/* * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package sun.security.ec; import sun.security.ec.point.*; import sun.security.util.math.*; import sun.security.util.math.intpoly.*; import java.math.BigInteger; import java.security.ProviderException; import java.security.spec.ECFieldFp; import java.security.spec.ECParameterSpec; import java.security.spec.EllipticCurve; import java.util.Map; import java.util.Optional; /* * Elliptic curve point arithmetic for prime-order curves where a=-3. * Formulas are derived from "Complete addition formulas for prime order * elliptic curves" by Renes, Costello, and Batina. */ public class ECOperations { /* * An exception indicating a problem with an intermediate value produced * by some part of the computation. For example, the signing operation * will throw this exception to indicate that the r or s value is 0, and * that the signing operation should be tried again with a different nonce. */ static class IntermediateValueException extends Exception { private static final long serialVersionUID = 1; } static final Map fields = Map.of( IntegerPolynomialP256.MODULUS, new IntegerPolynomialP256(), IntegerPolynomialP384.MODULUS, new IntegerPolynomialP384(), IntegerPolynomialP521.MODULUS, new IntegerPolynomialP521() ); static final Map orderFields = Map.of( P256OrderField.MODULUS, new P256OrderField(), P384OrderField.MODULUS, new P384OrderField(), P521OrderField.MODULUS, new P521OrderField() ); public static Optional forParameters(ECParameterSpec params) { EllipticCurve curve = params.getCurve(); if (!(curve.getField() instanceof ECFieldFp)) { return Optional.empty(); } ECFieldFp primeField = (ECFieldFp) curve.getField(); BigInteger three = BigInteger.valueOf(3); if (!primeField.getP().subtract(curve.getA()).equals(three)) { return Optional.empty(); } IntegerFieldModuloP field = fields.get(primeField.getP()); if (field == null) { return Optional.empty(); } IntegerFieldModuloP orderField = orderFields.get(params.getOrder()); if (orderField == null) { return Optional.empty(); } ImmutableIntegerModuloP b = field.getElement(curve.getB()); ECOperations ecOps = new ECOperations(b, orderField); return Optional.of(ecOps); } final ImmutableIntegerModuloP b; final SmallValue one; final SmallValue two; final SmallValue three; final SmallValue four; final ProjectivePoint.Immutable neutral; private final IntegerFieldModuloP orderField; public ECOperations(IntegerModuloP b, IntegerFieldModuloP orderField) { this.b = b.fixed(); this.orderField = orderField; this.one = b.getField().getSmallValue(1); this.two = b.getField().getSmallValue(2); this.three = b.getField().getSmallValue(3); this.four = b.getField().getSmallValue(4); IntegerFieldModuloP field = b.getField(); this.neutral = new ProjectivePoint.Immutable(field.get0(), field.get1(), field.get0()); } public IntegerFieldModuloP getField() { return b.getField(); } public IntegerFieldModuloP getOrderField() { return orderField; } protected ProjectivePoint.Immutable getNeutral() { return neutral; } public boolean isNeutral(Point p) { ProjectivePoint pp = (ProjectivePoint) p; IntegerModuloP z = pp.getZ(); IntegerFieldModuloP field = z.getField(); int byteLength = (field.getSize().bitLength() + 7) / 8; byte[] zBytes = z.asByteArray(byteLength); return allZero(zBytes); } byte[] seedToScalar(byte[] seedBytes) throws IntermediateValueException { // Produce a nonce from the seed using FIPS 186-4,section B.5.1: // Per-Message Secret Number Generation Using Extra Random Bits // or // Produce a scalar from the seed using FIPS 186-4, section B.4.1: // Key Pair Generation Using Extra Random Bits // To keep the implementation simple, sample in the range [0,n) // and throw IntermediateValueException in the (unlikely) event // that the result is 0. // Get 64 extra bits and reduce in to the nonce int seedBits = orderField.getSize().bitLength() + 64; if (seedBytes.length * 8 < seedBits) { throw new ProviderException("Incorrect seed length: " + seedBytes.length * 8 + " < " + seedBits); } // input conversion only works on byte boundaries // clear high-order bits of last byte so they don't influence nonce int lastByteBits = seedBits % 8; if (lastByteBits != 0) { int lastByteIndex = seedBits / 8; byte mask = (byte) (0xFF >>> (8 - lastByteBits)); seedBytes[lastByteIndex] &= mask; } int seedLength = (seedBits + 7) / 8; IntegerModuloP scalarElem = orderField.getElement(seedBytes, 0, seedLength, (byte) 0); int scalarLength = (orderField.getSize().bitLength() + 7) / 8; byte[] scalarArr = new byte[scalarLength]; scalarElem.asByteArray(scalarArr); if (ECOperations.allZero(scalarArr)) { throw new IntermediateValueException(); } return scalarArr; } /* * Compare all values in the array to 0 without branching on any value * */ public static boolean allZero(byte[] arr) { byte acc = 0; for (int i = 0; i < arr.length; i++) { acc |= arr[i]; } return acc == 0; } /* * 4-bit branchless array lookup for projective points. */ private void lookup4(ProjectivePoint.Immutable[] arr, int index, ProjectivePoint.Mutable result, IntegerModuloP zero) { for (int i = 0; i < 16; i++) { int xor = index ^ i; int bit3 = (xor & 0x8) >>> 3; int bit2 = (xor & 0x4) >>> 2; int bit1 = (xor & 0x2) >>> 1; int bit0 = (xor & 0x1); int inverse = bit0 | bit1 | bit2 | bit3; int set = 1 - inverse; ProjectivePoint.Immutable pi = arr[i]; result.conditionalSet(pi, set); } } private void double4(ProjectivePoint.Mutable p, MutableIntegerModuloP t0, MutableIntegerModuloP t1, MutableIntegerModuloP t2, MutableIntegerModuloP t3, MutableIntegerModuloP t4) { for (int i = 0; i < 4; i++) { setDouble(p, t0, t1, t2, t3, t4); } } /** * Multiply an affine point by a scalar and return the result as a mutable * point. * * @param affineP the point * @param s the scalar as a little-endian array * @return the product */ public MutablePoint multiply(AffinePoint affineP, byte[] s) { // 4-bit windowed multiply with branchless lookup. // The mixed addition is faster, so it is used to construct the array // at the beginning of the operation. IntegerFieldModuloP field = affineP.getX().getField(); ImmutableIntegerModuloP zero = field.get0(); // temporaries MutableIntegerModuloP t0 = zero.mutable(); MutableIntegerModuloP t1 = zero.mutable(); MutableIntegerModuloP t2 = zero.mutable(); MutableIntegerModuloP t3 = zero.mutable(); MutableIntegerModuloP t4 = zero.mutable(); ProjectivePoint.Mutable result = new ProjectivePoint.Mutable(field); result.getY().setValue(field.get1().mutable()); ProjectivePoint.Immutable[] pointMultiples = new ProjectivePoint.Immutable[16]; // 0P is neutral---same as initial result value pointMultiples[0] = result.fixed(); ProjectivePoint.Mutable ps = new ProjectivePoint.Mutable(field); ps.setValue(affineP); // 1P = P pointMultiples[1] = ps.fixed(); // the rest are calculated using mixed point addition for (int i = 2; i < 16; i++) { setSum(ps, affineP, t0, t1, t2, t3, t4); pointMultiples[i] = ps.fixed(); } ProjectivePoint.Mutable lookupResult = ps.mutable(); for (int i = s.length - 1; i >= 0; i--) { double4(result, t0, t1, t2, t3, t4); int high = (0xFF & s[i]) >>> 4; lookup4(pointMultiples, high, lookupResult, zero); setSum(result, lookupResult, t0, t1, t2, t3, t4); double4(result, t0, t1, t2, t3, t4); int low = 0xF & s[i]; lookup4(pointMultiples, low, lookupResult, zero); setSum(result, lookupResult, t0, t1, t2, t3, t4); } return result; } /* * Point double */ private void setDouble(ProjectivePoint.Mutable p, MutableIntegerModuloP t0, MutableIntegerModuloP t1, MutableIntegerModuloP t2, MutableIntegerModuloP t3, MutableIntegerModuloP t4) { t0.setValue(p.getX()).setSquare(); t1.setValue(p.getY()).setSquare(); t2.setValue(p.getZ()).setSquare(); t3.setValue(p.getX()).setProduct(p.getY()); t4.setValue(p.getY()).setProduct(p.getZ()); t3.setSum(t3); p.getZ().setProduct(p.getX()); p.getZ().setProduct(two); p.getY().setValue(t2).setProduct(b); p.getY().setDifference(p.getZ()); p.getX().setValue(p.getY()).setProduct(two); p.getY().setSum(p.getX()); p.getY().setReduced(); p.getX().setValue(t1).setDifference(p.getY()); p.getY().setSum(t1); p.getY().setProduct(p.getX()); p.getX().setProduct(t3); t3.setValue(t2).setProduct(two); t2.setSum(t3); p.getZ().setProduct(b); t2.setReduced(); p.getZ().setDifference(t2); p.getZ().setDifference(t0); t3.setValue(p.getZ()).setProduct(two); p.getZ().setReduced(); p.getZ().setSum(t3); t0.setProduct(three); t0.setDifference(t2); t0.setProduct(p.getZ()); p.getY().setSum(t0); t4.setSum(t4); p.getZ().setProduct(t4); p.getX().setDifference(p.getZ()); p.getZ().setValue(t4).setProduct(t1); p.getZ().setProduct(four); } /* * Mixed point addition. This method constructs new temporaries each time * it is called. For better efficiency, the method that reuses temporaries * should be used if more than one sum will be computed. */ public void setSum(MutablePoint p, AffinePoint p2) { IntegerModuloP zero = p.getField().get0(); MutableIntegerModuloP t0 = zero.mutable(); MutableIntegerModuloP t1 = zero.mutable(); MutableIntegerModuloP t2 = zero.mutable(); MutableIntegerModuloP t3 = zero.mutable(); MutableIntegerModuloP t4 = zero.mutable(); setSum((ProjectivePoint.Mutable) p, p2, t0, t1, t2, t3, t4); } /* * Mixed point addition */ private void setSum(ProjectivePoint.Mutable p, AffinePoint p2, MutableIntegerModuloP t0, MutableIntegerModuloP t1, MutableIntegerModuloP t2, MutableIntegerModuloP t3, MutableIntegerModuloP t4) { t0.setValue(p.getX()).setProduct(p2.getX()); t1.setValue(p.getY()).setProduct(p2.getY()); t3.setValue(p2.getX()).setSum(p2.getY()); t4.setValue(p.getX()).setSum(p.getY()); p.getX().setReduced(); t3.setProduct(t4); t4.setValue(t0).setSum(t1); t3.setDifference(t4); t4.setValue(p2.getY()).setProduct(p.getZ()); t4.setSum(p.getY()); p.getY().setValue(p2.getX()).setProduct(p.getZ()); p.getY().setSum(p.getX()); t2.setValue(p.getZ()); p.getZ().setProduct(b); p.getX().setValue(p.getY()).setDifference(p.getZ()); p.getX().setReduced(); p.getZ().setValue(p.getX()).setProduct(two); p.getX().setSum(p.getZ()); p.getZ().setValue(t1).setDifference(p.getX()); p.getX().setSum(t1); p.getY().setProduct(b); t1.setValue(t2).setProduct(two); t2.setSum(t1); t2.setReduced(); p.getY().setDifference(t2); p.getY().setDifference(t0); p.getY().setReduced(); t1.setValue(p.getY()).setProduct(two); p.getY().setSum(t1); t1.setValue(t0).setProduct(two); t0.setSum(t1); t0.setDifference(t2); t1.setValue(t4).setProduct(p.getY()); t2.setValue(t0).setProduct(p.getY()); p.getY().setValue(p.getX()).setProduct(p.getZ()); p.getY().setSum(t2); p.getX().setProduct(t3); p.getX().setDifference(t1); p.getZ().setProduct(t4); t1.setValue(t3).setProduct(t0); p.getZ().setSum(t1); } /* * Projective point addition */ private void setSum(ProjectivePoint.Mutable p, ProjectivePoint.Mutable p2, MutableIntegerModuloP t0, MutableIntegerModuloP t1, MutableIntegerModuloP t2, MutableIntegerModuloP t3, MutableIntegerModuloP t4) { t0.setValue(p.getX()).setProduct(p2.getX()); t1.setValue(p.getY()).setProduct(p2.getY()); t2.setValue(p.getZ()).setProduct(p2.getZ()); t3.setValue(p.getX()).setSum(p.getY()); t4.setValue(p2.getX()).setSum(p2.getY()); t3.setProduct(t4); t4.setValue(t0).setSum(t1); t3.setDifference(t4); t4.setValue(p.getY()).setSum(p.getZ()); p.getY().setValue(p2.getY()).setSum(p2.getZ()); t4.setProduct(p.getY()); p.getY().setValue(t1).setSum(t2); t4.setDifference(p.getY()); p.getX().setSum(p.getZ()); p.getY().setValue(p2.getX()).setSum(p2.getZ()); p.getX().setProduct(p.getY()); p.getY().setValue(t0).setSum(t2); p.getY().setAdditiveInverse().setSum(p.getX()); p.getY().setReduced(); p.getZ().setValue(t2).setProduct(b); p.getX().setValue(p.getY()).setDifference(p.getZ()); p.getZ().setValue(p.getX()).setProduct(two); p.getX().setSum(p.getZ()); p.getX().setReduced(); p.getZ().setValue(t1).setDifference(p.getX()); p.getX().setSum(t1); p.getY().setProduct(b); t1.setValue(t2).setSum(t2); t2.setSum(t1); t2.setReduced(); p.getY().setDifference(t2); p.getY().setDifference(t0); p.getY().setReduced(); t1.setValue(p.getY()).setSum(p.getY()); p.getY().setSum(t1); t1.setValue(t0).setProduct(two); t0.setSum(t1); t0.setDifference(t2); t1.setValue(t4).setProduct(p.getY()); t2.setValue(t0).setProduct(p.getY()); p.getY().setValue(p.getX()).setProduct(p.getZ()); p.getY().setSum(t2); p.getX().setProduct(t3); p.getX().setDifference(t1); p.getZ().setProduct(t4); t1.setValue(t3).setProduct(t0); p.getZ().setSum(t1); } }