1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "os_share_linux.hpp"
  37 #include "prims/jniFastGetField.hpp"
  38 #include "prims/jvm.h"
  39 #include "prims/jvm_misc.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/extendedPC.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/interfaceSupport.hpp"
  44 #include "runtime/java.hpp"
  45 #include "runtime/javaCalls.hpp"
  46 #include "runtime/mutexLocker.hpp"
  47 #include "runtime/osThread.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/thread.inline.hpp"
  51 #include "runtime/timer.hpp"
  52 #include "services/memTracker.hpp"
  53 #include "utilities/events.hpp"
  54 #include "utilities/vmError.hpp"
  55 
  56 // put OS-includes here
  57 # include <sys/types.h>
  58 # include <sys/mman.h>
  59 # include <pthread.h>
  60 # include <signal.h>
  61 # include <errno.h>
  62 # include <dlfcn.h>
  63 # include <stdlib.h>
  64 # include <stdio.h>
  65 # include <unistd.h>
  66 # include <sys/resource.h>
  67 # include <pthread.h>
  68 # include <sys/stat.h>
  69 # include <sys/time.h>
  70 # include <sys/utsname.h>
  71 # include <sys/socket.h>
  72 # include <sys/wait.h>
  73 # include <pwd.h>
  74 # include <poll.h>
  75 # include <ucontext.h>
  76 # include <fpu_control.h>
  77 
  78 #ifdef AMD64
  79 #define REG_SP REG_RSP
  80 #define REG_PC REG_RIP
  81 #define REG_FP REG_RBP
  82 #define SPELL_REG_SP "rsp"
  83 #define SPELL_REG_FP "rbp"
  84 #else
  85 #define REG_SP REG_UESP
  86 #define REG_PC REG_EIP
  87 #define REG_FP REG_EBP
  88 #define SPELL_REG_SP "esp"
  89 #define SPELL_REG_FP "ebp"
  90 #endif // AMD64
  91 
  92 address os::current_stack_pointer() {
  93 #ifdef SPARC_WORKS
  94   register void *esp;
  95   __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
  96   return (address) ((char*)esp + sizeof(long)*2);
  97 #elif defined(__clang__)
  98   intptr_t* esp;
  99   __asm__ __volatile__ ("mov %%"SPELL_REG_SP", %0":"=r"(esp):);
 100   return (address) esp;
 101 #else
 102   register void *esp __asm__ (SPELL_REG_SP);
 103   return (address) esp;
 104 #endif
 105 }
 106 
 107 char* os::non_memory_address_word() {
 108   // Must never look like an address returned by reserve_memory,
 109   // even in its subfields (as defined by the CPU immediate fields,
 110   // if the CPU splits constants across multiple instructions).
 111 
 112   return (char*) -1;
 113 }
 114 
 115 void os::initialize_thread(Thread* thr) {
 116 // Nothing to do.
 117 }
 118 
 119 address os::Linux::ucontext_get_pc(const ucontext_t * uc) {
 120   return (address)uc->uc_mcontext.gregs[REG_PC];
 121 }
 122 
 123 void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) {
 124   uc->uc_mcontext.gregs[REG_PC] = (intptr_t)pc;
 125 }
 126 
 127 intptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) {
 128   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
 129 }
 130 
 131 intptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) {
 132   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
 133 }
 134 
 135 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
 136 // is currently interrupted by SIGPROF.
 137 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
 138 // frames. Currently we don't do that on Linux, so it's the same as
 139 // os::fetch_frame_from_context().
 140 // This method is also used for stack overflow signal handling.
 141 ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
 142   const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
 143 
 144   assert(thread != NULL, "just checking");
 145   assert(ret_sp != NULL, "just checking");
 146   assert(ret_fp != NULL, "just checking");
 147 
 148   return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
 149 }
 150 
 151 ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
 152                     intptr_t** ret_sp, intptr_t** ret_fp) {
 153 
 154   ExtendedPC  epc;
 155   const ucontext_t* uc = (const ucontext_t*)ucVoid;
 156 
 157   if (uc != NULL) {
 158     epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
 159     if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
 160     if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
 161   } else {
 162     // construct empty ExtendedPC for return value checking
 163     epc = ExtendedPC(NULL);
 164     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 165     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 166   }
 167 
 168   return epc;
 169 }
 170 
 171 frame os::fetch_frame_from_context(const void* ucVoid) {
 172   intptr_t* sp;
 173   intptr_t* fp;
 174   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 175   return frame(sp, fp, epc.pc());
 176 }
 177 
 178 frame os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) {
 179   intptr_t* sp;
 180   intptr_t* fp;
 181   ExtendedPC epc = os::Linux::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, &fp);
 182   return frame(sp, fp, epc.pc());
 183 }
 184 
 185 bool os::Linux::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
 186   address pc = (address) os::Linux::ucontext_get_pc(uc);
 187   if (Interpreter::contains(pc)) {
 188     // interpreter performs stack banging after the fixed frame header has
 189     // been generated while the compilers perform it before. To maintain
 190     // semantic consistency between interpreted and compiled frames, the
 191     // method returns the Java sender of the current frame.
 192     *fr = os::fetch_frame_from_ucontext(thread, uc);
 193     if (!fr->is_first_java_frame()) {
 194       assert(fr->safe_for_sender(thread), "Safety check");
 195       *fr = fr->java_sender();
 196     }
 197   } else {
 198     // more complex code with compiled code
 199     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
 200     CodeBlob* cb = CodeCache::find_blob(pc);
 201     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
 202       // Not sure where the pc points to, fallback to default
 203       // stack overflow handling
 204       return false;
 205     } else {
 206       // in compiled code, the stack banging is performed just after the return pc
 207       // has been pushed on the stack
 208       intptr_t* fp = os::Linux::ucontext_get_fp(uc);
 209       intptr_t* sp = os::Linux::ucontext_get_sp(uc);
 210       *fr = frame(sp + 1, fp, (address)*sp);
 211       if (!fr->is_java_frame()) {
 212         assert(fr->safe_for_sender(thread), "Safety check");
 213         assert(!fr->is_first_frame(), "Safety check");
 214         *fr = fr->java_sender();
 215       }
 216     }
 217   }
 218   assert(fr->is_java_frame(), "Safety check");
 219   return true;
 220 }
 221 
 222 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
 223 // turned off by -fomit-frame-pointer,
 224 frame os::get_sender_for_C_frame(frame* fr) {
 225   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
 226 }
 227 
 228 intptr_t* _get_previous_fp() {
 229 #ifdef SPARC_WORKS
 230   register intptr_t **ebp;
 231   __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
 232 #elif defined(__clang__)
 233   intptr_t **ebp;
 234   __asm__ __volatile__ ("mov %%"SPELL_REG_FP", %0":"=r"(ebp):);
 235 #else
 236   register intptr_t **ebp __asm__ (SPELL_REG_FP);
 237 #endif
 238   return (intptr_t*) *ebp;   // we want what it points to.
 239 }
 240 
 241 
 242 frame os::current_frame() {
 243   intptr_t* fp = _get_previous_fp();
 244   frame myframe((intptr_t*)os::current_stack_pointer(),
 245                 (intptr_t*)fp,
 246                 CAST_FROM_FN_PTR(address, os::current_frame));
 247   if (os::is_first_C_frame(&myframe)) {
 248     // stack is not walkable
 249     return frame();
 250   } else {
 251     return os::get_sender_for_C_frame(&myframe);
 252   }
 253 }
 254 
 255 // Utility functions
 256 
 257 // From IA32 System Programming Guide
 258 enum {
 259   trap_page_fault = 0xE
 260 };
 261 
 262 extern "C" JNIEXPORT int
 263 JVM_handle_linux_signal(int sig,
 264                         siginfo_t* info,
 265                         void* ucVoid,
 266                         int abort_if_unrecognized) {
 267   ucontext_t* uc = (ucontext_t*) ucVoid;
 268 
 269   Thread* t = Thread::current_or_null_safe();
 270 
 271   // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
 272   // (no destructors can be run)
 273   os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
 274 
 275   SignalHandlerMark shm(t);
 276 
 277   // Note: it's not uncommon that JNI code uses signal/sigset to install
 278   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
 279   // or have a SIGILL handler when detecting CPU type). When that happens,
 280   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
 281   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
 282   // that do not require siginfo/ucontext first.
 283 
 284   if (sig == SIGPIPE || sig == SIGXFSZ) {
 285     // allow chained handler to go first
 286     if (os::Linux::chained_handler(sig, info, ucVoid)) {
 287       return true;
 288     } else {
 289       // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219
 290       return true;
 291     }
 292   }
 293 
 294   JavaThread* thread = NULL;
 295   VMThread* vmthread = NULL;
 296   if (os::Linux::signal_handlers_are_installed) {
 297     if (t != NULL ){
 298       if(t->is_Java_thread()) {
 299         thread = (JavaThread*)t;
 300       }
 301       else if(t->is_VM_thread()){
 302         vmthread = (VMThread *)t;
 303       }
 304     }
 305   }
 306 /*
 307   NOTE: does not seem to work on linux.
 308   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
 309     // can't decode this kind of signal
 310     info = NULL;
 311   } else {
 312     assert(sig == info->si_signo, "bad siginfo");
 313   }
 314 */
 315   // decide if this trap can be handled by a stub
 316   address stub = NULL;
 317 
 318   address pc          = NULL;
 319 
 320   //%note os_trap_1
 321   if (info != NULL && uc != NULL && thread != NULL) {
 322     pc = (address) os::Linux::ucontext_get_pc(uc);
 323 
 324     if (StubRoutines::is_safefetch_fault(pc)) {
 325       os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
 326       return 1;
 327     }
 328 
 329 #ifndef AMD64
 330     // Halt if SI_KERNEL before more crashes get misdiagnosed as Java bugs
 331     // This can happen in any running code (currently more frequently in
 332     // interpreter code but has been seen in compiled code)
 333     if (sig == SIGSEGV && info->si_addr == 0 && info->si_code == SI_KERNEL) {
 334       fatal("An irrecoverable SI_KERNEL SIGSEGV has occurred due "
 335             "to unstable signal handling in this distribution.");
 336     }
 337 #endif // AMD64
 338 
 339     // Handle ALL stack overflow variations here
 340     if (sig == SIGSEGV) {
 341       address addr = (address) info->si_addr;
 342 
 343       // check if fault address is within thread stack
 344       if (thread->on_local_stack(addr)) {
 345         // stack overflow
 346         if (thread->in_stack_yellow_reserved_zone(addr)) {
 347           if (thread->thread_state() == _thread_in_Java) {
 348             if (thread->in_stack_reserved_zone(addr)) {
 349               frame fr;
 350               if (os::Linux::get_frame_at_stack_banging_point(thread, uc, &fr)) {
 351                 assert(fr.is_java_frame(), "Must be a Java frame");
 352                 frame activation =
 353                   SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
 354                 if (activation.sp() != NULL) {
 355                   thread->disable_stack_reserved_zone();
 356                   if (activation.is_interpreted_frame()) {
 357                     thread->set_reserved_stack_activation((address)(
 358                       activation.fp() + frame::interpreter_frame_initial_sp_offset));
 359                   } else {
 360                     thread->set_reserved_stack_activation((address)activation.unextended_sp());
 361                   }
 362                   return 1;
 363                 }
 364               }
 365             }
 366             // Throw a stack overflow exception.  Guard pages will be reenabled
 367             // while unwinding the stack.
 368             thread->disable_stack_yellow_reserved_zone();
 369             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 370           } else {
 371             // Thread was in the vm or native code.  Return and try to finish.
 372             thread->disable_stack_yellow_reserved_zone();
 373             return 1;
 374           }
 375         } else if (thread->in_stack_red_zone(addr)) {
 376           // Fatal red zone violation.  Disable the guard pages and fall through
 377           // to handle_unexpected_exception way down below.
 378           thread->disable_stack_red_zone();
 379           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 380 
 381           // This is a likely cause, but hard to verify. Let's just print
 382           // it as a hint.
 383           tty->print_raw_cr("Please check if any of your loaded .so files has "
 384                             "enabled executable stack (see man page execstack(8))");
 385         } else {
 386           // Accessing stack address below sp may cause SEGV if current
 387           // thread has MAP_GROWSDOWN stack. This should only happen when
 388           // current thread was created by user code with MAP_GROWSDOWN flag
 389           // and then attached to VM. See notes in os_linux.cpp.
 390           if (thread->osthread()->expanding_stack() == 0) {
 391              thread->osthread()->set_expanding_stack();
 392              if (os::Linux::manually_expand_stack(thread, addr)) {
 393                thread->osthread()->clear_expanding_stack();
 394                return 1;
 395              }
 396              thread->osthread()->clear_expanding_stack();
 397           } else {
 398              fatal("recursive segv. expanding stack.");
 399           }
 400         }
 401       }
 402     }
 403 
 404     if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
 405       // Verify that OS save/restore AVX registers.
 406       stub = VM_Version::cpuinfo_cont_addr();
 407     }
 408 
 409     if (thread->thread_state() == _thread_in_Java) {
 410       // Java thread running in Java code => find exception handler if any
 411       // a fault inside compiled code, the interpreter, or a stub
 412 
 413       if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
 414         stub = SharedRuntime::get_poll_stub(pc);
 415       } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
 416         // BugId 4454115: A read from a MappedByteBuffer can fault
 417         // here if the underlying file has been truncated.
 418         // Do not crash the VM in such a case.
 419         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 420         CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
 421         if (nm != NULL && nm->has_unsafe_access()) {
 422           address next_pc = Assembler::locate_next_instruction(pc);
 423           stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
 424         }
 425       }
 426       else
 427 
 428 #ifdef AMD64
 429       if (sig == SIGFPE  &&
 430           (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
 431         stub =
 432           SharedRuntime::
 433           continuation_for_implicit_exception(thread,
 434                                               pc,
 435                                               SharedRuntime::
 436                                               IMPLICIT_DIVIDE_BY_ZERO);
 437 #else
 438       if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
 439         // HACK: si_code does not work on linux 2.2.12-20!!!
 440         int op = pc[0];
 441         if (op == 0xDB) {
 442           // FIST
 443           // TODO: The encoding of D2I in i486.ad can cause an exception
 444           // prior to the fist instruction if there was an invalid operation
 445           // pending. We want to dismiss that exception. From the win_32
 446           // side it also seems that if it really was the fist causing
 447           // the exception that we do the d2i by hand with different
 448           // rounding. Seems kind of weird.
 449           // NOTE: that we take the exception at the NEXT floating point instruction.
 450           assert(pc[0] == 0xDB, "not a FIST opcode");
 451           assert(pc[1] == 0x14, "not a FIST opcode");
 452           assert(pc[2] == 0x24, "not a FIST opcode");
 453           return true;
 454         } else if (op == 0xF7) {
 455           // IDIV
 456           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 457         } else {
 458           // TODO: handle more cases if we are using other x86 instructions
 459           //   that can generate SIGFPE signal on linux.
 460           tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
 461           fatal("please update this code.");
 462         }
 463 #endif // AMD64
 464       } else if (sig == SIGSEGV &&
 465                !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
 466           // Determination of interpreter/vtable stub/compiled code null exception
 467           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 468       }
 469     } else if (thread->thread_state() == _thread_in_vm &&
 470                sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
 471                thread->doing_unsafe_access()) {
 472         address next_pc = Assembler::locate_next_instruction(pc);
 473         stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
 474     }
 475 
 476     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
 477     // and the heap gets shrunk before the field access.
 478     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
 479       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 480       if (addr != (address)-1) {
 481         stub = addr;
 482       }
 483     }
 484 
 485     // Check to see if we caught the safepoint code in the
 486     // process of write protecting the memory serialization page.
 487     // It write enables the page immediately after protecting it
 488     // so we can just return to retry the write.
 489     if ((sig == SIGSEGV) &&
 490         os::is_memory_serialize_page(thread, (address) info->si_addr)) {
 491       // Block current thread until the memory serialize page permission restored.
 492       os::block_on_serialize_page_trap();
 493       return true;
 494     }
 495   }
 496 
 497 #ifndef AMD64
 498   // Execution protection violation
 499   //
 500   // This should be kept as the last step in the triage.  We don't
 501   // have a dedicated trap number for a no-execute fault, so be
 502   // conservative and allow other handlers the first shot.
 503   //
 504   // Note: We don't test that info->si_code == SEGV_ACCERR here.
 505   // this si_code is so generic that it is almost meaningless; and
 506   // the si_code for this condition may change in the future.
 507   // Furthermore, a false-positive should be harmless.
 508   if (UnguardOnExecutionViolation > 0 &&
 509       (sig == SIGSEGV || sig == SIGBUS) &&
 510       uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
 511     int page_size = os::vm_page_size();
 512     address addr = (address) info->si_addr;
 513     address pc = os::Linux::ucontext_get_pc(uc);
 514     // Make sure the pc and the faulting address are sane.
 515     //
 516     // If an instruction spans a page boundary, and the page containing
 517     // the beginning of the instruction is executable but the following
 518     // page is not, the pc and the faulting address might be slightly
 519     // different - we still want to unguard the 2nd page in this case.
 520     //
 521     // 15 bytes seems to be a (very) safe value for max instruction size.
 522     bool pc_is_near_addr =
 523       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
 524     bool instr_spans_page_boundary =
 525       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
 526                        (intptr_t) page_size) > 0);
 527 
 528     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
 529       static volatile address last_addr =
 530         (address) os::non_memory_address_word();
 531 
 532       // In conservative mode, don't unguard unless the address is in the VM
 533       if (addr != last_addr &&
 534           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
 535 
 536         // Set memory to RWX and retry
 537         address page_start =
 538           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
 539         bool res = os::protect_memory((char*) page_start, page_size,
 540                                       os::MEM_PROT_RWX);
 541 
 542         log_debug(os)("Execution protection violation "
 543                       "at " INTPTR_FORMAT
 544                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", p2i(addr),
 545                       p2i(page_start), (res ? "success" : "failed"), errno);
 546         stub = pc;
 547 
 548         // Set last_addr so if we fault again at the same address, we don't end
 549         // up in an endless loop.
 550         //
 551         // There are two potential complications here.  Two threads trapping at
 552         // the same address at the same time could cause one of the threads to
 553         // think it already unguarded, and abort the VM.  Likely very rare.
 554         //
 555         // The other race involves two threads alternately trapping at
 556         // different addresses and failing to unguard the page, resulting in
 557         // an endless loop.  This condition is probably even more unlikely than
 558         // the first.
 559         //
 560         // Although both cases could be avoided by using locks or thread local
 561         // last_addr, these solutions are unnecessary complication: this
 562         // handler is a best-effort safety net, not a complete solution.  It is
 563         // disabled by default and should only be used as a workaround in case
 564         // we missed any no-execute-unsafe VM code.
 565 
 566         last_addr = addr;
 567       }
 568     }
 569   }
 570 #endif // !AMD64
 571 
 572   if (stub != NULL) {
 573     // save all thread context in case we need to restore it
 574     if (thread != NULL) thread->set_saved_exception_pc(pc);
 575 
 576     os::Linux::ucontext_set_pc(uc, stub);
 577     return true;
 578   }
 579 
 580   // signal-chaining
 581   if (os::Linux::chained_handler(sig, info, ucVoid)) {
 582      return true;
 583   }
 584 
 585   if (!abort_if_unrecognized) {
 586     // caller wants another chance, so give it to him
 587     return false;
 588   }
 589 
 590   if (pc == NULL && uc != NULL) {
 591     pc = os::Linux::ucontext_get_pc(uc);
 592   }
 593 
 594   // unmask current signal
 595   sigset_t newset;
 596   sigemptyset(&newset);
 597   sigaddset(&newset, sig);
 598   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 599 
 600   VMError::report_and_die(t, sig, pc, info, ucVoid);
 601 
 602   ShouldNotReachHere();
 603   return true; // Mute compiler
 604 }
 605 
 606 void os::Linux::init_thread_fpu_state(void) {
 607 #ifndef AMD64
 608   // set fpu to 53 bit precision
 609   set_fpu_control_word(0x27f);
 610 #endif // !AMD64
 611 }
 612 
 613 int os::Linux::get_fpu_control_word(void) {
 614 #ifdef AMD64
 615   return 0;
 616 #else
 617   int fpu_control;
 618   _FPU_GETCW(fpu_control);
 619   return fpu_control & 0xffff;
 620 #endif // AMD64
 621 }
 622 
 623 void os::Linux::set_fpu_control_word(int fpu_control) {
 624 #ifndef AMD64
 625   _FPU_SETCW(fpu_control);
 626 #endif // !AMD64
 627 }
 628 
 629 // Check that the linux kernel version is 2.4 or higher since earlier
 630 // versions do not support SSE without patches.
 631 bool os::supports_sse() {
 632 #ifdef AMD64
 633   return true;
 634 #else
 635   struct utsname uts;
 636   if( uname(&uts) != 0 ) return false; // uname fails?
 637   char *minor_string;
 638   int major = strtol(uts.release,&minor_string,10);
 639   int minor = strtol(minor_string+1,NULL,10);
 640   bool result = (major > 2 || (major==2 && minor >= 4));
 641   log_info(os)("OS version is %d.%d, which %s support SSE/SSE2",
 642                major,minor, result ? "DOES" : "does NOT");
 643   return result;
 644 #endif // AMD64
 645 }
 646 
 647 bool os::is_allocatable(size_t bytes) {
 648 #ifdef AMD64
 649   // unused on amd64?
 650   return true;
 651 #else
 652 
 653   if (bytes < 2 * G) {
 654     return true;
 655   }
 656 
 657   char* addr = reserve_memory(bytes, NULL);
 658 
 659   if (addr != NULL) {
 660     release_memory(addr, bytes);
 661   }
 662 
 663   return addr != NULL;
 664 #endif // AMD64
 665 }
 666 
 667 ////////////////////////////////////////////////////////////////////////////////
 668 // thread stack
 669 
 670 #ifdef AMD64
 671 size_t os::Linux::min_stack_allowed  = 64 * K;
 672 #else
 673 size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
 674 #endif // AMD64
 675 
 676 // return default stack size for thr_type
 677 size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
 678   // default stack size (compiler thread needs larger stack)
 679 #ifdef AMD64
 680   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
 681 #else
 682   size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
 683 #endif // AMD64
 684   return s;
 685 }
 686 
 687 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
 688   // Creating guard page is very expensive. Java thread has HotSpot
 689   // guard page, only enable glibc guard page for non-Java threads.
 690   return (thr_type == java_thread ? 0 : page_size());
 691 }
 692 
 693 // Java thread:
 694 //
 695 //   Low memory addresses
 696 //    +------------------------+
 697 //    |                        |\  JavaThread created by VM does not have glibc
 698 //    |    glibc guard page    | - guard, attached Java thread usually has
 699 //    |                        |/  1 page glibc guard.
 700 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
 701 //    |                        |\
 702 //    |  HotSpot Guard Pages   | - red and yellow pages
 703 //    |                        |/
 704 //    +------------------------+ JavaThread::stack_yellow_zone_base()
 705 //    |                        |\
 706 //    |      Normal Stack      | -
 707 //    |                        |/
 708 // P2 +------------------------+ Thread::stack_base()
 709 //
 710 // Non-Java thread:
 711 //
 712 //   Low memory addresses
 713 //    +------------------------+
 714 //    |                        |\
 715 //    |  glibc guard page      | - usually 1 page
 716 //    |                        |/
 717 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
 718 //    |                        |\
 719 //    |      Normal Stack      | -
 720 //    |                        |/
 721 // P2 +------------------------+ Thread::stack_base()
 722 //
 723 // ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
 724 //    pthread_attr_getstack()
 725 
 726 static void current_stack_region(address * bottom, size_t * size) {
 727   if (os::Linux::is_initial_thread()) {
 728      // initial thread needs special handling because pthread_getattr_np()
 729      // may return bogus value.
 730      *bottom = os::Linux::initial_thread_stack_bottom();
 731      *size   = os::Linux::initial_thread_stack_size();
 732   } else {
 733      pthread_attr_t attr;
 734 
 735      int rslt = pthread_getattr_np(pthread_self(), &attr);
 736 
 737      // JVM needs to know exact stack location, abort if it fails
 738      if (rslt != 0) {
 739        if (rslt == ENOMEM) {
 740          vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
 741        } else {
 742          fatal("pthread_getattr_np failed with errno = %d", rslt);
 743        }
 744      }
 745 
 746      if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
 747          fatal("Can not locate current stack attributes!");
 748      }
 749 
 750      pthread_attr_destroy(&attr);
 751 
 752   }
 753   assert(os::current_stack_pointer() >= *bottom &&
 754          os::current_stack_pointer() < *bottom + *size, "just checking");
 755 }
 756 
 757 address os::current_stack_base() {
 758   address bottom;
 759   size_t size;
 760   current_stack_region(&bottom, &size);
 761   return (bottom + size);
 762 }
 763 
 764 size_t os::current_stack_size() {
 765   // stack size includes normal stack and HotSpot guard pages
 766   address bottom;
 767   size_t size;
 768   current_stack_region(&bottom, &size);
 769   return size;
 770 }
 771 
 772 /////////////////////////////////////////////////////////////////////////////
 773 // helper functions for fatal error handler
 774 
 775 void os::print_context(outputStream *st, const void *context) {
 776   if (context == NULL) return;
 777 
 778   const ucontext_t *uc = (const ucontext_t*)context;
 779   st->print_cr("Registers:");
 780 #ifdef AMD64
 781   st->print(  "RAX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RAX]);
 782   st->print(", RBX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBX]);
 783   st->print(", RCX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RCX]);
 784   st->print(", RDX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDX]);
 785   st->cr();
 786   st->print(  "RSP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSP]);
 787   st->print(", RBP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBP]);
 788   st->print(", RSI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSI]);
 789   st->print(", RDI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDI]);
 790   st->cr();
 791   st->print(  "R8 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R8]);
 792   st->print(", R9 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R9]);
 793   st->print(", R10=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R10]);
 794   st->print(", R11=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R11]);
 795   st->cr();
 796   st->print(  "R12=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R12]);
 797   st->print(", R13=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R13]);
 798   st->print(", R14=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R14]);
 799   st->print(", R15=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R15]);
 800   st->cr();
 801   st->print(  "RIP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RIP]);
 802   st->print(", EFLAGS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_EFL]);
 803   st->print(", CSGSFS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_CSGSFS]);
 804   st->print(", ERR=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_ERR]);
 805   st->cr();
 806   st->print("  TRAPNO=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_TRAPNO]);
 807 #else
 808   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
 809   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
 810   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
 811   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
 812   st->cr();
 813   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
 814   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
 815   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
 816   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
 817   st->cr();
 818   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
 819   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
 820   st->print(", CR2=" PTR64_FORMAT, (uint64_t)uc->uc_mcontext.cr2);
 821 #endif // AMD64
 822   st->cr();
 823   st->cr();
 824 
 825   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
 826   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp));
 827   print_hex_dump(st, (address)sp, (address)(sp + 8), sizeof(intptr_t));
 828   st->cr();
 829 
 830   // Note: it may be unsafe to inspect memory near pc. For example, pc may
 831   // point to garbage if entry point in an nmethod is corrupted. Leave
 832   // this at the end, and hope for the best.
 833   address pc = os::Linux::ucontext_get_pc(uc);
 834   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", p2i(pc));
 835   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
 836 }
 837 
 838 void os::print_register_info(outputStream *st, const void *context) {
 839   if (context == NULL) return;
 840 
 841   const ucontext_t *uc = (const ucontext_t*)context;
 842 
 843   st->print_cr("Register to memory mapping:");
 844   st->cr();
 845 
 846   // this is horrendously verbose but the layout of the registers in the
 847   // context does not match how we defined our abstract Register set, so
 848   // we can't just iterate through the gregs area
 849 
 850   // this is only for the "general purpose" registers
 851 
 852 #ifdef AMD64
 853   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
 854   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
 855   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
 856   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
 857   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
 858   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
 859   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
 860   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
 861   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
 862   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
 863   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
 864   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
 865   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
 866   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
 867   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
 868   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
 869 #else
 870   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
 871   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
 872   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
 873   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
 874   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
 875   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
 876   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
 877   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
 878 #endif // AMD64
 879 
 880   st->cr();
 881 }
 882 
 883 void os::setup_fpu() {
 884 #ifndef AMD64
 885   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
 886   __asm__ volatile (  "fldcw (%0)" :
 887                       : "r" (fpu_cntrl) : "memory");
 888 #endif // !AMD64
 889 }
 890 
 891 #ifndef PRODUCT
 892 void os::verify_stack_alignment() {
 893 #ifdef AMD64
 894   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
 895 #endif
 896 }
 897 #endif
 898 
 899 
 900 /*
 901  * IA32 only: execute code at a high address in case buggy NX emulation is present. I.e. avoid CS limit
 902  * updates (JDK-8023956).
 903  */
 904 void os::workaround_expand_exec_shield_cs_limit() {
 905 #if defined(IA32)
 906   size_t page_size = os::vm_page_size();
 907   /*
 908    * Take the highest VA the OS will give us and exec
 909    *
 910    * Although using -(pagesz) as mmap hint works on newer kernel as you would
 911    * think, older variants affected by this work-around don't (search forward only).
 912    *
 913    * On the affected distributions, we understand the memory layout to be:
 914    *
 915    *   TASK_LIMIT= 3G, main stack base close to TASK_LIMT.
 916    *
 917    * A few pages south main stack will do it.
 918    *
 919    * If we are embedded in an app other than launcher (initial != main stack),
 920    * we don't have much control or understanding of the address space, just let it slide.
 921    */
 922   char* hint = (char*)(Linux::initial_thread_stack_bottom() -
 923                        (JavaThread::stack_guard_zone_size() + page_size));
 924   char* codebuf = os::attempt_reserve_memory_at(page_size, hint);
 925   if ((codebuf == NULL) || (!os::commit_memory(codebuf, page_size, true))) {
 926     return; // No matter, we tried, best effort.
 927   }
 928 
 929   MemTracker::record_virtual_memory_type((address)codebuf, mtInternal);
 930 
 931   log_info(os)("[CS limit NX emulation work-around, exec code at: %p]", codebuf);
 932 
 933   // Some code to exec: the 'ret' instruction
 934   codebuf[0] = 0xC3;
 935 
 936   // Call the code in the codebuf
 937   __asm__ volatile("call *%0" : : "r"(codebuf));
 938 
 939   // keep the page mapped so CS limit isn't reduced.
 940 #endif
 941 }
 942 
 943 int os::extra_bang_size_in_bytes() {
 944   // JDK-8050147 requires the full cache line bang for x86.
 945   return VM_Version::L1_line_size();
 946 }