1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "logging/log.hpp"
  39 #include "memory/allocation.inline.hpp"
  40 #include "memory/filemap.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "os_windows.inline.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm.h"
  46 #include "prims/jvm_misc.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.inline.hpp"
  49 #include "runtime/extendedPC.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.inline.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "semaphore_windows.hpp"
  67 #include "services/attachListener.hpp"
  68 #include "services/memTracker.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/decoder.hpp"
  71 #include "utilities/defaultStream.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/vmError.hpp"
  76 
  77 #ifdef _DEBUG
  78 #include <crtdbg.h>
  79 #endif
  80 
  81 
  82 #include <windows.h>
  83 #include <sys/types.h>
  84 #include <sys/stat.h>
  85 #include <sys/timeb.h>
  86 #include <objidl.h>
  87 #include <shlobj.h>
  88 
  89 #include <malloc.h>
  90 #include <signal.h>
  91 #include <direct.h>
  92 #include <errno.h>
  93 #include <fcntl.h>
  94 #include <io.h>
  95 #include <process.h>              // For _beginthreadex(), _endthreadex()
  96 #include <imagehlp.h>             // For os::dll_address_to_function_name
  97 // for enumerating dll libraries
  98 #include <vdmdbg.h>
  99 
 100 // for timer info max values which include all bits
 101 #define ALL_64_BITS CONST64(-1)
 102 
 103 // For DLL loading/load error detection
 104 // Values of PE COFF
 105 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 106 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 107 
 108 static HANDLE main_process;
 109 static HANDLE main_thread;
 110 static int    main_thread_id;
 111 
 112 static FILETIME process_creation_time;
 113 static FILETIME process_exit_time;
 114 static FILETIME process_user_time;
 115 static FILETIME process_kernel_time;
 116 
 117 #ifdef _M_IA64
 118   #define __CPU__ ia64
 119 #else
 120   #ifdef _M_AMD64
 121     #define __CPU__ amd64
 122   #else
 123     #define __CPU__ i486
 124   #endif
 125 #endif
 126 
 127 // save DLL module handle, used by GetModuleFileName
 128 
 129 HINSTANCE vm_lib_handle;
 130 
 131 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 132   switch (reason) {
 133   case DLL_PROCESS_ATTACH:
 134     vm_lib_handle = hinst;
 135     if (ForceTimeHighResolution) {
 136       timeBeginPeriod(1L);
 137     }
 138     break;
 139   case DLL_PROCESS_DETACH:
 140     if (ForceTimeHighResolution) {
 141       timeEndPeriod(1L);
 142     }
 143     break;
 144   default:
 145     break;
 146   }
 147   return true;
 148 }
 149 
 150 static inline double fileTimeAsDouble(FILETIME* time) {
 151   const double high  = (double) ((unsigned int) ~0);
 152   const double split = 10000000.0;
 153   double result = (time->dwLowDateTime / split) +
 154                    time->dwHighDateTime * (high/split);
 155   return result;
 156 }
 157 
 158 // Implementation of os
 159 
 160 bool os::unsetenv(const char* name) {
 161   assert(name != NULL, "Null pointer");
 162   return (SetEnvironmentVariable(name, NULL) == TRUE);
 163 }
 164 
 165 // No setuid programs under Windows.
 166 bool os::have_special_privileges() {
 167   return false;
 168 }
 169 
 170 
 171 // This method is  a periodic task to check for misbehaving JNI applications
 172 // under CheckJNI, we can add any periodic checks here.
 173 // For Windows at the moment does nothing
 174 void os::run_periodic_checks() {
 175   return;
 176 }
 177 
 178 // previous UnhandledExceptionFilter, if there is one
 179 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 180 
 181 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 182 
 183 void os::init_system_properties_values() {
 184   // sysclasspath, java_home, dll_dir
 185   {
 186     char *home_path;
 187     char *dll_path;
 188     char *pslash;
 189     char *bin = "\\bin";
 190     char home_dir[MAX_PATH + 1];
 191     char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
 192 
 193     if (alt_home_dir != NULL)  {
 194       strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
 195       home_dir[MAX_PATH] = '\0';
 196     } else {
 197       os::jvm_path(home_dir, sizeof(home_dir));
 198       // Found the full path to jvm.dll.
 199       // Now cut the path to <java_home>/jre if we can.
 200       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 201       pslash = strrchr(home_dir, '\\');
 202       if (pslash != NULL) {
 203         *pslash = '\0';                   // get rid of \{client|server}
 204         pslash = strrchr(home_dir, '\\');
 205         if (pslash != NULL) {
 206           *pslash = '\0';                 // get rid of \bin
 207         }
 208       }
 209     }
 210 
 211     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 212     if (home_path == NULL) {
 213       return;
 214     }
 215     strcpy(home_path, home_dir);
 216     Arguments::set_java_home(home_path);
 217     FREE_C_HEAP_ARRAY(char, home_path);
 218 
 219     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 220                                 mtInternal);
 221     if (dll_path == NULL) {
 222       return;
 223     }
 224     strcpy(dll_path, home_dir);
 225     strcat(dll_path, bin);
 226     Arguments::set_dll_dir(dll_path);
 227     FREE_C_HEAP_ARRAY(char, dll_path);
 228 
 229     if (!set_boot_path('\\', ';')) {
 230       return;
 231     }
 232   }
 233 
 234 // library_path
 235 #define EXT_DIR "\\lib\\ext"
 236 #define BIN_DIR "\\bin"
 237 #define PACKAGE_DIR "\\Sun\\Java"
 238   {
 239     // Win32 library search order (See the documentation for LoadLibrary):
 240     //
 241     // 1. The directory from which application is loaded.
 242     // 2. The system wide Java Extensions directory (Java only)
 243     // 3. System directory (GetSystemDirectory)
 244     // 4. Windows directory (GetWindowsDirectory)
 245     // 5. The PATH environment variable
 246     // 6. The current directory
 247 
 248     char *library_path;
 249     char tmp[MAX_PATH];
 250     char *path_str = ::getenv("PATH");
 251 
 252     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 253                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 254 
 255     library_path[0] = '\0';
 256 
 257     GetModuleFileName(NULL, tmp, sizeof(tmp));
 258     *(strrchr(tmp, '\\')) = '\0';
 259     strcat(library_path, tmp);
 260 
 261     GetWindowsDirectory(tmp, sizeof(tmp));
 262     strcat(library_path, ";");
 263     strcat(library_path, tmp);
 264     strcat(library_path, PACKAGE_DIR BIN_DIR);
 265 
 266     GetSystemDirectory(tmp, sizeof(tmp));
 267     strcat(library_path, ";");
 268     strcat(library_path, tmp);
 269 
 270     GetWindowsDirectory(tmp, sizeof(tmp));
 271     strcat(library_path, ";");
 272     strcat(library_path, tmp);
 273 
 274     if (path_str) {
 275       strcat(library_path, ";");
 276       strcat(library_path, path_str);
 277     }
 278 
 279     strcat(library_path, ";.");
 280 
 281     Arguments::set_library_path(library_path);
 282     FREE_C_HEAP_ARRAY(char, library_path);
 283   }
 284 
 285   // Default extensions directory
 286   {
 287     char path[MAX_PATH];
 288     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 289     GetWindowsDirectory(path, MAX_PATH);
 290     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 291             path, PACKAGE_DIR, EXT_DIR);
 292     Arguments::set_ext_dirs(buf);
 293   }
 294   #undef EXT_DIR
 295   #undef BIN_DIR
 296   #undef PACKAGE_DIR
 297 
 298 #ifndef _WIN64
 299   // set our UnhandledExceptionFilter and save any previous one
 300   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 301 #endif
 302 
 303   // Done
 304   return;
 305 }
 306 
 307 void os::breakpoint() {
 308   DebugBreak();
 309 }
 310 
 311 // Invoked from the BREAKPOINT Macro
 312 extern "C" void breakpoint() {
 313   os::breakpoint();
 314 }
 315 
 316 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 317 // So far, this method is only used by Native Memory Tracking, which is
 318 // only supported on Windows XP or later.
 319 //
 320 int os::get_native_stack(address* stack, int frames, int toSkip) {
 321 #ifdef _NMT_NOINLINE_
 322   toSkip++;
 323 #endif
 324   int captured = RtlCaptureStackBackTrace(toSkip + 1, frames, (PVOID*)stack, NULL);
 325   for (int index = captured; index < frames; index ++) {
 326     stack[index] = NULL;
 327   }
 328   return captured;
 329 }
 330 
 331 
 332 // os::current_stack_base()
 333 //
 334 //   Returns the base of the stack, which is the stack's
 335 //   starting address.  This function must be called
 336 //   while running on the stack of the thread being queried.
 337 
 338 address os::current_stack_base() {
 339   MEMORY_BASIC_INFORMATION minfo;
 340   address stack_bottom;
 341   size_t stack_size;
 342 
 343   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 344   stack_bottom =  (address)minfo.AllocationBase;
 345   stack_size = minfo.RegionSize;
 346 
 347   // Add up the sizes of all the regions with the same
 348   // AllocationBase.
 349   while (1) {
 350     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 351     if (stack_bottom == (address)minfo.AllocationBase) {
 352       stack_size += minfo.RegionSize;
 353     } else {
 354       break;
 355     }
 356   }
 357 
 358 #ifdef _M_IA64
 359   // IA64 has memory and register stacks
 360   //
 361   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 362   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 363   // growing downwards, 2MB summed up)
 364   //
 365   // ...
 366   // ------- top of stack (high address) -----
 367   // |
 368   // |      1MB
 369   // |      Backing Store (Register Stack)
 370   // |
 371   // |         / \
 372   // |          |
 373   // |          |
 374   // |          |
 375   // ------------------------ stack base -----
 376   // |      1MB
 377   // |      Memory Stack
 378   // |
 379   // |          |
 380   // |          |
 381   // |          |
 382   // |         \ /
 383   // |
 384   // ----- bottom of stack (low address) -----
 385   // ...
 386 
 387   stack_size = stack_size / 2;
 388 #endif
 389   return stack_bottom + stack_size;
 390 }
 391 
 392 size_t os::current_stack_size() {
 393   size_t sz;
 394   MEMORY_BASIC_INFORMATION minfo;
 395   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 396   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 397   return sz;
 398 }
 399 
 400 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 401   const struct tm* time_struct_ptr = localtime(clock);
 402   if (time_struct_ptr != NULL) {
 403     *res = *time_struct_ptr;
 404     return res;
 405   }
 406   return NULL;
 407 }
 408 
 409 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 410 
 411 // Thread start routine for all newly created threads
 412 static unsigned __stdcall thread_native_entry(Thread* thread) {
 413   // Try to randomize the cache line index of hot stack frames.
 414   // This helps when threads of the same stack traces evict each other's
 415   // cache lines. The threads can be either from the same JVM instance, or
 416   // from different JVM instances. The benefit is especially true for
 417   // processors with hyperthreading technology.
 418   static int counter = 0;
 419   int pid = os::current_process_id();
 420   _alloca(((pid ^ counter++) & 7) * 128);
 421 
 422   thread->initialize_thread_current();
 423 
 424   OSThread* osthr = thread->osthread();
 425   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 426 
 427   if (UseNUMA) {
 428     int lgrp_id = os::numa_get_group_id();
 429     if (lgrp_id != -1) {
 430       thread->set_lgrp_id(lgrp_id);
 431     }
 432   }
 433 
 434   // Diagnostic code to investigate JDK-6573254
 435   int res = 30115;  // non-java thread
 436   if (thread->is_Java_thread()) {
 437     res = 20115;    // java thread
 438   }
 439 
 440   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").", os::current_thread_id());
 441 
 442   // Install a win32 structured exception handler around every thread created
 443   // by VM, so VM can generate error dump when an exception occurred in non-
 444   // Java thread (e.g. VM thread).
 445   __try {
 446     thread->run();
 447   } __except(topLevelExceptionFilter(
 448                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 449     // Nothing to do.
 450   }
 451 
 452   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 453 
 454   // One less thread is executing
 455   // When the VMThread gets here, the main thread may have already exited
 456   // which frees the CodeHeap containing the Atomic::add code
 457   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 458     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 459   }
 460 
 461   // If a thread has not deleted itself ("delete this") as part of its
 462   // termination sequence, we have to ensure thread-local-storage is
 463   // cleared before we actually terminate. No threads should ever be
 464   // deleted asynchronously with respect to their termination.
 465   if (Thread::current_or_null_safe() != NULL) {
 466     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 467     thread->clear_thread_current();
 468   }
 469 
 470   // Thread must not return from exit_process_or_thread(), but if it does,
 471   // let it proceed to exit normally
 472   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 473 }
 474 
 475 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 476                                   int thread_id) {
 477   // Allocate the OSThread object
 478   OSThread* osthread = new OSThread(NULL, NULL);
 479   if (osthread == NULL) return NULL;
 480 
 481   // Initialize support for Java interrupts
 482   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 483   if (interrupt_event == NULL) {
 484     delete osthread;
 485     return NULL;
 486   }
 487   osthread->set_interrupt_event(interrupt_event);
 488 
 489   // Store info on the Win32 thread into the OSThread
 490   osthread->set_thread_handle(thread_handle);
 491   osthread->set_thread_id(thread_id);
 492 
 493   if (UseNUMA) {
 494     int lgrp_id = os::numa_get_group_id();
 495     if (lgrp_id != -1) {
 496       thread->set_lgrp_id(lgrp_id);
 497     }
 498   }
 499 
 500   // Initial thread state is INITIALIZED, not SUSPENDED
 501   osthread->set_state(INITIALIZED);
 502 
 503   return osthread;
 504 }
 505 
 506 
 507 bool os::create_attached_thread(JavaThread* thread) {
 508 #ifdef ASSERT
 509   thread->verify_not_published();
 510 #endif
 511   HANDLE thread_h;
 512   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 513                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 514     fatal("DuplicateHandle failed\n");
 515   }
 516   OSThread* osthread = create_os_thread(thread, thread_h,
 517                                         (int)current_thread_id());
 518   if (osthread == NULL) {
 519     return false;
 520   }
 521 
 522   // Initial thread state is RUNNABLE
 523   osthread->set_state(RUNNABLE);
 524 
 525   thread->set_osthread(osthread);
 526 
 527   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
 528     os::current_thread_id());
 529 
 530   return true;
 531 }
 532 
 533 bool os::create_main_thread(JavaThread* thread) {
 534 #ifdef ASSERT
 535   thread->verify_not_published();
 536 #endif
 537   if (_starting_thread == NULL) {
 538     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 539     if (_starting_thread == NULL) {
 540       return false;
 541     }
 542   }
 543 
 544   // The primordial thread is runnable from the start)
 545   _starting_thread->set_state(RUNNABLE);
 546 
 547   thread->set_osthread(_starting_thread);
 548   return true;
 549 }
 550 
 551 // Helper function to trace _beginthreadex attributes,
 552 //  similar to os::Posix::describe_pthread_attr()
 553 static char* describe_beginthreadex_attributes(char* buf, size_t buflen,
 554                                                size_t stacksize, unsigned initflag) {
 555   stringStream ss(buf, buflen);
 556   if (stacksize == 0) {
 557     ss.print("stacksize: default, ");
 558   } else {
 559     ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
 560   }
 561   ss.print("flags: ");
 562   #define PRINT_FLAG(f) if (initflag & f) ss.print( #f " ");
 563   #define ALL(X) \
 564     X(CREATE_SUSPENDED) \
 565     X(STACK_SIZE_PARAM_IS_A_RESERVATION)
 566   ALL(PRINT_FLAG)
 567   #undef ALL
 568   #undef PRINT_FLAG
 569   return buf;
 570 }
 571 
 572 // Allocate and initialize a new OSThread
 573 bool os::create_thread(Thread* thread, ThreadType thr_type,
 574                        size_t stack_size) {
 575   unsigned thread_id;
 576 
 577   // Allocate the OSThread object
 578   OSThread* osthread = new OSThread(NULL, NULL);
 579   if (osthread == NULL) {
 580     return false;
 581   }
 582 
 583   // Initialize support for Java interrupts
 584   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 585   if (interrupt_event == NULL) {
 586     delete osthread;
 587     return NULL;
 588   }
 589   osthread->set_interrupt_event(interrupt_event);
 590   osthread->set_interrupted(false);
 591 
 592   thread->set_osthread(osthread);
 593 
 594   if (stack_size == 0) {
 595     switch (thr_type) {
 596     case os::java_thread:
 597       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 598       if (JavaThread::stack_size_at_create() > 0) {
 599         stack_size = JavaThread::stack_size_at_create();
 600       }
 601       break;
 602     case os::compiler_thread:
 603       if (CompilerThreadStackSize > 0) {
 604         stack_size = (size_t)(CompilerThreadStackSize * K);
 605         break;
 606       } // else fall through:
 607         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 608     case os::vm_thread:
 609     case os::pgc_thread:
 610     case os::cgc_thread:
 611     case os::watcher_thread:
 612       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 613       break;
 614     }
 615   }
 616 
 617   // Create the Win32 thread
 618   //
 619   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 620   // does not specify stack size. Instead, it specifies the size of
 621   // initially committed space. The stack size is determined by
 622   // PE header in the executable. If the committed "stack_size" is larger
 623   // than default value in the PE header, the stack is rounded up to the
 624   // nearest multiple of 1MB. For example if the launcher has default
 625   // stack size of 320k, specifying any size less than 320k does not
 626   // affect the actual stack size at all, it only affects the initial
 627   // commitment. On the other hand, specifying 'stack_size' larger than
 628   // default value may cause significant increase in memory usage, because
 629   // not only the stack space will be rounded up to MB, but also the
 630   // entire space is committed upfront.
 631   //
 632   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 633   // for CreateThread() that can treat 'stack_size' as stack size. However we
 634   // are not supposed to call CreateThread() directly according to MSDN
 635   // document because JVM uses C runtime library. The good news is that the
 636   // flag appears to work with _beginthredex() as well.
 637 
 638   const unsigned initflag = CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION;
 639   HANDLE thread_handle =
 640     (HANDLE)_beginthreadex(NULL,
 641                            (unsigned)stack_size,
 642                            (unsigned (__stdcall *)(void*)) thread_native_entry,
 643                            thread,
 644                            initflag,
 645                            &thread_id);
 646 
 647   char buf[64];
 648   if (thread_handle != NULL) {
 649     log_info(os, thread)("Thread started (tid: %u, attributes: %s)",
 650       thread_id, describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 651   } else {
 652     log_warning(os, thread)("Failed to start thread - _beginthreadex failed (%s) for attributes: %s.",
 653       os::errno_name(errno), describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 654   }
 655 
 656   if (thread_handle == NULL) {
 657     // Need to clean up stuff we've allocated so far
 658     CloseHandle(osthread->interrupt_event());
 659     thread->set_osthread(NULL);
 660     delete osthread;
 661     return NULL;
 662   }
 663 
 664   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 665 
 666   // Store info on the Win32 thread into the OSThread
 667   osthread->set_thread_handle(thread_handle);
 668   osthread->set_thread_id(thread_id);
 669 
 670   // Initial thread state is INITIALIZED, not SUSPENDED
 671   osthread->set_state(INITIALIZED);
 672 
 673   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 674   return true;
 675 }
 676 
 677 
 678 // Free Win32 resources related to the OSThread
 679 void os::free_thread(OSThread* osthread) {
 680   assert(osthread != NULL, "osthread not set");
 681 
 682   // We are told to free resources of the argument thread,
 683   // but we can only really operate on the current thread.
 684   assert(Thread::current()->osthread() == osthread,
 685          "os::free_thread but not current thread");
 686 
 687   CloseHandle(osthread->thread_handle());
 688   CloseHandle(osthread->interrupt_event());
 689   delete osthread;
 690 }
 691 
 692 static jlong first_filetime;
 693 static jlong initial_performance_count;
 694 static jlong performance_frequency;
 695 
 696 
 697 jlong as_long(LARGE_INTEGER x) {
 698   jlong result = 0; // initialization to avoid warning
 699   set_high(&result, x.HighPart);
 700   set_low(&result, x.LowPart);
 701   return result;
 702 }
 703 
 704 
 705 jlong os::elapsed_counter() {
 706   LARGE_INTEGER count;
 707   QueryPerformanceCounter(&count);
 708   return as_long(count) - initial_performance_count;
 709 }
 710 
 711 
 712 jlong os::elapsed_frequency() {
 713   return performance_frequency;
 714 }
 715 
 716 
 717 julong os::available_memory() {
 718   return win32::available_memory();
 719 }
 720 
 721 julong os::win32::available_memory() {
 722   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 723   // value if total memory is larger than 4GB
 724   MEMORYSTATUSEX ms;
 725   ms.dwLength = sizeof(ms);
 726   GlobalMemoryStatusEx(&ms);
 727 
 728   return (julong)ms.ullAvailPhys;
 729 }
 730 
 731 julong os::physical_memory() {
 732   return win32::physical_memory();
 733 }
 734 
 735 bool os::has_allocatable_memory_limit(julong* limit) {
 736   MEMORYSTATUSEX ms;
 737   ms.dwLength = sizeof(ms);
 738   GlobalMemoryStatusEx(&ms);
 739 #ifdef _LP64
 740   *limit = (julong)ms.ullAvailVirtual;
 741   return true;
 742 #else
 743   // Limit to 1400m because of the 2gb address space wall
 744   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 745   return true;
 746 #endif
 747 }
 748 
 749 int os::active_processor_count() {
 750   DWORD_PTR lpProcessAffinityMask = 0;
 751   DWORD_PTR lpSystemAffinityMask = 0;
 752   int proc_count = processor_count();
 753   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 754       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 755     // Nof active processors is number of bits in process affinity mask
 756     int bitcount = 0;
 757     while (lpProcessAffinityMask != 0) {
 758       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 759       bitcount++;
 760     }
 761     return bitcount;
 762   } else {
 763     return proc_count;
 764   }
 765 }
 766 
 767 void os::set_native_thread_name(const char *name) {
 768 
 769   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 770   //
 771   // Note that unfortunately this only works if the process
 772   // is already attached to a debugger; debugger must observe
 773   // the exception below to show the correct name.
 774 
 775   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 776   struct {
 777     DWORD dwType;     // must be 0x1000
 778     LPCSTR szName;    // pointer to name (in user addr space)
 779     DWORD dwThreadID; // thread ID (-1=caller thread)
 780     DWORD dwFlags;    // reserved for future use, must be zero
 781   } info;
 782 
 783   info.dwType = 0x1000;
 784   info.szName = name;
 785   info.dwThreadID = -1;
 786   info.dwFlags = 0;
 787 
 788   __try {
 789     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 790   } __except(EXCEPTION_CONTINUE_EXECUTION) {}
 791 }
 792 
 793 bool os::distribute_processes(uint length, uint* distribution) {
 794   // Not yet implemented.
 795   return false;
 796 }
 797 
 798 bool os::bind_to_processor(uint processor_id) {
 799   // Not yet implemented.
 800   return false;
 801 }
 802 
 803 void os::win32::initialize_performance_counter() {
 804   LARGE_INTEGER count;
 805   QueryPerformanceFrequency(&count);
 806   performance_frequency = as_long(count);
 807   QueryPerformanceCounter(&count);
 808   initial_performance_count = as_long(count);
 809 }
 810 
 811 
 812 double os::elapsedTime() {
 813   return (double) elapsed_counter() / (double) elapsed_frequency();
 814 }
 815 
 816 
 817 // Windows format:
 818 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 819 // Java format:
 820 //   Java standards require the number of milliseconds since 1/1/1970
 821 
 822 // Constant offset - calculated using offset()
 823 static jlong  _offset   = 116444736000000000;
 824 // Fake time counter for reproducible results when debugging
 825 static jlong  fake_time = 0;
 826 
 827 #ifdef ASSERT
 828 // Just to be safe, recalculate the offset in debug mode
 829 static jlong _calculated_offset = 0;
 830 static int   _has_calculated_offset = 0;
 831 
 832 jlong offset() {
 833   if (_has_calculated_offset) return _calculated_offset;
 834   SYSTEMTIME java_origin;
 835   java_origin.wYear          = 1970;
 836   java_origin.wMonth         = 1;
 837   java_origin.wDayOfWeek     = 0; // ignored
 838   java_origin.wDay           = 1;
 839   java_origin.wHour          = 0;
 840   java_origin.wMinute        = 0;
 841   java_origin.wSecond        = 0;
 842   java_origin.wMilliseconds  = 0;
 843   FILETIME jot;
 844   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 845     fatal("Error = %d\nWindows error", GetLastError());
 846   }
 847   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 848   _has_calculated_offset = 1;
 849   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 850   return _calculated_offset;
 851 }
 852 #else
 853 jlong offset() {
 854   return _offset;
 855 }
 856 #endif
 857 
 858 jlong windows_to_java_time(FILETIME wt) {
 859   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 860   return (a - offset()) / 10000;
 861 }
 862 
 863 // Returns time ticks in (10th of micro seconds)
 864 jlong windows_to_time_ticks(FILETIME wt) {
 865   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 866   return (a - offset());
 867 }
 868 
 869 FILETIME java_to_windows_time(jlong l) {
 870   jlong a = (l * 10000) + offset();
 871   FILETIME result;
 872   result.dwHighDateTime = high(a);
 873   result.dwLowDateTime  = low(a);
 874   return result;
 875 }
 876 
 877 bool os::supports_vtime() { return true; }
 878 bool os::enable_vtime() { return false; }
 879 bool os::vtime_enabled() { return false; }
 880 
 881 double os::elapsedVTime() {
 882   FILETIME created;
 883   FILETIME exited;
 884   FILETIME kernel;
 885   FILETIME user;
 886   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 887     // the resolution of windows_to_java_time() should be sufficient (ms)
 888     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 889   } else {
 890     return elapsedTime();
 891   }
 892 }
 893 
 894 jlong os::javaTimeMillis() {
 895   if (UseFakeTimers) {
 896     return fake_time++;
 897   } else {
 898     FILETIME wt;
 899     GetSystemTimeAsFileTime(&wt);
 900     return windows_to_java_time(wt);
 901   }
 902 }
 903 
 904 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 905   FILETIME wt;
 906   GetSystemTimeAsFileTime(&wt);
 907   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 908   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 909   seconds = secs;
 910   nanos = jlong(ticks - (secs*10000000)) * 100;
 911 }
 912 
 913 jlong os::javaTimeNanos() {
 914     LARGE_INTEGER current_count;
 915     QueryPerformanceCounter(&current_count);
 916     double current = as_long(current_count);
 917     double freq = performance_frequency;
 918     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 919     return time;
 920 }
 921 
 922 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 923   jlong freq = performance_frequency;
 924   if (freq < NANOSECS_PER_SEC) {
 925     // the performance counter is 64 bits and we will
 926     // be multiplying it -- so no wrap in 64 bits
 927     info_ptr->max_value = ALL_64_BITS;
 928   } else if (freq > NANOSECS_PER_SEC) {
 929     // use the max value the counter can reach to
 930     // determine the max value which could be returned
 931     julong max_counter = (julong)ALL_64_BITS;
 932     info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 933   } else {
 934     // the performance counter is 64 bits and we will
 935     // be using it directly -- so no wrap in 64 bits
 936     info_ptr->max_value = ALL_64_BITS;
 937   }
 938 
 939   // using a counter, so no skipping
 940   info_ptr->may_skip_backward = false;
 941   info_ptr->may_skip_forward = false;
 942 
 943   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 944 }
 945 
 946 char* os::local_time_string(char *buf, size_t buflen) {
 947   SYSTEMTIME st;
 948   GetLocalTime(&st);
 949   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 950                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 951   return buf;
 952 }
 953 
 954 bool os::getTimesSecs(double* process_real_time,
 955                       double* process_user_time,
 956                       double* process_system_time) {
 957   HANDLE h_process = GetCurrentProcess();
 958   FILETIME create_time, exit_time, kernel_time, user_time;
 959   BOOL result = GetProcessTimes(h_process,
 960                                 &create_time,
 961                                 &exit_time,
 962                                 &kernel_time,
 963                                 &user_time);
 964   if (result != 0) {
 965     FILETIME wt;
 966     GetSystemTimeAsFileTime(&wt);
 967     jlong rtc_millis = windows_to_java_time(wt);
 968     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 969     *process_user_time =
 970       (double) jlong_from(user_time.dwHighDateTime, user_time.dwLowDateTime) / (10 * MICROUNITS);
 971     *process_system_time =
 972       (double) jlong_from(kernel_time.dwHighDateTime, kernel_time.dwLowDateTime) / (10 * MICROUNITS);
 973     return true;
 974   } else {
 975     return false;
 976   }
 977 }
 978 
 979 void os::shutdown() {
 980   // allow PerfMemory to attempt cleanup of any persistent resources
 981   perfMemory_exit();
 982 
 983   // flush buffered output, finish log files
 984   ostream_abort();
 985 
 986   // Check for abort hook
 987   abort_hook_t abort_hook = Arguments::abort_hook();
 988   if (abort_hook != NULL) {
 989     abort_hook();
 990   }
 991 }
 992 
 993 
 994 static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
 995                                          PMINIDUMP_EXCEPTION_INFORMATION,
 996                                          PMINIDUMP_USER_STREAM_INFORMATION,
 997                                          PMINIDUMP_CALLBACK_INFORMATION);
 998 
 999 static HANDLE dumpFile = NULL;
1000 
1001 // Check if dump file can be created.
1002 void os::check_dump_limit(char* buffer, size_t buffsz) {
1003   bool status = true;
1004   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
1005     jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
1006     status = false;
1007   }
1008 
1009 #ifndef ASSERT
1010   if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) {
1011     jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows");
1012     status = false;
1013   }
1014 #endif
1015 
1016   if (status) {
1017     const char* cwd = get_current_directory(NULL, 0);
1018     int pid = current_process_id();
1019     if (cwd != NULL) {
1020       jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1021     } else {
1022       jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1023     }
1024 
1025     if (dumpFile == NULL &&
1026        (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1027                  == INVALID_HANDLE_VALUE) {
1028       jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1029       status = false;
1030     }
1031   }
1032   VMError::record_coredump_status(buffer, status);
1033 }
1034 
1035 void os::abort(bool dump_core, void* siginfo, const void* context) {
1036   HINSTANCE dbghelp;
1037   EXCEPTION_POINTERS ep;
1038   MINIDUMP_EXCEPTION_INFORMATION mei;
1039   MINIDUMP_EXCEPTION_INFORMATION* pmei;
1040 
1041   HANDLE hProcess = GetCurrentProcess();
1042   DWORD processId = GetCurrentProcessId();
1043   MINIDUMP_TYPE dumpType;
1044 
1045   shutdown();
1046   if (!dump_core || dumpFile == NULL) {
1047     if (dumpFile != NULL) {
1048       CloseHandle(dumpFile);
1049     }
1050     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1051   }
1052 
1053   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1054 
1055   if (dbghelp == NULL) {
1056     jio_fprintf(stderr, "Failed to load dbghelp.dll\n");
1057     CloseHandle(dumpFile);
1058     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1059   }
1060 
1061   _MiniDumpWriteDump =
1062       CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1063                                     PMINIDUMP_EXCEPTION_INFORMATION,
1064                                     PMINIDUMP_USER_STREAM_INFORMATION,
1065                                     PMINIDUMP_CALLBACK_INFORMATION),
1066                                     GetProcAddress(dbghelp,
1067                                     "MiniDumpWriteDump"));
1068 
1069   if (_MiniDumpWriteDump == NULL) {
1070     jio_fprintf(stderr, "Failed to find MiniDumpWriteDump() in module dbghelp.dll.\n");
1071     CloseHandle(dumpFile);
1072     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1073   }
1074 
1075   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData |
1076     MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo | MiniDumpWithUnloadedModules);
1077 
1078   if (siginfo != NULL && context != NULL) {
1079     ep.ContextRecord = (PCONTEXT) context;
1080     ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1081 
1082     mei.ThreadId = GetCurrentThreadId();
1083     mei.ExceptionPointers = &ep;
1084     pmei = &mei;
1085   } else {
1086     pmei = NULL;
1087   }
1088 
1089   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1090   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1091   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1092       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1093     jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1094   }
1095   CloseHandle(dumpFile);
1096   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1097 }
1098 
1099 // Die immediately, no exit hook, no abort hook, no cleanup.
1100 void os::die() {
1101   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1102 }
1103 
1104 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1105 //  * dirent_md.c       1.15 00/02/02
1106 //
1107 // The declarations for DIR and struct dirent are in jvm_win32.h.
1108 
1109 // Caller must have already run dirname through JVM_NativePath, which removes
1110 // duplicate slashes and converts all instances of '/' into '\\'.
1111 
1112 DIR * os::opendir(const char *dirname) {
1113   assert(dirname != NULL, "just checking");   // hotspot change
1114   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1115   DWORD fattr;                                // hotspot change
1116   char alt_dirname[4] = { 0, 0, 0, 0 };
1117 
1118   if (dirp == 0) {
1119     errno = ENOMEM;
1120     return 0;
1121   }
1122 
1123   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1124   // as a directory in FindFirstFile().  We detect this case here and
1125   // prepend the current drive name.
1126   //
1127   if (dirname[1] == '\0' && dirname[0] == '\\') {
1128     alt_dirname[0] = _getdrive() + 'A' - 1;
1129     alt_dirname[1] = ':';
1130     alt_dirname[2] = '\\';
1131     alt_dirname[3] = '\0';
1132     dirname = alt_dirname;
1133   }
1134 
1135   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1136   if (dirp->path == 0) {
1137     free(dirp);
1138     errno = ENOMEM;
1139     return 0;
1140   }
1141   strcpy(dirp->path, dirname);
1142 
1143   fattr = GetFileAttributes(dirp->path);
1144   if (fattr == 0xffffffff) {
1145     free(dirp->path);
1146     free(dirp);
1147     errno = ENOENT;
1148     return 0;
1149   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1150     free(dirp->path);
1151     free(dirp);
1152     errno = ENOTDIR;
1153     return 0;
1154   }
1155 
1156   // Append "*.*", or possibly "\\*.*", to path
1157   if (dirp->path[1] == ':' &&
1158       (dirp->path[2] == '\0' ||
1159       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1160     // No '\\' needed for cases like "Z:" or "Z:\"
1161     strcat(dirp->path, "*.*");
1162   } else {
1163     strcat(dirp->path, "\\*.*");
1164   }
1165 
1166   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1167   if (dirp->handle == INVALID_HANDLE_VALUE) {
1168     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1169       free(dirp->path);
1170       free(dirp);
1171       errno = EACCES;
1172       return 0;
1173     }
1174   }
1175   return dirp;
1176 }
1177 
1178 // parameter dbuf unused on Windows
1179 struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1180   assert(dirp != NULL, "just checking");      // hotspot change
1181   if (dirp->handle == INVALID_HANDLE_VALUE) {
1182     return 0;
1183   }
1184 
1185   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1186 
1187   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1188     if (GetLastError() == ERROR_INVALID_HANDLE) {
1189       errno = EBADF;
1190       return 0;
1191     }
1192     FindClose(dirp->handle);
1193     dirp->handle = INVALID_HANDLE_VALUE;
1194   }
1195 
1196   return &dirp->dirent;
1197 }
1198 
1199 int os::closedir(DIR *dirp) {
1200   assert(dirp != NULL, "just checking");      // hotspot change
1201   if (dirp->handle != INVALID_HANDLE_VALUE) {
1202     if (!FindClose(dirp->handle)) {
1203       errno = EBADF;
1204       return -1;
1205     }
1206     dirp->handle = INVALID_HANDLE_VALUE;
1207   }
1208   free(dirp->path);
1209   free(dirp);
1210   return 0;
1211 }
1212 
1213 // This must be hard coded because it's the system's temporary
1214 // directory not the java application's temp directory, ala java.io.tmpdir.
1215 const char* os::get_temp_directory() {
1216   static char path_buf[MAX_PATH];
1217   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1218     return path_buf;
1219   } else {
1220     path_buf[0] = '\0';
1221     return path_buf;
1222   }
1223 }
1224 
1225 static bool file_exists(const char* filename) {
1226   if (filename == NULL || strlen(filename) == 0) {
1227     return false;
1228   }
1229   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1230 }
1231 
1232 bool os::dll_build_name(char *buffer, size_t buflen,
1233                         const char* pname, const char* fname) {
1234   bool retval = false;
1235   const size_t pnamelen = pname ? strlen(pname) : 0;
1236   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1237 
1238   // Return error on buffer overflow.
1239   if (pnamelen + strlen(fname) + 10 > buflen) {
1240     return retval;
1241   }
1242 
1243   if (pnamelen == 0) {
1244     jio_snprintf(buffer, buflen, "%s.dll", fname);
1245     retval = true;
1246   } else if (c == ':' || c == '\\') {
1247     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1248     retval = true;
1249   } else if (strchr(pname, *os::path_separator()) != NULL) {
1250     int n;
1251     char** pelements = split_path(pname, &n);
1252     if (pelements == NULL) {
1253       return false;
1254     }
1255     for (int i = 0; i < n; i++) {
1256       char* path = pelements[i];
1257       // Really shouldn't be NULL, but check can't hurt
1258       size_t plen = (path == NULL) ? 0 : strlen(path);
1259       if (plen == 0) {
1260         continue; // skip the empty path values
1261       }
1262       const char lastchar = path[plen - 1];
1263       if (lastchar == ':' || lastchar == '\\') {
1264         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1265       } else {
1266         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1267       }
1268       if (file_exists(buffer)) {
1269         retval = true;
1270         break;
1271       }
1272     }
1273     // release the storage
1274     for (int i = 0; i < n; i++) {
1275       if (pelements[i] != NULL) {
1276         FREE_C_HEAP_ARRAY(char, pelements[i]);
1277       }
1278     }
1279     if (pelements != NULL) {
1280       FREE_C_HEAP_ARRAY(char*, pelements);
1281     }
1282   } else {
1283     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1284     retval = true;
1285   }
1286   return retval;
1287 }
1288 
1289 // Needs to be in os specific directory because windows requires another
1290 // header file <direct.h>
1291 const char* os::get_current_directory(char *buf, size_t buflen) {
1292   int n = static_cast<int>(buflen);
1293   if (buflen > INT_MAX)  n = INT_MAX;
1294   return _getcwd(buf, n);
1295 }
1296 
1297 //-----------------------------------------------------------
1298 // Helper functions for fatal error handler
1299 #ifdef _WIN64
1300 // Helper routine which returns true if address in
1301 // within the NTDLL address space.
1302 //
1303 static bool _addr_in_ntdll(address addr) {
1304   HMODULE hmod;
1305   MODULEINFO minfo;
1306 
1307   hmod = GetModuleHandle("NTDLL.DLL");
1308   if (hmod == NULL) return false;
1309   if (!GetModuleInformation(GetCurrentProcess(), hmod,
1310                                           &minfo, sizeof(MODULEINFO))) {
1311     return false;
1312   }
1313 
1314   if ((addr >= minfo.lpBaseOfDll) &&
1315       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1316     return true;
1317   } else {
1318     return false;
1319   }
1320 }
1321 #endif
1322 
1323 struct _modinfo {
1324   address addr;
1325   char*   full_path;   // point to a char buffer
1326   int     buflen;      // size of the buffer
1327   address base_addr;
1328 };
1329 
1330 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1331                                   address top_address, void * param) {
1332   struct _modinfo *pmod = (struct _modinfo *)param;
1333   if (!pmod) return -1;
1334 
1335   if (base_addr   <= pmod->addr &&
1336       top_address > pmod->addr) {
1337     // if a buffer is provided, copy path name to the buffer
1338     if (pmod->full_path) {
1339       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1340     }
1341     pmod->base_addr = base_addr;
1342     return 1;
1343   }
1344   return 0;
1345 }
1346 
1347 bool os::dll_address_to_library_name(address addr, char* buf,
1348                                      int buflen, int* offset) {
1349   // buf is not optional, but offset is optional
1350   assert(buf != NULL, "sanity check");
1351 
1352 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1353 //       return the full path to the DLL file, sometimes it returns path
1354 //       to the corresponding PDB file (debug info); sometimes it only
1355 //       returns partial path, which makes life painful.
1356 
1357   struct _modinfo mi;
1358   mi.addr      = addr;
1359   mi.full_path = buf;
1360   mi.buflen    = buflen;
1361   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1362     // buf already contains path name
1363     if (offset) *offset = addr - mi.base_addr;
1364     return true;
1365   }
1366 
1367   buf[0] = '\0';
1368   if (offset) *offset = -1;
1369   return false;
1370 }
1371 
1372 bool os::dll_address_to_function_name(address addr, char *buf,
1373                                       int buflen, int *offset,
1374                                       bool demangle) {
1375   // buf is not optional, but offset is optional
1376   assert(buf != NULL, "sanity check");
1377 
1378   if (Decoder::decode(addr, buf, buflen, offset, demangle)) {
1379     return true;
1380   }
1381   if (offset != NULL)  *offset  = -1;
1382   buf[0] = '\0';
1383   return false;
1384 }
1385 
1386 // save the start and end address of jvm.dll into param[0] and param[1]
1387 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1388                            address top_address, void * param) {
1389   if (!param) return -1;
1390 
1391   if (base_addr   <= (address)_locate_jvm_dll &&
1392       top_address > (address)_locate_jvm_dll) {
1393     ((address*)param)[0] = base_addr;
1394     ((address*)param)[1] = top_address;
1395     return 1;
1396   }
1397   return 0;
1398 }
1399 
1400 address vm_lib_location[2];    // start and end address of jvm.dll
1401 
1402 // check if addr is inside jvm.dll
1403 bool os::address_is_in_vm(address addr) {
1404   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1405     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1406       assert(false, "Can't find jvm module.");
1407       return false;
1408     }
1409   }
1410 
1411   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1412 }
1413 
1414 // print module info; param is outputStream*
1415 static int _print_module(const char* fname, address base_address,
1416                          address top_address, void* param) {
1417   if (!param) return -1;
1418 
1419   outputStream* st = (outputStream*)param;
1420 
1421   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1422   return 0;
1423 }
1424 
1425 // Loads .dll/.so and
1426 // in case of error it checks if .dll/.so was built for the
1427 // same architecture as Hotspot is running on
1428 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1429   void * result = LoadLibrary(name);
1430   if (result != NULL) {
1431     return result;
1432   }
1433 
1434   DWORD errcode = GetLastError();
1435   if (errcode == ERROR_MOD_NOT_FOUND) {
1436     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1437     ebuf[ebuflen - 1] = '\0';
1438     return NULL;
1439   }
1440 
1441   // Parsing dll below
1442   // If we can read dll-info and find that dll was built
1443   // for an architecture other than Hotspot is running in
1444   // - then print to buffer "DLL was built for a different architecture"
1445   // else call os::lasterror to obtain system error message
1446 
1447   // Read system error message into ebuf
1448   // It may or may not be overwritten below (in the for loop and just above)
1449   lasterror(ebuf, (size_t) ebuflen);
1450   ebuf[ebuflen - 1] = '\0';
1451   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1452   if (fd < 0) {
1453     return NULL;
1454   }
1455 
1456   uint32_t signature_offset;
1457   uint16_t lib_arch = 0;
1458   bool failed_to_get_lib_arch =
1459     ( // Go to position 3c in the dll
1460      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1461      ||
1462      // Read location of signature
1463      (sizeof(signature_offset) !=
1464      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1465      ||
1466      // Go to COFF File Header in dll
1467      // that is located after "signature" (4 bytes long)
1468      (os::seek_to_file_offset(fd,
1469      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1470      ||
1471      // Read field that contains code of architecture
1472      // that dll was built for
1473      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1474     );
1475 
1476   ::close(fd);
1477   if (failed_to_get_lib_arch) {
1478     // file i/o error - report os::lasterror(...) msg
1479     return NULL;
1480   }
1481 
1482   typedef struct {
1483     uint16_t arch_code;
1484     char* arch_name;
1485   } arch_t;
1486 
1487   static const arch_t arch_array[] = {
1488     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1489     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1490     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1491   };
1492 #if   (defined _M_IA64)
1493   static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1494 #elif (defined _M_AMD64)
1495   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1496 #elif (defined _M_IX86)
1497   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1498 #else
1499   #error Method os::dll_load requires that one of following \
1500          is defined :_M_IA64,_M_AMD64 or _M_IX86
1501 #endif
1502 
1503 
1504   // Obtain a string for printf operation
1505   // lib_arch_str shall contain string what platform this .dll was built for
1506   // running_arch_str shall string contain what platform Hotspot was built for
1507   char *running_arch_str = NULL, *lib_arch_str = NULL;
1508   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1509     if (lib_arch == arch_array[i].arch_code) {
1510       lib_arch_str = arch_array[i].arch_name;
1511     }
1512     if (running_arch == arch_array[i].arch_code) {
1513       running_arch_str = arch_array[i].arch_name;
1514     }
1515   }
1516 
1517   assert(running_arch_str,
1518          "Didn't find running architecture code in arch_array");
1519 
1520   // If the architecture is right
1521   // but some other error took place - report os::lasterror(...) msg
1522   if (lib_arch == running_arch) {
1523     return NULL;
1524   }
1525 
1526   if (lib_arch_str != NULL) {
1527     ::_snprintf(ebuf, ebuflen - 1,
1528                 "Can't load %s-bit .dll on a %s-bit platform",
1529                 lib_arch_str, running_arch_str);
1530   } else {
1531     // don't know what architecture this dll was build for
1532     ::_snprintf(ebuf, ebuflen - 1,
1533                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1534                 lib_arch, running_arch_str);
1535   }
1536 
1537   return NULL;
1538 }
1539 
1540 void os::print_dll_info(outputStream *st) {
1541   st->print_cr("Dynamic libraries:");
1542   get_loaded_modules_info(_print_module, (void *)st);
1543 }
1544 
1545 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1546   HANDLE   hProcess;
1547 
1548 # define MAX_NUM_MODULES 128
1549   HMODULE     modules[MAX_NUM_MODULES];
1550   static char filename[MAX_PATH];
1551   int         result = 0;
1552 
1553   int pid = os::current_process_id();
1554   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1555                          FALSE, pid);
1556   if (hProcess == NULL) return 0;
1557 
1558   DWORD size_needed;
1559   if (!EnumProcessModules(hProcess, modules, sizeof(modules), &size_needed)) {
1560     CloseHandle(hProcess);
1561     return 0;
1562   }
1563 
1564   // number of modules that are currently loaded
1565   int num_modules = size_needed / sizeof(HMODULE);
1566 
1567   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1568     // Get Full pathname:
1569     if (!GetModuleFileNameEx(hProcess, modules[i], filename, sizeof(filename))) {
1570       filename[0] = '\0';
1571     }
1572 
1573     MODULEINFO modinfo;
1574     if (!GetModuleInformation(hProcess, modules[i], &modinfo, sizeof(modinfo))) {
1575       modinfo.lpBaseOfDll = NULL;
1576       modinfo.SizeOfImage = 0;
1577     }
1578 
1579     // Invoke callback function
1580     result = callback(filename, (address)modinfo.lpBaseOfDll,
1581                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1582     if (result) break;
1583   }
1584 
1585   CloseHandle(hProcess);
1586   return result;
1587 }
1588 
1589 bool os::get_host_name(char* buf, size_t buflen) {
1590   DWORD size = (DWORD)buflen;
1591   return (GetComputerNameEx(ComputerNameDnsHostname, buf, &size) == TRUE);
1592 }
1593 
1594 void os::get_summary_os_info(char* buf, size_t buflen) {
1595   stringStream sst(buf, buflen);
1596   os::win32::print_windows_version(&sst);
1597   // chop off newline character
1598   char* nl = strchr(buf, '\n');
1599   if (nl != NULL) *nl = '\0';
1600 }
1601 
1602 int os::log_vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
1603   int ret = vsnprintf(buf, len, fmt, args);
1604   // Get the correct buffer size if buf is too small
1605   if (ret < 0) {
1606     return _vscprintf(fmt, args);
1607   }
1608   return ret;
1609 }
1610 
1611 static inline time_t get_mtime(const char* filename) {
1612   struct stat st;
1613   int ret = os::stat(filename, &st);
1614   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
1615   return st.st_mtime;
1616 }
1617 
1618 int os::compare_file_modified_times(const char* file1, const char* file2) {
1619   time_t t1 = get_mtime(file1);
1620   time_t t2 = get_mtime(file2);
1621   return t1 - t2;
1622 }
1623 
1624 void os::print_os_info_brief(outputStream* st) {
1625   os::print_os_info(st);
1626 }
1627 
1628 void os::print_os_info(outputStream* st) {
1629 #ifdef ASSERT
1630   char buffer[1024];
1631   st->print("HostName: ");
1632   if (get_host_name(buffer, sizeof(buffer))) {
1633     st->print("%s ", buffer);
1634   } else {
1635     st->print("N/A ");
1636   }
1637 #endif
1638   st->print("OS:");
1639   os::win32::print_windows_version(st);
1640 }
1641 
1642 void os::win32::print_windows_version(outputStream* st) {
1643   OSVERSIONINFOEX osvi;
1644   VS_FIXEDFILEINFO *file_info;
1645   TCHAR kernel32_path[MAX_PATH];
1646   UINT len, ret;
1647 
1648   // Use the GetVersionEx information to see if we're on a server or
1649   // workstation edition of Windows. Starting with Windows 8.1 we can't
1650   // trust the OS version information returned by this API.
1651   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1652   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1653   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1654     st->print_cr("Call to GetVersionEx failed");
1655     return;
1656   }
1657   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1658 
1659   // Get the full path to \Windows\System32\kernel32.dll and use that for
1660   // determining what version of Windows we're running on.
1661   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1662   ret = GetSystemDirectory(kernel32_path, len);
1663   if (ret == 0 || ret > len) {
1664     st->print_cr("Call to GetSystemDirectory failed");
1665     return;
1666   }
1667   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1668 
1669   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1670   if (version_size == 0) {
1671     st->print_cr("Call to GetFileVersionInfoSize failed");
1672     return;
1673   }
1674 
1675   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1676   if (version_info == NULL) {
1677     st->print_cr("Failed to allocate version_info");
1678     return;
1679   }
1680 
1681   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1682     os::free(version_info);
1683     st->print_cr("Call to GetFileVersionInfo failed");
1684     return;
1685   }
1686 
1687   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1688     os::free(version_info);
1689     st->print_cr("Call to VerQueryValue failed");
1690     return;
1691   }
1692 
1693   int major_version = HIWORD(file_info->dwProductVersionMS);
1694   int minor_version = LOWORD(file_info->dwProductVersionMS);
1695   int build_number = HIWORD(file_info->dwProductVersionLS);
1696   int build_minor = LOWORD(file_info->dwProductVersionLS);
1697   int os_vers = major_version * 1000 + minor_version;
1698   os::free(version_info);
1699 
1700   st->print(" Windows ");
1701   switch (os_vers) {
1702 
1703   case 6000:
1704     if (is_workstation) {
1705       st->print("Vista");
1706     } else {
1707       st->print("Server 2008");
1708     }
1709     break;
1710 
1711   case 6001:
1712     if (is_workstation) {
1713       st->print("7");
1714     } else {
1715       st->print("Server 2008 R2");
1716     }
1717     break;
1718 
1719   case 6002:
1720     if (is_workstation) {
1721       st->print("8");
1722     } else {
1723       st->print("Server 2012");
1724     }
1725     break;
1726 
1727   case 6003:
1728     if (is_workstation) {
1729       st->print("8.1");
1730     } else {
1731       st->print("Server 2012 R2");
1732     }
1733     break;
1734 
1735   case 10000:
1736     if (is_workstation) {
1737       st->print("10");
1738     } else {
1739       st->print("Server 2016");
1740     }
1741     break;
1742 
1743   default:
1744     // Unrecognized windows, print out its major and minor versions
1745     st->print("%d.%d", major_version, minor_version);
1746     break;
1747   }
1748 
1749   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1750   // find out whether we are running on 64 bit processor or not
1751   SYSTEM_INFO si;
1752   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1753   GetNativeSystemInfo(&si);
1754   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1755     st->print(" , 64 bit");
1756   }
1757 
1758   st->print(" Build %d", build_number);
1759   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1760   st->cr();
1761 }
1762 
1763 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1764   // Nothing to do for now.
1765 }
1766 
1767 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1768   HKEY key;
1769   DWORD status = RegOpenKey(HKEY_LOCAL_MACHINE,
1770                "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", &key);
1771   if (status == ERROR_SUCCESS) {
1772     DWORD size = (DWORD)buflen;
1773     status = RegQueryValueEx(key, "ProcessorNameString", NULL, NULL, (byte*)buf, &size);
1774     if (status != ERROR_SUCCESS) {
1775         strncpy(buf, "## __CPU__", buflen);
1776     }
1777     RegCloseKey(key);
1778   } else {
1779     // Put generic cpu info to return
1780     strncpy(buf, "## __CPU__", buflen);
1781   }
1782 }
1783 
1784 void os::print_memory_info(outputStream* st) {
1785   st->print("Memory:");
1786   st->print(" %dk page", os::vm_page_size()>>10);
1787 
1788   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1789   // value if total memory is larger than 4GB
1790   MEMORYSTATUSEX ms;
1791   ms.dwLength = sizeof(ms);
1792   GlobalMemoryStatusEx(&ms);
1793 
1794   st->print(", physical %uk", os::physical_memory() >> 10);
1795   st->print("(%uk free)", os::available_memory() >> 10);
1796 
1797   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1798   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1799   st->cr();
1800 }
1801 
1802 void os::print_siginfo(outputStream *st, const void* siginfo) {
1803   const EXCEPTION_RECORD* const er = (EXCEPTION_RECORD*)siginfo;
1804   st->print("siginfo:");
1805 
1806   char tmp[64];
1807   if (os::exception_name(er->ExceptionCode, tmp, sizeof(tmp)) == NULL) {
1808     strcpy(tmp, "EXCEPTION_??");
1809   }
1810   st->print(" %s (0x%x)", tmp, er->ExceptionCode);
1811 
1812   if ((er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION ||
1813        er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR) &&
1814        er->NumberParameters >= 2) {
1815     switch (er->ExceptionInformation[0]) {
1816     case 0: st->print(", reading address"); break;
1817     case 1: st->print(", writing address"); break;
1818     case 8: st->print(", data execution prevention violation at address"); break;
1819     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1820                        er->ExceptionInformation[0]);
1821     }
1822     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1823   } else {
1824     int num = er->NumberParameters;
1825     if (num > 0) {
1826       st->print(", ExceptionInformation=");
1827       for (int i = 0; i < num; i++) {
1828         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1829       }
1830     }
1831   }
1832   st->cr();
1833 }
1834 
1835 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1836   // do nothing
1837 }
1838 
1839 static char saved_jvm_path[MAX_PATH] = {0};
1840 
1841 // Find the full path to the current module, jvm.dll
1842 void os::jvm_path(char *buf, jint buflen) {
1843   // Error checking.
1844   if (buflen < MAX_PATH) {
1845     assert(false, "must use a large-enough buffer");
1846     buf[0] = '\0';
1847     return;
1848   }
1849   // Lazy resolve the path to current module.
1850   if (saved_jvm_path[0] != 0) {
1851     strcpy(buf, saved_jvm_path);
1852     return;
1853   }
1854 
1855   buf[0] = '\0';
1856   if (Arguments::sun_java_launcher_is_altjvm()) {
1857     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1858     // for a JAVA_HOME environment variable and fix up the path so it
1859     // looks like jvm.dll is installed there (append a fake suffix
1860     // hotspot/jvm.dll).
1861     char* java_home_var = ::getenv("JAVA_HOME");
1862     if (java_home_var != NULL && java_home_var[0] != 0 &&
1863         strlen(java_home_var) < (size_t)buflen) {
1864       strncpy(buf, java_home_var, buflen);
1865 
1866       // determine if this is a legacy image or modules image
1867       // modules image doesn't have "jre" subdirectory
1868       size_t len = strlen(buf);
1869       char* jrebin_p = buf + len;
1870       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1871       if (0 != _access(buf, 0)) {
1872         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1873       }
1874       len = strlen(buf);
1875       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1876     }
1877   }
1878 
1879   if (buf[0] == '\0') {
1880     GetModuleFileName(vm_lib_handle, buf, buflen);
1881   }
1882   strncpy(saved_jvm_path, buf, MAX_PATH);
1883   saved_jvm_path[MAX_PATH - 1] = '\0';
1884 }
1885 
1886 
1887 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1888 #ifndef _WIN64
1889   st->print("_");
1890 #endif
1891 }
1892 
1893 
1894 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1895 #ifndef _WIN64
1896   st->print("@%d", args_size  * sizeof(int));
1897 #endif
1898 }
1899 
1900 // This method is a copy of JDK's sysGetLastErrorString
1901 // from src/windows/hpi/src/system_md.c
1902 
1903 size_t os::lasterror(char* buf, size_t len) {
1904   DWORD errval;
1905 
1906   if ((errval = GetLastError()) != 0) {
1907     // DOS error
1908     size_t n = (size_t)FormatMessage(
1909                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1910                                      NULL,
1911                                      errval,
1912                                      0,
1913                                      buf,
1914                                      (DWORD)len,
1915                                      NULL);
1916     if (n > 3) {
1917       // Drop final '.', CR, LF
1918       if (buf[n - 1] == '\n') n--;
1919       if (buf[n - 1] == '\r') n--;
1920       if (buf[n - 1] == '.') n--;
1921       buf[n] = '\0';
1922     }
1923     return n;
1924   }
1925 
1926   if (errno != 0) {
1927     // C runtime error that has no corresponding DOS error code
1928     const char* s = os::strerror(errno);
1929     size_t n = strlen(s);
1930     if (n >= len) n = len - 1;
1931     strncpy(buf, s, n);
1932     buf[n] = '\0';
1933     return n;
1934   }
1935 
1936   return 0;
1937 }
1938 
1939 int os::get_last_error() {
1940   DWORD error = GetLastError();
1941   if (error == 0) {
1942     error = errno;
1943   }
1944   return (int)error;
1945 }
1946 
1947 WindowsSemaphore::WindowsSemaphore(uint value) {
1948   _semaphore = ::CreateSemaphore(NULL, value, LONG_MAX, NULL);
1949 
1950   guarantee(_semaphore != NULL, "CreateSemaphore failed with error code: %lu", GetLastError());
1951 }
1952 
1953 WindowsSemaphore::~WindowsSemaphore() {
1954   ::CloseHandle(_semaphore);
1955 }
1956 
1957 void WindowsSemaphore::signal(uint count) {
1958   if (count > 0) {
1959     BOOL ret = ::ReleaseSemaphore(_semaphore, count, NULL);
1960 
1961     assert(ret != 0, "ReleaseSemaphore failed with error code: %lu", GetLastError());
1962   }
1963 }
1964 
1965 void WindowsSemaphore::wait() {
1966   DWORD ret = ::WaitForSingleObject(_semaphore, INFINITE);
1967   assert(ret != WAIT_FAILED,   "WaitForSingleObject failed with error code: %lu", GetLastError());
1968   assert(ret == WAIT_OBJECT_0, "WaitForSingleObject failed with return value: %lu", ret);
1969 }
1970 
1971 // sun.misc.Signal
1972 // NOTE that this is a workaround for an apparent kernel bug where if
1973 // a signal handler for SIGBREAK is installed then that signal handler
1974 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1975 // See bug 4416763.
1976 static void (*sigbreakHandler)(int) = NULL;
1977 
1978 static void UserHandler(int sig, void *siginfo, void *context) {
1979   os::signal_notify(sig);
1980   // We need to reinstate the signal handler each time...
1981   os::signal(sig, (void*)UserHandler);
1982 }
1983 
1984 void* os::user_handler() {
1985   return (void*) UserHandler;
1986 }
1987 
1988 void* os::signal(int signal_number, void* handler) {
1989   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1990     void (*oldHandler)(int) = sigbreakHandler;
1991     sigbreakHandler = (void (*)(int)) handler;
1992     return (void*) oldHandler;
1993   } else {
1994     return (void*)::signal(signal_number, (void (*)(int))handler);
1995   }
1996 }
1997 
1998 void os::signal_raise(int signal_number) {
1999   raise(signal_number);
2000 }
2001 
2002 // The Win32 C runtime library maps all console control events other than ^C
2003 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
2004 // logoff, and shutdown events.  We therefore install our own console handler
2005 // that raises SIGTERM for the latter cases.
2006 //
2007 static BOOL WINAPI consoleHandler(DWORD event) {
2008   switch (event) {
2009   case CTRL_C_EVENT:
2010     if (is_error_reported()) {
2011       // Ctrl-C is pressed during error reporting, likely because the error
2012       // handler fails to abort. Let VM die immediately.
2013       os::die();
2014     }
2015 
2016     os::signal_raise(SIGINT);
2017     return TRUE;
2018     break;
2019   case CTRL_BREAK_EVENT:
2020     if (sigbreakHandler != NULL) {
2021       (*sigbreakHandler)(SIGBREAK);
2022     }
2023     return TRUE;
2024     break;
2025   case CTRL_LOGOFF_EVENT: {
2026     // Don't terminate JVM if it is running in a non-interactive session,
2027     // such as a service process.
2028     USEROBJECTFLAGS flags;
2029     HANDLE handle = GetProcessWindowStation();
2030     if (handle != NULL &&
2031         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
2032         sizeof(USEROBJECTFLAGS), NULL)) {
2033       // If it is a non-interactive session, let next handler to deal
2034       // with it.
2035       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
2036         return FALSE;
2037       }
2038     }
2039   }
2040   case CTRL_CLOSE_EVENT:
2041   case CTRL_SHUTDOWN_EVENT:
2042     os::signal_raise(SIGTERM);
2043     return TRUE;
2044     break;
2045   default:
2046     break;
2047   }
2048   return FALSE;
2049 }
2050 
2051 // The following code is moved from os.cpp for making this
2052 // code platform specific, which it is by its very nature.
2053 
2054 // Return maximum OS signal used + 1 for internal use only
2055 // Used as exit signal for signal_thread
2056 int os::sigexitnum_pd() {
2057   return NSIG;
2058 }
2059 
2060 // a counter for each possible signal value, including signal_thread exit signal
2061 static volatile jint pending_signals[NSIG+1] = { 0 };
2062 static HANDLE sig_sem = NULL;
2063 
2064 void os::signal_init_pd() {
2065   // Initialize signal structures
2066   memset((void*)pending_signals, 0, sizeof(pending_signals));
2067 
2068   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2069 
2070   // Programs embedding the VM do not want it to attempt to receive
2071   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2072   // shutdown hooks mechanism introduced in 1.3.  For example, when
2073   // the VM is run as part of a Windows NT service (i.e., a servlet
2074   // engine in a web server), the correct behavior is for any console
2075   // control handler to return FALSE, not TRUE, because the OS's
2076   // "final" handler for such events allows the process to continue if
2077   // it is a service (while terminating it if it is not a service).
2078   // To make this behavior uniform and the mechanism simpler, we
2079   // completely disable the VM's usage of these console events if -Xrs
2080   // (=ReduceSignalUsage) is specified.  This means, for example, that
2081   // the CTRL-BREAK thread dump mechanism is also disabled in this
2082   // case.  See bugs 4323062, 4345157, and related bugs.
2083 
2084   if (!ReduceSignalUsage) {
2085     // Add a CTRL-C handler
2086     SetConsoleCtrlHandler(consoleHandler, TRUE);
2087   }
2088 }
2089 
2090 void os::signal_notify(int signal_number) {
2091   BOOL ret;
2092   if (sig_sem != NULL) {
2093     Atomic::inc(&pending_signals[signal_number]);
2094     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2095     assert(ret != 0, "ReleaseSemaphore() failed");
2096   }
2097 }
2098 
2099 static int check_pending_signals(bool wait_for_signal) {
2100   DWORD ret;
2101   while (true) {
2102     for (int i = 0; i < NSIG + 1; i++) {
2103       jint n = pending_signals[i];
2104       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2105         return i;
2106       }
2107     }
2108     if (!wait_for_signal) {
2109       return -1;
2110     }
2111 
2112     JavaThread *thread = JavaThread::current();
2113 
2114     ThreadBlockInVM tbivm(thread);
2115 
2116     bool threadIsSuspended;
2117     do {
2118       thread->set_suspend_equivalent();
2119       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2120       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2121       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2122 
2123       // were we externally suspended while we were waiting?
2124       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2125       if (threadIsSuspended) {
2126         // The semaphore has been incremented, but while we were waiting
2127         // another thread suspended us. We don't want to continue running
2128         // while suspended because that would surprise the thread that
2129         // suspended us.
2130         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2131         assert(ret != 0, "ReleaseSemaphore() failed");
2132 
2133         thread->java_suspend_self();
2134       }
2135     } while (threadIsSuspended);
2136   }
2137 }
2138 
2139 int os::signal_lookup() {
2140   return check_pending_signals(false);
2141 }
2142 
2143 int os::signal_wait() {
2144   return check_pending_signals(true);
2145 }
2146 
2147 // Implicit OS exception handling
2148 
2149 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2150                       address handler) {
2151     JavaThread* thread = (JavaThread*) Thread::current_or_null();
2152   // Save pc in thread
2153 #ifdef _M_IA64
2154   // Do not blow up if no thread info available.
2155   if (thread) {
2156     // Saving PRECISE pc (with slot information) in thread.
2157     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2158     // Convert precise PC into "Unix" format
2159     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2160     thread->set_saved_exception_pc((address)precise_pc);
2161   }
2162   // Set pc to handler
2163   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2164   // Clear out psr.ri (= Restart Instruction) in order to continue
2165   // at the beginning of the target bundle.
2166   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2167   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2168 #else
2169   #ifdef _M_AMD64
2170   // Do not blow up if no thread info available.
2171   if (thread) {
2172     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2173   }
2174   // Set pc to handler
2175   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2176   #else
2177   // Do not blow up if no thread info available.
2178   if (thread) {
2179     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2180   }
2181   // Set pc to handler
2182   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2183   #endif
2184 #endif
2185 
2186   // Continue the execution
2187   return EXCEPTION_CONTINUE_EXECUTION;
2188 }
2189 
2190 
2191 // Used for PostMortemDump
2192 extern "C" void safepoints();
2193 extern "C" void find(int x);
2194 extern "C" void events();
2195 
2196 // According to Windows API documentation, an illegal instruction sequence should generate
2197 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2198 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2199 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2200 
2201 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2202 
2203 // From "Execution Protection in the Windows Operating System" draft 0.35
2204 // Once a system header becomes available, the "real" define should be
2205 // included or copied here.
2206 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2207 
2208 // Handle NAT Bit consumption on IA64.
2209 #ifdef _M_IA64
2210   #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2211 #endif
2212 
2213 // Windows Vista/2008 heap corruption check
2214 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2215 
2216 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2217 // C++ compiler contain this error code. Because this is a compiler-generated
2218 // error, the code is not listed in the Win32 API header files.
2219 // The code is actually a cryptic mnemonic device, with the initial "E"
2220 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2221 // ASCII values of "msc".
2222 
2223 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2224 
2225 #define def_excpt(val) { #val, (val) }
2226 
2227 static const struct { char* name; uint number; } exceptlabels[] = {
2228     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2229     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2230     def_excpt(EXCEPTION_BREAKPOINT),
2231     def_excpt(EXCEPTION_SINGLE_STEP),
2232     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2233     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2234     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2235     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2236     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2237     def_excpt(EXCEPTION_FLT_OVERFLOW),
2238     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2239     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2240     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2241     def_excpt(EXCEPTION_INT_OVERFLOW),
2242     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2243     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2244     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2245     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2246     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2247     def_excpt(EXCEPTION_STACK_OVERFLOW),
2248     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2249     def_excpt(EXCEPTION_GUARD_PAGE),
2250     def_excpt(EXCEPTION_INVALID_HANDLE),
2251     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2252     def_excpt(EXCEPTION_HEAP_CORRUPTION)
2253 #ifdef _M_IA64
2254     , def_excpt(EXCEPTION_REG_NAT_CONSUMPTION)
2255 #endif
2256 };
2257 
2258 #undef def_excpt
2259 
2260 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2261   uint code = static_cast<uint>(exception_code);
2262   for (uint i = 0; i < ARRAY_SIZE(exceptlabels); ++i) {
2263     if (exceptlabels[i].number == code) {
2264       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2265       return buf;
2266     }
2267   }
2268 
2269   return NULL;
2270 }
2271 
2272 //-----------------------------------------------------------------------------
2273 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2274   // handle exception caused by idiv; should only happen for -MinInt/-1
2275   // (division by zero is handled explicitly)
2276 #ifdef _M_IA64
2277   assert(0, "Fix Handle_IDiv_Exception");
2278 #else
2279   #ifdef  _M_AMD64
2280   PCONTEXT ctx = exceptionInfo->ContextRecord;
2281   address pc = (address)ctx->Rip;
2282   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && pc[1] == 0xF7 || pc[0] == 0xF7, "not an idiv opcode");
2283   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && (pc[2] & ~0x7) == 0xF8 || (pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2284   if (pc[0] == 0xF7) {
2285     // set correct result values and continue after idiv instruction
2286     ctx->Rip = (DWORD64)pc + 2;        // idiv reg, reg  is 2 bytes
2287   } else {
2288     ctx->Rip = (DWORD64)pc + 3;        // REX idiv reg, reg  is 3 bytes
2289   }
2290   // Do not set ctx->Rax as it already contains the correct value (either 32 or 64 bit, depending on the operation)
2291   // this is the case because the exception only happens for -MinValue/-1 and -MinValue is always in rax because of the
2292   // idiv opcode (0xF7).
2293   ctx->Rdx = (DWORD)0;             // remainder
2294   // Continue the execution
2295   #else
2296   PCONTEXT ctx = exceptionInfo->ContextRecord;
2297   address pc = (address)ctx->Eip;
2298   assert(pc[0] == 0xF7, "not an idiv opcode");
2299   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2300   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2301   // set correct result values and continue after idiv instruction
2302   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2303   ctx->Eax = (DWORD)min_jint;      // result
2304   ctx->Edx = (DWORD)0;             // remainder
2305   // Continue the execution
2306   #endif
2307 #endif
2308   return EXCEPTION_CONTINUE_EXECUTION;
2309 }
2310 
2311 //-----------------------------------------------------------------------------
2312 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2313   PCONTEXT ctx = exceptionInfo->ContextRecord;
2314 #ifndef  _WIN64
2315   // handle exception caused by native method modifying control word
2316   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2317 
2318   switch (exception_code) {
2319   case EXCEPTION_FLT_DENORMAL_OPERAND:
2320   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2321   case EXCEPTION_FLT_INEXACT_RESULT:
2322   case EXCEPTION_FLT_INVALID_OPERATION:
2323   case EXCEPTION_FLT_OVERFLOW:
2324   case EXCEPTION_FLT_STACK_CHECK:
2325   case EXCEPTION_FLT_UNDERFLOW:
2326     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2327     if (fp_control_word != ctx->FloatSave.ControlWord) {
2328       // Restore FPCW and mask out FLT exceptions
2329       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2330       // Mask out pending FLT exceptions
2331       ctx->FloatSave.StatusWord &=  0xffffff00;
2332       return EXCEPTION_CONTINUE_EXECUTION;
2333     }
2334   }
2335 
2336   if (prev_uef_handler != NULL) {
2337     // We didn't handle this exception so pass it to the previous
2338     // UnhandledExceptionFilter.
2339     return (prev_uef_handler)(exceptionInfo);
2340   }
2341 #else // !_WIN64
2342   // On Windows, the mxcsr control bits are non-volatile across calls
2343   // See also CR 6192333
2344   //
2345   jint MxCsr = INITIAL_MXCSR;
2346   // we can't use StubRoutines::addr_mxcsr_std()
2347   // because in Win64 mxcsr is not saved there
2348   if (MxCsr != ctx->MxCsr) {
2349     ctx->MxCsr = MxCsr;
2350     return EXCEPTION_CONTINUE_EXECUTION;
2351   }
2352 #endif // !_WIN64
2353 
2354   return EXCEPTION_CONTINUE_SEARCH;
2355 }
2356 
2357 static inline void report_error(Thread* t, DWORD exception_code,
2358                                 address addr, void* siginfo, void* context) {
2359   VMError::report_and_die(t, exception_code, addr, siginfo, context);
2360 
2361   // If UseOsErrorReporting, this will return here and save the error file
2362   // somewhere where we can find it in the minidump.
2363 }
2364 
2365 bool os::win32::get_frame_at_stack_banging_point(JavaThread* thread,
2366         struct _EXCEPTION_POINTERS* exceptionInfo, address pc, frame* fr) {
2367   PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2368   address addr = (address) exceptionRecord->ExceptionInformation[1];
2369   if (Interpreter::contains(pc)) {
2370     *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2371     if (!fr->is_first_java_frame()) {
2372       assert(fr->safe_for_sender(thread), "Safety check");
2373       *fr = fr->java_sender();
2374     }
2375   } else {
2376     // more complex code with compiled code
2377     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
2378     CodeBlob* cb = CodeCache::find_blob(pc);
2379     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
2380       // Not sure where the pc points to, fallback to default
2381       // stack overflow handling
2382       return false;
2383     } else {
2384       *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2385       // in compiled code, the stack banging is performed just after the return pc
2386       // has been pushed on the stack
2387       *fr = frame(fr->sp() + 1, fr->fp(), (address)*(fr->sp()));
2388       if (!fr->is_java_frame()) {
2389         assert(fr->safe_for_sender(thread), "Safety check");
2390         *fr = fr->java_sender();
2391       }
2392     }
2393   }
2394   assert(fr->is_java_frame(), "Safety check");
2395   return true;
2396 }
2397 
2398 //-----------------------------------------------------------------------------
2399 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2400   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2401   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2402 #ifdef _M_IA64
2403   // On Itanium, we need the "precise pc", which has the slot number coded
2404   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2405   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2406   // Convert the pc to "Unix format", which has the slot number coded
2407   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2408   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2409   // information is saved in the Unix format.
2410   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2411 #else
2412   #ifdef _M_AMD64
2413   address pc = (address) exceptionInfo->ContextRecord->Rip;
2414   #else
2415   address pc = (address) exceptionInfo->ContextRecord->Eip;
2416   #endif
2417 #endif
2418   Thread* t = Thread::current_or_null_safe();
2419 
2420   // Handle SafeFetch32 and SafeFetchN exceptions.
2421   if (StubRoutines::is_safefetch_fault(pc)) {
2422     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2423   }
2424 
2425 #ifndef _WIN64
2426   // Execution protection violation - win32 running on AMD64 only
2427   // Handled first to avoid misdiagnosis as a "normal" access violation;
2428   // This is safe to do because we have a new/unique ExceptionInformation
2429   // code for this condition.
2430   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2431     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2432     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2433     address addr = (address) exceptionRecord->ExceptionInformation[1];
2434 
2435     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2436       int page_size = os::vm_page_size();
2437 
2438       // Make sure the pc and the faulting address are sane.
2439       //
2440       // If an instruction spans a page boundary, and the page containing
2441       // the beginning of the instruction is executable but the following
2442       // page is not, the pc and the faulting address might be slightly
2443       // different - we still want to unguard the 2nd page in this case.
2444       //
2445       // 15 bytes seems to be a (very) safe value for max instruction size.
2446       bool pc_is_near_addr =
2447         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2448       bool instr_spans_page_boundary =
2449         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2450                          (intptr_t) page_size) > 0);
2451 
2452       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2453         static volatile address last_addr =
2454           (address) os::non_memory_address_word();
2455 
2456         // In conservative mode, don't unguard unless the address is in the VM
2457         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2458             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2459 
2460           // Set memory to RWX and retry
2461           address page_start =
2462             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2463           bool res = os::protect_memory((char*) page_start, page_size,
2464                                         os::MEM_PROT_RWX);
2465 
2466           log_debug(os)("Execution protection violation "
2467                         "at " INTPTR_FORMAT
2468                         ", unguarding " INTPTR_FORMAT ": %s", p2i(addr),
2469                         p2i(page_start), (res ? "success" : os::strerror(errno)));
2470 
2471           // Set last_addr so if we fault again at the same address, we don't
2472           // end up in an endless loop.
2473           //
2474           // There are two potential complications here.  Two threads trapping
2475           // at the same address at the same time could cause one of the
2476           // threads to think it already unguarded, and abort the VM.  Likely
2477           // very rare.
2478           //
2479           // The other race involves two threads alternately trapping at
2480           // different addresses and failing to unguard the page, resulting in
2481           // an endless loop.  This condition is probably even more unlikely
2482           // than the first.
2483           //
2484           // Although both cases could be avoided by using locks or thread
2485           // local last_addr, these solutions are unnecessary complication:
2486           // this handler is a best-effort safety net, not a complete solution.
2487           // It is disabled by default and should only be used as a workaround
2488           // in case we missed any no-execute-unsafe VM code.
2489 
2490           last_addr = addr;
2491 
2492           return EXCEPTION_CONTINUE_EXECUTION;
2493         }
2494       }
2495 
2496       // Last unguard failed or not unguarding
2497       tty->print_raw_cr("Execution protection violation");
2498       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2499                    exceptionInfo->ContextRecord);
2500       return EXCEPTION_CONTINUE_SEARCH;
2501     }
2502   }
2503 #endif // _WIN64
2504 
2505   // Check to see if we caught the safepoint code in the
2506   // process of write protecting the memory serialization page.
2507   // It write enables the page immediately after protecting it
2508   // so just return.
2509   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2510     JavaThread* thread = (JavaThread*) t;
2511     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2512     address addr = (address) exceptionRecord->ExceptionInformation[1];
2513     if (os::is_memory_serialize_page(thread, addr)) {
2514       // Block current thread until the memory serialize page permission restored.
2515       os::block_on_serialize_page_trap();
2516       return EXCEPTION_CONTINUE_EXECUTION;
2517     }
2518   }
2519 
2520   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2521       VM_Version::is_cpuinfo_segv_addr(pc)) {
2522     // Verify that OS save/restore AVX registers.
2523     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2524   }
2525 
2526   if (t != NULL && t->is_Java_thread()) {
2527     JavaThread* thread = (JavaThread*) t;
2528     bool in_java = thread->thread_state() == _thread_in_Java;
2529 
2530     // Handle potential stack overflows up front.
2531     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2532 #ifdef _M_IA64
2533       // Use guard page for register stack.
2534       PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2535       address addr = (address) exceptionRecord->ExceptionInformation[1];
2536       // Check for a register stack overflow on Itanium
2537       if (thread->addr_inside_register_stack_red_zone(addr)) {
2538         // Fatal red zone violation happens if the Java program
2539         // catches a StackOverflow error and does so much processing
2540         // that it runs beyond the unprotected yellow guard zone. As
2541         // a result, we are out of here.
2542         fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2543       } else if(thread->addr_inside_register_stack(addr)) {
2544         // Disable the yellow zone which sets the state that
2545         // we've got a stack overflow problem.
2546         if (thread->stack_yellow_reserved_zone_enabled()) {
2547           thread->disable_stack_yellow_reserved_zone();
2548         }
2549         // Give us some room to process the exception.
2550         thread->disable_register_stack_guard();
2551         // Tracing with +Verbose.
2552         if (Verbose) {
2553           tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2554           tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2555           tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2556           tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2557                         thread->register_stack_base(),
2558                         thread->register_stack_base() + thread->stack_size());
2559         }
2560 
2561         // Reguard the permanent register stack red zone just to be sure.
2562         // We saw Windows silently disabling this without telling us.
2563         thread->enable_register_stack_red_zone();
2564 
2565         return Handle_Exception(exceptionInfo,
2566                                 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2567       }
2568 #endif
2569       if (thread->stack_guards_enabled()) {
2570         if (_thread_in_Java) {
2571           frame fr;
2572           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2573           address addr = (address) exceptionRecord->ExceptionInformation[1];
2574           if (os::win32::get_frame_at_stack_banging_point(thread, exceptionInfo, pc, &fr)) {
2575             assert(fr.is_java_frame(), "Must be a Java frame");
2576             SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
2577           }
2578         }
2579         // Yellow zone violation.  The o/s has unprotected the first yellow
2580         // zone page for us.  Note:  must call disable_stack_yellow_zone to
2581         // update the enabled status, even if the zone contains only one page.
2582         thread->disable_stack_yellow_reserved_zone();
2583         // If not in java code, return and hope for the best.
2584         return in_java
2585             ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2586             :  EXCEPTION_CONTINUE_EXECUTION;
2587       } else {
2588         // Fatal red zone violation.
2589         thread->disable_stack_red_zone();
2590         tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2591         report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2592                       exceptionInfo->ContextRecord);
2593         return EXCEPTION_CONTINUE_SEARCH;
2594       }
2595     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2596       // Either stack overflow or null pointer exception.
2597       if (in_java) {
2598         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2599         address addr = (address) exceptionRecord->ExceptionInformation[1];
2600         address stack_end = thread->stack_end();
2601         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2602           // Stack overflow.
2603           assert(!os::uses_stack_guard_pages(),
2604                  "should be caught by red zone code above.");
2605           return Handle_Exception(exceptionInfo,
2606                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2607         }
2608         // Check for safepoint polling and implicit null
2609         // We only expect null pointers in the stubs (vtable)
2610         // the rest are checked explicitly now.
2611         CodeBlob* cb = CodeCache::find_blob(pc);
2612         if (cb != NULL) {
2613           if (os::is_poll_address(addr)) {
2614             address stub = SharedRuntime::get_poll_stub(pc);
2615             return Handle_Exception(exceptionInfo, stub);
2616           }
2617         }
2618         {
2619 #ifdef _WIN64
2620           // If it's a legal stack address map the entire region in
2621           //
2622           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2623           address addr = (address) exceptionRecord->ExceptionInformation[1];
2624           if (addr > thread->stack_reserved_zone_base() && addr < thread->stack_base()) {
2625             addr = (address)((uintptr_t)addr &
2626                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2627             os::commit_memory((char *)addr, thread->stack_base() - addr,
2628                               !ExecMem);
2629             return EXCEPTION_CONTINUE_EXECUTION;
2630           } else
2631 #endif
2632           {
2633             // Null pointer exception.
2634 #ifdef _M_IA64
2635             // Process implicit null checks in compiled code. Note: Implicit null checks
2636             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2637             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2638               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2639               // Handle implicit null check in UEP method entry
2640               if (cb && (cb->is_frame_complete_at(pc) ||
2641                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2642                 if (Verbose) {
2643                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2644                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2645                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2646                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2647                                 *(bundle_start + 1), *bundle_start);
2648                 }
2649                 return Handle_Exception(exceptionInfo,
2650                                         SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2651               }
2652             }
2653 
2654             // Implicit null checks were processed above.  Hence, we should not reach
2655             // here in the usual case => die!
2656             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2657             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2658                          exceptionInfo->ContextRecord);
2659             return EXCEPTION_CONTINUE_SEARCH;
2660 
2661 #else // !IA64
2662 
2663             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr)) {
2664               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2665               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2666             }
2667             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2668                          exceptionInfo->ContextRecord);
2669             return EXCEPTION_CONTINUE_SEARCH;
2670 #endif
2671           }
2672         }
2673       }
2674 
2675 #ifdef _WIN64
2676       // Special care for fast JNI field accessors.
2677       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2678       // in and the heap gets shrunk before the field access.
2679       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2680         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2681         if (addr != (address)-1) {
2682           return Handle_Exception(exceptionInfo, addr);
2683         }
2684       }
2685 #endif
2686 
2687       // Stack overflow or null pointer exception in native code.
2688       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2689                    exceptionInfo->ContextRecord);
2690       return EXCEPTION_CONTINUE_SEARCH;
2691     } // /EXCEPTION_ACCESS_VIOLATION
2692     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2693 #if defined _M_IA64
2694     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2695               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2696       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2697 
2698       // Compiled method patched to be non entrant? Following conditions must apply:
2699       // 1. must be first instruction in bundle
2700       // 2. must be a break instruction with appropriate code
2701       if ((((uint64_t) pc & 0x0F) == 0) &&
2702           (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2703         return Handle_Exception(exceptionInfo,
2704                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2705       }
2706     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2707 #endif
2708 
2709 
2710     if (in_java) {
2711       switch (exception_code) {
2712       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2713         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2714 
2715       case EXCEPTION_INT_OVERFLOW:
2716         return Handle_IDiv_Exception(exceptionInfo);
2717 
2718       } // switch
2719     }
2720     if (((thread->thread_state() == _thread_in_Java) ||
2721          (thread->thread_state() == _thread_in_native)) &&
2722          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2723       LONG result=Handle_FLT_Exception(exceptionInfo);
2724       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2725     }
2726   }
2727 
2728   if (exception_code != EXCEPTION_BREAKPOINT) {
2729     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2730                  exceptionInfo->ContextRecord);
2731   }
2732   return EXCEPTION_CONTINUE_SEARCH;
2733 }
2734 
2735 #ifndef _WIN64
2736 // Special care for fast JNI accessors.
2737 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2738 // the heap gets shrunk before the field access.
2739 // Need to install our own structured exception handler since native code may
2740 // install its own.
2741 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2742   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2743   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2744     address pc = (address) exceptionInfo->ContextRecord->Eip;
2745     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2746     if (addr != (address)-1) {
2747       return Handle_Exception(exceptionInfo, addr);
2748     }
2749   }
2750   return EXCEPTION_CONTINUE_SEARCH;
2751 }
2752 
2753 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2754   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2755                                                      jobject obj,           \
2756                                                      jfieldID fieldID) {    \
2757     __try {                                                                 \
2758       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2759                                                                  obj,       \
2760                                                                  fieldID);  \
2761     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2762                                               _exception_info())) {         \
2763     }                                                                       \
2764     return 0;                                                               \
2765   }
2766 
2767 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2768 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2769 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2770 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2771 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2772 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2773 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2774 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2775 
2776 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2777   switch (type) {
2778   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2779   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2780   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2781   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2782   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2783   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2784   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2785   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2786   default:        ShouldNotReachHere();
2787   }
2788   return (address)-1;
2789 }
2790 #endif
2791 
2792 // Virtual Memory
2793 
2794 int os::vm_page_size() { return os::win32::vm_page_size(); }
2795 int os::vm_allocation_granularity() {
2796   return os::win32::vm_allocation_granularity();
2797 }
2798 
2799 // Windows large page support is available on Windows 2003. In order to use
2800 // large page memory, the administrator must first assign additional privilege
2801 // to the user:
2802 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2803 //   + select Local Policies -> User Rights Assignment
2804 //   + double click "Lock pages in memory", add users and/or groups
2805 //   + reboot
2806 // Note the above steps are needed for administrator as well, as administrators
2807 // by default do not have the privilege to lock pages in memory.
2808 //
2809 // Note about Windows 2003: although the API supports committing large page
2810 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2811 // scenario, I found through experiment it only uses large page if the entire
2812 // memory region is reserved and committed in a single VirtualAlloc() call.
2813 // This makes Windows large page support more or less like Solaris ISM, in
2814 // that the entire heap must be committed upfront. This probably will change
2815 // in the future, if so the code below needs to be revisited.
2816 
2817 #ifndef MEM_LARGE_PAGES
2818   #define MEM_LARGE_PAGES 0x20000000
2819 #endif
2820 
2821 static HANDLE    _hProcess;
2822 static HANDLE    _hToken;
2823 
2824 // Container for NUMA node list info
2825 class NUMANodeListHolder {
2826  private:
2827   int *_numa_used_node_list;  // allocated below
2828   int _numa_used_node_count;
2829 
2830   void free_node_list() {
2831     if (_numa_used_node_list != NULL) {
2832       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2833     }
2834   }
2835 
2836  public:
2837   NUMANodeListHolder() {
2838     _numa_used_node_count = 0;
2839     _numa_used_node_list = NULL;
2840     // do rest of initialization in build routine (after function pointers are set up)
2841   }
2842 
2843   ~NUMANodeListHolder() {
2844     free_node_list();
2845   }
2846 
2847   bool build() {
2848     DWORD_PTR proc_aff_mask;
2849     DWORD_PTR sys_aff_mask;
2850     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2851     ULONG highest_node_number;
2852     if (!GetNumaHighestNodeNumber(&highest_node_number)) return false;
2853     free_node_list();
2854     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2855     for (unsigned int i = 0; i <= highest_node_number; i++) {
2856       ULONGLONG proc_mask_numa_node;
2857       if (!GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2858       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2859         _numa_used_node_list[_numa_used_node_count++] = i;
2860       }
2861     }
2862     return (_numa_used_node_count > 1);
2863   }
2864 
2865   int get_count() { return _numa_used_node_count; }
2866   int get_node_list_entry(int n) {
2867     // for indexes out of range, returns -1
2868     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2869   }
2870 
2871 } numa_node_list_holder;
2872 
2873 
2874 
2875 static size_t _large_page_size = 0;
2876 
2877 static bool request_lock_memory_privilege() {
2878   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2879                           os::current_process_id());
2880 
2881   LUID luid;
2882   if (_hProcess != NULL &&
2883       OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2884       LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2885 
2886     TOKEN_PRIVILEGES tp;
2887     tp.PrivilegeCount = 1;
2888     tp.Privileges[0].Luid = luid;
2889     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2890 
2891     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2892     // privilege. Check GetLastError() too. See MSDN document.
2893     if (AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2894         (GetLastError() == ERROR_SUCCESS)) {
2895       return true;
2896     }
2897   }
2898 
2899   return false;
2900 }
2901 
2902 static void cleanup_after_large_page_init() {
2903   if (_hProcess) CloseHandle(_hProcess);
2904   _hProcess = NULL;
2905   if (_hToken) CloseHandle(_hToken);
2906   _hToken = NULL;
2907 }
2908 
2909 static bool numa_interleaving_init() {
2910   bool success = false;
2911   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2912 
2913   // print a warning if UseNUMAInterleaving flag is specified on command line
2914   bool warn_on_failure = use_numa_interleaving_specified;
2915 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2916 
2917   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2918   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2919   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2920 
2921   if (numa_node_list_holder.build()) {
2922     if (log_is_enabled(Debug, os, cpu)) {
2923       Log(os, cpu) log;
2924       log.debug("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2925       for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2926         log.debug("  %d ", numa_node_list_holder.get_node_list_entry(i));
2927       }
2928     }
2929     success = true;
2930   } else {
2931     WARN("Process does not cover multiple NUMA nodes.");
2932   }
2933   if (!success) {
2934     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2935   }
2936   return success;
2937 #undef WARN
2938 }
2939 
2940 // this routine is used whenever we need to reserve a contiguous VA range
2941 // but we need to make separate VirtualAlloc calls for each piece of the range
2942 // Reasons for doing this:
2943 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2944 //  * UseNUMAInterleaving requires a separate node for each piece
2945 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2946                                          DWORD prot,
2947                                          bool should_inject_error = false) {
2948   char * p_buf;
2949   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2950   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2951   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2952 
2953   // first reserve enough address space in advance since we want to be
2954   // able to break a single contiguous virtual address range into multiple
2955   // large page commits but WS2003 does not allow reserving large page space
2956   // so we just use 4K pages for reserve, this gives us a legal contiguous
2957   // address space. then we will deallocate that reservation, and re alloc
2958   // using large pages
2959   const size_t size_of_reserve = bytes + chunk_size;
2960   if (bytes > size_of_reserve) {
2961     // Overflowed.
2962     return NULL;
2963   }
2964   p_buf = (char *) VirtualAlloc(addr,
2965                                 size_of_reserve,  // size of Reserve
2966                                 MEM_RESERVE,
2967                                 PAGE_READWRITE);
2968   // If reservation failed, return NULL
2969   if (p_buf == NULL) return NULL;
2970   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2971   os::release_memory(p_buf, bytes + chunk_size);
2972 
2973   // we still need to round up to a page boundary (in case we are using large pages)
2974   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2975   // instead we handle this in the bytes_to_rq computation below
2976   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2977 
2978   // now go through and allocate one chunk at a time until all bytes are
2979   // allocated
2980   size_t  bytes_remaining = bytes;
2981   // An overflow of align_size_up() would have been caught above
2982   // in the calculation of size_of_reserve.
2983   char * next_alloc_addr = p_buf;
2984   HANDLE hProc = GetCurrentProcess();
2985 
2986 #ifdef ASSERT
2987   // Variable for the failure injection
2988   long ran_num = os::random();
2989   size_t fail_after = ran_num % bytes;
2990 #endif
2991 
2992   int count=0;
2993   while (bytes_remaining) {
2994     // select bytes_to_rq to get to the next chunk_size boundary
2995 
2996     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2997     // Note allocate and commit
2998     char * p_new;
2999 
3000 #ifdef ASSERT
3001     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
3002 #else
3003     const bool inject_error_now = false;
3004 #endif
3005 
3006     if (inject_error_now) {
3007       p_new = NULL;
3008     } else {
3009       if (!UseNUMAInterleaving) {
3010         p_new = (char *) VirtualAlloc(next_alloc_addr,
3011                                       bytes_to_rq,
3012                                       flags,
3013                                       prot);
3014       } else {
3015         // get the next node to use from the used_node_list
3016         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
3017         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
3018         p_new = (char *)VirtualAllocExNuma(hProc, next_alloc_addr, bytes_to_rq, flags, prot, node);
3019       }
3020     }
3021 
3022     if (p_new == NULL) {
3023       // Free any allocated pages
3024       if (next_alloc_addr > p_buf) {
3025         // Some memory was committed so release it.
3026         size_t bytes_to_release = bytes - bytes_remaining;
3027         // NMT has yet to record any individual blocks, so it
3028         // need to create a dummy 'reserve' record to match
3029         // the release.
3030         MemTracker::record_virtual_memory_reserve((address)p_buf,
3031                                                   bytes_to_release, CALLER_PC);
3032         os::release_memory(p_buf, bytes_to_release);
3033       }
3034 #ifdef ASSERT
3035       if (should_inject_error) {
3036         log_develop_debug(pagesize)("Reserving pages individually failed.");
3037       }
3038 #endif
3039       return NULL;
3040     }
3041 
3042     bytes_remaining -= bytes_to_rq;
3043     next_alloc_addr += bytes_to_rq;
3044     count++;
3045   }
3046   // Although the memory is allocated individually, it is returned as one.
3047   // NMT records it as one block.
3048   if ((flags & MEM_COMMIT) != 0) {
3049     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
3050   } else {
3051     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
3052   }
3053 
3054   // made it this far, success
3055   return p_buf;
3056 }
3057 
3058 
3059 
3060 void os::large_page_init() {
3061   if (!UseLargePages) return;
3062 
3063   // print a warning if any large page related flag is specified on command line
3064   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3065                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3066   bool success = false;
3067 
3068 #define WARN(msg) if (warn_on_failure) { warning(msg); }
3069   if (request_lock_memory_privilege()) {
3070     size_t s = GetLargePageMinimum();
3071     if (s) {
3072 #if defined(IA32) || defined(AMD64)
3073       if (s > 4*M || LargePageSizeInBytes > 4*M) {
3074         WARN("JVM cannot use large pages bigger than 4mb.");
3075       } else {
3076 #endif
3077         if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3078           _large_page_size = LargePageSizeInBytes;
3079         } else {
3080           _large_page_size = s;
3081         }
3082         success = true;
3083 #if defined(IA32) || defined(AMD64)
3084       }
3085 #endif
3086     } else {
3087       WARN("Large page is not supported by the processor.");
3088     }
3089   } else {
3090     WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3091   }
3092 #undef WARN
3093 
3094   const size_t default_page_size = (size_t) vm_page_size();
3095   if (success && _large_page_size > default_page_size) {
3096     _page_sizes[0] = _large_page_size;
3097     _page_sizes[1] = default_page_size;
3098     _page_sizes[2] = 0;
3099   }
3100 
3101   cleanup_after_large_page_init();
3102   UseLargePages = success;
3103 }
3104 
3105 // On win32, one cannot release just a part of reserved memory, it's an
3106 // all or nothing deal.  When we split a reservation, we must break the
3107 // reservation into two reservations.
3108 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3109                                   bool realloc) {
3110   if (size > 0) {
3111     release_memory(base, size);
3112     if (realloc) {
3113       reserve_memory(split, base);
3114     }
3115     if (size != split) {
3116       reserve_memory(size - split, base + split);
3117     }
3118   }
3119 }
3120 
3121 // Multiple threads can race in this code but it's not possible to unmap small sections of
3122 // virtual space to get requested alignment, like posix-like os's.
3123 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3124 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3125   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3126          "Alignment must be a multiple of allocation granularity (page size)");
3127   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3128 
3129   size_t extra_size = size + alignment;
3130   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3131 
3132   char* aligned_base = NULL;
3133 
3134   do {
3135     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3136     if (extra_base == NULL) {
3137       return NULL;
3138     }
3139     // Do manual alignment
3140     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3141 
3142     os::release_memory(extra_base, extra_size);
3143 
3144     aligned_base = os::reserve_memory(size, aligned_base);
3145 
3146   } while (aligned_base == NULL);
3147 
3148   return aligned_base;
3149 }
3150 
3151 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3152   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3153          "reserve alignment");
3154   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3155   char* res;
3156   // note that if UseLargePages is on, all the areas that require interleaving
3157   // will go thru reserve_memory_special rather than thru here.
3158   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3159   if (!use_individual) {
3160     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3161   } else {
3162     elapsedTimer reserveTimer;
3163     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3164     // in numa interleaving, we have to allocate pages individually
3165     // (well really chunks of NUMAInterleaveGranularity size)
3166     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3167     if (res == NULL) {
3168       warning("NUMA page allocation failed");
3169     }
3170     if (Verbose && PrintMiscellaneous) {
3171       reserveTimer.stop();
3172       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3173                     reserveTimer.milliseconds(), reserveTimer.ticks());
3174     }
3175   }
3176   assert(res == NULL || addr == NULL || addr == res,
3177          "Unexpected address from reserve.");
3178 
3179   return res;
3180 }
3181 
3182 // Reserve memory at an arbitrary address, only if that area is
3183 // available (and not reserved for something else).
3184 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3185   // Windows os::reserve_memory() fails of the requested address range is
3186   // not avilable.
3187   return reserve_memory(bytes, requested_addr);
3188 }
3189 
3190 size_t os::large_page_size() {
3191   return _large_page_size;
3192 }
3193 
3194 bool os::can_commit_large_page_memory() {
3195   // Windows only uses large page memory when the entire region is reserved
3196   // and committed in a single VirtualAlloc() call. This may change in the
3197   // future, but with Windows 2003 it's not possible to commit on demand.
3198   return false;
3199 }
3200 
3201 bool os::can_execute_large_page_memory() {
3202   return true;
3203 }
3204 
3205 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3206                                  bool exec) {
3207   assert(UseLargePages, "only for large pages");
3208 
3209   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3210     return NULL; // Fallback to small pages.
3211   }
3212 
3213   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3214   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3215 
3216   // with large pages, there are two cases where we need to use Individual Allocation
3217   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3218   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3219   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3220     log_debug(pagesize)("Reserving large pages individually.");
3221 
3222     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3223     if (p_buf == NULL) {
3224       // give an appropriate warning message
3225       if (UseNUMAInterleaving) {
3226         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3227       }
3228       if (UseLargePagesIndividualAllocation) {
3229         warning("Individually allocated large pages failed, "
3230                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3231       }
3232       return NULL;
3233     }
3234 
3235     return p_buf;
3236 
3237   } else {
3238     log_debug(pagesize)("Reserving large pages in a single large chunk.");
3239 
3240     // normal policy just allocate it all at once
3241     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3242     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3243     if (res != NULL) {
3244       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3245     }
3246 
3247     return res;
3248   }
3249 }
3250 
3251 bool os::release_memory_special(char* base, size_t bytes) {
3252   assert(base != NULL, "Sanity check");
3253   return release_memory(base, bytes);
3254 }
3255 
3256 void os::print_statistics() {
3257 }
3258 
3259 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3260   int err = os::get_last_error();
3261   char buf[256];
3262   size_t buf_len = os::lasterror(buf, sizeof(buf));
3263   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3264           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3265           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3266 }
3267 
3268 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3269   if (bytes == 0) {
3270     // Don't bother the OS with noops.
3271     return true;
3272   }
3273   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3274   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3275   // Don't attempt to print anything if the OS call fails. We're
3276   // probably low on resources, so the print itself may cause crashes.
3277 
3278   // unless we have NUMAInterleaving enabled, the range of a commit
3279   // is always within a reserve covered by a single VirtualAlloc
3280   // in that case we can just do a single commit for the requested size
3281   if (!UseNUMAInterleaving) {
3282     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3283       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3284       return false;
3285     }
3286     if (exec) {
3287       DWORD oldprot;
3288       // Windows doc says to use VirtualProtect to get execute permissions
3289       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3290         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3291         return false;
3292       }
3293     }
3294     return true;
3295   } else {
3296 
3297     // when NUMAInterleaving is enabled, the commit might cover a range that
3298     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3299     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3300     // returns represents the number of bytes that can be committed in one step.
3301     size_t bytes_remaining = bytes;
3302     char * next_alloc_addr = addr;
3303     while (bytes_remaining > 0) {
3304       MEMORY_BASIC_INFORMATION alloc_info;
3305       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3306       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3307       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3308                        PAGE_READWRITE) == NULL) {
3309         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3310                                             exec);)
3311         return false;
3312       }
3313       if (exec) {
3314         DWORD oldprot;
3315         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3316                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3317           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3318                                               exec);)
3319           return false;
3320         }
3321       }
3322       bytes_remaining -= bytes_to_rq;
3323       next_alloc_addr += bytes_to_rq;
3324     }
3325   }
3326   // if we made it this far, return true
3327   return true;
3328 }
3329 
3330 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3331                           bool exec) {
3332   // alignment_hint is ignored on this OS
3333   return pd_commit_memory(addr, size, exec);
3334 }
3335 
3336 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3337                                   const char* mesg) {
3338   assert(mesg != NULL, "mesg must be specified");
3339   if (!pd_commit_memory(addr, size, exec)) {
3340     warn_fail_commit_memory(addr, size, exec);
3341     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
3342   }
3343 }
3344 
3345 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3346                                   size_t alignment_hint, bool exec,
3347                                   const char* mesg) {
3348   // alignment_hint is ignored on this OS
3349   pd_commit_memory_or_exit(addr, size, exec, mesg);
3350 }
3351 
3352 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3353   if (bytes == 0) {
3354     // Don't bother the OS with noops.
3355     return true;
3356   }
3357   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3358   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3359   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3360 }
3361 
3362 bool os::pd_release_memory(char* addr, size_t bytes) {
3363   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3364 }
3365 
3366 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3367   return os::commit_memory(addr, size, !ExecMem);
3368 }
3369 
3370 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3371   return os::uncommit_memory(addr, size);
3372 }
3373 
3374 static bool protect_pages_individually(char* addr, size_t bytes, unsigned int p, DWORD *old_status) {
3375   uint count = 0;
3376   bool ret = false;
3377   size_t bytes_remaining = bytes;
3378   char * next_protect_addr = addr;
3379 
3380   // Use VirtualQuery() to get the chunk size.
3381   while (bytes_remaining) {
3382     MEMORY_BASIC_INFORMATION alloc_info;
3383     if (VirtualQuery(next_protect_addr, &alloc_info, sizeof(alloc_info)) == 0) {
3384       return false;
3385     }
3386 
3387     size_t bytes_to_protect = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3388     // We used different API at allocate_pages_individually() based on UseNUMAInterleaving,
3389     // but we don't distinguish here as both cases are protected by same API.
3390     ret = VirtualProtect(next_protect_addr, bytes_to_protect, p, old_status) != 0;
3391     warning("Failed protecting pages individually for chunk #%u", count);
3392     if (!ret) {
3393       return false;
3394     }
3395 
3396     bytes_remaining -= bytes_to_protect;
3397     next_protect_addr += bytes_to_protect;
3398     count++;
3399   }
3400   return ret;
3401 }
3402 
3403 // Set protections specified
3404 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3405                         bool is_committed) {
3406   unsigned int p = 0;
3407   switch (prot) {
3408   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3409   case MEM_PROT_READ: p = PAGE_READONLY; break;
3410   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3411   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3412   default:
3413     ShouldNotReachHere();
3414   }
3415 
3416   DWORD old_status;
3417 
3418   // Strange enough, but on Win32 one can change protection only for committed
3419   // memory, not a big deal anyway, as bytes less or equal than 64K
3420   if (!is_committed) {
3421     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3422                           "cannot commit protection page");
3423   }
3424   // One cannot use os::guard_memory() here, as on Win32 guard page
3425   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3426   //
3427   // Pages in the region become guard pages. Any attempt to access a guard page
3428   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3429   // the guard page status. Guard pages thus act as a one-time access alarm.
3430   bool ret;
3431   if (UseNUMAInterleaving) {
3432     // If UseNUMAInterleaving is enabled, the pages may have been allocated a chunk at a time,
3433     // so we must protect the chunks individually.
3434     ret = protect_pages_individually(addr, bytes, p, &old_status);
3435   } else {
3436     ret = VirtualProtect(addr, bytes, p, &old_status) != 0;
3437   }
3438 #ifdef ASSERT
3439   if (!ret) {
3440     int err = os::get_last_error();
3441     char buf[256];
3442     size_t buf_len = os::lasterror(buf, sizeof(buf));
3443     warning("INFO: os::protect_memory(" PTR_FORMAT ", " SIZE_FORMAT
3444           ") failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3445           buf_len != 0 ? buf : "<no_error_string>", err);
3446   }
3447 #endif
3448   return ret;
3449 }
3450 
3451 bool os::guard_memory(char* addr, size_t bytes) {
3452   DWORD old_status;
3453   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3454 }
3455 
3456 bool os::unguard_memory(char* addr, size_t bytes) {
3457   DWORD old_status;
3458   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3459 }
3460 
3461 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3462 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3463 void os::numa_make_global(char *addr, size_t bytes)    { }
3464 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3465 bool os::numa_topology_changed()                       { return false; }
3466 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3467 int os::numa_get_group_id()                            { return 0; }
3468 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3469   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3470     // Provide an answer for UMA systems
3471     ids[0] = 0;
3472     return 1;
3473   } else {
3474     // check for size bigger than actual groups_num
3475     size = MIN2(size, numa_get_groups_num());
3476     for (int i = 0; i < (int)size; i++) {
3477       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3478     }
3479     return size;
3480   }
3481 }
3482 
3483 bool os::get_page_info(char *start, page_info* info) {
3484   return false;
3485 }
3486 
3487 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3488                      page_info* page_found) {
3489   return end;
3490 }
3491 
3492 char* os::non_memory_address_word() {
3493   // Must never look like an address returned by reserve_memory,
3494   // even in its subfields (as defined by the CPU immediate fields,
3495   // if the CPU splits constants across multiple instructions).
3496   return (char*)-1;
3497 }
3498 
3499 #define MAX_ERROR_COUNT 100
3500 #define SYS_THREAD_ERROR 0xffffffffUL
3501 
3502 void os::pd_start_thread(Thread* thread) {
3503   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3504   // Returns previous suspend state:
3505   // 0:  Thread was not suspended
3506   // 1:  Thread is running now
3507   // >1: Thread is still suspended.
3508   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3509 }
3510 
3511 class HighResolutionInterval : public CHeapObj<mtThread> {
3512   // The default timer resolution seems to be 10 milliseconds.
3513   // (Where is this written down?)
3514   // If someone wants to sleep for only a fraction of the default,
3515   // then we set the timer resolution down to 1 millisecond for
3516   // the duration of their interval.
3517   // We carefully set the resolution back, since otherwise we
3518   // seem to incur an overhead (3%?) that we don't need.
3519   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3520   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3521   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3522   // timeBeginPeriod() if the relative error exceeded some threshold.
3523   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3524   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3525   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3526   // resolution timers running.
3527  private:
3528   jlong resolution;
3529  public:
3530   HighResolutionInterval(jlong ms) {
3531     resolution = ms % 10L;
3532     if (resolution != 0) {
3533       MMRESULT result = timeBeginPeriod(1L);
3534     }
3535   }
3536   ~HighResolutionInterval() {
3537     if (resolution != 0) {
3538       MMRESULT result = timeEndPeriod(1L);
3539     }
3540     resolution = 0L;
3541   }
3542 };
3543 
3544 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3545   jlong limit = (jlong) MAXDWORD;
3546 
3547   while (ms > limit) {
3548     int res;
3549     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3550       return res;
3551     }
3552     ms -= limit;
3553   }
3554 
3555   assert(thread == Thread::current(), "thread consistency check");
3556   OSThread* osthread = thread->osthread();
3557   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3558   int result;
3559   if (interruptable) {
3560     assert(thread->is_Java_thread(), "must be java thread");
3561     JavaThread *jt = (JavaThread *) thread;
3562     ThreadBlockInVM tbivm(jt);
3563 
3564     jt->set_suspend_equivalent();
3565     // cleared by handle_special_suspend_equivalent_condition() or
3566     // java_suspend_self() via check_and_wait_while_suspended()
3567 
3568     HANDLE events[1];
3569     events[0] = osthread->interrupt_event();
3570     HighResolutionInterval *phri=NULL;
3571     if (!ForceTimeHighResolution) {
3572       phri = new HighResolutionInterval(ms);
3573     }
3574     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3575       result = OS_TIMEOUT;
3576     } else {
3577       ResetEvent(osthread->interrupt_event());
3578       osthread->set_interrupted(false);
3579       result = OS_INTRPT;
3580     }
3581     delete phri; //if it is NULL, harmless
3582 
3583     // were we externally suspended while we were waiting?
3584     jt->check_and_wait_while_suspended();
3585   } else {
3586     assert(!thread->is_Java_thread(), "must not be java thread");
3587     Sleep((long) ms);
3588     result = OS_TIMEOUT;
3589   }
3590   return result;
3591 }
3592 
3593 // Short sleep, direct OS call.
3594 //
3595 // ms = 0, means allow others (if any) to run.
3596 //
3597 void os::naked_short_sleep(jlong ms) {
3598   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3599   Sleep(ms);
3600 }
3601 
3602 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3603 void os::infinite_sleep() {
3604   while (true) {    // sleep forever ...
3605     Sleep(100000);  // ... 100 seconds at a time
3606   }
3607 }
3608 
3609 typedef BOOL (WINAPI * STTSignature)(void);
3610 
3611 void os::naked_yield() {
3612   // Consider passing back the return value from SwitchToThread().
3613   SwitchToThread();
3614 }
3615 
3616 // Win32 only gives you access to seven real priorities at a time,
3617 // so we compress Java's ten down to seven.  It would be better
3618 // if we dynamically adjusted relative priorities.
3619 
3620 int os::java_to_os_priority[CriticalPriority + 1] = {
3621   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3622   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3623   THREAD_PRIORITY_LOWEST,                       // 2
3624   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3625   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3626   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3627   THREAD_PRIORITY_NORMAL,                       // 6
3628   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3629   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3630   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3631   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3632   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3633 };
3634 
3635 int prio_policy1[CriticalPriority + 1] = {
3636   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3637   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3638   THREAD_PRIORITY_LOWEST,                       // 2
3639   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3640   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3641   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3642   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3643   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3644   THREAD_PRIORITY_HIGHEST,                      // 8
3645   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3646   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3647   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3648 };
3649 
3650 static int prio_init() {
3651   // If ThreadPriorityPolicy is 1, switch tables
3652   if (ThreadPriorityPolicy == 1) {
3653     int i;
3654     for (i = 0; i < CriticalPriority + 1; i++) {
3655       os::java_to_os_priority[i] = prio_policy1[i];
3656     }
3657   }
3658   if (UseCriticalJavaThreadPriority) {
3659     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3660   }
3661   return 0;
3662 }
3663 
3664 OSReturn os::set_native_priority(Thread* thread, int priority) {
3665   if (!UseThreadPriorities) return OS_OK;
3666   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3667   return ret ? OS_OK : OS_ERR;
3668 }
3669 
3670 OSReturn os::get_native_priority(const Thread* const thread,
3671                                  int* priority_ptr) {
3672   if (!UseThreadPriorities) {
3673     *priority_ptr = java_to_os_priority[NormPriority];
3674     return OS_OK;
3675   }
3676   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3677   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3678     assert(false, "GetThreadPriority failed");
3679     return OS_ERR;
3680   }
3681   *priority_ptr = os_prio;
3682   return OS_OK;
3683 }
3684 
3685 
3686 // Hint to the underlying OS that a task switch would not be good.
3687 // Void return because it's a hint and can fail.
3688 void os::hint_no_preempt() {}
3689 
3690 void os::interrupt(Thread* thread) {
3691   assert(!thread->is_Java_thread() || Thread::current() == thread ||
3692          Threads_lock->owned_by_self(),
3693          "possibility of dangling Thread pointer");
3694 
3695   OSThread* osthread = thread->osthread();
3696   osthread->set_interrupted(true);
3697   // More than one thread can get here with the same value of osthread,
3698   // resulting in multiple notifications.  We do, however, want the store
3699   // to interrupted() to be visible to other threads before we post
3700   // the interrupt event.
3701   OrderAccess::release();
3702   SetEvent(osthread->interrupt_event());
3703   // For JSR166:  unpark after setting status
3704   if (thread->is_Java_thread()) {
3705     ((JavaThread*)thread)->parker()->unpark();
3706   }
3707 
3708   ParkEvent * ev = thread->_ParkEvent;
3709   if (ev != NULL) ev->unpark();
3710 }
3711 
3712 
3713 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3714   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3715          "possibility of dangling Thread pointer");
3716 
3717   OSThread* osthread = thread->osthread();
3718   // There is no synchronization between the setting of the interrupt
3719   // and it being cleared here. It is critical - see 6535709 - that
3720   // we only clear the interrupt state, and reset the interrupt event,
3721   // if we are going to report that we were indeed interrupted - else
3722   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3723   // depending on the timing. By checking thread interrupt event to see
3724   // if the thread gets real interrupt thus prevent spurious wakeup.
3725   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3726   if (interrupted && clear_interrupted) {
3727     osthread->set_interrupted(false);
3728     ResetEvent(osthread->interrupt_event());
3729   } // Otherwise leave the interrupted state alone
3730 
3731   return interrupted;
3732 }
3733 
3734 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3735 ExtendedPC os::get_thread_pc(Thread* thread) {
3736   CONTEXT context;
3737   context.ContextFlags = CONTEXT_CONTROL;
3738   HANDLE handle = thread->osthread()->thread_handle();
3739 #ifdef _M_IA64
3740   assert(0, "Fix get_thread_pc");
3741   return ExtendedPC(NULL);
3742 #else
3743   if (GetThreadContext(handle, &context)) {
3744 #ifdef _M_AMD64
3745     return ExtendedPC((address) context.Rip);
3746 #else
3747     return ExtendedPC((address) context.Eip);
3748 #endif
3749   } else {
3750     return ExtendedPC(NULL);
3751   }
3752 #endif
3753 }
3754 
3755 // GetCurrentThreadId() returns DWORD
3756 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3757 
3758 static int _initial_pid = 0;
3759 
3760 int os::current_process_id() {
3761   return (_initial_pid ? _initial_pid : _getpid());
3762 }
3763 
3764 int    os::win32::_vm_page_size              = 0;
3765 int    os::win32::_vm_allocation_granularity = 0;
3766 int    os::win32::_processor_type            = 0;
3767 // Processor level is not available on non-NT systems, use vm_version instead
3768 int    os::win32::_processor_level           = 0;
3769 julong os::win32::_physical_memory           = 0;
3770 size_t os::win32::_default_stack_size        = 0;
3771 
3772 intx          os::win32::_os_thread_limit    = 0;
3773 volatile intx os::win32::_os_thread_count    = 0;
3774 
3775 bool   os::win32::_is_windows_server         = false;
3776 
3777 // 6573254
3778 // Currently, the bug is observed across all the supported Windows releases,
3779 // including the latest one (as of this writing - Windows Server 2012 R2)
3780 bool   os::win32::_has_exit_bug              = true;
3781 
3782 void os::win32::initialize_system_info() {
3783   SYSTEM_INFO si;
3784   GetSystemInfo(&si);
3785   _vm_page_size    = si.dwPageSize;
3786   _vm_allocation_granularity = si.dwAllocationGranularity;
3787   _processor_type  = si.dwProcessorType;
3788   _processor_level = si.wProcessorLevel;
3789   set_processor_count(si.dwNumberOfProcessors);
3790 
3791   MEMORYSTATUSEX ms;
3792   ms.dwLength = sizeof(ms);
3793 
3794   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3795   // dwMemoryLoad (% of memory in use)
3796   GlobalMemoryStatusEx(&ms);
3797   _physical_memory = ms.ullTotalPhys;
3798 
3799   OSVERSIONINFOEX oi;
3800   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3801   GetVersionEx((OSVERSIONINFO*)&oi);
3802   switch (oi.dwPlatformId) {
3803   case VER_PLATFORM_WIN32_NT:
3804     {
3805       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3806       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3807           oi.wProductType == VER_NT_SERVER) {
3808         _is_windows_server = true;
3809       }
3810     }
3811     break;
3812   default: fatal("Unknown platform");
3813   }
3814 
3815   _default_stack_size = os::current_stack_size();
3816   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3817   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3818          "stack size not a multiple of page size");
3819 
3820   initialize_performance_counter();
3821 }
3822 
3823 
3824 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3825                                       int ebuflen) {
3826   char path[MAX_PATH];
3827   DWORD size;
3828   DWORD pathLen = (DWORD)sizeof(path);
3829   HINSTANCE result = NULL;
3830 
3831   // only allow library name without path component
3832   assert(strchr(name, '\\') == NULL, "path not allowed");
3833   assert(strchr(name, ':') == NULL, "path not allowed");
3834   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3835     jio_snprintf(ebuf, ebuflen,
3836                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3837     return NULL;
3838   }
3839 
3840   // search system directory
3841   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3842     if (size >= pathLen) {
3843       return NULL; // truncated
3844     }
3845     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3846       return NULL; // truncated
3847     }
3848     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3849       return result;
3850     }
3851   }
3852 
3853   // try Windows directory
3854   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3855     if (size >= pathLen) {
3856       return NULL; // truncated
3857     }
3858     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3859       return NULL; // truncated
3860     }
3861     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3862       return result;
3863     }
3864   }
3865 
3866   jio_snprintf(ebuf, ebuflen,
3867                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3868   return NULL;
3869 }
3870 
3871 #define MAXIMUM_THREADS_TO_KEEP (16 * MAXIMUM_WAIT_OBJECTS)
3872 #define EXIT_TIMEOUT 300000 /* 5 minutes */
3873 
3874 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3875   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3876   return TRUE;
3877 }
3878 
3879 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3880   // Basic approach:
3881   //  - Each exiting thread registers its intent to exit and then does so.
3882   //  - A thread trying to terminate the process must wait for all
3883   //    threads currently exiting to complete their exit.
3884 
3885   if (os::win32::has_exit_bug()) {
3886     // The array holds handles of the threads that have started exiting by calling
3887     // _endthreadex().
3888     // Should be large enough to avoid blocking the exiting thread due to lack of
3889     // a free slot.
3890     static HANDLE handles[MAXIMUM_THREADS_TO_KEEP];
3891     static int handle_count = 0;
3892 
3893     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3894     static CRITICAL_SECTION crit_sect;
3895     static volatile jint process_exiting = 0;
3896     int i, j;
3897     DWORD res;
3898     HANDLE hproc, hthr;
3899 
3900     // We only attempt to register threads until a process exiting
3901     // thread manages to set the process_exiting flag. Any threads
3902     // that come through here after the process_exiting flag is set
3903     // are unregistered and will be caught in the SuspendThread()
3904     // infinite loop below.
3905     bool registered = false;
3906 
3907     // The first thread that reached this point, initializes the critical section.
3908     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3909       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3910     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3911       if (what != EPT_THREAD) {
3912         // Atomically set process_exiting before the critical section
3913         // to increase the visibility between racing threads.
3914         Atomic::cmpxchg((jint)GetCurrentThreadId(), &process_exiting, 0);
3915       }
3916       EnterCriticalSection(&crit_sect);
3917 
3918       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3919         // Remove from the array those handles of the threads that have completed exiting.
3920         for (i = 0, j = 0; i < handle_count; ++i) {
3921           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3922           if (res == WAIT_TIMEOUT) {
3923             handles[j++] = handles[i];
3924           } else {
3925             if (res == WAIT_FAILED) {
3926               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3927                       GetLastError(), __FILE__, __LINE__);
3928             }
3929             // Don't keep the handle, if we failed waiting for it.
3930             CloseHandle(handles[i]);
3931           }
3932         }
3933 
3934         // If there's no free slot in the array of the kept handles, we'll have to
3935         // wait until at least one thread completes exiting.
3936         if ((handle_count = j) == MAXIMUM_THREADS_TO_KEEP) {
3937           // Raise the priority of the oldest exiting thread to increase its chances
3938           // to complete sooner.
3939           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3940           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3941           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3942             i = (res - WAIT_OBJECT_0);
3943             handle_count = MAXIMUM_THREADS_TO_KEEP - 1;
3944             for (; i < handle_count; ++i) {
3945               handles[i] = handles[i + 1];
3946             }
3947           } else {
3948             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3949                     (res == WAIT_FAILED ? "failed" : "timed out"),
3950                     GetLastError(), __FILE__, __LINE__);
3951             // Don't keep handles, if we failed waiting for them.
3952             for (i = 0; i < MAXIMUM_THREADS_TO_KEEP; ++i) {
3953               CloseHandle(handles[i]);
3954             }
3955             handle_count = 0;
3956           }
3957         }
3958 
3959         // Store a duplicate of the current thread handle in the array of handles.
3960         hproc = GetCurrentProcess();
3961         hthr = GetCurrentThread();
3962         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3963                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3964           warning("DuplicateHandle failed (%u) in %s: %d\n",
3965                   GetLastError(), __FILE__, __LINE__);
3966 
3967           // We can't register this thread (no more handles) so this thread
3968           // may be racing with a thread that is calling exit(). If the thread
3969           // that is calling exit() has managed to set the process_exiting
3970           // flag, then this thread will be caught in the SuspendThread()
3971           // infinite loop below which closes that race. A small timing
3972           // window remains before the process_exiting flag is set, but it
3973           // is only exposed when we are out of handles.
3974         } else {
3975           ++handle_count;
3976           registered = true;
3977 
3978           // The current exiting thread has stored its handle in the array, and now
3979           // should leave the critical section before calling _endthreadex().
3980         }
3981 
3982       } else if (what != EPT_THREAD && handle_count > 0) {
3983         jlong start_time, finish_time, timeout_left;
3984         // Before ending the process, make sure all the threads that had called
3985         // _endthreadex() completed.
3986 
3987         // Set the priority level of the current thread to the same value as
3988         // the priority level of exiting threads.
3989         // This is to ensure it will be given a fair chance to execute if
3990         // the timeout expires.
3991         hthr = GetCurrentThread();
3992         SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3993         start_time = os::javaTimeNanos();
3994         finish_time = start_time + ((jlong)EXIT_TIMEOUT * 1000000L);
3995         for (i = 0; ; ) {
3996           int portion_count = handle_count - i;
3997           if (portion_count > MAXIMUM_WAIT_OBJECTS) {
3998             portion_count = MAXIMUM_WAIT_OBJECTS;
3999           }
4000           for (j = 0; j < portion_count; ++j) {
4001             SetThreadPriority(handles[i + j], THREAD_PRIORITY_ABOVE_NORMAL);
4002           }
4003           timeout_left = (finish_time - start_time) / 1000000L;
4004           if (timeout_left < 0) {
4005             timeout_left = 0;
4006           }
4007           res = WaitForMultipleObjects(portion_count, handles + i, TRUE, timeout_left);
4008           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
4009             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
4010                     (res == WAIT_FAILED ? "failed" : "timed out"),
4011                     GetLastError(), __FILE__, __LINE__);
4012             // Reset portion_count so we close the remaining
4013             // handles due to this error.
4014             portion_count = handle_count - i;
4015           }
4016           for (j = 0; j < portion_count; ++j) {
4017             CloseHandle(handles[i + j]);
4018           }
4019           if ((i += portion_count) >= handle_count) {
4020             break;
4021           }
4022           start_time = os::javaTimeNanos();
4023         }
4024         handle_count = 0;
4025       }
4026 
4027       LeaveCriticalSection(&crit_sect);
4028     }
4029 
4030     if (!registered &&
4031         OrderAccess::load_acquire(&process_exiting) != 0 &&
4032         process_exiting != (jint)GetCurrentThreadId()) {
4033       // Some other thread is about to call exit(), so we don't let
4034       // the current unregistered thread proceed to exit() or _endthreadex()
4035       while (true) {
4036         SuspendThread(GetCurrentThread());
4037         // Avoid busy-wait loop, if SuspendThread() failed.
4038         Sleep(EXIT_TIMEOUT);
4039       }
4040     }
4041   }
4042 
4043   // We are here if either
4044   // - there's no 'race at exit' bug on this OS release;
4045   // - initialization of the critical section failed (unlikely);
4046   // - the current thread has registered itself and left the critical section;
4047   // - the process-exiting thread has raised the flag and left the critical section.
4048   if (what == EPT_THREAD) {
4049     _endthreadex((unsigned)exit_code);
4050   } else if (what == EPT_PROCESS) {
4051     ::exit(exit_code);
4052   } else {
4053     _exit(exit_code);
4054   }
4055 
4056   // Should not reach here
4057   return exit_code;
4058 }
4059 
4060 #undef EXIT_TIMEOUT
4061 
4062 void os::win32::setmode_streams() {
4063   _setmode(_fileno(stdin), _O_BINARY);
4064   _setmode(_fileno(stdout), _O_BINARY);
4065   _setmode(_fileno(stderr), _O_BINARY);
4066 }
4067 
4068 
4069 bool os::is_debugger_attached() {
4070   return IsDebuggerPresent() ? true : false;
4071 }
4072 
4073 
4074 void os::wait_for_keypress_at_exit(void) {
4075   if (PauseAtExit) {
4076     fprintf(stderr, "Press any key to continue...\n");
4077     fgetc(stdin);
4078   }
4079 }
4080 
4081 
4082 bool os::message_box(const char* title, const char* message) {
4083   int result = MessageBox(NULL, message, title,
4084                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
4085   return result == IDYES;
4086 }
4087 
4088 #ifndef PRODUCT
4089 #ifndef _WIN64
4090 // Helpers to check whether NX protection is enabled
4091 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
4092   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
4093       pex->ExceptionRecord->NumberParameters > 0 &&
4094       pex->ExceptionRecord->ExceptionInformation[0] ==
4095       EXCEPTION_INFO_EXEC_VIOLATION) {
4096     return EXCEPTION_EXECUTE_HANDLER;
4097   }
4098   return EXCEPTION_CONTINUE_SEARCH;
4099 }
4100 
4101 void nx_check_protection() {
4102   // If NX is enabled we'll get an exception calling into code on the stack
4103   char code[] = { (char)0xC3 }; // ret
4104   void *code_ptr = (void *)code;
4105   __try {
4106     __asm call code_ptr
4107   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
4108     tty->print_raw_cr("NX protection detected.");
4109   }
4110 }
4111 #endif // _WIN64
4112 #endif // PRODUCT
4113 
4114 // This is called _before_ the global arguments have been parsed
4115 void os::init(void) {
4116   _initial_pid = _getpid();
4117 
4118   init_random(1234567);
4119 
4120   win32::initialize_system_info();
4121   win32::setmode_streams();
4122   init_page_sizes((size_t) win32::vm_page_size());
4123 
4124   // This may be overridden later when argument processing is done.
4125   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation, false);
4126 
4127   // Initialize main_process and main_thread
4128   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4129   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4130                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4131     fatal("DuplicateHandle failed\n");
4132   }
4133   main_thread_id = (int) GetCurrentThreadId();
4134 
4135   // initialize fast thread access - only used for 32-bit
4136   win32::initialize_thread_ptr_offset();
4137 }
4138 
4139 // To install functions for atexit processing
4140 extern "C" {
4141   static void perfMemory_exit_helper() {
4142     perfMemory_exit();
4143   }
4144 }
4145 
4146 static jint initSock();
4147 
4148 // this is called _after_ the global arguments have been parsed
4149 jint os::init_2(void) {
4150   // Allocate a single page and mark it as readable for safepoint polling
4151   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4152   guarantee(polling_page != NULL, "Reserve Failed for polling page");
4153 
4154   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4155   guarantee(return_page != NULL, "Commit Failed for polling page");
4156 
4157   os::set_polling_page(polling_page);
4158   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4159 
4160   if (!UseMembar) {
4161     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4162     guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4163 
4164     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4165     guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4166 
4167     os::set_memory_serialize_page(mem_serialize_page);
4168     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4169   }
4170 
4171   // Setup Windows Exceptions
4172 
4173   // for debugging float code generation bugs
4174   if (ForceFloatExceptions) {
4175 #ifndef  _WIN64
4176     static long fp_control_word = 0;
4177     __asm { fstcw fp_control_word }
4178     // see Intel PPro Manual, Vol. 2, p 7-16
4179     const long precision = 0x20;
4180     const long underflow = 0x10;
4181     const long overflow  = 0x08;
4182     const long zero_div  = 0x04;
4183     const long denorm    = 0x02;
4184     const long invalid   = 0x01;
4185     fp_control_word |= invalid;
4186     __asm { fldcw fp_control_word }
4187 #endif
4188   }
4189 
4190   // If stack_commit_size is 0, windows will reserve the default size,
4191   // but only commit a small portion of it.
4192   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4193   size_t default_reserve_size = os::win32::default_stack_size();
4194   size_t actual_reserve_size = stack_commit_size;
4195   if (stack_commit_size < default_reserve_size) {
4196     // If stack_commit_size == 0, we want this too
4197     actual_reserve_size = default_reserve_size;
4198   }
4199 
4200   // Check minimum allowable stack size for thread creation and to initialize
4201   // the java system classes, including StackOverflowError - depends on page
4202   // size.  Add two 4K pages for compiler2 recursion in main thread.
4203   // Add in 4*BytesPerWord 4K pages to account for VM stack during
4204   // class initialization depending on 32 or 64 bit VM.
4205   size_t min_stack_allowed =
4206             (size_t)(JavaThread::stack_guard_zone_size() +
4207                      JavaThread::stack_shadow_zone_size() +
4208                      (4*BytesPerWord COMPILER2_PRESENT(+2)) * 4 * K);
4209 
4210   min_stack_allowed = align_size_up(min_stack_allowed, os::vm_page_size());
4211 
4212   if (actual_reserve_size < min_stack_allowed) {
4213     tty->print_cr("\nThe stack size specified is too small, "
4214                   "Specify at least %dk",
4215                   min_stack_allowed / K);
4216     return JNI_ERR;
4217   }
4218 
4219   JavaThread::set_stack_size_at_create(stack_commit_size);
4220 
4221   // Calculate theoretical max. size of Threads to guard gainst artifical
4222   // out-of-memory situations, where all available address-space has been
4223   // reserved by thread stacks.
4224   assert(actual_reserve_size != 0, "Must have a stack");
4225 
4226   // Calculate the thread limit when we should start doing Virtual Memory
4227   // banging. Currently when the threads will have used all but 200Mb of space.
4228   //
4229   // TODO: consider performing a similar calculation for commit size instead
4230   // as reserve size, since on a 64-bit platform we'll run into that more
4231   // often than running out of virtual memory space.  We can use the
4232   // lower value of the two calculations as the os_thread_limit.
4233   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4234   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4235 
4236   // at exit methods are called in the reverse order of their registration.
4237   // there is no limit to the number of functions registered. atexit does
4238   // not set errno.
4239 
4240   if (PerfAllowAtExitRegistration) {
4241     // only register atexit functions if PerfAllowAtExitRegistration is set.
4242     // atexit functions can be delayed until process exit time, which
4243     // can be problematic for embedded VM situations. Embedded VMs should
4244     // call DestroyJavaVM() to assure that VM resources are released.
4245 
4246     // note: perfMemory_exit_helper atexit function may be removed in
4247     // the future if the appropriate cleanup code can be added to the
4248     // VM_Exit VMOperation's doit method.
4249     if (atexit(perfMemory_exit_helper) != 0) {
4250       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4251     }
4252   }
4253 
4254 #ifndef _WIN64
4255   // Print something if NX is enabled (win32 on AMD64)
4256   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4257 #endif
4258 
4259   // initialize thread priority policy
4260   prio_init();
4261 
4262   if (UseNUMA && !ForceNUMA) {
4263     UseNUMA = false; // We don't fully support this yet
4264   }
4265 
4266   if (UseNUMAInterleaving) {
4267     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4268     bool success = numa_interleaving_init();
4269     if (!success) UseNUMAInterleaving = false;
4270   }
4271 
4272   if (initSock() != JNI_OK) {
4273     return JNI_ERR;
4274   }
4275 
4276   return JNI_OK;
4277 }
4278 
4279 // Mark the polling page as unreadable
4280 void os::make_polling_page_unreadable(void) {
4281   DWORD old_status;
4282   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4283                       PAGE_NOACCESS, &old_status)) {
4284     fatal("Could not disable polling page");
4285   }
4286 }
4287 
4288 // Mark the polling page as readable
4289 void os::make_polling_page_readable(void) {
4290   DWORD old_status;
4291   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4292                       PAGE_READONLY, &old_status)) {
4293     fatal("Could not enable polling page");
4294   }
4295 }
4296 
4297 
4298 int os::stat(const char *path, struct stat *sbuf) {
4299   char pathbuf[MAX_PATH];
4300   if (strlen(path) > MAX_PATH - 1) {
4301     errno = ENAMETOOLONG;
4302     return -1;
4303   }
4304   os::native_path(strcpy(pathbuf, path));
4305   int ret = ::stat(pathbuf, sbuf);
4306   if (sbuf != NULL && UseUTCFileTimestamp) {
4307     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4308     // the system timezone and so can return different values for the
4309     // same file if/when daylight savings time changes.  This adjustment
4310     // makes sure the same timestamp is returned regardless of the TZ.
4311     //
4312     // See:
4313     // http://msdn.microsoft.com/library/
4314     //   default.asp?url=/library/en-us/sysinfo/base/
4315     //   time_zone_information_str.asp
4316     // and
4317     // http://msdn.microsoft.com/library/default.asp?url=
4318     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4319     //
4320     // NOTE: there is a insidious bug here:  If the timezone is changed
4321     // after the call to stat() but before 'GetTimeZoneInformation()', then
4322     // the adjustment we do here will be wrong and we'll return the wrong
4323     // value (which will likely end up creating an invalid class data
4324     // archive).  Absent a better API for this, or some time zone locking
4325     // mechanism, we'll have to live with this risk.
4326     TIME_ZONE_INFORMATION tz;
4327     DWORD tzid = GetTimeZoneInformation(&tz);
4328     int daylightBias =
4329       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4330     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4331   }
4332   return ret;
4333 }
4334 
4335 
4336 #define FT2INT64(ft) \
4337   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4338 
4339 
4340 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4341 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4342 // of a thread.
4343 //
4344 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4345 // the fast estimate available on the platform.
4346 
4347 // current_thread_cpu_time() is not optimized for Windows yet
4348 jlong os::current_thread_cpu_time() {
4349   // return user + sys since the cost is the same
4350   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4351 }
4352 
4353 jlong os::thread_cpu_time(Thread* thread) {
4354   // consistent with what current_thread_cpu_time() returns.
4355   return os::thread_cpu_time(thread, true /* user+sys */);
4356 }
4357 
4358 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4359   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4360 }
4361 
4362 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4363   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4364   // If this function changes, os::is_thread_cpu_time_supported() should too
4365   FILETIME CreationTime;
4366   FILETIME ExitTime;
4367   FILETIME KernelTime;
4368   FILETIME UserTime;
4369 
4370   if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4371                       &ExitTime, &KernelTime, &UserTime) == 0) {
4372     return -1;
4373   } else if (user_sys_cpu_time) {
4374     return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4375   } else {
4376     return FT2INT64(UserTime) * 100;
4377   }
4378 }
4379 
4380 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4381   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4382   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4383   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4384   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4385 }
4386 
4387 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4388   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4389   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4390   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4391   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4392 }
4393 
4394 bool os::is_thread_cpu_time_supported() {
4395   // see os::thread_cpu_time
4396   FILETIME CreationTime;
4397   FILETIME ExitTime;
4398   FILETIME KernelTime;
4399   FILETIME UserTime;
4400 
4401   if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4402                       &KernelTime, &UserTime) == 0) {
4403     return false;
4404   } else {
4405     return true;
4406   }
4407 }
4408 
4409 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4410 // It does have primitives (PDH API) to get CPU usage and run queue length.
4411 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4412 // If we wanted to implement loadavg on Windows, we have a few options:
4413 //
4414 // a) Query CPU usage and run queue length and "fake" an answer by
4415 //    returning the CPU usage if it's under 100%, and the run queue
4416 //    length otherwise.  It turns out that querying is pretty slow
4417 //    on Windows, on the order of 200 microseconds on a fast machine.
4418 //    Note that on the Windows the CPU usage value is the % usage
4419 //    since the last time the API was called (and the first call
4420 //    returns 100%), so we'd have to deal with that as well.
4421 //
4422 // b) Sample the "fake" answer using a sampling thread and store
4423 //    the answer in a global variable.  The call to loadavg would
4424 //    just return the value of the global, avoiding the slow query.
4425 //
4426 // c) Sample a better answer using exponential decay to smooth the
4427 //    value.  This is basically the algorithm used by UNIX kernels.
4428 //
4429 // Note that sampling thread starvation could affect both (b) and (c).
4430 int os::loadavg(double loadavg[], int nelem) {
4431   return -1;
4432 }
4433 
4434 
4435 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4436 bool os::dont_yield() {
4437   return DontYieldALot;
4438 }
4439 
4440 // This method is a slightly reworked copy of JDK's sysOpen
4441 // from src/windows/hpi/src/sys_api_md.c
4442 
4443 int os::open(const char *path, int oflag, int mode) {
4444   char pathbuf[MAX_PATH];
4445 
4446   if (strlen(path) > MAX_PATH - 1) {
4447     errno = ENAMETOOLONG;
4448     return -1;
4449   }
4450   os::native_path(strcpy(pathbuf, path));
4451   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4452 }
4453 
4454 FILE* os::open(int fd, const char* mode) {
4455   return ::_fdopen(fd, mode);
4456 }
4457 
4458 // Is a (classpath) directory empty?
4459 bool os::dir_is_empty(const char* path) {
4460   WIN32_FIND_DATA fd;
4461   HANDLE f = FindFirstFile(path, &fd);
4462   if (f == INVALID_HANDLE_VALUE) {
4463     return true;
4464   }
4465   FindClose(f);
4466   return false;
4467 }
4468 
4469 // create binary file, rewriting existing file if required
4470 int os::create_binary_file(const char* path, bool rewrite_existing) {
4471   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4472   if (!rewrite_existing) {
4473     oflags |= _O_EXCL;
4474   }
4475   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4476 }
4477 
4478 // return current position of file pointer
4479 jlong os::current_file_offset(int fd) {
4480   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4481 }
4482 
4483 // move file pointer to the specified offset
4484 jlong os::seek_to_file_offset(int fd, jlong offset) {
4485   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4486 }
4487 
4488 
4489 jlong os::lseek(int fd, jlong offset, int whence) {
4490   return (jlong) ::_lseeki64(fd, offset, whence);
4491 }
4492 
4493 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4494   OVERLAPPED ov;
4495   DWORD nread;
4496   BOOL result;
4497 
4498   ZeroMemory(&ov, sizeof(ov));
4499   ov.Offset = (DWORD)offset;
4500   ov.OffsetHigh = (DWORD)(offset >> 32);
4501 
4502   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4503 
4504   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4505 
4506   return result ? nread : 0;
4507 }
4508 
4509 
4510 // This method is a slightly reworked copy of JDK's sysNativePath
4511 // from src/windows/hpi/src/path_md.c
4512 
4513 // Convert a pathname to native format.  On win32, this involves forcing all
4514 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4515 // sometimes rejects '/') and removing redundant separators.  The input path is
4516 // assumed to have been converted into the character encoding used by the local
4517 // system.  Because this might be a double-byte encoding, care is taken to
4518 // treat double-byte lead characters correctly.
4519 //
4520 // This procedure modifies the given path in place, as the result is never
4521 // longer than the original.  There is no error return; this operation always
4522 // succeeds.
4523 char * os::native_path(char *path) {
4524   char *src = path, *dst = path, *end = path;
4525   char *colon = NULL;  // If a drive specifier is found, this will
4526                        // point to the colon following the drive letter
4527 
4528   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4529   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4530           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4531 
4532   // Check for leading separators
4533 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4534   while (isfilesep(*src)) {
4535     src++;
4536   }
4537 
4538   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4539     // Remove leading separators if followed by drive specifier.  This
4540     // hack is necessary to support file URLs containing drive
4541     // specifiers (e.g., "file://c:/path").  As a side effect,
4542     // "/c:/path" can be used as an alternative to "c:/path".
4543     *dst++ = *src++;
4544     colon = dst;
4545     *dst++ = ':';
4546     src++;
4547   } else {
4548     src = path;
4549     if (isfilesep(src[0]) && isfilesep(src[1])) {
4550       // UNC pathname: Retain first separator; leave src pointed at
4551       // second separator so that further separators will be collapsed
4552       // into the second separator.  The result will be a pathname
4553       // beginning with "\\\\" followed (most likely) by a host name.
4554       src = dst = path + 1;
4555       path[0] = '\\';     // Force first separator to '\\'
4556     }
4557   }
4558 
4559   end = dst;
4560 
4561   // Remove redundant separators from remainder of path, forcing all
4562   // separators to be '\\' rather than '/'. Also, single byte space
4563   // characters are removed from the end of the path because those
4564   // are not legal ending characters on this operating system.
4565   //
4566   while (*src != '\0') {
4567     if (isfilesep(*src)) {
4568       *dst++ = '\\'; src++;
4569       while (isfilesep(*src)) src++;
4570       if (*src == '\0') {
4571         // Check for trailing separator
4572         end = dst;
4573         if (colon == dst - 2) break;  // "z:\\"
4574         if (dst == path + 1) break;   // "\\"
4575         if (dst == path + 2 && isfilesep(path[0])) {
4576           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4577           // beginning of a UNC pathname.  Even though it is not, by
4578           // itself, a valid UNC pathname, we leave it as is in order
4579           // to be consistent with the path canonicalizer as well
4580           // as the win32 APIs, which treat this case as an invalid
4581           // UNC pathname rather than as an alias for the root
4582           // directory of the current drive.
4583           break;
4584         }
4585         end = --dst;  // Path does not denote a root directory, so
4586                       // remove trailing separator
4587         break;
4588       }
4589       end = dst;
4590     } else {
4591       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4592         *dst++ = *src++;
4593         if (*src) *dst++ = *src++;
4594         end = dst;
4595       } else {  // Copy a single-byte character
4596         char c = *src++;
4597         *dst++ = c;
4598         // Space is not a legal ending character
4599         if (c != ' ') end = dst;
4600       }
4601     }
4602   }
4603 
4604   *end = '\0';
4605 
4606   // For "z:", add "." to work around a bug in the C runtime library
4607   if (colon == dst - 1) {
4608     path[2] = '.';
4609     path[3] = '\0';
4610   }
4611 
4612   return path;
4613 }
4614 
4615 // This code is a copy of JDK's sysSetLength
4616 // from src/windows/hpi/src/sys_api_md.c
4617 
4618 int os::ftruncate(int fd, jlong length) {
4619   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4620   long high = (long)(length >> 32);
4621   DWORD ret;
4622 
4623   if (h == (HANDLE)(-1)) {
4624     return -1;
4625   }
4626 
4627   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4628   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4629     return -1;
4630   }
4631 
4632   if (::SetEndOfFile(h) == FALSE) {
4633     return -1;
4634   }
4635 
4636   return 0;
4637 }
4638 
4639 int os::get_fileno(FILE* fp) {
4640   return _fileno(fp);
4641 }
4642 
4643 // This code is a copy of JDK's sysSync
4644 // from src/windows/hpi/src/sys_api_md.c
4645 // except for the legacy workaround for a bug in Win 98
4646 
4647 int os::fsync(int fd) {
4648   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4649 
4650   if ((!::FlushFileBuffers(handle)) &&
4651       (GetLastError() != ERROR_ACCESS_DENIED)) {
4652     // from winerror.h
4653     return -1;
4654   }
4655   return 0;
4656 }
4657 
4658 static int nonSeekAvailable(int, long *);
4659 static int stdinAvailable(int, long *);
4660 
4661 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4662 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4663 
4664 // This code is a copy of JDK's sysAvailable
4665 // from src/windows/hpi/src/sys_api_md.c
4666 
4667 int os::available(int fd, jlong *bytes) {
4668   jlong cur, end;
4669   struct _stati64 stbuf64;
4670 
4671   if (::_fstati64(fd, &stbuf64) >= 0) {
4672     int mode = stbuf64.st_mode;
4673     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4674       int ret;
4675       long lpbytes;
4676       if (fd == 0) {
4677         ret = stdinAvailable(fd, &lpbytes);
4678       } else {
4679         ret = nonSeekAvailable(fd, &lpbytes);
4680       }
4681       (*bytes) = (jlong)(lpbytes);
4682       return ret;
4683     }
4684     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4685       return FALSE;
4686     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4687       return FALSE;
4688     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4689       return FALSE;
4690     }
4691     *bytes = end - cur;
4692     return TRUE;
4693   } else {
4694     return FALSE;
4695   }
4696 }
4697 
4698 void os::flockfile(FILE* fp) {
4699   _lock_file(fp);
4700 }
4701 
4702 void os::funlockfile(FILE* fp) {
4703   _unlock_file(fp);
4704 }
4705 
4706 // This code is a copy of JDK's nonSeekAvailable
4707 // from src/windows/hpi/src/sys_api_md.c
4708 
4709 static int nonSeekAvailable(int fd, long *pbytes) {
4710   // This is used for available on non-seekable devices
4711   // (like both named and anonymous pipes, such as pipes
4712   //  connected to an exec'd process).
4713   // Standard Input is a special case.
4714   HANDLE han;
4715 
4716   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4717     return FALSE;
4718   }
4719 
4720   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4721     // PeekNamedPipe fails when at EOF.  In that case we
4722     // simply make *pbytes = 0 which is consistent with the
4723     // behavior we get on Solaris when an fd is at EOF.
4724     // The only alternative is to raise an Exception,
4725     // which isn't really warranted.
4726     //
4727     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4728       return FALSE;
4729     }
4730     *pbytes = 0;
4731   }
4732   return TRUE;
4733 }
4734 
4735 #define MAX_INPUT_EVENTS 2000
4736 
4737 // This code is a copy of JDK's stdinAvailable
4738 // from src/windows/hpi/src/sys_api_md.c
4739 
4740 static int stdinAvailable(int fd, long *pbytes) {
4741   HANDLE han;
4742   DWORD numEventsRead = 0;  // Number of events read from buffer
4743   DWORD numEvents = 0;      // Number of events in buffer
4744   DWORD i = 0;              // Loop index
4745   DWORD curLength = 0;      // Position marker
4746   DWORD actualLength = 0;   // Number of bytes readable
4747   BOOL error = FALSE;       // Error holder
4748   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4749 
4750   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4751     return FALSE;
4752   }
4753 
4754   // Construct an array of input records in the console buffer
4755   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4756   if (error == 0) {
4757     return nonSeekAvailable(fd, pbytes);
4758   }
4759 
4760   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4761   if (numEvents > MAX_INPUT_EVENTS) {
4762     numEvents = MAX_INPUT_EVENTS;
4763   }
4764 
4765   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4766   if (lpBuffer == NULL) {
4767     return FALSE;
4768   }
4769 
4770   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4771   if (error == 0) {
4772     os::free(lpBuffer);
4773     return FALSE;
4774   }
4775 
4776   // Examine input records for the number of bytes available
4777   for (i=0; i<numEvents; i++) {
4778     if (lpBuffer[i].EventType == KEY_EVENT) {
4779 
4780       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4781                                       &(lpBuffer[i].Event);
4782       if (keyRecord->bKeyDown == TRUE) {
4783         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4784         curLength++;
4785         if (*keyPressed == '\r') {
4786           actualLength = curLength;
4787         }
4788       }
4789     }
4790   }
4791 
4792   if (lpBuffer != NULL) {
4793     os::free(lpBuffer);
4794   }
4795 
4796   *pbytes = (long) actualLength;
4797   return TRUE;
4798 }
4799 
4800 // Map a block of memory.
4801 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4802                         char *addr, size_t bytes, bool read_only,
4803                         bool allow_exec) {
4804   HANDLE hFile;
4805   char* base;
4806 
4807   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4808                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4809   if (hFile == NULL) {
4810     log_info(os)("CreateFile() failed: GetLastError->%ld.", GetLastError());
4811     return NULL;
4812   }
4813 
4814   if (allow_exec) {
4815     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4816     // unless it comes from a PE image (which the shared archive is not.)
4817     // Even VirtualProtect refuses to give execute access to mapped memory
4818     // that was not previously executable.
4819     //
4820     // Instead, stick the executable region in anonymous memory.  Yuck.
4821     // Penalty is that ~4 pages will not be shareable - in the future
4822     // we might consider DLLizing the shared archive with a proper PE
4823     // header so that mapping executable + sharing is possible.
4824 
4825     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4826                                 PAGE_READWRITE);
4827     if (base == NULL) {
4828       log_info(os)("VirtualAlloc() failed: GetLastError->%ld.", GetLastError());
4829       CloseHandle(hFile);
4830       return NULL;
4831     }
4832 
4833     DWORD bytes_read;
4834     OVERLAPPED overlapped;
4835     overlapped.Offset = (DWORD)file_offset;
4836     overlapped.OffsetHigh = 0;
4837     overlapped.hEvent = NULL;
4838     // ReadFile guarantees that if the return value is true, the requested
4839     // number of bytes were read before returning.
4840     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4841     if (!res) {
4842       log_info(os)("ReadFile() failed: GetLastError->%ld.", GetLastError());
4843       release_memory(base, bytes);
4844       CloseHandle(hFile);
4845       return NULL;
4846     }
4847   } else {
4848     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4849                                     NULL /* file_name */);
4850     if (hMap == NULL) {
4851       log_info(os)("CreateFileMapping() failed: GetLastError->%ld.", GetLastError());
4852       CloseHandle(hFile);
4853       return NULL;
4854     }
4855 
4856     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4857     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4858                                   (DWORD)bytes, addr);
4859     if (base == NULL) {
4860       log_info(os)("MapViewOfFileEx() failed: GetLastError->%ld.", GetLastError());
4861       CloseHandle(hMap);
4862       CloseHandle(hFile);
4863       return NULL;
4864     }
4865 
4866     if (CloseHandle(hMap) == 0) {
4867       log_info(os)("CloseHandle(hMap) failed: GetLastError->%ld.", GetLastError());
4868       CloseHandle(hFile);
4869       return base;
4870     }
4871   }
4872 
4873   if (allow_exec) {
4874     DWORD old_protect;
4875     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4876     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4877 
4878     if (!res) {
4879       log_info(os)("VirtualProtect() failed: GetLastError->%ld.", GetLastError());
4880       // Don't consider this a hard error, on IA32 even if the
4881       // VirtualProtect fails, we should still be able to execute
4882       CloseHandle(hFile);
4883       return base;
4884     }
4885   }
4886 
4887   if (CloseHandle(hFile) == 0) {
4888     log_info(os)("CloseHandle(hFile) failed: GetLastError->%ld.", GetLastError());
4889     return base;
4890   }
4891 
4892   return base;
4893 }
4894 
4895 
4896 // Remap a block of memory.
4897 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4898                           char *addr, size_t bytes, bool read_only,
4899                           bool allow_exec) {
4900   // This OS does not allow existing memory maps to be remapped so we
4901   // have to unmap the memory before we remap it.
4902   if (!os::unmap_memory(addr, bytes)) {
4903     return NULL;
4904   }
4905 
4906   // There is a very small theoretical window between the unmap_memory()
4907   // call above and the map_memory() call below where a thread in native
4908   // code may be able to access an address that is no longer mapped.
4909 
4910   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4911                         read_only, allow_exec);
4912 }
4913 
4914 
4915 // Unmap a block of memory.
4916 // Returns true=success, otherwise false.
4917 
4918 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4919   MEMORY_BASIC_INFORMATION mem_info;
4920   if (VirtualQuery(addr, &mem_info, sizeof(mem_info)) == 0) {
4921     log_info(os)("VirtualQuery() failed: GetLastError->%ld.", GetLastError());
4922     return false;
4923   }
4924 
4925   // Executable memory was not mapped using CreateFileMapping/MapViewOfFileEx.
4926   // Instead, executable region was allocated using VirtualAlloc(). See
4927   // pd_map_memory() above.
4928   //
4929   // The following flags should match the 'exec_access' flages used for
4930   // VirtualProtect() in pd_map_memory().
4931   if (mem_info.Protect == PAGE_EXECUTE_READ ||
4932       mem_info.Protect == PAGE_EXECUTE_READWRITE) {
4933     return pd_release_memory(addr, bytes);
4934   }
4935 
4936   BOOL result = UnmapViewOfFile(addr);
4937   if (result == 0) {
4938     log_info(os)("UnmapViewOfFile() failed: GetLastError->%ld.", GetLastError());
4939     return false;
4940   }
4941   return true;
4942 }
4943 
4944 void os::pause() {
4945   char filename[MAX_PATH];
4946   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4947     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4948   } else {
4949     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4950   }
4951 
4952   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4953   if (fd != -1) {
4954     struct stat buf;
4955     ::close(fd);
4956     while (::stat(filename, &buf) == 0) {
4957       Sleep(100);
4958     }
4959   } else {
4960     jio_fprintf(stderr,
4961                 "Could not open pause file '%s', continuing immediately.\n", filename);
4962   }
4963 }
4964 
4965 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4966   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4967 }
4968 
4969 // See the caveats for this class in os_windows.hpp
4970 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4971 // into this method and returns false. If no OS EXCEPTION was raised, returns
4972 // true.
4973 // The callback is supposed to provide the method that should be protected.
4974 //
4975 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4976   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4977   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4978          "crash_protection already set?");
4979 
4980   bool success = true;
4981   __try {
4982     WatcherThread::watcher_thread()->set_crash_protection(this);
4983     cb.call();
4984   } __except(EXCEPTION_EXECUTE_HANDLER) {
4985     // only for protection, nothing to do
4986     success = false;
4987   }
4988   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4989   return success;
4990 }
4991 
4992 // An Event wraps a win32 "CreateEvent" kernel handle.
4993 //
4994 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4995 //
4996 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4997 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4998 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4999 //     In addition, an unpark() operation might fetch the handle field, but the
5000 //     event could recycle between the fetch and the SetEvent() operation.
5001 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
5002 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
5003 //     on an stale but recycled handle would be harmless, but in practice this might
5004 //     confuse other non-Sun code, so it's not a viable approach.
5005 //
5006 // 2:  Once a win32 event handle is associated with an Event, it remains associated
5007 //     with the Event.  The event handle is never closed.  This could be construed
5008 //     as handle leakage, but only up to the maximum # of threads that have been extant
5009 //     at any one time.  This shouldn't be an issue, as windows platforms typically
5010 //     permit a process to have hundreds of thousands of open handles.
5011 //
5012 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
5013 //     and release unused handles.
5014 //
5015 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
5016 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
5017 //
5018 // 5.  Use an RCU-like mechanism (Read-Copy Update).
5019 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
5020 //
5021 // We use (2).
5022 //
5023 // TODO-FIXME:
5024 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
5025 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
5026 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
5027 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
5028 //     into a single win32 CreateEvent() handle.
5029 //
5030 // Assumption:
5031 //    Only one parker can exist on an event, which is why we allocate
5032 //    them per-thread. Multiple unparkers can coexist.
5033 //
5034 // _Event transitions in park()
5035 //   -1 => -1 : illegal
5036 //    1 =>  0 : pass - return immediately
5037 //    0 => -1 : block; then set _Event to 0 before returning
5038 //
5039 // _Event transitions in unpark()
5040 //    0 => 1 : just return
5041 //    1 => 1 : just return
5042 //   -1 => either 0 or 1; must signal target thread
5043 //         That is, we can safely transition _Event from -1 to either
5044 //         0 or 1.
5045 //
5046 // _Event serves as a restricted-range semaphore.
5047 //   -1 : thread is blocked, i.e. there is a waiter
5048 //    0 : neutral: thread is running or ready,
5049 //        could have been signaled after a wait started
5050 //    1 : signaled - thread is running or ready
5051 //
5052 // Another possible encoding of _Event would be with
5053 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5054 //
5055 
5056 int os::PlatformEvent::park(jlong Millis) {
5057   // Transitions for _Event:
5058   //   -1 => -1 : illegal
5059   //    1 =>  0 : pass - return immediately
5060   //    0 => -1 : block; then set _Event to 0 before returning
5061 
5062   guarantee(_ParkHandle != NULL , "Invariant");
5063   guarantee(Millis > 0          , "Invariant");
5064 
5065   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
5066   // the initial park() operation.
5067   // Consider: use atomic decrement instead of CAS-loop
5068 
5069   int v;
5070   for (;;) {
5071     v = _Event;
5072     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5073   }
5074   guarantee((v == 0) || (v == 1), "invariant");
5075   if (v != 0) return OS_OK;
5076 
5077   // Do this the hard way by blocking ...
5078   // TODO: consider a brief spin here, gated on the success of recent
5079   // spin attempts by this thread.
5080   //
5081   // We decompose long timeouts into series of shorter timed waits.
5082   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
5083   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
5084   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
5085   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
5086   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
5087   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
5088   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
5089   // for the already waited time.  This policy does not admit any new outcomes.
5090   // In the future, however, we might want to track the accumulated wait time and
5091   // adjust Millis accordingly if we encounter a spurious wakeup.
5092 
5093   const int MAXTIMEOUT = 0x10000000;
5094   DWORD rv = WAIT_TIMEOUT;
5095   while (_Event < 0 && Millis > 0) {
5096     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5097     if (Millis > MAXTIMEOUT) {
5098       prd = MAXTIMEOUT;
5099     }
5100     rv = ::WaitForSingleObject(_ParkHandle, prd);
5101     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5102     if (rv == WAIT_TIMEOUT) {
5103       Millis -= prd;
5104     }
5105   }
5106   v = _Event;
5107   _Event = 0;
5108   // see comment at end of os::PlatformEvent::park() below:
5109   OrderAccess::fence();
5110   // If we encounter a nearly simultanous timeout expiry and unpark()
5111   // we return OS_OK indicating we awoke via unpark().
5112   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5113   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5114 }
5115 
5116 void os::PlatformEvent::park() {
5117   // Transitions for _Event:
5118   //   -1 => -1 : illegal
5119   //    1 =>  0 : pass - return immediately
5120   //    0 => -1 : block; then set _Event to 0 before returning
5121 
5122   guarantee(_ParkHandle != NULL, "Invariant");
5123   // Invariant: Only the thread associated with the Event/PlatformEvent
5124   // may call park().
5125   // Consider: use atomic decrement instead of CAS-loop
5126   int v;
5127   for (;;) {
5128     v = _Event;
5129     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5130   }
5131   guarantee((v == 0) || (v == 1), "invariant");
5132   if (v != 0) return;
5133 
5134   // Do this the hard way by blocking ...
5135   // TODO: consider a brief spin here, gated on the success of recent
5136   // spin attempts by this thread.
5137   while (_Event < 0) {
5138     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5139     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5140   }
5141 
5142   // Usually we'll find _Event == 0 at this point, but as
5143   // an optional optimization we clear it, just in case can
5144   // multiple unpark() operations drove _Event up to 1.
5145   _Event = 0;
5146   OrderAccess::fence();
5147   guarantee(_Event >= 0, "invariant");
5148 }
5149 
5150 void os::PlatformEvent::unpark() {
5151   guarantee(_ParkHandle != NULL, "Invariant");
5152 
5153   // Transitions for _Event:
5154   //    0 => 1 : just return
5155   //    1 => 1 : just return
5156   //   -1 => either 0 or 1; must signal target thread
5157   //         That is, we can safely transition _Event from -1 to either
5158   //         0 or 1.
5159   // See also: "Semaphores in Plan 9" by Mullender & Cox
5160   //
5161   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5162   // that it will take two back-to-back park() calls for the owning
5163   // thread to block. This has the benefit of forcing a spurious return
5164   // from the first park() call after an unpark() call which will help
5165   // shake out uses of park() and unpark() without condition variables.
5166 
5167   if (Atomic::xchg(1, &_Event) >= 0) return;
5168 
5169   ::SetEvent(_ParkHandle);
5170 }
5171 
5172 
5173 // JSR166
5174 // -------------------------------------------------------
5175 
5176 // The Windows implementation of Park is very straightforward: Basic
5177 // operations on Win32 Events turn out to have the right semantics to
5178 // use them directly. We opportunistically resuse the event inherited
5179 // from Monitor.
5180 
5181 void Parker::park(bool isAbsolute, jlong time) {
5182   guarantee(_ParkEvent != NULL, "invariant");
5183   // First, demultiplex/decode time arguments
5184   if (time < 0) { // don't wait
5185     return;
5186   } else if (time == 0 && !isAbsolute) {
5187     time = INFINITE;
5188   } else if (isAbsolute) {
5189     time -= os::javaTimeMillis(); // convert to relative time
5190     if (time <= 0) {  // already elapsed
5191       return;
5192     }
5193   } else { // relative
5194     time /= 1000000;  // Must coarsen from nanos to millis
5195     if (time == 0) {  // Wait for the minimal time unit if zero
5196       time = 1;
5197     }
5198   }
5199 
5200   JavaThread* thread = JavaThread::current();
5201 
5202   // Don't wait if interrupted or already triggered
5203   if (Thread::is_interrupted(thread, false) ||
5204       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5205     ResetEvent(_ParkEvent);
5206     return;
5207   } else {
5208     ThreadBlockInVM tbivm(thread);
5209     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5210     thread->set_suspend_equivalent();
5211 
5212     WaitForSingleObject(_ParkEvent, time);
5213     ResetEvent(_ParkEvent);
5214 
5215     // If externally suspended while waiting, re-suspend
5216     if (thread->handle_special_suspend_equivalent_condition()) {
5217       thread->java_suspend_self();
5218     }
5219   }
5220 }
5221 
5222 void Parker::unpark() {
5223   guarantee(_ParkEvent != NULL, "invariant");
5224   SetEvent(_ParkEvent);
5225 }
5226 
5227 // Run the specified command in a separate process. Return its exit value,
5228 // or -1 on failure (e.g. can't create a new process).
5229 int os::fork_and_exec(char* cmd) {
5230   STARTUPINFO si;
5231   PROCESS_INFORMATION pi;
5232 
5233   memset(&si, 0, sizeof(si));
5234   si.cb = sizeof(si);
5235   memset(&pi, 0, sizeof(pi));
5236   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5237                             cmd,    // command line
5238                             NULL,   // process security attribute
5239                             NULL,   // thread security attribute
5240                             TRUE,   // inherits system handles
5241                             0,      // no creation flags
5242                             NULL,   // use parent's environment block
5243                             NULL,   // use parent's starting directory
5244                             &si,    // (in) startup information
5245                             &pi);   // (out) process information
5246 
5247   if (rslt) {
5248     // Wait until child process exits.
5249     WaitForSingleObject(pi.hProcess, INFINITE);
5250 
5251     DWORD exit_code;
5252     GetExitCodeProcess(pi.hProcess, &exit_code);
5253 
5254     // Close process and thread handles.
5255     CloseHandle(pi.hProcess);
5256     CloseHandle(pi.hThread);
5257 
5258     return (int)exit_code;
5259   } else {
5260     return -1;
5261   }
5262 }
5263 
5264 //--------------------------------------------------------------------------------------------------
5265 // Non-product code
5266 
5267 static int mallocDebugIntervalCounter = 0;
5268 static int mallocDebugCounter = 0;
5269 
5270 // For debugging possible bugs inside HeapWalk (a ring buffer)
5271 #define SAVE_COUNT 8
5272 static PROCESS_HEAP_ENTRY saved_heap_entries[SAVE_COUNT];
5273 static int saved_heap_entry_index;
5274 
5275 bool os::check_heap(bool force) {
5276   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5277   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5278     // Note: HeapValidate executes two hardware breakpoints when it finds something
5279     // wrong; at these points, eax contains the address of the offending block (I think).
5280     // To get to the exlicit error message(s) below, just continue twice.
5281     //
5282     // Note:  we want to check the CRT heap, which is not necessarily located in the
5283     // process default heap.
5284     HANDLE heap = (HANDLE) _get_heap_handle();
5285     if (!heap) {
5286       return true;
5287     }
5288 
5289     // If we fail to lock the heap, then gflags.exe has been used
5290     // or some other special heap flag has been set that prevents
5291     // locking. We don't try to walk a heap we can't lock.
5292     if (HeapLock(heap) != 0) {
5293       PROCESS_HEAP_ENTRY phe;
5294       phe.lpData = NULL;
5295       memset(saved_heap_entries, 0, sizeof(saved_heap_entries));
5296       saved_heap_entry_index = 0;
5297       int count = 0;
5298 
5299       while (HeapWalk(heap, &phe) != 0) {
5300         count ++;
5301         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5302             !HeapValidate(heap, 0, phe.lpData)) {
5303           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5304           tty->print_cr("corrupted block near address %#x, length %d, count %d", phe.lpData, phe.cbData, count);
5305           HeapUnlock(heap);
5306           fatal("corrupted C heap");
5307         } else {
5308           // Save previous seen entries in a ring buffer. We have seen strange
5309           // heap corruption fatal errors that produced mdmp files, but when we load
5310           // these mdmp files in WinDBG, "!heap -triage" shows no error.
5311           // We can examine the saved_heap_entries[] array in the mdmp file to
5312           // diagnose such seemingly spurious errors reported by HeapWalk.
5313           saved_heap_entries[saved_heap_entry_index++] = phe;
5314           if (saved_heap_entry_index >= SAVE_COUNT) {
5315             saved_heap_entry_index = 0;
5316           }
5317         }
5318       }
5319       DWORD err = GetLastError();
5320       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED &&
5321          (err == ERROR_INVALID_FUNCTION && phe.lpData != NULL)) {
5322         HeapUnlock(heap);
5323         fatal("heap walk aborted with error %d", err);
5324       }
5325       HeapUnlock(heap);
5326     }
5327     mallocDebugIntervalCounter = 0;
5328   }
5329   return true;
5330 }
5331 
5332 
5333 bool os::find(address addr, outputStream* st) {
5334   int offset = -1;
5335   bool result = false;
5336   char buf[256];
5337   if (os::dll_address_to_library_name(addr, buf, sizeof(buf), &offset)) {
5338     st->print(PTR_FORMAT " ", addr);
5339     if (strlen(buf) < sizeof(buf) - 1) {
5340       char* p = strrchr(buf, '\\');
5341       if (p) {
5342         st->print("%s", p + 1);
5343       } else {
5344         st->print("%s", buf);
5345       }
5346     } else {
5347         // The library name is probably truncated. Let's omit the library name.
5348         // See also JDK-8147512.
5349     }
5350     if (os::dll_address_to_function_name(addr, buf, sizeof(buf), &offset)) {
5351       st->print("::%s + 0x%x", buf, offset);
5352     }
5353     st->cr();
5354     result = true;
5355   }
5356   return result;
5357 }
5358 
5359 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5360   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5361 
5362   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5363     JavaThread* thread = JavaThread::current();
5364     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5365     address addr = (address) exceptionRecord->ExceptionInformation[1];
5366 
5367     if (os::is_memory_serialize_page(thread, addr)) {
5368       return EXCEPTION_CONTINUE_EXECUTION;
5369     }
5370   }
5371 
5372   return EXCEPTION_CONTINUE_SEARCH;
5373 }
5374 
5375 // We don't build a headless jre for Windows
5376 bool os::is_headless_jre() { return false; }
5377 
5378 static jint initSock() {
5379   WSADATA wsadata;
5380 
5381   if (WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5382     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5383                 ::GetLastError());
5384     return JNI_ERR;
5385   }
5386   return JNI_OK;
5387 }
5388 
5389 struct hostent* os::get_host_by_name(char* name) {
5390   return (struct hostent*)gethostbyname(name);
5391 }
5392 
5393 int os::socket_close(int fd) {
5394   return ::closesocket(fd);
5395 }
5396 
5397 int os::socket(int domain, int type, int protocol) {
5398   return ::socket(domain, type, protocol);
5399 }
5400 
5401 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5402   return ::connect(fd, him, len);
5403 }
5404 
5405 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5406   return ::recv(fd, buf, (int)nBytes, flags);
5407 }
5408 
5409 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5410   return ::send(fd, buf, (int)nBytes, flags);
5411 }
5412 
5413 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5414   return ::send(fd, buf, (int)nBytes, flags);
5415 }
5416 
5417 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5418 #if defined(IA32)
5419   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5420 #elif defined (AMD64)
5421   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5422 #endif
5423 
5424 // returns true if thread could be suspended,
5425 // false otherwise
5426 static bool do_suspend(HANDLE* h) {
5427   if (h != NULL) {
5428     if (SuspendThread(*h) != ~0) {
5429       return true;
5430     }
5431   }
5432   return false;
5433 }
5434 
5435 // resume the thread
5436 // calling resume on an active thread is a no-op
5437 static void do_resume(HANDLE* h) {
5438   if (h != NULL) {
5439     ResumeThread(*h);
5440   }
5441 }
5442 
5443 // retrieve a suspend/resume context capable handle
5444 // from the tid. Caller validates handle return value.
5445 void get_thread_handle_for_extended_context(HANDLE* h,
5446                                             OSThread::thread_id_t tid) {
5447   if (h != NULL) {
5448     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5449   }
5450 }
5451 
5452 // Thread sampling implementation
5453 //
5454 void os::SuspendedThreadTask::internal_do_task() {
5455   CONTEXT    ctxt;
5456   HANDLE     h = NULL;
5457 
5458   // get context capable handle for thread
5459   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5460 
5461   // sanity
5462   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5463     return;
5464   }
5465 
5466   // suspend the thread
5467   if (do_suspend(&h)) {
5468     ctxt.ContextFlags = sampling_context_flags;
5469     // get thread context
5470     GetThreadContext(h, &ctxt);
5471     SuspendedThreadTaskContext context(_thread, &ctxt);
5472     // pass context to Thread Sampling impl
5473     do_task(context);
5474     // resume thread
5475     do_resume(&h);
5476   }
5477 
5478   // close handle
5479   CloseHandle(h);
5480 }
5481 
5482 bool os::start_debugging(char *buf, int buflen) {
5483   int len = (int)strlen(buf);
5484   char *p = &buf[len];
5485 
5486   jio_snprintf(p, buflen-len,
5487              "\n\n"
5488              "Do you want to debug the problem?\n\n"
5489              "To debug, attach Visual Studio to process %d; then switch to thread 0x%x\n"
5490              "Select 'Yes' to launch Visual Studio automatically (PATH must include msdev)\n"
5491              "Otherwise, select 'No' to abort...",
5492              os::current_process_id(), os::current_thread_id());
5493 
5494   bool yes = os::message_box("Unexpected Error", buf);
5495 
5496   if (yes) {
5497     // os::breakpoint() calls DebugBreak(), which causes a breakpoint
5498     // exception. If VM is running inside a debugger, the debugger will
5499     // catch the exception. Otherwise, the breakpoint exception will reach
5500     // the default windows exception handler, which can spawn a debugger and
5501     // automatically attach to the dying VM.
5502     os::breakpoint();
5503     yes = false;
5504   }
5505   return yes;
5506 }
5507 
5508 void* os::get_default_process_handle() {
5509   return (void*)GetModuleHandle(NULL);
5510 }
5511 
5512 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5513 // which is used to find statically linked in agents.
5514 // Additionally for windows, takes into account __stdcall names.
5515 // Parameters:
5516 //            sym_name: Symbol in library we are looking for
5517 //            lib_name: Name of library to look in, NULL for shared libs.
5518 //            is_absolute_path == true if lib_name is absolute path to agent
5519 //                                     such as "C:/a/b/L.dll"
5520 //            == false if only the base name of the library is passed in
5521 //               such as "L"
5522 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5523                                     bool is_absolute_path) {
5524   char *agent_entry_name;
5525   size_t len;
5526   size_t name_len;
5527   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5528   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5529   const char *start;
5530 
5531   if (lib_name != NULL) {
5532     len = name_len = strlen(lib_name);
5533     if (is_absolute_path) {
5534       // Need to strip path, prefix and suffix
5535       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5536         lib_name = ++start;
5537       } else {
5538         // Need to check for drive prefix
5539         if ((start = strchr(lib_name, ':')) != NULL) {
5540           lib_name = ++start;
5541         }
5542       }
5543       if (len <= (prefix_len + suffix_len)) {
5544         return NULL;
5545       }
5546       lib_name += prefix_len;
5547       name_len = strlen(lib_name) - suffix_len;
5548     }
5549   }
5550   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5551   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5552   if (agent_entry_name == NULL) {
5553     return NULL;
5554   }
5555   if (lib_name != NULL) {
5556     const char *p = strrchr(sym_name, '@');
5557     if (p != NULL && p != sym_name) {
5558       // sym_name == _Agent_OnLoad@XX
5559       strncpy(agent_entry_name, sym_name, (p - sym_name));
5560       agent_entry_name[(p-sym_name)] = '\0';
5561       // agent_entry_name == _Agent_OnLoad
5562       strcat(agent_entry_name, "_");
5563       strncat(agent_entry_name, lib_name, name_len);
5564       strcat(agent_entry_name, p);
5565       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5566     } else {
5567       strcpy(agent_entry_name, sym_name);
5568       strcat(agent_entry_name, "_");
5569       strncat(agent_entry_name, lib_name, name_len);
5570     }
5571   } else {
5572     strcpy(agent_entry_name, sym_name);
5573   }
5574   return agent_entry_name;
5575 }
5576 
5577 #ifndef PRODUCT
5578 
5579 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5580 // contiguous memory block at a particular address.
5581 // The test first tries to find a good approximate address to allocate at by using the same
5582 // method to allocate some memory at any address. The test then tries to allocate memory in
5583 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5584 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5585 // the previously allocated memory is available for allocation. The only actual failure
5586 // that is reported is when the test tries to allocate at a particular location but gets a
5587 // different valid one. A NULL return value at this point is not considered an error but may
5588 // be legitimate.
5589 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5590 void TestReserveMemorySpecial_test() {
5591   if (!UseLargePages) {
5592     if (VerboseInternalVMTests) {
5593       tty->print("Skipping test because large pages are disabled");
5594     }
5595     return;
5596   }
5597   // save current value of globals
5598   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5599   bool old_use_numa_interleaving = UseNUMAInterleaving;
5600 
5601   // set globals to make sure we hit the correct code path
5602   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5603 
5604   // do an allocation at an address selected by the OS to get a good one.
5605   const size_t large_allocation_size = os::large_page_size() * 4;
5606   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5607   if (result == NULL) {
5608     if (VerboseInternalVMTests) {
5609       tty->print("Failed to allocate control block with size " SIZE_FORMAT ". Skipping remainder of test.",
5610                           large_allocation_size);
5611     }
5612   } else {
5613     os::release_memory_special(result, large_allocation_size);
5614 
5615     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5616     // we managed to get it once.
5617     const size_t expected_allocation_size = os::large_page_size();
5618     char* expected_location = result + os::large_page_size();
5619     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5620     if (actual_location == NULL) {
5621       if (VerboseInternalVMTests) {
5622         tty->print("Failed to allocate any memory at " PTR_FORMAT " size " SIZE_FORMAT ". Skipping remainder of test.",
5623                             expected_location, large_allocation_size);
5624       }
5625     } else {
5626       // release memory
5627       os::release_memory_special(actual_location, expected_allocation_size);
5628       // only now check, after releasing any memory to avoid any leaks.
5629       assert(actual_location == expected_location,
5630              "Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
5631              expected_location, expected_allocation_size, actual_location);
5632     }
5633   }
5634 
5635   // restore globals
5636   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5637   UseNUMAInterleaving = old_use_numa_interleaving;
5638 }
5639 #endif // PRODUCT
5640 
5641 /*
5642   All the defined signal names for Windows.
5643 
5644   NOTE that not all of these names are accepted by FindSignal!
5645 
5646   For various reasons some of these may be rejected at runtime.
5647 
5648   Here are the names currently accepted by a user of sun.misc.Signal with
5649   1.4.1 (ignoring potential interaction with use of chaining, etc):
5650 
5651      (LIST TBD)
5652 
5653 */
5654 int os::get_signal_number(const char* name) {
5655   static const struct {
5656     char* name;
5657     int   number;
5658   } siglabels [] =
5659     // derived from version 6.0 VC98/include/signal.h
5660   {"ABRT",      SIGABRT,        // abnormal termination triggered by abort cl
5661   "FPE",        SIGFPE,         // floating point exception
5662   "SEGV",       SIGSEGV,        // segment violation
5663   "INT",        SIGINT,         // interrupt
5664   "TERM",       SIGTERM,        // software term signal from kill
5665   "BREAK",      SIGBREAK,       // Ctrl-Break sequence
5666   "ILL",        SIGILL};        // illegal instruction
5667   for (unsigned i = 0; i < ARRAY_SIZE(siglabels); ++i) {
5668     if (strcmp(name, siglabels[i].name) == 0) {
5669       return siglabels[i].number;
5670     }
5671   }
5672   return -1;
5673 }
5674 
5675 // Fast current thread access
5676 
5677 int os::win32::_thread_ptr_offset = 0;
5678 
5679 static void call_wrapper_dummy() {}
5680 
5681 // We need to call the os_exception_wrapper once so that it sets
5682 // up the offset from FS of the thread pointer.
5683 void os::win32::initialize_thread_ptr_offset() {
5684   os::os_exception_wrapper((java_call_t)call_wrapper_dummy,
5685                            NULL, NULL, NULL, NULL);
5686 }
--- EOF ---