1 /*
   2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.  Oracle designates this
   7  * particular file as subject to the "Classpath" exception as provided
   8  * by Oracle in the LICENSE file that accompanied this code.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  */
  24 
  25 /* deflate.c -- compress data using the deflation algorithm
  26  * Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler
  27  * For conditions of distribution and use, see copyright notice in zlib.h
  28  */
  29 
  30 /*
  31  *  ALGORITHM
  32  *
  33  *      The "deflation" process depends on being able to identify portions
  34  *      of the input text which are identical to earlier input (within a
  35  *      sliding window trailing behind the input currently being processed).
  36  *
  37  *      The most straightforward technique turns out to be the fastest for
  38  *      most input files: try all possible matches and select the longest.
  39  *      The key feature of this algorithm is that insertions into the string
  40  *      dictionary are very simple and thus fast, and deletions are avoided
  41  *      completely. Insertions are performed at each input character, whereas
  42  *      string matches are performed only when the previous match ends. So it
  43  *      is preferable to spend more time in matches to allow very fast string
  44  *      insertions and avoid deletions. The matching algorithm for small
  45  *      strings is inspired from that of Rabin & Karp. A brute force approach
  46  *      is used to find longer strings when a small match has been found.
  47  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
  48  *      (by Leonid Broukhis).
  49  *         A previous version of this file used a more sophisticated algorithm
  50  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
  51  *      time, but has a larger average cost, uses more memory and is patented.
  52  *      However the F&G algorithm may be faster for some highly redundant
  53  *      files if the parameter max_chain_length (described below) is too large.
  54  *
  55  *  ACKNOWLEDGEMENTS
  56  *
  57  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
  58  *      I found it in 'freeze' written by Leonid Broukhis.
  59  *      Thanks to many people for bug reports and testing.
  60  *
  61  *  REFERENCES
  62  *
  63  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
  64  *      Available in http://tools.ietf.org/html/rfc1951
  65  *
  66  *      A description of the Rabin and Karp algorithm is given in the book
  67  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
  68  *
  69  *      Fiala,E.R., and Greene,D.H.
  70  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
  71  *
  72  */
  73 
  74 /* @(#) $Id$ */
  75 
  76 #include "deflate.h"
  77 
  78 const char deflate_copyright[] =
  79    " deflate 1.2.11 Copyright 1995-2017 Jean-loup Gailly and Mark Adler ";
  80 /*
  81   If you use the zlib library in a product, an acknowledgment is welcome
  82   in the documentation of your product. If for some reason you cannot
  83   include such an acknowledgment, I would appreciate that you keep this
  84   copyright string in the executable of your product.
  85  */
  86 
  87 /* ===========================================================================
  88  *  Function prototypes.
  89  */
  90 typedef enum {
  91     need_more,      /* block not completed, need more input or more output */
  92     block_done,     /* block flush performed */
  93     finish_started, /* finish started, need only more output at next deflate */
  94     finish_done     /* finish done, accept no more input or output */
  95 } block_state;
  96 
  97 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
  98 /* Compression function. Returns the block state after the call. */
  99 
 100 local int deflateStateCheck      OF((z_streamp strm));
 101 local void slide_hash     OF((deflate_state *s));
 102 local void fill_window    OF((deflate_state *s));
 103 local block_state deflate_stored OF((deflate_state *s, int flush));
 104 local block_state deflate_fast   OF((deflate_state *s, int flush));
 105 #ifndef FASTEST
 106 local block_state deflate_slow   OF((deflate_state *s, int flush));
 107 #endif
 108 local block_state deflate_rle    OF((deflate_state *s, int flush));
 109 local block_state deflate_huff   OF((deflate_state *s, int flush));
 110 local void lm_init        OF((deflate_state *s));
 111 local void putShortMSB    OF((deflate_state *s, uInt b));
 112 local void flush_pending  OF((z_streamp strm));
 113 local unsigned read_buf   OF((z_streamp strm, Bytef *buf, unsigned size));
 114 #ifdef ASMV
 115 #  pragma message("Assembler code may have bugs -- use at your own risk")
 116       void match_init OF((void)); /* asm code initialization */
 117       uInt longest_match  OF((deflate_state *s, IPos cur_match));
 118 #else
 119 local uInt longest_match  OF((deflate_state *s, IPos cur_match));
 120 #endif
 121 
 122 #ifdef ZLIB_DEBUG
 123 local  void check_match OF((deflate_state *s, IPos start, IPos match,
 124                             int length));
 125 #endif
 126 
 127 /* ===========================================================================
 128  * Local data
 129  */
 130 
 131 #define NIL 0
 132 /* Tail of hash chains */
 133 
 134 #ifndef TOO_FAR
 135 #  define TOO_FAR 4096
 136 #endif
 137 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
 138 
 139 /* Values for max_lazy_match, good_match and max_chain_length, depending on
 140  * the desired pack level (0..9). The values given below have been tuned to
 141  * exclude worst case performance for pathological files. Better values may be
 142  * found for specific files.
 143  */
 144 typedef struct config_s {
 145    ush good_length; /* reduce lazy search above this match length */
 146    ush max_lazy;    /* do not perform lazy search above this match length */
 147    ush nice_length; /* quit search above this match length */
 148    ush max_chain;
 149    compress_func func;
 150 } config;
 151 
 152 #ifdef FASTEST
 153 local const config configuration_table[2] = {
 154 /*      good lazy nice chain */
 155 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
 156 /* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
 157 #else
 158 local const config configuration_table[10] = {
 159 /*      good lazy nice chain */
 160 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
 161 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
 162 /* 2 */ {4,    5, 16,    8, deflate_fast},
 163 /* 3 */ {4,    6, 32,   32, deflate_fast},
 164 
 165 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
 166 /* 5 */ {8,   16, 32,   32, deflate_slow},
 167 /* 6 */ {8,   16, 128, 128, deflate_slow},
 168 /* 7 */ {8,   32, 128, 256, deflate_slow},
 169 /* 8 */ {32, 128, 258, 1024, deflate_slow},
 170 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
 171 #endif
 172 
 173 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
 174  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
 175  * meaning.
 176  */
 177 
 178 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
 179 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
 180 
 181 /* ===========================================================================
 182  * Update a hash value with the given input byte
 183  * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
 184  *    characters, so that a running hash key can be computed from the previous
 185  *    key instead of complete recalculation each time.
 186  */
 187 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
 188 
 189 
 190 /* ===========================================================================
 191  * Insert string str in the dictionary and set match_head to the previous head
 192  * of the hash chain (the most recent string with same hash key). Return
 193  * the previous length of the hash chain.
 194  * If this file is compiled with -DFASTEST, the compression level is forced
 195  * to 1, and no hash chains are maintained.
 196  * IN  assertion: all calls to INSERT_STRING are made with consecutive input
 197  *    characters and the first MIN_MATCH bytes of str are valid (except for
 198  *    the last MIN_MATCH-1 bytes of the input file).
 199  */
 200 #ifdef FASTEST
 201 #define INSERT_STRING(s, str, match_head) \
 202    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
 203     match_head = s->head[s->ins_h], \
 204     s->head[s->ins_h] = (Pos)(str))
 205 #else
 206 #define INSERT_STRING(s, str, match_head) \
 207    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
 208     match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
 209     s->head[s->ins_h] = (Pos)(str))
 210 #endif
 211 
 212 /* ===========================================================================
 213  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
 214  * prev[] will be initialized on the fly.
 215  */
 216 #define CLEAR_HASH(s) \
 217     s->head[s->hash_size-1] = NIL; \
 218     zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
 219 
 220 /* ===========================================================================
 221  * Slide the hash table when sliding the window down (could be avoided with 32
 222  * bit values at the expense of memory usage). We slide even when level == 0 to
 223  * keep the hash table consistent if we switch back to level > 0 later.
 224  */
 225 local void slide_hash(s)
 226     deflate_state *s;
 227 {
 228     unsigned n, m;
 229     Posf *p;
 230     uInt wsize = s->w_size;
 231 
 232     n = s->hash_size;
 233     p = &s->head[n];
 234     do {
 235         m = *--p;
 236         *p = (Pos)(m >= wsize ? m - wsize : NIL);
 237     } while (--n);
 238     n = wsize;
 239 #ifndef FASTEST
 240     p = &s->prev[n];
 241     do {
 242         m = *--p;
 243         *p = (Pos)(m >= wsize ? m - wsize : NIL);
 244         /* If n is not on any hash chain, prev[n] is garbage but
 245          * its value will never be used.
 246          */
 247     } while (--n);
 248 #endif
 249 }
 250 
 251 /* ========================================================================= */
 252 int ZEXPORT deflateInit_(strm, level, version, stream_size)
 253     z_streamp strm;
 254     int level;
 255     const char *version;
 256     int stream_size;
 257 {
 258     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
 259                          Z_DEFAULT_STRATEGY, version, stream_size);
 260     /* To do: ignore strm->next_in if we use it as window */
 261 }
 262 
 263 /* ========================================================================= */
 264 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
 265                   version, stream_size)
 266     z_streamp strm;
 267     int  level;
 268     int  method;
 269     int  windowBits;
 270     int  memLevel;
 271     int  strategy;
 272     const char *version;
 273     int stream_size;
 274 {
 275     deflate_state *s;
 276     int wrap = 1;
 277     static const char my_version[] = ZLIB_VERSION;
 278 
 279     ushf *overlay;
 280     /* We overlay pending_buf and d_buf+l_buf. This works since the average
 281      * output size for (length,distance) codes is <= 24 bits.
 282      */
 283 
 284     if (version == Z_NULL || version[0] != my_version[0] ||
 285         stream_size != sizeof(z_stream)) {
 286         return Z_VERSION_ERROR;
 287     }
 288     if (strm == Z_NULL) return Z_STREAM_ERROR;
 289 
 290     strm->msg = Z_NULL;
 291     if (strm->zalloc == (alloc_func)0) {
 292 #ifdef Z_SOLO
 293         return Z_STREAM_ERROR;
 294 #else
 295         strm->zalloc = zcalloc;
 296         strm->opaque = (voidpf)0;
 297 #endif
 298     }
 299     if (strm->zfree == (free_func)0)
 300 #ifdef Z_SOLO
 301         return Z_STREAM_ERROR;
 302 #else
 303         strm->zfree = zcfree;
 304 #endif
 305 
 306 #ifdef FASTEST
 307     if (level != 0) level = 1;
 308 #else
 309     if (level == Z_DEFAULT_COMPRESSION) level = 6;
 310 #endif
 311 
 312     if (windowBits < 0) { /* suppress zlib wrapper */
 313         wrap = 0;
 314         windowBits = -windowBits;
 315     }
 316 #ifdef GZIP
 317     else if (windowBits > 15) {
 318         wrap = 2;       /* write gzip wrapper instead */
 319         windowBits -= 16;
 320     }
 321 #endif
 322     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
 323         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
 324         strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
 325         return Z_STREAM_ERROR;
 326     }
 327     if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
 328     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
 329     if (s == Z_NULL) return Z_MEM_ERROR;
 330     strm->state = (struct internal_state FAR *)s;
 331     s->strm = strm;
 332     s->status = INIT_STATE;     /* to pass state test in deflateReset() */
 333 
 334     s->wrap = wrap;
 335     s->gzhead = Z_NULL;
 336     s->w_bits = (uInt)windowBits;
 337     s->w_size = 1 << s->w_bits;
 338     s->w_mask = s->w_size - 1;
 339 
 340     s->hash_bits = (uInt)memLevel + 7;
 341     s->hash_size = 1 << s->hash_bits;
 342     s->hash_mask = s->hash_size - 1;
 343     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
 344 
 345     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
 346     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
 347     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
 348 
 349     s->high_water = 0;      /* nothing written to s->window yet */
 350 
 351     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
 352 
 353     overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
 354     s->pending_buf = (uchf *) overlay;
 355     s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
 356 
 357     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
 358         s->pending_buf == Z_NULL) {
 359         s->status = FINISH_STATE;
 360         strm->msg = ERR_MSG(Z_MEM_ERROR);
 361         deflateEnd (strm);
 362         return Z_MEM_ERROR;
 363     }
 364     s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
 365     s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
 366 
 367     s->level = level;
 368     s->strategy = strategy;
 369     s->method = (Byte)method;
 370 
 371     return deflateReset(strm);
 372 }
 373 
 374 /* =========================================================================
 375  * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
 376  */
 377 local int deflateStateCheck (strm)
 378     z_streamp strm;
 379 {
 380     deflate_state *s;
 381     if (strm == Z_NULL ||
 382         strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
 383         return 1;
 384     s = strm->state;
 385     if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
 386 #ifdef GZIP
 387                                            s->status != GZIP_STATE &&
 388 #endif
 389                                            s->status != EXTRA_STATE &&
 390                                            s->status != NAME_STATE &&
 391                                            s->status != COMMENT_STATE &&
 392                                            s->status != HCRC_STATE &&
 393                                            s->status != BUSY_STATE &&
 394                                            s->status != FINISH_STATE))
 395         return 1;
 396     return 0;
 397 }
 398 
 399 /* ========================================================================= */
 400 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
 401     z_streamp strm;
 402     const Bytef *dictionary;
 403     uInt  dictLength;
 404 {
 405     deflate_state *s;
 406     uInt str, n;
 407     int wrap;
 408     unsigned avail;
 409     z_const unsigned char *next;
 410 
 411     if (deflateStateCheck(strm) || dictionary == Z_NULL)
 412         return Z_STREAM_ERROR;
 413     s = strm->state;
 414     wrap = s->wrap;
 415     if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
 416         return Z_STREAM_ERROR;
 417 
 418     /* when using zlib wrappers, compute Adler-32 for provided dictionary */
 419     if (wrap == 1)
 420         strm->adler = adler32(strm->adler, dictionary, dictLength);
 421     s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
 422 
 423     /* if dictionary would fill window, just replace the history */
 424     if (dictLength >= s->w_size) {
 425         if (wrap == 0) {            /* already empty otherwise */
 426             CLEAR_HASH(s);
 427             s->strstart = 0;
 428             s->block_start = 0L;
 429             s->insert = 0;
 430         }
 431         dictionary += dictLength - s->w_size;  /* use the tail */
 432         dictLength = s->w_size;
 433     }
 434 
 435     /* insert dictionary into window and hash */
 436     avail = strm->avail_in;
 437     next = strm->next_in;
 438     strm->avail_in = dictLength;
 439     strm->next_in = (z_const Bytef *)dictionary;
 440     fill_window(s);
 441     while (s->lookahead >= MIN_MATCH) {
 442         str = s->strstart;
 443         n = s->lookahead - (MIN_MATCH-1);
 444         do {
 445             UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
 446 #ifndef FASTEST
 447             s->prev[str & s->w_mask] = s->head[s->ins_h];
 448 #endif
 449             s->head[s->ins_h] = (Pos)str;
 450             str++;
 451         } while (--n);
 452         s->strstart = str;
 453         s->lookahead = MIN_MATCH-1;
 454         fill_window(s);
 455     }
 456     s->strstart += s->lookahead;
 457     s->block_start = (long)s->strstart;
 458     s->insert = s->lookahead;
 459     s->lookahead = 0;
 460     s->match_length = s->prev_length = MIN_MATCH-1;
 461     s->match_available = 0;
 462     strm->next_in = next;
 463     strm->avail_in = avail;
 464     s->wrap = wrap;
 465     return Z_OK;
 466 }
 467 
 468 /* ========================================================================= */
 469 int ZEXPORT deflateGetDictionary (strm, dictionary, dictLength)
 470     z_streamp strm;
 471     Bytef *dictionary;
 472     uInt  *dictLength;
 473 {
 474     deflate_state *s;
 475     uInt len;
 476 
 477     if (deflateStateCheck(strm))
 478         return Z_STREAM_ERROR;
 479     s = strm->state;
 480     len = s->strstart + s->lookahead;
 481     if (len > s->w_size)
 482         len = s->w_size;
 483     if (dictionary != Z_NULL && len)
 484         zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
 485     if (dictLength != Z_NULL)
 486         *dictLength = len;
 487     return Z_OK;
 488 }
 489 
 490 /* ========================================================================= */
 491 int ZEXPORT deflateResetKeep (strm)
 492     z_streamp strm;
 493 {
 494     deflate_state *s;
 495 
 496     if (deflateStateCheck(strm)) {
 497         return Z_STREAM_ERROR;
 498     }
 499 
 500     strm->total_in = strm->total_out = 0;
 501     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
 502     strm->data_type = Z_UNKNOWN;
 503 
 504     s = (deflate_state *)strm->state;
 505     s->pending = 0;
 506     s->pending_out = s->pending_buf;
 507 
 508     if (s->wrap < 0) {
 509         s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
 510     }
 511     s->status =
 512 #ifdef GZIP
 513         s->wrap == 2 ? GZIP_STATE :
 514 #endif
 515         s->wrap ? INIT_STATE : BUSY_STATE;
 516     strm->adler =
 517 #ifdef GZIP
 518         s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
 519 #endif
 520         adler32(0L, Z_NULL, 0);
 521     s->last_flush = -2;
 522 
 523     _tr_init(s);
 524 
 525     return Z_OK;
 526 }
 527 
 528 /* ========================================================================= */
 529 int ZEXPORT deflateReset (strm)
 530     z_streamp strm;
 531 {
 532     int ret;
 533 
 534     ret = deflateResetKeep(strm);
 535     if (ret == Z_OK)
 536         lm_init(strm->state);
 537     return ret;
 538 }
 539 
 540 /* ========================================================================= */
 541 int ZEXPORT deflateSetHeader (strm, head)
 542     z_streamp strm;
 543     gz_headerp head;
 544 {
 545     if (deflateStateCheck(strm) || strm->state->wrap != 2)
 546         return Z_STREAM_ERROR;
 547     strm->state->gzhead = head;
 548     return Z_OK;
 549 }
 550 
 551 /* ========================================================================= */
 552 int ZEXPORT deflatePending (strm, pending, bits)
 553     unsigned *pending;
 554     int *bits;
 555     z_streamp strm;
 556 {
 557     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
 558     if (pending != Z_NULL)
 559         *pending = strm->state->pending;
 560     if (bits != Z_NULL)
 561         *bits = strm->state->bi_valid;
 562     return Z_OK;
 563 }
 564 
 565 /* ========================================================================= */
 566 int ZEXPORT deflatePrime (strm, bits, value)
 567     z_streamp strm;
 568     int bits;
 569     int value;
 570 {
 571     deflate_state *s;
 572     int put;
 573 
 574     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
 575     s = strm->state;
 576     if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3))
 577         return Z_BUF_ERROR;
 578     do {
 579         put = Buf_size - s->bi_valid;
 580         if (put > bits)
 581             put = bits;
 582         s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
 583         s->bi_valid += put;
 584         _tr_flush_bits(s);
 585         value >>= put;
 586         bits -= put;
 587     } while (bits);
 588     return Z_OK;
 589 }
 590 
 591 /* ========================================================================= */
 592 int ZEXPORT deflateParams(strm, level, strategy)
 593     z_streamp strm;
 594     int level;
 595     int strategy;
 596 {
 597     deflate_state *s;
 598     compress_func func;
 599 
 600     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
 601     s = strm->state;
 602 
 603 #ifdef FASTEST
 604     if (level != 0) level = 1;
 605 #else
 606     if (level == Z_DEFAULT_COMPRESSION) level = 6;
 607 #endif
 608     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
 609         return Z_STREAM_ERROR;
 610     }
 611     func = configuration_table[s->level].func;
 612 
 613     if ((strategy != s->strategy || func != configuration_table[level].func) &&
 614         s->last_flush != -2) {
 615         /* Flush the last buffer: */
 616         int err = deflate(strm, Z_BLOCK);
 617         if (err == Z_STREAM_ERROR)
 618             return err;
 619         if (strm->avail_out == 0)
 620             return Z_BUF_ERROR;
 621     }
 622     if (s->level != level) {
 623         if (s->level == 0 && s->matches != 0) {
 624             if (s->matches == 1)
 625                 slide_hash(s);
 626             else
 627                 CLEAR_HASH(s);
 628             s->matches = 0;
 629         }
 630         s->level = level;
 631         s->max_lazy_match   = configuration_table[level].max_lazy;
 632         s->good_match       = configuration_table[level].good_length;
 633         s->nice_match       = configuration_table[level].nice_length;
 634         s->max_chain_length = configuration_table[level].max_chain;
 635     }
 636     s->strategy = strategy;
 637     return Z_OK;
 638 }
 639 
 640 /* ========================================================================= */
 641 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
 642     z_streamp strm;
 643     int good_length;
 644     int max_lazy;
 645     int nice_length;
 646     int max_chain;
 647 {
 648     deflate_state *s;
 649 
 650     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
 651     s = strm->state;
 652     s->good_match = (uInt)good_length;
 653     s->max_lazy_match = (uInt)max_lazy;
 654     s->nice_match = nice_length;
 655     s->max_chain_length = (uInt)max_chain;
 656     return Z_OK;
 657 }
 658 
 659 /* =========================================================================
 660  * For the default windowBits of 15 and memLevel of 8, this function returns
 661  * a close to exact, as well as small, upper bound on the compressed size.
 662  * They are coded as constants here for a reason--if the #define's are
 663  * changed, then this function needs to be changed as well.  The return
 664  * value for 15 and 8 only works for those exact settings.
 665  *
 666  * For any setting other than those defaults for windowBits and memLevel,
 667  * the value returned is a conservative worst case for the maximum expansion
 668  * resulting from using fixed blocks instead of stored blocks, which deflate
 669  * can emit on compressed data for some combinations of the parameters.
 670  *
 671  * This function could be more sophisticated to provide closer upper bounds for
 672  * every combination of windowBits and memLevel.  But even the conservative
 673  * upper bound of about 14% expansion does not seem onerous for output buffer
 674  * allocation.
 675  */
 676 uLong ZEXPORT deflateBound(strm, sourceLen)
 677     z_streamp strm;
 678     uLong sourceLen;
 679 {
 680     deflate_state *s;
 681     uLong complen, wraplen;
 682 
 683     /* conservative upper bound for compressed data */
 684     complen = sourceLen +
 685               ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
 686 
 687     /* if can't get parameters, return conservative bound plus zlib wrapper */
 688     if (deflateStateCheck(strm))
 689         return complen + 6;
 690 
 691     /* compute wrapper length */
 692     s = strm->state;
 693     switch (s->wrap) {
 694     case 0:                                 /* raw deflate */
 695         wraplen = 0;
 696         break;
 697     case 1:                                 /* zlib wrapper */
 698         wraplen = 6 + (s->strstart ? 4 : 0);
 699         break;
 700 #ifdef GZIP
 701     case 2:                                 /* gzip wrapper */
 702         wraplen = 18;
 703         if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
 704             Bytef *str;
 705             if (s->gzhead->extra != Z_NULL)
 706                 wraplen += 2 + s->gzhead->extra_len;
 707             str = s->gzhead->name;
 708             if (str != Z_NULL)
 709                 do {
 710                     wraplen++;
 711                 } while (*str++);
 712             str = s->gzhead->comment;
 713             if (str != Z_NULL)
 714                 do {
 715                     wraplen++;
 716                 } while (*str++);
 717             if (s->gzhead->hcrc)
 718                 wraplen += 2;
 719         }
 720         break;
 721 #endif
 722     default:                                /* for compiler happiness */
 723         wraplen = 6;
 724     }
 725 
 726     /* if not default parameters, return conservative bound */
 727     if (s->w_bits != 15 || s->hash_bits != 8 + 7)
 728         return complen + wraplen;
 729 
 730     /* default settings: return tight bound for that case */
 731     return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
 732            (sourceLen >> 25) + 13 - 6 + wraplen;
 733 }
 734 
 735 /* =========================================================================
 736  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
 737  * IN assertion: the stream state is correct and there is enough room in
 738  * pending_buf.
 739  */
 740 local void putShortMSB (s, b)
 741     deflate_state *s;
 742     uInt b;
 743 {
 744     put_byte(s, (Byte)(b >> 8));
 745     put_byte(s, (Byte)(b & 0xff));
 746 }
 747 
 748 /* =========================================================================
 749  * Flush as much pending output as possible. All deflate() output, except for
 750  * some deflate_stored() output, goes through this function so some
 751  * applications may wish to modify it to avoid allocating a large
 752  * strm->next_out buffer and copying into it. (See also read_buf()).
 753  */
 754 local void flush_pending(strm)
 755     z_streamp strm;
 756 {
 757     unsigned len;
 758     deflate_state *s = strm->state;
 759 
 760     _tr_flush_bits(s);
 761     len = s->pending;
 762     if (len > strm->avail_out) len = strm->avail_out;
 763     if (len == 0) return;
 764 
 765     zmemcpy(strm->next_out, s->pending_out, len);
 766     strm->next_out  += len;
 767     s->pending_out  += len;
 768     strm->total_out += len;
 769     strm->avail_out -= len;
 770     s->pending      -= len;
 771     if (s->pending == 0) {
 772         s->pending_out = s->pending_buf;
 773     }
 774 }
 775 
 776 /* ===========================================================================
 777  * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
 778  */
 779 #define HCRC_UPDATE(beg) \
 780     do { \
 781         if (s->gzhead->hcrc && s->pending > (beg)) \
 782             strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
 783                                 s->pending - (beg)); \
 784     } while (0)
 785 
 786 /* ========================================================================= */
 787 int ZEXPORT deflate (strm, flush)
 788     z_streamp strm;
 789     int flush;
 790 {
 791     int old_flush; /* value of flush param for previous deflate call */
 792     deflate_state *s;
 793 
 794     if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
 795         return Z_STREAM_ERROR;
 796     }
 797     s = strm->state;
 798 
 799     if (strm->next_out == Z_NULL ||
 800         (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
 801         (s->status == FINISH_STATE && flush != Z_FINISH)) {
 802         ERR_RETURN(strm, Z_STREAM_ERROR);
 803     }
 804     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
 805 
 806     old_flush = s->last_flush;
 807     s->last_flush = flush;
 808 
 809     /* Flush as much pending output as possible */
 810     if (s->pending != 0) {
 811         flush_pending(strm);
 812         if (strm->avail_out == 0) {
 813             /* Since avail_out is 0, deflate will be called again with
 814              * more output space, but possibly with both pending and
 815              * avail_in equal to zero. There won't be anything to do,
 816              * but this is not an error situation so make sure we
 817              * return OK instead of BUF_ERROR at next call of deflate:
 818              */
 819             s->last_flush = -1;
 820             return Z_OK;
 821         }
 822 
 823     /* Make sure there is something to do and avoid duplicate consecutive
 824      * flushes. For repeated and useless calls with Z_FINISH, we keep
 825      * returning Z_STREAM_END instead of Z_BUF_ERROR.
 826      */
 827     } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
 828                flush != Z_FINISH) {
 829         ERR_RETURN(strm, Z_BUF_ERROR);
 830     }
 831 
 832     /* User must not provide more input after the first FINISH: */
 833     if (s->status == FINISH_STATE && strm->avail_in != 0) {
 834         ERR_RETURN(strm, Z_BUF_ERROR);
 835     }
 836 
 837     /* Write the header */
 838     if (s->status == INIT_STATE) {
 839         /* zlib header */
 840         uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
 841         uInt level_flags;
 842 
 843         if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
 844             level_flags = 0;
 845         else if (s->level < 6)
 846             level_flags = 1;
 847         else if (s->level == 6)
 848             level_flags = 2;
 849         else
 850             level_flags = 3;
 851         header |= (level_flags << 6);
 852         if (s->strstart != 0) header |= PRESET_DICT;
 853         header += 31 - (header % 31);
 854 
 855         putShortMSB(s, header);
 856 
 857         /* Save the adler32 of the preset dictionary: */
 858         if (s->strstart != 0) {
 859             putShortMSB(s, (uInt)(strm->adler >> 16));
 860             putShortMSB(s, (uInt)(strm->adler & 0xffff));
 861         }
 862         strm->adler = adler32(0L, Z_NULL, 0);
 863         s->status = BUSY_STATE;
 864 
 865         /* Compression must start with an empty pending buffer */
 866         flush_pending(strm);
 867         if (s->pending != 0) {
 868             s->last_flush = -1;
 869             return Z_OK;
 870         }
 871     }
 872 #ifdef GZIP
 873     if (s->status == GZIP_STATE) {
 874         /* gzip header */
 875         strm->adler = crc32(0L, Z_NULL, 0);
 876         put_byte(s, 31);
 877         put_byte(s, 139);
 878         put_byte(s, 8);
 879         if (s->gzhead == Z_NULL) {
 880             put_byte(s, 0);
 881             put_byte(s, 0);
 882             put_byte(s, 0);
 883             put_byte(s, 0);
 884             put_byte(s, 0);
 885             put_byte(s, s->level == 9 ? 2 :
 886                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
 887                       4 : 0));
 888             put_byte(s, OS_CODE);
 889             s->status = BUSY_STATE;
 890 
 891             /* Compression must start with an empty pending buffer */
 892             flush_pending(strm);
 893             if (s->pending != 0) {
 894                 s->last_flush = -1;
 895                 return Z_OK;
 896             }
 897         }
 898         else {
 899             put_byte(s, (s->gzhead->text ? 1 : 0) +
 900                      (s->gzhead->hcrc ? 2 : 0) +
 901                      (s->gzhead->extra == Z_NULL ? 0 : 4) +
 902                      (s->gzhead->name == Z_NULL ? 0 : 8) +
 903                      (s->gzhead->comment == Z_NULL ? 0 : 16)
 904                      );
 905             put_byte(s, (Byte)(s->gzhead->time & 0xff));
 906             put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
 907             put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
 908             put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
 909             put_byte(s, s->level == 9 ? 2 :
 910                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
 911                       4 : 0));
 912             put_byte(s, s->gzhead->os & 0xff);
 913             if (s->gzhead->extra != Z_NULL) {
 914                 put_byte(s, s->gzhead->extra_len & 0xff);
 915                 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
 916             }
 917             if (s->gzhead->hcrc)
 918                 strm->adler = crc32(strm->adler, s->pending_buf,
 919                                     s->pending);
 920             s->gzindex = 0;
 921             s->status = EXTRA_STATE;
 922         }
 923     }
 924     if (s->status == EXTRA_STATE) {
 925         if (s->gzhead->extra != Z_NULL) {
 926             ulg beg = s->pending;   /* start of bytes to update crc */
 927             uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
 928             while (s->pending + left > s->pending_buf_size) {
 929                 uInt copy = s->pending_buf_size - s->pending;
 930                 zmemcpy(s->pending_buf + s->pending,
 931                         s->gzhead->extra + s->gzindex, copy);
 932                 s->pending = s->pending_buf_size;
 933                 HCRC_UPDATE(beg);
 934                 s->gzindex += copy;
 935                 flush_pending(strm);
 936                 if (s->pending != 0) {
 937                     s->last_flush = -1;
 938                     return Z_OK;
 939                 }
 940                 beg = 0;
 941                 left -= copy;
 942             }
 943             zmemcpy(s->pending_buf + s->pending,
 944                     s->gzhead->extra + s->gzindex, left);
 945             s->pending += left;
 946             HCRC_UPDATE(beg);
 947             s->gzindex = 0;
 948         }
 949         s->status = NAME_STATE;
 950     }
 951     if (s->status == NAME_STATE) {
 952         if (s->gzhead->name != Z_NULL) {
 953             ulg beg = s->pending;   /* start of bytes to update crc */
 954             int val;
 955             do {
 956                 if (s->pending == s->pending_buf_size) {
 957                     HCRC_UPDATE(beg);
 958                     flush_pending(strm);
 959                     if (s->pending != 0) {
 960                         s->last_flush = -1;
 961                         return Z_OK;
 962                     }
 963                     beg = 0;
 964                 }
 965                 val = s->gzhead->name[s->gzindex++];
 966                 put_byte(s, val);
 967             } while (val != 0);
 968             HCRC_UPDATE(beg);
 969             s->gzindex = 0;
 970         }
 971         s->status = COMMENT_STATE;
 972     }
 973     if (s->status == COMMENT_STATE) {
 974         if (s->gzhead->comment != Z_NULL) {
 975             ulg beg = s->pending;   /* start of bytes to update crc */
 976             int val;
 977             do {
 978                 if (s->pending == s->pending_buf_size) {
 979                     HCRC_UPDATE(beg);
 980                     flush_pending(strm);
 981                     if (s->pending != 0) {
 982                         s->last_flush = -1;
 983                         return Z_OK;
 984                     }
 985                     beg = 0;
 986                 }
 987                 val = s->gzhead->comment[s->gzindex++];
 988                 put_byte(s, val);
 989             } while (val != 0);
 990             HCRC_UPDATE(beg);
 991         }
 992         s->status = HCRC_STATE;
 993     }
 994     if (s->status == HCRC_STATE) {
 995         if (s->gzhead->hcrc) {
 996             if (s->pending + 2 > s->pending_buf_size) {
 997                 flush_pending(strm);
 998                 if (s->pending != 0) {
 999                     s->last_flush = -1;
1000                     return Z_OK;
1001                 }
1002             }
1003             put_byte(s, (Byte)(strm->adler & 0xff));
1004             put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1005             strm->adler = crc32(0L, Z_NULL, 0);
1006         }
1007         s->status = BUSY_STATE;
1008 
1009         /* Compression must start with an empty pending buffer */
1010         flush_pending(strm);
1011         if (s->pending != 0) {
1012             s->last_flush = -1;
1013             return Z_OK;
1014         }
1015     }
1016 #endif
1017 
1018     /* Start a new block or continue the current one.
1019      */
1020     if (strm->avail_in != 0 || s->lookahead != 0 ||
1021         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1022         block_state bstate;
1023 
1024         bstate = s->level == 0 ? deflate_stored(s, flush) :
1025                  s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1026                  s->strategy == Z_RLE ? deflate_rle(s, flush) :
1027                  (*(configuration_table[s->level].func))(s, flush);
1028 
1029         if (bstate == finish_started || bstate == finish_done) {
1030             s->status = FINISH_STATE;
1031         }
1032         if (bstate == need_more || bstate == finish_started) {
1033             if (strm->avail_out == 0) {
1034                 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1035             }
1036             return Z_OK;
1037             /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1038              * of deflate should use the same flush parameter to make sure
1039              * that the flush is complete. So we don't have to output an
1040              * empty block here, this will be done at next call. This also
1041              * ensures that for a very small output buffer, we emit at most
1042              * one empty block.
1043              */
1044         }
1045         if (bstate == block_done) {
1046             if (flush == Z_PARTIAL_FLUSH) {
1047                 _tr_align(s);
1048             } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1049                 _tr_stored_block(s, (char*)0, 0L, 0);
1050                 /* For a full flush, this empty block will be recognized
1051                  * as a special marker by inflate_sync().
1052                  */
1053                 if (flush == Z_FULL_FLUSH) {
1054                     CLEAR_HASH(s);             /* forget history */
1055                     if (s->lookahead == 0) {
1056                         s->strstart = 0;
1057                         s->block_start = 0L;
1058                         s->insert = 0;
1059                     }
1060                 }
1061             }
1062             flush_pending(strm);
1063             if (strm->avail_out == 0) {
1064               s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1065               return Z_OK;
1066             }
1067         }
1068     }
1069 
1070     if (flush != Z_FINISH) return Z_OK;
1071     if (s->wrap <= 0) return Z_STREAM_END;
1072 
1073     /* Write the trailer */
1074 #ifdef GZIP
1075     if (s->wrap == 2) {
1076         put_byte(s, (Byte)(strm->adler & 0xff));
1077         put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1078         put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1079         put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1080         put_byte(s, (Byte)(strm->total_in & 0xff));
1081         put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1082         put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1083         put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1084     }
1085     else
1086 #endif
1087     {
1088         putShortMSB(s, (uInt)(strm->adler >> 16));
1089         putShortMSB(s, (uInt)(strm->adler & 0xffff));
1090     }
1091     flush_pending(strm);
1092     /* If avail_out is zero, the application will call deflate again
1093      * to flush the rest.
1094      */
1095     if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1096     return s->pending != 0 ? Z_OK : Z_STREAM_END;
1097 }
1098 
1099 /* ========================================================================= */
1100 int ZEXPORT deflateEnd (strm)
1101     z_streamp strm;
1102 {
1103     int status;
1104 
1105     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1106 
1107     status = strm->state->status;
1108 
1109     /* Deallocate in reverse order of allocations: */
1110     TRY_FREE(strm, strm->state->pending_buf);
1111     TRY_FREE(strm, strm->state->head);
1112     TRY_FREE(strm, strm->state->prev);
1113     TRY_FREE(strm, strm->state->window);
1114 
1115     ZFREE(strm, strm->state);
1116     strm->state = Z_NULL;
1117 
1118     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1119 }
1120 
1121 /* =========================================================================
1122  * Copy the source state to the destination state.
1123  * To simplify the source, this is not supported for 16-bit MSDOS (which
1124  * doesn't have enough memory anyway to duplicate compression states).
1125  */
1126 int ZEXPORT deflateCopy (dest, source)
1127     z_streamp dest;
1128     z_streamp source;
1129 {
1130 #ifdef MAXSEG_64K
1131     return Z_STREAM_ERROR;
1132 #else
1133     deflate_state *ds;
1134     deflate_state *ss;
1135     ushf *overlay;
1136 
1137 
1138     if (deflateStateCheck(source) || dest == Z_NULL) {
1139         return Z_STREAM_ERROR;
1140     }
1141 
1142     ss = source->state;
1143 
1144     zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1145 
1146     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1147     if (ds == Z_NULL) return Z_MEM_ERROR;
1148     dest->state = (struct internal_state FAR *) ds;
1149     zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1150     ds->strm = dest;
1151 
1152     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1153     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1154     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1155     overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1156     ds->pending_buf = (uchf *) overlay;
1157 
1158     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1159         ds->pending_buf == Z_NULL) {
1160         deflateEnd (dest);
1161         return Z_MEM_ERROR;
1162     }
1163     /* following zmemcpy do not work for 16-bit MSDOS */
1164     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1165     zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1166     zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1167     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1168 
1169     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1170     ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1171     ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1172 
1173     ds->l_desc.dyn_tree = ds->dyn_ltree;
1174     ds->d_desc.dyn_tree = ds->dyn_dtree;
1175     ds->bl_desc.dyn_tree = ds->bl_tree;
1176 
1177     return Z_OK;
1178 #endif /* MAXSEG_64K */
1179 }
1180 
1181 /* ===========================================================================
1182  * Read a new buffer from the current input stream, update the adler32
1183  * and total number of bytes read.  All deflate() input goes through
1184  * this function so some applications may wish to modify it to avoid
1185  * allocating a large strm->next_in buffer and copying from it.
1186  * (See also flush_pending()).
1187  */
1188 local unsigned read_buf(strm, buf, size)
1189     z_streamp strm;
1190     Bytef *buf;
1191     unsigned size;
1192 {
1193     unsigned len = strm->avail_in;
1194 
1195     if (len > size) len = size;
1196     if (len == 0) return 0;
1197 
1198     strm->avail_in  -= len;
1199 
1200     zmemcpy(buf, strm->next_in, len);
1201     if (strm->state->wrap == 1) {
1202         strm->adler = adler32(strm->adler, buf, len);
1203     }
1204 #ifdef GZIP
1205     else if (strm->state->wrap == 2) {
1206         strm->adler = crc32(strm->adler, buf, len);
1207     }
1208 #endif
1209     strm->next_in  += len;
1210     strm->total_in += len;
1211 
1212     return len;
1213 }
1214 
1215 /* ===========================================================================
1216  * Initialize the "longest match" routines for a new zlib stream
1217  */
1218 local void lm_init (s)
1219     deflate_state *s;
1220 {
1221     s->window_size = (ulg)2L*s->w_size;
1222 
1223     CLEAR_HASH(s);
1224 
1225     /* Set the default configuration parameters:
1226      */
1227     s->max_lazy_match   = configuration_table[s->level].max_lazy;
1228     s->good_match       = configuration_table[s->level].good_length;
1229     s->nice_match       = configuration_table[s->level].nice_length;
1230     s->max_chain_length = configuration_table[s->level].max_chain;
1231 
1232     s->strstart = 0;
1233     s->block_start = 0L;
1234     s->lookahead = 0;
1235     s->insert = 0;
1236     s->match_length = s->prev_length = MIN_MATCH-1;
1237     s->match_available = 0;
1238     s->ins_h = 0;
1239 #ifndef FASTEST
1240 #ifdef ASMV
1241     match_init(); /* initialize the asm code */
1242 #endif
1243 #endif
1244 }
1245 
1246 #ifndef FASTEST
1247 /* ===========================================================================
1248  * Set match_start to the longest match starting at the given string and
1249  * return its length. Matches shorter or equal to prev_length are discarded,
1250  * in which case the result is equal to prev_length and match_start is
1251  * garbage.
1252  * IN assertions: cur_match is the head of the hash chain for the current
1253  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1254  * OUT assertion: the match length is not greater than s->lookahead.
1255  */
1256 #ifndef ASMV
1257 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1258  * match.S. The code will be functionally equivalent.
1259  */
1260 local uInt longest_match(s, cur_match)
1261     deflate_state *s;
1262     IPos cur_match;                             /* current match */
1263 {
1264     unsigned chain_length = s->max_chain_length;/* max hash chain length */
1265     register Bytef *scan = s->window + s->strstart; /* current string */
1266     register Bytef *match;                      /* matched string */
1267     register int len;                           /* length of current match */
1268     int best_len = (int)s->prev_length;         /* best match length so far */
1269     int nice_match = s->nice_match;             /* stop if match long enough */
1270     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1271         s->strstart - (IPos)MAX_DIST(s) : NIL;
1272     /* Stop when cur_match becomes <= limit. To simplify the code,
1273      * we prevent matches with the string of window index 0.
1274      */
1275     Posf *prev = s->prev;
1276     uInt wmask = s->w_mask;
1277 
1278 #ifdef UNALIGNED_OK
1279     /* Compare two bytes at a time. Note: this is not always beneficial.
1280      * Try with and without -DUNALIGNED_OK to check.
1281      */
1282     register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1283     register ush scan_start = *(ushf*)scan;
1284     register ush scan_end   = *(ushf*)(scan+best_len-1);
1285 #else
1286     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1287     register Byte scan_end1  = scan[best_len-1];
1288     register Byte scan_end   = scan[best_len];
1289 #endif
1290 
1291     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1292      * It is easy to get rid of this optimization if necessary.
1293      */
1294     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1295 
1296     /* Do not waste too much time if we already have a good match: */
1297     if (s->prev_length >= s->good_match) {
1298         chain_length >>= 2;
1299     }
1300     /* Do not look for matches beyond the end of the input. This is necessary
1301      * to make deflate deterministic.
1302      */
1303     if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1304 
1305     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1306 
1307     do {
1308         Assert(cur_match < s->strstart, "no future");
1309         match = s->window + cur_match;
1310 
1311         /* Skip to next match if the match length cannot increase
1312          * or if the match length is less than 2.  Note that the checks below
1313          * for insufficient lookahead only occur occasionally for performance
1314          * reasons.  Therefore uninitialized memory will be accessed, and
1315          * conditional jumps will be made that depend on those values.
1316          * However the length of the match is limited to the lookahead, so
1317          * the output of deflate is not affected by the uninitialized values.
1318          */
1319 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1320         /* This code assumes sizeof(unsigned short) == 2. Do not use
1321          * UNALIGNED_OK if your compiler uses a different size.
1322          */
1323         if (*(ushf*)(match+best_len-1) != scan_end ||
1324             *(ushf*)match != scan_start) continue;
1325 
1326         /* It is not necessary to compare scan[2] and match[2] since they are
1327          * always equal when the other bytes match, given that the hash keys
1328          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1329          * strstart+3, +5, ... up to strstart+257. We check for insufficient
1330          * lookahead only every 4th comparison; the 128th check will be made
1331          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1332          * necessary to put more guard bytes at the end of the window, or
1333          * to check more often for insufficient lookahead.
1334          */
1335         Assert(scan[2] == match[2], "scan[2]?");
1336         scan++, match++;
1337         do {
1338         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1339                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1340                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1341                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1342                  scan < strend);
1343         /* The funny "do {}" generates better code on most compilers */
1344 
1345         /* Here, scan <= window+strstart+257 */
1346         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1347         if (*scan == *match) scan++;
1348 
1349         len = (MAX_MATCH - 1) - (int)(strend-scan);
1350         scan = strend - (MAX_MATCH-1);
1351 
1352 #else /* UNALIGNED_OK */
1353 
1354         if (match[best_len]   != scan_end  ||
1355             match[best_len-1] != scan_end1 ||
1356             *match            != *scan     ||
1357             *++match          != scan[1])      continue;
1358 
1359         /* The check at best_len-1 can be removed because it will be made
1360          * again later. (This heuristic is not always a win.)
1361          * It is not necessary to compare scan[2] and match[2] since they
1362          * are always equal when the other bytes match, given that
1363          * the hash keys are equal and that HASH_BITS >= 8.
1364          */
1365         scan += 2, match++;
1366         Assert(*scan == *match, "match[2]?");
1367 
1368         /* We check for insufficient lookahead only every 8th comparison;
1369          * the 256th check will be made at strstart+258.
1370          */
1371         do {
1372         } while (*++scan == *++match && *++scan == *++match &&
1373                  *++scan == *++match && *++scan == *++match &&
1374                  *++scan == *++match && *++scan == *++match &&
1375                  *++scan == *++match && *++scan == *++match &&
1376                  scan < strend);
1377 
1378         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1379 
1380         len = MAX_MATCH - (int)(strend - scan);
1381         scan = strend - MAX_MATCH;
1382 
1383 #endif /* UNALIGNED_OK */
1384 
1385         if (len > best_len) {
1386             s->match_start = cur_match;
1387             best_len = len;
1388             if (len >= nice_match) break;
1389 #ifdef UNALIGNED_OK
1390             scan_end = *(ushf*)(scan+best_len-1);
1391 #else
1392             scan_end1  = scan[best_len-1];
1393             scan_end   = scan[best_len];
1394 #endif
1395         }
1396     } while ((cur_match = prev[cur_match & wmask]) > limit
1397              && --chain_length != 0);
1398 
1399     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1400     return s->lookahead;
1401 }
1402 #endif /* ASMV */
1403 
1404 #else /* FASTEST */
1405 
1406 /* ---------------------------------------------------------------------------
1407  * Optimized version for FASTEST only
1408  */
1409 local uInt longest_match(s, cur_match)
1410     deflate_state *s;
1411     IPos cur_match;                             /* current match */
1412 {
1413     register Bytef *scan = s->window + s->strstart; /* current string */
1414     register Bytef *match;                       /* matched string */
1415     register int len;                           /* length of current match */
1416     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1417 
1418     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1419      * It is easy to get rid of this optimization if necessary.
1420      */
1421     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1422 
1423     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1424 
1425     Assert(cur_match < s->strstart, "no future");
1426 
1427     match = s->window + cur_match;
1428 
1429     /* Return failure if the match length is less than 2:
1430      */
1431     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1432 
1433     /* The check at best_len-1 can be removed because it will be made
1434      * again later. (This heuristic is not always a win.)
1435      * It is not necessary to compare scan[2] and match[2] since they
1436      * are always equal when the other bytes match, given that
1437      * the hash keys are equal and that HASH_BITS >= 8.
1438      */
1439     scan += 2, match += 2;
1440     Assert(*scan == *match, "match[2]?");
1441 
1442     /* We check for insufficient lookahead only every 8th comparison;
1443      * the 256th check will be made at strstart+258.
1444      */
1445     do {
1446     } while (*++scan == *++match && *++scan == *++match &&
1447              *++scan == *++match && *++scan == *++match &&
1448              *++scan == *++match && *++scan == *++match &&
1449              *++scan == *++match && *++scan == *++match &&
1450              scan < strend);
1451 
1452     Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1453 
1454     len = MAX_MATCH - (int)(strend - scan);
1455 
1456     if (len < MIN_MATCH) return MIN_MATCH - 1;
1457 
1458     s->match_start = cur_match;
1459     return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1460 }
1461 
1462 #endif /* FASTEST */
1463 
1464 #ifdef ZLIB_DEBUG
1465 
1466 #define EQUAL 0
1467 /* result of memcmp for equal strings */
1468 
1469 /* ===========================================================================
1470  * Check that the match at match_start is indeed a match.
1471  */
1472 local void check_match(s, start, match, length)
1473     deflate_state *s;
1474     IPos start, match;
1475     int length;
1476 {
1477     /* check that the match is indeed a match */
1478     if (zmemcmp(s->window + match,
1479                 s->window + start, length) != EQUAL) {
1480         fprintf(stderr, " start %u, match %u, length %d\n",
1481                 start, match, length);
1482         do {
1483             fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1484         } while (--length != 0);
1485         z_error("invalid match");
1486     }
1487     if (z_verbose > 1) {
1488         fprintf(stderr,"\\[%d,%d]", start-match, length);
1489         do { putc(s->window[start++], stderr); } while (--length != 0);
1490     }
1491 }
1492 #else
1493 #  define check_match(s, start, match, length)
1494 #endif /* ZLIB_DEBUG */
1495 
1496 /* ===========================================================================
1497  * Fill the window when the lookahead becomes insufficient.
1498  * Updates strstart and lookahead.
1499  *
1500  * IN assertion: lookahead < MIN_LOOKAHEAD
1501  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1502  *    At least one byte has been read, or avail_in == 0; reads are
1503  *    performed for at least two bytes (required for the zip translate_eol
1504  *    option -- not supported here).
1505  */
1506 local void fill_window(s)
1507     deflate_state *s;
1508 {
1509     unsigned n;
1510     unsigned more;    /* Amount of free space at the end of the window. */
1511     uInt wsize = s->w_size;
1512 
1513     Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1514 
1515     do {
1516         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1517 
1518         /* Deal with !@#$% 64K limit: */
1519         if (sizeof(int) <= 2) {
1520             if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1521                 more = wsize;
1522 
1523             } else if (more == (unsigned)(-1)) {
1524                 /* Very unlikely, but possible on 16 bit machine if
1525                  * strstart == 0 && lookahead == 1 (input done a byte at time)
1526                  */
1527                 more--;
1528             }
1529         }
1530 
1531         /* If the window is almost full and there is insufficient lookahead,
1532          * move the upper half to the lower one to make room in the upper half.
1533          */
1534         if (s->strstart >= wsize+MAX_DIST(s)) {
1535 
1536             zmemcpy(s->window, s->window+wsize, (unsigned)wsize - more);
1537             s->match_start -= wsize;
1538             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1539             s->block_start -= (long) wsize;
1540             slide_hash(s);
1541             more += wsize;
1542         }
1543         if (s->strm->avail_in == 0) break;
1544 
1545         /* If there was no sliding:
1546          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1547          *    more == window_size - lookahead - strstart
1548          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1549          * => more >= window_size - 2*WSIZE + 2
1550          * In the BIG_MEM or MMAP case (not yet supported),
1551          *   window_size == input_size + MIN_LOOKAHEAD  &&
1552          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1553          * Otherwise, window_size == 2*WSIZE so more >= 2.
1554          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1555          */
1556         Assert(more >= 2, "more < 2");
1557 
1558         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1559         s->lookahead += n;
1560 
1561         /* Initialize the hash value now that we have some input: */
1562         if (s->lookahead + s->insert >= MIN_MATCH) {
1563             uInt str = s->strstart - s->insert;
1564             s->ins_h = s->window[str];
1565             UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1566 #if MIN_MATCH != 3
1567             Call UPDATE_HASH() MIN_MATCH-3 more times
1568 #endif
1569             while (s->insert) {
1570                 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1571 #ifndef FASTEST
1572                 s->prev[str & s->w_mask] = s->head[s->ins_h];
1573 #endif
1574                 s->head[s->ins_h] = (Pos)str;
1575                 str++;
1576                 s->insert--;
1577                 if (s->lookahead + s->insert < MIN_MATCH)
1578                     break;
1579             }
1580         }
1581         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1582          * but this is not important since only literal bytes will be emitted.
1583          */
1584 
1585     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1586 
1587     /* If the WIN_INIT bytes after the end of the current data have never been
1588      * written, then zero those bytes in order to avoid memory check reports of
1589      * the use of uninitialized (or uninitialised as Julian writes) bytes by
1590      * the longest match routines.  Update the high water mark for the next
1591      * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
1592      * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1593      */
1594     if (s->high_water < s->window_size) {
1595         ulg curr = s->strstart + (ulg)(s->lookahead);
1596         ulg init;
1597 
1598         if (s->high_water < curr) {
1599             /* Previous high water mark below current data -- zero WIN_INIT
1600              * bytes or up to end of window, whichever is less.
1601              */
1602             init = s->window_size - curr;
1603             if (init > WIN_INIT)
1604                 init = WIN_INIT;
1605             zmemzero(s->window + curr, (unsigned)init);
1606             s->high_water = curr + init;
1607         }
1608         else if (s->high_water < (ulg)curr + WIN_INIT) {
1609             /* High water mark at or above current data, but below current data
1610              * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1611              * to end of window, whichever is less.
1612              */
1613             init = (ulg)curr + WIN_INIT - s->high_water;
1614             if (init > s->window_size - s->high_water)
1615                 init = s->window_size - s->high_water;
1616             zmemzero(s->window + s->high_water, (unsigned)init);
1617             s->high_water += init;
1618         }
1619     }
1620 
1621     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1622            "not enough room for search");
1623 }
1624 
1625 /* ===========================================================================
1626  * Flush the current block, with given end-of-file flag.
1627  * IN assertion: strstart is set to the end of the current match.
1628  */
1629 #define FLUSH_BLOCK_ONLY(s, last) { \
1630    _tr_flush_block(s, (s->block_start >= 0L ? \
1631                    (charf *)&s->window[(unsigned)s->block_start] : \
1632                    (charf *)Z_NULL), \
1633                 (ulg)((long)s->strstart - s->block_start), \
1634                 (last)); \
1635    s->block_start = s->strstart; \
1636    flush_pending(s->strm); \
1637    Tracev((stderr,"[FLUSH]")); \
1638 }
1639 
1640 /* Same but force premature exit if necessary. */
1641 #define FLUSH_BLOCK(s, last) { \
1642    FLUSH_BLOCK_ONLY(s, last); \
1643    if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1644 }
1645 
1646 /* Maximum stored block length in deflate format (not including header). */
1647 #define MAX_STORED 65535
1648 
1649 /* Minimum of a and b. */
1650 #define MIN(a, b) ((a) > (b) ? (b) : (a))
1651 
1652 /* ===========================================================================
1653  * Copy without compression as much as possible from the input stream, return
1654  * the current block state.
1655  *
1656  * In case deflateParams() is used to later switch to a non-zero compression
1657  * level, s->matches (otherwise unused when storing) keeps track of the number
1658  * of hash table slides to perform. If s->matches is 1, then one hash table
1659  * slide will be done when switching. If s->matches is 2, the maximum value
1660  * allowed here, then the hash table will be cleared, since two or more slides
1661  * is the same as a clear.
1662  *
1663  * deflate_stored() is written to minimize the number of times an input byte is
1664  * copied. It is most efficient with large input and output buffers, which
1665  * maximizes the opportunites to have a single copy from next_in to next_out.
1666  */
1667 local block_state deflate_stored(s, flush)
1668     deflate_state *s;
1669     int flush;
1670 {
1671     /* Smallest worthy block size when not flushing or finishing. By default
1672      * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1673      * large input and output buffers, the stored block size will be larger.
1674      */
1675     unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1676 
1677     /* Copy as many min_block or larger stored blocks directly to next_out as
1678      * possible. If flushing, copy the remaining available input to next_out as
1679      * stored blocks, if there is enough space.
1680      */
1681     unsigned len, left, have, last = 0;
1682     unsigned used = s->strm->avail_in;
1683     do {
1684         /* Set len to the maximum size block that we can copy directly with the
1685          * available input data and output space. Set left to how much of that
1686          * would be copied from what's left in the window.
1687          */
1688         len = MAX_STORED;       /* maximum deflate stored block length */
1689         have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1690         if (s->strm->avail_out < have)          /* need room for header */
1691             break;
1692             /* maximum stored block length that will fit in avail_out: */
1693         have = s->strm->avail_out - have;
1694         left = s->strstart - s->block_start;    /* bytes left in window */
1695         if (len > (ulg)left + s->strm->avail_in)
1696             len = left + s->strm->avail_in;     /* limit len to the input */
1697         if (len > have)
1698             len = have;                         /* limit len to the output */
1699 
1700         /* If the stored block would be less than min_block in length, or if
1701          * unable to copy all of the available input when flushing, then try
1702          * copying to the window and the pending buffer instead. Also don't
1703          * write an empty block when flushing -- deflate() does that.
1704          */
1705         if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1706                                 flush == Z_NO_FLUSH ||
1707                                 len != left + s->strm->avail_in))
1708             break;
1709 
1710         /* Make a dummy stored block in pending to get the header bytes,
1711          * including any pending bits. This also updates the debugging counts.
1712          */
1713         last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1714         _tr_stored_block(s, (char *)0, 0L, last);
1715 
1716         /* Replace the lengths in the dummy stored block with len. */
1717         s->pending_buf[s->pending - 4] = len;
1718         s->pending_buf[s->pending - 3] = len >> 8;
1719         s->pending_buf[s->pending - 2] = ~len;
1720         s->pending_buf[s->pending - 1] = ~len >> 8;
1721 
1722         /* Write the stored block header bytes. */
1723         flush_pending(s->strm);
1724 
1725 #ifdef ZLIB_DEBUG
1726         /* Update debugging counts for the data about to be copied. */
1727         s->compressed_len += len << 3;
1728         s->bits_sent += len << 3;
1729 #endif
1730 
1731         /* Copy uncompressed bytes from the window to next_out. */
1732         if (left) {
1733             if (left > len)
1734                 left = len;
1735             zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1736             s->strm->next_out += left;
1737             s->strm->avail_out -= left;
1738             s->strm->total_out += left;
1739             s->block_start += left;
1740             len -= left;
1741         }
1742 
1743         /* Copy uncompressed bytes directly from next_in to next_out, updating
1744          * the check value.
1745          */
1746         if (len) {
1747             read_buf(s->strm, s->strm->next_out, len);
1748             s->strm->next_out += len;
1749             s->strm->avail_out -= len;
1750             s->strm->total_out += len;
1751         }
1752     } while (last == 0);
1753 
1754     /* Update the sliding window with the last s->w_size bytes of the copied
1755      * data, or append all of the copied data to the existing window if less
1756      * than s->w_size bytes were copied. Also update the number of bytes to
1757      * insert in the hash tables, in the event that deflateParams() switches to
1758      * a non-zero compression level.
1759      */
1760     used -= s->strm->avail_in;      /* number of input bytes directly copied */
1761     if (used) {
1762         /* If any input was used, then no unused input remains in the window,
1763          * therefore s->block_start == s->strstart.
1764          */
1765         if (used >= s->w_size) {    /* supplant the previous history */
1766             s->matches = 2;         /* clear hash */
1767             zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1768             s->strstart = s->w_size;
1769         }
1770         else {
1771             if (s->window_size - s->strstart <= used) {
1772                 /* Slide the window down. */
1773                 s->strstart -= s->w_size;
1774                 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1775                 if (s->matches < 2)
1776                     s->matches++;   /* add a pending slide_hash() */
1777             }
1778             zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1779             s->strstart += used;
1780         }
1781         s->block_start = s->strstart;
1782         s->insert += MIN(used, s->w_size - s->insert);
1783     }
1784     if (s->high_water < s->strstart)
1785         s->high_water = s->strstart;
1786 
1787     /* If the last block was written to next_out, then done. */
1788     if (last)
1789         return finish_done;
1790 
1791     /* If flushing and all input has been consumed, then done. */
1792     if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1793         s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1794         return block_done;
1795 
1796     /* Fill the window with any remaining input. */
1797     have = s->window_size - s->strstart - 1;
1798     if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1799         /* Slide the window down. */
1800         s->block_start -= s->w_size;
1801         s->strstart -= s->w_size;
1802         zmemcpy(s->window, s->window + s->w_size, s->strstart);
1803         if (s->matches < 2)
1804             s->matches++;           /* add a pending slide_hash() */
1805         have += s->w_size;          /* more space now */
1806     }
1807     if (have > s->strm->avail_in)
1808         have = s->strm->avail_in;
1809     if (have) {
1810         read_buf(s->strm, s->window + s->strstart, have);
1811         s->strstart += have;
1812     }
1813     if (s->high_water < s->strstart)
1814         s->high_water = s->strstart;
1815 
1816     /* There was not enough avail_out to write a complete worthy or flushed
1817      * stored block to next_out. Write a stored block to pending instead, if we
1818      * have enough input for a worthy block, or if flushing and there is enough
1819      * room for the remaining input as a stored block in the pending buffer.
1820      */
1821     have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1822         /* maximum stored block length that will fit in pending: */
1823     have = MIN(s->pending_buf_size - have, MAX_STORED);
1824     min_block = MIN(have, s->w_size);
1825     left = s->strstart - s->block_start;
1826     if (left >= min_block ||
1827         ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1828          s->strm->avail_in == 0 && left <= have)) {
1829         len = MIN(left, have);
1830         last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1831                len == left ? 1 : 0;
1832         _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1833         s->block_start += len;
1834         flush_pending(s->strm);
1835     }
1836 
1837     /* We've done all we can with the available input and output. */
1838     return last ? finish_started : need_more;
1839 }
1840 
1841 /* ===========================================================================
1842  * Compress as much as possible from the input stream, return the current
1843  * block state.
1844  * This function does not perform lazy evaluation of matches and inserts
1845  * new strings in the dictionary only for unmatched strings or for short
1846  * matches. It is used only for the fast compression options.
1847  */
1848 local block_state deflate_fast(s, flush)
1849     deflate_state *s;
1850     int flush;
1851 {
1852     IPos hash_head;       /* head of the hash chain */
1853     int bflush;           /* set if current block must be flushed */
1854 
1855     for (;;) {
1856         /* Make sure that we always have enough lookahead, except
1857          * at the end of the input file. We need MAX_MATCH bytes
1858          * for the next match, plus MIN_MATCH bytes to insert the
1859          * string following the next match.
1860          */
1861         if (s->lookahead < MIN_LOOKAHEAD) {
1862             fill_window(s);
1863             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1864                 return need_more;
1865             }
1866             if (s->lookahead == 0) break; /* flush the current block */
1867         }
1868 
1869         /* Insert the string window[strstart .. strstart+2] in the
1870          * dictionary, and set hash_head to the head of the hash chain:
1871          */
1872         hash_head = NIL;
1873         if (s->lookahead >= MIN_MATCH) {
1874             INSERT_STRING(s, s->strstart, hash_head);
1875         }
1876 
1877         /* Find the longest match, discarding those <= prev_length.
1878          * At this point we have always match_length < MIN_MATCH
1879          */
1880         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1881             /* To simplify the code, we prevent matches with the string
1882              * of window index 0 (in particular we have to avoid a match
1883              * of the string with itself at the start of the input file).
1884              */
1885             s->match_length = longest_match (s, hash_head);
1886             /* longest_match() sets match_start */
1887         }
1888         if (s->match_length >= MIN_MATCH) {
1889             check_match(s, s->strstart, s->match_start, s->match_length);
1890 
1891             _tr_tally_dist(s, s->strstart - s->match_start,
1892                            s->match_length - MIN_MATCH, bflush);
1893 
1894             s->lookahead -= s->match_length;
1895 
1896             /* Insert new strings in the hash table only if the match length
1897              * is not too large. This saves time but degrades compression.
1898              */
1899 #ifndef FASTEST
1900             if (s->match_length <= s->max_insert_length &&
1901                 s->lookahead >= MIN_MATCH) {
1902                 s->match_length--; /* string at strstart already in table */
1903                 do {
1904                     s->strstart++;
1905                     INSERT_STRING(s, s->strstart, hash_head);
1906                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1907                      * always MIN_MATCH bytes ahead.
1908                      */
1909                 } while (--s->match_length != 0);
1910                 s->strstart++;
1911             } else
1912 #endif
1913             {
1914                 s->strstart += s->match_length;
1915                 s->match_length = 0;
1916                 s->ins_h = s->window[s->strstart];
1917                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1918 #if MIN_MATCH != 3
1919                 Call UPDATE_HASH() MIN_MATCH-3 more times
1920 #endif
1921                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1922                  * matter since it will be recomputed at next deflate call.
1923                  */
1924             }
1925         } else {
1926             /* No match, output a literal byte */
1927             Tracevv((stderr,"%c", s->window[s->strstart]));
1928             _tr_tally_lit (s, s->window[s->strstart], bflush);
1929             s->lookahead--;
1930             s->strstart++;
1931         }
1932         if (bflush) FLUSH_BLOCK(s, 0);
1933     }
1934     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1935     if (flush == Z_FINISH) {
1936         FLUSH_BLOCK(s, 1);
1937         return finish_done;
1938     }
1939     if (s->last_lit)
1940         FLUSH_BLOCK(s, 0);
1941     return block_done;
1942 }
1943 
1944 #ifndef FASTEST
1945 /* ===========================================================================
1946  * Same as above, but achieves better compression. We use a lazy
1947  * evaluation for matches: a match is finally adopted only if there is
1948  * no better match at the next window position.
1949  */
1950 local block_state deflate_slow(s, flush)
1951     deflate_state *s;
1952     int flush;
1953 {
1954     IPos hash_head;          /* head of hash chain */
1955     int bflush;              /* set if current block must be flushed */
1956 
1957     /* Process the input block. */
1958     for (;;) {
1959         /* Make sure that we always have enough lookahead, except
1960          * at the end of the input file. We need MAX_MATCH bytes
1961          * for the next match, plus MIN_MATCH bytes to insert the
1962          * string following the next match.
1963          */
1964         if (s->lookahead < MIN_LOOKAHEAD) {
1965             fill_window(s);
1966             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1967                 return need_more;
1968             }
1969             if (s->lookahead == 0) break; /* flush the current block */
1970         }
1971 
1972         /* Insert the string window[strstart .. strstart+2] in the
1973          * dictionary, and set hash_head to the head of the hash chain:
1974          */
1975         hash_head = NIL;
1976         if (s->lookahead >= MIN_MATCH) {
1977             INSERT_STRING(s, s->strstart, hash_head);
1978         }
1979 
1980         /* Find the longest match, discarding those <= prev_length.
1981          */
1982         s->prev_length = s->match_length, s->prev_match = s->match_start;
1983         s->match_length = MIN_MATCH-1;
1984 
1985         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1986             s->strstart - hash_head <= MAX_DIST(s)) {
1987             /* To simplify the code, we prevent matches with the string
1988              * of window index 0 (in particular we have to avoid a match
1989              * of the string with itself at the start of the input file).
1990              */
1991             s->match_length = longest_match (s, hash_head);
1992             /* longest_match() sets match_start */
1993 
1994             if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1995 #if TOO_FAR <= 32767
1996                 || (s->match_length == MIN_MATCH &&
1997                     s->strstart - s->match_start > TOO_FAR)
1998 #endif
1999                 )) {
2000 
2001                 /* If prev_match is also MIN_MATCH, match_start is garbage
2002                  * but we will ignore the current match anyway.
2003                  */
2004                 s->match_length = MIN_MATCH-1;
2005             }
2006         }
2007         /* If there was a match at the previous step and the current
2008          * match is not better, output the previous match:
2009          */
2010         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
2011             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
2012             /* Do not insert strings in hash table beyond this. */
2013 
2014             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
2015 
2016             _tr_tally_dist(s, s->strstart -1 - s->prev_match,
2017                            s->prev_length - MIN_MATCH, bflush);
2018 
2019             /* Insert in hash table all strings up to the end of the match.
2020              * strstart-1 and strstart are already inserted. If there is not
2021              * enough lookahead, the last two strings are not inserted in
2022              * the hash table.
2023              */
2024             s->lookahead -= s->prev_length-1;
2025             s->prev_length -= 2;
2026             do {
2027                 if (++s->strstart <= max_insert) {
2028                     INSERT_STRING(s, s->strstart, hash_head);
2029                 }
2030             } while (--s->prev_length != 0);
2031             s->match_available = 0;
2032             s->match_length = MIN_MATCH-1;
2033             s->strstart++;
2034 
2035             if (bflush) FLUSH_BLOCK(s, 0);
2036 
2037         } else if (s->match_available) {
2038             /* If there was no match at the previous position, output a
2039              * single literal. If there was a match but the current match
2040              * is longer, truncate the previous match to a single literal.
2041              */
2042             Tracevv((stderr,"%c", s->window[s->strstart-1]));
2043             _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2044             if (bflush) {
2045                 FLUSH_BLOCK_ONLY(s, 0);
2046             }
2047             s->strstart++;
2048             s->lookahead--;
2049             if (s->strm->avail_out == 0) return need_more;
2050         } else {
2051             /* There is no previous match to compare with, wait for
2052              * the next step to decide.
2053              */
2054             s->match_available = 1;
2055             s->strstart++;
2056             s->lookahead--;
2057         }
2058     }
2059     Assert (flush != Z_NO_FLUSH, "no flush?");
2060     if (s->match_available) {
2061         Tracevv((stderr,"%c", s->window[s->strstart-1]));
2062         _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2063         s->match_available = 0;
2064     }
2065     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2066     if (flush == Z_FINISH) {
2067         FLUSH_BLOCK(s, 1);
2068         return finish_done;
2069     }
2070     if (s->last_lit)
2071         FLUSH_BLOCK(s, 0);
2072     return block_done;
2073 }
2074 #endif /* FASTEST */
2075 
2076 /* ===========================================================================
2077  * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2078  * one.  Do not maintain a hash table.  (It will be regenerated if this run of
2079  * deflate switches away from Z_RLE.)
2080  */
2081 local block_state deflate_rle(s, flush)
2082     deflate_state *s;
2083     int flush;
2084 {
2085     int bflush;             /* set if current block must be flushed */
2086     uInt prev;              /* byte at distance one to match */
2087     Bytef *scan, *strend;   /* scan goes up to strend for length of run */
2088 
2089     for (;;) {
2090         /* Make sure that we always have enough lookahead, except
2091          * at the end of the input file. We need MAX_MATCH bytes
2092          * for the longest run, plus one for the unrolled loop.
2093          */
2094         if (s->lookahead <= MAX_MATCH) {
2095             fill_window(s);
2096             if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2097                 return need_more;
2098             }
2099             if (s->lookahead == 0) break; /* flush the current block */
2100         }
2101 
2102         /* See how many times the previous byte repeats */
2103         s->match_length = 0;
2104         if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2105             scan = s->window + s->strstart - 1;
2106             prev = *scan;
2107             if (prev == *++scan && prev == *++scan && prev == *++scan) {
2108                 strend = s->window + s->strstart + MAX_MATCH;
2109                 do {
2110                 } while (prev == *++scan && prev == *++scan &&
2111                          prev == *++scan && prev == *++scan &&
2112                          prev == *++scan && prev == *++scan &&
2113                          prev == *++scan && prev == *++scan &&
2114                          scan < strend);
2115                 s->match_length = MAX_MATCH - (uInt)(strend - scan);
2116                 if (s->match_length > s->lookahead)
2117                     s->match_length = s->lookahead;
2118             }
2119             Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
2120         }
2121 
2122         /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2123         if (s->match_length >= MIN_MATCH) {
2124             check_match(s, s->strstart, s->strstart - 1, s->match_length);
2125 
2126             _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2127 
2128             s->lookahead -= s->match_length;
2129             s->strstart += s->match_length;
2130             s->match_length = 0;
2131         } else {
2132             /* No match, output a literal byte */
2133             Tracevv((stderr,"%c", s->window[s->strstart]));
2134             _tr_tally_lit (s, s->window[s->strstart], bflush);
2135             s->lookahead--;
2136             s->strstart++;
2137         }
2138         if (bflush) FLUSH_BLOCK(s, 0);
2139     }
2140     s->insert = 0;
2141     if (flush == Z_FINISH) {
2142         FLUSH_BLOCK(s, 1);
2143         return finish_done;
2144     }
2145     if (s->last_lit)
2146         FLUSH_BLOCK(s, 0);
2147     return block_done;
2148 }
2149 
2150 /* ===========================================================================
2151  * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
2152  * (It will be regenerated if this run of deflate switches away from Huffman.)
2153  */
2154 local block_state deflate_huff(s, flush)
2155     deflate_state *s;
2156     int flush;
2157 {
2158     int bflush;             /* set if current block must be flushed */
2159 
2160     for (;;) {
2161         /* Make sure that we have a literal to write. */
2162         if (s->lookahead == 0) {
2163             fill_window(s);
2164             if (s->lookahead == 0) {
2165                 if (flush == Z_NO_FLUSH)
2166                     return need_more;
2167                 break;      /* flush the current block */
2168             }
2169         }
2170 
2171         /* Output a literal byte */
2172         s->match_length = 0;
2173         Tracevv((stderr,"%c", s->window[s->strstart]));
2174         _tr_tally_lit (s, s->window[s->strstart], bflush);
2175         s->lookahead--;
2176         s->strstart++;
2177         if (bflush) FLUSH_BLOCK(s, 0);
2178     }
2179     s->insert = 0;
2180     if (flush == Z_FINISH) {
2181         FLUSH_BLOCK(s, 1);
2182         return finish_done;
2183     }
2184     if (s->last_lit)
2185         FLUSH_BLOCK(s, 0);
2186     return block_done;
2187 }