 371 
 372 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 373   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 374 JRT_END
 375 
 376 // Intrinsics make gcc generate code for these.
 377 float  SharedRuntime::fneg(float f)   {
 378   return -f;
 379 }
 380 
 381 double SharedRuntime::dneg(double f)  {
 382   return -f;
 383 }
 384 
 385 #endif // __SOFTFP__
 386 
 387 #if defined(__SOFTFP__) || defined(E500V2)
 388 // Intrinsics make gcc generate code for these.
 389 double SharedRuntime::dabs(double f)  {
 390   return (f <= (double)0.0) ? (double)0.0 - f : f;
 391 }
 392 
 393 #endif
 394 
 395 #if defined(__SOFTFP__) || defined(PPC)
 396 double SharedRuntime::dsqrt(double f) {
 397   return sqrt(f);
 398 }
 399 #endif
 400 
 401 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 402   if (g_isnan(x))
 403     return 0;
 404   if (x >= (jfloat) max_jint)
 405     return max_jint;
 406   if (x <= (jfloat) min_jint)
 407     return min_jint;
 408   return (jint) x;
 409 JRT_END
 410 
 411 
 412 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 413   if (g_isnan(x))
 414     return 0;
 415   if (x >= (jfloat) max_jlong)
 416     return max_jlong;
 417   if (x <= (jfloat) min_jlong)
 418     return min_jlong;
 419   return (jlong) x;
 420 JRT_END
 421 
 422 
 423 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 424   if (g_isnan(x))
 425     return 0;
 426   if (x >= (jdouble) max_jint)
 427     return max_jint;
 428   if (x <= (jdouble) min_jint)
 429     return min_jint;
 430   return (jint) x;
 431 JRT_END
 432 
 433 
 434 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 435   if (g_isnan(x))
 436     return 0;
 437   if (x >= (jdouble) max_jlong)
 438     return max_jlong;
 439   if (x <= (jdouble) min_jlong)
 440     return min_jlong;
 441   return (jlong) x;
 442 JRT_END
 443 
 444 
 445 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 446   return (jfloat)x;
 447 JRT_END
 448 
 449 
 450 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 451   return (jfloat)x;
 452 JRT_END
 453 
 454 
 455 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 456   return (jdouble)x;
 457 JRT_END
 458 
 459 // Exception handling across interpreter/compiler boundaries
 460 //
 461 // exception_handler_for_return_address(...) returns the continuation address.
 462 // The continuation address is the entry point of the exception handler of the
 463 // previous frame depending on the return address.
 464 
 465 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 466   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 467   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 468 
 469   // Reset method handle flag.
 470   thread->set_is_method_handle_return(false);
 471 
 472 #if INCLUDE_JVMCI
 473   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 474   // and other exception handler continuations do not read it
 475   thread->set_exception_pc(NULL);
 476 #endif
 477 
 478   // The fastest case first
 479   CodeBlob* blob = CodeCache::find_blob(return_address);
 480   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 481   if (nm != NULL) {
 482     // Set flag if return address is a method handle call site.
 483     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 484     // native nmethods don't have exception handlers
 485     assert(!nm->is_native_method(), "no exception handler");
 486     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 487     if (nm->is_deopt_pc(return_address)) {
 488       // If we come here because of a stack overflow, the stack may be
 489       // unguarded. Reguard the stack otherwise if we return to the
 490       // deopt blob and the stack bang causes a stack overflow we
 491       // crash.
 492       bool guard_pages_enabled = thread->stack_guards_enabled();
 493       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 494       if (thread->reserved_stack_activation() != thread->stack_base()) {
 495         thread->set_reserved_stack_activation(thread->stack_base());
 496       }
 497       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 498       return SharedRuntime::deopt_blob()->unpack_with_exception();
 499     } else {
 500       return nm->exception_begin();
 501     }
 502   }
 503 
 504   // Entry code
 505   if (StubRoutines::returns_to_call_stub(return_address)) {
 506     return StubRoutines::catch_exception_entry();
 507   }
 508   // Interpreted code
 509   if (Interpreter::contains(return_address)) {
 510     return Interpreter::rethrow_exception_entry();
 511   }
 512 
 513   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 514   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 515 
 516 #ifndef PRODUCT
 517   { ResourceMark rm;
 518     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 519     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 520     tty->print_cr("b) other problem");
 521   }
 522 #endif // PRODUCT
 523 
 524   ShouldNotReachHere();
 525   return NULL;
 526 }
 527 
 528 
 529 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 530   return raw_exception_handler_for_return_address(thread, return_address);
 531 JRT_END
 532 
 533 
 534 address SharedRuntime::get_poll_stub(address pc) {
 535   address stub;
 536   // Look up the code blob
 537   CodeBlob *cb = CodeCache::find_blob(pc);
 538 
 539   // Should be an nmethod
 540   assert(cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 541 
 542   // Look up the relocation information
 543   assert(((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 544     "safepoint polling: type must be poll");
 545 
 546 #ifdef ASSERT
 547   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 548     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 549     Disassembler::decode(cb);
 550     fatal("Only polling locations are used for safepoint");
 551   }
 552 #endif
 553 
 554   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 555   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 556   if (at_poll_return) {
 557     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 558            "polling page return stub not created yet");
 559     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 560   } else if (has_wide_vectors) {
 561     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 562            "polling page vectors safepoint stub not created yet");
 563     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 564   } else {
 565     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 566            "polling page safepoint stub not created yet");
 567     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 568   }
 569   log_debug(safepoint)("... found polling page %s exception at pc = "
 570                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 571                        at_poll_return ? "return" : "loop",
 572                        (intptr_t)pc, (intptr_t)stub);
 573   return stub;
 574 }
 575 
 576 
 577 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 578   assert(caller.is_interpreted_frame(), "");
 579   int args_size = ArgumentSizeComputer(sig).size() + 1;
 580   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 581   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 582   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 583   return result;
 584 }
 585 
 586 
 587 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 588   if (JvmtiExport::can_post_on_exceptions()) {
 589     vframeStream vfst(thread, true);
 590     methodHandle method = methodHandle(thread, vfst.method());
 591     address bcp = method()->bcp_from(vfst.bci());
 592     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 593   }
 594   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 595 }
 596 
 597 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 598   Handle h_exception = Exceptions::new_exception(thread, name, message);
 599   throw_and_post_jvmti_exception(thread, h_exception);
 600 }
 601 
 602 // The interpreter code to call this tracing function is only
 603 // called/generated when TraceRedefineClasses has the right bits
 604 // set. Since obsolete methods are never compiled, we don't have
 605 // to modify the compilers to generate calls to this function.
 606 //
 607 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 608     JavaThread* thread, Method* method))
 609   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 610 
 611   if (method->is_obsolete()) {
 612     // We are calling an obsolete method, but this is not necessarily
 613     // an error. Our method could have been redefined just after we
 614     // fetched the Method* from the constant pool.
 615 
 616     // RC_TRACE macro has an embedded ResourceMark
 617     RC_TRACE_WITH_THREAD(0x00001000, thread,
 618                          ("calling obsolete method '%s'",
 619                           method->name_and_sig_as_C_string()));
 620     if (RC_TRACE_ENABLED(0x00002000)) {
 621       // this option is provided to debug calls to obsolete methods
 622       guarantee(false, "faulting at call to an obsolete method.");
 623     }
 624   }
 625   return 0;
 626 JRT_END
 627 
 628 // ret_pc points into caller; we are returning caller's exception handler
 629 // for given exception
 630 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 631                                                     bool force_unwind, bool top_frame_only) {
 632   assert(nm != NULL, "must exist");
 633   ResourceMark rm;
 634 
 635 #if INCLUDE_JVMCI
 636   if (nm->is_compiled_by_jvmci()) {
 637     // lookup exception handler for this pc
 638     int catch_pco = ret_pc - nm->code_begin();
 639     ExceptionHandlerTable table(nm);
 640     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 641     if (t != NULL) {
 642       return nm->code_begin() + t->pco();
 643     } else {
 644       // there is no exception handler for this pc => deoptimize
 645       nm->make_not_entrant();
 646 
 647       // Use Deoptimization::deoptimize for all of its side-effects:
 648       // revoking biases of monitors, gathering traps statistics, logging...
 649       // it also patches the return pc but we do not care about that
 650       // since we return a continuation to the deopt_blob below.
 651       JavaThread* thread = JavaThread::current();
 652       RegisterMap reg_map(thread, UseBiasedLocking);
 653       frame runtime_frame = thread->last_frame();
 654       frame caller_frame = runtime_frame.sender(&reg_map);
 655       Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
 656 
 657       return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 658     }
 659   }
 660 #endif // INCLUDE_JVMCI
 661 
 662   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 663   // determine handler bci, if any
 664   EXCEPTION_MARK;
 665 
 666   int handler_bci = -1;
 667   int scope_depth = 0;
 668   if (!force_unwind) {
 669     int bci = sd->bci();
 670     bool recursive_exception = false;
 671     do {
 672       bool skip_scope_increment = false;
 673       // exception handler lookup
 674       KlassHandle ek (THREAD, exception->klass());
 675       methodHandle mh(THREAD, sd->method());
 676       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 677       if (HAS_PENDING_EXCEPTION) {
 678         recursive_exception = true;
 679         // We threw an exception while trying to find the exception handler.
 680         // Transfer the new exception to the exception handle which will
 681         // be set into thread local storage, and do another lookup for an
 682         // exception handler for this exception, this time starting at the
 683         // BCI of the exception handler which caused the exception to be
 684         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 685         // argument to ensure that the correct exception is thrown (4870175).
 686         exception = Handle(THREAD, PENDING_EXCEPTION);
 687         CLEAR_PENDING_EXCEPTION;
 688         if (handler_bci >= 0) {
 689           bci = handler_bci;
 690           handler_bci = -1;
 691           skip_scope_increment = true;
 692         }
 693       }
 694       else {
 695         recursive_exception = false;
 696       }
 697       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 698         sd = sd->sender();
 699         if (sd != NULL) {
 700           bci = sd->bci();
 701         }
 702         ++scope_depth;
 703       }
 704     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 705   }
 706 
 707   // found handling method => lookup exception handler
 708   int catch_pco = ret_pc - nm->code_begin();
 709 
 710   ExceptionHandlerTable table(nm);
 711   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 712   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 713     // Allow abbreviated catch tables.  The idea is to allow a method
 714     // to materialize its exceptions without committing to the exact
 715     // routing of exceptions.  In particular this is needed for adding
 716     // a synthetic handler to unlock monitors when inlining
 717     // synchronized methods since the unlock path isn't represented in
 718     // the bytecodes.
 719     t = table.entry_for(catch_pco, -1, 0);
 720   }
 721 
 722 #ifdef COMPILER1
 723   if (t == NULL && nm->is_compiled_by_c1()) {
 724     assert(nm->unwind_handler_begin() != NULL, "");
 725     return nm->unwind_handler_begin();
 726   }
 727 #endif
 728 
 729   if (t == NULL) {
 730     ttyLocker ttyl;
 731     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 732     tty->print_cr("   Exception:");
 733     exception->print();
 734     tty->cr();
 735     tty->print_cr(" Compiled exception table :");
 736     table.print();
 737     nm->print_code();
 738     guarantee(false, "missing exception handler");
 739     return NULL;
 740   }
 741 
 742   return nm->code_begin() + t->pco();
 743 }
 744 
 745 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 746   // These errors occur only at call sites
 747   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 748 JRT_END
 749 
 750 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 751   // These errors occur only at call sites
 752   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 753 JRT_END
 754 
 755 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 756   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 757 JRT_END
 758 
 759 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 760   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 761 JRT_END
 762 
 763 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 764   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 765   // cache sites (when the callee activation is not yet set up) so we are at a call site
 766   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 767 JRT_END
 768 
 769 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 770   throw_StackOverflowError_common(thread, false);
 771 JRT_END
 772 
 773 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 774   throw_StackOverflowError_common(thread, true);
 775 JRT_END
 776 
 777 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 778   // We avoid using the normal exception construction in this case because
 779   // it performs an upcall to Java, and we're already out of stack space.
 780   Thread* THREAD = thread;
 781   Klass* k = SystemDictionary::StackOverflowError_klass();
 782   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 783   if (delayed) {
 784     java_lang_Throwable::set_message(exception_oop,
 785                                      Universe::delayed_stack_overflow_error_message());
 786   }
 787   Handle exception (thread, exception_oop);
 788   if (StackTraceInThrowable) {
 789     java_lang_Throwable::fill_in_stack_trace(exception);
 790   }
 791   // Increment counter for hs_err file reporting
 792   Atomic::inc(&Exceptions::_stack_overflow_errors);
 793   throw_and_post_jvmti_exception(thread, exception);
 794 }
 795 
 796 #if INCLUDE_JVMCI
 797 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, nmethod* nm, int deopt_reason) {
 798   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 799   thread->set_jvmci_implicit_exception_pc(pc);
 800   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 801   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 802 }
 803 #endif // INCLUDE_JVMCI
 804 
 805 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 806                                                            address pc,
 807                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 808 {
 809   address target_pc = NULL;
 810 
 811   if (Interpreter::contains(pc)) {
 812 #ifdef CC_INTERP
 813     // C++ interpreter doesn't throw implicit exceptions
 814     ShouldNotReachHere();
 815 #else
 816     switch (exception_kind) {
 817       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 818       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 819       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 820       default:                      ShouldNotReachHere();
 821     }
 822 #endif // !CC_INTERP
 823   } else {
 824     switch (exception_kind) {
 825       case STACK_OVERFLOW: {
 826         // Stack overflow only occurs upon frame setup; the callee is
 827         // going to be unwound. Dispatch to a shared runtime stub
 828         // which will cause the StackOverflowError to be fabricated
 829         // and processed.
 830         // Stack overflow should never occur during deoptimization:
 831         // the compiled method bangs the stack by as much as the
 832         // interpreter would need in case of a deoptimization. The
 833         // deoptimization blob and uncommon trap blob bang the stack
 834         // in a debug VM to verify the correctness of the compiled
 835         // method stack banging.
 836         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 837         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 838         return StubRoutines::throw_StackOverflowError_entry();
 839       }
 840 
 841       case IMPLICIT_NULL: {
 842         if (VtableStubs::contains(pc)) {
 843           // We haven't yet entered the callee frame. Fabricate an
 844           // exception and begin dispatching it in the caller. Since
 845           // the caller was at a call site, it's safe to destroy all
 846           // caller-saved registers, as these entry points do.
 847           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 848 
 849           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 850           if (vt_stub == NULL) return NULL;
 851 
 852           if (vt_stub->is_abstract_method_error(pc)) {
 853             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 854             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 855             return StubRoutines::throw_AbstractMethodError_entry();
 856           } else {
 857             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 858             return StubRoutines::throw_NullPointerException_at_call_entry();
 859           }
 860         } else {
 861           CodeBlob* cb = CodeCache::find_blob(pc);
 862 
 863           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 864           if (cb == NULL) return NULL;
 865 
 866           // Exception happened in CodeCache. Must be either:
 867           // 1. Inline-cache check in C2I handler blob,
 868           // 2. Inline-cache check in nmethod, or
 869           // 3. Implicit null exception in nmethod
 870 
 871           if (!cb->is_nmethod()) {
 872             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 873             if (!is_in_blob) {
 874               // Allow normal crash reporting to handle this
 875               return NULL;
 876             }
 877             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 878             // There is no handler here, so we will simply unwind.
 879             return StubRoutines::throw_NullPointerException_at_call_entry();
 880           }
 881 
 882           // Otherwise, it's an nmethod.  Consult its exception handlers.
 883           nmethod* nm = (nmethod*)cb;
 884           if (nm->inlinecache_check_contains(pc)) {
 885             // exception happened inside inline-cache check code
 886             // => the nmethod is not yet active (i.e., the frame
 887             // is not set up yet) => use return address pushed by
 888             // caller => don't push another return address
 889             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 890             return StubRoutines::throw_NullPointerException_at_call_entry();
 891           }
 892 
 893           if (nm->method()->is_method_handle_intrinsic()) {
 894             // exception happened inside MH dispatch code, similar to a vtable stub
 895             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 896             return StubRoutines::throw_NullPointerException_at_call_entry();
 897           }
 898 
 899 #ifndef PRODUCT
 900           _implicit_null_throws++;
 901 #endif
 902 #if INCLUDE_JVMCI
 903           if (nm->is_compiled_by_jvmci() && nm->pc_desc_at(pc) != NULL) {
 904             // If there's no PcDesc then we'll die way down inside of
 905             // deopt instead of just getting normal error reporting,
 906             // so only go there if it will succeed.
 907             return deoptimize_for_implicit_exception(thread, pc, nm, Deoptimization::Reason_null_check);
 908           } else {
 909 #endif // INCLUDE_JVMCI
 910           assert (nm->is_nmethod(), "Expect nmethod");
 911           target_pc = nm->continuation_for_implicit_exception(pc);
 912 #if INCLUDE_JVMCI
 913           }
 914 #endif // INCLUDE_JVMCI
 915           // If there's an unexpected fault, target_pc might be NULL,
 916           // in which case we want to fall through into the normal
 917           // error handling code.
 918         }
 919 
 920         break; // fall through
 921       }
 922 
 923 
 924       case IMPLICIT_DIVIDE_BY_ZERO: {
 925         nmethod* nm = CodeCache::find_nmethod(pc);
 926         guarantee(nm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 927 #ifndef PRODUCT
 928         _implicit_div0_throws++;
 929 #endif
 930 #if INCLUDE_JVMCI
 931         if (nm->is_compiled_by_jvmci() && nm->pc_desc_at(pc) != NULL) {
 932           return deoptimize_for_implicit_exception(thread, pc, nm, Deoptimization::Reason_div0_check);
 933         } else {
 934 #endif // INCLUDE_JVMCI
 935         target_pc = nm->continuation_for_implicit_exception(pc);
 936 #if INCLUDE_JVMCI
 937         }
 938 #endif // INCLUDE_JVMCI
 939         // If there's an unexpected fault, target_pc might be NULL,
 940         // in which case we want to fall through into the normal
 941         // error handling code.
 942         break; // fall through
 943       }
 944 
 945       default: ShouldNotReachHere();
 946     }
 947 
 948     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 949 
 950     if (exception_kind == IMPLICIT_NULL) {
 951 #ifndef PRODUCT
 952       // for AbortVMOnException flag
 953       Exceptions::debug_check_abort("java.lang.NullPointerException");
 954 #endif //PRODUCT
 955       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 956     } else {
 957 #ifndef PRODUCT
 958       // for AbortVMOnException flag
 959       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 960 #endif //PRODUCT
 961       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 962     }
 963     return target_pc;
 964   }
 965 
 966   ShouldNotReachHere();
 967   return NULL;
 968 }
 969 
 970 
 971 /**
 972  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 973  * installed in the native function entry of all native Java methods before
 974  * they get linked to their actual native methods.
 975  *
 976  * \note
 977  * This method actually never gets called!  The reason is because
 978  * the interpreter's native entries call NativeLookup::lookup() which
 979  * throws the exception when the lookup fails.  The exception is then
 980  * caught and forwarded on the return from NativeLookup::lookup() call
 981  * before the call to the native function.  This might change in the future.
 982  */
 983 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 984 {
 985   // We return a bad value here to make sure that the exception is
 986   // forwarded before we look at the return value.
 987   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 988 }
 989 JNI_END
 990 
 991 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 992   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 993 }
 994 
 995 
 996 #ifndef PRODUCT
 997 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 998   const frame f = thread->last_frame();
 999   assert(f.is_interpreted_frame(), "must be an interpreted frame");
1000 #ifndef PRODUCT
1001   methodHandle mh(THREAD, f.interpreter_frame_method());
1002   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
1003 #endif // !PRODUCT
1004   return preserve_this_value;
1005 JRT_END
1006 #endif // !PRODUCT
1007 
1008 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
1009   assert(obj->is_oop(), "must be a valid oop");
1010 #if INCLUDE_JVMCI
1011   // This removes the requirement for JVMCI compilers to emit code
1012   // performing a dynamic check that obj has a finalizer before
1013   // calling this routine. There should be no performance impact
1014   // for C1 since it emits a dynamic check. C2 and the interpreter
1015   // uses other runtime routines for registering finalizers.
1016   if (!obj->klass()->has_finalizer()) {
1017     return;
1018   }
1019 #endif // INCLUDE_JVMCI
1020   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1021   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1022 JRT_END
1023 
1024 
1025 jlong SharedRuntime::get_java_tid(Thread* thread) {
1026   if (thread != NULL) {
1027     if (thread->is_Java_thread()) {
1028       oop obj = ((JavaThread*)thread)->threadObj();
1029       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1030     }
1031   }
1032   return 0;
1033 }
1034 
1035 /**
1036  * This function ought to be a void function, but cannot be because
1037  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1038  * 6254741.  Once that is fixed we can remove the dummy return value.
1039  */
1040 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1041   return dtrace_object_alloc_base(Thread::current(), o, size);
1042 }
1043 
1044 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1045   assert(DTraceAllocProbes, "wrong call");
1046   Klass* klass = o->klass();
1047   Symbol* name = klass->name();
1048   HOTSPOT_OBJECT_ALLOC(
1049                    get_java_tid(thread),
1050                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1051   return 0;
1052 }
1053 
1054 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1055     JavaThread* thread, Method* method))
1056   assert(DTraceMethodProbes, "wrong call");
1057   Symbol* kname = method->klass_name();
1058   Symbol* name = method->name();
1059   Symbol* sig = method->signature();
1060   HOTSPOT_METHOD_ENTRY(
1061       get_java_tid(thread),
1062       (char *) kname->bytes(), kname->utf8_length(),
1063       (char *) name->bytes(), name->utf8_length(),
1064       (char *) sig->bytes(), sig->utf8_length());
1065   return 0;
1066 JRT_END
1067 
1068 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1069     JavaThread* thread, Method* method))
1070   assert(DTraceMethodProbes, "wrong call");
1071   Symbol* kname = method->klass_name();
1072   Symbol* name = method->name();
1073   Symbol* sig = method->signature();
1074   HOTSPOT_METHOD_RETURN(
1075       get_java_tid(thread),
1076       (char *) kname->bytes(), kname->utf8_length(),
1077       (char *) name->bytes(), name->utf8_length(),
1078       (char *) sig->bytes(), sig->utf8_length());
1079   return 0;
1080 JRT_END
1081 
1082 
1083 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1084 // for a call current in progress, i.e., arguments has been pushed on stack
1085 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1086 // vtable updates, etc.  Caller frame must be compiled.
1087 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1088   ResourceMark rm(THREAD);
1089 
1090   // last java frame on stack (which includes native call frames)
1091   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1092 
1093   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1094 }
1095 
1096 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1097   nmethod* caller_nm = vfst.nm();
1098 
1099   nmethodLocker caller_lock(caller_nm);
1100 
1101   address pc = vfst.frame_pc();
1102   { // Get call instruction under lock because another thread may be busy patching it.
1103     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1104     return caller_nm->attached_method_before_pc(pc);
1105   }
1106   return NULL;
1107 }
1108 
1109 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1110 // for a call current in progress, i.e., arguments has been pushed on stack
1111 // but callee has not been invoked yet.  Caller frame must be compiled.
1112 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1113                                               vframeStream& vfst,
1114                                               Bytecodes::Code& bc,
1115                                               CallInfo& callinfo, TRAPS) {
1116   Handle receiver;
1117   Handle nullHandle;  //create a handy null handle for exception returns
1118 
1119   assert(!vfst.at_end(), "Java frame must exist");
1120 
1121   // Find caller and bci from vframe
1122   methodHandle caller(THREAD, vfst.method());
1123   int          bci   = vfst.bci();
1124 
1125   Bytecode_invoke bytecode(caller, bci);
1126   int bytecode_index = bytecode.index();
1127 
1128   methodHandle attached_method = extract_attached_method(vfst);
1129   if (attached_method.not_null()) {
1130     methodHandle callee = bytecode.static_target(CHECK_NH);
1131     vmIntrinsics::ID id = callee->intrinsic_id();
1132     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1133     // it attaches statically resolved method to the call site.
1134     if (MethodHandles::is_signature_polymorphic(id) &&
1135         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1136       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1137 
1138       // Need to adjust invokehandle since inlining through signature-polymorphic
1139       // method happened.
1140       if (bc == Bytecodes::_invokehandle &&
1141           !MethodHandles::is_signature_polymorphic_method(attached_method())) {
1142         bc = attached_method->is_static() ? Bytecodes::_invokestatic
1143                                           : Bytecodes::_invokevirtual;
1144       }
1145     }
1146   } else {
1147     bc = bytecode.invoke_code();
1148   }
1149 
1150   bool has_receiver = bc != Bytecodes::_invokestatic &&
1151                       bc != Bytecodes::_invokedynamic &&
1152                       bc != Bytecodes::_invokehandle;
1153 
1154   // Find receiver for non-static call
1155   if (has_receiver) {
1156     // This register map must be update since we need to find the receiver for
1157     // compiled frames. The receiver might be in a register.
1158     RegisterMap reg_map2(thread);
1159     frame stubFrame   = thread->last_frame();
1160     // Caller-frame is a compiled frame
1161     frame callerFrame = stubFrame.sender(&reg_map2);
1162 
1163     if (attached_method.is_null()) {
1164       methodHandle callee = bytecode.static_target(CHECK_NH);
1165       if (callee.is_null()) {
1166         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1167       }
1168     }
1169 
1170     // Retrieve from a compiled argument list
1171     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1172 
1173     if (receiver.is_null()) {
1174       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1175     }
1176   }
1177 
1178   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1179 
1180   // Resolve method
1181   if (attached_method.not_null()) {
1182     // Parameterized by attached method.
1183     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1184   } else {
1185     // Parameterized by bytecode.
1186     constantPoolHandle constants(THREAD, caller->constants());
1187     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1188   }
1189 
1190 #ifdef ASSERT
1191   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1192   if (has_receiver) {
1193     assert(receiver.not_null(), "should have thrown exception");
1194     KlassHandle receiver_klass(THREAD, receiver->klass());
1195     Klass* rk = NULL;
1196     if (attached_method.not_null()) {
1197       // In case there's resolved method attached, use its holder during the check.
1198       rk = attached_method->method_holder();
1199     } else {
1200       // Klass is already loaded.
1201       constantPoolHandle constants(THREAD, caller->constants());
1202       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1203     }
1204     KlassHandle static_receiver_klass(THREAD, rk);
1205     methodHandle callee = callinfo.selected_method();
1206     assert(receiver_klass->is_subtype_of(static_receiver_klass()),
1207            "actual receiver must be subclass of static receiver klass");
1208     if (receiver_klass->is_instance_klass()) {
1209       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1210         tty->print_cr("ERROR: Klass not yet initialized!!");
1211         receiver_klass()->print();
1212       }
1213       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1214     }
1215   }
1216 #endif
1217 
1218   return receiver;
1219 }
1220 
1221 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1222   ResourceMark rm(THREAD);
1223   // We need first to check if any Java activations (compiled, interpreted)
1224   // exist on the stack since last JavaCall.  If not, we need
1225   // to get the target method from the JavaCall wrapper.
1226   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1227   methodHandle callee_method;
1228   if (vfst.at_end()) {
1229     // No Java frames were found on stack since we did the JavaCall.
1230     // Hence the stack can only contain an entry_frame.  We need to
1231     // find the target method from the stub frame.
1232     RegisterMap reg_map(thread, false);
1233     frame fr = thread->last_frame();
1234     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1235     fr = fr.sender(&reg_map);
1236     assert(fr.is_entry_frame(), "must be");
1237     // fr is now pointing to the entry frame.
1238     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1239     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1240   } else {
1241     Bytecodes::Code bc;
1242     CallInfo callinfo;
1243     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1244     callee_method = callinfo.selected_method();
1245   }
1246   assert(callee_method()->is_method(), "must be");
1247   return callee_method;
1248 }
1249 
1250 // Resolves a call.
1251 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1252                                            bool is_virtual,
1253                                            bool is_optimized, TRAPS) {
1254   methodHandle callee_method;
1255   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1256   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1257     int retry_count = 0;
1258     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1259            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1260       // If has a pending exception then there is no need to re-try to
1261       // resolve this method.
1262       // If the method has been redefined, we need to try again.
1263       // Hack: we have no way to update the vtables of arrays, so don't
1264       // require that java.lang.Object has been updated.
1265 
1266       // It is very unlikely that method is redefined more than 100 times
1267       // in the middle of resolve. If it is looping here more than 100 times
1268       // means then there could be a bug here.
1269       guarantee((retry_count++ < 100),
1270                 "Could not resolve to latest version of redefined method");
1271       // method is redefined in the middle of resolve so re-try.
1272       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1273     }
1274   }
1275   return callee_method;
1276 }
1277 
1278 // Resolves a call.  The compilers generate code for calls that go here
1279 // and are patched with the real destination of the call.
1280 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1281                                            bool is_virtual,
1282                                            bool is_optimized, TRAPS) {
1283 
1284   ResourceMark rm(thread);
1285   RegisterMap cbl_map(thread, false);
1286   frame caller_frame = thread->last_frame().sender(&cbl_map);
1287 
1288   CodeBlob* caller_cb = caller_frame.cb();
1289   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1290   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1291 
1292   // make sure caller is not getting deoptimized
1293   // and removed before we are done with it.
1294   // CLEANUP - with lazy deopt shouldn't need this lock
1295   nmethodLocker caller_lock(caller_nm);
1296 
1297   // determine call info & receiver
1298   // note: a) receiver is NULL for static calls
1299   //       b) an exception is thrown if receiver is NULL for non-static calls
1300   CallInfo call_info;
1301   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1302   Handle receiver = find_callee_info(thread, invoke_code,
1303                                      call_info, CHECK_(methodHandle()));
1304   methodHandle callee_method = call_info.selected_method();
1305 
1306   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1307          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1308          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1309          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1310          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1311 
1312   assert(caller_nm->is_alive(), "It should be alive");
1313 
1314 #ifndef PRODUCT
1315   // tracing/debugging/statistics
1316   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1317                 (is_virtual) ? (&_resolve_virtual_ctr) :
1318                                (&_resolve_static_ctr);
1319   Atomic::inc(addr);
1320 
1321   if (TraceCallFixup) {
1322     ResourceMark rm(thread);
1323     tty->print("resolving %s%s (%s) call to",
1324       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1325       Bytecodes::name(invoke_code));
1326     callee_method->print_short_name(tty);
1327     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1328                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1329   }
1330 #endif
1331 
1332   // JSR 292 key invariant:
1333   // If the resolved method is a MethodHandle invoke target, the call
1334   // site must be a MethodHandle call site, because the lambda form might tail-call
1335   // leaving the stack in a state unknown to either caller or callee
1336   // TODO detune for now but we might need it again
1337 //  assert(!callee_method->is_compiled_lambda_form() ||
1338 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1339 
1340   // Compute entry points. This might require generation of C2I converter
1341   // frames, so we cannot be holding any locks here. Furthermore, the
1342   // computation of the entry points is independent of patching the call.  We
1343   // always return the entry-point, but we only patch the stub if the call has
1344   // not been deoptimized.  Return values: For a virtual call this is an
1345   // (cached_oop, destination address) pair. For a static call/optimized
1346   // virtual this is just a destination address.
1347 
1348   StaticCallInfo static_call_info;
1349   CompiledICInfo virtual_call_info;
1350 
1351   // Make sure the callee nmethod does not get deoptimized and removed before
1352   // we are done patching the code.
1353   nmethod* callee_nm = callee_method->code();
1354   if (callee_nm != NULL && !callee_nm->is_in_use()) {
1355     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1356     callee_nm = NULL;
1357   }
1358   nmethodLocker nl_callee(callee_nm);
1359 #ifdef ASSERT
1360   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1361 #endif
1362 
1363   if (is_virtual) {
1364     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1365     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1366     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1367     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1368                      is_optimized, static_bound, virtual_call_info,
1369                      CHECK_(methodHandle()));
1370   } else {
1371     // static call
1372     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1373   }
1374 
1375   // grab lock, check for deoptimization and potentially patch caller
1376   {
1377     MutexLocker ml_patch(CompiledIC_lock);
1378 
1379     // Lock blocks for safepoint during which both nmethods can change state.
1380 
1381     // Now that we are ready to patch if the Method* was redefined then
1382     // don't update call site and let the caller retry.
1383     // Don't update call site if callee nmethod was unloaded or deoptimized.
1384     // Don't update call site if callee nmethod was replaced by an other nmethod
1385     // which may happen when multiply alive nmethod (tiered compilation)
1386     // will be supported.
1387     if (!callee_method->is_old() &&
1388         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
1389 #ifdef ASSERT
1390       // We must not try to patch to jump to an already unloaded method.
1391       if (dest_entry_point != 0) {
1392         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1393         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
1394                "should not call unloaded nmethod");
1395       }
1396 #endif
1397       if (is_virtual) {
1398         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1399         if (inline_cache->is_clean()) {
1400           inline_cache->set_to_monomorphic(virtual_call_info);
1401         }
1402       } else {
1403         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1404         if (ssc->is_clean()) ssc->set(static_call_info);
1405       }
1406     }
1407 
1408   } // unlock CompiledIC_lock
1409 
1410   return callee_method;
1411 }
1412 
1413 
1414 // Inline caches exist only in compiled code
1415 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1416 #ifdef ASSERT
1417   RegisterMap reg_map(thread, false);
1418   frame stub_frame = thread->last_frame();
1419   assert(stub_frame.is_runtime_frame(), "sanity check");
1420   frame caller_frame = stub_frame.sender(&reg_map);
1421   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1422 #endif /* ASSERT */
1423 
1424   methodHandle callee_method;
1425   JRT_BLOCK
1426     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1427     // Return Method* through TLS
1428     thread->set_vm_result_2(callee_method());
1429   JRT_BLOCK_END
1430   // return compiled code entry point after potential safepoints
1431   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1432   return callee_method->verified_code_entry();
1433 JRT_END
1434 
1435 
1436 // Handle call site that has been made non-entrant
1437 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1438   // 6243940 We might end up in here if the callee is deoptimized
1439   // as we race to call it.  We don't want to take a safepoint if
1440   // the caller was interpreted because the caller frame will look
1441   // interpreted to the stack walkers and arguments are now
1442   // "compiled" so it is much better to make this transition
1443   // invisible to the stack walking code. The i2c path will
1444   // place the callee method in the callee_target. It is stashed
1445   // there because if we try and find the callee by normal means a
1446   // safepoint is possible and have trouble gc'ing the compiled args.
1447   RegisterMap reg_map(thread, false);
1448   frame stub_frame = thread->last_frame();
1449   assert(stub_frame.is_runtime_frame(), "sanity check");
1450   frame caller_frame = stub_frame.sender(&reg_map);
1451 
1452   if (caller_frame.is_interpreted_frame() ||
1453       caller_frame.is_entry_frame()) {
1454     Method* callee = thread->callee_target();
1455     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1456     thread->set_vm_result_2(callee);
1457     thread->set_callee_target(NULL);
1458     return callee->get_c2i_entry();
1459   }
1460 
1461   // Must be compiled to compiled path which is safe to stackwalk
1462   methodHandle callee_method;
1463   JRT_BLOCK
1464     // Force resolving of caller (if we called from compiled frame)
1465     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1466     thread->set_vm_result_2(callee_method());
1467   JRT_BLOCK_END
1468   // return compiled code entry point after potential safepoints
1469   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1470   return callee_method->verified_code_entry();
1471 JRT_END
1472 
1473 // Handle abstract method call
1474 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1475   return StubRoutines::throw_AbstractMethodError_entry();
1476 JRT_END
1477 
1478 
1479 // resolve a static call and patch code
1480 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1481   methodHandle callee_method;
1482   JRT_BLOCK
1483     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1484     thread->set_vm_result_2(callee_method());
1485   JRT_BLOCK_END
1486   // return compiled code entry point after potential safepoints
1487   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1488   return callee_method->verified_code_entry();
1489 JRT_END
1490 
1491 
1492 // resolve virtual call and update inline cache to monomorphic
1493 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1494   methodHandle callee_method;
1495   JRT_BLOCK
1496     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1497     thread->set_vm_result_2(callee_method());
1498   JRT_BLOCK_END
1499   // return compiled code entry point after potential safepoints
1500   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1501   return callee_method->verified_code_entry();
1502 JRT_END
1503 
1504 
1505 // Resolve a virtual call that can be statically bound (e.g., always
1506 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1507 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1508   methodHandle callee_method;
1509   JRT_BLOCK
1510     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1511     thread->set_vm_result_2(callee_method());
1512   JRT_BLOCK_END
1513   // return compiled code entry point after potential safepoints
1514   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1515   return callee_method->verified_code_entry();
1516 JRT_END
1517 
1518 
1519 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1520   ResourceMark rm(thread);
1521   CallInfo call_info;
1522   Bytecodes::Code bc;
1523 
1524   // receiver is NULL for static calls. An exception is thrown for NULL
1525   // receivers for non-static calls
1526   Handle receiver = find_callee_info(thread, bc, call_info,
1527                                      CHECK_(methodHandle()));
1528   // Compiler1 can produce virtual call sites that can actually be statically bound
1529   // If we fell thru to below we would think that the site was going megamorphic
1530   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1531   // we'd try and do a vtable dispatch however methods that can be statically bound
1532   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1533   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1534   // plain ic_miss) and the site will be converted to an optimized virtual call site
1535   // never to miss again. I don't believe C2 will produce code like this but if it
1536   // did this would still be the correct thing to do for it too, hence no ifdef.
1537   //
1538   if (call_info.resolved_method()->can_be_statically_bound()) {
1539     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1540     if (TraceCallFixup) {
1541       RegisterMap reg_map(thread, false);
1542       frame caller_frame = thread->last_frame().sender(&reg_map);
1543       ResourceMark rm(thread);
1544       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1545       callee_method->print_short_name(tty);
1546       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1547       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1548     }
1549     return callee_method;
1550   }
1551 
1552   methodHandle callee_method = call_info.selected_method();
1553 
1554   bool should_be_mono = false;
1555 
1556 #ifndef PRODUCT
1557   Atomic::inc(&_ic_miss_ctr);
1558 
1559   // Statistics & Tracing
1560   if (TraceCallFixup) {
1561     ResourceMark rm(thread);
1562     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1563     callee_method->print_short_name(tty);
1564     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1565   }
1566 
1567   if (ICMissHistogram) {
1568     MutexLocker m(VMStatistic_lock);
1569     RegisterMap reg_map(thread, false);
1570     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1571     // produce statistics under the lock
1572     trace_ic_miss(f.pc());
1573   }
1574 #endif
1575 
1576   // install an event collector so that when a vtable stub is created the
1577   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1578   // event can't be posted when the stub is created as locks are held
1579   // - instead the event will be deferred until the event collector goes
1580   // out of scope.
1581   JvmtiDynamicCodeEventCollector event_collector;
1582 
1583   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1584   { MutexLocker ml_patch (CompiledIC_lock);
1585     RegisterMap reg_map(thread, false);
1586     frame caller_frame = thread->last_frame().sender(&reg_map);
1587     CodeBlob* cb = caller_frame.cb();
1588     if (cb->is_nmethod()) {
1589       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1590       bool should_be_mono = false;
1591       if (inline_cache->is_optimized()) {
1592         if (TraceCallFixup) {
1593           ResourceMark rm(thread);
1594           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1595           callee_method->print_short_name(tty);
1596           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1597         }
1598         should_be_mono = true;
1599       } else if (inline_cache->is_icholder_call()) {
1600         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1601         if (ic_oop != NULL) {
1602 
1603           if (receiver()->klass() == ic_oop->holder_klass()) {
1604             // This isn't a real miss. We must have seen that compiled code
1605             // is now available and we want the call site converted to a
1606             // monomorphic compiled call site.
1607             // We can't assert for callee_method->code() != NULL because it
1608             // could have been deoptimized in the meantime
1609             if (TraceCallFixup) {
1610               ResourceMark rm(thread);
1611               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1612               callee_method->print_short_name(tty);
1613               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1614             }
1615             should_be_mono = true;
1616           }
1617         }
1618       }
1619 
1620       if (should_be_mono) {
1621 
1622         // We have a path that was monomorphic but was going interpreted
1623         // and now we have (or had) a compiled entry. We correct the IC
1624         // by using a new icBuffer.
1625         CompiledICInfo info;
1626         KlassHandle receiver_klass(THREAD, receiver()->klass());
1627         inline_cache->compute_monomorphic_entry(callee_method,
1628                                                 receiver_klass,
1629                                                 inline_cache->is_optimized(),
1630                                                 false,
1631                                                 info, CHECK_(methodHandle()));
1632         inline_cache->set_to_monomorphic(info);
1633       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1634         // Potential change to megamorphic
1635         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1636         if (!successful) {
1637           inline_cache->set_to_clean();
1638         }
1639       } else {
1640         // Either clean or megamorphic
1641       }
1642     } else {
1643       fatal("Unimplemented");
1644     }
1645   } // Release CompiledIC_lock
1646 
1647   return callee_method;
1648 }
1649 
1650 //
1651 // Resets a call-site in compiled code so it will get resolved again.
1652 // This routines handles both virtual call sites, optimized virtual call
1653 // sites, and static call sites. Typically used to change a call sites
1654 // destination from compiled to interpreted.
1655 //
1656 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1657   ResourceMark rm(thread);
1658   RegisterMap reg_map(thread, false);
1659   frame stub_frame = thread->last_frame();
1660   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1661   frame caller = stub_frame.sender(&reg_map);
1662 
1663   // Do nothing if the frame isn't a live compiled frame.
1664   // nmethod could be deoptimized by the time we get here
1665   // so no update to the caller is needed.
1666 
1667   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1668 
1669     address pc = caller.pc();
1670 
1671     // Check for static or virtual call
1672     bool is_static_call = false;
1673     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1674 
1675     // Default call_addr is the location of the "basic" call.
1676     // Determine the address of the call we a reresolving. With
1677     // Inline Caches we will always find a recognizable call.
1678     // With Inline Caches disabled we may or may not find a
1679     // recognizable call. We will always find a call for static
1680     // calls and for optimized virtual calls. For vanilla virtual
1681     // calls it depends on the state of the UseInlineCaches switch.
1682     //
1683     // With Inline Caches disabled we can get here for a virtual call
1684     // for two reasons:
1685     //   1 - calling an abstract method. The vtable for abstract methods
1686     //       will run us thru handle_wrong_method and we will eventually
1687     //       end up in the interpreter to throw the ame.
1688     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1689     //       call and between the time we fetch the entry address and
1690     //       we jump to it the target gets deoptimized. Similar to 1
1691     //       we will wind up in the interprter (thru a c2i with c2).
1692     //
1693     address call_addr = NULL;
1694     {
1695       // Get call instruction under lock because another thread may be
1696       // busy patching it.
1697       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1698       // Location of call instruction
1699       if (NativeCall::is_call_before(pc)) {
1700         NativeCall *ncall = nativeCall_before(pc);
1701         call_addr = ncall->instruction_address();
1702       }
1703     }
1704     // Make sure nmethod doesn't get deoptimized and removed until
1705     // this is done with it.
1706     // CLEANUP - with lazy deopt shouldn't need this lock
1707     nmethodLocker nmlock(caller_nm);
1708 
1709     if (call_addr != NULL) {
1710       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1711       int ret = iter.next(); // Get item
1712       if (ret) {
1713         assert(iter.addr() == call_addr, "must find call");
1714         if (iter.type() == relocInfo::static_call_type) {
1715           is_static_call = true;
1716         } else {
1717           assert(iter.type() == relocInfo::virtual_call_type ||
1718                  iter.type() == relocInfo::opt_virtual_call_type
1719                 , "unexpected relocInfo. type");
1720         }
1721       } else {
1722         assert(!UseInlineCaches, "relocation info. must exist for this address");
1723       }
1724 
1725       // Cleaning the inline cache will force a new resolve. This is more robust
1726       // than directly setting it to the new destination, since resolving of calls
1727       // is always done through the same code path. (experience shows that it
1728       // leads to very hard to track down bugs, if an inline cache gets updated
1729       // to a wrong method). It should not be performance critical, since the
1730       // resolve is only done once.
1731 
1732       MutexLocker ml(CompiledIC_lock);
1733       if (is_static_call) {
1734         CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1735         ssc->set_to_clean();
1736       } else {
1737         // compiled, dispatched call (which used to call an interpreted method)
1738         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1739         inline_cache->set_to_clean();
1740       }
1741     }
1742   }
1743 
1744   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1745 
1746 
1747 #ifndef PRODUCT
1748   Atomic::inc(&_wrong_method_ctr);
1749 
1750   if (TraceCallFixup) {
1751     ResourceMark rm(thread);
1752     tty->print("handle_wrong_method reresolving call to");
1753     callee_method->print_short_name(tty);
1754     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1755   }
1756 #endif
1757 
1758   return callee_method;
1759 }
1760 
1761 #ifdef ASSERT
1762 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1763                                                                 const BasicType* sig_bt,
1764                                                                 const VMRegPair* regs) {
1765   ResourceMark rm;
1766   const int total_args_passed = method->size_of_parameters();
1767   const VMRegPair*    regs_with_member_name = regs;
1768         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1769 
1770   const int member_arg_pos = total_args_passed - 1;
1771   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1772   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1773 
1774   const bool is_outgoing = method->is_method_handle_intrinsic();
1775   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1776 
1777   for (int i = 0; i < member_arg_pos; i++) {
1778     VMReg a =    regs_with_member_name[i].first();
1779     VMReg b = regs_without_member_name[i].first();
1780     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1781   }
1782   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1783 }
1784 #endif
1785 
1786 // ---------------------------------------------------------------------------
1787 // We are calling the interpreter via a c2i. Normally this would mean that
1788 // we were called by a compiled method. However we could have lost a race
1789 // where we went int -> i2c -> c2i and so the caller could in fact be
1790 // interpreted. If the caller is compiled we attempt to patch the caller
1791 // so he no longer calls into the interpreter.
1792 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1793   Method* moop(method);
1794 
1795   address entry_point = moop->from_compiled_entry_no_trampoline();
1796 
1797   // It's possible that deoptimization can occur at a call site which hasn't
1798   // been resolved yet, in which case this function will be called from
1799   // an nmethod that has been patched for deopt and we can ignore the
1800   // request for a fixup.
1801   // Also it is possible that we lost a race in that from_compiled_entry
1802   // is now back to the i2c in that case we don't need to patch and if
1803   // we did we'd leap into space because the callsite needs to use
1804   // "to interpreter" stub in order to load up the Method*. Don't
1805   // ask me how I know this...
1806 
1807   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1808   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1809     return;
1810   }
1811 
1812   // The check above makes sure this is a nmethod.
1813   nmethod* nm = cb->as_nmethod_or_null();
1814   assert(nm, "must be");
1815 
1816   // Get the return PC for the passed caller PC.
1817   address return_pc = caller_pc + frame::pc_return_offset;
1818 
1819   // There is a benign race here. We could be attempting to patch to a compiled
1820   // entry point at the same time the callee is being deoptimized. If that is
1821   // the case then entry_point may in fact point to a c2i and we'd patch the
1822   // call site with the same old data. clear_code will set code() to NULL
1823   // at the end of it. If we happen to see that NULL then we can skip trying
1824   // to patch. If we hit the window where the callee has a c2i in the
1825   // from_compiled_entry and the NULL isn't present yet then we lose the race
1826   // and patch the code with the same old data. Asi es la vida.
1827 
1828   if (moop->code() == NULL) return;
1829 
1830   if (nm->is_in_use()) {
1831 
1832     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1833     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1834     if (NativeCall::is_call_before(return_pc)) {
1835       NativeCall *call = nativeCall_before(return_pc);
1836       //
1837       // bug 6281185. We might get here after resolving a call site to a vanilla
1838       // virtual call. Because the resolvee uses the verified entry it may then
1839       // see compiled code and attempt to patch the site by calling us. This would
1840       // then incorrectly convert the call site to optimized and its downhill from
1841       // there. If you're lucky you'll get the assert in the bugid, if not you've
1842       // just made a call site that could be megamorphic into a monomorphic site
1843       // for the rest of its life! Just another racing bug in the life of
1844       // fixup_callers_callsite ...
1845       //
1846       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1847       iter.next();
1848       assert(iter.has_current(), "must have a reloc at java call site");
1849       relocInfo::relocType typ = iter.reloc()->type();
1850       if (typ != relocInfo::static_call_type &&
1851            typ != relocInfo::opt_virtual_call_type &&
1852            typ != relocInfo::static_stub_type) {
1853         return;
1854       }
1855       address destination = call->destination();
1856       if (destination != entry_point) {
1857         CodeBlob* callee = CodeCache::find_blob(destination);
1858         // callee == cb seems weird. It means calling interpreter thru stub.
1859         if (callee == cb || callee->is_adapter_blob()) {
1860           // static call or optimized virtual
1861           if (TraceCallFixup) {
1862             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1863             moop->print_short_name(tty);
1864             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1865           }
1866           call->set_destination_mt_safe(entry_point);
1867         } else {
1868           if (TraceCallFixup) {
1869             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1870             moop->print_short_name(tty);
1871             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1872           }
1873           // assert is too strong could also be resolve destinations.
1874           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1875         }
1876       } else {
1877           if (TraceCallFixup) {
1878             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1879             moop->print_short_name(tty);
1880             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1881           }
1882       }
1883     }
1884   }
1885 IRT_END
1886 
1887 
1888 // same as JVM_Arraycopy, but called directly from compiled code
1889 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1890                                                 oopDesc* dest, jint dest_pos,
1891                                                 jint length,
1892                                                 JavaThread* thread)) {
1893 #ifndef PRODUCT
1894   _slow_array_copy_ctr++;
1895 #endif
1896   // Check if we have null pointers
1897   if (src == NULL || dest == NULL) {
1898     THROW(vmSymbols::java_lang_NullPointerException());
1899   }
1900   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1901   // even though the copy_array API also performs dynamic checks to ensure
1902   // that src and dest are truly arrays (and are conformable).
1903   // The copy_array mechanism is awkward and could be removed, but
1904   // the compilers don't call this function except as a last resort,
1905   // so it probably doesn't matter.
1906   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1907                                         (arrayOopDesc*)dest, dest_pos,
1908                                         length, thread);
1909 }
1910 JRT_END
1911 
1912 char* SharedRuntime::generate_class_cast_message(
1913     JavaThread* thread, const char* objName) {
1914 
1915   // Get target class name from the checkcast instruction
1916   vframeStream vfst(thread, true);
1917   assert(!vfst.at_end(), "Java frame must exist");
1918   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1919   Klass* targetKlass = vfst.method()->constants()->klass_at(
1920     cc.index(), thread);
1921   return generate_class_cast_message(objName, targetKlass->external_name());
1922 }
1923 
1924 char* SharedRuntime::generate_class_cast_message(
1925     const char* objName, const char* targetKlassName, const char* desc) {
1926   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1927 
1928   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1929   if (NULL == message) {
1930     // Shouldn't happen, but don't cause even more problems if it does
1931     message = const_cast<char*>(objName);
1932   } else {
1933     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1934   }
1935   return message;
1936 }
1937 
1938 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1939   (void) JavaThread::current()->reguard_stack();
1940 JRT_END
1941 
1942 
1943 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1944 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1945   // Disable ObjectSynchronizer::quick_enter() in default config
1946   // until JDK-8077392 is resolved.
1947   if ((SyncFlags & 256) != 0 && !SafepointSynchronize::is_synchronizing()) {
1948     // Only try quick_enter() if we're not trying to reach a safepoint
1949     // so that the calling thread reaches the safepoint more quickly.
1950     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
1951   }
1952   // NO_ASYNC required because an async exception on the state transition destructor
1953   // would leave you with the lock held and it would never be released.
1954   // The normal monitorenter NullPointerException is thrown without acquiring a lock
1955   // and the model is that an exception implies the method failed.
1956   JRT_BLOCK_NO_ASYNC
1957   oop obj(_obj);
1958   if (PrintBiasedLockingStatistics) {
1959     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1960   }
1961   Handle h_obj(THREAD, obj);
1962   if (UseBiasedLocking) {
1963     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1964     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1965   } else {
1966     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1967   }
1968   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1969   JRT_BLOCK_END
1970 JRT_END
1971 
1972 // Handles the uncommon cases of monitor unlocking in compiled code
1973 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
1974    oop obj(_obj);
1975   assert(JavaThread::current() == THREAD, "invariant");
1976   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1977   // testing was unable to ever fire the assert that guarded it so I have removed it.
1978   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1979 #undef MIGHT_HAVE_PENDING
1980 #ifdef MIGHT_HAVE_PENDING
1981   // Save and restore any pending_exception around the exception mark.
1982   // While the slow_exit must not throw an exception, we could come into
1983   // this routine with one set.
1984   oop pending_excep = NULL;
1985   const char* pending_file;
1986   int pending_line;
1987   if (HAS_PENDING_EXCEPTION) {
1988     pending_excep = PENDING_EXCEPTION;
1989     pending_file  = THREAD->exception_file();
1990     pending_line  = THREAD->exception_line();
1991     CLEAR_PENDING_EXCEPTION;
1992   }
1993 #endif /* MIGHT_HAVE_PENDING */
1994 
1995   {
1996     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1997     EXCEPTION_MARK;
1998     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1999   }
2000 
2001 #ifdef MIGHT_HAVE_PENDING
2002   if (pending_excep != NULL) {
2003     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2004   }
2005 #endif /* MIGHT_HAVE_PENDING */
2006 JRT_END
2007 
2008 #ifndef PRODUCT
2009 
2010 void SharedRuntime::print_statistics() {
2011   ttyLocker ttyl;
2012   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2013 
2014   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2015 
2016   SharedRuntime::print_ic_miss_histogram();
2017 
2018   if (CountRemovableExceptions) {
2019     if (_nof_removable_exceptions > 0) {
2020       Unimplemented(); // this counter is not yet incremented
2021       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2022     }
2023   }
2024 
2025   // Dump the JRT_ENTRY counters
2026   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2027   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2028   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2029   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2030   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2031   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2032   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2033 
2034   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2035   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2036   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2037   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2038   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2039 
2040   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2041   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2042   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2043   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2044   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2045   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2046   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2047   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2048   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2049   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2050   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2051   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2052   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2053   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2054   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2055   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2056 
2057   AdapterHandlerLibrary::print_statistics();
2058 
2059   if (xtty != NULL)  xtty->tail("statistics");
2060 }
2061 
2062 inline double percent(int x, int y) {
2063   return 100.0 * x / MAX2(y, 1);
2064 }
2065 
2066 class MethodArityHistogram {
2067  public:
2068   enum { MAX_ARITY = 256 };
2069  private:
2070   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2071   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2072   static int _max_arity;                      // max. arity seen
2073   static int _max_size;                       // max. arg size seen
2074 
2075   static void add_method_to_histogram(nmethod* nm) {
2076     Method* m = nm->method();
2077     ArgumentCount args(m->signature());
2078     int arity   = args.size() + (m->is_static() ? 0 : 1);
2079     int argsize = m->size_of_parameters();
2080     arity   = MIN2(arity, MAX_ARITY-1);
2081     argsize = MIN2(argsize, MAX_ARITY-1);
2082     int count = nm->method()->compiled_invocation_count();
2083     _arity_histogram[arity]  += count;
2084     _size_histogram[argsize] += count;
2085     _max_arity = MAX2(_max_arity, arity);
2086     _max_size  = MAX2(_max_size, argsize);
2087   }
2088 
2089   void print_histogram_helper(int n, int* histo, const char* name) {
2090     const int N = MIN2(5, n);
2091     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2092     double sum = 0;
2093     double weighted_sum = 0;
2094     int i;
2095     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2096     double rest = sum;
2097     double percent = sum / 100;
2098     for (i = 0; i <= N; i++) {
2099       rest -= histo[i];
2100       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2101     }
2102     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2103     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2104   }
2105 
2106   void print_histogram() {
2107     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2108     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2109     tty->print_cr("\nSame for parameter size (in words):");
2110     print_histogram_helper(_max_size, _size_histogram, "size");
2111     tty->cr();
2112   }
2113 
2114  public:
2115   MethodArityHistogram() {
2116     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2117     _max_arity = _max_size = 0;
2118     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2119     CodeCache::nmethods_do(add_method_to_histogram);
2120     print_histogram();
2121   }
2122 };
2123 
2124 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2125 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2126 int MethodArityHistogram::_max_arity;
2127 int MethodArityHistogram::_max_size;
2128 
2129 void SharedRuntime::print_call_statistics(int comp_total) {
2130   tty->print_cr("Calls from compiled code:");
2131   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2132   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2133   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2134   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2135   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2136   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2137   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2138   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2139   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2140   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2141   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2142   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2143   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2144   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2145   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2146   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2147   tty->cr();
2148   tty->print_cr("Note 1: counter updates are not MT-safe.");
2149   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2150   tty->print_cr("        %% in nested categories are relative to their category");
2151   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2152   tty->cr();
2153 
2154   MethodArityHistogram h;
2155 }
2156 #endif
2157 
2158 
2159 // A simple wrapper class around the calling convention information
2160 // that allows sharing of adapters for the same calling convention.
2161 class AdapterFingerPrint : public CHeapObj<mtCode> {
2162  private:
2163   enum {
2164     _basic_type_bits = 4,
2165     _basic_type_mask = right_n_bits(_basic_type_bits),
2166     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2167     _compact_int_count = 3
2168   };
2169   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2170   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2171 
2172   union {
2173     int  _compact[_compact_int_count];
2174     int* _fingerprint;
2175   } _value;
2176   int _length; // A negative length indicates the fingerprint is in the compact form,
2177                // Otherwise _value._fingerprint is the array.
2178 
2179   // Remap BasicTypes that are handled equivalently by the adapters.
2180   // These are correct for the current system but someday it might be
2181   // necessary to make this mapping platform dependent.
2182   static int adapter_encoding(BasicType in) {
2183     switch (in) {
2184       case T_BOOLEAN:
2185       case T_BYTE:
2186       case T_SHORT:
2187       case T_CHAR:
2188         // There are all promoted to T_INT in the calling convention
2189         return T_INT;
2190 
2191       case T_OBJECT:
2192       case T_ARRAY:
2193         // In other words, we assume that any register good enough for
2194         // an int or long is good enough for a managed pointer.
2195 #ifdef _LP64
2196         return T_LONG;
2197 #else
2198         return T_INT;
2199 #endif
2200 
2201       case T_INT:
2202       case T_LONG:
2203       case T_FLOAT:
2204       case T_DOUBLE:
2205       case T_VOID:
2206         return in;
2207 
2208       default:
2209         ShouldNotReachHere();
2210         return T_CONFLICT;
2211     }
2212   }
2213 
2214  public:
2215   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2216     // The fingerprint is based on the BasicType signature encoded
2217     // into an array of ints with eight entries per int.
2218     int* ptr;
2219     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2220     if (len <= _compact_int_count) {
2221       assert(_compact_int_count == 3, "else change next line");
2222       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2223       // Storing the signature encoded as signed chars hits about 98%
2224       // of the time.
2225       _length = -len;
2226       ptr = _value._compact;
2227     } else {
2228       _length = len;
2229       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2230       ptr = _value._fingerprint;
2231     }
2232 
2233     // Now pack the BasicTypes with 8 per int
2234     int sig_index = 0;
2235     for (int index = 0; index < len; index++) {
2236       int value = 0;
2237       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2238         int bt = ((sig_index < total_args_passed)
2239                   ? adapter_encoding(sig_bt[sig_index++])
2240                   : 0);
2241         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2242         value = (value << _basic_type_bits) | bt;
2243       }
2244       ptr[index] = value;
2245     }
2246   }
2247 
2248   ~AdapterFingerPrint() {
2249     if (_length > 0) {
2250       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2251     }
2252   }
2253 
2254   int value(int index) {
2255     if (_length < 0) {
2256       return _value._compact[index];
2257     }
2258     return _value._fingerprint[index];
2259   }
2260   int length() {
2261     if (_length < 0) return -_length;
2262     return _length;
2263   }
2264 
2265   bool is_compact() {
2266     return _length <= 0;
2267   }
2268 
2269   unsigned int compute_hash() {
2270     int hash = 0;
2271     for (int i = 0; i < length(); i++) {
2272       int v = value(i);
2273       hash = (hash << 8) ^ v ^ (hash >> 5);
2274     }
2275     return (unsigned int)hash;
2276   }
2277 
2278   const char* as_string() {
2279     stringStream st;
2280     st.print("0x");
2281     for (int i = 0; i < length(); i++) {
2282       st.print("%08x", value(i));
2283     }
2284     return st.as_string();
2285   }
2286 
2287   bool equals(AdapterFingerPrint* other) {
2288     if (other->_length != _length) {
2289       return false;
2290     }
2291     if (_length < 0) {
2292       assert(_compact_int_count == 3, "else change next line");
2293       return _value._compact[0] == other->_value._compact[0] &&
2294              _value._compact[1] == other->_value._compact[1] &&
2295              _value._compact[2] == other->_value._compact[2];
2296     } else {
2297       for (int i = 0; i < _length; i++) {
2298         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2299           return false;
2300         }
2301       }
2302     }
2303     return true;
2304   }
2305 };
2306 
2307 
2308 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2309 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2310   friend class AdapterHandlerTableIterator;
2311 
2312  private:
2313 
2314 #ifndef PRODUCT
2315   static int _lookups; // number of calls to lookup
2316   static int _buckets; // number of buckets checked
2317   static int _equals;  // number of buckets checked with matching hash
2318   static int _hits;    // number of successful lookups
2319   static int _compact; // number of equals calls with compact signature
2320 #endif
2321 
2322   AdapterHandlerEntry* bucket(int i) {
2323     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2324   }
2325 
2326  public:
2327   AdapterHandlerTable()
2328     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2329 
2330   // Create a new entry suitable for insertion in the table
2331   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2332     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2333     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2334     if (DumpSharedSpaces) {
2335       ((CDSAdapterHandlerEntry*)entry)->init();
2336     }
2337     return entry;
2338   }
2339 
2340   // Insert an entry into the table
2341   void add(AdapterHandlerEntry* entry) {
2342     int index = hash_to_index(entry->hash());
2343     add_entry(index, entry);
2344   }
2345 
2346   void free_entry(AdapterHandlerEntry* entry) {
2347     entry->deallocate();
2348     BasicHashtable<mtCode>::free_entry(entry);
2349   }
2350 
2351   // Find a entry with the same fingerprint if it exists
2352   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2353     NOT_PRODUCT(_lookups++);
2354     AdapterFingerPrint fp(total_args_passed, sig_bt);
2355     unsigned int hash = fp.compute_hash();
2356     int index = hash_to_index(hash);
2357     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2358       NOT_PRODUCT(_buckets++);
2359       if (e->hash() == hash) {
2360         NOT_PRODUCT(_equals++);
2361         if (fp.equals(e->fingerprint())) {
2362 #ifndef PRODUCT
2363           if (fp.is_compact()) _compact++;
2364           _hits++;
2365 #endif
2366           return e;
2367         }
2368       }
2369     }
2370     return NULL;
2371   }
2372 
2373 #ifndef PRODUCT
2374   void print_statistics() {
2375     ResourceMark rm;
2376     int longest = 0;
2377     int empty = 0;
2378     int total = 0;
2379     int nonempty = 0;
2380     for (int index = 0; index < table_size(); index++) {
2381       int count = 0;
2382       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2383         count++;
2384       }
2385       if (count != 0) nonempty++;
2386       if (count == 0) empty++;
2387       if (count > longest) longest = count;
2388       total += count;
2389     }
2390     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2391                   empty, longest, total, total / (double)nonempty);
2392     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2393                   _lookups, _buckets, _equals, _hits, _compact);
2394   }
2395 #endif
2396 };
2397 
2398 
2399 #ifndef PRODUCT
2400 
2401 int AdapterHandlerTable::_lookups;
2402 int AdapterHandlerTable::_buckets;
2403 int AdapterHandlerTable::_equals;
2404 int AdapterHandlerTable::_hits;
2405 int AdapterHandlerTable::_compact;
2406 
2407 #endif
2408 
2409 class AdapterHandlerTableIterator : public StackObj {
2410  private:
2411   AdapterHandlerTable* _table;
2412   int _index;
2413   AdapterHandlerEntry* _current;
2414 
2415   void scan() {
2416     while (_index < _table->table_size()) {
2417       AdapterHandlerEntry* a = _table->bucket(_index);
2418       _index++;
2419       if (a != NULL) {
2420         _current = a;
2421         return;
2422       }
2423     }
2424   }
2425 
2426  public:
2427   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2428     scan();
2429   }
2430   bool has_next() {
2431     return _current != NULL;
2432   }
2433   AdapterHandlerEntry* next() {
2434     if (_current != NULL) {
2435       AdapterHandlerEntry* result = _current;
2436       _current = _current->next();
2437       if (_current == NULL) scan();
2438       return result;
2439     } else {
2440       return NULL;
2441     }
2442   }
2443 };
2444 
2445 
2446 // ---------------------------------------------------------------------------
2447 // Implementation of AdapterHandlerLibrary
2448 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2449 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2450 const int AdapterHandlerLibrary_size = 16*K;
2451 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2452 
2453 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2454   // Should be called only when AdapterHandlerLibrary_lock is active.
2455   if (_buffer == NULL) // Initialize lazily
2456       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2457   return _buffer;
2458 }
2459 
2460 extern "C" void unexpected_adapter_call() {
2461   ShouldNotCallThis();
2462 }
2463 
2464 void AdapterHandlerLibrary::initialize() {
2465   if (_adapters != NULL) return;
2466   _adapters = new AdapterHandlerTable();
2467 
2468   if (!CodeCacheExtensions::skip_compiler_support()) {
2469     // Create a special handler for abstract methods.  Abstract methods
2470     // are never compiled so an i2c entry is somewhat meaningless, but
2471     // throw AbstractMethodError just in case.
2472     // Pass wrong_method_abstract for the c2i transitions to return
2473     // AbstractMethodError for invalid invocations.
2474     address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2475     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2476                                                                 StubRoutines::throw_AbstractMethodError_entry(),
2477                                                                 wrong_method_abstract, wrong_method_abstract);
2478   } else {
2479     // Adapters are not supposed to be used.
2480     // Generate a special one to cause an error if used (and store this
2481     // singleton in place of the useless _abstract_method_error adapter).
2482     address entry = (address) &unexpected_adapter_call;
2483     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2484                                                                 entry,
2485                                                                 entry,
2486                                                                 entry);
2487 
2488   }
2489 }
2490 
2491 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2492                                                       address i2c_entry,
2493                                                       address c2i_entry,
2494                                                       address c2i_unverified_entry) {
2495   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2496 }
2497 
2498 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2499   AdapterHandlerEntry* entry = get_adapter0(method);
2500   if (method->is_shared()) {
2501     MutexLocker mu(AdapterHandlerLibrary_lock);
2502     if (method->adapter() == NULL) {
2503       method->update_adapter_trampoline(entry);
2504     }
2505     address trampoline = method->from_compiled_entry();
2506     if (*(int*)trampoline == 0) {
2507       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2508       MacroAssembler _masm(&buffer);
2509       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2510 
2511       if (PrintInterpreter) {
2512         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2513       }
2514     }
2515   }
2516 
2517   return entry;
2518 }
2519 
2520 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2521   // Use customized signature handler.  Need to lock around updates to
2522   // the AdapterHandlerTable (it is not safe for concurrent readers
2523   // and a single writer: this could be fixed if it becomes a
2524   // problem).
2525 
2526   ResourceMark rm;
2527 
2528   NOT_PRODUCT(int insts_size);
2529   AdapterBlob* new_adapter = NULL;
2530   AdapterHandlerEntry* entry = NULL;
2531   AdapterFingerPrint* fingerprint = NULL;
2532   {
2533     MutexLocker mu(AdapterHandlerLibrary_lock);
2534     // make sure data structure is initialized
2535     initialize();
2536 
2537     if (!DumpSharedSpaces && CodeCacheExtensions::skip_compiler_support()) {
2538       // adapters are useless and should not be used, including the
2539       // abstract_method_handler. However, some callers check that
2540       // an adapter was installed.
2541       // Return the singleton adapter, stored into _abstract_method_handler
2542       // and modified to cause an error if we ever call it.
2543       return _abstract_method_handler;
2544     }
2545 
2546     if (method->is_abstract()) {
2547       return _abstract_method_handler;
2548     }
2549 
2550     // Fill in the signature array, for the calling-convention call.
2551     int total_args_passed = method->size_of_parameters(); // All args on stack
2552 
2553     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2554     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2555     int i = 0;
2556     if (!method->is_static())  // Pass in receiver first
2557       sig_bt[i++] = T_OBJECT;
2558     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2559       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2560       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2561         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2562     }
2563     assert(i == total_args_passed, "");
2564 
2565     // Lookup method signature's fingerprint
2566     entry = _adapters->lookup(total_args_passed, sig_bt);
2567 
2568 #ifdef ASSERT
2569     AdapterHandlerEntry* shared_entry = NULL;
2570     // Start adapter sharing verification only after the VM is booted.
2571     if (VerifyAdapterSharing && (entry != NULL)) {
2572       shared_entry = entry;
2573       entry = NULL;
2574     }
2575 #endif
2576 
2577     if (entry != NULL) {
2578       return entry;
2579     }
2580 
2581     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2582     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2583 
2584     // Make a C heap allocated version of the fingerprint to store in the adapter
2585     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2586 
2587     // StubRoutines::code2() is initialized after this function can be called. As a result,
2588     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2589     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2590     // stub that ensure that an I2C stub is called from an interpreter frame.
2591     bool contains_all_checks = StubRoutines::code2() != NULL;
2592 
2593     // Create I2C & C2I handlers
2594     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2595     if (buf != NULL) {
2596       CodeBuffer buffer(buf);
2597       short buffer_locs[20];
2598       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2599                                              sizeof(buffer_locs)/sizeof(relocInfo));
2600 
2601       MacroAssembler _masm(&buffer);
2602       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2603                                                      total_args_passed,
2604                                                      comp_args_on_stack,
2605                                                      sig_bt,
2606                                                      regs,
2607                                                      fingerprint);
2608 #ifdef ASSERT
2609       if (VerifyAdapterSharing) {
2610         if (shared_entry != NULL) {
2611           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2612           // Release the one just created and return the original
2613           _adapters->free_entry(entry);
2614           return shared_entry;
2615         } else  {
2616           entry->save_code(buf->code_begin(), buffer.insts_size());
2617         }
2618       }
2619 #endif
2620 
2621       new_adapter = AdapterBlob::create(&buffer);
2622       NOT_PRODUCT(insts_size = buffer.insts_size());
2623     }
2624     if (new_adapter == NULL) {
2625       // CodeCache is full, disable compilation
2626       // Ought to log this but compile log is only per compile thread
2627       // and we're some non descript Java thread.
2628       return NULL; // Out of CodeCache space
2629     }
2630     entry->relocate(new_adapter->content_begin());
2631 #ifndef PRODUCT
2632     // debugging suppport
2633     if (PrintAdapterHandlers || PrintStubCode) {
2634       ttyLocker ttyl;
2635       entry->print_adapter_on(tty);
2636       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2637                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2638                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2639       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2640       if (Verbose || PrintStubCode) {
2641         address first_pc = entry->base_address();
2642         if (first_pc != NULL) {
2643           Disassembler::decode(first_pc, first_pc + insts_size);
2644           tty->cr();
2645         }
2646       }
2647     }
2648 #endif
2649     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2650     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2651     if (contains_all_checks || !VerifyAdapterCalls) {
2652       _adapters->add(entry);
2653     }
2654   }
2655   // Outside of the lock
2656   if (new_adapter != NULL) {
2657     char blob_id[256];
2658     jio_snprintf(blob_id,
2659                  sizeof(blob_id),
2660                  "%s(%s)@" PTR_FORMAT,
2661                  new_adapter->name(),
2662                  fingerprint->as_string(),
2663                  new_adapter->content_begin());
2664     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2665 
2666     if (JvmtiExport::should_post_dynamic_code_generated()) {
2667       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2668     }
2669   }
2670   return entry;
2671 }
2672 
2673 address AdapterHandlerEntry::base_address() {
2674   address base = _i2c_entry;
2675   if (base == NULL)  base = _c2i_entry;
2676   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2677   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2678   return base;
2679 }
2680 
2681 void AdapterHandlerEntry::relocate(address new_base) {
2682   address old_base = base_address();
2683   assert(old_base != NULL, "");
2684   ptrdiff_t delta = new_base - old_base;
2685   if (_i2c_entry != NULL)
2686     _i2c_entry += delta;
2687   if (_c2i_entry != NULL)
2688     _c2i_entry += delta;
2689   if (_c2i_unverified_entry != NULL)
2690     _c2i_unverified_entry += delta;
2691   assert(base_address() == new_base, "");
2692 }
2693 
2694 
2695 void AdapterHandlerEntry::deallocate() {
2696   delete _fingerprint;
2697 #ifdef ASSERT
2698   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2699 #endif
2700 }
2701 
2702 
2703 #ifdef ASSERT
2704 // Capture the code before relocation so that it can be compared
2705 // against other versions.  If the code is captured after relocation
2706 // then relative instructions won't be equivalent.
2707 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2708   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2709   _saved_code_length = length;
2710   memcpy(_saved_code, buffer, length);
2711 }
2712 
2713 
2714 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2715   if (length != _saved_code_length) {
2716     return false;
2717   }
2718 
2719   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2720 }
2721 #endif
2722 
2723 
2724 /**
2725  * Create a native wrapper for this native method.  The wrapper converts the
2726  * Java-compiled calling convention to the native convention, handles
2727  * arguments, and transitions to native.  On return from the native we transition
2728  * back to java blocking if a safepoint is in progress.
2729  */
2730 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2731   ResourceMark rm;
2732   nmethod* nm = NULL;
2733 
2734   assert(method->is_native(), "must be native");
2735   assert(method->is_method_handle_intrinsic() ||
2736          method->has_native_function(), "must have something valid to call!");
2737 
2738   {
2739     // Perform the work while holding the lock, but perform any printing outside the lock
2740     MutexLocker mu(AdapterHandlerLibrary_lock);
2741     // See if somebody beat us to it
2742     if (method->code() != NULL) {
2743       return;
2744     }
2745 
2746     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2747     assert(compile_id > 0, "Must generate native wrapper");
2748 
2749 
2750     ResourceMark rm;
2751     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2752     if (buf != NULL) {
2753       CodeBuffer buffer(buf);
2754       double locs_buf[20];
2755       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2756       MacroAssembler _masm(&buffer);
2757 
2758       // Fill in the signature array, for the calling-convention call.
2759       const int total_args_passed = method->size_of_parameters();
2760 
2761       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2762       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2763       int i=0;
2764       if (!method->is_static())  // Pass in receiver first
2765         sig_bt[i++] = T_OBJECT;
2766       SignatureStream ss(method->signature());
2767       for (; !ss.at_return_type(); ss.next()) {
2768         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2769         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2770           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2771       }
2772       assert(i == total_args_passed, "");
2773       BasicType ret_type = ss.type();
2774 
2775       // Now get the compiled-Java layout as input (or output) arguments.
2776       // NOTE: Stubs for compiled entry points of method handle intrinsics
2777       // are just trampolines so the argument registers must be outgoing ones.
2778       const bool is_outgoing = method->is_method_handle_intrinsic();
2779       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2780 
2781       // Generate the compiled-to-native wrapper code
2782       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2783 
2784       if (nm != NULL) {
2785         method->set_code(method, nm);
2786 
2787         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2788         if (directive->PrintAssemblyOption) {
2789           nm->print_code();
2790         }
2791         DirectivesStack::release(directive);
2792       }
2793     }
2794   } // Unlock AdapterHandlerLibrary_lock
2795 
2796 
2797   // Install the generated code.
2798   if (nm != NULL) {
2799     if (PrintCompilation) {
2800       ttyLocker ttyl;
2801       CompileTask::print(tty, nm, method->is_static() ? "(static)" : "");
2802     }
2803     nm->post_compiled_method_load_event();
2804   }
2805 }
2806 
2807 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2808   assert(thread == JavaThread::current(), "must be");
2809   // The code is about to enter a JNI lazy critical native method and
2810   // _needs_gc is true, so if this thread is already in a critical
2811   // section then just return, otherwise this thread should block
2812   // until needs_gc has been cleared.
2813   if (thread->in_critical()) {
2814     return;
2815   }
2816   // Lock and unlock a critical section to give the system a chance to block
2817   GCLocker::lock_critical(thread);
2818   GCLocker::unlock_critical(thread);
2819 JRT_END
2820 
2821 // -------------------------------------------------------------------------
2822 // Java-Java calling convention
2823 // (what you use when Java calls Java)
2824 
2825 //------------------------------name_for_receiver----------------------------------
2826 // For a given signature, return the VMReg for parameter 0.
2827 VMReg SharedRuntime::name_for_receiver() {
2828   VMRegPair regs;
2829   BasicType sig_bt = T_OBJECT;
2830   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2831   // Return argument 0 register.  In the LP64 build pointers
2832   // take 2 registers, but the VM wants only the 'main' name.
2833   return regs.first();
2834 }
2835 
2836 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2837   // This method is returning a data structure allocating as a
2838   // ResourceObject, so do not put any ResourceMarks in here.
2839   char *s = sig->as_C_string();
2840   int len = (int)strlen(s);
2841   s++; len--;                   // Skip opening paren
2842   char *t = s+len;
2843   while (*(--t) != ')');      // Find close paren
2844 
2845   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2846   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2847   int cnt = 0;
2848   if (has_receiver) {
2849     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2850   }
2851 
2852   while (s < t) {
2853     switch (*s++) {            // Switch on signature character
2854     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2855     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2856     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2857     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2858     case 'I': sig_bt[cnt++] = T_INT;     break;
2859     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2860     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2861     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2862     case 'V': sig_bt[cnt++] = T_VOID;    break;
2863     case 'L':                   // Oop
2864       while (*s++ != ';');   // Skip signature
2865       sig_bt[cnt++] = T_OBJECT;
2866       break;
2867     case '[': {                 // Array
2868       do {                      // Skip optional size
2869         while (*s >= '0' && *s <= '9') s++;
2870       } while (*s++ == '[');   // Nested arrays?
2871       // Skip element type
2872       if (s[-1] == 'L')
2873         while (*s++ != ';'); // Skip signature
2874       sig_bt[cnt++] = T_ARRAY;
2875       break;
2876     }
2877     default : ShouldNotReachHere();
2878     }
2879   }
2880 
2881   if (has_appendix) {
2882     sig_bt[cnt++] = T_OBJECT;
2883   }
2884 
2885   assert(cnt < 256, "grow table size");
2886 
2887   int comp_args_on_stack;
2888   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2889 
2890   // the calling convention doesn't count out_preserve_stack_slots so
2891   // we must add that in to get "true" stack offsets.
2892 
2893   if (comp_args_on_stack) {
2894     for (int i = 0; i < cnt; i++) {
2895       VMReg reg1 = regs[i].first();
2896       if (reg1->is_stack()) {
2897         // Yuck
2898         reg1 = reg1->bias(out_preserve_stack_slots());
2899       }
2900       VMReg reg2 = regs[i].second();
2901       if (reg2->is_stack()) {
2902         // Yuck
2903         reg2 = reg2->bias(out_preserve_stack_slots());
2904       }
2905       regs[i].set_pair(reg2, reg1);
2906     }
2907   }
2908 
2909   // results
2910   *arg_size = cnt;
2911   return regs;
2912 }
2913 
2914 // OSR Migration Code
2915 //
2916 // This code is used convert interpreter frames into compiled frames.  It is
2917 // called from very start of a compiled OSR nmethod.  A temp array is
2918 // allocated to hold the interesting bits of the interpreter frame.  All
2919 // active locks are inflated to allow them to move.  The displaced headers and
2920 // active interpreter locals are copied into the temp buffer.  Then we return
2921 // back to the compiled code.  The compiled code then pops the current
2922 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2923 // copies the interpreter locals and displaced headers where it wants.
2924 // Finally it calls back to free the temp buffer.
2925 //
2926 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2927 
2928 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2929 
2930   //
2931   // This code is dependent on the memory layout of the interpreter local
2932   // array and the monitors. On all of our platforms the layout is identical
2933   // so this code is shared. If some platform lays the their arrays out
2934   // differently then this code could move to platform specific code or
2935   // the code here could be modified to copy items one at a time using
2936   // frame accessor methods and be platform independent.
2937 
2938   frame fr = thread->last_frame();
2939   assert(fr.is_interpreted_frame(), "");
2940   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
2941 
2942   // Figure out how many monitors are active.
2943   int active_monitor_count = 0;
2944   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2945        kptr < fr.interpreter_frame_monitor_begin();
2946        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2947     if (kptr->obj() != NULL) active_monitor_count++;
2948   }
2949 
2950   // QQQ we could place number of active monitors in the array so that compiled code
2951   // could double check it.
2952 
2953   Method* moop = fr.interpreter_frame_method();
2954   int max_locals = moop->max_locals();
2955   // Allocate temp buffer, 1 word per local & 2 per active monitor
2956   int buf_size_words = max_locals + active_monitor_count*2;
2957   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2958 
2959   // Copy the locals.  Order is preserved so that loading of longs works.
2960   // Since there's no GC I can copy the oops blindly.
2961   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2962   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2963                        (HeapWord*)&buf[0],
2964                        max_locals);
2965 
2966   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2967   int i = max_locals;
2968   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2969        kptr2 < fr.interpreter_frame_monitor_begin();
2970        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2971     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2972       BasicLock *lock = kptr2->lock();
2973       // Inflate so the displaced header becomes position-independent
2974       if (lock->displaced_header()->is_unlocked())
2975         ObjectSynchronizer::inflate_helper(kptr2->obj());
2976       // Now the displaced header is free to move
2977       buf[i++] = (intptr_t)lock->displaced_header();
2978       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
2979     }
2980   }
2981   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
2982 
2983   return buf;
2984 JRT_END
2985 
2986 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2987   FREE_C_HEAP_ARRAY(intptr_t, buf);
2988 JRT_END
2989 
2990 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
2991   AdapterHandlerTableIterator iter(_adapters);
2992   while (iter.has_next()) {
2993     AdapterHandlerEntry* a = iter.next();
2994     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
2995   }
2996   return false;
2997 }
2998 
2999 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3000   AdapterHandlerTableIterator iter(_adapters);
3001   while (iter.has_next()) {
3002     AdapterHandlerEntry* a = iter.next();
3003     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3004       st->print("Adapter for signature: ");
3005       a->print_adapter_on(tty);
3006       return;
3007     }
3008   }
3009   assert(false, "Should have found handler");
3010 }
3011 
3012 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3013   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3014                p2i(this), fingerprint()->as_string(),
3015                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3016 
3017 }
3018 
3019 #if INCLUDE_CDS
3020 
3021 void CDSAdapterHandlerEntry::init() {
3022   assert(DumpSharedSpaces, "used during dump time only");
3023   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3024   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_data_space_alloc(sizeof(AdapterHandlerEntry*));
3025 };
3026 
3027 #endif // INCLUDE_CDS
3028 
3029 
3030 #ifndef PRODUCT
3031 
3032 void AdapterHandlerLibrary::print_statistics() {
3033   _adapters->print_statistics();
3034 }
3035 
3036 #endif /* PRODUCT */
3037 
3038 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3039   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3040   thread->enable_stack_reserved_zone();
3041   thread->set_reserved_stack_activation(thread->stack_base());
3042 JRT_END
3043 
3044 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3045   frame activation;
3046   int decode_offset = 0;
3047   nmethod* nm = NULL;
3048   frame prv_fr = fr;
3049   int count = 1;
3050 
3051   assert(fr.is_java_frame(), "Must start on Java frame");
3052 
3053   while (!fr.is_first_frame()) {
3054     Method* method = NULL;
3055     // Compiled java method case.
3056     if (decode_offset != 0) {
3057       DebugInfoReadStream stream(nm, decode_offset);
3058       decode_offset = stream.read_int();
3059       method = (Method*)nm->metadata_at(stream.read_int());
3060     } else {
3061       if (fr.is_first_java_frame()) break;
3062       address pc = fr.pc();
3063       prv_fr = fr;
3064       if (fr.is_interpreted_frame()) {
3065         method = fr.interpreter_frame_method();
3066         fr = fr.java_sender();
3067       } else {
3068         CodeBlob* cb = fr.cb();
3069         fr = fr.java_sender();
3070         if (cb == NULL || !cb->is_nmethod()) {
3071           continue;
3072         }
3073         nm = (nmethod*)cb;
3074         if (nm->method()->is_native()) {
3075           method = nm->method();
3076         } else {
3077           PcDesc* pd = nm->pc_desc_at(pc);
3078           assert(pd != NULL, "PcDesc must not be NULL");
3079           decode_offset = pd->scope_decode_offset();
3080           // if decode_offset is not equal to 0, it will execute the
3081           // "compiled java method case" at the beginning of the loop.
3082           continue;
3083         }
3084       }
3085     }
3086     if (method->has_reserved_stack_access()) {
3087       ResourceMark rm(thread);
3088       activation = prv_fr;
3089       warning("Potentially dangerous stack overflow in "
3090               "ReservedStackAccess annotated method %s [%d]",
3091               method->name_and_sig_as_C_string(), count++);
3092       EventReservedStackActivation event;
3093       if (event.should_commit()) {
3094         event.set_method(method);
3095         event.commit();
3096       }
3097     }
3098   }
3099   return activation;
3100 }
3101