1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 import java.io.Serializable;
  28 import java.io.ObjectOutputStream;
  29 import java.io.IOException;
  30 import java.lang.reflect.Array;
  31 
  32 /**
  33  * This class consists exclusively of static methods that operate on or return
  34  * collections.  It contains polymorphic algorithms that operate on
  35  * collections, "wrappers", which return a new collection backed by a
  36  * specified collection, and a few other odds and ends.
  37  *
  38  * <p>The methods of this class all throw a <tt>NullPointerException</tt>
  39  * if the collections or class objects provided to them are null.
  40  *
  41  * <p>The documentation for the polymorphic algorithms contained in this class
  42  * generally includes a brief description of the <i>implementation</i>.  Such
  43  * descriptions should be regarded as <i>implementation notes</i>, rather than
  44  * parts of the <i>specification</i>.  Implementors should feel free to
  45  * substitute other algorithms, so long as the specification itself is adhered
  46  * to.  (For example, the algorithm used by <tt>sort</tt> does not have to be
  47  * a mergesort, but it does have to be <i>stable</i>.)
  48  *
  49  * <p>The "destructive" algorithms contained in this class, that is, the
  50  * algorithms that modify the collection on which they operate, are specified
  51  * to throw <tt>UnsupportedOperationException</tt> if the collection does not
  52  * support the appropriate mutation primitive(s), such as the <tt>set</tt>
  53  * method.  These algorithms may, but are not required to, throw this
  54  * exception if an invocation would have no effect on the collection.  For
  55  * example, invoking the <tt>sort</tt> method on an unmodifiable list that is
  56  * already sorted may or may not throw <tt>UnsupportedOperationException</tt>.
  57  *
  58  * <p>This class is a member of the
  59  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
  60  * Java Collections Framework</a>.
  61  *
  62  * @author  Josh Bloch
  63  * @author  Neal Gafter
  64  * @see     Collection
  65  * @see     Set
  66  * @see     List
  67  * @see     Map
  68  * @since   1.2
  69  */
  70 
  71 public class Collections {
  72     // Suppresses default constructor, ensuring non-instantiability.
  73     private Collections() {
  74     }
  75 
  76     // Algorithms
  77 
  78     /*
  79      * Tuning parameters for algorithms - Many of the List algorithms have
  80      * two implementations, one of which is appropriate for RandomAccess
  81      * lists, the other for "sequential."  Often, the random access variant
  82      * yields better performance on small sequential access lists.  The
  83      * tuning parameters below determine the cutoff point for what constitutes
  84      * a "small" sequential access list for each algorithm.  The values below
  85      * were empirically determined to work well for LinkedList. Hopefully
  86      * they should be reasonable for other sequential access List
  87      * implementations.  Those doing performance work on this code would
  88      * do well to validate the values of these parameters from time to time.
  89      * (The first word of each tuning parameter name is the algorithm to which
  90      * it applies.)
  91      */
  92     private static final int BINARYSEARCH_THRESHOLD   = 5000;
  93     private static final int REVERSE_THRESHOLD        =   18;
  94     private static final int SHUFFLE_THRESHOLD        =    5;
  95     private static final int FILL_THRESHOLD           =   25;
  96     private static final int ROTATE_THRESHOLD         =  100;
  97     private static final int COPY_THRESHOLD           =   10;
  98     private static final int REPLACEALL_THRESHOLD     =   11;
  99     private static final int INDEXOFSUBLIST_THRESHOLD =   35;
 100 
 101     /**
 102      * Sorts the specified list into ascending order, according to the
 103      * {@linkplain Comparable natural ordering} of its elements.
 104      * All elements in the list must implement the {@link Comparable}
 105      * interface.  Furthermore, all elements in the list must be
 106      * <i>mutually comparable</i> (that is, {@code e1.compareTo(e2)}
 107      * must not throw a {@code ClassCastException} for any elements
 108      * {@code e1} and {@code e2} in the list).
 109      *
 110      * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
 111      * not be reordered as a result of the sort.
 112      *
 113      * <p>The specified list must be modifiable, but need not be resizable.
 114      *
 115      * <p>Implementation note: This implementation is a stable, adaptive,
 116      * iterative mergesort that requires far fewer than n lg(n) comparisons
 117      * when the input array is partially sorted, while offering the
 118      * performance of a traditional mergesort when the input array is
 119      * randomly ordered.  If the input array is nearly sorted, the
 120      * implementation requires approximately n comparisons.  Temporary
 121      * storage requirements vary from a small constant for nearly sorted
 122      * input arrays to n/2 object references for randomly ordered input
 123      * arrays.
 124      *
 125      * <p>The implementation takes equal advantage of ascending and
 126      * descending order in its input array, and can take advantage of
 127      * ascending and descending order in different parts of the same
 128      * input array.  It is well-suited to merging two or more sorted arrays:
 129      * simply concatenate the arrays and sort the resulting array.
 130      *
 131      * <p>The implementation was adapted from Tim Peters's list sort for Python
 132      * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
 133      * TimSort</a>).  It uses techiques from Peter McIlroy's "Optimistic
 134      * Sorting and Information Theoretic Complexity", in Proceedings of the
 135      * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
 136      * January 1993.
 137      *
 138      * <p>This implementation dumps the specified list into an array, sorts
 139      * the array, and iterates over the list resetting each element
 140      * from the corresponding position in the array.  This avoids the
 141      * n<sup>2</sup> log(n) performance that would result from attempting
 142      * to sort a linked list in place.
 143      *
 144      * @param  list the list to be sorted.
 145      * @throws ClassCastException if the list contains elements that are not
 146      *         <i>mutually comparable</i> (for example, strings and integers).
 147      * @throws UnsupportedOperationException if the specified list's
 148      *         list-iterator does not support the {@code set} operation.
 149      * @throws IllegalArgumentException (optional) if the implementation
 150      *         detects that the natural ordering of the list elements is
 151      *         found to violate the {@link Comparable} contract
 152      */
 153     public static <T extends Comparable<? super T>> void sort(List<T> list) {
 154         Object[] a = list.toArray();
 155         Arrays.sort(a);
 156         ListIterator<T> i = list.listIterator();
 157         for (int j=0; j<a.length; j++) {
 158             i.next();
 159             i.set((T)a[j]);
 160         }
 161     }
 162 
 163     /**
 164      * Sorts the specified list according to the order induced by the
 165      * specified comparator.  All elements in the list must be <i>mutually
 166      * comparable</i> using the specified comparator (that is,
 167      * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
 168      * for any elements {@code e1} and {@code e2} in the list).
 169      *
 170      * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
 171      * not be reordered as a result of the sort.
 172      *
 173      * <p>The specified list must be modifiable, but need not be resizable.
 174      *
 175      * <p>Implementation note: This implementation is a stable, adaptive,
 176      * iterative mergesort that requires far fewer than n lg(n) comparisons
 177      * when the input array is partially sorted, while offering the
 178      * performance of a traditional mergesort when the input array is
 179      * randomly ordered.  If the input array is nearly sorted, the
 180      * implementation requires approximately n comparisons.  Temporary
 181      * storage requirements vary from a small constant for nearly sorted
 182      * input arrays to n/2 object references for randomly ordered input
 183      * arrays.
 184      *
 185      * <p>The implementation takes equal advantage of ascending and
 186      * descending order in its input array, and can take advantage of
 187      * ascending and descending order in different parts of the same
 188      * input array.  It is well-suited to merging two or more sorted arrays:
 189      * simply concatenate the arrays and sort the resulting array.
 190      *
 191      * <p>The implementation was adapted from Tim Peters's list sort for Python
 192      * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
 193      * TimSort</a>).  It uses techiques from Peter McIlroy's "Optimistic
 194      * Sorting and Information Theoretic Complexity", in Proceedings of the
 195      * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
 196      * January 1993.
 197      *
 198      * <p>This implementation dumps the specified list into an array, sorts
 199      * the array, and iterates over the list resetting each element
 200      * from the corresponding position in the array.  This avoids the
 201      * n<sup>2</sup> log(n) performance that would result from attempting
 202      * to sort a linked list in place.
 203      *
 204      * @param  list the list to be sorted.
 205      * @param  c the comparator to determine the order of the list.  A
 206      *        {@code null} value indicates that the elements' <i>natural
 207      *        ordering</i> should be used.
 208      * @throws ClassCastException if the list contains elements that are not
 209      *         <i>mutually comparable</i> using the specified comparator.
 210      * @throws UnsupportedOperationException if the specified list's
 211      *         list-iterator does not support the {@code set} operation.
 212      * @throws IllegalArgumentException (optional) if the comparator is
 213      *         found to violate the {@link Comparator} contract
 214      */
 215     public static <T> void sort(List<T> list, Comparator<? super T> c) {
 216         Object[] a = list.toArray();
 217         Arrays.sort(a, (Comparator)c);
 218         ListIterator i = list.listIterator();
 219         for (int j=0; j<a.length; j++) {
 220             i.next();
 221             i.set(a[j]);
 222         }
 223     }
 224 
 225 
 226     /**
 227      * Searches the specified list for the specified object using the binary
 228      * search algorithm.  The list must be sorted into ascending order
 229      * according to the {@linkplain Comparable natural ordering} of its
 230      * elements (as by the {@link #sort(List)} method) prior to making this
 231      * call.  If it is not sorted, the results are undefined.  If the list
 232      * contains multiple elements equal to the specified object, there is no
 233      * guarantee which one will be found.
 234      *
 235      * <p>This method runs in log(n) time for a "random access" list (which
 236      * provides near-constant-time positional access).  If the specified list
 237      * does not implement the {@link RandomAccess} interface and is large,
 238      * this method will do an iterator-based binary search that performs
 239      * O(n) link traversals and O(log n) element comparisons.
 240      *
 241      * @param  list the list to be searched.
 242      * @param  key the key to be searched for.
 243      * @return the index of the search key, if it is contained in the list;
 244      *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
 245      *         <i>insertion point</i> is defined as the point at which the
 246      *         key would be inserted into the list: the index of the first
 247      *         element greater than the key, or <tt>list.size()</tt> if all
 248      *         elements in the list are less than the specified key.  Note
 249      *         that this guarantees that the return value will be &gt;= 0 if
 250      *         and only if the key is found.
 251      * @throws ClassCastException if the list contains elements that are not
 252      *         <i>mutually comparable</i> (for example, strings and
 253      *         integers), or the search key is not mutually comparable
 254      *         with the elements of the list.
 255      */
 256     public static <T>
 257     int binarySearch(List<? extends Comparable<? super T>> list, T key) {
 258         if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
 259             return Collections.indexedBinarySearch(list, key);
 260         else
 261             return Collections.iteratorBinarySearch(list, key);
 262     }
 263 
 264     private static <T>
 265     int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key)
 266     {
 267         int low = 0;
 268         int high = list.size()-1;
 269 
 270         while (low <= high) {
 271             int mid = (low + high) >>> 1;
 272             Comparable<? super T> midVal = list.get(mid);
 273             int cmp = midVal.compareTo(key);
 274 
 275             if (cmp < 0)
 276                 low = mid + 1;
 277             else if (cmp > 0)
 278                 high = mid - 1;
 279             else
 280                 return mid; // key found
 281         }
 282         return -(low + 1);  // key not found
 283     }
 284 
 285     private static <T>
 286     int iteratorBinarySearch(List<? extends Comparable<? super T>> list, T key)
 287     {
 288         int low = 0;
 289         int high = list.size()-1;
 290         ListIterator<? extends Comparable<? super T>> i = list.listIterator();
 291 
 292         while (low <= high) {
 293             int mid = (low + high) >>> 1;
 294             Comparable<? super T> midVal = get(i, mid);
 295             int cmp = midVal.compareTo(key);
 296 
 297             if (cmp < 0)
 298                 low = mid + 1;
 299             else if (cmp > 0)
 300                 high = mid - 1;
 301             else
 302                 return mid; // key found
 303         }
 304         return -(low + 1);  // key not found
 305     }
 306 
 307     /**
 308      * Gets the ith element from the given list by repositioning the specified
 309      * list listIterator.
 310      */
 311     private static <T> T get(ListIterator<? extends T> i, int index) {
 312         T obj = null;
 313         int pos = i.nextIndex();
 314         if (pos <= index) {
 315             do {
 316                 obj = i.next();
 317             } while (pos++ < index);
 318         } else {
 319             do {
 320                 obj = i.previous();
 321             } while (--pos > index);
 322         }
 323         return obj;
 324     }
 325 
 326     /**
 327      * Searches the specified list for the specified object using the binary
 328      * search algorithm.  The list must be sorted into ascending order
 329      * according to the specified comparator (as by the
 330      * {@link #sort(List, Comparator) sort(List, Comparator)}
 331      * method), prior to making this call.  If it is
 332      * not sorted, the results are undefined.  If the list contains multiple
 333      * elements equal to the specified object, there is no guarantee which one
 334      * will be found.
 335      *
 336      * <p>This method runs in log(n) time for a "random access" list (which
 337      * provides near-constant-time positional access).  If the specified list
 338      * does not implement the {@link RandomAccess} interface and is large,
 339      * this method will do an iterator-based binary search that performs
 340      * O(n) link traversals and O(log n) element comparisons.
 341      *
 342      * @param  list the list to be searched.
 343      * @param  key the key to be searched for.
 344      * @param  c the comparator by which the list is ordered.
 345      *         A <tt>null</tt> value indicates that the elements'
 346      *         {@linkplain Comparable natural ordering} should be used.
 347      * @return the index of the search key, if it is contained in the list;
 348      *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
 349      *         <i>insertion point</i> is defined as the point at which the
 350      *         key would be inserted into the list: the index of the first
 351      *         element greater than the key, or <tt>list.size()</tt> if all
 352      *         elements in the list are less than the specified key.  Note
 353      *         that this guarantees that the return value will be &gt;= 0 if
 354      *         and only if the key is found.
 355      * @throws ClassCastException if the list contains elements that are not
 356      *         <i>mutually comparable</i> using the specified comparator,
 357      *         or the search key is not mutually comparable with the
 358      *         elements of the list using this comparator.
 359      */
 360     public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c) {
 361         if (c==null)
 362             return binarySearch((List) list, key);
 363 
 364         if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
 365             return Collections.indexedBinarySearch(list, key, c);
 366         else
 367             return Collections.iteratorBinarySearch(list, key, c);
 368     }
 369 
 370     private static <T> int indexedBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
 371         int low = 0;
 372         int high = l.size()-1;
 373 
 374         while (low <= high) {
 375             int mid = (low + high) >>> 1;
 376             T midVal = l.get(mid);
 377             int cmp = c.compare(midVal, key);
 378 
 379             if (cmp < 0)
 380                 low = mid + 1;
 381             else if (cmp > 0)
 382                 high = mid - 1;
 383             else
 384                 return mid; // key found
 385         }
 386         return -(low + 1);  // key not found
 387     }
 388 
 389     private static <T> int iteratorBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
 390         int low = 0;
 391         int high = l.size()-1;
 392         ListIterator<? extends T> i = l.listIterator();
 393 
 394         while (low <= high) {
 395             int mid = (low + high) >>> 1;
 396             T midVal = get(i, mid);
 397             int cmp = c.compare(midVal, key);
 398 
 399             if (cmp < 0)
 400                 low = mid + 1;
 401             else if (cmp > 0)
 402                 high = mid - 1;
 403             else
 404                 return mid; // key found
 405         }
 406         return -(low + 1);  // key not found
 407     }
 408 
 409     private interface SelfComparable extends Comparable<SelfComparable> {}
 410 
 411 
 412     /**
 413      * Reverses the order of the elements in the specified list.<p>
 414      *
 415      * This method runs in linear time.
 416      *
 417      * @param  list the list whose elements are to be reversed.
 418      * @throws UnsupportedOperationException if the specified list or
 419      *         its list-iterator does not support the <tt>set</tt> operation.
 420      */
 421     public static void reverse(List<?> list) {
 422         int size = list.size();
 423         if (size < REVERSE_THRESHOLD || list instanceof RandomAccess) {
 424             for (int i=0, mid=size>>1, j=size-1; i<mid; i++, j--)
 425                 swap(list, i, j);
 426         } else {
 427             ListIterator fwd = list.listIterator();
 428             ListIterator rev = list.listIterator(size);
 429             for (int i=0, mid=list.size()>>1; i<mid; i++) {
 430                 Object tmp = fwd.next();
 431                 fwd.set(rev.previous());
 432                 rev.set(tmp);
 433             }
 434         }
 435     }
 436 
 437     /**
 438      * Randomly permutes the specified list using a default source of
 439      * randomness.  All permutations occur with approximately equal
 440      * likelihood.<p>
 441      *
 442      * The hedge "approximately" is used in the foregoing description because
 443      * default source of randomness is only approximately an unbiased source
 444      * of independently chosen bits. If it were a perfect source of randomly
 445      * chosen bits, then the algorithm would choose permutations with perfect
 446      * uniformity.<p>
 447      *
 448      * This implementation traverses the list backwards, from the last element
 449      * up to the second, repeatedly swapping a randomly selected element into
 450      * the "current position".  Elements are randomly selected from the
 451      * portion of the list that runs from the first element to the current
 452      * position, inclusive.<p>
 453      *
 454      * This method runs in linear time.  If the specified list does not
 455      * implement the {@link RandomAccess} interface and is large, this
 456      * implementation dumps the specified list into an array before shuffling
 457      * it, and dumps the shuffled array back into the list.  This avoids the
 458      * quadratic behavior that would result from shuffling a "sequential
 459      * access" list in place.
 460      *
 461      * @param  list the list to be shuffled.
 462      * @throws UnsupportedOperationException if the specified list or
 463      *         its list-iterator does not support the <tt>set</tt> operation.
 464      */
 465     public static void shuffle(List<?> list) {
 466         Random rnd = r;
 467         if (rnd == null)
 468             r = rnd = new Random();
 469         shuffle(list, rnd);
 470     }
 471     private static Random r;
 472 
 473     /**
 474      * Randomly permute the specified list using the specified source of
 475      * randomness.  All permutations occur with equal likelihood
 476      * assuming that the source of randomness is fair.<p>
 477      *
 478      * This implementation traverses the list backwards, from the last element
 479      * up to the second, repeatedly swapping a randomly selected element into
 480      * the "current position".  Elements are randomly selected from the
 481      * portion of the list that runs from the first element to the current
 482      * position, inclusive.<p>
 483      *
 484      * This method runs in linear time.  If the specified list does not
 485      * implement the {@link RandomAccess} interface and is large, this
 486      * implementation dumps the specified list into an array before shuffling
 487      * it, and dumps the shuffled array back into the list.  This avoids the
 488      * quadratic behavior that would result from shuffling a "sequential
 489      * access" list in place.
 490      *
 491      * @param  list the list to be shuffled.
 492      * @param  rnd the source of randomness to use to shuffle the list.
 493      * @throws UnsupportedOperationException if the specified list or its
 494      *         list-iterator does not support the <tt>set</tt> operation.
 495      */
 496     public static void shuffle(List<?> list, Random rnd) {
 497         int size = list.size();
 498         if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) {
 499             for (int i=size; i>1; i--)
 500                 swap(list, i-1, rnd.nextInt(i));
 501         } else {
 502             Object arr[] = list.toArray();
 503 
 504             // Shuffle array
 505             for (int i=size; i>1; i--)
 506                 swap(arr, i-1, rnd.nextInt(i));
 507 
 508             // Dump array back into list
 509             ListIterator it = list.listIterator();
 510             for (int i=0; i<arr.length; i++) {
 511                 it.next();
 512                 it.set(arr[i]);
 513             }
 514         }
 515     }
 516 
 517     /**
 518      * Swaps the elements at the specified positions in the specified list.
 519      * (If the specified positions are equal, invoking this method leaves
 520      * the list unchanged.)
 521      *
 522      * @param list The list in which to swap elements.
 523      * @param i the index of one element to be swapped.
 524      * @param j the index of the other element to be swapped.
 525      * @throws IndexOutOfBoundsException if either <tt>i</tt> or <tt>j</tt>
 526      *         is out of range (i &lt; 0 || i &gt;= list.size()
 527      *         || j &lt; 0 || j &gt;= list.size()).
 528      * @since 1.4
 529      */
 530     public static void swap(List<?> list, int i, int j) {
 531         final List l = list;
 532         l.set(i, l.set(j, l.get(i)));
 533     }
 534 
 535     /**
 536      * Swaps the two specified elements in the specified array.
 537      */
 538     private static void swap(Object[] arr, int i, int j) {
 539         Object tmp = arr[i];
 540         arr[i] = arr[j];
 541         arr[j] = tmp;
 542     }
 543 
 544     /**
 545      * Replaces all of the elements of the specified list with the specified
 546      * element. <p>
 547      *
 548      * This method runs in linear time.
 549      *
 550      * @param  list the list to be filled with the specified element.
 551      * @param  obj The element with which to fill the specified list.
 552      * @throws UnsupportedOperationException if the specified list or its
 553      *         list-iterator does not support the <tt>set</tt> operation.
 554      */
 555     public static <T> void fill(List<? super T> list, T obj) {
 556         int size = list.size();
 557 
 558         if (size < FILL_THRESHOLD || list instanceof RandomAccess) {
 559             for (int i=0; i<size; i++)
 560                 list.set(i, obj);
 561         } else {
 562             ListIterator<? super T> itr = list.listIterator();
 563             for (int i=0; i<size; i++) {
 564                 itr.next();
 565                 itr.set(obj);
 566             }
 567         }
 568     }
 569 
 570     /**
 571      * Copies all of the elements from one list into another.  After the
 572      * operation, the index of each copied element in the destination list
 573      * will be identical to its index in the source list.  The destination
 574      * list must be at least as long as the source list.  If it is longer, the
 575      * remaining elements in the destination list are unaffected. <p>
 576      *
 577      * This method runs in linear time.
 578      *
 579      * @param  dest The destination list.
 580      * @param  src The source list.
 581      * @throws IndexOutOfBoundsException if the destination list is too small
 582      *         to contain the entire source List.
 583      * @throws UnsupportedOperationException if the destination list's
 584      *         list-iterator does not support the <tt>set</tt> operation.
 585      */
 586     public static <T> void copy(List<? super T> dest, List<? extends T> src) {
 587         int srcSize = src.size();
 588         if (srcSize > dest.size())
 589             throw new IndexOutOfBoundsException("Source does not fit in dest");
 590 
 591         if (srcSize < COPY_THRESHOLD ||
 592             (src instanceof RandomAccess && dest instanceof RandomAccess)) {
 593             for (int i=0; i<srcSize; i++)
 594                 dest.set(i, src.get(i));
 595         } else {
 596             ListIterator<? super T> di=dest.listIterator();
 597             ListIterator<? extends T> si=src.listIterator();
 598             for (int i=0; i<srcSize; i++) {
 599                 di.next();
 600                 di.set(si.next());
 601             }
 602         }
 603     }
 604 
 605     /**
 606      * Returns the minimum element of the given collection, according to the
 607      * <i>natural ordering</i> of its elements.  All elements in the
 608      * collection must implement the <tt>Comparable</tt> interface.
 609      * Furthermore, all elements in the collection must be <i>mutually
 610      * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
 611      * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
 612      * <tt>e2</tt> in the collection).<p>
 613      *
 614      * This method iterates over the entire collection, hence it requires
 615      * time proportional to the size of the collection.
 616      *
 617      * @param  coll the collection whose minimum element is to be determined.
 618      * @return the minimum element of the given collection, according
 619      *         to the <i>natural ordering</i> of its elements.
 620      * @throws ClassCastException if the collection contains elements that are
 621      *         not <i>mutually comparable</i> (for example, strings and
 622      *         integers).
 623      * @throws NoSuchElementException if the collection is empty.
 624      * @see Comparable
 625      */
 626     public static <T extends Object & Comparable<? super T>> T min(Collection<? extends T> coll) {
 627         Iterator<? extends T> i = coll.iterator();
 628         T candidate = i.next();
 629 
 630         while (i.hasNext()) {
 631             T next = i.next();
 632             if (next.compareTo(candidate) < 0)
 633                 candidate = next;
 634         }
 635         return candidate;
 636     }
 637 
 638     /**
 639      * Returns the minimum element of the given collection, according to the
 640      * order induced by the specified comparator.  All elements in the
 641      * collection must be <i>mutually comparable</i> by the specified
 642      * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
 643      * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
 644      * <tt>e2</tt> in the collection).<p>
 645      *
 646      * This method iterates over the entire collection, hence it requires
 647      * time proportional to the size of the collection.
 648      *
 649      * @param  coll the collection whose minimum element is to be determined.
 650      * @param  comp the comparator with which to determine the minimum element.
 651      *         A <tt>null</tt> value indicates that the elements' <i>natural
 652      *         ordering</i> should be used.
 653      * @return the minimum element of the given collection, according
 654      *         to the specified comparator.
 655      * @throws ClassCastException if the collection contains elements that are
 656      *         not <i>mutually comparable</i> using the specified comparator.
 657      * @throws NoSuchElementException if the collection is empty.
 658      * @see Comparable
 659      */
 660     public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp) {
 661         if (comp==null)
 662             return (T)min((Collection<SelfComparable>) (Collection) coll);
 663 
 664         Iterator<? extends T> i = coll.iterator();
 665         T candidate = i.next();
 666 
 667         while (i.hasNext()) {
 668             T next = i.next();
 669             if (comp.compare(next, candidate) < 0)
 670                 candidate = next;
 671         }
 672         return candidate;
 673     }
 674 
 675     /**
 676      * Returns the maximum element of the given collection, according to the
 677      * <i>natural ordering</i> of its elements.  All elements in the
 678      * collection must implement the <tt>Comparable</tt> interface.
 679      * Furthermore, all elements in the collection must be <i>mutually
 680      * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
 681      * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
 682      * <tt>e2</tt> in the collection).<p>
 683      *
 684      * This method iterates over the entire collection, hence it requires
 685      * time proportional to the size of the collection.
 686      *
 687      * @param  coll the collection whose maximum element is to be determined.
 688      * @return the maximum element of the given collection, according
 689      *         to the <i>natural ordering</i> of its elements.
 690      * @throws ClassCastException if the collection contains elements that are
 691      *         not <i>mutually comparable</i> (for example, strings and
 692      *         integers).
 693      * @throws NoSuchElementException if the collection is empty.
 694      * @see Comparable
 695      */
 696     public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> coll) {
 697         Iterator<? extends T> i = coll.iterator();
 698         T candidate = i.next();
 699 
 700         while (i.hasNext()) {
 701             T next = i.next();
 702             if (next.compareTo(candidate) > 0)
 703                 candidate = next;
 704         }
 705         return candidate;
 706     }
 707 
 708     /**
 709      * Returns the maximum element of the given collection, according to the
 710      * order induced by the specified comparator.  All elements in the
 711      * collection must be <i>mutually comparable</i> by the specified
 712      * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
 713      * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
 714      * <tt>e2</tt> in the collection).<p>
 715      *
 716      * This method iterates over the entire collection, hence it requires
 717      * time proportional to the size of the collection.
 718      *
 719      * @param  coll the collection whose maximum element is to be determined.
 720      * @param  comp the comparator with which to determine the maximum element.
 721      *         A <tt>null</tt> value indicates that the elements' <i>natural
 722      *        ordering</i> should be used.
 723      * @return the maximum element of the given collection, according
 724      *         to the specified comparator.
 725      * @throws ClassCastException if the collection contains elements that are
 726      *         not <i>mutually comparable</i> using the specified comparator.
 727      * @throws NoSuchElementException if the collection is empty.
 728      * @see Comparable
 729      */
 730     public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp) {
 731         if (comp==null)
 732             return (T)max((Collection<SelfComparable>) (Collection) coll);
 733 
 734         Iterator<? extends T> i = coll.iterator();
 735         T candidate = i.next();
 736 
 737         while (i.hasNext()) {
 738             T next = i.next();
 739             if (comp.compare(next, candidate) > 0)
 740                 candidate = next;
 741         }
 742         return candidate;
 743     }
 744 
 745     /**
 746      * Rotates the elements in the specified list by the specified distance.
 747      * After calling this method, the element at index <tt>i</tt> will be
 748      * the element previously at index <tt>(i - distance)</tt> mod
 749      * <tt>list.size()</tt>, for all values of <tt>i</tt> between <tt>0</tt>
 750      * and <tt>list.size()-1</tt>, inclusive.  (This method has no effect on
 751      * the size of the list.)
 752      *
 753      * <p>For example, suppose <tt>list</tt> comprises<tt> [t, a, n, k, s]</tt>.
 754      * After invoking <tt>Collections.rotate(list, 1)</tt> (or
 755      * <tt>Collections.rotate(list, -4)</tt>), <tt>list</tt> will comprise
 756      * <tt>[s, t, a, n, k]</tt>.
 757      *
 758      * <p>Note that this method can usefully be applied to sublists to
 759      * move one or more elements within a list while preserving the
 760      * order of the remaining elements.  For example, the following idiom
 761      * moves the element at index <tt>j</tt> forward to position
 762      * <tt>k</tt> (which must be greater than or equal to <tt>j</tt>):
 763      * <pre>
 764      *     Collections.rotate(list.subList(j, k+1), -1);
 765      * </pre>
 766      * To make this concrete, suppose <tt>list</tt> comprises
 767      * <tt>[a, b, c, d, e]</tt>.  To move the element at index <tt>1</tt>
 768      * (<tt>b</tt>) forward two positions, perform the following invocation:
 769      * <pre>
 770      *     Collections.rotate(l.subList(1, 4), -1);
 771      * </pre>
 772      * The resulting list is <tt>[a, c, d, b, e]</tt>.
 773      *
 774      * <p>To move more than one element forward, increase the absolute value
 775      * of the rotation distance.  To move elements backward, use a positive
 776      * shift distance.
 777      *
 778      * <p>If the specified list is small or implements the {@link
 779      * RandomAccess} interface, this implementation exchanges the first
 780      * element into the location it should go, and then repeatedly exchanges
 781      * the displaced element into the location it should go until a displaced
 782      * element is swapped into the first element.  If necessary, the process
 783      * is repeated on the second and successive elements, until the rotation
 784      * is complete.  If the specified list is large and doesn't implement the
 785      * <tt>RandomAccess</tt> interface, this implementation breaks the
 786      * list into two sublist views around index <tt>-distance mod size</tt>.
 787      * Then the {@link #reverse(List)} method is invoked on each sublist view,
 788      * and finally it is invoked on the entire list.  For a more complete
 789      * description of both algorithms, see Section 2.3 of Jon Bentley's
 790      * <i>Programming Pearls</i> (Addison-Wesley, 1986).
 791      *
 792      * @param list the list to be rotated.
 793      * @param distance the distance to rotate the list.  There are no
 794      *        constraints on this value; it may be zero, negative, or
 795      *        greater than <tt>list.size()</tt>.
 796      * @throws UnsupportedOperationException if the specified list or
 797      *         its list-iterator does not support the <tt>set</tt> operation.
 798      * @since 1.4
 799      */
 800     public static void rotate(List<?> list, int distance) {
 801         if (list instanceof RandomAccess || list.size() < ROTATE_THRESHOLD)
 802             rotate1(list, distance);
 803         else
 804             rotate2(list, distance);
 805     }
 806 
 807     private static <T> void rotate1(List<T> list, int distance) {
 808         int size = list.size();
 809         if (size == 0)
 810             return;
 811         distance = distance % size;
 812         if (distance < 0)
 813             distance += size;
 814         if (distance == 0)
 815             return;
 816 
 817         for (int cycleStart = 0, nMoved = 0; nMoved != size; cycleStart++) {
 818             T displaced = list.get(cycleStart);
 819             int i = cycleStart;
 820             do {
 821                 i += distance;
 822                 if (i >= size)
 823                     i -= size;
 824                 displaced = list.set(i, displaced);
 825                 nMoved ++;
 826             } while (i != cycleStart);
 827         }
 828     }
 829 
 830     private static void rotate2(List<?> list, int distance) {
 831         int size = list.size();
 832         if (size == 0)
 833             return;
 834         int mid =  -distance % size;
 835         if (mid < 0)
 836             mid += size;
 837         if (mid == 0)
 838             return;
 839 
 840         reverse(list.subList(0, mid));
 841         reverse(list.subList(mid, size));
 842         reverse(list);
 843     }
 844 
 845     /**
 846      * Replaces all occurrences of one specified value in a list with another.
 847      * More formally, replaces with <tt>newVal</tt> each element <tt>e</tt>
 848      * in <tt>list</tt> such that
 849      * <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>.
 850      * (This method has no effect on the size of the list.)
 851      *
 852      * @param list the list in which replacement is to occur.
 853      * @param oldVal the old value to be replaced.
 854      * @param newVal the new value with which <tt>oldVal</tt> is to be
 855      *        replaced.
 856      * @return <tt>true</tt> if <tt>list</tt> contained one or more elements
 857      *         <tt>e</tt> such that
 858      *         <tt>(oldVal==null ?  e==null : oldVal.equals(e))</tt>.
 859      * @throws UnsupportedOperationException if the specified list or
 860      *         its list-iterator does not support the <tt>set</tt> operation.
 861      * @since  1.4
 862      */
 863     public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal) {
 864         boolean result = false;
 865         int size = list.size();
 866         if (size < REPLACEALL_THRESHOLD || list instanceof RandomAccess) {
 867             if (oldVal==null) {
 868                 for (int i=0; i<size; i++) {
 869                     if (list.get(i)==null) {
 870                         list.set(i, newVal);
 871                         result = true;
 872                     }
 873                 }
 874             } else {
 875                 for (int i=0; i<size; i++) {
 876                     if (oldVal.equals(list.get(i))) {
 877                         list.set(i, newVal);
 878                         result = true;
 879                     }
 880                 }
 881             }
 882         } else {
 883             ListIterator<T> itr=list.listIterator();
 884             if (oldVal==null) {
 885                 for (int i=0; i<size; i++) {
 886                     if (itr.next()==null) {
 887                         itr.set(newVal);
 888                         result = true;
 889                     }
 890                 }
 891             } else {
 892                 for (int i=0; i<size; i++) {
 893                     if (oldVal.equals(itr.next())) {
 894                         itr.set(newVal);
 895                         result = true;
 896                     }
 897                 }
 898             }
 899         }
 900         return result;
 901     }
 902 
 903     /**
 904      * Returns the starting position of the first occurrence of the specified
 905      * target list within the specified source list, or -1 if there is no
 906      * such occurrence.  More formally, returns the lowest index <tt>i</tt>
 907      * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
 908      * or -1 if there is no such index.  (Returns -1 if
 909      * <tt>target.size() > source.size()</tt>.)
 910      *
 911      * <p>This implementation uses the "brute force" technique of scanning
 912      * over the source list, looking for a match with the target at each
 913      * location in turn.
 914      *
 915      * @param source the list in which to search for the first occurrence
 916      *        of <tt>target</tt>.
 917      * @param target the list to search for as a subList of <tt>source</tt>.
 918      * @return the starting position of the first occurrence of the specified
 919      *         target list within the specified source list, or -1 if there
 920      *         is no such occurrence.
 921      * @since  1.4
 922      */
 923     public static int indexOfSubList(List<?> source, List<?> target) {
 924         int sourceSize = source.size();
 925         int targetSize = target.size();
 926         int maxCandidate = sourceSize - targetSize;
 927 
 928         if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
 929             (source instanceof RandomAccess&&target instanceof RandomAccess)) {
 930         nextCand:
 931             for (int candidate = 0; candidate <= maxCandidate; candidate++) {
 932                 for (int i=0, j=candidate; i<targetSize; i++, j++)
 933                     if (!eq(target.get(i), source.get(j)))
 934                         continue nextCand;  // Element mismatch, try next cand
 935                 return candidate;  // All elements of candidate matched target
 936             }
 937         } else {  // Iterator version of above algorithm
 938             ListIterator<?> si = source.listIterator();
 939         nextCand:
 940             for (int candidate = 0; candidate <= maxCandidate; candidate++) {
 941                 ListIterator<?> ti = target.listIterator();
 942                 for (int i=0; i<targetSize; i++) {
 943                     if (!eq(ti.next(), si.next())) {
 944                         // Back up source iterator to next candidate
 945                         for (int j=0; j<i; j++)
 946                             si.previous();
 947                         continue nextCand;
 948                     }
 949                 }
 950                 return candidate;
 951             }
 952         }
 953         return -1;  // No candidate matched the target
 954     }
 955 
 956     /**
 957      * Returns the starting position of the last occurrence of the specified
 958      * target list within the specified source list, or -1 if there is no such
 959      * occurrence.  More formally, returns the highest index <tt>i</tt>
 960      * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
 961      * or -1 if there is no such index.  (Returns -1 if
 962      * <tt>target.size() > source.size()</tt>.)
 963      *
 964      * <p>This implementation uses the "brute force" technique of iterating
 965      * over the source list, looking for a match with the target at each
 966      * location in turn.
 967      *
 968      * @param source the list in which to search for the last occurrence
 969      *        of <tt>target</tt>.
 970      * @param target the list to search for as a subList of <tt>source</tt>.
 971      * @return the starting position of the last occurrence of the specified
 972      *         target list within the specified source list, or -1 if there
 973      *         is no such occurrence.
 974      * @since  1.4
 975      */
 976     public static int lastIndexOfSubList(List<?> source, List<?> target) {
 977         int sourceSize = source.size();
 978         int targetSize = target.size();
 979         int maxCandidate = sourceSize - targetSize;
 980 
 981         if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
 982             source instanceof RandomAccess) {   // Index access version
 983         nextCand:
 984             for (int candidate = maxCandidate; candidate >= 0; candidate--) {
 985                 for (int i=0, j=candidate; i<targetSize; i++, j++)
 986                     if (!eq(target.get(i), source.get(j)))
 987                         continue nextCand;  // Element mismatch, try next cand
 988                 return candidate;  // All elements of candidate matched target
 989             }
 990         } else {  // Iterator version of above algorithm
 991             if (maxCandidate < 0)
 992                 return -1;
 993             ListIterator<?> si = source.listIterator(maxCandidate);
 994         nextCand:
 995             for (int candidate = maxCandidate; candidate >= 0; candidate--) {
 996                 ListIterator<?> ti = target.listIterator();
 997                 for (int i=0; i<targetSize; i++) {
 998                     if (!eq(ti.next(), si.next())) {
 999                         if (candidate != 0) {
1000                             // Back up source iterator to next candidate
1001                             for (int j=0; j<=i+1; j++)
1002                                 si.previous();
1003                         }
1004                         continue nextCand;
1005                     }
1006                 }
1007                 return candidate;
1008             }
1009         }
1010         return -1;  // No candidate matched the target
1011     }
1012 
1013 
1014     // Unmodifiable Wrappers
1015 
1016     /**
1017      * Returns an unmodifiable view of the specified collection.  This method
1018      * allows modules to provide users with "read-only" access to internal
1019      * collections.  Query operations on the returned collection "read through"
1020      * to the specified collection, and attempts to modify the returned
1021      * collection, whether direct or via its iterator, result in an
1022      * <tt>UnsupportedOperationException</tt>.<p>
1023      *
1024      * The returned collection does <i>not</i> pass the hashCode and equals
1025      * operations through to the backing collection, but relies on
1026      * <tt>Object</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods.  This
1027      * is necessary to preserve the contracts of these operations in the case
1028      * that the backing collection is a set or a list.<p>
1029      *
1030      * The returned collection will be serializable if the specified collection
1031      * is serializable.
1032      *
1033      * @param  c the collection for which an unmodifiable view is to be
1034      *         returned.
1035      * @return an unmodifiable view of the specified collection.
1036      */
1037     public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c) {
1038         return new UnmodifiableCollection<>(c);
1039     }
1040 
1041     /**
1042      * @serial include
1043      */
1044     static class UnmodifiableCollection<E> implements Collection<E>, Serializable {
1045         private static final long serialVersionUID = 1820017752578914078L;
1046 
1047         final Collection<? extends E> c;
1048 
1049         UnmodifiableCollection(Collection<? extends E> c) {
1050             if (c==null)
1051                 throw new NullPointerException();
1052             this.c = c;
1053         }
1054 
1055         public int size()                   {return c.size();}
1056         public boolean isEmpty()            {return c.isEmpty();}
1057         public boolean contains(Object o)   {return c.contains(o);}
1058         public Object[] toArray()           {return c.toArray();}
1059         public <T> T[] toArray(T[] a)       {return c.toArray(a);}
1060         public String toString()            {return c.toString();}
1061 
1062         public Iterator<E> iterator() {
1063             return new Iterator<E>() {
1064                 private final Iterator<? extends E> i = c.iterator();
1065 
1066                 public boolean hasNext() {return i.hasNext();}
1067                 public E next()          {return i.next();}
1068                 public void remove() {
1069                     throw new UnsupportedOperationException();
1070                 }
1071             };
1072         }
1073 
1074         public boolean add(E e) {
1075             throw new UnsupportedOperationException();
1076         }
1077         public boolean remove(Object o) {
1078             throw new UnsupportedOperationException();
1079         }
1080 
1081         public boolean containsAll(Collection<?> coll) {
1082             return c.containsAll(coll);
1083         }
1084         public boolean addAll(Collection<? extends E> coll) {
1085             throw new UnsupportedOperationException();
1086         }
1087         public boolean removeAll(Collection<?> coll) {
1088             throw new UnsupportedOperationException();
1089         }
1090         public boolean retainAll(Collection<?> coll) {
1091             throw new UnsupportedOperationException();
1092         }
1093         public void clear() {
1094             throw new UnsupportedOperationException();
1095         }
1096     }
1097 
1098     /**
1099      * Returns an unmodifiable view of the specified set.  This method allows
1100      * modules to provide users with "read-only" access to internal sets.
1101      * Query operations on the returned set "read through" to the specified
1102      * set, and attempts to modify the returned set, whether direct or via its
1103      * iterator, result in an <tt>UnsupportedOperationException</tt>.<p>
1104      *
1105      * The returned set will be serializable if the specified set
1106      * is serializable.
1107      *
1108      * @param  s the set for which an unmodifiable view is to be returned.
1109      * @return an unmodifiable view of the specified set.
1110      */
1111     public static <T> Set<T> unmodifiableSet(Set<? extends T> s) {
1112         return new UnmodifiableSet<>(s);
1113     }
1114 
1115     /**
1116      * @serial include
1117      */
1118     static class UnmodifiableSet<E> extends UnmodifiableCollection<E>
1119                                  implements Set<E>, Serializable {
1120         private static final long serialVersionUID = -9215047833775013803L;
1121 
1122         UnmodifiableSet(Set<? extends E> s)     {super(s);}
1123         public boolean equals(Object o) {return o == this || c.equals(o);}
1124         public int hashCode()           {return c.hashCode();}
1125     }
1126 
1127     /**
1128      * Returns an unmodifiable view of the specified sorted set.  This method
1129      * allows modules to provide users with "read-only" access to internal
1130      * sorted sets.  Query operations on the returned sorted set "read
1131      * through" to the specified sorted set.  Attempts to modify the returned
1132      * sorted set, whether direct, via its iterator, or via its
1133      * <tt>subSet</tt>, <tt>headSet</tt>, or <tt>tailSet</tt> views, result in
1134      * an <tt>UnsupportedOperationException</tt>.<p>
1135      *
1136      * The returned sorted set will be serializable if the specified sorted set
1137      * is serializable.
1138      *
1139      * @param s the sorted set for which an unmodifiable view is to be
1140      *        returned.
1141      * @return an unmodifiable view of the specified sorted set.
1142      */
1143     public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s) {
1144         return new UnmodifiableSortedSet<>(s);
1145     }
1146 
1147     /**
1148      * @serial include
1149      */
1150     static class UnmodifiableSortedSet<E>
1151                              extends UnmodifiableSet<E>
1152                              implements SortedSet<E>, Serializable {
1153         private static final long serialVersionUID = -4929149591599911165L;
1154         private final SortedSet<E> ss;
1155 
1156         UnmodifiableSortedSet(SortedSet<E> s) {super(s); ss = s;}
1157 
1158         public Comparator<? super E> comparator() {return ss.comparator();}
1159 
1160         public SortedSet<E> subSet(E fromElement, E toElement) {
1161             return new UnmodifiableSortedSet<>(ss.subSet(fromElement,toElement));
1162         }
1163         public SortedSet<E> headSet(E toElement) {
1164             return new UnmodifiableSortedSet<>(ss.headSet(toElement));
1165         }
1166         public SortedSet<E> tailSet(E fromElement) {
1167             return new UnmodifiableSortedSet<>(ss.tailSet(fromElement));
1168         }
1169 
1170         public E first()                   {return ss.first();}
1171         public E last()                    {return ss.last();}
1172     }
1173 
1174     /**
1175      * Returns an unmodifiable view of the specified list.  This method allows
1176      * modules to provide users with "read-only" access to internal
1177      * lists.  Query operations on the returned list "read through" to the
1178      * specified list, and attempts to modify the returned list, whether
1179      * direct or via its iterator, result in an
1180      * <tt>UnsupportedOperationException</tt>.<p>
1181      *
1182      * The returned list will be serializable if the specified list
1183      * is serializable. Similarly, the returned list will implement
1184      * {@link RandomAccess} if the specified list does.
1185      *
1186      * @param  list the list for which an unmodifiable view is to be returned.
1187      * @return an unmodifiable view of the specified list.
1188      */
1189     public static <T> List<T> unmodifiableList(List<? extends T> list) {
1190         return (list instanceof RandomAccess ?
1191                 new UnmodifiableRandomAccessList<>(list) :
1192                 new UnmodifiableList<>(list));
1193     }
1194 
1195     /**
1196      * @serial include
1197      */
1198     static class UnmodifiableList<E> extends UnmodifiableCollection<E>
1199                                   implements List<E> {
1200         private static final long serialVersionUID = -283967356065247728L;
1201         final List<? extends E> list;
1202 
1203         UnmodifiableList(List<? extends E> list) {
1204             super(list);
1205             this.list = list;
1206         }
1207 
1208         public boolean equals(Object o) {return o == this || list.equals(o);}
1209         public int hashCode()           {return list.hashCode();}
1210 
1211         public E get(int index) {return list.get(index);}
1212         public E set(int index, E element) {
1213             throw new UnsupportedOperationException();
1214         }
1215         public void add(int index, E element) {
1216             throw new UnsupportedOperationException();
1217         }
1218         public E remove(int index) {
1219             throw new UnsupportedOperationException();
1220         }
1221         public int indexOf(Object o)            {return list.indexOf(o);}
1222         public int lastIndexOf(Object o)        {return list.lastIndexOf(o);}
1223         public boolean addAll(int index, Collection<? extends E> c) {
1224             throw new UnsupportedOperationException();
1225         }
1226         public ListIterator<E> listIterator()   {return listIterator(0);}
1227 
1228         public ListIterator<E> listIterator(final int index) {
1229             return new ListIterator<E>() {
1230                 private final ListIterator<? extends E> i
1231                     = list.listIterator(index);
1232 
1233                 public boolean hasNext()     {return i.hasNext();}
1234                 public E next()              {return i.next();}
1235                 public boolean hasPrevious() {return i.hasPrevious();}
1236                 public E previous()          {return i.previous();}
1237                 public int nextIndex()       {return i.nextIndex();}
1238                 public int previousIndex()   {return i.previousIndex();}
1239 
1240                 public void remove() {
1241                     throw new UnsupportedOperationException();
1242                 }
1243                 public void set(E e) {
1244                     throw new UnsupportedOperationException();
1245                 }
1246                 public void add(E e) {
1247                     throw new UnsupportedOperationException();
1248                 }
1249             };
1250         }
1251 
1252         public List<E> subList(int fromIndex, int toIndex) {
1253             return new UnmodifiableList<>(list.subList(fromIndex, toIndex));
1254         }
1255 
1256         /**
1257          * UnmodifiableRandomAccessList instances are serialized as
1258          * UnmodifiableList instances to allow them to be deserialized
1259          * in pre-1.4 JREs (which do not have UnmodifiableRandomAccessList).
1260          * This method inverts the transformation.  As a beneficial
1261          * side-effect, it also grafts the RandomAccess marker onto
1262          * UnmodifiableList instances that were serialized in pre-1.4 JREs.
1263          *
1264          * Note: Unfortunately, UnmodifiableRandomAccessList instances
1265          * serialized in 1.4.1 and deserialized in 1.4 will become
1266          * UnmodifiableList instances, as this method was missing in 1.4.
1267          */
1268         private Object readResolve() {
1269             return (list instanceof RandomAccess
1270                     ? new UnmodifiableRandomAccessList<>(list)
1271                     : this);
1272         }
1273     }
1274 
1275     /**
1276      * @serial include
1277      */
1278     static class UnmodifiableRandomAccessList<E> extends UnmodifiableList<E>
1279                                               implements RandomAccess
1280     {
1281         UnmodifiableRandomAccessList(List<? extends E> list) {
1282             super(list);
1283         }
1284 
1285         public List<E> subList(int fromIndex, int toIndex) {
1286             return new UnmodifiableRandomAccessList<>(
1287                 list.subList(fromIndex, toIndex));
1288         }
1289 
1290         private static final long serialVersionUID = -2542308836966382001L;
1291 
1292         /**
1293          * Allows instances to be deserialized in pre-1.4 JREs (which do
1294          * not have UnmodifiableRandomAccessList).  UnmodifiableList has
1295          * a readResolve method that inverts this transformation upon
1296          * deserialization.
1297          */
1298         private Object writeReplace() {
1299             return new UnmodifiableList<>(list);
1300         }
1301     }
1302 
1303     /**
1304      * Returns an unmodifiable view of the specified map.  This method
1305      * allows modules to provide users with "read-only" access to internal
1306      * maps.  Query operations on the returned map "read through"
1307      * to the specified map, and attempts to modify the returned
1308      * map, whether direct or via its collection views, result in an
1309      * <tt>UnsupportedOperationException</tt>.<p>
1310      *
1311      * The returned map will be serializable if the specified map
1312      * is serializable.
1313      *
1314      * @param  m the map for which an unmodifiable view is to be returned.
1315      * @return an unmodifiable view of the specified map.
1316      */
1317     public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K, ? extends V> m) {
1318         return new UnmodifiableMap<>(m);
1319     }
1320 
1321     /**
1322      * @serial include
1323      */
1324     private static class UnmodifiableMap<K,V> implements Map<K,V>, Serializable {
1325         private static final long serialVersionUID = -1034234728574286014L;
1326 
1327         private final Map<? extends K, ? extends V> m;
1328 
1329         UnmodifiableMap(Map<? extends K, ? extends V> m) {
1330             if (m==null)
1331                 throw new NullPointerException();
1332             this.m = m;
1333         }
1334 
1335         public int size()                        {return m.size();}
1336         public boolean isEmpty()                 {return m.isEmpty();}
1337         public boolean containsKey(Object key)   {return m.containsKey(key);}
1338         public boolean containsValue(Object val) {return m.containsValue(val);}
1339         public V get(Object key)                 {return m.get(key);}
1340 
1341         public V put(K key, V value) {
1342             throw new UnsupportedOperationException();
1343         }
1344         public V remove(Object key) {
1345             throw new UnsupportedOperationException();
1346         }
1347         public void putAll(Map<? extends K, ? extends V> m) {
1348             throw new UnsupportedOperationException();
1349         }
1350         public void clear() {
1351             throw new UnsupportedOperationException();
1352         }
1353 
1354         private transient Set<K> keySet = null;
1355         private transient Set<Map.Entry<K,V>> entrySet = null;
1356         private transient Collection<V> values = null;
1357 
1358         public Set<K> keySet() {
1359             if (keySet==null)
1360                 keySet = unmodifiableSet(m.keySet());
1361             return keySet;
1362         }
1363 
1364         public Set<Map.Entry<K,V>> entrySet() {
1365             if (entrySet==null)
1366                 entrySet = new UnmodifiableEntrySet<>(m.entrySet());
1367             return entrySet;
1368         }
1369 
1370         public Collection<V> values() {
1371             if (values==null)
1372                 values = unmodifiableCollection(m.values());
1373             return values;
1374         }
1375 
1376         public boolean equals(Object o) {return o == this || m.equals(o);}
1377         public int hashCode()           {return m.hashCode();}
1378         public String toString()        {return m.toString();}
1379 
1380         /**
1381          * We need this class in addition to UnmodifiableSet as
1382          * Map.Entries themselves permit modification of the backing Map
1383          * via their setValue operation.  This class is subtle: there are
1384          * many possible attacks that must be thwarted.
1385          *
1386          * @serial include
1387          */
1388         static class UnmodifiableEntrySet<K,V>
1389             extends UnmodifiableSet<Map.Entry<K,V>> {
1390             private static final long serialVersionUID = 7854390611657943733L;
1391 
1392             UnmodifiableEntrySet(Set<? extends Map.Entry<? extends K, ? extends V>> s) {
1393                 super((Set)s);
1394             }
1395             public Iterator<Map.Entry<K,V>> iterator() {
1396                 return new Iterator<Map.Entry<K,V>>() {
1397                     private final Iterator<? extends Map.Entry<? extends K, ? extends V>> i = c.iterator();
1398 
1399                     public boolean hasNext() {
1400                         return i.hasNext();
1401                     }
1402                     public Map.Entry<K,V> next() {
1403                         return new UnmodifiableEntry<>(i.next());
1404                     }
1405                     public void remove() {
1406                         throw new UnsupportedOperationException();
1407                     }
1408                 };
1409             }
1410 
1411             public Object[] toArray() {
1412                 Object[] a = c.toArray();
1413                 for (int i=0; i<a.length; i++)
1414                     a[i] = new UnmodifiableEntry<>((Map.Entry<K,V>)a[i]);
1415                 return a;
1416             }
1417 
1418             public <T> T[] toArray(T[] a) {
1419                 // We don't pass a to c.toArray, to avoid window of
1420                 // vulnerability wherein an unscrupulous multithreaded client
1421                 // could get his hands on raw (unwrapped) Entries from c.
1422                 Object[] arr = c.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
1423 
1424                 for (int i=0; i<arr.length; i++)
1425                     arr[i] = new UnmodifiableEntry<>((Map.Entry<K,V>)arr[i]);
1426 
1427                 if (arr.length > a.length)
1428                     return (T[])arr;
1429 
1430                 System.arraycopy(arr, 0, a, 0, arr.length);
1431                 if (a.length > arr.length)
1432                     a[arr.length] = null;
1433                 return a;
1434             }
1435 
1436             /**
1437              * This method is overridden to protect the backing set against
1438              * an object with a nefarious equals function that senses
1439              * that the equality-candidate is Map.Entry and calls its
1440              * setValue method.
1441              */
1442             public boolean contains(Object o) {
1443                 if (!(o instanceof Map.Entry))
1444                     return false;
1445                 return c.contains(
1446                     new UnmodifiableEntry<>((Map.Entry<?,?>) o));
1447             }
1448 
1449             /**
1450              * The next two methods are overridden to protect against
1451              * an unscrupulous List whose contains(Object o) method senses
1452              * when o is a Map.Entry, and calls o.setValue.
1453              */
1454             public boolean containsAll(Collection<?> coll) {
1455                 for (Object e : coll) {
1456                     if (!contains(e)) // Invokes safe contains() above
1457                         return false;
1458                 }
1459                 return true;
1460             }
1461             public boolean equals(Object o) {
1462                 if (o == this)
1463                     return true;
1464 
1465                 if (!(o instanceof Set))
1466                     return false;
1467                 Set s = (Set) o;
1468                 if (s.size() != c.size())
1469                     return false;
1470                 return containsAll(s); // Invokes safe containsAll() above
1471             }
1472 
1473             /**
1474              * This "wrapper class" serves two purposes: it prevents
1475              * the client from modifying the backing Map, by short-circuiting
1476              * the setValue method, and it protects the backing Map against
1477              * an ill-behaved Map.Entry that attempts to modify another
1478              * Map Entry when asked to perform an equality check.
1479              */
1480             private static class UnmodifiableEntry<K,V> implements Map.Entry<K,V> {
1481                 private Map.Entry<? extends K, ? extends V> e;
1482 
1483                 UnmodifiableEntry(Map.Entry<? extends K, ? extends V> e) {this.e = e;}
1484 
1485                 public K getKey()        {return e.getKey();}
1486                 public V getValue()      {return e.getValue();}
1487                 public V setValue(V value) {
1488                     throw new UnsupportedOperationException();
1489                 }
1490                 public int hashCode()    {return e.hashCode();}
1491                 public boolean equals(Object o) {
1492                     if (!(o instanceof Map.Entry))
1493                         return false;
1494                     Map.Entry t = (Map.Entry)o;
1495                     return eq(e.getKey(),   t.getKey()) &&
1496                            eq(e.getValue(), t.getValue());
1497                 }
1498                 public String toString() {return e.toString();}
1499             }
1500         }
1501     }
1502 
1503     /**
1504      * Returns an unmodifiable view of the specified sorted map.  This method
1505      * allows modules to provide users with "read-only" access to internal
1506      * sorted maps.  Query operations on the returned sorted map "read through"
1507      * to the specified sorted map.  Attempts to modify the returned
1508      * sorted map, whether direct, via its collection views, or via its
1509      * <tt>subMap</tt>, <tt>headMap</tt>, or <tt>tailMap</tt> views, result in
1510      * an <tt>UnsupportedOperationException</tt>.<p>
1511      *
1512      * The returned sorted map will be serializable if the specified sorted map
1513      * is serializable.
1514      *
1515      * @param m the sorted map for which an unmodifiable view is to be
1516      *        returned.
1517      * @return an unmodifiable view of the specified sorted map.
1518      */
1519     public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K, ? extends V> m) {
1520         return new UnmodifiableSortedMap<>(m);
1521     }
1522 
1523     /**
1524      * @serial include
1525      */
1526     static class UnmodifiableSortedMap<K,V>
1527           extends UnmodifiableMap<K,V>
1528           implements SortedMap<K,V>, Serializable {
1529         private static final long serialVersionUID = -8806743815996713206L;
1530 
1531         private final SortedMap<K, ? extends V> sm;
1532 
1533         UnmodifiableSortedMap(SortedMap<K, ? extends V> m) {super(m); sm = m;}
1534 
1535         public Comparator<? super K> comparator() {return sm.comparator();}
1536 
1537         public SortedMap<K,V> subMap(K fromKey, K toKey) {
1538             return new UnmodifiableSortedMap<>(sm.subMap(fromKey, toKey));
1539         }
1540         public SortedMap<K,V> headMap(K toKey) {
1541             return new UnmodifiableSortedMap<>(sm.headMap(toKey));
1542         }
1543         public SortedMap<K,V> tailMap(K fromKey) {
1544             return new UnmodifiableSortedMap<>(sm.tailMap(fromKey));
1545         }
1546 
1547         public K firstKey()           {return sm.firstKey();}
1548         public K lastKey()            {return sm.lastKey();}
1549     }
1550 
1551 
1552     // Synch Wrappers
1553 
1554     /**
1555      * Returns a synchronized (thread-safe) collection backed by the specified
1556      * collection.  In order to guarantee serial access, it is critical that
1557      * <strong>all</strong> access to the backing collection is accomplished
1558      * through the returned collection.<p>
1559      *
1560      * It is imperative that the user manually synchronize on the returned
1561      * collection when iterating over it:
1562      * <pre>
1563      *  Collection c = Collections.synchronizedCollection(myCollection);
1564      *     ...
1565      *  synchronized (c) {
1566      *      Iterator i = c.iterator(); // Must be in the synchronized block
1567      *      while (i.hasNext())
1568      *         foo(i.next());
1569      *  }
1570      * </pre>
1571      * Failure to follow this advice may result in non-deterministic behavior.
1572      *
1573      * <p>The returned collection does <i>not</i> pass the <tt>hashCode</tt>
1574      * and <tt>equals</tt> operations through to the backing collection, but
1575      * relies on <tt>Object</tt>'s equals and hashCode methods.  This is
1576      * necessary to preserve the contracts of these operations in the case
1577      * that the backing collection is a set or a list.<p>
1578      *
1579      * The returned collection will be serializable if the specified collection
1580      * is serializable.
1581      *
1582      * @param  c the collection to be "wrapped" in a synchronized collection.
1583      * @return a synchronized view of the specified collection.
1584      */
1585     public static <T> Collection<T> synchronizedCollection(Collection<T> c) {
1586         return new SynchronizedCollection<>(c);
1587     }
1588 
1589     static <T> Collection<T> synchronizedCollection(Collection<T> c, Object mutex) {
1590         return new SynchronizedCollection<>(c, mutex);
1591     }
1592 
1593     /**
1594      * @serial include
1595      */
1596     static class SynchronizedCollection<E> implements Collection<E>, Serializable {
1597         private static final long serialVersionUID = 3053995032091335093L;
1598 
1599         final Collection<E> c;  // Backing Collection
1600         final Object mutex;     // Object on which to synchronize
1601 
1602         SynchronizedCollection(Collection<E> c) {
1603             if (c==null)
1604                 throw new NullPointerException();
1605             this.c = c;
1606             mutex = this;
1607         }
1608         SynchronizedCollection(Collection<E> c, Object mutex) {
1609             this.c = c;
1610             this.mutex = mutex;
1611         }
1612 
1613         public int size() {
1614             synchronized (mutex) {return c.size();}
1615         }
1616         public boolean isEmpty() {
1617             synchronized (mutex) {return c.isEmpty();}
1618         }
1619         public boolean contains(Object o) {
1620             synchronized (mutex) {return c.contains(o);}
1621         }
1622         public Object[] toArray() {
1623             synchronized (mutex) {return c.toArray();}
1624         }
1625         public <T> T[] toArray(T[] a) {
1626             synchronized (mutex) {return c.toArray(a);}
1627         }
1628 
1629         public Iterator<E> iterator() {
1630             return c.iterator(); // Must be manually synched by user!
1631         }
1632 
1633         public boolean add(E e) {
1634             synchronized (mutex) {return c.add(e);}
1635         }
1636         public boolean remove(Object o) {
1637             synchronized (mutex) {return c.remove(o);}
1638         }
1639 
1640         public boolean containsAll(Collection<?> coll) {
1641             synchronized (mutex) {return c.containsAll(coll);}
1642         }
1643         public boolean addAll(Collection<? extends E> coll) {
1644             synchronized (mutex) {return c.addAll(coll);}
1645         }
1646         public boolean removeAll(Collection<?> coll) {
1647             synchronized (mutex) {return c.removeAll(coll);}
1648         }
1649         public boolean retainAll(Collection<?> coll) {
1650             synchronized (mutex) {return c.retainAll(coll);}
1651         }
1652         public void clear() {
1653             synchronized (mutex) {c.clear();}
1654         }
1655         public String toString() {
1656             synchronized (mutex) {return c.toString();}
1657         }
1658         private void writeObject(ObjectOutputStream s) throws IOException {
1659             synchronized (mutex) {s.defaultWriteObject();}
1660         }
1661     }
1662 
1663     /**
1664      * Returns a synchronized (thread-safe) set backed by the specified
1665      * set.  In order to guarantee serial access, it is critical that
1666      * <strong>all</strong> access to the backing set is accomplished
1667      * through the returned set.<p>
1668      *
1669      * It is imperative that the user manually synchronize on the returned
1670      * set when iterating over it:
1671      * <pre>
1672      *  Set s = Collections.synchronizedSet(new HashSet());
1673      *      ...
1674      *  synchronized (s) {
1675      *      Iterator i = s.iterator(); // Must be in the synchronized block
1676      *      while (i.hasNext())
1677      *          foo(i.next());
1678      *  }
1679      * </pre>
1680      * Failure to follow this advice may result in non-deterministic behavior.
1681      *
1682      * <p>The returned set will be serializable if the specified set is
1683      * serializable.
1684      *
1685      * @param  s the set to be "wrapped" in a synchronized set.
1686      * @return a synchronized view of the specified set.
1687      */
1688     public static <T> Set<T> synchronizedSet(Set<T> s) {
1689         return new SynchronizedSet<>(s);
1690     }
1691 
1692     static <T> Set<T> synchronizedSet(Set<T> s, Object mutex) {
1693         return new SynchronizedSet<>(s, mutex);
1694     }
1695 
1696     /**
1697      * @serial include
1698      */
1699     static class SynchronizedSet<E>
1700           extends SynchronizedCollection<E>
1701           implements Set<E> {
1702         private static final long serialVersionUID = 487447009682186044L;
1703 
1704         SynchronizedSet(Set<E> s) {
1705             super(s);
1706         }
1707         SynchronizedSet(Set<E> s, Object mutex) {
1708             super(s, mutex);
1709         }
1710 
1711         public boolean equals(Object o) {
1712             synchronized (mutex) {return c.equals(o);}
1713         }
1714         public int hashCode() {
1715             synchronized (mutex) {return c.hashCode();}
1716         }
1717     }
1718 
1719     /**
1720      * Returns a synchronized (thread-safe) sorted set backed by the specified
1721      * sorted set.  In order to guarantee serial access, it is critical that
1722      * <strong>all</strong> access to the backing sorted set is accomplished
1723      * through the returned sorted set (or its views).<p>
1724      *
1725      * It is imperative that the user manually synchronize on the returned
1726      * sorted set when iterating over it or any of its <tt>subSet</tt>,
1727      * <tt>headSet</tt>, or <tt>tailSet</tt> views.
1728      * <pre>
1729      *  SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
1730      *      ...
1731      *  synchronized (s) {
1732      *      Iterator i = s.iterator(); // Must be in the synchronized block
1733      *      while (i.hasNext())
1734      *          foo(i.next());
1735      *  }
1736      * </pre>
1737      * or:
1738      * <pre>
1739      *  SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
1740      *  SortedSet s2 = s.headSet(foo);
1741      *      ...
1742      *  synchronized (s) {  // Note: s, not s2!!!
1743      *      Iterator i = s2.iterator(); // Must be in the synchronized block
1744      *      while (i.hasNext())
1745      *          foo(i.next());
1746      *  }
1747      * </pre>
1748      * Failure to follow this advice may result in non-deterministic behavior.
1749      *
1750      * <p>The returned sorted set will be serializable if the specified
1751      * sorted set is serializable.
1752      *
1753      * @param  s the sorted set to be "wrapped" in a synchronized sorted set.
1754      * @return a synchronized view of the specified sorted set.
1755      */
1756     public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s) {
1757         return new SynchronizedSortedSet<>(s);
1758     }
1759 
1760     /**
1761      * @serial include
1762      */
1763     static class SynchronizedSortedSet<E>
1764         extends SynchronizedSet<E>
1765         implements SortedSet<E>
1766     {
1767         private static final long serialVersionUID = 8695801310862127406L;
1768 
1769         private final SortedSet<E> ss;
1770 
1771         SynchronizedSortedSet(SortedSet<E> s) {
1772             super(s);
1773             ss = s;
1774         }
1775         SynchronizedSortedSet(SortedSet<E> s, Object mutex) {
1776             super(s, mutex);
1777             ss = s;
1778         }
1779 
1780         public Comparator<? super E> comparator() {
1781             synchronized (mutex) {return ss.comparator();}
1782         }
1783 
1784         public SortedSet<E> subSet(E fromElement, E toElement) {
1785             synchronized (mutex) {
1786                 return new SynchronizedSortedSet<>(
1787                     ss.subSet(fromElement, toElement), mutex);
1788             }
1789         }
1790         public SortedSet<E> headSet(E toElement) {
1791             synchronized (mutex) {
1792                 return new SynchronizedSortedSet<>(ss.headSet(toElement), mutex);
1793             }
1794         }
1795         public SortedSet<E> tailSet(E fromElement) {
1796             synchronized (mutex) {
1797                return new SynchronizedSortedSet<>(ss.tailSet(fromElement),mutex);
1798             }
1799         }
1800 
1801         public E first() {
1802             synchronized (mutex) {return ss.first();}
1803         }
1804         public E last() {
1805             synchronized (mutex) {return ss.last();}
1806         }
1807     }
1808 
1809     /**
1810      * Returns a synchronized (thread-safe) list backed by the specified
1811      * list.  In order to guarantee serial access, it is critical that
1812      * <strong>all</strong> access to the backing list is accomplished
1813      * through the returned list.<p>
1814      *
1815      * It is imperative that the user manually synchronize on the returned
1816      * list when iterating over it:
1817      * <pre>
1818      *  List list = Collections.synchronizedList(new ArrayList());
1819      *      ...
1820      *  synchronized (list) {
1821      *      Iterator i = list.iterator(); // Must be in synchronized block
1822      *      while (i.hasNext())
1823      *          foo(i.next());
1824      *  }
1825      * </pre>
1826      * Failure to follow this advice may result in non-deterministic behavior.
1827      *
1828      * <p>The returned list will be serializable if the specified list is
1829      * serializable.
1830      *
1831      * @param  list the list to be "wrapped" in a synchronized list.
1832      * @return a synchronized view of the specified list.
1833      */
1834     public static <T> List<T> synchronizedList(List<T> list) {
1835         return (list instanceof RandomAccess ?
1836                 new SynchronizedRandomAccessList<>(list) :
1837                 new SynchronizedList<>(list));
1838     }
1839 
1840     static <T> List<T> synchronizedList(List<T> list, Object mutex) {
1841         return (list instanceof RandomAccess ?
1842                 new SynchronizedRandomAccessList<>(list, mutex) :
1843                 new SynchronizedList<>(list, mutex));
1844     }
1845 
1846     /**
1847      * @serial include
1848      */
1849     static class SynchronizedList<E>
1850         extends SynchronizedCollection<E>
1851         implements List<E> {
1852         private static final long serialVersionUID = -7754090372962971524L;
1853 
1854         final List<E> list;
1855 
1856         SynchronizedList(List<E> list) {
1857             super(list);
1858             this.list = list;
1859         }
1860         SynchronizedList(List<E> list, Object mutex) {
1861             super(list, mutex);
1862             this.list = list;
1863         }
1864 
1865         public boolean equals(Object o) {
1866             synchronized (mutex) {return list.equals(o);}
1867         }
1868         public int hashCode() {
1869             synchronized (mutex) {return list.hashCode();}
1870         }
1871 
1872         public E get(int index) {
1873             synchronized (mutex) {return list.get(index);}
1874         }
1875         public E set(int index, E element) {
1876             synchronized (mutex) {return list.set(index, element);}
1877         }
1878         public void add(int index, E element) {
1879             synchronized (mutex) {list.add(index, element);}
1880         }
1881         public E remove(int index) {
1882             synchronized (mutex) {return list.remove(index);}
1883         }
1884 
1885         public int indexOf(Object o) {
1886             synchronized (mutex) {return list.indexOf(o);}
1887         }
1888         public int lastIndexOf(Object o) {
1889             synchronized (mutex) {return list.lastIndexOf(o);}
1890         }
1891 
1892         public boolean addAll(int index, Collection<? extends E> c) {
1893             synchronized (mutex) {return list.addAll(index, c);}
1894         }
1895 
1896         public ListIterator<E> listIterator() {
1897             return list.listIterator(); // Must be manually synched by user
1898         }
1899 
1900         public ListIterator<E> listIterator(int index) {
1901             return list.listIterator(index); // Must be manually synched by user
1902         }
1903 
1904         public List<E> subList(int fromIndex, int toIndex) {
1905             synchronized (mutex) {
1906                 return new SynchronizedList<>(list.subList(fromIndex, toIndex),
1907                                             mutex);
1908             }
1909         }
1910 
1911         /**
1912          * SynchronizedRandomAccessList instances are serialized as
1913          * SynchronizedList instances to allow them to be deserialized
1914          * in pre-1.4 JREs (which do not have SynchronizedRandomAccessList).
1915          * This method inverts the transformation.  As a beneficial
1916          * side-effect, it also grafts the RandomAccess marker onto
1917          * SynchronizedList instances that were serialized in pre-1.4 JREs.
1918          *
1919          * Note: Unfortunately, SynchronizedRandomAccessList instances
1920          * serialized in 1.4.1 and deserialized in 1.4 will become
1921          * SynchronizedList instances, as this method was missing in 1.4.
1922          */
1923         private Object readResolve() {
1924             return (list instanceof RandomAccess
1925                     ? new SynchronizedRandomAccessList<>(list)
1926                     : this);
1927         }
1928     }
1929 
1930     /**
1931      * @serial include
1932      */
1933     static class SynchronizedRandomAccessList<E>
1934         extends SynchronizedList<E>
1935         implements RandomAccess {
1936 
1937         SynchronizedRandomAccessList(List<E> list) {
1938             super(list);
1939         }
1940 
1941         SynchronizedRandomAccessList(List<E> list, Object mutex) {
1942             super(list, mutex);
1943         }
1944 
1945         public List<E> subList(int fromIndex, int toIndex) {
1946             synchronized (mutex) {
1947                 return new SynchronizedRandomAccessList<>(
1948                     list.subList(fromIndex, toIndex), mutex);
1949             }
1950         }
1951 
1952         private static final long serialVersionUID = 1530674583602358482L;
1953 
1954         /**
1955          * Allows instances to be deserialized in pre-1.4 JREs (which do
1956          * not have SynchronizedRandomAccessList).  SynchronizedList has
1957          * a readResolve method that inverts this transformation upon
1958          * deserialization.
1959          */
1960         private Object writeReplace() {
1961             return new SynchronizedList<>(list);
1962         }
1963     }
1964 
1965     /**
1966      * Returns a synchronized (thread-safe) map backed by the specified
1967      * map.  In order to guarantee serial access, it is critical that
1968      * <strong>all</strong> access to the backing map is accomplished
1969      * through the returned map.<p>
1970      *
1971      * It is imperative that the user manually synchronize on the returned
1972      * map when iterating over any of its collection views:
1973      * <pre>
1974      *  Map m = Collections.synchronizedMap(new HashMap());
1975      *      ...
1976      *  Set s = m.keySet();  // Needn't be in synchronized block
1977      *      ...
1978      *  synchronized (m) {  // Synchronizing on m, not s!
1979      *      Iterator i = s.iterator(); // Must be in synchronized block
1980      *      while (i.hasNext())
1981      *          foo(i.next());
1982      *  }
1983      * </pre>
1984      * Failure to follow this advice may result in non-deterministic behavior.
1985      *
1986      * <p>The returned map will be serializable if the specified map is
1987      * serializable.
1988      *
1989      * @param  m the map to be "wrapped" in a synchronized map.
1990      * @return a synchronized view of the specified map.
1991      */
1992     public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) {
1993         return new SynchronizedMap<>(m);
1994     }
1995 
1996     /**
1997      * @serial include
1998      */
1999     private static class SynchronizedMap<K,V>
2000         implements Map<K,V>, Serializable {
2001         private static final long serialVersionUID = 1978198479659022715L;
2002 
2003         private final Map<K,V> m;     // Backing Map
2004         final Object      mutex;        // Object on which to synchronize
2005 
2006         SynchronizedMap(Map<K,V> m) {
2007             if (m==null)
2008                 throw new NullPointerException();
2009             this.m = m;
2010             mutex = this;
2011         }
2012 
2013         SynchronizedMap(Map<K,V> m, Object mutex) {
2014             this.m = m;
2015             this.mutex = mutex;
2016         }
2017 
2018         public int size() {
2019             synchronized (mutex) {return m.size();}
2020         }
2021         public boolean isEmpty() {
2022             synchronized (mutex) {return m.isEmpty();}
2023         }
2024         public boolean containsKey(Object key) {
2025             synchronized (mutex) {return m.containsKey(key);}
2026         }
2027         public boolean containsValue(Object value) {
2028             synchronized (mutex) {return m.containsValue(value);}
2029         }
2030         public V get(Object key) {
2031             synchronized (mutex) {return m.get(key);}
2032         }
2033 
2034         public V put(K key, V value) {
2035             synchronized (mutex) {return m.put(key, value);}
2036         }
2037         public V remove(Object key) {
2038             synchronized (mutex) {return m.remove(key);}
2039         }
2040         public void putAll(Map<? extends K, ? extends V> map) {
2041             synchronized (mutex) {m.putAll(map);}
2042         }
2043         public void clear() {
2044             synchronized (mutex) {m.clear();}
2045         }
2046 
2047         private transient Set<K> keySet = null;
2048         private transient Set<Map.Entry<K,V>> entrySet = null;
2049         private transient Collection<V> values = null;
2050 
2051         public Set<K> keySet() {
2052             synchronized (mutex) {
2053                 if (keySet==null)
2054                     keySet = new SynchronizedSet<>(m.keySet(), mutex);
2055                 return keySet;
2056             }
2057         }
2058 
2059         public Set<Map.Entry<K,V>> entrySet() {
2060             synchronized (mutex) {
2061                 if (entrySet==null)
2062                     entrySet = new SynchronizedSet<>(m.entrySet(), mutex);
2063                 return entrySet;
2064             }
2065         }
2066 
2067         public Collection<V> values() {
2068             synchronized (mutex) {
2069                 if (values==null)
2070                     values = new SynchronizedCollection<>(m.values(), mutex);
2071                 return values;
2072             }
2073         }
2074 
2075         public boolean equals(Object o) {
2076             synchronized (mutex) {return m.equals(o);}
2077         }
2078         public int hashCode() {
2079             synchronized (mutex) {return m.hashCode();}
2080         }
2081         public String toString() {
2082             synchronized (mutex) {return m.toString();}
2083         }
2084         private void writeObject(ObjectOutputStream s) throws IOException {
2085             synchronized (mutex) {s.defaultWriteObject();}
2086         }
2087     }
2088 
2089     /**
2090      * Returns a synchronized (thread-safe) sorted map backed by the specified
2091      * sorted map.  In order to guarantee serial access, it is critical that
2092      * <strong>all</strong> access to the backing sorted map is accomplished
2093      * through the returned sorted map (or its views).<p>
2094      *
2095      * It is imperative that the user manually synchronize on the returned
2096      * sorted map when iterating over any of its collection views, or the
2097      * collections views of any of its <tt>subMap</tt>, <tt>headMap</tt> or
2098      * <tt>tailMap</tt> views.
2099      * <pre>
2100      *  SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
2101      *      ...
2102      *  Set s = m.keySet();  // Needn't be in synchronized block
2103      *      ...
2104      *  synchronized (m) {  // Synchronizing on m, not s!
2105      *      Iterator i = s.iterator(); // Must be in synchronized block
2106      *      while (i.hasNext())
2107      *          foo(i.next());
2108      *  }
2109      * </pre>
2110      * or:
2111      * <pre>
2112      *  SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
2113      *  SortedMap m2 = m.subMap(foo, bar);
2114      *      ...
2115      *  Set s2 = m2.keySet();  // Needn't be in synchronized block
2116      *      ...
2117      *  synchronized (m) {  // Synchronizing on m, not m2 or s2!
2118      *      Iterator i = s.iterator(); // Must be in synchronized block
2119      *      while (i.hasNext())
2120      *          foo(i.next());
2121      *  }
2122      * </pre>
2123      * Failure to follow this advice may result in non-deterministic behavior.
2124      *
2125      * <p>The returned sorted map will be serializable if the specified
2126      * sorted map is serializable.
2127      *
2128      * @param  m the sorted map to be "wrapped" in a synchronized sorted map.
2129      * @return a synchronized view of the specified sorted map.
2130      */
2131     public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m) {
2132         return new SynchronizedSortedMap<>(m);
2133     }
2134 
2135 
2136     /**
2137      * @serial include
2138      */
2139     static class SynchronizedSortedMap<K,V>
2140         extends SynchronizedMap<K,V>
2141         implements SortedMap<K,V>
2142     {
2143         private static final long serialVersionUID = -8798146769416483793L;
2144 
2145         private final SortedMap<K,V> sm;
2146 
2147         SynchronizedSortedMap(SortedMap<K,V> m) {
2148             super(m);
2149             sm = m;
2150         }
2151         SynchronizedSortedMap(SortedMap<K,V> m, Object mutex) {
2152             super(m, mutex);
2153             sm = m;
2154         }
2155 
2156         public Comparator<? super K> comparator() {
2157             synchronized (mutex) {return sm.comparator();}
2158         }
2159 
2160         public SortedMap<K,V> subMap(K fromKey, K toKey) {
2161             synchronized (mutex) {
2162                 return new SynchronizedSortedMap<>(
2163                     sm.subMap(fromKey, toKey), mutex);
2164             }
2165         }
2166         public SortedMap<K,V> headMap(K toKey) {
2167             synchronized (mutex) {
2168                 return new SynchronizedSortedMap<>(sm.headMap(toKey), mutex);
2169             }
2170         }
2171         public SortedMap<K,V> tailMap(K fromKey) {
2172             synchronized (mutex) {
2173                return new SynchronizedSortedMap<>(sm.tailMap(fromKey),mutex);
2174             }
2175         }
2176 
2177         public K firstKey() {
2178             synchronized (mutex) {return sm.firstKey();}
2179         }
2180         public K lastKey() {
2181             synchronized (mutex) {return sm.lastKey();}
2182         }
2183     }
2184 
2185     // Dynamically typesafe collection wrappers
2186 
2187     /**
2188      * Returns a dynamically typesafe view of the specified collection.
2189      * Any attempt to insert an element of the wrong type will result in an
2190      * immediate {@link ClassCastException}.  Assuming a collection
2191      * contains no incorrectly typed elements prior to the time a
2192      * dynamically typesafe view is generated, and that all subsequent
2193      * access to the collection takes place through the view, it is
2194      * <i>guaranteed</i> that the collection cannot contain an incorrectly
2195      * typed element.
2196      *
2197      * <p>The generics mechanism in the language provides compile-time
2198      * (static) type checking, but it is possible to defeat this mechanism
2199      * with unchecked casts.  Usually this is not a problem, as the compiler
2200      * issues warnings on all such unchecked operations.  There are, however,
2201      * times when static type checking alone is not sufficient.  For example,
2202      * suppose a collection is passed to a third-party library and it is
2203      * imperative that the library code not corrupt the collection by
2204      * inserting an element of the wrong type.
2205      *
2206      * <p>Another use of dynamically typesafe views is debugging.  Suppose a
2207      * program fails with a {@code ClassCastException}, indicating that an
2208      * incorrectly typed element was put into a parameterized collection.
2209      * Unfortunately, the exception can occur at any time after the erroneous
2210      * element is inserted, so it typically provides little or no information
2211      * as to the real source of the problem.  If the problem is reproducible,
2212      * one can quickly determine its source by temporarily modifying the
2213      * program to wrap the collection with a dynamically typesafe view.
2214      * For example, this declaration:
2215      *  <pre> {@code
2216      *     Collection<String> c = new HashSet<String>();
2217      * }</pre>
2218      * may be replaced temporarily by this one:
2219      *  <pre> {@code
2220      *     Collection<String> c = Collections.checkedCollection(
2221      *         new HashSet<String>(), String.class);
2222      * }</pre>
2223      * Running the program again will cause it to fail at the point where
2224      * an incorrectly typed element is inserted into the collection, clearly
2225      * identifying the source of the problem.  Once the problem is fixed, the
2226      * modified declaration may be reverted back to the original.
2227      *
2228      * <p>The returned collection does <i>not</i> pass the hashCode and equals
2229      * operations through to the backing collection, but relies on
2230      * {@code Object}'s {@code equals} and {@code hashCode} methods.  This
2231      * is necessary to preserve the contracts of these operations in the case
2232      * that the backing collection is a set or a list.
2233      *
2234      * <p>The returned collection will be serializable if the specified
2235      * collection is serializable.
2236      *
2237      * <p>Since {@code null} is considered to be a value of any reference
2238      * type, the returned collection permits insertion of null elements
2239      * whenever the backing collection does.
2240      *
2241      * @param c the collection for which a dynamically typesafe view is to be
2242      *          returned
2243      * @param type the type of element that {@code c} is permitted to hold
2244      * @return a dynamically typesafe view of the specified collection
2245      * @since 1.5
2246      */
2247     public static <E> Collection<E> checkedCollection(Collection<E> c,
2248                                                       Class<E> type) {
2249         return new CheckedCollection<>(c, type);
2250     }
2251 
2252     @SuppressWarnings("unchecked")
2253     static <T> T[] zeroLengthArray(Class<T> type) {
2254         return (T[]) Array.newInstance(type, 0);
2255     }
2256 
2257     /**
2258      * @serial include
2259      */
2260     static class CheckedCollection<E> implements Collection<E>, Serializable {
2261         private static final long serialVersionUID = 1578914078182001775L;
2262 
2263         final Collection<E> c;
2264         final Class<E> type;
2265 
2266         void typeCheck(Object o) {
2267             if (o != null && !type.isInstance(o))
2268                 throw new ClassCastException(badElementMsg(o));
2269         }
2270 
2271         private String badElementMsg(Object o) {
2272             return "Attempt to insert " + o.getClass() +
2273                 " element into collection with element type " + type;
2274         }
2275 
2276         CheckedCollection(Collection<E> c, Class<E> type) {
2277             if (c==null || type == null)
2278                 throw new NullPointerException();
2279             this.c = c;
2280             this.type = type;
2281         }
2282 
2283         public int size()                 { return c.size(); }
2284         public boolean isEmpty()          { return c.isEmpty(); }
2285         public boolean contains(Object o) { return c.contains(o); }
2286         public Object[] toArray()         { return c.toArray(); }
2287         public <T> T[] toArray(T[] a)     { return c.toArray(a); }
2288         public String toString()          { return c.toString(); }
2289         public boolean remove(Object o)   { return c.remove(o); }
2290         public void clear()               {        c.clear(); }
2291 
2292         public boolean containsAll(Collection<?> coll) {
2293             return c.containsAll(coll);
2294         }
2295         public boolean removeAll(Collection<?> coll) {
2296             return c.removeAll(coll);
2297         }
2298         public boolean retainAll(Collection<?> coll) {
2299             return c.retainAll(coll);
2300         }
2301 
2302         public Iterator<E> iterator() {
2303             final Iterator<E> it = c.iterator();
2304             return new Iterator<E>() {
2305                 public boolean hasNext() { return it.hasNext(); }
2306                 public E next()          { return it.next(); }
2307                 public void remove()     {        it.remove(); }};
2308         }
2309 
2310         public boolean add(E e) {
2311             typeCheck(e);
2312             return c.add(e);
2313         }
2314 
2315         private E[] zeroLengthElementArray = null; // Lazily initialized
2316 
2317         private E[] zeroLengthElementArray() {
2318             return zeroLengthElementArray != null ? zeroLengthElementArray :
2319                 (zeroLengthElementArray = zeroLengthArray(type));
2320         }
2321 
2322         @SuppressWarnings("unchecked")
2323         Collection<E> checkedCopyOf(Collection<? extends E> coll) {
2324             Object[] a = null;
2325             try {
2326                 E[] z = zeroLengthElementArray();
2327                 a = coll.toArray(z);
2328                 // Defend against coll violating the toArray contract
2329                 if (a.getClass() != z.getClass())
2330                     a = Arrays.copyOf(a, a.length, z.getClass());
2331             } catch (ArrayStoreException ignore) {
2332                 // To get better and consistent diagnostics,
2333                 // we call typeCheck explicitly on each element.
2334                 // We call clone() to defend against coll retaining a
2335                 // reference to the returned array and storing a bad
2336                 // element into it after it has been type checked.
2337                 a = coll.toArray().clone();
2338                 for (Object o : a)
2339                     typeCheck(o);
2340             }
2341             // A slight abuse of the type system, but safe here.
2342             return (Collection<E>) Arrays.asList(a);
2343         }
2344 
2345         public boolean addAll(Collection<? extends E> coll) {
2346             // Doing things this way insulates us from concurrent changes
2347             // in the contents of coll and provides all-or-nothing
2348             // semantics (which we wouldn't get if we type-checked each
2349             // element as we added it)
2350             return c.addAll(checkedCopyOf(coll));
2351         }
2352     }
2353 
2354     /**
2355      * Returns a dynamically typesafe view of the specified queue.
2356      * Any attempt to insert an element of the wrong type will result in
2357      * an immediate {@link ClassCastException}.  Assuming a queue contains
2358      * no incorrectly typed elements prior to the time a dynamically typesafe
2359      * view is generated, and that all subsequent access to the queue
2360      * takes place through the view, it is <i>guaranteed</i> that the
2361      * queue cannot contain an incorrectly typed element.
2362      *
2363      * <p>A discussion of the use of dynamically typesafe views may be
2364      * found in the documentation for the {@link #checkedCollection
2365      * checkedCollection} method.
2366      *
2367      * <p>The returned queue will be serializable if the specified queue
2368      * is serializable.
2369      *
2370      * <p>Since {@code null} is considered to be a value of any reference
2371      * type, the returned queue permits insertion of {@code null} elements
2372      * whenever the backing queue does.
2373      *
2374      * @param queue the queue for which a dynamically typesafe view is to be
2375      *             returned
2376      * @param type the type of element that {@code queue} is permitted to hold
2377      * @return a dynamically typesafe view of the specified queue
2378      * @since 1.8
2379      */
2380     public static <E> Queue<E> checkedQueue(Queue<E> queue, Class<E> type) {
2381         return new CheckedQueue<>(queue, type);
2382     }
2383 
2384     /**
2385      * @serial include
2386      */
2387     static class CheckedQueue<E>
2388         extends CheckedCollection<E>
2389         implements Queue<E>, Serializable
2390     {
2391         private static final long serialVersionUID = 1433151992604707767L;
2392         final Queue<E> queue;
2393 
2394         CheckedQueue(Queue<E> queue, Class<E> elementType) {
2395             super(queue, elementType);
2396             this.queue = queue;
2397         }
2398 
2399         public E element()              {return queue.element();}
2400         public boolean equals(Object o) {return o == this || c.equals(o);}
2401         public int hashCode()           {return c.hashCode();}
2402         public E peek()                 {return queue.peek();}
2403         public E poll()                 {return queue.poll();}
2404         public E remove()               {return queue.remove();}
2405 
2406         public boolean offer(E e) {
2407             typeCheck(e);
2408             return add(e);
2409         }
2410     }
2411 
2412     /**
2413      * Returns a dynamically typesafe view of the specified set.
2414      * Any attempt to insert an element of the wrong type will result in
2415      * an immediate {@link ClassCastException}.  Assuming a set contains
2416      * no incorrectly typed elements prior to the time a dynamically typesafe
2417      * view is generated, and that all subsequent access to the set
2418      * takes place through the view, it is <i>guaranteed</i> that the
2419      * set cannot contain an incorrectly typed element.
2420      *
2421      * <p>A discussion of the use of dynamically typesafe views may be
2422      * found in the documentation for the {@link #checkedCollection
2423      * checkedCollection} method.
2424      *
2425      * <p>The returned set will be serializable if the specified set is
2426      * serializable.
2427      *
2428      * <p>Since {@code null} is considered to be a value of any reference
2429      * type, the returned set permits insertion of null elements whenever
2430      * the backing set does.
2431      *
2432      * @param s the set for which a dynamically typesafe view is to be
2433      *          returned
2434      * @param type the type of element that {@code s} is permitted to hold
2435      * @return a dynamically typesafe view of the specified set
2436      * @since 1.5
2437      */
2438     public static <E> Set<E> checkedSet(Set<E> s, Class<E> type) {
2439         return new CheckedSet<>(s, type);
2440     }
2441 
2442     /**
2443      * @serial include
2444      */
2445     static class CheckedSet<E> extends CheckedCollection<E>
2446                                  implements Set<E>, Serializable
2447     {
2448         private static final long serialVersionUID = 4694047833775013803L;
2449 
2450         CheckedSet(Set<E> s, Class<E> elementType) { super(s, elementType); }
2451 
2452         public boolean equals(Object o) { return o == this || c.equals(o); }
2453         public int hashCode()           { return c.hashCode(); }
2454     }
2455 
2456     /**
2457      * Returns a dynamically typesafe view of the specified sorted set.
2458      * Any attempt to insert an element of the wrong type will result in an
2459      * immediate {@link ClassCastException}.  Assuming a sorted set
2460      * contains no incorrectly typed elements prior to the time a
2461      * dynamically typesafe view is generated, and that all subsequent
2462      * access to the sorted set takes place through the view, it is
2463      * <i>guaranteed</i> that the sorted set cannot contain an incorrectly
2464      * typed element.
2465      *
2466      * <p>A discussion of the use of dynamically typesafe views may be
2467      * found in the documentation for the {@link #checkedCollection
2468      * checkedCollection} method.
2469      *
2470      * <p>The returned sorted set will be serializable if the specified sorted
2471      * set is serializable.
2472      *
2473      * <p>Since {@code null} is considered to be a value of any reference
2474      * type, the returned sorted set permits insertion of null elements
2475      * whenever the backing sorted set does.
2476      *
2477      * @param s the sorted set for which a dynamically typesafe view is to be
2478      *          returned
2479      * @param type the type of element that {@code s} is permitted to hold
2480      * @return a dynamically typesafe view of the specified sorted set
2481      * @since 1.5
2482      */
2483     public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s,
2484                                                     Class<E> type) {
2485         return new CheckedSortedSet<>(s, type);
2486     }
2487 
2488     /**
2489      * @serial include
2490      */
2491     static class CheckedSortedSet<E> extends CheckedSet<E>
2492         implements SortedSet<E>, Serializable
2493     {
2494         private static final long serialVersionUID = 1599911165492914959L;
2495         private final SortedSet<E> ss;
2496 
2497         CheckedSortedSet(SortedSet<E> s, Class<E> type) {
2498             super(s, type);
2499             ss = s;
2500         }
2501 
2502         public Comparator<? super E> comparator() { return ss.comparator(); }
2503         public E first()                   { return ss.first(); }
2504         public E last()                    { return ss.last(); }
2505 
2506         public SortedSet<E> subSet(E fromElement, E toElement) {
2507             return checkedSortedSet(ss.subSet(fromElement,toElement), type);
2508         }
2509         public SortedSet<E> headSet(E toElement) {
2510             return checkedSortedSet(ss.headSet(toElement), type);
2511         }
2512         public SortedSet<E> tailSet(E fromElement) {
2513             return checkedSortedSet(ss.tailSet(fromElement), type);
2514         }
2515     }
2516 
2517     /**
2518      * Returns a dynamically typesafe view of the specified list.
2519      * Any attempt to insert an element of the wrong type will result in
2520      * an immediate {@link ClassCastException}.  Assuming a list contains
2521      * no incorrectly typed elements prior to the time a dynamically typesafe
2522      * view is generated, and that all subsequent access to the list
2523      * takes place through the view, it is <i>guaranteed</i> that the
2524      * list cannot contain an incorrectly typed element.
2525      *
2526      * <p>A discussion of the use of dynamically typesafe views may be
2527      * found in the documentation for the {@link #checkedCollection
2528      * checkedCollection} method.
2529      *
2530      * <p>The returned list will be serializable if the specified list
2531      * is serializable.
2532      *
2533      * <p>Since {@code null} is considered to be a value of any reference
2534      * type, the returned list permits insertion of null elements whenever
2535      * the backing list does.
2536      *
2537      * @param list the list for which a dynamically typesafe view is to be
2538      *             returned
2539      * @param type the type of element that {@code list} is permitted to hold
2540      * @return a dynamically typesafe view of the specified list
2541      * @since 1.5
2542      */
2543     public static <E> List<E> checkedList(List<E> list, Class<E> type) {
2544         return (list instanceof RandomAccess ?
2545                 new CheckedRandomAccessList<>(list, type) :
2546                 new CheckedList<>(list, type));
2547     }
2548 
2549     /**
2550      * @serial include
2551      */
2552     static class CheckedList<E>
2553         extends CheckedCollection<E>
2554         implements List<E>
2555     {
2556         private static final long serialVersionUID = 65247728283967356L;
2557         final List<E> list;
2558 
2559         CheckedList(List<E> list, Class<E> type) {
2560             super(list, type);
2561             this.list = list;
2562         }
2563 
2564         public boolean equals(Object o)  { return o == this || list.equals(o); }
2565         public int hashCode()            { return list.hashCode(); }
2566         public E get(int index)          { return list.get(index); }
2567         public E remove(int index)       { return list.remove(index); }
2568         public int indexOf(Object o)     { return list.indexOf(o); }
2569         public int lastIndexOf(Object o) { return list.lastIndexOf(o); }
2570 
2571         public E set(int index, E element) {
2572             typeCheck(element);
2573             return list.set(index, element);
2574         }
2575 
2576         public void add(int index, E element) {
2577             typeCheck(element);
2578             list.add(index, element);
2579         }
2580 
2581         public boolean addAll(int index, Collection<? extends E> c) {
2582             return list.addAll(index, checkedCopyOf(c));
2583         }
2584         public ListIterator<E> listIterator()   { return listIterator(0); }
2585 
2586         public ListIterator<E> listIterator(final int index) {
2587             final ListIterator<E> i = list.listIterator(index);
2588 
2589             return new ListIterator<E>() {
2590                 public boolean hasNext()     { return i.hasNext(); }
2591                 public E next()              { return i.next(); }
2592                 public boolean hasPrevious() { return i.hasPrevious(); }
2593                 public E previous()          { return i.previous(); }
2594                 public int nextIndex()       { return i.nextIndex(); }
2595                 public int previousIndex()   { return i.previousIndex(); }
2596                 public void remove()         {        i.remove(); }
2597 
2598                 public void set(E e) {
2599                     typeCheck(e);
2600                     i.set(e);
2601                 }
2602 
2603                 public void add(E e) {
2604                     typeCheck(e);
2605                     i.add(e);
2606                 }
2607             };
2608         }
2609 
2610         public List<E> subList(int fromIndex, int toIndex) {
2611             return new CheckedList<>(list.subList(fromIndex, toIndex), type);
2612         }
2613     }
2614 
2615     /**
2616      * @serial include
2617      */
2618     static class CheckedRandomAccessList<E> extends CheckedList<E>
2619                                             implements RandomAccess
2620     {
2621         private static final long serialVersionUID = 1638200125423088369L;
2622 
2623         CheckedRandomAccessList(List<E> list, Class<E> type) {
2624             super(list, type);
2625         }
2626 
2627         public List<E> subList(int fromIndex, int toIndex) {
2628             return new CheckedRandomAccessList<>(
2629                 list.subList(fromIndex, toIndex), type);
2630         }
2631     }
2632 
2633     /**
2634      * Returns a dynamically typesafe view of the specified map.
2635      * Any attempt to insert a mapping whose key or value have the wrong
2636      * type will result in an immediate {@link ClassCastException}.
2637      * Similarly, any attempt to modify the value currently associated with
2638      * a key will result in an immediate {@link ClassCastException},
2639      * whether the modification is attempted directly through the map
2640      * itself, or through a {@link Map.Entry} instance obtained from the
2641      * map's {@link Map#entrySet() entry set} view.
2642      *
2643      * <p>Assuming a map contains no incorrectly typed keys or values
2644      * prior to the time a dynamically typesafe view is generated, and
2645      * that all subsequent access to the map takes place through the view
2646      * (or one of its collection views), it is <i>guaranteed</i> that the
2647      * map cannot contain an incorrectly typed key or value.
2648      *
2649      * <p>A discussion of the use of dynamically typesafe views may be
2650      * found in the documentation for the {@link #checkedCollection
2651      * checkedCollection} method.
2652      *
2653      * <p>The returned map will be serializable if the specified map is
2654      * serializable.
2655      *
2656      * <p>Since {@code null} is considered to be a value of any reference
2657      * type, the returned map permits insertion of null keys or values
2658      * whenever the backing map does.
2659      *
2660      * @param m the map for which a dynamically typesafe view is to be
2661      *          returned
2662      * @param keyType the type of key that {@code m} is permitted to hold
2663      * @param valueType the type of value that {@code m} is permitted to hold
2664      * @return a dynamically typesafe view of the specified map
2665      * @since 1.5
2666      */
2667     public static <K, V> Map<K, V> checkedMap(Map<K, V> m,
2668                                               Class<K> keyType,
2669                                               Class<V> valueType) {
2670         return new CheckedMap<>(m, keyType, valueType);
2671     }
2672 
2673 
2674     /**
2675      * @serial include
2676      */
2677     private static class CheckedMap<K,V>
2678         implements Map<K,V>, Serializable
2679     {
2680         private static final long serialVersionUID = 5742860141034234728L;
2681 
2682         private final Map<K, V> m;
2683         final Class<K> keyType;
2684         final Class<V> valueType;
2685 
2686         private void typeCheck(Object key, Object value) {
2687             if (key != null && !keyType.isInstance(key))
2688                 throw new ClassCastException(badKeyMsg(key));
2689 
2690             if (value != null && !valueType.isInstance(value))
2691                 throw new ClassCastException(badValueMsg(value));
2692         }
2693 
2694         private String badKeyMsg(Object key) {
2695             return "Attempt to insert " + key.getClass() +
2696                 " key into map with key type " + keyType;
2697         }
2698 
2699         private String badValueMsg(Object value) {
2700             return "Attempt to insert " + value.getClass() +
2701                 " value into map with value type " + valueType;
2702         }
2703 
2704         CheckedMap(Map<K, V> m, Class<K> keyType, Class<V> valueType) {
2705             if (m == null || keyType == null || valueType == null)
2706                 throw new NullPointerException();
2707             this.m = m;
2708             this.keyType = keyType;
2709             this.valueType = valueType;
2710         }
2711 
2712         public int size()                      { return m.size(); }
2713         public boolean isEmpty()               { return m.isEmpty(); }
2714         public boolean containsKey(Object key) { return m.containsKey(key); }
2715         public boolean containsValue(Object v) { return m.containsValue(v); }
2716         public V get(Object key)               { return m.get(key); }
2717         public V remove(Object key)            { return m.remove(key); }
2718         public void clear()                    { m.clear(); }
2719         public Set<K> keySet()                 { return m.keySet(); }
2720         public Collection<V> values()          { return m.values(); }
2721         public boolean equals(Object o)        { return o == this || m.equals(o); }
2722         public int hashCode()                  { return m.hashCode(); }
2723         public String toString()               { return m.toString(); }
2724 
2725         public V put(K key, V value) {
2726             typeCheck(key, value);
2727             return m.put(key, value);
2728         }
2729 
2730         @SuppressWarnings("unchecked")
2731         public void putAll(Map<? extends K, ? extends V> t) {
2732             // Satisfy the following goals:
2733             // - good diagnostics in case of type mismatch
2734             // - all-or-nothing semantics
2735             // - protection from malicious t
2736             // - correct behavior if t is a concurrent map
2737             Object[] entries = t.entrySet().toArray();
2738             List<Map.Entry<K,V>> checked = new ArrayList<>(entries.length);
2739             for (Object o : entries) {
2740                 Map.Entry<?,?> e = (Map.Entry<?,?>) o;
2741                 Object k = e.getKey();
2742                 Object v = e.getValue();
2743                 typeCheck(k, v);
2744                 checked.add(
2745                     new AbstractMap.SimpleImmutableEntry<>((K) k, (V) v));
2746             }
2747             for (Map.Entry<K,V> e : checked)
2748                 m.put(e.getKey(), e.getValue());
2749         }
2750 
2751         private transient Set<Map.Entry<K,V>> entrySet = null;
2752 
2753         public Set<Map.Entry<K,V>> entrySet() {
2754             if (entrySet==null)
2755                 entrySet = new CheckedEntrySet<>(m.entrySet(), valueType);
2756             return entrySet;
2757         }
2758 
2759         /**
2760          * We need this class in addition to CheckedSet as Map.Entry permits
2761          * modification of the backing Map via the setValue operation.  This
2762          * class is subtle: there are many possible attacks that must be
2763          * thwarted.
2764          *
2765          * @serial exclude
2766          */
2767         static class CheckedEntrySet<K,V> implements Set<Map.Entry<K,V>> {
2768             private final Set<Map.Entry<K,V>> s;
2769             private final Class<V> valueType;
2770 
2771             CheckedEntrySet(Set<Map.Entry<K, V>> s, Class<V> valueType) {
2772                 this.s = s;
2773                 this.valueType = valueType;
2774             }
2775 
2776             public int size()        { return s.size(); }
2777             public boolean isEmpty() { return s.isEmpty(); }
2778             public String toString() { return s.toString(); }
2779             public int hashCode()    { return s.hashCode(); }
2780             public void clear()      {        s.clear(); }
2781 
2782             public boolean add(Map.Entry<K, V> e) {
2783                 throw new UnsupportedOperationException();
2784             }
2785             public boolean addAll(Collection<? extends Map.Entry<K, V>> coll) {
2786                 throw new UnsupportedOperationException();
2787             }
2788 
2789             public Iterator<Map.Entry<K,V>> iterator() {
2790                 final Iterator<Map.Entry<K, V>> i = s.iterator();
2791                 final Class<V> valueType = this.valueType;
2792 
2793                 return new Iterator<Map.Entry<K,V>>() {
2794                     public boolean hasNext() { return i.hasNext(); }
2795                     public void remove()     { i.remove(); }
2796 
2797                     public Map.Entry<K,V> next() {
2798                         return checkedEntry(i.next(), valueType);
2799                     }
2800                 };
2801             }
2802 
2803             @SuppressWarnings("unchecked")
2804             public Object[] toArray() {
2805                 Object[] source = s.toArray();
2806 
2807                 /*
2808                  * Ensure that we don't get an ArrayStoreException even if
2809                  * s.toArray returns an array of something other than Object
2810                  */
2811                 Object[] dest = (CheckedEntry.class.isInstance(
2812                     source.getClass().getComponentType()) ? source :
2813                                  new Object[source.length]);
2814 
2815                 for (int i = 0; i < source.length; i++)
2816                     dest[i] = checkedEntry((Map.Entry<K,V>)source[i],
2817                                            valueType);
2818                 return dest;
2819             }
2820 
2821             @SuppressWarnings("unchecked")
2822             public <T> T[] toArray(T[] a) {
2823                 // We don't pass a to s.toArray, to avoid window of
2824                 // vulnerability wherein an unscrupulous multithreaded client
2825                 // could get his hands on raw (unwrapped) Entries from s.
2826                 T[] arr = s.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
2827 
2828                 for (int i=0; i<arr.length; i++)
2829                     arr[i] = (T) checkedEntry((Map.Entry<K,V>)arr[i],
2830                                               valueType);
2831                 if (arr.length > a.length)
2832                     return arr;
2833 
2834                 System.arraycopy(arr, 0, a, 0, arr.length);
2835                 if (a.length > arr.length)
2836                     a[arr.length] = null;
2837                 return a;
2838             }
2839 
2840             /**
2841              * This method is overridden to protect the backing set against
2842              * an object with a nefarious equals function that senses
2843              * that the equality-candidate is Map.Entry and calls its
2844              * setValue method.
2845              */
2846             public boolean contains(Object o) {
2847                 if (!(o instanceof Map.Entry))
2848                     return false;
2849                 Map.Entry<?,?> e = (Map.Entry<?,?>) o;
2850                 return s.contains(
2851                     (e instanceof CheckedEntry) ? e : checkedEntry(e, valueType));
2852             }
2853 
2854             /**
2855              * The bulk collection methods are overridden to protect
2856              * against an unscrupulous collection whose contains(Object o)
2857              * method senses when o is a Map.Entry, and calls o.setValue.
2858              */
2859             public boolean containsAll(Collection<?> c) {
2860                 for (Object o : c)
2861                     if (!contains(o)) // Invokes safe contains() above
2862                         return false;
2863                 return true;
2864             }
2865 
2866             public boolean remove(Object o) {
2867                 if (!(o instanceof Map.Entry))
2868                     return false;
2869                 return s.remove(new AbstractMap.SimpleImmutableEntry
2870                                 <>((Map.Entry<?,?>)o));
2871             }
2872 
2873             public boolean removeAll(Collection<?> c) {
2874                 return batchRemove(c, false);
2875             }
2876             public boolean retainAll(Collection<?> c) {
2877                 return batchRemove(c, true);
2878             }
2879             private boolean batchRemove(Collection<?> c, boolean complement) {
2880                 boolean modified = false;
2881                 Iterator<Map.Entry<K,V>> it = iterator();
2882                 while (it.hasNext()) {
2883                     if (c.contains(it.next()) != complement) {
2884                         it.remove();
2885                         modified = true;
2886                     }
2887                 }
2888                 return modified;
2889             }
2890 
2891             public boolean equals(Object o) {
2892                 if (o == this)
2893                     return true;
2894                 if (!(o instanceof Set))
2895                     return false;
2896                 Set<?> that = (Set<?>) o;
2897                 return that.size() == s.size()
2898                     && containsAll(that); // Invokes safe containsAll() above
2899             }
2900 
2901             static <K,V,T> CheckedEntry<K,V,T> checkedEntry(Map.Entry<K,V> e,
2902                                                             Class<T> valueType) {
2903                 return new CheckedEntry<>(e, valueType);
2904             }
2905 
2906             /**
2907              * This "wrapper class" serves two purposes: it prevents
2908              * the client from modifying the backing Map, by short-circuiting
2909              * the setValue method, and it protects the backing Map against
2910              * an ill-behaved Map.Entry that attempts to modify another
2911              * Map.Entry when asked to perform an equality check.
2912              */
2913             private static class CheckedEntry<K,V,T> implements Map.Entry<K,V> {
2914                 private final Map.Entry<K, V> e;
2915                 private final Class<T> valueType;
2916 
2917                 CheckedEntry(Map.Entry<K, V> e, Class<T> valueType) {
2918                     this.e = e;
2919                     this.valueType = valueType;
2920                 }
2921 
2922                 public K getKey()        { return e.getKey(); }
2923                 public V getValue()      { return e.getValue(); }
2924                 public int hashCode()    { return e.hashCode(); }
2925                 public String toString() { return e.toString(); }
2926 
2927                 public V setValue(V value) {
2928                     if (value != null && !valueType.isInstance(value))
2929                         throw new ClassCastException(badValueMsg(value));
2930                     return e.setValue(value);
2931                 }
2932 
2933                 private String badValueMsg(Object value) {
2934                     return "Attempt to insert " + value.getClass() +
2935                         " value into map with value type " + valueType;
2936                 }
2937 
2938                 public boolean equals(Object o) {
2939                     if (o == this)
2940                         return true;
2941                     if (!(o instanceof Map.Entry))
2942                         return false;
2943                     return e.equals(new AbstractMap.SimpleImmutableEntry
2944                                     <>((Map.Entry<?,?>)o));
2945                 }
2946             }
2947         }
2948     }
2949 
2950     /**
2951      * Returns a dynamically typesafe view of the specified sorted map.
2952      * Any attempt to insert a mapping whose key or value have the wrong
2953      * type will result in an immediate {@link ClassCastException}.
2954      * Similarly, any attempt to modify the value currently associated with
2955      * a key will result in an immediate {@link ClassCastException},
2956      * whether the modification is attempted directly through the map
2957      * itself, or through a {@link Map.Entry} instance obtained from the
2958      * map's {@link Map#entrySet() entry set} view.
2959      *
2960      * <p>Assuming a map contains no incorrectly typed keys or values
2961      * prior to the time a dynamically typesafe view is generated, and
2962      * that all subsequent access to the map takes place through the view
2963      * (or one of its collection views), it is <i>guaranteed</i> that the
2964      * map cannot contain an incorrectly typed key or value.
2965      *
2966      * <p>A discussion of the use of dynamically typesafe views may be
2967      * found in the documentation for the {@link #checkedCollection
2968      * checkedCollection} method.
2969      *
2970      * <p>The returned map will be serializable if the specified map is
2971      * serializable.
2972      *
2973      * <p>Since {@code null} is considered to be a value of any reference
2974      * type, the returned map permits insertion of null keys or values
2975      * whenever the backing map does.
2976      *
2977      * @param m the map for which a dynamically typesafe view is to be
2978      *          returned
2979      * @param keyType the type of key that {@code m} is permitted to hold
2980      * @param valueType the type of value that {@code m} is permitted to hold
2981      * @return a dynamically typesafe view of the specified map
2982      * @since 1.5
2983      */
2984     public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K, V> m,
2985                                                         Class<K> keyType,
2986                                                         Class<V> valueType) {
2987         return new CheckedSortedMap<>(m, keyType, valueType);
2988     }
2989 
2990     /**
2991      * @serial include
2992      */
2993     static class CheckedSortedMap<K,V> extends CheckedMap<K,V>
2994         implements SortedMap<K,V>, Serializable
2995     {
2996         private static final long serialVersionUID = 1599671320688067438L;
2997 
2998         private final SortedMap<K, V> sm;
2999 
3000         CheckedSortedMap(SortedMap<K, V> m,
3001                          Class<K> keyType, Class<V> valueType) {
3002             super(m, keyType, valueType);
3003             sm = m;
3004         }
3005 
3006         public Comparator<? super K> comparator() { return sm.comparator(); }
3007         public K firstKey()                       { return sm.firstKey(); }
3008         public K lastKey()                        { return sm.lastKey(); }
3009 
3010         public SortedMap<K,V> subMap(K fromKey, K toKey) {
3011             return checkedSortedMap(sm.subMap(fromKey, toKey),
3012                                     keyType, valueType);
3013         }
3014         public SortedMap<K,V> headMap(K toKey) {
3015             return checkedSortedMap(sm.headMap(toKey), keyType, valueType);
3016         }
3017         public SortedMap<K,V> tailMap(K fromKey) {
3018             return checkedSortedMap(sm.tailMap(fromKey), keyType, valueType);
3019         }
3020     }
3021 
3022     // Empty collections
3023 
3024     /**
3025      * Returns an iterator that has no elements.  More precisely,
3026      *
3027      * <ul compact>
3028      *
3029      * <li>{@link Iterator#hasNext hasNext} always returns {@code
3030      * false}.
3031      *
3032      * <li>{@link Iterator#next next} always throws {@link
3033      * NoSuchElementException}.
3034      *
3035      * <li>{@link Iterator#remove remove} always throws {@link
3036      * IllegalStateException}.
3037      *
3038      * </ul>
3039      *
3040      * <p>Implementations of this method are permitted, but not
3041      * required, to return the same object from multiple invocations.
3042      *
3043      * @return an empty iterator
3044      * @since 1.7
3045      */
3046     @SuppressWarnings("unchecked")
3047     public static <T> Iterator<T> emptyIterator() {
3048         return (Iterator<T>) EmptyIterator.EMPTY_ITERATOR;
3049     }
3050 
3051     private static class EmptyIterator<E> implements Iterator<E> {
3052         static final EmptyIterator<Object> EMPTY_ITERATOR
3053             = new EmptyIterator<>();
3054 
3055         public boolean hasNext() { return false; }
3056         public E next() { throw new NoSuchElementException(); }
3057         public void remove() { throw new IllegalStateException(); }
3058     }
3059 
3060     /**
3061      * Returns a list iterator that has no elements.  More precisely,
3062      *
3063      * <ul compact>
3064      *
3065      * <li>{@link Iterator#hasNext hasNext} and {@link
3066      * ListIterator#hasPrevious hasPrevious} always return {@code
3067      * false}.
3068      *
3069      * <li>{@link Iterator#next next} and {@link ListIterator#previous
3070      * previous} always throw {@link NoSuchElementException}.
3071      *
3072      * <li>{@link Iterator#remove remove} and {@link ListIterator#set
3073      * set} always throw {@link IllegalStateException}.
3074      *
3075      * <li>{@link ListIterator#add add} always throws {@link
3076      * UnsupportedOperationException}.
3077      *
3078      * <li>{@link ListIterator#nextIndex nextIndex} always returns
3079      * {@code 0} .
3080      *
3081      * <li>{@link ListIterator#previousIndex previousIndex} always
3082      * returns {@code -1}.
3083      *
3084      * </ul>
3085      *
3086      * <p>Implementations of this method are permitted, but not
3087      * required, to return the same object from multiple invocations.
3088      *
3089      * @return an empty list iterator
3090      * @since 1.7
3091      */
3092     @SuppressWarnings("unchecked")
3093     public static <T> ListIterator<T> emptyListIterator() {
3094         return (ListIterator<T>) EmptyListIterator.EMPTY_ITERATOR;
3095     }
3096 
3097     private static class EmptyListIterator<E>
3098         extends EmptyIterator<E>
3099         implements ListIterator<E>
3100     {
3101         static final EmptyListIterator<Object> EMPTY_ITERATOR
3102             = new EmptyListIterator<>();
3103 
3104         public boolean hasPrevious() { return false; }
3105         public E previous() { throw new NoSuchElementException(); }
3106         public int nextIndex()     { return 0; }
3107         public int previousIndex() { return -1; }
3108         public void set(E e) { throw new IllegalStateException(); }
3109         public void add(E e) { throw new UnsupportedOperationException(); }
3110     }
3111 
3112     /**
3113      * Returns an enumeration that has no elements.  More precisely,
3114      *
3115      * <ul compact>
3116      *
3117      * <li>{@link Enumeration#hasMoreElements hasMoreElements} always
3118      * returns {@code false}.
3119      *
3120      * <li> {@link Enumeration#nextElement nextElement} always throws
3121      * {@link NoSuchElementException}.
3122      *
3123      * </ul>
3124      *
3125      * <p>Implementations of this method are permitted, but not
3126      * required, to return the same object from multiple invocations.
3127      *
3128      * @return an empty enumeration
3129      * @since 1.7
3130      */
3131     @SuppressWarnings("unchecked")
3132     public static <T> Enumeration<T> emptyEnumeration() {
3133         return (Enumeration<T>) EmptyEnumeration.EMPTY_ENUMERATION;
3134     }
3135 
3136     private static class EmptyEnumeration<E> implements Enumeration<E> {
3137         static final EmptyEnumeration<Object> EMPTY_ENUMERATION
3138             = new EmptyEnumeration<>();
3139 
3140         public boolean hasMoreElements() { return false; }
3141         public E nextElement() { throw new NoSuchElementException(); }
3142     }
3143 
3144     /**
3145      * The empty set (immutable).  This set is serializable.
3146      *
3147      * @see #emptySet()
3148      */
3149     @SuppressWarnings("unchecked")
3150     public static final Set EMPTY_SET = new EmptySet<>();
3151 
3152     /**
3153      * Returns the empty set (immutable).  This set is serializable.
3154      * Unlike the like-named field, this method is parameterized.
3155      *
3156      * <p>This example illustrates the type-safe way to obtain an empty set:
3157      * <pre>
3158      *     Set&lt;String&gt; s = Collections.emptySet();
3159      * </pre>
3160      * Implementation note:  Implementations of this method need not
3161      * create a separate <tt>Set</tt> object for each call.   Using this
3162      * method is likely to have comparable cost to using the like-named
3163      * field.  (Unlike this method, the field does not provide type safety.)
3164      *
3165      * @see #EMPTY_SET
3166      * @since 1.5
3167      */
3168     @SuppressWarnings("unchecked")
3169     public static final <T> Set<T> emptySet() {
3170         return (Set<T>) EMPTY_SET;
3171     }
3172 
3173     /**
3174      * @serial include
3175      */
3176     private static class EmptySet<E>
3177         extends AbstractSet<E>
3178         implements Serializable
3179     {
3180         private static final long serialVersionUID = 1582296315990362920L;
3181 
3182         public Iterator<E> iterator() { return emptyIterator(); }
3183 
3184         public int size() {return 0;}
3185         public boolean isEmpty() {return true;}
3186 
3187         public boolean contains(Object obj) {return false;}
3188         public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
3189 
3190         public Object[] toArray() { return new Object[0]; }
3191 
3192         public <T> T[] toArray(T[] a) {
3193             if (a.length > 0)
3194                 a[0] = null;
3195             return a;
3196         }
3197 
3198         // Preserves singleton property
3199         private Object readResolve() {
3200             return EMPTY_SET;
3201         }
3202     }
3203 
3204     /**
3205      * Returns the empty sorted set (immutable).  This set is serializable.
3206      *
3207      * <p>This example illustrates the type-safe way to obtain an empty sorted
3208      * set:
3209      * <pre>
3210      *     SortedSet&lt;String&gt; s = Collections.emptySortedSet();
3211      * </pre>
3212      * Implementation note:  Implementations of this method need not
3213      * create a separate <tt>SortedSet</tt> object for each call.
3214      *
3215      * @since 1.8
3216      */
3217     @SuppressWarnings("unchecked")
3218     public static final <E> SortedSet<E> emptySortedSet() {
3219         return (SortedSet<E>) new EmptySortedSet<>();
3220     }
3221 
3222     /**
3223      * @serial include
3224      */
3225     private static class EmptySortedSet<E>
3226         extends AbstractSet<E>
3227         implements SortedSet<E>, Serializable
3228     {
3229         private static final long serialVersionUID = 6316515401502265487L;
3230         public Iterator<E> iterator() { return emptyIterator(); }
3231         public int size() {return 0;}
3232         public boolean isEmpty() {return true;}
3233         public boolean contains(Object obj) {return false;}
3234         public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
3235         public Object[] toArray() { return new Object[0]; }
3236 
3237         public <E> E[] toArray(E[] a) {
3238             if (a.length > 0)
3239                 a[0] = null;
3240             return a;
3241         }
3242 
3243         // Preserves singleton property
3244         private Object readResolve() {
3245             return new EmptySortedSet<>();
3246         }
3247 
3248         public Comparator comparator() {
3249             return null;
3250         }
3251 
3252         public SortedSet<E> subSet(Object fromElement, Object toElement) {
3253             Objects.requireNonNull(fromElement);
3254             Objects.requireNonNull(toElement);
3255 
3256             if (!(fromElement instanceof Comparable) ||
3257                     !(toElement instanceof Comparable))
3258             {
3259                 throw new ClassCastException();
3260             }
3261 
3262             if ((((Comparable)fromElement).compareTo(toElement) >= 0) ||
3263                     (((Comparable)toElement).compareTo(fromElement) < 0))
3264             {
3265                 throw new IllegalArgumentException();
3266             }
3267 
3268             return emptySortedSet();
3269         }
3270 
3271         public SortedSet<E> headSet(Object toElement) {
3272             Objects.requireNonNull(toElement);
3273 
3274             if (!(toElement instanceof Comparable)) {
3275                 throw new ClassCastException();
3276             }
3277 
3278             return emptySortedSet();
3279         }
3280 
3281         public SortedSet<E> tailSet(Object fromElement) {
3282             Objects.requireNonNull(fromElement);
3283 
3284             if (!(fromElement instanceof Comparable)) {
3285                 throw new ClassCastException();
3286             }
3287 
3288             return emptySortedSet();
3289         }
3290 
3291         public E first() {
3292             throw new NoSuchElementException();
3293         }
3294 
3295         public E last() {
3296             throw new NoSuchElementException();
3297         }
3298     }
3299 
3300     /**
3301      * The empty list (immutable).  This list is serializable.
3302      *
3303      * @see #emptyList()
3304      */
3305     @SuppressWarnings("unchecked")
3306     public static final List EMPTY_LIST = new EmptyList<>();
3307 
3308     /**
3309      * Returns the empty list (immutable).  This list is serializable.
3310      *
3311      * <p>This example illustrates the type-safe way to obtain an empty list:
3312      * <pre>
3313      *     List&lt;String&gt; s = Collections.emptyList();
3314      * </pre>
3315      * Implementation note:  Implementations of this method need not
3316      * create a separate <tt>List</tt> object for each call.   Using this
3317      * method is likely to have comparable cost to using the like-named
3318      * field.  (Unlike this method, the field does not provide type safety.)
3319      *
3320      * @see #EMPTY_LIST
3321      * @since 1.5
3322      */
3323     @SuppressWarnings("unchecked")
3324     public static final <T> List<T> emptyList() {
3325         return (List<T>) EMPTY_LIST;
3326     }
3327 
3328     /**
3329      * @serial include
3330      */
3331     private static class EmptyList<E>
3332         extends AbstractList<E>
3333         implements RandomAccess, Serializable {
3334         private static final long serialVersionUID = 8842843931221139166L;
3335 
3336         public Iterator<E> iterator() {
3337             return emptyIterator();
3338         }
3339         public ListIterator<E> listIterator() {
3340             return emptyListIterator();
3341         }
3342 
3343         public int size() {return 0;}
3344         public boolean isEmpty() {return true;}
3345 
3346         public boolean contains(Object obj) {return false;}
3347         public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
3348 
3349         public Object[] toArray() { return new Object[0]; }
3350 
3351         public <T> T[] toArray(T[] a) {
3352             if (a.length > 0)
3353                 a[0] = null;
3354             return a;
3355         }
3356 
3357         public E get(int index) {
3358             throw new IndexOutOfBoundsException("Index: "+index);
3359         }
3360 
3361         public boolean equals(Object o) {
3362             return (o instanceof List) && ((List<?>)o).isEmpty();
3363         }
3364 
3365         public int hashCode() { return 1; }
3366 
3367         // Preserves singleton property
3368         private Object readResolve() {
3369             return EMPTY_LIST;
3370         }
3371     }
3372 
3373     /**
3374      * The empty map (immutable).  This map is serializable.
3375      *
3376      * @see #emptyMap()
3377      * @since 1.3
3378      */
3379     @SuppressWarnings("unchecked")
3380     public static final Map EMPTY_MAP = new EmptyMap<>();
3381 
3382     /**
3383      * Returns the empty map (immutable).  This map is serializable.
3384      *
3385      * <p>This example illustrates the type-safe way to obtain an empty set:
3386      * <pre>
3387      *     Map&lt;String, Date&gt; s = Collections.emptyMap();
3388      * </pre>
3389      * Implementation note:  Implementations of this method need not
3390      * create a separate <tt>Map</tt> object for each call.   Using this
3391      * method is likely to have comparable cost to using the like-named
3392      * field.  (Unlike this method, the field does not provide type safety.)
3393      *
3394      * @see #EMPTY_MAP
3395      * @since 1.5
3396      */
3397     @SuppressWarnings("unchecked")
3398     public static final <K,V> Map<K,V> emptyMap() {
3399         return (Map<K,V>) EMPTY_MAP;
3400     }
3401 
3402     /**
3403      * @serial include
3404      */
3405     private static class EmptyMap<K,V>
3406         extends AbstractMap<K,V>
3407         implements Serializable
3408     {
3409         private static final long serialVersionUID = 6428348081105594320L;
3410 
3411         public int size()                          {return 0;}
3412         public boolean isEmpty()                   {return true;}
3413         public boolean containsKey(Object key)     {return false;}
3414         public boolean containsValue(Object value) {return false;}
3415         public V get(Object key)                   {return null;}
3416         public Set<K> keySet()                     {return emptySet();}
3417         public Collection<V> values()              {return emptySet();}
3418         public Set<Map.Entry<K,V>> entrySet()      {return emptySet();}
3419 
3420         public boolean equals(Object o) {
3421             return (o instanceof Map) && ((Map<?,?>)o).isEmpty();
3422         }
3423 
3424         public int hashCode()                      {return 0;}
3425 
3426         // Preserves singleton property
3427         private Object readResolve() {
3428             return EMPTY_MAP;
3429         }
3430     }
3431 
3432     // Singleton collections
3433 
3434     /**
3435      * Returns an immutable set containing only the specified object.
3436      * The returned set is serializable.
3437      *
3438      * @param o the sole object to be stored in the returned set.
3439      * @return an immutable set containing only the specified object.
3440      */
3441     public static <T> Set<T> singleton(T o) {
3442         return new SingletonSet<>(o);
3443     }
3444 
3445     static <E> Iterator<E> singletonIterator(final E e) {
3446         return new Iterator<E>() {
3447             private boolean hasNext = true;
3448             public boolean hasNext() {
3449                 return hasNext;
3450             }
3451             public E next() {
3452                 if (hasNext) {
3453                     hasNext = false;
3454                     return e;
3455                 }
3456                 throw new NoSuchElementException();
3457             }
3458             public void remove() {
3459                 throw new UnsupportedOperationException();
3460             }
3461         };
3462     }
3463 
3464     /**
3465      * @serial include
3466      */
3467     private static class SingletonSet<E>
3468         extends AbstractSet<E>
3469         implements Serializable
3470     {
3471         private static final long serialVersionUID = 3193687207550431679L;
3472 
3473         private final E element;
3474 
3475         SingletonSet(E e) {element = e;}
3476 
3477         public Iterator<E> iterator() {
3478             return singletonIterator(element);
3479         }
3480 
3481         public int size() {return 1;}
3482 
3483         public boolean contains(Object o) {return eq(o, element);}
3484     }
3485 
3486     /**
3487      * Returns an immutable list containing only the specified object.
3488      * The returned list is serializable.
3489      *
3490      * @param o the sole object to be stored in the returned list.
3491      * @return an immutable list containing only the specified object.
3492      * @since 1.3
3493      */
3494     public static <T> List<T> singletonList(T o) {
3495         return new SingletonList<>(o);
3496     }
3497 
3498     /**
3499      * @serial include
3500      */
3501     private static class SingletonList<E>
3502         extends AbstractList<E>
3503         implements RandomAccess, Serializable {
3504 
3505         private static final long serialVersionUID = 3093736618740652951L;
3506 
3507         private final E element;
3508 
3509         SingletonList(E obj)                {element = obj;}
3510 
3511         public Iterator<E> iterator() {
3512             return singletonIterator(element);
3513         }
3514 
3515         public int size()                   {return 1;}
3516 
3517         public boolean contains(Object obj) {return eq(obj, element);}
3518 
3519         public E get(int index) {
3520             if (index != 0)
3521               throw new IndexOutOfBoundsException("Index: "+index+", Size: 1");
3522             return element;
3523         }
3524     }
3525 
3526     /**
3527      * Returns an immutable map, mapping only the specified key to the
3528      * specified value.  The returned map is serializable.
3529      *
3530      * @param key the sole key to be stored in the returned map.
3531      * @param value the value to which the returned map maps <tt>key</tt>.
3532      * @return an immutable map containing only the specified key-value
3533      *         mapping.
3534      * @since 1.3
3535      */
3536     public static <K,V> Map<K,V> singletonMap(K key, V value) {
3537         return new SingletonMap<>(key, value);
3538     }
3539 
3540     /**
3541      * @serial include
3542      */
3543     private static class SingletonMap<K,V>
3544           extends AbstractMap<K,V>
3545           implements Serializable {
3546         private static final long serialVersionUID = -6979724477215052911L;
3547 
3548         private final K k;
3549         private final V v;
3550 
3551         SingletonMap(K key, V value) {
3552             k = key;
3553             v = value;
3554         }
3555 
3556         public int size()                          {return 1;}
3557 
3558         public boolean isEmpty()                   {return false;}
3559 
3560         public boolean containsKey(Object key)     {return eq(key, k);}
3561 
3562         public boolean containsValue(Object value) {return eq(value, v);}
3563 
3564         public V get(Object key)                   {return (eq(key, k) ? v : null);}
3565 
3566         private transient Set<K> keySet = null;
3567         private transient Set<Map.Entry<K,V>> entrySet = null;
3568         private transient Collection<V> values = null;
3569 
3570         public Set<K> keySet() {
3571             if (keySet==null)
3572                 keySet = singleton(k);
3573             return keySet;
3574         }
3575 
3576         public Set<Map.Entry<K,V>> entrySet() {
3577             if (entrySet==null)
3578                 entrySet = Collections.<Map.Entry<K,V>>singleton(
3579                     new SimpleImmutableEntry<>(k, v));
3580             return entrySet;
3581         }
3582 
3583         public Collection<V> values() {
3584             if (values==null)
3585                 values = singleton(v);
3586             return values;
3587         }
3588 
3589     }
3590 
3591     // Miscellaneous
3592 
3593     /**
3594      * Returns an immutable list consisting of <tt>n</tt> copies of the
3595      * specified object.  The newly allocated data object is tiny (it contains
3596      * a single reference to the data object).  This method is useful in
3597      * combination with the <tt>List.addAll</tt> method to grow lists.
3598      * The returned list is serializable.
3599      *
3600      * @param  n the number of elements in the returned list.
3601      * @param  o the element to appear repeatedly in the returned list.
3602      * @return an immutable list consisting of <tt>n</tt> copies of the
3603      *         specified object.
3604      * @throws IllegalArgumentException if {@code n < 0}
3605      * @see    List#addAll(Collection)
3606      * @see    List#addAll(int, Collection)
3607      */
3608     public static <T> List<T> nCopies(int n, T o) {
3609         if (n < 0)
3610             throw new IllegalArgumentException("List length = " + n);
3611         return new CopiesList<>(n, o);
3612     }
3613 
3614     /**
3615      * @serial include
3616      */
3617     private static class CopiesList<E>
3618         extends AbstractList<E>
3619         implements RandomAccess, Serializable
3620     {
3621         private static final long serialVersionUID = 2739099268398711800L;
3622 
3623         final int n;
3624         final E element;
3625 
3626         CopiesList(int n, E e) {
3627             assert n >= 0;
3628             this.n = n;
3629             element = e;
3630         }
3631 
3632         public int size() {
3633             return n;
3634         }
3635 
3636         public boolean contains(Object obj) {
3637             return n != 0 && eq(obj, element);
3638         }
3639 
3640         public int indexOf(Object o) {
3641             return contains(o) ? 0 : -1;
3642         }
3643 
3644         public int lastIndexOf(Object o) {
3645             return contains(o) ? n - 1 : -1;
3646         }
3647 
3648         public E get(int index) {
3649             if (index < 0 || index >= n)
3650                 throw new IndexOutOfBoundsException("Index: "+index+
3651                                                     ", Size: "+n);
3652             return element;
3653         }
3654 
3655         public Object[] toArray() {
3656             final Object[] a = new Object[n];
3657             if (element != null)
3658                 Arrays.fill(a, 0, n, element);
3659             return a;
3660         }
3661 
3662         public <T> T[] toArray(T[] a) {
3663             final int n = this.n;
3664             if (a.length < n) {
3665                 a = (T[])java.lang.reflect.Array
3666                     .newInstance(a.getClass().getComponentType(), n);
3667                 if (element != null)
3668                     Arrays.fill(a, 0, n, element);
3669             } else {
3670                 Arrays.fill(a, 0, n, element);
3671                 if (a.length > n)
3672                     a[n] = null;
3673             }
3674             return a;
3675         }
3676 
3677         public List<E> subList(int fromIndex, int toIndex) {
3678             if (fromIndex < 0)
3679                 throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
3680             if (toIndex > n)
3681                 throw new IndexOutOfBoundsException("toIndex = " + toIndex);
3682             if (fromIndex > toIndex)
3683                 throw new IllegalArgumentException("fromIndex(" + fromIndex +
3684                                                    ") > toIndex(" + toIndex + ")");
3685             return new CopiesList<>(toIndex - fromIndex, element);
3686         }
3687     }
3688 
3689     /**
3690      * Returns a comparator that imposes the reverse of the <em>natural
3691      * ordering</em> on a collection of objects that implement the
3692      * {@code Comparable} interface.  (The natural ordering is the ordering
3693      * imposed by the objects' own {@code compareTo} method.)  This enables a
3694      * simple idiom for sorting (or maintaining) collections (or arrays) of
3695      * objects that implement the {@code Comparable} interface in
3696      * reverse-natural-order.  For example, suppose {@code a} is an array of
3697      * strings. Then: <pre>
3698      *          Arrays.sort(a, Collections.reverseOrder());
3699      * </pre> sorts the array in reverse-lexicographic (alphabetical) order.<p>
3700      *
3701      * The returned comparator is serializable.
3702      *
3703      * @return A comparator that imposes the reverse of the <i>natural
3704      *         ordering</i> on a collection of objects that implement
3705      *         the <tt>Comparable</tt> interface.
3706      * @see Comparable
3707      */
3708     public static <T> Comparator<T> reverseOrder() {
3709         return (Comparator<T>) ReverseComparator.REVERSE_ORDER;
3710     }
3711 
3712     /**
3713      * @serial include
3714      */
3715     private static class ReverseComparator
3716         implements Comparator<Comparable<Object>>, Serializable {
3717 
3718         private static final long serialVersionUID = 7207038068494060240L;
3719 
3720         static final ReverseComparator REVERSE_ORDER
3721             = new ReverseComparator();
3722 
3723         public int compare(Comparable<Object> c1, Comparable<Object> c2) {
3724             return c2.compareTo(c1);
3725         }
3726 
3727         private Object readResolve() { return reverseOrder(); }
3728     }
3729 
3730     /**
3731      * Returns a comparator that imposes the reverse ordering of the specified
3732      * comparator.  If the specified comparator is {@code null}, this method is
3733      * equivalent to {@link #reverseOrder()} (in other words, it returns a
3734      * comparator that imposes the reverse of the <em>natural ordering</em> on
3735      * a collection of objects that implement the Comparable interface).
3736      *
3737      * <p>The returned comparator is serializable (assuming the specified
3738      * comparator is also serializable or {@code null}).
3739      *
3740      * @param cmp a comparator who's ordering is to be reversed by the returned
3741      * comparator or {@code null}
3742      * @return A comparator that imposes the reverse ordering of the
3743      *         specified comparator.
3744      * @since 1.5
3745      */
3746     public static <T> Comparator<T> reverseOrder(Comparator<T> cmp) {
3747         if (cmp == null)
3748             return reverseOrder();
3749 
3750         if (cmp instanceof ReverseComparator2)
3751             return ((ReverseComparator2<T>)cmp).cmp;
3752 
3753         return new ReverseComparator2<>(cmp);
3754     }
3755 
3756     /**
3757      * @serial include
3758      */
3759     private static class ReverseComparator2<T> implements Comparator<T>,
3760         Serializable
3761     {
3762         private static final long serialVersionUID = 4374092139857L;
3763 
3764         /**
3765          * The comparator specified in the static factory.  This will never
3766          * be null, as the static factory returns a ReverseComparator
3767          * instance if its argument is null.
3768          *
3769          * @serial
3770          */
3771         final Comparator<T> cmp;
3772 
3773         ReverseComparator2(Comparator<T> cmp) {
3774             assert cmp != null;
3775             this.cmp = cmp;
3776         }
3777 
3778         public int compare(T t1, T t2) {
3779             return cmp.compare(t2, t1);
3780         }
3781 
3782         public boolean equals(Object o) {
3783             return (o == this) ||
3784                 (o instanceof ReverseComparator2 &&
3785                  cmp.equals(((ReverseComparator2)o).cmp));
3786         }
3787 
3788         public int hashCode() {
3789             return cmp.hashCode() ^ Integer.MIN_VALUE;
3790         }
3791     }
3792 
3793     /**
3794      * Returns an enumeration over the specified collection.  This provides
3795      * interoperability with legacy APIs that require an enumeration
3796      * as input.
3797      *
3798      * @param c the collection for which an enumeration is to be returned.
3799      * @return an enumeration over the specified collection.
3800      * @see Enumeration
3801      */
3802     public static <T> Enumeration<T> enumeration(final Collection<T> c) {
3803         return new Enumeration<T>() {
3804             private final Iterator<T> i = c.iterator();
3805 
3806             public boolean hasMoreElements() {
3807                 return i.hasNext();
3808             }
3809 
3810             public T nextElement() {
3811                 return i.next();
3812             }
3813         };
3814     }
3815 
3816     /**
3817      * Returns an array list containing the elements returned by the
3818      * specified enumeration in the order they are returned by the
3819      * enumeration.  This method provides interoperability between
3820      * legacy APIs that return enumerations and new APIs that require
3821      * collections.
3822      *
3823      * @param e enumeration providing elements for the returned
3824      *          array list
3825      * @return an array list containing the elements returned
3826      *         by the specified enumeration.
3827      * @since 1.4
3828      * @see Enumeration
3829      * @see ArrayList
3830      */
3831     public static <T> ArrayList<T> list(Enumeration<T> e) {
3832         ArrayList<T> l = new ArrayList<>();
3833         while (e.hasMoreElements())
3834             l.add(e.nextElement());
3835         return l;
3836     }
3837 
3838     /**
3839      * Returns true if the specified arguments are equal, or both null.
3840      */
3841     static boolean eq(Object o1, Object o2) {
3842         return o1==null ? o2==null : o1.equals(o2);
3843     }
3844 
3845     /**
3846      * Returns the number of elements in the specified collection equal to the
3847      * specified object.  More formally, returns the number of elements
3848      * <tt>e</tt> in the collection such that
3849      * <tt>(o == null ? e == null : o.equals(e))</tt>.
3850      *
3851      * @param c the collection in which to determine the frequency
3852      *     of <tt>o</tt>
3853      * @param o the object whose frequency is to be determined
3854      * @throws NullPointerException if <tt>c</tt> is null
3855      * @since 1.5
3856      */
3857     public static int frequency(Collection<?> c, Object o) {
3858         int result = 0;
3859         if (o == null) {
3860             for (Object e : c)
3861                 if (e == null)
3862                     result++;
3863         } else {
3864             for (Object e : c)
3865                 if (o.equals(e))
3866                     result++;
3867         }
3868         return result;
3869     }
3870 
3871     /**
3872      * Returns {@code true} if the two specified collections have no
3873      * elements in common.
3874      *
3875      * <p>Care must be exercised if this method is used on collections that
3876      * do not comply with the general contract for {@code Collection}.
3877      * Implementations may elect to iterate over either collection and test
3878      * for containment in the other collection (or to perform any equivalent
3879      * computation).  If either collection uses a nonstandard equality test
3880      * (as does a {@link SortedSet} whose ordering is not <em>compatible with
3881      * equals</em>, or the key set of an {@link IdentityHashMap}), both
3882      * collections must use the same nonstandard equality test, or the
3883      * result of this method is undefined.
3884      *
3885      * <p>Care must also be exercised when using collections that have
3886      * restrictions on the elements that they may contain. Collection
3887      * implementations are allowed to throw exceptions for any operation
3888      * involving elements they deem ineligible. For absolute safety the
3889      * specified collections should contain only elements which are
3890      * eligible elements for both collections.
3891      *
3892      * <p>Note that it is permissible to pass the same collection in both
3893      * parameters, in which case the method will return {@code true} if and
3894      * only if the collection is empty.
3895      *
3896      * @param c1 a collection
3897      * @param c2 a collection
3898      * @return {@code true} if the two specified collections have no
3899      * elements in common.
3900      * @throws NullPointerException if either collection is {@code null}.
3901      * @throws NullPointerException if one collection contains a {@code null}
3902      * element and {@code null} is not an eligible element for the other collection.
3903      * (<a href="Collection.html#optional-restrictions">optional</a>)
3904      * @throws ClassCastException if one collection contains an element that is
3905      * of a type which is ineligible for the other collection.
3906      * (<a href="Collection.html#optional-restrictions">optional</a>)
3907      * @since 1.5
3908      */
3909     public static boolean disjoint(Collection<?> c1, Collection<?> c2) {
3910         // The collection to be used for contains(). Preference is given to
3911         // the collection who's contains() has lower O() complexity.
3912         Collection<?> contains = c2;
3913         // The collection to be iterated. If the collections' contains() impl
3914         // are of different O() complexity, the collection with slower
3915         // contains() will be used for iteration. For collections who's
3916         // contains() are of the same complexity then best performance is
3917         // achieved by iterating the smaller collection.
3918         Collection<?> iterate = c1;
3919 
3920         // Performance optimization cases. The heuristics:
3921         //   1. Generally iterate over c1.
3922         //   2. If c1 is a Set then iterate over c2.
3923         //   3. If either collection is empty then result is always true.
3924         //   4. Iterate over the smaller Collection.
3925         if (c1 instanceof Set) {
3926             // Use c1 for contains as a Set's contains() is expected to perform
3927             // better than O(N/2)
3928             iterate = c2;
3929             contains = c1;
3930         } else if (!(c2 instanceof Set)) {
3931             // Both are mere Collections. Iterate over smaller collection.
3932             // Example: If c1 contains 3 elements and c2 contains 50 elements and
3933             // assuming contains() requires ceiling(N/2) comparisons then
3934             // checking for all c1 elements in c2 would require 75 comparisons
3935             // (3 * ceiling(50/2)) vs. checking all c2 elements in c1 requiring
3936             // 100 comparisons (50 * ceiling(3/2)).
3937             int c1size = c1.size();
3938             int c2size = c2.size();
3939             if (c1size == 0 || c2size == 0) {
3940                 // At least one collection is empty. Nothing will match.
3941                 return true;
3942             }
3943 
3944             if (c1size > c2size) {
3945                 iterate = c2;
3946                 contains = c1;
3947             }
3948         }
3949 
3950         for (Object e : iterate) {
3951             if (contains.contains(e)) {
3952                // Found a common element. Collections are not disjoint.
3953                 return false;
3954             }
3955         }
3956 
3957         // No common elements were found.
3958         return true;
3959     }
3960 
3961     /**
3962      * Adds all of the specified elements to the specified collection.
3963      * Elements to be added may be specified individually or as an array.
3964      * The behavior of this convenience method is identical to that of
3965      * <tt>c.addAll(Arrays.asList(elements))</tt>, but this method is likely
3966      * to run significantly faster under most implementations.
3967      *
3968      * <p>When elements are specified individually, this method provides a
3969      * convenient way to add a few elements to an existing collection:
3970      * <pre>
3971      *     Collections.addAll(flavors, "Peaches 'n Plutonium", "Rocky Racoon");
3972      * </pre>
3973      *
3974      * @param c the collection into which <tt>elements</tt> are to be inserted
3975      * @param elements the elements to insert into <tt>c</tt>
3976      * @return <tt>true</tt> if the collection changed as a result of the call
3977      * @throws UnsupportedOperationException if <tt>c</tt> does not support
3978      *         the <tt>add</tt> operation
3979      * @throws NullPointerException if <tt>elements</tt> contains one or more
3980      *         null values and <tt>c</tt> does not permit null elements, or
3981      *         if <tt>c</tt> or <tt>elements</tt> are <tt>null</tt>
3982      * @throws IllegalArgumentException if some property of a value in
3983      *         <tt>elements</tt> prevents it from being added to <tt>c</tt>
3984      * @see Collection#addAll(Collection)
3985      * @since 1.5
3986      */
3987     @SafeVarargs
3988     public static <T> boolean addAll(Collection<? super T> c, T... elements) {
3989         boolean result = false;
3990         for (T element : elements)
3991             result |= c.add(element);
3992         return result;
3993     }
3994 
3995     /**
3996      * Returns a set backed by the specified map.  The resulting set displays
3997      * the same ordering, concurrency, and performance characteristics as the
3998      * backing map.  In essence, this factory method provides a {@link Set}
3999      * implementation corresponding to any {@link Map} implementation.  There
4000      * is no need to use this method on a {@link Map} implementation that
4001      * already has a corresponding {@link Set} implementation (such as {@link
4002      * HashMap} or {@link TreeMap}).
4003      *
4004      * <p>Each method invocation on the set returned by this method results in
4005      * exactly one method invocation on the backing map or its <tt>keySet</tt>
4006      * view, with one exception.  The <tt>addAll</tt> method is implemented
4007      * as a sequence of <tt>put</tt> invocations on the backing map.
4008      *
4009      * <p>The specified map must be empty at the time this method is invoked,
4010      * and should not be accessed directly after this method returns.  These
4011      * conditions are ensured if the map is created empty, passed directly
4012      * to this method, and no reference to the map is retained, as illustrated
4013      * in the following code fragment:
4014      * <pre>
4015      *    Set&lt;Object&gt; weakHashSet = Collections.newSetFromMap(
4016      *        new WeakHashMap&lt;Object, Boolean&gt;());
4017      * </pre>
4018      *
4019      * @param map the backing map
4020      * @return the set backed by the map
4021      * @throws IllegalArgumentException if <tt>map</tt> is not empty
4022      * @since 1.6
4023      */
4024     public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
4025         return new SetFromMap<>(map);
4026     }
4027 
4028     /**
4029      * @serial include
4030      */
4031     private static class SetFromMap<E> extends AbstractSet<E>
4032         implements Set<E>, Serializable
4033     {
4034         private final Map<E, Boolean> m;  // The backing map
4035         private transient Set<E> s;       // Its keySet
4036 
4037         SetFromMap(Map<E, Boolean> map) {
4038             if (!map.isEmpty())
4039                 throw new IllegalArgumentException("Map is non-empty");
4040             m = map;
4041             s = map.keySet();
4042         }
4043 
4044         public void clear()               {        m.clear(); }
4045         public int size()                 { return m.size(); }
4046         public boolean isEmpty()          { return m.isEmpty(); }
4047         public boolean contains(Object o) { return m.containsKey(o); }
4048         public boolean remove(Object o)   { return m.remove(o) != null; }
4049         public boolean add(E e) { return m.put(e, Boolean.TRUE) == null; }
4050         public Iterator<E> iterator()     { return s.iterator(); }
4051         public Object[] toArray()         { return s.toArray(); }
4052         public <T> T[] toArray(T[] a)     { return s.toArray(a); }
4053         public String toString()          { return s.toString(); }
4054         public int hashCode()             { return s.hashCode(); }
4055         public boolean equals(Object o)   { return o == this || s.equals(o); }
4056         public boolean containsAll(Collection<?> c) {return s.containsAll(c);}
4057         public boolean removeAll(Collection<?> c)   {return s.removeAll(c);}
4058         public boolean retainAll(Collection<?> c)   {return s.retainAll(c);}
4059         // addAll is the only inherited implementation
4060 
4061         private static final long serialVersionUID = 2454657854757543876L;
4062 
4063         private void readObject(java.io.ObjectInputStream stream)
4064             throws IOException, ClassNotFoundException
4065         {
4066             stream.defaultReadObject();
4067             s = m.keySet();
4068         }
4069     }
4070 
4071     /**
4072      * Returns a view of a {@link Deque} as a Last-in-first-out (Lifo)
4073      * {@link Queue}. Method <tt>add</tt> is mapped to <tt>push</tt>,
4074      * <tt>remove</tt> is mapped to <tt>pop</tt> and so on. This
4075      * view can be useful when you would like to use a method
4076      * requiring a <tt>Queue</tt> but you need Lifo ordering.
4077      *
4078      * <p>Each method invocation on the queue returned by this method
4079      * results in exactly one method invocation on the backing deque, with
4080      * one exception.  The {@link Queue#addAll addAll} method is
4081      * implemented as a sequence of {@link Deque#addFirst addFirst}
4082      * invocations on the backing deque.
4083      *
4084      * @param deque the deque
4085      * @return the queue
4086      * @since  1.6
4087      */
4088     public static <T> Queue<T> asLifoQueue(Deque<T> deque) {
4089         return new AsLIFOQueue<>(deque);
4090     }
4091 
4092     /**
4093      * @serial include
4094      */
4095     static class AsLIFOQueue<E> extends AbstractQueue<E>
4096         implements Queue<E>, Serializable {
4097         private static final long serialVersionUID = 1802017725587941708L;
4098         private final Deque<E> q;
4099         AsLIFOQueue(Deque<E> q)           { this.q = q; }
4100         public boolean add(E e)           { q.addFirst(e); return true; }
4101         public boolean offer(E e)         { return q.offerFirst(e); }
4102         public E poll()                   { return q.pollFirst(); }
4103         public E remove()                 { return q.removeFirst(); }
4104         public E peek()                   { return q.peekFirst(); }
4105         public E element()                { return q.getFirst(); }
4106         public void clear()               {        q.clear(); }
4107         public int size()                 { return q.size(); }
4108         public boolean isEmpty()          { return q.isEmpty(); }
4109         public boolean contains(Object o) { return q.contains(o); }
4110         public boolean remove(Object o)   { return q.remove(o); }
4111         public Iterator<E> iterator()     { return q.iterator(); }
4112         public Object[] toArray()         { return q.toArray(); }
4113         public <T> T[] toArray(T[] a)     { return q.toArray(a); }
4114         public String toString()          { return q.toString(); }
4115         public boolean containsAll(Collection<?> c) {return q.containsAll(c);}
4116         public boolean removeAll(Collection<?> c)   {return q.removeAll(c);}
4117         public boolean retainAll(Collection<?> c)   {return q.retainAll(c);}
4118         // We use inherited addAll; forwarding addAll would be wrong
4119     }
4120 }