1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "utilities/globalDefinitions.hpp"
  26 #include "prims/jvm.h"
  27 #include "semaphore_posix.hpp"
  28 #include "runtime/frame.inline.hpp"
  29 #include "runtime/interfaceSupport.hpp"
  30 #include "runtime/os.hpp"
  31 #include "utilities/macros.hpp"
  32 #include "utilities/vmError.hpp"
  33 
  34 #include <signal.h>
  35 #include <unistd.h>
  36 #include <sys/resource.h>
  37 #include <sys/utsname.h>
  38 #include <pthread.h>
  39 #include <semaphore.h>
  40 #include <signal.h>
  41 
  42 // Todo: provide a os::get_max_process_id() or similar. Number of processes
  43 // may have been configured, can be read more accurately from proc fs etc.
  44 #ifndef MAX_PID
  45 #define MAX_PID INT_MAX
  46 #endif
  47 #define IS_VALID_PID(p) (p > 0 && p < MAX_PID)
  48 
  49 // Check core dump limit and report possible place where core can be found
  50 void os::check_dump_limit(char* buffer, size_t bufferSize) {
  51   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
  52     jio_snprintf(buffer, bufferSize, "CreateCoredumpOnCrash is disabled from command line");
  53     VMError::record_coredump_status(buffer, false);
  54     return;
  55   }
  56 
  57   int n;
  58   struct rlimit rlim;
  59   bool success;
  60 
  61   char core_path[PATH_MAX];
  62   n = get_core_path(core_path, PATH_MAX);
  63 
  64   if (n <= 0) {
  65     jio_snprintf(buffer, bufferSize, "core.%d (may not exist)", current_process_id());
  66     success = true;
  67 #ifdef LINUX
  68   } else if (core_path[0] == '"') { // redirect to user process
  69     jio_snprintf(buffer, bufferSize, "Core dumps may be processed with %s", core_path);
  70     success = true;
  71 #endif
  72   } else if (getrlimit(RLIMIT_CORE, &rlim) != 0) {
  73     jio_snprintf(buffer, bufferSize, "%s (may not exist)", core_path);
  74     success = true;
  75   } else {
  76     switch(rlim.rlim_cur) {
  77       case RLIM_INFINITY:
  78         jio_snprintf(buffer, bufferSize, "%s", core_path);
  79         success = true;
  80         break;
  81       case 0:
  82         jio_snprintf(buffer, bufferSize, "Core dumps have been disabled. To enable core dumping, try \"ulimit -c unlimited\" before starting Java again");
  83         success = false;
  84         break;
  85       default:
  86         jio_snprintf(buffer, bufferSize, "%s (max size %lu kB). To ensure a full core dump, try \"ulimit -c unlimited\" before starting Java again", core_path, (unsigned long)(rlim.rlim_cur >> 10));
  87         success = true;
  88         break;
  89     }
  90   }
  91 
  92   VMError::record_coredump_status(buffer, success);
  93 }
  94 
  95 int os::get_native_stack(address* stack, int frames, int toSkip) {
  96   int frame_idx = 0;
  97   int num_of_frames;  // number of frames captured
  98   frame fr = os::current_frame();
  99   while (fr.pc() && frame_idx < frames) {
 100     if (toSkip > 0) {
 101       toSkip --;
 102     } else {
 103       stack[frame_idx ++] = fr.pc();
 104     }
 105     if (fr.fp() == NULL || fr.cb() != NULL ||
 106         fr.sender_pc() == NULL || os::is_first_C_frame(&fr)) break;
 107 
 108     if (fr.sender_pc() && !os::is_first_C_frame(&fr)) {
 109       fr = os::get_sender_for_C_frame(&fr);
 110     } else {
 111       break;
 112     }
 113   }
 114   num_of_frames = frame_idx;
 115   for (; frame_idx < frames; frame_idx ++) {
 116     stack[frame_idx] = NULL;
 117   }
 118 
 119   return num_of_frames;
 120 }
 121 
 122 
 123 bool os::unsetenv(const char* name) {
 124   assert(name != NULL, "Null pointer");
 125   return (::unsetenv(name) == 0);
 126 }
 127 
 128 int os::get_last_error() {
 129   return errno;
 130 }
 131 
 132 bool os::is_debugger_attached() {
 133   // not implemented
 134   return false;
 135 }
 136 
 137 void os::wait_for_keypress_at_exit(void) {
 138   // don't do anything on posix platforms
 139   return;
 140 }
 141 
 142 // Multiple threads can race in this code, and can remap over each other with MAP_FIXED,
 143 // so on posix, unmap the section at the start and at the end of the chunk that we mapped
 144 // rather than unmapping and remapping the whole chunk to get requested alignment.
 145 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
 146   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
 147       "Alignment must be a multiple of allocation granularity (page size)");
 148   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
 149 
 150   size_t extra_size = size + alignment;
 151   assert(extra_size >= size, "overflow, size is too large to allow alignment");
 152 
 153   char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
 154 
 155   if (extra_base == NULL) {
 156     return NULL;
 157   }
 158 
 159   // Do manual alignment
 160   char* aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
 161 
 162   // [  |                                       |  ]
 163   // ^ extra_base
 164   //    ^ extra_base + begin_offset == aligned_base
 165   //     extra_base + begin_offset + size       ^
 166   //                       extra_base + extra_size ^
 167   // |<>| == begin_offset
 168   //                              end_offset == |<>|
 169   size_t begin_offset = aligned_base - extra_base;
 170   size_t end_offset = (extra_base + extra_size) - (aligned_base + size);
 171 
 172   if (begin_offset > 0) {
 173       os::release_memory(extra_base, begin_offset);
 174   }
 175 
 176   if (end_offset > 0) {
 177       os::release_memory(extra_base + begin_offset + size, end_offset);
 178   }
 179 
 180   return aligned_base;
 181 }
 182 
 183 int os::log_vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
 184     return vsnprintf(buf, len, fmt, args);
 185 }
 186 
 187 int os::get_fileno(FILE* fp) {
 188   return NOT_AIX(::)fileno(fp);
 189 }
 190 
 191 void os::Posix::print_load_average(outputStream* st) {
 192   st->print("load average:");
 193   double loadavg[3];
 194   os::loadavg(loadavg, 3);
 195   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
 196   st->cr();
 197 }
 198 
 199 void os::Posix::print_rlimit_info(outputStream* st) {
 200   st->print("rlimit:");
 201   struct rlimit rlim;
 202 
 203   st->print(" STACK ");
 204   getrlimit(RLIMIT_STACK, &rlim);
 205   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 206   else st->print("%luk", rlim.rlim_cur >> 10);
 207 
 208   st->print(", CORE ");
 209   getrlimit(RLIMIT_CORE, &rlim);
 210   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 211   else st->print("%luk", rlim.rlim_cur >> 10);
 212 
 213   // Isn't there on solaris
 214 #if !defined(SOLARIS) && !defined(AIX)
 215   st->print(", NPROC ");
 216   getrlimit(RLIMIT_NPROC, &rlim);
 217   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 218   else st->print("%lu", rlim.rlim_cur);
 219 #endif
 220 
 221   st->print(", NOFILE ");
 222   getrlimit(RLIMIT_NOFILE, &rlim);
 223   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 224   else st->print("%lu", rlim.rlim_cur);
 225 
 226   st->print(", AS ");
 227   getrlimit(RLIMIT_AS, &rlim);
 228   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 229   else st->print("%luk", rlim.rlim_cur >> 10);
 230   st->cr();
 231 }
 232 
 233 void os::Posix::print_uname_info(outputStream* st) {
 234   // kernel
 235   st->print("uname:");
 236   struct utsname name;
 237   uname(&name);
 238   st->print("%s ", name.sysname);
 239 #ifdef ASSERT
 240   st->print("%s ", name.nodename);
 241 #endif
 242   st->print("%s ", name.release);
 243   st->print("%s ", name.version);
 244   st->print("%s", name.machine);
 245   st->cr();
 246 }
 247 
 248 bool os::get_host_name(char* buf, size_t buflen) {
 249   struct utsname name;
 250   uname(&name);
 251   jio_snprintf(buf, buflen, "%s", name.nodename);
 252   return true;
 253 }
 254 
 255 bool os::has_allocatable_memory_limit(julong* limit) {
 256   struct rlimit rlim;
 257   int getrlimit_res = getrlimit(RLIMIT_AS, &rlim);
 258   // if there was an error when calling getrlimit, assume that there is no limitation
 259   // on virtual memory.
 260   bool result;
 261   if ((getrlimit_res != 0) || (rlim.rlim_cur == RLIM_INFINITY)) {
 262     result = false;
 263   } else {
 264     *limit = (julong)rlim.rlim_cur;
 265     result = true;
 266   }
 267 #ifdef _LP64
 268   return result;
 269 #else
 270   // arbitrary virtual space limit for 32 bit Unices found by testing. If
 271   // getrlimit above returned a limit, bound it with this limit. Otherwise
 272   // directly use it.
 273   const julong max_virtual_limit = (julong)3800*M;
 274   if (result) {
 275     *limit = MIN2(*limit, max_virtual_limit);
 276   } else {
 277     *limit = max_virtual_limit;
 278   }
 279 
 280   // bound by actually allocatable memory. The algorithm uses two bounds, an
 281   // upper and a lower limit. The upper limit is the current highest amount of
 282   // memory that could not be allocated, the lower limit is the current highest
 283   // amount of memory that could be allocated.
 284   // The algorithm iteratively refines the result by halving the difference
 285   // between these limits, updating either the upper limit (if that value could
 286   // not be allocated) or the lower limit (if the that value could be allocated)
 287   // until the difference between these limits is "small".
 288 
 289   // the minimum amount of memory we care about allocating.
 290   const julong min_allocation_size = M;
 291 
 292   julong upper_limit = *limit;
 293 
 294   // first check a few trivial cases
 295   if (is_allocatable(upper_limit) || (upper_limit <= min_allocation_size)) {
 296     *limit = upper_limit;
 297   } else if (!is_allocatable(min_allocation_size)) {
 298     // we found that not even min_allocation_size is allocatable. Return it
 299     // anyway. There is no point to search for a better value any more.
 300     *limit = min_allocation_size;
 301   } else {
 302     // perform the binary search.
 303     julong lower_limit = min_allocation_size;
 304     while ((upper_limit - lower_limit) > min_allocation_size) {
 305       julong temp_limit = ((upper_limit - lower_limit) / 2) + lower_limit;
 306       temp_limit = align_size_down_(temp_limit, min_allocation_size);
 307       if (is_allocatable(temp_limit)) {
 308         lower_limit = temp_limit;
 309       } else {
 310         upper_limit = temp_limit;
 311       }
 312     }
 313     *limit = lower_limit;
 314   }
 315   return true;
 316 #endif
 317 }
 318 
 319 const char* os::get_current_directory(char *buf, size_t buflen) {
 320   return getcwd(buf, buflen);
 321 }
 322 
 323 FILE* os::open(int fd, const char* mode) {
 324   return ::fdopen(fd, mode);
 325 }
 326 
 327 void os::flockfile(FILE* fp) {
 328   ::flockfile(fp);
 329 }
 330 
 331 void os::funlockfile(FILE* fp) {
 332   ::funlockfile(fp);
 333 }
 334 
 335 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
 336 // which is used to find statically linked in agents.
 337 // Parameters:
 338 //            sym_name: Symbol in library we are looking for
 339 //            lib_name: Name of library to look in, NULL for shared libs.
 340 //            is_absolute_path == true if lib_name is absolute path to agent
 341 //                                     such as "/a/b/libL.so"
 342 //            == false if only the base name of the library is passed in
 343 //               such as "L"
 344 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
 345                                     bool is_absolute_path) {
 346   char *agent_entry_name;
 347   size_t len;
 348   size_t name_len;
 349   size_t prefix_len = strlen(JNI_LIB_PREFIX);
 350   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
 351   const char *start;
 352 
 353   if (lib_name != NULL) {
 354     name_len = strlen(lib_name);
 355     if (is_absolute_path) {
 356       // Need to strip path, prefix and suffix
 357       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
 358         lib_name = ++start;
 359       }
 360       if (strlen(lib_name) <= (prefix_len + suffix_len)) {
 361         return NULL;
 362       }
 363       lib_name += prefix_len;
 364       name_len = strlen(lib_name) - suffix_len;
 365     }
 366   }
 367   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
 368   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
 369   if (agent_entry_name == NULL) {
 370     return NULL;
 371   }
 372   strcpy(agent_entry_name, sym_name);
 373   if (lib_name != NULL) {
 374     strcat(agent_entry_name, "_");
 375     strncat(agent_entry_name, lib_name, name_len);
 376   }
 377   return agent_entry_name;
 378 }
 379 
 380 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
 381   assert(thread == Thread::current(),  "thread consistency check");
 382 
 383   ParkEvent * const slp = thread->_SleepEvent ;
 384   slp->reset() ;
 385   OrderAccess::fence() ;
 386 
 387   if (interruptible) {
 388     jlong prevtime = javaTimeNanos();
 389 
 390     for (;;) {
 391       if (os::is_interrupted(thread, true)) {
 392         return OS_INTRPT;
 393       }
 394 
 395       jlong newtime = javaTimeNanos();
 396 
 397       if (newtime - prevtime < 0) {
 398         // time moving backwards, should only happen if no monotonic clock
 399         // not a guarantee() because JVM should not abort on kernel/glibc bugs
 400         assert(!os::supports_monotonic_clock(), "unexpected time moving backwards detected in os::sleep(interruptible)");
 401       } else {
 402         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
 403       }
 404 
 405       if (millis <= 0) {
 406         return OS_OK;
 407       }
 408 
 409       prevtime = newtime;
 410 
 411       {
 412         assert(thread->is_Java_thread(), "sanity check");
 413         JavaThread *jt = (JavaThread *) thread;
 414         ThreadBlockInVM tbivm(jt);
 415         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
 416 
 417         jt->set_suspend_equivalent();
 418         // cleared by handle_special_suspend_equivalent_condition() or
 419         // java_suspend_self() via check_and_wait_while_suspended()
 420 
 421         slp->park(millis);
 422 
 423         // were we externally suspended while we were waiting?
 424         jt->check_and_wait_while_suspended();
 425       }
 426     }
 427   } else {
 428     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
 429     jlong prevtime = javaTimeNanos();
 430 
 431     for (;;) {
 432       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
 433       // the 1st iteration ...
 434       jlong newtime = javaTimeNanos();
 435 
 436       if (newtime - prevtime < 0) {
 437         // time moving backwards, should only happen if no monotonic clock
 438         // not a guarantee() because JVM should not abort on kernel/glibc bugs
 439         assert(!os::supports_monotonic_clock(), "unexpected time moving backwards detected on os::sleep(!interruptible)");
 440       } else {
 441         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
 442       }
 443 
 444       if (millis <= 0) break ;
 445 
 446       prevtime = newtime;
 447       slp->park(millis);
 448     }
 449     return OS_OK ;
 450   }
 451 }
 452 
 453 ////////////////////////////////////////////////////////////////////////////////
 454 // interrupt support
 455 
 456 void os::interrupt(Thread* thread) {
 457   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
 458     "possibility of dangling Thread pointer");
 459 
 460   OSThread* osthread = thread->osthread();
 461 
 462   if (!osthread->interrupted()) {
 463     osthread->set_interrupted(true);
 464     // More than one thread can get here with the same value of osthread,
 465     // resulting in multiple notifications.  We do, however, want the store
 466     // to interrupted() to be visible to other threads before we execute unpark().
 467     OrderAccess::fence();
 468     ParkEvent * const slp = thread->_SleepEvent ;
 469     if (slp != NULL) slp->unpark() ;
 470   }
 471 
 472   // For JSR166. Unpark even if interrupt status already was set
 473   if (thread->is_Java_thread())
 474     ((JavaThread*)thread)->parker()->unpark();
 475 
 476   ParkEvent * ev = thread->_ParkEvent ;
 477   if (ev != NULL) ev->unpark() ;
 478 
 479 }
 480 
 481 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
 482   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
 483     "possibility of dangling Thread pointer");
 484 
 485   OSThread* osthread = thread->osthread();
 486 
 487   bool interrupted = osthread->interrupted();
 488 
 489   // NOTE that since there is no "lock" around the interrupt and
 490   // is_interrupted operations, there is the possibility that the
 491   // interrupted flag (in osThread) will be "false" but that the
 492   // low-level events will be in the signaled state. This is
 493   // intentional. The effect of this is that Object.wait() and
 494   // LockSupport.park() will appear to have a spurious wakeup, which
 495   // is allowed and not harmful, and the possibility is so rare that
 496   // it is not worth the added complexity to add yet another lock.
 497   // For the sleep event an explicit reset is performed on entry
 498   // to os::sleep, so there is no early return. It has also been
 499   // recommended not to put the interrupted flag into the "event"
 500   // structure because it hides the issue.
 501   if (interrupted && clear_interrupted) {
 502     osthread->set_interrupted(false);
 503     // consider thread->_SleepEvent->reset() ... optional optimization
 504   }
 505 
 506   return interrupted;
 507 }
 508 
 509 
 510 
 511 static const struct {
 512   int sig; const char* name;
 513 }
 514  g_signal_info[] =
 515   {
 516   {  SIGABRT,     "SIGABRT" },
 517 #ifdef SIGAIO
 518   {  SIGAIO,      "SIGAIO" },
 519 #endif
 520   {  SIGALRM,     "SIGALRM" },
 521 #ifdef SIGALRM1
 522   {  SIGALRM1,    "SIGALRM1" },
 523 #endif
 524   {  SIGBUS,      "SIGBUS" },
 525 #ifdef SIGCANCEL
 526   {  SIGCANCEL,   "SIGCANCEL" },
 527 #endif
 528   {  SIGCHLD,     "SIGCHLD" },
 529 #ifdef SIGCLD
 530   {  SIGCLD,      "SIGCLD" },
 531 #endif
 532   {  SIGCONT,     "SIGCONT" },
 533 #ifdef SIGCPUFAIL
 534   {  SIGCPUFAIL,  "SIGCPUFAIL" },
 535 #endif
 536 #ifdef SIGDANGER
 537   {  SIGDANGER,   "SIGDANGER" },
 538 #endif
 539 #ifdef SIGDIL
 540   {  SIGDIL,      "SIGDIL" },
 541 #endif
 542 #ifdef SIGEMT
 543   {  SIGEMT,      "SIGEMT" },
 544 #endif
 545   {  SIGFPE,      "SIGFPE" },
 546 #ifdef SIGFREEZE
 547   {  SIGFREEZE,   "SIGFREEZE" },
 548 #endif
 549 #ifdef SIGGFAULT
 550   {  SIGGFAULT,   "SIGGFAULT" },
 551 #endif
 552 #ifdef SIGGRANT
 553   {  SIGGRANT,    "SIGGRANT" },
 554 #endif
 555   {  SIGHUP,      "SIGHUP" },
 556   {  SIGILL,      "SIGILL" },
 557   {  SIGINT,      "SIGINT" },
 558 #ifdef SIGIO
 559   {  SIGIO,       "SIGIO" },
 560 #endif
 561 #ifdef SIGIOINT
 562   {  SIGIOINT,    "SIGIOINT" },
 563 #endif
 564 #ifdef SIGIOT
 565 // SIGIOT is there for BSD compatibility, but on most Unices just a
 566 // synonym for SIGABRT. The result should be "SIGABRT", not
 567 // "SIGIOT".
 568 #if (SIGIOT != SIGABRT )
 569   {  SIGIOT,      "SIGIOT" },
 570 #endif
 571 #endif
 572 #ifdef SIGKAP
 573   {  SIGKAP,      "SIGKAP" },
 574 #endif
 575   {  SIGKILL,     "SIGKILL" },
 576 #ifdef SIGLOST
 577   {  SIGLOST,     "SIGLOST" },
 578 #endif
 579 #ifdef SIGLWP
 580   {  SIGLWP,      "SIGLWP" },
 581 #endif
 582 #ifdef SIGLWPTIMER
 583   {  SIGLWPTIMER, "SIGLWPTIMER" },
 584 #endif
 585 #ifdef SIGMIGRATE
 586   {  SIGMIGRATE,  "SIGMIGRATE" },
 587 #endif
 588 #ifdef SIGMSG
 589   {  SIGMSG,      "SIGMSG" },
 590 #endif
 591   {  SIGPIPE,     "SIGPIPE" },
 592 #ifdef SIGPOLL
 593   {  SIGPOLL,     "SIGPOLL" },
 594 #endif
 595 #ifdef SIGPRE
 596   {  SIGPRE,      "SIGPRE" },
 597 #endif
 598   {  SIGPROF,     "SIGPROF" },
 599 #ifdef SIGPTY
 600   {  SIGPTY,      "SIGPTY" },
 601 #endif
 602 #ifdef SIGPWR
 603   {  SIGPWR,      "SIGPWR" },
 604 #endif
 605   {  SIGQUIT,     "SIGQUIT" },
 606 #ifdef SIGRECONFIG
 607   {  SIGRECONFIG, "SIGRECONFIG" },
 608 #endif
 609 #ifdef SIGRECOVERY
 610   {  SIGRECOVERY, "SIGRECOVERY" },
 611 #endif
 612 #ifdef SIGRESERVE
 613   {  SIGRESERVE,  "SIGRESERVE" },
 614 #endif
 615 #ifdef SIGRETRACT
 616   {  SIGRETRACT,  "SIGRETRACT" },
 617 #endif
 618 #ifdef SIGSAK
 619   {  SIGSAK,      "SIGSAK" },
 620 #endif
 621   {  SIGSEGV,     "SIGSEGV" },
 622 #ifdef SIGSOUND
 623   {  SIGSOUND,    "SIGSOUND" },
 624 #endif
 625 #ifdef SIGSTKFLT
 626   {  SIGSTKFLT,    "SIGSTKFLT" },
 627 #endif
 628   {  SIGSTOP,     "SIGSTOP" },
 629   {  SIGSYS,      "SIGSYS" },
 630 #ifdef SIGSYSERROR
 631   {  SIGSYSERROR, "SIGSYSERROR" },
 632 #endif
 633 #ifdef SIGTALRM
 634   {  SIGTALRM,    "SIGTALRM" },
 635 #endif
 636   {  SIGTERM,     "SIGTERM" },
 637 #ifdef SIGTHAW
 638   {  SIGTHAW,     "SIGTHAW" },
 639 #endif
 640   {  SIGTRAP,     "SIGTRAP" },
 641 #ifdef SIGTSTP
 642   {  SIGTSTP,     "SIGTSTP" },
 643 #endif
 644   {  SIGTTIN,     "SIGTTIN" },
 645   {  SIGTTOU,     "SIGTTOU" },
 646 #ifdef SIGURG
 647   {  SIGURG,      "SIGURG" },
 648 #endif
 649   {  SIGUSR1,     "SIGUSR1" },
 650   {  SIGUSR2,     "SIGUSR2" },
 651 #ifdef SIGVIRT
 652   {  SIGVIRT,     "SIGVIRT" },
 653 #endif
 654   {  SIGVTALRM,   "SIGVTALRM" },
 655 #ifdef SIGWAITING
 656   {  SIGWAITING,  "SIGWAITING" },
 657 #endif
 658 #ifdef SIGWINCH
 659   {  SIGWINCH,    "SIGWINCH" },
 660 #endif
 661 #ifdef SIGWINDOW
 662   {  SIGWINDOW,   "SIGWINDOW" },
 663 #endif
 664   {  SIGXCPU,     "SIGXCPU" },
 665   {  SIGXFSZ,     "SIGXFSZ" },
 666 #ifdef SIGXRES
 667   {  SIGXRES,     "SIGXRES" },
 668 #endif
 669   { -1, NULL }
 670 };
 671 
 672 // Returned string is a constant. For unknown signals "UNKNOWN" is returned.
 673 const char* os::Posix::get_signal_name(int sig, char* out, size_t outlen) {
 674 
 675   const char* ret = NULL;
 676 
 677 #ifdef SIGRTMIN
 678   if (sig >= SIGRTMIN && sig <= SIGRTMAX) {
 679     if (sig == SIGRTMIN) {
 680       ret = "SIGRTMIN";
 681     } else if (sig == SIGRTMAX) {
 682       ret = "SIGRTMAX";
 683     } else {
 684       jio_snprintf(out, outlen, "SIGRTMIN+%d", sig - SIGRTMIN);
 685       return out;
 686     }
 687   }
 688 #endif
 689 
 690   if (sig > 0) {
 691     for (int idx = 0; g_signal_info[idx].sig != -1; idx ++) {
 692       if (g_signal_info[idx].sig == sig) {
 693         ret = g_signal_info[idx].name;
 694         break;
 695       }
 696     }
 697   }
 698 
 699   if (!ret) {
 700     if (!is_valid_signal(sig)) {
 701       ret = "INVALID";
 702     } else {
 703       ret = "UNKNOWN";
 704     }
 705   }
 706 
 707   if (out && outlen > 0) {
 708     strncpy(out, ret, outlen);
 709     out[outlen - 1] = '\0';
 710   }
 711   return out;
 712 }
 713 
 714 int os::Posix::get_signal_number(const char* signal_name) {
 715   char tmp[30];
 716   const char* s = signal_name;
 717   if (s[0] != 'S' || s[1] != 'I' || s[2] != 'G') {
 718     jio_snprintf(tmp, sizeof(tmp), "SIG%s", signal_name);
 719     s = tmp;
 720   }
 721   for (int idx = 0; g_signal_info[idx].sig != -1; idx ++) {
 722     if (strcmp(g_signal_info[idx].name, s) == 0) {
 723       return g_signal_info[idx].sig;
 724     }
 725   }
 726   return -1;
 727 }
 728 
 729 int os::get_signal_number(const char* signal_name) {
 730   return os::Posix::get_signal_number(signal_name);
 731 }
 732 
 733 // Returns true if signal number is valid.
 734 bool os::Posix::is_valid_signal(int sig) {
 735   // MacOS not really POSIX compliant: sigaddset does not return
 736   // an error for invalid signal numbers. However, MacOS does not
 737   // support real time signals and simply seems to have just 33
 738   // signals with no holes in the signal range.
 739 #ifdef __APPLE__
 740   return sig >= 1 && sig < NSIG;
 741 #else
 742   // Use sigaddset to check for signal validity.
 743   sigset_t set;
 744   if (sigaddset(&set, sig) == -1 && errno == EINVAL) {
 745     return false;
 746   }
 747   return true;
 748 #endif
 749 }
 750 
 751 // Returns:
 752 // NULL for an invalid signal number
 753 // "SIG<num>" for a valid but unknown signal number
 754 // signal name otherwise.
 755 const char* os::exception_name(int sig, char* buf, size_t size) {
 756   if (!os::Posix::is_valid_signal(sig)) {
 757     return NULL;
 758   }
 759   const char* const name = os::Posix::get_signal_name(sig, buf, size);
 760   if (strcmp(name, "UNKNOWN") == 0) {
 761     jio_snprintf(buf, size, "SIG%d", sig);
 762   }
 763   return buf;
 764 }
 765 
 766 #define NUM_IMPORTANT_SIGS 32
 767 // Returns one-line short description of a signal set in a user provided buffer.
 768 const char* os::Posix::describe_signal_set_short(const sigset_t* set, char* buffer, size_t buf_size) {
 769   assert(buf_size == (NUM_IMPORTANT_SIGS + 1), "wrong buffer size");
 770   // Note: for shortness, just print out the first 32. That should
 771   // cover most of the useful ones, apart from realtime signals.
 772   for (int sig = 1; sig <= NUM_IMPORTANT_SIGS; sig++) {
 773     const int rc = sigismember(set, sig);
 774     if (rc == -1 && errno == EINVAL) {
 775       buffer[sig-1] = '?';
 776     } else {
 777       buffer[sig-1] = rc == 0 ? '0' : '1';
 778     }
 779   }
 780   buffer[NUM_IMPORTANT_SIGS] = 0;
 781   return buffer;
 782 }
 783 
 784 // Prints one-line description of a signal set.
 785 void os::Posix::print_signal_set_short(outputStream* st, const sigset_t* set) {
 786   char buf[NUM_IMPORTANT_SIGS + 1];
 787   os::Posix::describe_signal_set_short(set, buf, sizeof(buf));
 788   st->print("%s", buf);
 789 }
 790 
 791 // Writes one-line description of a combination of sigaction.sa_flags into a user
 792 // provided buffer. Returns that buffer.
 793 const char* os::Posix::describe_sa_flags(int flags, char* buffer, size_t size) {
 794   char* p = buffer;
 795   size_t remaining = size;
 796   bool first = true;
 797   int idx = 0;
 798 
 799   assert(buffer, "invalid argument");
 800 
 801   if (size == 0) {
 802     return buffer;
 803   }
 804 
 805   strncpy(buffer, "none", size);
 806 
 807   const struct {
 808     // NB: i is an unsigned int here because SA_RESETHAND is on some
 809     // systems 0x80000000, which is implicitly unsigned.  Assignining
 810     // it to an int field would be an overflow in unsigned-to-signed
 811     // conversion.
 812     unsigned int i;
 813     const char* s;
 814   } flaginfo [] = {
 815     { SA_NOCLDSTOP, "SA_NOCLDSTOP" },
 816     { SA_ONSTACK,   "SA_ONSTACK"   },
 817     { SA_RESETHAND, "SA_RESETHAND" },
 818     { SA_RESTART,   "SA_RESTART"   },
 819     { SA_SIGINFO,   "SA_SIGINFO"   },
 820     { SA_NOCLDWAIT, "SA_NOCLDWAIT" },
 821     { SA_NODEFER,   "SA_NODEFER"   },
 822 #ifdef AIX
 823     { SA_ONSTACK,   "SA_ONSTACK"   },
 824     { SA_OLDSTYLE,  "SA_OLDSTYLE"  },
 825 #endif
 826     { 0, NULL }
 827   };
 828 
 829   for (idx = 0; flaginfo[idx].s && remaining > 1; idx++) {
 830     if (flags & flaginfo[idx].i) {
 831       if (first) {
 832         jio_snprintf(p, remaining, "%s", flaginfo[idx].s);
 833         first = false;
 834       } else {
 835         jio_snprintf(p, remaining, "|%s", flaginfo[idx].s);
 836       }
 837       const size_t len = strlen(p);
 838       p += len;
 839       remaining -= len;
 840     }
 841   }
 842 
 843   buffer[size - 1] = '\0';
 844 
 845   return buffer;
 846 }
 847 
 848 // Prints one-line description of a combination of sigaction.sa_flags.
 849 void os::Posix::print_sa_flags(outputStream* st, int flags) {
 850   char buffer[0x100];
 851   os::Posix::describe_sa_flags(flags, buffer, sizeof(buffer));
 852   st->print("%s", buffer);
 853 }
 854 
 855 // Helper function for os::Posix::print_siginfo_...():
 856 // return a textual description for signal code.
 857 struct enum_sigcode_desc_t {
 858   const char* s_name;
 859   const char* s_desc;
 860 };
 861 
 862 static bool get_signal_code_description(const siginfo_t* si, enum_sigcode_desc_t* out) {
 863 
 864   const struct {
 865     int sig; int code; const char* s_code; const char* s_desc;
 866   } t1 [] = {
 867     { SIGILL,  ILL_ILLOPC,   "ILL_ILLOPC",   "Illegal opcode." },
 868     { SIGILL,  ILL_ILLOPN,   "ILL_ILLOPN",   "Illegal operand." },
 869     { SIGILL,  ILL_ILLADR,   "ILL_ILLADR",   "Illegal addressing mode." },
 870     { SIGILL,  ILL_ILLTRP,   "ILL_ILLTRP",   "Illegal trap." },
 871     { SIGILL,  ILL_PRVOPC,   "ILL_PRVOPC",   "Privileged opcode." },
 872     { SIGILL,  ILL_PRVREG,   "ILL_PRVREG",   "Privileged register." },
 873     { SIGILL,  ILL_COPROC,   "ILL_COPROC",   "Coprocessor error." },
 874     { SIGILL,  ILL_BADSTK,   "ILL_BADSTK",   "Internal stack error." },
 875 #if defined(IA64) && defined(LINUX)
 876     { SIGILL,  ILL_BADIADDR, "ILL_BADIADDR", "Unimplemented instruction address" },
 877     { SIGILL,  ILL_BREAK,    "ILL_BREAK",    "Application Break instruction" },
 878 #endif
 879     { SIGFPE,  FPE_INTDIV,   "FPE_INTDIV",   "Integer divide by zero." },
 880     { SIGFPE,  FPE_INTOVF,   "FPE_INTOVF",   "Integer overflow." },
 881     { SIGFPE,  FPE_FLTDIV,   "FPE_FLTDIV",   "Floating-point divide by zero." },
 882     { SIGFPE,  FPE_FLTOVF,   "FPE_FLTOVF",   "Floating-point overflow." },
 883     { SIGFPE,  FPE_FLTUND,   "FPE_FLTUND",   "Floating-point underflow." },
 884     { SIGFPE,  FPE_FLTRES,   "FPE_FLTRES",   "Floating-point inexact result." },
 885     { SIGFPE,  FPE_FLTINV,   "FPE_FLTINV",   "Invalid floating-point operation." },
 886     { SIGFPE,  FPE_FLTSUB,   "FPE_FLTSUB",   "Subscript out of range." },
 887     { SIGSEGV, SEGV_MAPERR,  "SEGV_MAPERR",  "Address not mapped to object." },
 888     { SIGSEGV, SEGV_ACCERR,  "SEGV_ACCERR",  "Invalid permissions for mapped object." },
 889 #ifdef AIX
 890     // no explanation found what keyerr would be
 891     { SIGSEGV, SEGV_KEYERR,  "SEGV_KEYERR",  "key error" },
 892 #endif
 893 #if defined(IA64) && !defined(AIX)
 894     { SIGSEGV, SEGV_PSTKOVF, "SEGV_PSTKOVF", "Paragraph stack overflow" },
 895 #endif
 896 #if defined(__sparc) && defined(SOLARIS)
 897 // define Solaris Sparc M7 ADI SEGV signals
 898 #if !defined(SEGV_ACCADI)
 899 #define SEGV_ACCADI 3
 900 #endif
 901     { SIGSEGV, SEGV_ACCADI,  "SEGV_ACCADI",  "ADI not enabled for mapped object." },
 902 #if !defined(SEGV_ACCDERR)
 903 #define SEGV_ACCDERR 4
 904 #endif
 905     { SIGSEGV, SEGV_ACCDERR, "SEGV_ACCDERR", "ADI disrupting exception." },
 906 #if !defined(SEGV_ACCPERR)
 907 #define SEGV_ACCPERR 5
 908 #endif
 909     { SIGSEGV, SEGV_ACCPERR, "SEGV_ACCPERR", "ADI precise exception." },
 910 #endif // defined(__sparc) && defined(SOLARIS)
 911     { SIGBUS,  BUS_ADRALN,   "BUS_ADRALN",   "Invalid address alignment." },
 912     { SIGBUS,  BUS_ADRERR,   "BUS_ADRERR",   "Nonexistent physical address." },
 913     { SIGBUS,  BUS_OBJERR,   "BUS_OBJERR",   "Object-specific hardware error." },
 914     { SIGTRAP, TRAP_BRKPT,   "TRAP_BRKPT",   "Process breakpoint." },
 915     { SIGTRAP, TRAP_TRACE,   "TRAP_TRACE",   "Process trace trap." },
 916     { SIGCHLD, CLD_EXITED,   "CLD_EXITED",   "Child has exited." },
 917     { SIGCHLD, CLD_KILLED,   "CLD_KILLED",   "Child has terminated abnormally and did not create a core file." },
 918     { SIGCHLD, CLD_DUMPED,   "CLD_DUMPED",   "Child has terminated abnormally and created a core file." },
 919     { SIGCHLD, CLD_TRAPPED,  "CLD_TRAPPED",  "Traced child has trapped." },
 920     { SIGCHLD, CLD_STOPPED,  "CLD_STOPPED",  "Child has stopped." },
 921     { SIGCHLD, CLD_CONTINUED,"CLD_CONTINUED","Stopped child has continued." },
 922 #ifdef SIGPOLL
 923     { SIGPOLL, POLL_OUT,     "POLL_OUT",     "Output buffers available." },
 924     { SIGPOLL, POLL_MSG,     "POLL_MSG",     "Input message available." },
 925     { SIGPOLL, POLL_ERR,     "POLL_ERR",     "I/O error." },
 926     { SIGPOLL, POLL_PRI,     "POLL_PRI",     "High priority input available." },
 927     { SIGPOLL, POLL_HUP,     "POLL_HUP",     "Device disconnected. [Option End]" },
 928 #endif
 929     { -1, -1, NULL, NULL }
 930   };
 931 
 932   // Codes valid in any signal context.
 933   const struct {
 934     int code; const char* s_code; const char* s_desc;
 935   } t2 [] = {
 936     { SI_USER,      "SI_USER",     "Signal sent by kill()." },
 937     { SI_QUEUE,     "SI_QUEUE",    "Signal sent by the sigqueue()." },
 938     { SI_TIMER,     "SI_TIMER",    "Signal generated by expiration of a timer set by timer_settime()." },
 939     { SI_ASYNCIO,   "SI_ASYNCIO",  "Signal generated by completion of an asynchronous I/O request." },
 940     { SI_MESGQ,     "SI_MESGQ",    "Signal generated by arrival of a message on an empty message queue." },
 941     // Linux specific
 942 #ifdef SI_TKILL
 943     { SI_TKILL,     "SI_TKILL",    "Signal sent by tkill (pthread_kill)" },
 944 #endif
 945 #ifdef SI_DETHREAD
 946     { SI_DETHREAD,  "SI_DETHREAD", "Signal sent by execve() killing subsidiary threads" },
 947 #endif
 948 #ifdef SI_KERNEL
 949     { SI_KERNEL,    "SI_KERNEL",   "Signal sent by kernel." },
 950 #endif
 951 #ifdef SI_SIGIO
 952     { SI_SIGIO,     "SI_SIGIO",    "Signal sent by queued SIGIO" },
 953 #endif
 954 
 955 #ifdef AIX
 956     { SI_UNDEFINED, "SI_UNDEFINED","siginfo contains partial information" },
 957     { SI_EMPTY,     "SI_EMPTY",    "siginfo contains no useful information" },
 958 #endif
 959 
 960 #ifdef __sun
 961     { SI_NOINFO,    "SI_NOINFO",   "No signal information" },
 962     { SI_RCTL,      "SI_RCTL",     "kernel generated signal via rctl action" },
 963     { SI_LWP,       "SI_LWP",      "Signal sent via lwp_kill" },
 964 #endif
 965 
 966     { -1, NULL, NULL }
 967   };
 968 
 969   const char* s_code = NULL;
 970   const char* s_desc = NULL;
 971 
 972   for (int i = 0; t1[i].sig != -1; i ++) {
 973     if (t1[i].sig == si->si_signo && t1[i].code == si->si_code) {
 974       s_code = t1[i].s_code;
 975       s_desc = t1[i].s_desc;
 976       break;
 977     }
 978   }
 979 
 980   if (s_code == NULL) {
 981     for (int i = 0; t2[i].s_code != NULL; i ++) {
 982       if (t2[i].code == si->si_code) {
 983         s_code = t2[i].s_code;
 984         s_desc = t2[i].s_desc;
 985       }
 986     }
 987   }
 988 
 989   if (s_code == NULL) {
 990     out->s_name = "unknown";
 991     out->s_desc = "unknown";
 992     return false;
 993   }
 994 
 995   out->s_name = s_code;
 996   out->s_desc = s_desc;
 997 
 998   return true;
 999 }
1000 
1001 void os::print_siginfo(outputStream* os, const void* si0) {
1002 
1003   const siginfo_t* const si = (const siginfo_t*) si0;
1004 
1005   char buf[20];
1006   os->print("siginfo:");
1007 
1008   if (!si) {
1009     os->print(" <null>");
1010     return;
1011   }
1012 
1013   const int sig = si->si_signo;
1014 
1015   os->print(" si_signo: %d (%s)", sig, os::Posix::get_signal_name(sig, buf, sizeof(buf)));
1016 
1017   enum_sigcode_desc_t ed;
1018   get_signal_code_description(si, &ed);
1019   os->print(", si_code: %d (%s)", si->si_code, ed.s_name);
1020 
1021   if (si->si_errno) {
1022     os->print(", si_errno: %d", si->si_errno);
1023   }
1024 
1025   // Output additional information depending on the signal code.
1026 
1027   // Note: Many implementations lump si_addr, si_pid, si_uid etc. together as unions,
1028   // so it depends on the context which member to use. For synchronous error signals,
1029   // we print si_addr, unless the signal was sent by another process or thread, in
1030   // which case we print out pid or tid of the sender.
1031   if (si->si_code == SI_USER || si->si_code == SI_QUEUE) {
1032     const pid_t pid = si->si_pid;
1033     os->print(", si_pid: %ld", (long) pid);
1034     if (IS_VALID_PID(pid)) {
1035       const pid_t me = getpid();
1036       if (me == pid) {
1037         os->print(" (current process)");
1038       }
1039     } else {
1040       os->print(" (invalid)");
1041     }
1042     os->print(", si_uid: %ld", (long) si->si_uid);
1043     if (sig == SIGCHLD) {
1044       os->print(", si_status: %d", si->si_status);
1045     }
1046   } else if (sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
1047              sig == SIGTRAP || sig == SIGFPE) {
1048     os->print(", si_addr: " PTR_FORMAT, p2i(si->si_addr));
1049 #ifdef SIGPOLL
1050   } else if (sig == SIGPOLL) {
1051     os->print(", si_band: %ld", si->si_band);
1052 #endif
1053   }
1054 
1055 }
1056 
1057 int os::Posix::unblock_thread_signal_mask(const sigset_t *set) {
1058   return pthread_sigmask(SIG_UNBLOCK, set, NULL);
1059 }
1060 
1061 address os::Posix::ucontext_get_pc(const ucontext_t* ctx) {
1062 #if defined(AIX)
1063    return Aix::ucontext_get_pc(ctx);
1064 #elif defined(BSD)
1065    return Bsd::ucontext_get_pc(ctx);
1066 #elif defined(LINUX)
1067    return Linux::ucontext_get_pc(ctx);
1068 #elif defined(SOLARIS)
1069    return Solaris::ucontext_get_pc(ctx);
1070 #else
1071    VMError::report_and_die("unimplemented ucontext_get_pc");
1072 #endif
1073 }
1074 
1075 void os::Posix::ucontext_set_pc(ucontext_t* ctx, address pc) {
1076 #if defined(AIX)
1077    Aix::ucontext_set_pc(ctx, pc);
1078 #elif defined(BSD)
1079    Bsd::ucontext_set_pc(ctx, pc);
1080 #elif defined(LINUX)
1081    Linux::ucontext_set_pc(ctx, pc);
1082 #elif defined(SOLARIS)
1083    Solaris::ucontext_set_pc(ctx, pc);
1084 #else
1085    VMError::report_and_die("unimplemented ucontext_get_pc");
1086 #endif
1087 }
1088 
1089 char* os::Posix::describe_pthread_attr(char* buf, size_t buflen, const pthread_attr_t* attr) {
1090   size_t stack_size = 0;
1091   size_t guard_size = 0;
1092   int detachstate = 0;
1093   pthread_attr_getstacksize(attr, &stack_size);
1094   pthread_attr_getguardsize(attr, &guard_size);
1095   pthread_attr_getdetachstate(attr, &detachstate);
1096   jio_snprintf(buf, buflen, "stacksize: " SIZE_FORMAT "k, guardsize: " SIZE_FORMAT "k, %s",
1097     stack_size / 1024, guard_size / 1024,
1098     (detachstate == PTHREAD_CREATE_DETACHED ? "detached" : "joinable"));
1099   return buf;
1100 }
1101 
1102 
1103 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
1104   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
1105 }
1106 
1107 /*
1108  * See the caveats for this class in os_posix.hpp
1109  * Protects the callback call so that SIGSEGV / SIGBUS jumps back into this
1110  * method and returns false. If none of the signals are raised, returns true.
1111  * The callback is supposed to provide the method that should be protected.
1112  */
1113 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
1114   sigset_t saved_sig_mask;
1115 
1116   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
1117   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
1118       "crash_protection already set?");
1119 
1120   // we cannot rely on sigsetjmp/siglongjmp to save/restore the signal mask
1121   // since on at least some systems (OS X) siglongjmp will restore the mask
1122   // for the process, not the thread
1123   pthread_sigmask(0, NULL, &saved_sig_mask);
1124   if (sigsetjmp(_jmpbuf, 0) == 0) {
1125     // make sure we can see in the signal handler that we have crash protection
1126     // installed
1127     WatcherThread::watcher_thread()->set_crash_protection(this);
1128     cb.call();
1129     // and clear the crash protection
1130     WatcherThread::watcher_thread()->set_crash_protection(NULL);
1131     return true;
1132   }
1133   // this happens when we siglongjmp() back
1134   pthread_sigmask(SIG_SETMASK, &saved_sig_mask, NULL);
1135   WatcherThread::watcher_thread()->set_crash_protection(NULL);
1136   return false;
1137 }
1138 
1139 void os::WatcherThreadCrashProtection::restore() {
1140   assert(WatcherThread::watcher_thread()->has_crash_protection(),
1141       "must have crash protection");
1142 
1143   siglongjmp(_jmpbuf, 1);
1144 }
1145 
1146 void os::WatcherThreadCrashProtection::check_crash_protection(int sig,
1147     Thread* thread) {
1148 
1149   if (thread != NULL &&
1150       thread->is_Watcher_thread() &&
1151       WatcherThread::watcher_thread()->has_crash_protection()) {
1152 
1153     if (sig == SIGSEGV || sig == SIGBUS) {
1154       WatcherThread::watcher_thread()->crash_protection()->restore();
1155     }
1156   }
1157 }
1158 
1159 #define check_with_errno(check_type, cond, msg)                             \
1160   do {                                                                      \
1161     int err = errno;                                                        \
1162     check_type(cond, "%s; error='%s' (errno=%s)", msg, os::strerror(err),   \
1163                os::errno_name(err));                                        \
1164 } while (false)
1165 
1166 #define assert_with_errno(cond, msg)    check_with_errno(assert, cond, msg)
1167 #define guarantee_with_errno(cond, msg) check_with_errno(guarantee, cond, msg)
1168 
1169 // POSIX unamed semaphores are not supported on OS X.
1170 #ifndef __APPLE__
1171 
1172 PosixSemaphore::PosixSemaphore(uint value) {
1173   int ret = sem_init(&_semaphore, 0, value);
1174 
1175   guarantee_with_errno(ret == 0, "Failed to initialize semaphore");
1176 }
1177 
1178 PosixSemaphore::~PosixSemaphore() {
1179   sem_destroy(&_semaphore);
1180 }
1181 
1182 void PosixSemaphore::signal(uint count) {
1183   for (uint i = 0; i < count; i++) {
1184     int ret = sem_post(&_semaphore);
1185 
1186     assert_with_errno(ret == 0, "sem_post failed");
1187   }
1188 }
1189 
1190 void PosixSemaphore::wait() {
1191   int ret;
1192 
1193   do {
1194     ret = sem_wait(&_semaphore);
1195   } while (ret != 0 && errno == EINTR);
1196 
1197   assert_with_errno(ret == 0, "sem_wait failed");
1198 }
1199 
1200 bool PosixSemaphore::trywait() {
1201   int ret;
1202 
1203   do {
1204     ret = sem_trywait(&_semaphore);
1205   } while (ret != 0 && errno == EINTR);
1206 
1207   assert_with_errno(ret == 0 || errno == EAGAIN, "trywait failed");
1208 
1209   return ret == 0;
1210 }
1211 
1212 bool PosixSemaphore::timedwait(struct timespec ts) {
1213   while (true) {
1214     int result = sem_timedwait(&_semaphore, &ts);
1215     if (result == 0) {
1216       return true;
1217     } else if (errno == EINTR) {
1218       continue;
1219     } else if (errno == ETIMEDOUT) {
1220       return false;
1221     } else {
1222       assert_with_errno(false, "timedwait failed");
1223       return false;
1224     }
1225   }
1226 }
1227 
1228 #endif // __APPLE__