1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "os_linux.inline.hpp"
  31 #include "runtime/handles.inline.hpp"
  32 #include "runtime/os.hpp"
  33 #include "runtime/perfMemory.hpp"
  34 #include "services/memTracker.hpp"
  35 #include "utilities/exceptions.hpp"
  36 
  37 // put OS-includes here
  38 # include <sys/types.h>
  39 # include <sys/mman.h>
  40 # include <errno.h>
  41 # include <stdio.h>
  42 # include <unistd.h>
  43 # include <sys/stat.h>
  44 # include <signal.h>
  45 # include <pwd.h>
  46 
  47 static char* backing_store_file_name = NULL;  // name of the backing store
  48                                               // file, if successfully created.
  49 
  50 // Standard Memory Implementation Details
  51 
  52 // create the PerfData memory region in standard memory.
  53 //
  54 static char* create_standard_memory(size_t size) {
  55 
  56   // allocate an aligned chuck of memory
  57   char* mapAddress = os::reserve_memory(size);
  58 
  59   if (mapAddress == NULL) {
  60     return NULL;
  61   }
  62 
  63   // commit memory
  64   if (!os::commit_memory(mapAddress, size, !ExecMem)) {
  65     if (PrintMiscellaneous && Verbose) {
  66       warning("Could not commit PerfData memory\n");
  67     }
  68     os::release_memory(mapAddress, size);
  69     return NULL;
  70   }
  71 
  72   return mapAddress;
  73 }
  74 
  75 // delete the PerfData memory region
  76 //
  77 static void delete_standard_memory(char* addr, size_t size) {
  78 
  79   // there are no persistent external resources to cleanup for standard
  80   // memory. since DestroyJavaVM does not support unloading of the JVM,
  81   // cleanup of the memory resource is not performed. The memory will be
  82   // reclaimed by the OS upon termination of the process.
  83   //
  84   return;
  85 }
  86 
  87 // save the specified memory region to the given file
  88 //
  89 // Note: this function might be called from signal handler (by os::abort()),
  90 // don't allocate heap memory.
  91 //
  92 static void save_memory_to_file(char* addr, size_t size) {
  93 
  94  const char* destfile = PerfMemory::get_perfdata_file_path();
  95  assert(destfile[0] != '\0', "invalid PerfData file path");
  96 
  97   int result;
  98 
  99   RESTARTABLE(::open(destfile, O_CREAT|O_WRONLY|O_TRUNC, S_IREAD|S_IWRITE),
 100               result);;
 101   if (result == OS_ERR) {
 102     if (PrintMiscellaneous && Verbose) {
 103       warning("Could not create Perfdata save file: %s: %s\n",
 104               destfile, os::strerror(errno));
 105     }
 106   } else {
 107     int fd = result;
 108 
 109     for (size_t remaining = size; remaining > 0;) {
 110 
 111       RESTARTABLE(::write(fd, addr, remaining), result);
 112       if (result == OS_ERR) {
 113         if (PrintMiscellaneous && Verbose) {
 114           warning("Could not write Perfdata save file: %s: %s\n",
 115                   destfile, os::strerror(errno));
 116         }
 117         break;
 118       }
 119 
 120       remaining -= (size_t)result;
 121       addr += result;
 122     }
 123 
 124     result = ::close(fd);
 125     if (PrintMiscellaneous && Verbose) {
 126       if (result == OS_ERR) {
 127         warning("Could not close %s: %s\n", destfile, os::strerror(errno));
 128       }
 129     }
 130   }
 131   FREE_C_HEAP_ARRAY(char, destfile);
 132 }
 133 
 134 
 135 // Shared Memory Implementation Details
 136 
 137 // Note: the solaris and linux shared memory implementation uses the mmap
 138 // interface with a backing store file to implement named shared memory.
 139 // Using the file system as the name space for shared memory allows a
 140 // common name space to be supported across a variety of platforms. It
 141 // also provides a name space that Java applications can deal with through
 142 // simple file apis.
 143 //
 144 // The solaris and linux implementations store the backing store file in
 145 // a user specific temporary directory located in the /tmp file system,
 146 // which is always a local file system and is sometimes a RAM based file
 147 // system.
 148 
 149 // return the user specific temporary directory name.
 150 //
 151 // the caller is expected to free the allocated memory.
 152 //
 153 static char* get_user_tmp_dir(const char* user) {
 154 
 155   const char* tmpdir = os::get_temp_directory();
 156   const char* perfdir = PERFDATA_NAME;
 157   size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
 158   char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
 159 
 160   // construct the path name to user specific tmp directory
 161   snprintf(dirname, nbytes, "%s/%s_%s", tmpdir, perfdir, user);
 162 
 163   return dirname;
 164 }
 165 
 166 // convert the given file name into a process id. if the file
 167 // does not meet the file naming constraints, return 0.
 168 //
 169 static pid_t filename_to_pid(const char* filename) {
 170 
 171   // a filename that doesn't begin with a digit is not a
 172   // candidate for conversion.
 173   //
 174   if (!isdigit(*filename)) {
 175     return 0;
 176   }
 177 
 178   // check if file name can be converted to an integer without
 179   // any leftover characters.
 180   //
 181   char* remainder = NULL;
 182   errno = 0;
 183   pid_t pid = (pid_t)strtol(filename, &remainder, 10);
 184 
 185   if (errno != 0) {
 186     return 0;
 187   }
 188 
 189   // check for left over characters. If any, then the filename is
 190   // not a candidate for conversion.
 191   //
 192   if (remainder != NULL && *remainder != '\0') {
 193     return 0;
 194   }
 195 
 196   // successful conversion, return the pid
 197   return pid;
 198 }
 199 
 200 
 201 // Check if the given statbuf is considered a secure directory for
 202 // the backing store files. Returns true if the directory is considered
 203 // a secure location. Returns false if the statbuf is a symbolic link or
 204 // if an error occurred.
 205 //
 206 static bool is_statbuf_secure(struct stat *statp) {
 207   if (S_ISLNK(statp->st_mode) || !S_ISDIR(statp->st_mode)) {
 208     // The path represents a link or some non-directory file type,
 209     // which is not what we expected. Declare it insecure.
 210     //
 211     return false;
 212   }
 213   // We have an existing directory, check if the permissions are safe.
 214   //
 215   if ((statp->st_mode & (S_IWGRP|S_IWOTH)) != 0) {
 216     // The directory is open for writing and could be subjected
 217     // to a symlink or a hard link attack. Declare it insecure.
 218     //
 219     return false;
 220   }
 221   // If user is not root then see if the uid of the directory matches the effective uid of the process.
 222   uid_t euid = geteuid();
 223   if ((euid != 0) && (statp->st_uid != euid)) {
 224     // The directory was not created by this user, declare it insecure.
 225     //
 226     return false;
 227   }
 228   return true;
 229 }
 230 
 231 
 232 // Check if the given path is considered a secure directory for
 233 // the backing store files. Returns true if the directory exists
 234 // and is considered a secure location. Returns false if the path
 235 // is a symbolic link or if an error occurred.
 236 //
 237 static bool is_directory_secure(const char* path) {
 238   struct stat statbuf;
 239   int result = 0;
 240 
 241   RESTARTABLE(::lstat(path, &statbuf), result);
 242   if (result == OS_ERR) {
 243     return false;
 244   }
 245 
 246   // The path exists, see if it is secure.
 247   return is_statbuf_secure(&statbuf);
 248 }
 249 
 250 
 251 // Check if the given directory file descriptor is considered a secure
 252 // directory for the backing store files. Returns true if the directory
 253 // exists and is considered a secure location. Returns false if the path
 254 // is a symbolic link or if an error occurred.
 255 //
 256 static bool is_dirfd_secure(int dir_fd) {
 257   struct stat statbuf;
 258   int result = 0;
 259 
 260   RESTARTABLE(::fstat(dir_fd, &statbuf), result);
 261   if (result == OS_ERR) {
 262     return false;
 263   }
 264 
 265   // The path exists, now check its mode.
 266   return is_statbuf_secure(&statbuf);
 267 }
 268 
 269 
 270 // Check to make sure fd1 and fd2 are referencing the same file system object.
 271 //
 272 static bool is_same_fsobject(int fd1, int fd2) {
 273   struct stat statbuf1;
 274   struct stat statbuf2;
 275   int result = 0;
 276 
 277   RESTARTABLE(::fstat(fd1, &statbuf1), result);
 278   if (result == OS_ERR) {
 279     return false;
 280   }
 281   RESTARTABLE(::fstat(fd2, &statbuf2), result);
 282   if (result == OS_ERR) {
 283     return false;
 284   }
 285 
 286   if ((statbuf1.st_ino == statbuf2.st_ino) &&
 287       (statbuf1.st_dev == statbuf2.st_dev)) {
 288     return true;
 289   } else {
 290     return false;
 291   }
 292 }
 293 
 294 
 295 // Open the directory of the given path and validate it.
 296 // Return a DIR * of the open directory.
 297 //
 298 static DIR *open_directory_secure(const char* dirname) {
 299   // Open the directory using open() so that it can be verified
 300   // to be secure by calling is_dirfd_secure(), opendir() and then check
 301   // to see if they are the same file system object.  This method does not
 302   // introduce a window of opportunity for the directory to be attacked that
 303   // calling opendir() and is_directory_secure() does.
 304   int result;
 305   DIR *dirp = NULL;
 306   RESTARTABLE(::open(dirname, O_RDONLY|O_NOFOLLOW), result);
 307   if (result == OS_ERR) {
 308     if (PrintMiscellaneous && Verbose) {
 309       if (errno == ELOOP) {
 310         warning("directory %s is a symlink and is not secure\n", dirname);
 311       } else {
 312         warning("could not open directory %s: %s\n", dirname, os::strerror(errno));
 313       }
 314     }
 315     return dirp;
 316   }
 317   int fd = result;
 318 
 319   // Determine if the open directory is secure.
 320   if (!is_dirfd_secure(fd)) {
 321     // The directory is not a secure directory.
 322     os::close(fd);
 323     return dirp;
 324   }
 325 
 326   // Open the directory.
 327   dirp = ::opendir(dirname);
 328   if (dirp == NULL) {
 329     // The directory doesn't exist, close fd and return.
 330     os::close(fd);
 331     return dirp;
 332   }
 333 
 334   // Check to make sure fd and dirp are referencing the same file system object.
 335   if (!is_same_fsobject(fd, dirfd(dirp))) {
 336     // The directory is not secure.
 337     os::close(fd);
 338     os::closedir(dirp);
 339     dirp = NULL;
 340     return dirp;
 341   }
 342 
 343   // Close initial open now that we know directory is secure
 344   os::close(fd);
 345 
 346   return dirp;
 347 }
 348 
 349 // NOTE: The code below uses fchdir(), open() and unlink() because
 350 // fdopendir(), openat() and unlinkat() are not supported on all
 351 // versions.  Once the support for fdopendir(), openat() and unlinkat()
 352 // is available on all supported versions the code can be changed
 353 // to use these functions.
 354 
 355 // Open the directory of the given path, validate it and set the
 356 // current working directory to it.
 357 // Return a DIR * of the open directory and the saved cwd fd.
 358 //
 359 static DIR *open_directory_secure_cwd(const char* dirname, int *saved_cwd_fd) {
 360 
 361   // Open the directory.
 362   DIR* dirp = open_directory_secure(dirname);
 363   if (dirp == NULL) {
 364     // Directory doesn't exist or is insecure, so there is nothing to cleanup.
 365     return dirp;
 366   }
 367   int fd = dirfd(dirp);
 368 
 369   // Open a fd to the cwd and save it off.
 370   int result;
 371   RESTARTABLE(::open(".", O_RDONLY), result);
 372   if (result == OS_ERR) {
 373     *saved_cwd_fd = -1;
 374   } else {
 375     *saved_cwd_fd = result;
 376   }
 377 
 378   // Set the current directory to dirname by using the fd of the directory and
 379   // handle errors, otherwise shared memory files will be created in cwd.
 380   result = fchdir(fd);
 381   if (result == OS_ERR) {
 382     if (PrintMiscellaneous && Verbose) {
 383       warning("could not change to directory %s", dirname);
 384     }
 385     if (*saved_cwd_fd != -1) {
 386       ::close(*saved_cwd_fd);
 387       *saved_cwd_fd = -1;
 388     }
 389     // Close the directory.
 390     os::closedir(dirp);
 391     return NULL;
 392   } else {
 393     return dirp;
 394   }
 395 }
 396 
 397 // Close the directory and restore the current working directory.
 398 //
 399 static void close_directory_secure_cwd(DIR* dirp, int saved_cwd_fd) {
 400 
 401   int result;
 402   // If we have a saved cwd change back to it and close the fd.
 403   if (saved_cwd_fd != -1) {
 404     result = fchdir(saved_cwd_fd);
 405     ::close(saved_cwd_fd);
 406   }
 407 
 408   // Close the directory.
 409   os::closedir(dirp);
 410 }
 411 
 412 // Check if the given file descriptor is considered a secure.
 413 //
 414 static bool is_file_secure(int fd, const char *filename) {
 415 
 416   int result;
 417   struct stat statbuf;
 418 
 419   // Determine if the file is secure.
 420   RESTARTABLE(::fstat(fd, &statbuf), result);
 421   if (result == OS_ERR) {
 422     if (PrintMiscellaneous && Verbose) {
 423       warning("fstat failed on %s: %s\n", filename, os::strerror(errno));
 424     }
 425     return false;
 426   }
 427   if (statbuf.st_nlink > 1) {
 428     // A file with multiple links is not expected.
 429     if (PrintMiscellaneous && Verbose) {
 430       warning("file %s has multiple links\n", filename);
 431     }
 432     return false;
 433   }
 434   return true;
 435 }
 436 
 437 
 438 // return the user name for the given user id
 439 //
 440 // the caller is expected to free the allocated memory.
 441 //
 442 static char* get_user_name(uid_t uid) {
 443 
 444   struct passwd pwent;
 445 
 446   // determine the max pwbuf size from sysconf, and hardcode
 447   // a default if this not available through sysconf.
 448   //
 449   long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 450   if (bufsize == -1)
 451     bufsize = 1024;
 452 
 453   char* pwbuf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 454 
 455   // POSIX interface to getpwuid_r is used on LINUX
 456   struct passwd* p;
 457   int result = getpwuid_r(uid, &pwent, pwbuf, (size_t)bufsize, &p);
 458 
 459   if (result != 0 || p == NULL || p->pw_name == NULL || *(p->pw_name) == '\0') {
 460     if (PrintMiscellaneous && Verbose) {
 461       if (result != 0) {
 462         warning("Could not retrieve passwd entry: %s\n",
 463                 os::strerror(result));
 464       }
 465       else if (p == NULL) {
 466         // this check is added to protect against an observed problem
 467         // with getpwuid_r() on RedHat 9 where getpwuid_r returns 0,
 468         // indicating success, but has p == NULL. This was observed when
 469         // inserting a file descriptor exhaustion fault prior to the call
 470         // getpwuid_r() call. In this case, error is set to the appropriate
 471         // error condition, but this is undocumented behavior. This check
 472         // is safe under any condition, but the use of errno in the output
 473         // message may result in an erroneous message.
 474         // Bug Id 89052 was opened with RedHat.
 475         //
 476         warning("Could not retrieve passwd entry: %s\n",
 477                 os::strerror(errno));
 478       }
 479       else {
 480         warning("Could not determine user name: %s\n",
 481                 p->pw_name == NULL ? "pw_name = NULL" :
 482                                      "pw_name zero length");
 483       }
 484     }
 485     FREE_C_HEAP_ARRAY(char, pwbuf);
 486     return NULL;
 487   }
 488 
 489   char* user_name = NEW_C_HEAP_ARRAY(char, strlen(p->pw_name) + 1, mtInternal);
 490   strcpy(user_name, p->pw_name);
 491 
 492   FREE_C_HEAP_ARRAY(char, pwbuf);
 493   return user_name;
 494 }
 495 
 496 // return the name of the user that owns the process identified by vmid.
 497 //
 498 // This method uses a slow directory search algorithm to find the backing
 499 // store file for the specified vmid and returns the user name, as determined
 500 // by the user name suffix of the hsperfdata_<username> directory name.
 501 //
 502 // the caller is expected to free the allocated memory.
 503 //
 504 static char* get_user_name_slow(int vmid, TRAPS) {
 505 
 506   // short circuit the directory search if the process doesn't even exist.
 507   if (kill(vmid, 0) == OS_ERR) {
 508     if (errno == ESRCH) {
 509       THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
 510                   "Process not found");
 511     }
 512     else /* EPERM */ {
 513       THROW_MSG_0(vmSymbols::java_io_IOException(), os::strerror(errno));
 514     }
 515   }
 516 
 517   // directory search
 518   char* oldest_user = NULL;
 519   time_t oldest_ctime = 0;
 520 
 521   const char* tmpdirname = os::get_temp_directory();
 522 
 523   // open the temp directory
 524   DIR* tmpdirp = os::opendir(tmpdirname);
 525 
 526   if (tmpdirp == NULL) {
 527     // Cannot open the directory to get the user name, return.
 528     return NULL;
 529   }
 530 
 531   // for each entry in the directory that matches the pattern hsperfdata_*,
 532   // open the directory and check if the file for the given vmid exists.
 533   // The file with the expected name and the latest creation date is used
 534   // to determine the user name for the process id.
 535   //
 536   struct dirent* dentry;
 537   char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname), mtInternal);
 538   errno = 0;
 539   while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
 540 
 541     // check if the directory entry is a hsperfdata file
 542     if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
 543       continue;
 544     }
 545 
 546     char* usrdir_name = NEW_C_HEAP_ARRAY(char,
 547                      strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
 548     strcpy(usrdir_name, tmpdirname);
 549     strcat(usrdir_name, "/");
 550     strcat(usrdir_name, dentry->d_name);
 551 
 552     // open the user directory
 553     DIR* subdirp = open_directory_secure(usrdir_name);
 554 
 555     if (subdirp == NULL) {
 556       FREE_C_HEAP_ARRAY(char, usrdir_name);
 557       continue;
 558     }
 559 
 560     // Since we don't create the backing store files in directories
 561     // pointed to by symbolic links, we also don't follow them when
 562     // looking for the files. We check for a symbolic link after the
 563     // call to opendir in order to eliminate a small window where the
 564     // symlink can be exploited.
 565     //
 566     if (!is_directory_secure(usrdir_name)) {
 567       FREE_C_HEAP_ARRAY(char, usrdir_name);
 568       os::closedir(subdirp);
 569       continue;
 570     }
 571 
 572     struct dirent* udentry;
 573     char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name), mtInternal);
 574     errno = 0;
 575     while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
 576 
 577       if (filename_to_pid(udentry->d_name) == vmid) {
 578         struct stat statbuf;
 579         int result;
 580 
 581         char* filename = NEW_C_HEAP_ARRAY(char,
 582                    strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);
 583 
 584         strcpy(filename, usrdir_name);
 585         strcat(filename, "/");
 586         strcat(filename, udentry->d_name);
 587 
 588         // don't follow symbolic links for the file
 589         RESTARTABLE(::lstat(filename, &statbuf), result);
 590         if (result == OS_ERR) {
 591            FREE_C_HEAP_ARRAY(char, filename);
 592            continue;
 593         }
 594 
 595         // skip over files that are not regular files.
 596         if (!S_ISREG(statbuf.st_mode)) {
 597           FREE_C_HEAP_ARRAY(char, filename);
 598           continue;
 599         }
 600 
 601         // compare and save filename with latest creation time
 602         if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) {
 603 
 604           if (statbuf.st_ctime > oldest_ctime) {
 605             char* user = strchr(dentry->d_name, '_') + 1;
 606 
 607             if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user);
 608             oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
 609 
 610             strcpy(oldest_user, user);
 611             oldest_ctime = statbuf.st_ctime;
 612           }
 613         }
 614 
 615         FREE_C_HEAP_ARRAY(char, filename);
 616       }
 617     }
 618     os::closedir(subdirp);
 619     FREE_C_HEAP_ARRAY(char, udbuf);
 620     FREE_C_HEAP_ARRAY(char, usrdir_name);
 621   }
 622   os::closedir(tmpdirp);
 623   FREE_C_HEAP_ARRAY(char, tdbuf);
 624 
 625   return(oldest_user);
 626 }
 627 
 628 // return the name of the user that owns the JVM indicated by the given vmid.
 629 //
 630 static char* get_user_name(int vmid, TRAPS) {
 631   return get_user_name_slow(vmid, THREAD);
 632 }
 633 
 634 // return the file name of the backing store file for the named
 635 // shared memory region for the given user name and vmid.
 636 //
 637 // the caller is expected to free the allocated memory.
 638 //
 639 static char* get_sharedmem_filename(const char* dirname, int vmid) {
 640 
 641   // add 2 for the file separator and a null terminator.
 642   size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
 643 
 644   char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
 645   snprintf(name, nbytes, "%s/%d", dirname, vmid);
 646 
 647   return name;
 648 }
 649 
 650 
 651 // remove file
 652 //
 653 // this method removes the file specified by the given path
 654 //
 655 static void remove_file(const char* path) {
 656 
 657   int result;
 658 
 659   // if the file is a directory, the following unlink will fail. since
 660   // we don't expect to find directories in the user temp directory, we
 661   // won't try to handle this situation. even if accidentially or
 662   // maliciously planted, the directory's presence won't hurt anything.
 663   //
 664   RESTARTABLE(::unlink(path), result);
 665   if (PrintMiscellaneous && Verbose && result == OS_ERR) {
 666     if (errno != ENOENT) {
 667       warning("Could not unlink shared memory backing"
 668               " store file %s : %s\n", path, os::strerror(errno));
 669     }
 670   }
 671 }
 672 
 673 
 674 // cleanup stale shared memory resources
 675 //
 676 // This method attempts to remove all stale shared memory files in
 677 // the named user temporary directory. It scans the named directory
 678 // for files matching the pattern ^$[0-9]*$. For each file found, the
 679 // process id is extracted from the file name and a test is run to
 680 // determine if the process is alive. If the process is not alive,
 681 // any stale file resources are removed.
 682 //
 683 static void cleanup_sharedmem_resources(const char* dirname) {
 684 
 685   int saved_cwd_fd;
 686   // open the directory
 687   DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd);
 688   if (dirp == NULL) {
 689     // directory doesn't exist or is insecure, so there is nothing to cleanup
 690     return;
 691   }
 692 
 693   // for each entry in the directory that matches the expected file
 694   // name pattern, determine if the file resources are stale and if
 695   // so, remove the file resources. Note, instrumented HotSpot processes
 696   // for this user may start and/or terminate during this search and
 697   // remove or create new files in this directory. The behavior of this
 698   // loop under these conditions is dependent upon the implementation of
 699   // opendir/readdir.
 700   //
 701   struct dirent* entry;
 702   char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname), mtInternal);
 703 
 704   errno = 0;
 705   while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
 706 
 707     pid_t pid = filename_to_pid(entry->d_name);
 708 
 709     if (pid == 0) {
 710 
 711       if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
 712         // attempt to remove all unexpected files, except "." and ".."
 713         unlink(entry->d_name);
 714       }
 715 
 716       errno = 0;
 717       continue;
 718     }
 719 
 720     // we now have a file name that converts to a valid integer
 721     // that could represent a process id . if this process id
 722     // matches the current process id or the process is not running,
 723     // then remove the stale file resources.
 724     //
 725     // process liveness is detected by sending signal number 0 to
 726     // the process id (see kill(2)). if kill determines that the
 727     // process does not exist, then the file resources are removed.
 728     // if kill determines that that we don't have permission to
 729     // signal the process, then the file resources are assumed to
 730     // be stale and are removed because the resources for such a
 731     // process should be in a different user specific directory.
 732     //
 733     if ((pid == os::current_process_id()) ||
 734         (kill(pid, 0) == OS_ERR && (errno == ESRCH || errno == EPERM))) {
 735         unlink(entry->d_name);
 736     }
 737     errno = 0;
 738   }
 739 
 740   // close the directory and reset the current working directory
 741   close_directory_secure_cwd(dirp, saved_cwd_fd);
 742 
 743   FREE_C_HEAP_ARRAY(char, dbuf);
 744 }
 745 
 746 // make the user specific temporary directory. Returns true if
 747 // the directory exists and is secure upon return. Returns false
 748 // if the directory exists but is either a symlink, is otherwise
 749 // insecure, or if an error occurred.
 750 //
 751 static bool make_user_tmp_dir(const char* dirname) {
 752 
 753   // create the directory with 0755 permissions. note that the directory
 754   // will be owned by euid::egid, which may not be the same as uid::gid.
 755   //
 756   if (mkdir(dirname, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH) == OS_ERR) {
 757     if (errno == EEXIST) {
 758       // The directory already exists and was probably created by another
 759       // JVM instance. However, this could also be the result of a
 760       // deliberate symlink. Verify that the existing directory is safe.
 761       //
 762       if (!is_directory_secure(dirname)) {
 763         // directory is not secure
 764         if (PrintMiscellaneous && Verbose) {
 765           warning("%s directory is insecure\n", dirname);
 766         }
 767         return false;
 768       }
 769     }
 770     else {
 771       // we encountered some other failure while attempting
 772       // to create the directory
 773       //
 774       if (PrintMiscellaneous && Verbose) {
 775         warning("could not create directory %s: %s\n",
 776                 dirname, os::strerror(errno));
 777       }
 778       return false;
 779     }
 780   }
 781   return true;
 782 }
 783 
 784 // create the shared memory file resources
 785 //
 786 // This method creates the shared memory file with the given size
 787 // This method also creates the user specific temporary directory, if
 788 // it does not yet exist.
 789 //
 790 static int create_sharedmem_resources(const char* dirname, const char* filename, size_t size) {
 791 
 792   // make the user temporary directory
 793   if (!make_user_tmp_dir(dirname)) {
 794     // could not make/find the directory or the found directory
 795     // was not secure
 796     return -1;
 797   }
 798 
 799   int saved_cwd_fd;
 800   // open the directory and set the current working directory to it
 801   DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd);
 802   if (dirp == NULL) {
 803     // Directory doesn't exist or is insecure, so cannot create shared
 804     // memory file.
 805     return -1;
 806   }
 807 
 808   // Open the filename in the current directory.
 809   // Cannot use O_TRUNC here; truncation of an existing file has to happen
 810   // after the is_file_secure() check below.
 811   int result;
 812   RESTARTABLE(::open(filename, O_RDWR|O_CREAT|O_NOFOLLOW, S_IREAD|S_IWRITE), result);
 813   if (result == OS_ERR) {
 814     if (PrintMiscellaneous && Verbose) {
 815       if (errno == ELOOP) {
 816         warning("file %s is a symlink and is not secure\n", filename);
 817       } else {
 818         warning("could not create file %s: %s\n", filename, os::strerror(errno));
 819       }
 820     }
 821     // close the directory and reset the current working directory
 822     close_directory_secure_cwd(dirp, saved_cwd_fd);
 823 
 824     return -1;
 825   }
 826   // close the directory and reset the current working directory
 827   close_directory_secure_cwd(dirp, saved_cwd_fd);
 828 
 829   // save the file descriptor
 830   int fd = result;
 831 
 832   // check to see if the file is secure
 833   if (!is_file_secure(fd, filename)) {
 834     ::close(fd);
 835     return -1;
 836   }
 837 
 838   // truncate the file to get rid of any existing data
 839   RESTARTABLE(::ftruncate(fd, (off_t)0), result);
 840   if (result == OS_ERR) {
 841     if (PrintMiscellaneous && Verbose) {
 842       warning("could not truncate shared memory file: %s\n", os::strerror(errno));
 843     }
 844     ::close(fd);
 845     return -1;
 846   }
 847   // set the file size
 848   RESTARTABLE(::ftruncate(fd, (off_t)size), result);
 849   if (result == OS_ERR) {
 850     if (PrintMiscellaneous && Verbose) {
 851       warning("could not set shared memory file size: %s\n", os::strerror(errno));
 852     }
 853     ::close(fd);
 854     return -1;
 855   }
 856 
 857   // Verify that we have enough disk space for this file.
 858   // We'll get random SIGBUS crashes on memory accesses if
 859   // we don't.
 860 
 861   for (size_t seekpos = 0; seekpos < size; seekpos += os::vm_page_size()) {
 862     int zero_int = 0;
 863     result = (int)os::seek_to_file_offset(fd, (jlong)(seekpos));
 864     if (result == -1 ) break;
 865     RESTARTABLE(::write(fd, &zero_int, 1), result);
 866     if (result != 1) {
 867       if (errno == ENOSPC) {
 868         warning("Insufficient space for shared memory file:\n   %s\nTry using the -Djava.io.tmpdir= option to select an alternate temp location.\n", filename);
 869       }
 870       break;
 871     }
 872   }
 873 
 874   if (result != -1) {
 875     return fd;
 876   } else {
 877     ::close(fd);
 878     return -1;
 879   }
 880 }
 881 
 882 // open the shared memory file for the given user and vmid. returns
 883 // the file descriptor for the open file or -1 if the file could not
 884 // be opened.
 885 //
 886 static int open_sharedmem_file(const char* filename, int oflags, TRAPS) {
 887 
 888   // open the file
 889   int result;
 890   RESTARTABLE(::open(filename, oflags), result);
 891   if (result == OS_ERR) {
 892     if (errno == ENOENT) {
 893       THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
 894                   "Process not found", OS_ERR);
 895     }
 896     else if (errno == EACCES) {
 897       THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
 898                   "Permission denied", OS_ERR);
 899     }
 900     else {
 901       THROW_MSG_(vmSymbols::java_io_IOException(), os::strerror(errno), OS_ERR);
 902     }
 903   }
 904   int fd = result;
 905 
 906   // check to see if the file is secure
 907   if (!is_file_secure(fd, filename)) {
 908     ::close(fd);
 909     return -1;
 910   }
 911 
 912   return fd;
 913 }
 914 
 915 // create a named shared memory region. returns the address of the
 916 // memory region on success or NULL on failure. A return value of
 917 // NULL will ultimately disable the shared memory feature.
 918 //
 919 // On Solaris and Linux, the name space for shared memory objects
 920 // is the file system name space.
 921 //
 922 // A monitoring application attaching to a JVM does not need to know
 923 // the file system name of the shared memory object. However, it may
 924 // be convenient for applications to discover the existence of newly
 925 // created and terminating JVMs by watching the file system name space
 926 // for files being created or removed.
 927 //
 928 static char* mmap_create_shared(size_t size) {
 929 
 930   int result;
 931   int fd;
 932   char* mapAddress;
 933 
 934   int vmid = os::current_process_id();
 935 
 936   char* user_name = get_user_name(geteuid());
 937 
 938   if (user_name == NULL)
 939     return NULL;
 940 
 941   char* dirname = get_user_tmp_dir(user_name);
 942   char* filename = get_sharedmem_filename(dirname, vmid);
 943   // get the short filename
 944   char* short_filename = strrchr(filename, '/');
 945   if (short_filename == NULL) {
 946     short_filename = filename;
 947   } else {
 948     short_filename++;
 949   }
 950 
 951   // cleanup any stale shared memory files
 952   cleanup_sharedmem_resources(dirname);
 953 
 954   assert(((size > 0) && (size % os::vm_page_size() == 0)),
 955          "unexpected PerfMemory region size");
 956 
 957   fd = create_sharedmem_resources(dirname, short_filename, size);
 958 
 959   FREE_C_HEAP_ARRAY(char, user_name);
 960   FREE_C_HEAP_ARRAY(char, dirname);
 961 
 962   if (fd == -1) {
 963     FREE_C_HEAP_ARRAY(char, filename);
 964     return NULL;
 965   }
 966 
 967   mapAddress = (char*)::mmap((char*)0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
 968 
 969   result = ::close(fd);
 970   assert(result != OS_ERR, "could not close file");
 971 
 972   if (mapAddress == MAP_FAILED) {
 973     if (PrintMiscellaneous && Verbose) {
 974       warning("mmap failed -  %s\n", os::strerror(errno));
 975     }
 976     remove_file(filename);
 977     FREE_C_HEAP_ARRAY(char, filename);
 978     return NULL;
 979   }
 980 
 981   // save the file name for use in delete_shared_memory()
 982   backing_store_file_name = filename;
 983 
 984   // clear the shared memory region
 985   (void)::memset((void*) mapAddress, 0, size);
 986 
 987   // it does not go through os api, the operation has to record from here
 988   MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress, size, CURRENT_PC, mtInternal);
 989 
 990   return mapAddress;
 991 }
 992 
 993 // release a named shared memory region
 994 //
 995 static void unmap_shared(char* addr, size_t bytes) {
 996   os::release_memory(addr, bytes);
 997 }
 998 
 999 // create the PerfData memory region in shared memory.
1000 //
1001 static char* create_shared_memory(size_t size) {
1002 
1003   // create the shared memory region.
1004   return mmap_create_shared(size);
1005 }
1006 
1007 // delete the shared PerfData memory region
1008 //
1009 static void delete_shared_memory(char* addr, size_t size) {
1010 
1011   // cleanup the persistent shared memory resources. since DestroyJavaVM does
1012   // not support unloading of the JVM, unmapping of the memory resource is
1013   // not performed. The memory will be reclaimed by the OS upon termination of
1014   // the process. The backing store file is deleted from the file system.
1015 
1016   assert(!PerfDisableSharedMem, "shouldn't be here");
1017 
1018   if (backing_store_file_name != NULL) {
1019     remove_file(backing_store_file_name);
1020     // Don't.. Free heap memory could deadlock os::abort() if it is called
1021     // from signal handler. OS will reclaim the heap memory.
1022     // FREE_C_HEAP_ARRAY(char, backing_store_file_name);
1023     backing_store_file_name = NULL;
1024   }
1025 }
1026 
1027 // return the size of the file for the given file descriptor
1028 // or 0 if it is not a valid size for a shared memory file
1029 //
1030 static size_t sharedmem_filesize(int fd, TRAPS) {
1031 
1032   struct stat statbuf;
1033   int result;
1034 
1035   RESTARTABLE(::fstat(fd, &statbuf), result);
1036   if (result == OS_ERR) {
1037     if (PrintMiscellaneous && Verbose) {
1038       warning("fstat failed: %s\n", os::strerror(errno));
1039     }
1040     THROW_MSG_0(vmSymbols::java_io_IOException(),
1041                 "Could not determine PerfMemory size");
1042   }
1043 
1044   if ((statbuf.st_size == 0) ||
1045      ((size_t)statbuf.st_size % os::vm_page_size() != 0)) {
1046     THROW_MSG_0(vmSymbols::java_lang_Exception(),
1047                 "Invalid PerfMemory size");
1048   }
1049 
1050   return (size_t)statbuf.st_size;
1051 }
1052 
1053 // attach to a named shared memory region.
1054 //
1055 static void mmap_attach_shared(const char* user, int vmid, PerfMemory::PerfMemoryMode mode, char** addr, size_t* sizep, TRAPS) {
1056 
1057   char* mapAddress;
1058   int result;
1059   int fd;
1060   size_t size = 0;
1061   const char* luser = NULL;
1062 
1063   int mmap_prot;
1064   int file_flags;
1065 
1066   ResourceMark rm;
1067 
1068   // map the high level access mode to the appropriate permission
1069   // constructs for the file and the shared memory mapping.
1070   if (mode == PerfMemory::PERF_MODE_RO) {
1071     mmap_prot = PROT_READ;
1072     file_flags = O_RDONLY | O_NOFOLLOW;
1073   }
1074   else if (mode == PerfMemory::PERF_MODE_RW) {
1075 #ifdef LATER
1076     mmap_prot = PROT_READ | PROT_WRITE;
1077     file_flags = O_RDWR | O_NOFOLLOW;
1078 #else
1079     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1080               "Unsupported access mode");
1081 #endif
1082   }
1083   else {
1084     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1085               "Illegal access mode");
1086   }
1087 
1088   if (user == NULL || strlen(user) == 0) {
1089     luser = get_user_name(vmid, CHECK);
1090   }
1091   else {
1092     luser = user;
1093   }
1094 
1095   if (luser == NULL) {
1096     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1097               "Could not map vmid to user Name");
1098   }
1099 
1100   char* dirname = get_user_tmp_dir(luser);
1101 
1102   // since we don't follow symbolic links when creating the backing
1103   // store file, we don't follow them when attaching either.
1104   //
1105   if (!is_directory_secure(dirname)) {
1106     FREE_C_HEAP_ARRAY(char, dirname);
1107     if (luser != user) {
1108       FREE_C_HEAP_ARRAY(char, luser);
1109     }
1110     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1111               "Process not found");
1112   }
1113 
1114   char* filename = get_sharedmem_filename(dirname, vmid);
1115 
1116   // copy heap memory to resource memory. the open_sharedmem_file
1117   // method below need to use the filename, but could throw an
1118   // exception. using a resource array prevents the leak that
1119   // would otherwise occur.
1120   char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
1121   strcpy(rfilename, filename);
1122 
1123   // free the c heap resources that are no longer needed
1124   if (luser != user) FREE_C_HEAP_ARRAY(char, luser);
1125   FREE_C_HEAP_ARRAY(char, dirname);
1126   FREE_C_HEAP_ARRAY(char, filename);
1127 
1128   // open the shared memory file for the give vmid
1129   fd = open_sharedmem_file(rfilename, file_flags, THREAD);
1130 
1131   if (fd == OS_ERR) {
1132     return;
1133   }
1134 
1135   if (HAS_PENDING_EXCEPTION) {
1136     ::close(fd);
1137     return;
1138   }
1139 
1140   if (*sizep == 0) {
1141     size = sharedmem_filesize(fd, CHECK);
1142   } else {
1143     size = *sizep;
1144   }
1145 
1146   assert(size > 0, "unexpected size <= 0");
1147 
1148   mapAddress = (char*)::mmap((char*)0, size, mmap_prot, MAP_SHARED, fd, 0);
1149 
1150   result = ::close(fd);
1151   assert(result != OS_ERR, "could not close file");
1152 
1153   if (mapAddress == MAP_FAILED) {
1154     if (PrintMiscellaneous && Verbose) {
1155       warning("mmap failed: %s\n", os::strerror(errno));
1156     }
1157     THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
1158               "Could not map PerfMemory");
1159   }
1160 
1161   // it does not go through os api, the operation has to record from here
1162   MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress, size, CURRENT_PC, mtInternal);
1163 
1164   *addr = mapAddress;
1165   *sizep = size;
1166 
1167   if (PerfTraceMemOps) {
1168     tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
1169                INTPTR_FORMAT "\n", size, vmid, p2i((void*)mapAddress));
1170   }
1171 }
1172 
1173 
1174 
1175 
1176 // create the PerfData memory region
1177 //
1178 // This method creates the memory region used to store performance
1179 // data for the JVM. The memory may be created in standard or
1180 // shared memory.
1181 //
1182 void PerfMemory::create_memory_region(size_t size) {
1183 
1184   if (PerfDisableSharedMem) {
1185     // do not share the memory for the performance data.
1186     _start = create_standard_memory(size);
1187   }
1188   else {
1189     _start = create_shared_memory(size);
1190     if (_start == NULL) {
1191 
1192       // creation of the shared memory region failed, attempt
1193       // to create a contiguous, non-shared memory region instead.
1194       //
1195       if (PrintMiscellaneous && Verbose) {
1196         warning("Reverting to non-shared PerfMemory region.\n");
1197       }
1198       PerfDisableSharedMem = true;
1199       _start = create_standard_memory(size);
1200     }
1201   }
1202 
1203   if (_start != NULL) _capacity = size;
1204 
1205 }
1206 
1207 // delete the PerfData memory region
1208 //
1209 // This method deletes the memory region used to store performance
1210 // data for the JVM. The memory region indicated by the <address, size>
1211 // tuple will be inaccessible after a call to this method.
1212 //
1213 void PerfMemory::delete_memory_region() {
1214 
1215   assert((start() != NULL && capacity() > 0), "verify proper state");
1216 
1217   // If user specifies PerfDataSaveFile, it will save the performance data
1218   // to the specified file name no matter whether PerfDataSaveToFile is specified
1219   // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
1220   // -XX:+PerfDataSaveToFile.
1221   if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
1222     save_memory_to_file(start(), capacity());
1223   }
1224 
1225   if (PerfDisableSharedMem) {
1226     delete_standard_memory(start(), capacity());
1227   }
1228   else {
1229     delete_shared_memory(start(), capacity());
1230   }
1231 }
1232 
1233 // attach to the PerfData memory region for another JVM
1234 //
1235 // This method returns an <address, size> tuple that points to
1236 // a memory buffer that is kept reasonably synchronized with
1237 // the PerfData memory region for the indicated JVM. This
1238 // buffer may be kept in synchronization via shared memory
1239 // or some other mechanism that keeps the buffer updated.
1240 //
1241 // If the JVM chooses not to support the attachability feature,
1242 // this method should throw an UnsupportedOperation exception.
1243 //
1244 // This implementation utilizes named shared memory to map
1245 // the indicated process's PerfData memory region into this JVMs
1246 // address space.
1247 //
1248 void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode, char** addrp, size_t* sizep, TRAPS) {
1249 
1250   if (vmid == 0 || vmid == os::current_process_id()) {
1251      *addrp = start();
1252      *sizep = capacity();
1253      return;
1254   }
1255 
1256   mmap_attach_shared(user, vmid, mode, addrp, sizep, CHECK);
1257 }
1258 
1259 // detach from the PerfData memory region of another JVM
1260 //
1261 // This method detaches the PerfData memory region of another
1262 // JVM, specified as an <address, size> tuple of a buffer
1263 // in this process's address space. This method may perform
1264 // arbitrary actions to accomplish the detachment. The memory
1265 // region specified by <address, size> will be inaccessible after
1266 // a call to this method.
1267 //
1268 // If the JVM chooses not to support the attachability feature,
1269 // this method should throw an UnsupportedOperation exception.
1270 //
1271 // This implementation utilizes named shared memory to detach
1272 // the indicated process's PerfData memory region from this
1273 // process's address space.
1274 //
1275 void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
1276 
1277   assert(addr != 0, "address sanity check");
1278   assert(bytes > 0, "capacity sanity check");
1279 
1280   if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
1281     // prevent accidental detachment of this process's PerfMemory region
1282     return;
1283   }
1284 
1285   unmap_shared(addr, bytes);
1286 }