1 /*
   2  * Portions Copyright 1996-2007 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Sun designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Sun in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  22  * CA 95054 USA or visit www.sun.com if you need additional information or
  23  * have any questions.
  24  */
  25 
  26 /*
  27  * Portions Copyright (c) 1995  Colin Plumb.  All rights reserved.
  28  */
  29 
  30 package java.math;
  31 
  32 import java.util.Random;
  33 import java.io.*;
  34 
  35 /**
  36  * Immutable arbitrary-precision integers.  All operations behave as if
  37  * BigIntegers were represented in two's-complement notation (like Java's
  38  * primitive integer types).  BigInteger provides analogues to all of Java's
  39  * primitive integer operators, and all relevant methods from java.lang.Math.
  40  * Additionally, BigInteger provides operations for modular arithmetic, GCD
  41  * calculation, primality testing, prime generation, bit manipulation,
  42  * and a few other miscellaneous operations.
  43  *
  44  * <p>Semantics of arithmetic operations exactly mimic those of Java's integer
  45  * arithmetic operators, as defined in <i>The Java Language Specification</i>.
  46  * For example, division by zero throws an {@code ArithmeticException}, and
  47  * division of a negative by a positive yields a negative (or zero) remainder.
  48  * All of the details in the Spec concerning overflow are ignored, as
  49  * BigIntegers are made as large as necessary to accommodate the results of an
  50  * operation.
  51  *
  52  * <p>Semantics of shift operations extend those of Java's shift operators
  53  * to allow for negative shift distances.  A right-shift with a negative
  54  * shift distance results in a left shift, and vice-versa.  The unsigned
  55  * right shift operator ({@code >>>}) is omitted, as this operation makes
  56  * little sense in combination with the "infinite word size" abstraction
  57  * provided by this class.
  58  *
  59  * <p>Semantics of bitwise logical operations exactly mimic those of Java's
  60  * bitwise integer operators.  The binary operators ({@code and},
  61  * {@code or}, {@code xor}) implicitly perform sign extension on the shorter
  62  * of the two operands prior to performing the operation.
  63  *
  64  * <p>Comparison operations perform signed integer comparisons, analogous to
  65  * those performed by Java's relational and equality operators.
  66  *
  67  * <p>Modular arithmetic operations are provided to compute residues, perform
  68  * exponentiation, and compute multiplicative inverses.  These methods always
  69  * return a non-negative result, between {@code 0} and {@code (modulus - 1)},
  70  * inclusive.
  71  *
  72  * <p>Bit operations operate on a single bit of the two's-complement
  73  * representation of their operand.  If necessary, the operand is sign-
  74  * extended so that it contains the designated bit.  None of the single-bit
  75  * operations can produce a BigInteger with a different sign from the
  76  * BigInteger being operated on, as they affect only a single bit, and the
  77  * "infinite word size" abstraction provided by this class ensures that there
  78  * are infinitely many "virtual sign bits" preceding each BigInteger.
  79  *
  80  * <p>For the sake of brevity and clarity, pseudo-code is used throughout the
  81  * descriptions of BigInteger methods.  The pseudo-code expression
  82  * {@code (i + j)} is shorthand for "a BigInteger whose value is
  83  * that of the BigInteger {@code i} plus that of the BigInteger {@code j}."
  84  * The pseudo-code expression {@code (i == j)} is shorthand for
  85  * "{@code true} if and only if the BigInteger {@code i} represents the same
  86  * value as the BigInteger {@code j}."  Other pseudo-code expressions are
  87  * interpreted similarly.
  88  *
  89  * <p>All methods and constructors in this class throw
  90  * {@code NullPointerException} when passed
  91  * a null object reference for any input parameter.
  92  *
  93  * @see     BigDecimal
  94  * @author  Josh Bloch
  95  * @author  Michael McCloskey
  96  * @since JDK1.1
  97  */
  98 
  99 public class BigInteger extends Number implements Comparable<BigInteger> {
 100     /**
 101      * The signum of this BigInteger: -1 for negative, 0 for zero, or
 102      * 1 for positive.  Note that the BigInteger zero <i>must</i> have
 103      * a signum of 0.  This is necessary to ensures that there is exactly one
 104      * representation for each BigInteger value.
 105      *
 106      * @serial
 107      */
 108     final int signum;
 109 
 110     /**
 111      * The magnitude of this BigInteger, in <i>big-endian</i> order: the
 112      * zeroth element of this array is the most-significant int of the
 113      * magnitude.  The magnitude must be "minimal" in that the most-significant
 114      * int ({@code mag[0]}) must be non-zero.  This is necessary to
 115      * ensure that there is exactly one representation for each BigInteger
 116      * value.  Note that this implies that the BigInteger zero has a
 117      * zero-length mag array.
 118      */
 119     final int[] mag;
 120 
 121     // These "redundant fields" are initialized with recognizable nonsense
 122     // values, and cached the first time they are needed (or never, if they
 123     // aren't needed).
 124 
 125      /**
 126      * One plus the bitCount of this BigInteger. Zeros means unitialized.
 127      *
 128      * @serial
 129      * @see #bitCount
 130      * @deprecated Deprecated since logical value is offset from stored
 131      * value and correction factor is applied in accessor method.
 132      */
 133     @Deprecated
 134     private int bitCount;
 135 
 136     /**
 137      * One plus the bitLength of this BigInteger. Zeros means unitialized.
 138      * (either value is acceptable).
 139      *
 140      * @serial
 141      * @see #bitLength()
 142      * @deprecated Deprecated since logical value is offset from stored
 143      * value and correction factor is applied in accessor method.
 144      */
 145     @Deprecated
 146     private int bitLength;
 147 
 148     /**
 149      * Two plus the lowest set bit of this BigInteger, as returned by
 150      * getLowestSetBit().
 151      *
 152      * @serial
 153      * @see #getLowestSetBit
 154      * @deprecated Deprecated since logical value is offset from stored
 155      * value and correction factor is applied in accessor method.
 156      */
 157     @Deprecated
 158     private int lowestSetBit;
 159 
 160     /**
 161      * Two plus the index of the lowest-order int in the magnitude of this
 162      * BigInteger that contains a nonzero int, or -2 (either value is acceptable).
 163      * The least significant int has int-number 0, the next int in order of
 164      * increasing significance has int-number 1, and so forth.
 165      * @deprecated Deprecated since logical value is offset from stored
 166      * value and correction factor is applied in accessor method.
 167      */
 168     @Deprecated
 169     private int firstNonzeroIntNum;
 170 
 171     /**
 172      * This mask is used to obtain the value of an int as if it were unsigned.
 173      */
 174     final static long LONG_MASK = 0xffffffffL;
 175 
 176     //Constructors
 177 
 178     /**
 179      * Translates a byte array containing the two's-complement binary
 180      * representation of a BigInteger into a BigInteger.  The input array is
 181      * assumed to be in <i>big-endian</i> byte-order: the most significant
 182      * byte is in the zeroth element.
 183      *
 184      * @param  val big-endian two's-complement binary representation of
 185      *         BigInteger.
 186      * @throws NumberFormatException {@code val} is zero bytes long.
 187      */
 188     public BigInteger(byte[] val) {
 189         if (val.length == 0)
 190             throw new NumberFormatException("Zero length BigInteger");
 191 
 192         if (val[0] < 0) {
 193             mag = makePositive(val);
 194             signum = -1;
 195         } else {
 196             mag = stripLeadingZeroBytes(val);
 197             signum = (mag.length == 0 ? 0 : 1);
 198         }
 199     }
 200 
 201     /**
 202      * This private constructor translates an int array containing the
 203      * two's-complement binary representation of a BigInteger into a
 204      * BigInteger. The input array is assumed to be in <i>big-endian</i>
 205      * int-order: the most significant int is in the zeroth element.
 206      */
 207     private BigInteger(int[] val) {
 208         if (val.length == 0)
 209             throw new NumberFormatException("Zero length BigInteger");
 210 
 211         if (val[0] < 0) {
 212             mag = makePositive(val);
 213             signum = -1;
 214         } else {
 215             mag = trustedStripLeadingZeroInts(val);
 216             signum = (mag.length == 0 ? 0 : 1);
 217         }
 218     }
 219 
 220     /**
 221      * Translates the sign-magnitude representation of a BigInteger into a
 222      * BigInteger.  The sign is represented as an integer signum value: -1 for
 223      * negative, 0 for zero, or 1 for positive.  The magnitude is a byte array
 224      * in <i>big-endian</i> byte-order: the most significant byte is in the
 225      * zeroth element.  A zero-length magnitude array is permissible, and will
 226      * result in a BigInteger value of 0, whether signum is -1, 0 or 1.
 227      *
 228      * @param  signum signum of the number (-1 for negative, 0 for zero, 1
 229      *         for positive).
 230      * @param  magnitude big-endian binary representation of the magnitude of
 231      *         the number.
 232      * @throws NumberFormatException {@code signum} is not one of the three
 233      *         legal values (-1, 0, and 1), or {@code signum} is 0 and
 234      *         {@code magnitude} contains one or more non-zero bytes.
 235      */
 236     public BigInteger(int signum, byte[] magnitude) {
 237         this.mag = stripLeadingZeroBytes(magnitude);
 238 
 239         if (signum < -1 || signum > 1)
 240             throw(new NumberFormatException("Invalid signum value"));
 241 
 242         if (this.mag.length==0) {
 243             this.signum = 0;
 244         } else {
 245             if (signum == 0)
 246                 throw(new NumberFormatException("signum-magnitude mismatch"));
 247             this.signum = signum;
 248         }
 249     }
 250 
 251     /**
 252      * A constructor for internal use that translates the sign-magnitude
 253      * representation of a BigInteger into a BigInteger. It checks the
 254      * arguments and copies the magnitude so this constructor would be
 255      * safe for external use.
 256      */
 257     private BigInteger(int signum, int[] magnitude) {
 258         this.mag = stripLeadingZeroInts(magnitude);
 259 
 260         if (signum < -1 || signum > 1)
 261             throw(new NumberFormatException("Invalid signum value"));
 262 
 263         if (this.mag.length==0) {
 264             this.signum = 0;
 265         } else {
 266             if (signum == 0)
 267                 throw(new NumberFormatException("signum-magnitude mismatch"));
 268             this.signum = signum;
 269         }
 270     }
 271 
 272     /**
 273      * Translates the String representation of a BigInteger in the
 274      * specified radix into a BigInteger.  The String representation
 275      * consists of an optional minus or plus sign followed by a
 276      * sequence of one or more digits in the specified radix.  The
 277      * character-to-digit mapping is provided by {@code
 278      * Character.digit}.  The String may not contain any extraneous
 279      * characters (whitespace, for example).
 280      *
 281      * @param val String representation of BigInteger.
 282      * @param radix radix to be used in interpreting {@code val}.
 283      * @throws NumberFormatException {@code val} is not a valid representation
 284      *         of a BigInteger in the specified radix, or {@code radix} is
 285      *         outside the range from {@link Character#MIN_RADIX} to
 286      *         {@link Character#MAX_RADIX}, inclusive.
 287      * @see    Character#digit
 288      */
 289     public BigInteger(String val, int radix) {
 290         int cursor = 0, numDigits;
 291         int len = val.length();
 292 
 293         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
 294             throw new NumberFormatException("Radix out of range");
 295         if (val.length() == 0)
 296             throw new NumberFormatException("Zero length BigInteger");
 297 
 298         // Check for at most one leading sign
 299         int sign = 1;
 300         int index1 = val.lastIndexOf('-');
 301         int index2 = val.lastIndexOf('+');
 302         if ((index1 + index2) <= -1) {
 303             // No leading sign character or at most one leading sign character
 304             if (index1 == 0 || index2 == 0) {
 305                 cursor = 1;
 306                 if (val.length() == 1)
 307                     throw new NumberFormatException("Zero length BigInteger");
 308             }
 309             if (index1 == 0)
 310                 sign = -1;
 311         } else
 312             throw new NumberFormatException("Illegal embedded sign character");
 313 
 314         // Skip leading zeros and compute number of digits in magnitude
 315         while (cursor < len &&
 316                Character.digit(val.charAt(cursor), radix) == 0)
 317             cursor++;
 318         if (cursor == len) {
 319             signum = 0;
 320             mag = ZERO.mag;
 321             return;
 322         }
 323 
 324         numDigits = len - cursor;
 325         signum = sign;
 326 
 327         // Pre-allocate array of expected size. May be too large but can
 328         // never be too small. Typically exact.
 329         int numBits = (int)(((numDigits * bitsPerDigit[radix]) >>> 10) + 1);
 330         int numWords = (numBits + 31) >>> 5;
 331         int[] magnitude = new int[numWords];
 332 
 333         // Process first (potentially short) digit group
 334         int firstGroupLen = numDigits % digitsPerInt[radix];
 335         if (firstGroupLen == 0)
 336             firstGroupLen = digitsPerInt[radix];
 337         String group = val.substring(cursor, cursor += firstGroupLen);
 338         magnitude[numWords - 1] = Integer.parseInt(group, radix);
 339         if (magnitude[numWords - 1] < 0)
 340             throw new NumberFormatException("Illegal digit");
 341 
 342         // Process remaining digit groups
 343         int superRadix = intRadix[radix];
 344         int groupVal = 0;
 345         while (cursor < val.length()) {
 346             group = val.substring(cursor, cursor += digitsPerInt[radix]);
 347             groupVal = Integer.parseInt(group, radix);
 348             if (groupVal < 0)
 349                 throw new NumberFormatException("Illegal digit");
 350             destructiveMulAdd(magnitude, superRadix, groupVal);
 351         }
 352         // Required for cases where the array was overallocated.
 353         mag = trustedStripLeadingZeroInts(magnitude);
 354     }
 355 
 356     // Constructs a new BigInteger using a char array with radix=10
 357     BigInteger(char[] val) {
 358         int cursor = 0, numDigits;
 359         int len = val.length;
 360 
 361         // Check for leading minus sign
 362         int sign = 1;
 363         if (val[0] == '-') {
 364             if (len == 1)
 365                 throw new NumberFormatException("Zero length BigInteger");
 366             sign = -1;
 367             cursor = 1;
 368         } else if (val[0] == '+') {
 369             if (len == 1)
 370                 throw new NumberFormatException("Zero length BigInteger");
 371             cursor = 1;
 372         }
 373 
 374         // Skip leading zeros and compute number of digits in magnitude
 375         while (cursor < len && Character.digit(val[cursor], 10) == 0)
 376             cursor++;
 377         if (cursor == len) {
 378             signum = 0;
 379             mag = ZERO.mag;
 380             return;
 381         }
 382 
 383         numDigits = len - cursor;
 384         signum = sign;
 385 
 386         // Pre-allocate array of expected size
 387         int numWords;
 388         if (len < 10) {
 389             numWords = 1;
 390         } else {
 391             int numBits = (int)(((numDigits * bitsPerDigit[10]) >>> 10) + 1);
 392             numWords = (numBits + 31) >>> 5;
 393         }
 394         int[] magnitude = new int[numWords];
 395 
 396         // Process first (potentially short) digit group
 397         int firstGroupLen = numDigits % digitsPerInt[10];
 398         if (firstGroupLen == 0)
 399             firstGroupLen = digitsPerInt[10];
 400         magnitude[numWords - 1] = parseInt(val, cursor,  cursor += firstGroupLen);
 401 
 402         // Process remaining digit groups
 403         while (cursor < len) {
 404             int groupVal = parseInt(val, cursor, cursor += digitsPerInt[10]);
 405             destructiveMulAdd(magnitude, intRadix[10], groupVal);
 406         }
 407         mag = trustedStripLeadingZeroInts(magnitude);
 408     }
 409 
 410     // Create an integer with the digits between the two indexes
 411     // Assumes start < end. The result may be negative, but it
 412     // is to be treated as an unsigned value.
 413     private int parseInt(char[] source, int start, int end) {
 414         int result = Character.digit(source[start++], 10);
 415         if (result == -1)
 416             throw new NumberFormatException(new String(source));
 417 
 418         for (int index = start; index<end; index++) {
 419             int nextVal = Character.digit(source[index], 10);
 420             if (nextVal == -1)
 421                 throw new NumberFormatException(new String(source));
 422             result = 10*result + nextVal;
 423         }
 424 
 425         return result;
 426     }
 427 
 428     // bitsPerDigit in the given radix times 1024
 429     // Rounded up to avoid underallocation.
 430     private static long bitsPerDigit[] = { 0, 0,
 431         1024, 1624, 2048, 2378, 2648, 2875, 3072, 3247, 3402, 3543, 3672,
 432         3790, 3899, 4001, 4096, 4186, 4271, 4350, 4426, 4498, 4567, 4633,
 433         4696, 4756, 4814, 4870, 4923, 4975, 5025, 5074, 5120, 5166, 5210,
 434                                            5253, 5295};
 435 
 436     // Multiply x array times word y in place, and add word z
 437     private static void destructiveMulAdd(int[] x, int y, int z) {
 438         // Perform the multiplication word by word
 439         long ylong = y & LONG_MASK;
 440         long zlong = z & LONG_MASK;
 441         int len = x.length;
 442 
 443         long product = 0;
 444         long carry = 0;
 445         for (int i = len-1; i >= 0; i--) {
 446             product = ylong * (x[i] & LONG_MASK) + carry;
 447             x[i] = (int)product;
 448             carry = product >>> 32;
 449         }
 450 
 451         // Perform the addition
 452         long sum = (x[len-1] & LONG_MASK) + zlong;
 453         x[len-1] = (int)sum;
 454         carry = sum >>> 32;
 455         for (int i = len-2; i >= 0; i--) {
 456             sum = (x[i] & LONG_MASK) + carry;
 457             x[i] = (int)sum;
 458             carry = sum >>> 32;
 459         }
 460     }
 461 
 462     /**
 463      * Translates the decimal String representation of a BigInteger into a
 464      * BigInteger.  The String representation consists of an optional minus
 465      * sign followed by a sequence of one or more decimal digits.  The
 466      * character-to-digit mapping is provided by {@code Character.digit}.
 467      * The String may not contain any extraneous characters (whitespace, for
 468      * example).
 469      *
 470      * @param val decimal String representation of BigInteger.
 471      * @throws NumberFormatException {@code val} is not a valid representation
 472      *         of a BigInteger.
 473      * @see    Character#digit
 474      */
 475     public BigInteger(String val) {
 476         this(val, 10);
 477     }
 478 
 479     /**
 480      * Constructs a randomly generated BigInteger, uniformly distributed over
 481      * the range {@code 0} to (2<sup>{@code numBits}</sup> - 1), inclusive.
 482      * The uniformity of the distribution assumes that a fair source of random
 483      * bits is provided in {@code rnd}.  Note that this constructor always
 484      * constructs a non-negative BigInteger.
 485      *
 486      * @param  numBits maximum bitLength of the new BigInteger.
 487      * @param  rnd source of randomness to be used in computing the new
 488      *         BigInteger.
 489      * @throws IllegalArgumentException {@code numBits} is negative.
 490      * @see #bitLength()
 491      */
 492     public BigInteger(int numBits, Random rnd) {
 493         this(1, randomBits(numBits, rnd));
 494     }
 495 
 496     private static byte[] randomBits(int numBits, Random rnd) {
 497         if (numBits < 0)
 498             throw new IllegalArgumentException("numBits must be non-negative");
 499         int numBytes = (int)(((long)numBits+7)/8); // avoid overflow
 500         byte[] randomBits = new byte[numBytes];
 501 
 502         // Generate random bytes and mask out any excess bits
 503         if (numBytes > 0) {
 504             rnd.nextBytes(randomBits);
 505             int excessBits = 8*numBytes - numBits;
 506             randomBits[0] &= (1 << (8-excessBits)) - 1;
 507         }
 508         return randomBits;
 509     }
 510 
 511     /**
 512      * Constructs a randomly generated positive BigInteger that is probably
 513      * prime, with the specified bitLength.
 514      *
 515      * <p>It is recommended that the {@link #probablePrime probablePrime}
 516      * method be used in preference to this constructor unless there
 517      * is a compelling need to specify a certainty.
 518      *
 519      * @param  bitLength bitLength of the returned BigInteger.
 520      * @param  certainty a measure of the uncertainty that the caller is
 521      *         willing to tolerate.  The probability that the new BigInteger
 522      *         represents a prime number will exceed
 523      *         (1 - 1/2<sup>{@code certainty}</sup>).  The execution time of
 524      *         this constructor is proportional to the value of this parameter.
 525      * @param  rnd source of random bits used to select candidates to be
 526      *         tested for primality.
 527      * @throws ArithmeticException {@code bitLength < 2}.
 528      * @see    #bitLength()
 529      */
 530     public BigInteger(int bitLength, int certainty, Random rnd) {
 531         BigInteger prime;
 532 
 533         if (bitLength < 2)
 534             throw new ArithmeticException("bitLength < 2");
 535         // The cutoff of 95 was chosen empirically for best performance
 536         prime = (bitLength < 95 ? smallPrime(bitLength, certainty, rnd)
 537                                 : largePrime(bitLength, certainty, rnd));
 538         signum = 1;
 539         mag = prime.mag;
 540     }
 541 
 542     // Minimum size in bits that the requested prime number has
 543     // before we use the large prime number generating algorithms
 544     private static final int SMALL_PRIME_THRESHOLD = 95;
 545 
 546     // Certainty required to meet the spec of probablePrime
 547     private static final int DEFAULT_PRIME_CERTAINTY = 100;
 548 
 549     /**
 550      * Returns a positive BigInteger that is probably prime, with the
 551      * specified bitLength. The probability that a BigInteger returned
 552      * by this method is composite does not exceed 2<sup>-100</sup>.
 553      *
 554      * @param  bitLength bitLength of the returned BigInteger.
 555      * @param  rnd source of random bits used to select candidates to be
 556      *         tested for primality.
 557      * @return a BigInteger of {@code bitLength} bits that is probably prime
 558      * @throws ArithmeticException {@code bitLength < 2}.
 559      * @see    #bitLength()
 560      * @since 1.4
 561      */
 562     public static BigInteger probablePrime(int bitLength, Random rnd) {
 563         if (bitLength < 2)
 564             throw new ArithmeticException("bitLength < 2");
 565 
 566         // The cutoff of 95 was chosen empirically for best performance
 567         return (bitLength < SMALL_PRIME_THRESHOLD ?
 568                 smallPrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd) :
 569                 largePrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd));
 570     }
 571 
 572     /**
 573      * Find a random number of the specified bitLength that is probably prime.
 574      * This method is used for smaller primes, its performance degrades on
 575      * larger bitlengths.
 576      *
 577      * This method assumes bitLength > 1.
 578      */
 579     private static BigInteger smallPrime(int bitLength, int certainty, Random rnd) {
 580         int magLen = (bitLength + 31) >>> 5;
 581         int temp[] = new int[magLen];
 582         int highBit = 1 << ((bitLength+31) & 0x1f);  // High bit of high int
 583         int highMask = (highBit << 1) - 1;  // Bits to keep in high int
 584 
 585         while(true) {
 586             // Construct a candidate
 587             for (int i=0; i<magLen; i++)
 588                 temp[i] = rnd.nextInt();
 589             temp[0] = (temp[0] & highMask) | highBit;  // Ensure exact length
 590             if (bitLength > 2)
 591                 temp[magLen-1] |= 1;  // Make odd if bitlen > 2
 592 
 593             BigInteger p = new BigInteger(temp, 1);
 594 
 595             // Do cheap "pre-test" if applicable
 596             if (bitLength > 6) {
 597                 long r = p.remainder(SMALL_PRIME_PRODUCT).longValue();
 598                 if ((r%3==0)  || (r%5==0)  || (r%7==0)  || (r%11==0) ||
 599                     (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) ||
 600                     (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0))
 601                     continue; // Candidate is composite; try another
 602             }
 603 
 604             // All candidates of bitLength 2 and 3 are prime by this point
 605             if (bitLength < 4)
 606                 return p;
 607 
 608             // Do expensive test if we survive pre-test (or it's inapplicable)
 609             if (p.primeToCertainty(certainty, rnd))
 610                 return p;
 611         }
 612     }
 613 
 614     private static final BigInteger SMALL_PRIME_PRODUCT
 615                        = valueOf(3L*5*7*11*13*17*19*23*29*31*37*41);
 616 
 617     /**
 618      * Find a random number of the specified bitLength that is probably prime.
 619      * This method is more appropriate for larger bitlengths since it uses
 620      * a sieve to eliminate most composites before using a more expensive
 621      * test.
 622      */
 623     private static BigInteger largePrime(int bitLength, int certainty, Random rnd) {
 624         BigInteger p;
 625         p = new BigInteger(bitLength, rnd).setBit(bitLength-1);
 626         p.mag[p.mag.length-1] &= 0xfffffffe;
 627 
 628         // Use a sieve length likely to contain the next prime number
 629         int searchLen = (bitLength / 20) * 64;
 630         BitSieve searchSieve = new BitSieve(p, searchLen);
 631         BigInteger candidate = searchSieve.retrieve(p, certainty, rnd);
 632 
 633         while ((candidate == null) || (candidate.bitLength() != bitLength)) {
 634             p = p.add(BigInteger.valueOf(2*searchLen));
 635             if (p.bitLength() != bitLength)
 636                 p = new BigInteger(bitLength, rnd).setBit(bitLength-1);
 637             p.mag[p.mag.length-1] &= 0xfffffffe;
 638             searchSieve = new BitSieve(p, searchLen);
 639             candidate = searchSieve.retrieve(p, certainty, rnd);
 640         }
 641         return candidate;
 642     }
 643 
 644    /**
 645     * Returns the first integer greater than this {@code BigInteger} that
 646     * is probably prime.  The probability that the number returned by this
 647     * method is composite does not exceed 2<sup>-100</sup>. This method will
 648     * never skip over a prime when searching: if it returns {@code p}, there
 649     * is no prime {@code q} such that {@code this < q < p}.
 650     *
 651     * @return the first integer greater than this {@code BigInteger} that
 652     *         is probably prime.
 653     * @throws ArithmeticException {@code this < 0}.
 654     * @since 1.5
 655     */
 656     public BigInteger nextProbablePrime() {
 657         if (this.signum < 0)
 658             throw new ArithmeticException("start < 0: " + this);
 659 
 660         // Handle trivial cases
 661         if ((this.signum == 0) || this.equals(ONE))
 662             return TWO;
 663 
 664         BigInteger result = this.add(ONE);
 665 
 666         // Fastpath for small numbers
 667         if (result.bitLength() < SMALL_PRIME_THRESHOLD) {
 668 
 669             // Ensure an odd number
 670             if (!result.testBit(0))
 671                 result = result.add(ONE);
 672 
 673             while(true) {
 674                 // Do cheap "pre-test" if applicable
 675                 if (result.bitLength() > 6) {
 676                     long r = result.remainder(SMALL_PRIME_PRODUCT).longValue();
 677                     if ((r%3==0)  || (r%5==0)  || (r%7==0)  || (r%11==0) ||
 678                         (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) ||
 679                         (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0)) {
 680                         result = result.add(TWO);
 681                         continue; // Candidate is composite; try another
 682                     }
 683                 }
 684 
 685                 // All candidates of bitLength 2 and 3 are prime by this point
 686                 if (result.bitLength() < 4)
 687                     return result;
 688 
 689                 // The expensive test
 690                 if (result.primeToCertainty(DEFAULT_PRIME_CERTAINTY, null))
 691                     return result;
 692 
 693                 result = result.add(TWO);
 694             }
 695         }
 696 
 697         // Start at previous even number
 698         if (result.testBit(0))
 699             result = result.subtract(ONE);
 700 
 701         // Looking for the next large prime
 702         int searchLen = (result.bitLength() / 20) * 64;
 703 
 704         while(true) {
 705            BitSieve searchSieve = new BitSieve(result, searchLen);
 706            BigInteger candidate = searchSieve.retrieve(result,
 707                                                  DEFAULT_PRIME_CERTAINTY, null);
 708            if (candidate != null)
 709                return candidate;
 710            result = result.add(BigInteger.valueOf(2 * searchLen));
 711         }
 712     }
 713 
 714     /**
 715      * Returns {@code true} if this BigInteger is probably prime,
 716      * {@code false} if it's definitely composite.
 717      *
 718      * This method assumes bitLength > 2.
 719      *
 720      * @param  certainty a measure of the uncertainty that the caller is
 721      *         willing to tolerate: if the call returns {@code true}
 722      *         the probability that this BigInteger is prime exceeds
 723      *         {@code (1 - 1/2<sup>certainty</sup>)}.  The execution time of
 724      *         this method is proportional to the value of this parameter.
 725      * @return {@code true} if this BigInteger is probably prime,
 726      *         {@code false} if it's definitely composite.
 727      */
 728     boolean primeToCertainty(int certainty, Random random) {
 729         int rounds = 0;
 730         int n = (Math.min(certainty, Integer.MAX_VALUE-1)+1)/2;
 731 
 732         // The relationship between the certainty and the number of rounds
 733         // we perform is given in the draft standard ANSI X9.80, "PRIME
 734         // NUMBER GENERATION, PRIMALITY TESTING, AND PRIMALITY CERTIFICATES".
 735         int sizeInBits = this.bitLength();
 736         if (sizeInBits < 100) {
 737             rounds = 50;
 738             rounds = n < rounds ? n : rounds;
 739             return passesMillerRabin(rounds, random);
 740         }
 741 
 742         if (sizeInBits < 256) {
 743             rounds = 27;
 744         } else if (sizeInBits < 512) {
 745             rounds = 15;
 746         } else if (sizeInBits < 768) {
 747             rounds = 8;
 748         } else if (sizeInBits < 1024) {
 749             rounds = 4;
 750         } else {
 751             rounds = 2;
 752         }
 753         rounds = n < rounds ? n : rounds;
 754 
 755         return passesMillerRabin(rounds, random) && passesLucasLehmer();
 756     }
 757 
 758     /**
 759      * Returns true iff this BigInteger is a Lucas-Lehmer probable prime.
 760      *
 761      * The following assumptions are made:
 762      * This BigInteger is a positive, odd number.
 763      */
 764     private boolean passesLucasLehmer() {
 765         BigInteger thisPlusOne = this.add(ONE);
 766 
 767         // Step 1
 768         int d = 5;
 769         while (jacobiSymbol(d, this) != -1) {
 770             // 5, -7, 9, -11, ...
 771             d = (d<0) ? Math.abs(d)+2 : -(d+2);
 772         }
 773 
 774         // Step 2
 775         BigInteger u = lucasLehmerSequence(d, thisPlusOne, this);
 776 
 777         // Step 3
 778         return u.mod(this).equals(ZERO);
 779     }
 780 
 781     /**
 782      * Computes Jacobi(p,n).
 783      * Assumes n positive, odd, n>=3.
 784      */
 785     private static int jacobiSymbol(int p, BigInteger n) {
 786         if (p == 0)
 787             return 0;
 788 
 789         // Algorithm and comments adapted from Colin Plumb's C library.
 790         int j = 1;
 791         int u = n.mag[n.mag.length-1];
 792 
 793         // Make p positive
 794         if (p < 0) {
 795             p = -p;
 796             int n8 = u & 7;
 797             if ((n8 == 3) || (n8 == 7))
 798                 j = -j; // 3 (011) or 7 (111) mod 8
 799         }
 800 
 801         // Get rid of factors of 2 in p
 802         while ((p & 3) == 0)
 803             p >>= 2;
 804         if ((p & 1) == 0) {
 805             p >>= 1;
 806             if (((u ^ (u>>1)) & 2) != 0)
 807                 j = -j; // 3 (011) or 5 (101) mod 8
 808         }
 809         if (p == 1)
 810             return j;
 811         // Then, apply quadratic reciprocity
 812         if ((p & u & 2) != 0)   // p = u = 3 (mod 4)?
 813             j = -j;
 814         // And reduce u mod p
 815         u = n.mod(BigInteger.valueOf(p)).intValue();
 816 
 817         // Now compute Jacobi(u,p), u < p
 818         while (u != 0) {
 819             while ((u & 3) == 0)
 820                 u >>= 2;
 821             if ((u & 1) == 0) {
 822                 u >>= 1;
 823                 if (((p ^ (p>>1)) & 2) != 0)
 824                     j = -j;     // 3 (011) or 5 (101) mod 8
 825             }
 826             if (u == 1)
 827                 return j;
 828             // Now both u and p are odd, so use quadratic reciprocity
 829             assert (u < p);
 830             int t = u; u = p; p = t;
 831             if ((u & p & 2) != 0) // u = p = 3 (mod 4)?
 832                 j = -j;
 833             // Now u >= p, so it can be reduced
 834             u %= p;
 835         }
 836         return 0;
 837     }
 838 
 839     private static BigInteger lucasLehmerSequence(int z, BigInteger k, BigInteger n) {
 840         BigInteger d = BigInteger.valueOf(z);
 841         BigInteger u = ONE; BigInteger u2;
 842         BigInteger v = ONE; BigInteger v2;
 843 
 844         for (int i=k.bitLength()-2; i>=0; i--) {
 845             u2 = u.multiply(v).mod(n);
 846 
 847             v2 = v.square().add(d.multiply(u.square())).mod(n);
 848             if (v2.testBit(0))
 849                 v2 = v2.subtract(n);
 850 
 851             v2 = v2.shiftRight(1);
 852 
 853             u = u2; v = v2;
 854             if (k.testBit(i)) {
 855                 u2 = u.add(v).mod(n);
 856                 if (u2.testBit(0))
 857                     u2 = u2.subtract(n);
 858 
 859                 u2 = u2.shiftRight(1);
 860                 v2 = v.add(d.multiply(u)).mod(n);
 861                 if (v2.testBit(0))
 862                     v2 = v2.subtract(n);
 863                 v2 = v2.shiftRight(1);
 864 
 865                 u = u2; v = v2;
 866             }
 867         }
 868         return u;
 869     }
 870 
 871     private static volatile Random staticRandom;
 872 
 873     private static Random getSecureRandom() {
 874         if (staticRandom == null) {
 875             staticRandom = new java.security.SecureRandom();
 876         }
 877         return staticRandom;
 878     }
 879 
 880     /**
 881      * Returns true iff this BigInteger passes the specified number of
 882      * Miller-Rabin tests. This test is taken from the DSA spec (NIST FIPS
 883      * 186-2).
 884      *
 885      * The following assumptions are made:
 886      * This BigInteger is a positive, odd number greater than 2.
 887      * iterations<=50.
 888      */
 889     private boolean passesMillerRabin(int iterations, Random rnd) {
 890         // Find a and m such that m is odd and this == 1 + 2**a * m
 891         BigInteger thisMinusOne = this.subtract(ONE);
 892         BigInteger m = thisMinusOne;
 893         int a = m.getLowestSetBit();
 894         m = m.shiftRight(a);
 895 
 896         // Do the tests
 897         if (rnd == null) {
 898             rnd = getSecureRandom();
 899         }
 900         for (int i=0; i<iterations; i++) {
 901             // Generate a uniform random on (1, this)
 902             BigInteger b;
 903             do {
 904                 b = new BigInteger(this.bitLength(), rnd);
 905             } while (b.compareTo(ONE) <= 0 || b.compareTo(this) >= 0);
 906 
 907             int j = 0;
 908             BigInteger z = b.modPow(m, this);
 909             while(!((j==0 && z.equals(ONE)) || z.equals(thisMinusOne))) {
 910                 if (j>0 && z.equals(ONE) || ++j==a)
 911                     return false;
 912                 z = z.modPow(TWO, this);
 913             }
 914         }
 915         return true;
 916     }
 917 
 918     /**
 919      * This internal constructor differs from its public cousin
 920      * with the arguments reversed in two ways: it assumes that its
 921      * arguments are correct, and it doesn't copy the magnitude array.
 922      */
 923     BigInteger(int[] magnitude, int signum) {
 924         this.signum = (magnitude.length==0 ? 0 : signum);
 925         this.mag = magnitude;
 926     }
 927 
 928     /**
 929      * This private constructor is for internal use and assumes that its
 930      * arguments are correct.
 931      */
 932     private BigInteger(byte[] magnitude, int signum) {
 933         this.signum = (magnitude.length==0 ? 0 : signum);
 934         this.mag = stripLeadingZeroBytes(magnitude);
 935     }
 936 
 937     //Static Factory Methods
 938 
 939     /**
 940      * Returns a BigInteger whose value is equal to that of the
 941      * specified {@code long}.  This "static factory method" is
 942      * provided in preference to a ({@code long}) constructor
 943      * because it allows for reuse of frequently used BigIntegers.
 944      *
 945      * @param  val value of the BigInteger to return.
 946      * @return a BigInteger with the specified value.
 947      */
 948     public static BigInteger valueOf(long val) {
 949         // If -MAX_CONSTANT < val < MAX_CONSTANT, return stashed constant
 950         if (val == 0)
 951             return ZERO;
 952         if (val > 0 && val <= MAX_CONSTANT)
 953             return posConst[(int) val];
 954         else if (val < 0 && val >= -MAX_CONSTANT)
 955             return negConst[(int) -val];
 956 
 957         return new BigInteger(val);
 958     }
 959 
 960     /**
 961      * Constructs a BigInteger with the specified value, which may not be zero.
 962      */
 963     private BigInteger(long val) {
 964         if (val < 0) {
 965             val = -val;
 966             signum = -1;
 967         } else {
 968             signum = 1;
 969         }
 970 
 971         int highWord = (int)(val >>> 32);
 972         if (highWord==0) {
 973             mag = new int[1];
 974             mag[0] = (int)val;
 975         } else {
 976             mag = new int[2];
 977             mag[0] = highWord;
 978             mag[1] = (int)val;
 979         }
 980     }
 981 
 982     /**
 983      * Returns a BigInteger with the given two's complement representation.
 984      * Assumes that the input array will not be modified (the returned
 985      * BigInteger will reference the input array if feasible).
 986      */
 987     private static BigInteger valueOf(int val[]) {
 988         return (val[0]>0 ? new BigInteger(val, 1) : new BigInteger(val));
 989     }
 990 
 991     // Constants
 992 
 993     /**
 994      * Initialize static constant array when class is loaded.
 995      */
 996     private final static int MAX_CONSTANT = 16;
 997     private static BigInteger posConst[] = new BigInteger[MAX_CONSTANT+1];
 998     private static BigInteger negConst[] = new BigInteger[MAX_CONSTANT+1];
 999     static {
1000         for (int i = 1; i <= MAX_CONSTANT; i++) {
1001             int[] magnitude = new int[1];
1002             magnitude[0] = i;
1003             posConst[i] = new BigInteger(magnitude,  1);
1004             negConst[i] = new BigInteger(magnitude, -1);
1005         }
1006     }
1007 
1008     /**
1009      * The BigInteger constant zero.
1010      *
1011      * @since   1.2
1012      */
1013     public static final BigInteger ZERO = new BigInteger(new int[0], 0);
1014 
1015     /**
1016      * The BigInteger constant one.
1017      *
1018      * @since   1.2
1019      */
1020     public static final BigInteger ONE = valueOf(1);
1021 
1022     /**
1023      * The BigInteger constant two.  (Not exported.)
1024      */
1025     private static final BigInteger TWO = valueOf(2);
1026 
1027     /**
1028      * The BigInteger constant ten.
1029      *
1030      * @since   1.5
1031      */
1032     public static final BigInteger TEN = valueOf(10);
1033 
1034     // Arithmetic Operations
1035 
1036     /**
1037      * Returns a BigInteger whose value is {@code (this + val)}.
1038      *
1039      * @param  val value to be added to this BigInteger.
1040      * @return {@code this + val}
1041      */
1042     public BigInteger add(BigInteger val) {
1043         if (val.signum == 0)
1044             return this;
1045         if (signum == 0)
1046             return val;
1047         if (val.signum == signum)
1048             return new BigInteger(add(mag, val.mag), signum);
1049 
1050         int cmp = compareMagnitude(val);
1051         if (cmp == 0)
1052             return ZERO;
1053         int[] resultMag = (cmp > 0 ? subtract(mag, val.mag)
1054                            : subtract(val.mag, mag));
1055         resultMag = trustedStripLeadingZeroInts(resultMag);
1056 
1057         return new BigInteger(resultMag, cmp == signum ? 1 : -1);
1058     }
1059 
1060     /**
1061      * Adds the contents of the int arrays x and y. This method allocates
1062      * a new int array to hold the answer and returns a reference to that
1063      * array.
1064      */
1065     private static int[] add(int[] x, int[] y) {
1066         // If x is shorter, swap the two arrays
1067         if (x.length < y.length) {
1068             int[] tmp = x;
1069             x = y;
1070             y = tmp;
1071         }
1072 
1073         int xIndex = x.length;
1074         int yIndex = y.length;
1075         int result[] = new int[xIndex];
1076         long sum = 0;
1077 
1078         // Add common parts of both numbers
1079         while(yIndex > 0) {
1080             sum = (x[--xIndex] & LONG_MASK) +
1081                   (y[--yIndex] & LONG_MASK) + (sum >>> 32);
1082             result[xIndex] = (int)sum;
1083         }
1084 
1085         // Copy remainder of longer number while carry propagation is required
1086         boolean carry = (sum >>> 32 != 0);
1087         while (xIndex > 0 && carry)
1088             carry = ((result[--xIndex] = x[xIndex] + 1) == 0);
1089 
1090         // Copy remainder of longer number
1091         while (xIndex > 0)
1092             result[--xIndex] = x[xIndex];
1093 
1094         // Grow result if necessary
1095         if (carry) {
1096             int bigger[] = new int[result.length + 1];
1097             System.arraycopy(result, 0, bigger, 1, result.length);
1098             bigger[0] = 0x01;
1099             return bigger;
1100         }
1101         return result;
1102     }
1103 
1104     /**
1105      * Returns a BigInteger whose value is {@code (this - val)}.
1106      *
1107      * @param  val value to be subtracted from this BigInteger.
1108      * @return {@code this - val}
1109      */
1110     public BigInteger subtract(BigInteger val) {
1111         if (val.signum == 0)
1112             return this;
1113         if (signum == 0)
1114             return val.negate();
1115         if (val.signum != signum)
1116             return new BigInteger(add(mag, val.mag), signum);
1117 
1118         int cmp = compareMagnitude(val);
1119         if (cmp == 0)
1120             return ZERO;
1121         int[] resultMag = (cmp > 0 ? subtract(mag, val.mag)
1122                            : subtract(val.mag, mag));
1123         resultMag = trustedStripLeadingZeroInts(resultMag);
1124         return new BigInteger(resultMag, cmp == signum ? 1 : -1);
1125     }
1126 
1127     /**
1128      * Subtracts the contents of the second int arrays (little) from the
1129      * first (big).  The first int array (big) must represent a larger number
1130      * than the second.  This method allocates the space necessary to hold the
1131      * answer.
1132      */
1133     private static int[] subtract(int[] big, int[] little) {
1134         int bigIndex = big.length;
1135         int result[] = new int[bigIndex];
1136         int littleIndex = little.length;
1137         long difference = 0;
1138 
1139         // Subtract common parts of both numbers
1140         while(littleIndex > 0) {
1141             difference = (big[--bigIndex] & LONG_MASK) -
1142                          (little[--littleIndex] & LONG_MASK) +
1143                          (difference >> 32);
1144             result[bigIndex] = (int)difference;
1145         }
1146 
1147         // Subtract remainder of longer number while borrow propagates
1148         boolean borrow = (difference >> 32 != 0);
1149         while (bigIndex > 0 && borrow)
1150             borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1);
1151 
1152         // Copy remainder of longer number
1153         while (bigIndex > 0)
1154             result[--bigIndex] = big[bigIndex];
1155 
1156         return result;
1157     }
1158 
1159     /**
1160      * Returns a BigInteger whose value is {@code (this * val)}.
1161      *
1162      * @param  val value to be multiplied by this BigInteger.
1163      * @return {@code this * val}
1164      */
1165     public BigInteger multiply(BigInteger val) {
1166         if (val.signum == 0 || signum == 0)
1167             return ZERO;
1168 
1169         int[] result = multiplyToLen(mag, mag.length,
1170                                      val.mag, val.mag.length, null);
1171         result = trustedStripLeadingZeroInts(result);
1172         return new BigInteger(result, signum == val.signum ? 1 : -1);
1173     }
1174 
1175     /**
1176      * Package private methods used by BigDecimal code to multiply a BigInteger
1177      * with a long. Assumes v is not equal to INFLATED.
1178      */
1179     BigInteger multiply(long v) {
1180         if (v == 0 || signum == 0)
1181           return ZERO;
1182         if (v == BigDecimal.INFLATED)
1183             return multiply(BigInteger.valueOf(v));
1184         int rsign = (v > 0 ? signum : -signum);
1185         if (v < 0)
1186             v = -v;
1187         long dh = v >>> 32;      // higher order bits
1188         long dl = v & LONG_MASK; // lower order bits
1189 
1190         int xlen = mag.length;
1191         int[] value = mag;
1192         int[] rmag = (dh == 0L) ? (new int[xlen + 1]) : (new int[xlen + 2]);
1193         long carry = 0;
1194         int rstart = rmag.length - 1;
1195         for (int i = xlen - 1; i >= 0; i--) {
1196             long product = (value[i] & LONG_MASK) * dl + carry;
1197             rmag[rstart--] = (int)product;
1198             carry = product >>> 32;
1199         }
1200         rmag[rstart] = (int)carry;
1201         if (dh != 0L) {
1202             carry = 0;
1203             rstart = rmag.length - 2;
1204             for (int i = xlen - 1; i >= 0; i--) {
1205                 long product = (value[i] & LONG_MASK) * dh +
1206                     (rmag[rstart] & LONG_MASK) + carry;
1207                 rmag[rstart--] = (int)product;
1208                 carry = product >>> 32;
1209             }
1210             rmag[0] = (int)carry;
1211         }
1212         if (carry == 0L)
1213             rmag = java.util.Arrays.copyOfRange(rmag, 1, rmag.length);
1214         return new BigInteger(rmag, rsign);
1215     }
1216 
1217     /**
1218      * Multiplies int arrays x and y to the specified lengths and places
1219      * the result into z. There will be no leading zeros in the resultant array.
1220      */
1221     private int[] multiplyToLen(int[] x, int xlen, int[] y, int ylen, int[] z) {
1222         int xstart = xlen - 1;
1223         int ystart = ylen - 1;
1224 
1225         if (z == null || z.length < (xlen+ ylen))
1226             z = new int[xlen+ylen];
1227 
1228         long carry = 0;
1229         for (int j=ystart, k=ystart+1+xstart; j>=0; j--, k--) {
1230             long product = (y[j] & LONG_MASK) *
1231                            (x[xstart] & LONG_MASK) + carry;
1232             z[k] = (int)product;
1233             carry = product >>> 32;
1234         }
1235         z[xstart] = (int)carry;
1236 
1237         for (int i = xstart-1; i >= 0; i--) {
1238             carry = 0;
1239             for (int j=ystart, k=ystart+1+i; j>=0; j--, k--) {
1240                 long product = (y[j] & LONG_MASK) *
1241                                (x[i] & LONG_MASK) +
1242                                (z[k] & LONG_MASK) + carry;
1243                 z[k] = (int)product;
1244                 carry = product >>> 32;
1245             }
1246             z[i] = (int)carry;
1247         }
1248         return z;
1249     }
1250 
1251     /**
1252      * Returns a BigInteger whose value is {@code (this<sup>2</sup>)}.
1253      *
1254      * @return {@code this<sup>2</sup>}
1255      */
1256     private BigInteger square() {
1257         if (signum == 0)
1258             return ZERO;
1259         int[] z = squareToLen(mag, mag.length, null);
1260         return new BigInteger(trustedStripLeadingZeroInts(z), 1);
1261     }
1262 
1263     /**
1264      * Squares the contents of the int array x. The result is placed into the
1265      * int array z.  The contents of x are not changed.
1266      */
1267     private static final int[] squareToLen(int[] x, int len, int[] z) {
1268         /*
1269          * The algorithm used here is adapted from Colin Plumb's C library.
1270          * Technique: Consider the partial products in the multiplication
1271          * of "abcde" by itself:
1272          *
1273          *               a  b  c  d  e
1274          *            *  a  b  c  d  e
1275          *          ==================
1276          *              ae be ce de ee
1277          *           ad bd cd dd de
1278          *        ac bc cc cd ce
1279          *     ab bb bc bd be
1280          *  aa ab ac ad ae
1281          *
1282          * Note that everything above the main diagonal:
1283          *              ae be ce de = (abcd) * e
1284          *           ad bd cd       = (abc) * d
1285          *        ac bc             = (ab) * c
1286          *     ab                   = (a) * b
1287          *
1288          * is a copy of everything below the main diagonal:
1289          *                       de
1290          *                 cd ce
1291          *           bc bd be
1292          *     ab ac ad ae
1293          *
1294          * Thus, the sum is 2 * (off the diagonal) + diagonal.
1295          *
1296          * This is accumulated beginning with the diagonal (which
1297          * consist of the squares of the digits of the input), which is then
1298          * divided by two, the off-diagonal added, and multiplied by two
1299          * again.  The low bit is simply a copy of the low bit of the
1300          * input, so it doesn't need special care.
1301          */
1302         int zlen = len << 1;
1303         if (z == null || z.length < zlen)
1304             z = new int[zlen];
1305 
1306         // Store the squares, right shifted one bit (i.e., divided by 2)
1307         int lastProductLowWord = 0;
1308         for (int j=0, i=0; j<len; j++) {
1309             long piece = (x[j] & LONG_MASK);
1310             long product = piece * piece;
1311             z[i++] = (lastProductLowWord << 31) | (int)(product >>> 33);
1312             z[i++] = (int)(product >>> 1);
1313             lastProductLowWord = (int)product;
1314         }
1315 
1316         // Add in off-diagonal sums
1317         for (int i=len, offset=1; i>0; i--, offset+=2) {
1318             int t = x[i-1];
1319             t = mulAdd(z, x, offset, i-1, t);
1320             addOne(z, offset-1, i, t);
1321         }
1322 
1323         // Shift back up and set low bit
1324         primitiveLeftShift(z, zlen, 1);
1325         z[zlen-1] |= x[len-1] & 1;
1326 
1327         return z;
1328     }
1329 
1330     /**
1331      * Returns a BigInteger whose value is {@code (this / val)}.
1332      *
1333      * @param  val value by which this BigInteger is to be divided.
1334      * @return {@code this / val}
1335      * @throws ArithmeticException {@code val==0}
1336      */
1337     public BigInteger divide(BigInteger val) {
1338         MutableBigInteger q = new MutableBigInteger(),
1339                           a = new MutableBigInteger(this.mag),
1340                           b = new MutableBigInteger(val.mag);
1341 
1342         a.divide(b, q);
1343         return q.toBigInteger(this.signum == val.signum ? 1 : -1);
1344     }
1345 
1346     /**
1347      * Returns an array of two BigIntegers containing {@code (this / val)}
1348      * followed by {@code (this % val)}.
1349      *
1350      * @param  val value by which this BigInteger is to be divided, and the
1351      *         remainder computed.
1352      * @return an array of two BigIntegers: the quotient {@code (this / val)}
1353      *         is the initial element, and the remainder {@code (this % val)}
1354      *         is the final element.
1355      * @throws ArithmeticException {@code val==0}
1356      */
1357     public BigInteger[] divideAndRemainder(BigInteger val) {
1358         BigInteger[] result = new BigInteger[2];
1359         MutableBigInteger q = new MutableBigInteger(),
1360                           a = new MutableBigInteger(this.mag),
1361                           b = new MutableBigInteger(val.mag);
1362         MutableBigInteger r = a.divide(b, q);
1363         result[0] = q.toBigInteger(this.signum == val.signum ? 1 : -1);
1364         result[1] = r.toBigInteger(this.signum);
1365         return result;
1366     }
1367 
1368     /**
1369      * Returns a BigInteger whose value is {@code (this % val)}.
1370      *
1371      * @param  val value by which this BigInteger is to be divided, and the
1372      *         remainder computed.
1373      * @return {@code this % val}
1374      * @throws ArithmeticException {@code val==0}
1375      */
1376     public BigInteger remainder(BigInteger val) {
1377         MutableBigInteger q = new MutableBigInteger(),
1378                           a = new MutableBigInteger(this.mag),
1379                           b = new MutableBigInteger(val.mag);
1380 
1381         return a.divide(b, q).toBigInteger(this.signum);
1382     }
1383 
1384     /**
1385      * Returns a BigInteger whose value is <tt>(this<sup>exponent</sup>)</tt>.
1386      * Note that {@code exponent} is an integer rather than a BigInteger.
1387      *
1388      * @param  exponent exponent to which this BigInteger is to be raised.
1389      * @return <tt>this<sup>exponent</sup></tt>
1390      * @throws ArithmeticException {@code exponent} is negative.  (This would
1391      *         cause the operation to yield a non-integer value.)
1392      */
1393     public BigInteger pow(int exponent) {
1394         if (exponent < 0)
1395             throw new ArithmeticException("Negative exponent");
1396         if (signum==0)
1397             return (exponent==0 ? ONE : this);
1398 
1399         // Perform exponentiation using repeated squaring trick
1400         int newSign = (signum<0 && (exponent&1)==1 ? -1 : 1);
1401         int[] baseToPow2 = this.mag;
1402         int[] result = {1};
1403 
1404         while (exponent != 0) {
1405             if ((exponent & 1)==1) {
1406                 result = multiplyToLen(result, result.length,
1407                                        baseToPow2, baseToPow2.length, null);
1408                 result = trustedStripLeadingZeroInts(result);
1409             }
1410             if ((exponent >>>= 1) != 0) {
1411                 baseToPow2 = squareToLen(baseToPow2, baseToPow2.length, null);
1412                 baseToPow2 = trustedStripLeadingZeroInts(baseToPow2);
1413             }
1414         }
1415         return new BigInteger(result, newSign);
1416     }
1417 
1418     /**
1419      * Returns a BigInteger whose value is the greatest common divisor of
1420      * {@code abs(this)} and {@code abs(val)}.  Returns 0 if
1421      * {@code this==0 && val==0}.
1422      *
1423      * @param  val value with which the GCD is to be computed.
1424      * @return {@code GCD(abs(this), abs(val))}
1425      */
1426     public BigInteger gcd(BigInteger val) {
1427         if (val.signum == 0)
1428             return this.abs();
1429         else if (this.signum == 0)
1430             return val.abs();
1431 
1432         MutableBigInteger a = new MutableBigInteger(this);
1433         MutableBigInteger b = new MutableBigInteger(val);
1434 
1435         MutableBigInteger result = a.hybridGCD(b);
1436 
1437         return result.toBigInteger(1);
1438     }
1439 
1440     /**
1441      * Package private method to return bit length for an integer.
1442      */
1443     static int bitLengthForInt(int n) {
1444         return 32 - Integer.numberOfLeadingZeros(n);
1445     }
1446 
1447     /**
1448      * Left shift int array a up to len by n bits. Returns the array that
1449      * results from the shift since space may have to be reallocated.
1450      */
1451     private static int[] leftShift(int[] a, int len, int n) {
1452         int nInts = n >>> 5;
1453         int nBits = n&0x1F;
1454         int bitsInHighWord = bitLengthForInt(a[0]);
1455 
1456         // If shift can be done without recopy, do so
1457         if (n <= (32-bitsInHighWord)) {
1458             primitiveLeftShift(a, len, nBits);
1459             return a;
1460         } else { // Array must be resized
1461             if (nBits <= (32-bitsInHighWord)) {
1462                 int result[] = new int[nInts+len];
1463                 for (int i=0; i<len; i++)
1464                     result[i] = a[i];
1465                 primitiveLeftShift(result, result.length, nBits);
1466                 return result;
1467             } else {
1468                 int result[] = new int[nInts+len+1];
1469                 for (int i=0; i<len; i++)
1470                     result[i] = a[i];
1471                 primitiveRightShift(result, result.length, 32 - nBits);
1472                 return result;
1473             }
1474         }
1475     }
1476 
1477     // shifts a up to len right n bits assumes no leading zeros, 0<n<32
1478     static void primitiveRightShift(int[] a, int len, int n) {
1479         int n2 = 32 - n;
1480         for (int i=len-1, c=a[i]; i>0; i--) {
1481             int b = c;
1482             c = a[i-1];
1483             a[i] = (c << n2) | (b >>> n);
1484         }
1485         a[0] >>>= n;
1486     }
1487 
1488     // shifts a up to len left n bits assumes no leading zeros, 0<=n<32
1489     static void primitiveLeftShift(int[] a, int len, int n) {
1490         if (len == 0 || n == 0)
1491             return;
1492 
1493         int n2 = 32 - n;
1494         for (int i=0, c=a[i], m=i+len-1; i<m; i++) {
1495             int b = c;
1496             c = a[i+1];
1497             a[i] = (b << n) | (c >>> n2);
1498         }
1499         a[len-1] <<= n;
1500     }
1501 
1502     /**
1503      * Calculate bitlength of contents of the first len elements an int array,
1504      * assuming there are no leading zero ints.
1505      */
1506     private static int bitLength(int[] val, int len) {
1507         if (len == 0)
1508             return 0;
1509         return ((len - 1) << 5) + bitLengthForInt(val[0]);
1510     }
1511 
1512     /**
1513      * Returns a BigInteger whose value is the absolute value of this
1514      * BigInteger.
1515      *
1516      * @return {@code abs(this)}
1517      */
1518     public BigInteger abs() {
1519         return (signum >= 0 ? this : this.negate());
1520     }
1521 
1522     /**
1523      * Returns a BigInteger whose value is {@code (-this)}.
1524      *
1525      * @return {@code -this}
1526      */
1527     public BigInteger negate() {
1528         return new BigInteger(this.mag, -this.signum);
1529     }
1530 
1531     /**
1532      * Returns the signum function of this BigInteger.
1533      *
1534      * @return -1, 0 or 1 as the value of this BigInteger is negative, zero or
1535      *         positive.
1536      */
1537     public int signum() {
1538         return this.signum;
1539     }
1540 
1541     // Modular Arithmetic Operations
1542 
1543     /**
1544      * Returns a BigInteger whose value is {@code (this mod m}).  This method
1545      * differs from {@code remainder} in that it always returns a
1546      * <i>non-negative</i> BigInteger.
1547      *
1548      * @param  m the modulus.
1549      * @return {@code this mod m}
1550      * @throws ArithmeticException {@code m <= 0}
1551      * @see    #remainder
1552      */
1553     public BigInteger mod(BigInteger m) {
1554         if (m.signum <= 0)
1555             throw new ArithmeticException("BigInteger: modulus not positive");
1556 
1557         BigInteger result = this.remainder(m);
1558         return (result.signum >= 0 ? result : result.add(m));
1559     }
1560 
1561     /**
1562      * Returns a BigInteger whose value is
1563      * <tt>(this<sup>exponent</sup> mod m)</tt>.  (Unlike {@code pow}, this
1564      * method permits negative exponents.)
1565      *
1566      * @param  exponent the exponent.
1567      * @param  m the modulus.
1568      * @return <tt>this<sup>exponent</sup> mod m</tt>
1569      * @throws ArithmeticException {@code m <= 0}
1570      * @see    #modInverse
1571      */
1572     public BigInteger modPow(BigInteger exponent, BigInteger m) {
1573         if (m.signum <= 0)
1574             throw new ArithmeticException("BigInteger: modulus not positive");
1575 
1576         // Trivial cases
1577         if (exponent.signum == 0)
1578             return (m.equals(ONE) ? ZERO : ONE);
1579 
1580         if (this.equals(ONE))
1581             return (m.equals(ONE) ? ZERO : ONE);
1582 
1583         if (this.equals(ZERO) && exponent.signum >= 0)
1584             return ZERO;
1585 
1586         if (this.equals(negConst[1]) && (!exponent.testBit(0)))
1587             return (m.equals(ONE) ? ZERO : ONE);
1588 
1589         boolean invertResult;
1590         if ((invertResult = (exponent.signum < 0)))
1591             exponent = exponent.negate();
1592 
1593         BigInteger base = (this.signum < 0 || this.compareTo(m) >= 0
1594                            ? this.mod(m) : this);
1595         BigInteger result;
1596         if (m.testBit(0)) { // odd modulus
1597             result = base.oddModPow(exponent, m);
1598         } else {
1599             /*
1600              * Even modulus.  Tear it into an "odd part" (m1) and power of two
1601              * (m2), exponentiate mod m1, manually exponentiate mod m2, and
1602              * use Chinese Remainder Theorem to combine results.
1603              */
1604 
1605             // Tear m apart into odd part (m1) and power of 2 (m2)
1606             int p = m.getLowestSetBit();   // Max pow of 2 that divides m
1607 
1608             BigInteger m1 = m.shiftRight(p);  // m/2**p
1609             BigInteger m2 = ONE.shiftLeft(p); // 2**p
1610 
1611             // Calculate new base from m1
1612             BigInteger base2 = (this.signum < 0 || this.compareTo(m1) >= 0
1613                                 ? this.mod(m1) : this);
1614 
1615             // Caculate (base ** exponent) mod m1.
1616             BigInteger a1 = (m1.equals(ONE) ? ZERO :
1617                              base2.oddModPow(exponent, m1));
1618 
1619             // Calculate (this ** exponent) mod m2
1620             BigInteger a2 = base.modPow2(exponent, p);
1621 
1622             // Combine results using Chinese Remainder Theorem
1623             BigInteger y1 = m2.modInverse(m1);
1624             BigInteger y2 = m1.modInverse(m2);
1625 
1626             result = a1.multiply(m2).multiply(y1).add
1627                      (a2.multiply(m1).multiply(y2)).mod(m);
1628         }
1629 
1630         return (invertResult ? result.modInverse(m) : result);
1631     }
1632 
1633     static int[] bnExpModThreshTable = {7, 25, 81, 241, 673, 1793,
1634                                                 Integer.MAX_VALUE}; // Sentinel
1635 
1636     /**
1637      * Returns a BigInteger whose value is x to the power of y mod z.
1638      * Assumes: z is odd && x < z.
1639      */
1640     private BigInteger oddModPow(BigInteger y, BigInteger z) {
1641     /*
1642      * The algorithm is adapted from Colin Plumb's C library.
1643      *
1644      * The window algorithm:
1645      * The idea is to keep a running product of b1 = n^(high-order bits of exp)
1646      * and then keep appending exponent bits to it.  The following patterns
1647      * apply to a 3-bit window (k = 3):
1648      * To append   0: square
1649      * To append   1: square, multiply by n^1
1650      * To append  10: square, multiply by n^1, square
1651      * To append  11: square, square, multiply by n^3
1652      * To append 100: square, multiply by n^1, square, square
1653      * To append 101: square, square, square, multiply by n^5
1654      * To append 110: square, square, multiply by n^3, square
1655      * To append 111: square, square, square, multiply by n^7
1656      *
1657      * Since each pattern involves only one multiply, the longer the pattern
1658      * the better, except that a 0 (no multiplies) can be appended directly.
1659      * We precompute a table of odd powers of n, up to 2^k, and can then
1660      * multiply k bits of exponent at a time.  Actually, assuming random
1661      * exponents, there is on average one zero bit between needs to
1662      * multiply (1/2 of the time there's none, 1/4 of the time there's 1,
1663      * 1/8 of the time, there's 2, 1/32 of the time, there's 3, etc.), so
1664      * you have to do one multiply per k+1 bits of exponent.
1665      *
1666      * The loop walks down the exponent, squaring the result buffer as
1667      * it goes.  There is a wbits+1 bit lookahead buffer, buf, that is
1668      * filled with the upcoming exponent bits.  (What is read after the
1669      * end of the exponent is unimportant, but it is filled with zero here.)
1670      * When the most-significant bit of this buffer becomes set, i.e.
1671      * (buf & tblmask) != 0, we have to decide what pattern to multiply
1672      * by, and when to do it.  We decide, remember to do it in future
1673      * after a suitable number of squarings have passed (e.g. a pattern
1674      * of "100" in the buffer requires that we multiply by n^1 immediately;
1675      * a pattern of "110" calls for multiplying by n^3 after one more
1676      * squaring), clear the buffer, and continue.
1677      *
1678      * When we start, there is one more optimization: the result buffer
1679      * is implcitly one, so squaring it or multiplying by it can be
1680      * optimized away.  Further, if we start with a pattern like "100"
1681      * in the lookahead window, rather than placing n into the buffer
1682      * and then starting to square it, we have already computed n^2
1683      * to compute the odd-powers table, so we can place that into
1684      * the buffer and save a squaring.
1685      *
1686      * This means that if you have a k-bit window, to compute n^z,
1687      * where z is the high k bits of the exponent, 1/2 of the time
1688      * it requires no squarings.  1/4 of the time, it requires 1
1689      * squaring, ... 1/2^(k-1) of the time, it reqires k-2 squarings.
1690      * And the remaining 1/2^(k-1) of the time, the top k bits are a
1691      * 1 followed by k-1 0 bits, so it again only requires k-2
1692      * squarings, not k-1.  The average of these is 1.  Add that
1693      * to the one squaring we have to do to compute the table,
1694      * and you'll see that a k-bit window saves k-2 squarings
1695      * as well as reducing the multiplies.  (It actually doesn't
1696      * hurt in the case k = 1, either.)
1697      */
1698         // Special case for exponent of one
1699         if (y.equals(ONE))
1700             return this;
1701 
1702         // Special case for base of zero
1703         if (signum==0)
1704             return ZERO;
1705 
1706         int[] base = mag.clone();
1707         int[] exp = y.mag;
1708         int[] mod = z.mag;
1709         int modLen = mod.length;
1710 
1711         // Select an appropriate window size
1712         int wbits = 0;
1713         int ebits = bitLength(exp, exp.length);
1714         // if exponent is 65537 (0x10001), use minimum window size
1715         if ((ebits != 17) || (exp[0] != 65537)) {
1716             while (ebits > bnExpModThreshTable[wbits]) {
1717                 wbits++;
1718             }
1719         }
1720 
1721         // Calculate appropriate table size
1722         int tblmask = 1 << wbits;
1723 
1724         // Allocate table for precomputed odd powers of base in Montgomery form
1725         int[][] table = new int[tblmask][];
1726         for (int i=0; i<tblmask; i++)
1727             table[i] = new int[modLen];
1728 
1729         // Compute the modular inverse
1730         int inv = -MutableBigInteger.inverseMod32(mod[modLen-1]);
1731 
1732         // Convert base to Montgomery form
1733         int[] a = leftShift(base, base.length, modLen << 5);
1734 
1735         MutableBigInteger q = new MutableBigInteger(),
1736                           a2 = new MutableBigInteger(a),
1737                           b2 = new MutableBigInteger(mod);
1738 
1739         MutableBigInteger r= a2.divide(b2, q);
1740         table[0] = r.toIntArray();
1741 
1742         // Pad table[0] with leading zeros so its length is at least modLen
1743         if (table[0].length < modLen) {
1744            int offset = modLen - table[0].length;
1745            int[] t2 = new int[modLen];
1746            for (int i=0; i<table[0].length; i++)
1747                t2[i+offset] = table[0][i];
1748            table[0] = t2;
1749         }
1750 
1751         // Set b to the square of the base
1752         int[] b = squareToLen(table[0], modLen, null);
1753         b = montReduce(b, mod, modLen, inv);
1754 
1755         // Set t to high half of b
1756         int[] t = new int[modLen];
1757         for(int i=0; i<modLen; i++)
1758             t[i] = b[i];
1759 
1760         // Fill in the table with odd powers of the base
1761         for (int i=1; i<tblmask; i++) {
1762             int[] prod = multiplyToLen(t, modLen, table[i-1], modLen, null);
1763             table[i] = montReduce(prod, mod, modLen, inv);
1764         }
1765 
1766         // Pre load the window that slides over the exponent
1767         int bitpos = 1 << ((ebits-1) & (32-1));
1768 
1769         int buf = 0;
1770         int elen = exp.length;
1771         int eIndex = 0;
1772         for (int i = 0; i <= wbits; i++) {
1773             buf = (buf << 1) | (((exp[eIndex] & bitpos) != 0)?1:0);
1774             bitpos >>>= 1;
1775             if (bitpos == 0) {
1776                 eIndex++;
1777                 bitpos = 1 << (32-1);
1778                 elen--;
1779             }
1780         }
1781 
1782         int multpos = ebits;
1783 
1784         // The first iteration, which is hoisted out of the main loop
1785         ebits--;
1786         boolean isone = true;
1787 
1788         multpos = ebits - wbits;
1789         while ((buf & 1) == 0) {
1790             buf >>>= 1;
1791             multpos++;
1792         }
1793 
1794         int[] mult = table[buf >>> 1];
1795 
1796         buf = 0;
1797         if (multpos == ebits)
1798             isone = false;
1799 
1800         // The main loop
1801         while(true) {
1802             ebits--;
1803             // Advance the window
1804             buf <<= 1;
1805 
1806             if (elen != 0) {
1807                 buf |= ((exp[eIndex] & bitpos) != 0) ? 1 : 0;
1808                 bitpos >>>= 1;
1809                 if (bitpos == 0) {
1810                     eIndex++;
1811                     bitpos = 1 << (32-1);
1812                     elen--;
1813                 }
1814             }
1815 
1816             // Examine the window for pending multiplies
1817             if ((buf & tblmask) != 0) {
1818                 multpos = ebits - wbits;
1819                 while ((buf & 1) == 0) {
1820                     buf >>>= 1;
1821                     multpos++;
1822                 }
1823                 mult = table[buf >>> 1];
1824                 buf = 0;
1825             }
1826 
1827             // Perform multiply
1828             if (ebits == multpos) {
1829                 if (isone) {
1830                     b = mult.clone();
1831                     isone = false;
1832                 } else {
1833                     t = b;
1834                     a = multiplyToLen(t, modLen, mult, modLen, a);
1835                     a = montReduce(a, mod, modLen, inv);
1836                     t = a; a = b; b = t;
1837                 }
1838             }
1839 
1840             // Check if done
1841             if (ebits == 0)
1842                 break;
1843 
1844             // Square the input
1845             if (!isone) {
1846                 t = b;
1847                 a = squareToLen(t, modLen, a);
1848                 a = montReduce(a, mod, modLen, inv);
1849                 t = a; a = b; b = t;
1850             }
1851         }
1852 
1853         // Convert result out of Montgomery form and return
1854         int[] t2 = new int[2*modLen];
1855         for(int i=0; i<modLen; i++)
1856             t2[i+modLen] = b[i];
1857 
1858         b = montReduce(t2, mod, modLen, inv);
1859 
1860         t2 = new int[modLen];
1861         for(int i=0; i<modLen; i++)
1862             t2[i] = b[i];
1863 
1864         return new BigInteger(1, t2);
1865     }
1866 
1867     /**
1868      * Montgomery reduce n, modulo mod.  This reduces modulo mod and divides
1869      * by 2^(32*mlen). Adapted from Colin Plumb's C library.
1870      */
1871     private static int[] montReduce(int[] n, int[] mod, int mlen, int inv) {
1872         int c=0;
1873         int len = mlen;
1874         int offset=0;
1875 
1876         do {
1877             int nEnd = n[n.length-1-offset];
1878             int carry = mulAdd(n, mod, offset, mlen, inv * nEnd);
1879             c += addOne(n, offset, mlen, carry);
1880             offset++;
1881         } while(--len > 0);
1882 
1883         while(c>0)
1884             c += subN(n, mod, mlen);
1885 
1886         while (intArrayCmpToLen(n, mod, mlen) >= 0)
1887             subN(n, mod, mlen);
1888 
1889         return n;
1890     }
1891 
1892 
1893     /*
1894      * Returns -1, 0 or +1 as big-endian unsigned int array arg1 is less than,
1895      * equal to, or greater than arg2 up to length len.
1896      */
1897     private static int intArrayCmpToLen(int[] arg1, int[] arg2, int len) {
1898         for (int i=0; i<len; i++) {
1899             long b1 = arg1[i] & LONG_MASK;
1900             long b2 = arg2[i] & LONG_MASK;
1901             if (b1 < b2)
1902                 return -1;
1903             if (b1 > b2)
1904                 return 1;
1905         }
1906         return 0;
1907     }
1908 
1909     /**
1910      * Subtracts two numbers of same length, returning borrow.
1911      */
1912     private static int subN(int[] a, int[] b, int len) {
1913         long sum = 0;
1914 
1915         while(--len >= 0) {
1916             sum = (a[len] & LONG_MASK) -
1917                  (b[len] & LONG_MASK) + (sum >> 32);
1918             a[len] = (int)sum;
1919         }
1920 
1921         return (int)(sum >> 32);
1922     }
1923 
1924     /**
1925      * Multiply an array by one word k and add to result, return the carry
1926      */
1927     static int mulAdd(int[] out, int[] in, int offset, int len, int k) {
1928         long kLong = k & LONG_MASK;
1929         long carry = 0;
1930 
1931         offset = out.length-offset - 1;
1932         for (int j=len-1; j >= 0; j--) {
1933             long product = (in[j] & LONG_MASK) * kLong +
1934                            (out[offset] & LONG_MASK) + carry;
1935             out[offset--] = (int)product;
1936             carry = product >>> 32;
1937         }
1938         return (int)carry;
1939     }
1940 
1941     /**
1942      * Add one word to the number a mlen words into a. Return the resulting
1943      * carry.
1944      */
1945     static int addOne(int[] a, int offset, int mlen, int carry) {
1946         offset = a.length-1-mlen-offset;
1947         long t = (a[offset] & LONG_MASK) + (carry & LONG_MASK);
1948 
1949         a[offset] = (int)t;
1950         if ((t >>> 32) == 0)
1951             return 0;
1952         while (--mlen >= 0) {
1953             if (--offset < 0) { // Carry out of number
1954                 return 1;
1955             } else {
1956                 a[offset]++;
1957                 if (a[offset] != 0)
1958                     return 0;
1959             }
1960         }
1961         return 1;
1962     }
1963 
1964     /**
1965      * Returns a BigInteger whose value is (this ** exponent) mod (2**p)
1966      */
1967     private BigInteger modPow2(BigInteger exponent, int p) {
1968         /*
1969          * Perform exponentiation using repeated squaring trick, chopping off
1970          * high order bits as indicated by modulus.
1971          */
1972         BigInteger result = valueOf(1);
1973         BigInteger baseToPow2 = this.mod2(p);
1974         int expOffset = 0;
1975 
1976         int limit = exponent.bitLength();
1977 
1978         if (this.testBit(0))
1979            limit = (p-1) < limit ? (p-1) : limit;
1980 
1981         while (expOffset < limit) {
1982             if (exponent.testBit(expOffset))
1983                 result = result.multiply(baseToPow2).mod2(p);
1984             expOffset++;
1985             if (expOffset < limit)
1986                 baseToPow2 = baseToPow2.square().mod2(p);
1987         }
1988 
1989         return result;
1990     }
1991 
1992     /**
1993      * Returns a BigInteger whose value is this mod(2**p).
1994      * Assumes that this {@code BigInteger >= 0} and {@code p > 0}.
1995      */
1996     private BigInteger mod2(int p) {
1997         if (bitLength() <= p)
1998             return this;
1999 
2000         // Copy remaining ints of mag
2001         int numInts = (p + 31) >>> 5;
2002         int[] mag = new int[numInts];
2003         for (int i=0; i<numInts; i++)
2004             mag[i] = this.mag[i + (this.mag.length - numInts)];
2005 
2006         // Mask out any excess bits
2007         int excessBits = (numInts << 5) - p;
2008         mag[0] &= (1L << (32-excessBits)) - 1;
2009 
2010         return (mag[0]==0 ? new BigInteger(1, mag) : new BigInteger(mag, 1));
2011     }
2012 
2013     /**
2014      * Returns a BigInteger whose value is {@code (this}<sup>-1</sup> {@code mod m)}.
2015      *
2016      * @param  m the modulus.
2017      * @return {@code this}<sup>-1</sup> {@code mod m}.
2018      * @throws ArithmeticException {@code  m <= 0}, or this BigInteger
2019      *         has no multiplicative inverse mod m (that is, this BigInteger
2020      *         is not <i>relatively prime</i> to m).
2021      */
2022     public BigInteger modInverse(BigInteger m) {
2023         if (m.signum != 1)
2024             throw new ArithmeticException("BigInteger: modulus not positive");
2025 
2026         if (m.equals(ONE))
2027             return ZERO;
2028 
2029         // Calculate (this mod m)
2030         BigInteger modVal = this;
2031         if (signum < 0 || (this.compareMagnitude(m) >= 0))
2032             modVal = this.mod(m);
2033 
2034         if (modVal.equals(ONE))
2035             return ONE;
2036 
2037         MutableBigInteger a = new MutableBigInteger(modVal);
2038         MutableBigInteger b = new MutableBigInteger(m);
2039 
2040         MutableBigInteger result = a.mutableModInverse(b);
2041         return result.toBigInteger(1);
2042     }
2043 
2044     // Shift Operations
2045 
2046     /**
2047      * Returns a BigInteger whose value is {@code (this << n)}.
2048      * The shift distance, {@code n}, may be negative, in which case
2049      * this method performs a right shift.
2050      * (Computes <tt>floor(this * 2<sup>n</sup>)</tt>.)
2051      *
2052      * @param  n shift distance, in bits.
2053      * @return {@code this << n}
2054      * @throws ArithmeticException if the shift distance is {@code
2055      *         Integer.MIN_VALUE}.
2056      * @see #shiftRight
2057      */
2058     public BigInteger shiftLeft(int n) {
2059         if (signum == 0)
2060             return ZERO;
2061         if (n==0)
2062             return this;
2063         if (n<0) {
2064             if (n == Integer.MIN_VALUE) {
2065                 throw new ArithmeticException("Shift distance of Integer.MIN_VALUE not supported.");
2066             } else {
2067                 return shiftRight(-n);
2068             }
2069         }
2070 
2071         int nInts = n >>> 5;
2072         int nBits = n & 0x1f;
2073         int magLen = mag.length;
2074         int newMag[] = null;
2075 
2076         if (nBits == 0) {
2077             newMag = new int[magLen + nInts];
2078             for (int i=0; i<magLen; i++)
2079                 newMag[i] = mag[i];
2080         } else {
2081             int i = 0;
2082             int nBits2 = 32 - nBits;
2083             int highBits = mag[0] >>> nBits2;
2084             if (highBits != 0) {
2085                 newMag = new int[magLen + nInts + 1];
2086                 newMag[i++] = highBits;
2087             } else {
2088                 newMag = new int[magLen + nInts];
2089             }
2090             int j=0;
2091             while (j < magLen-1)
2092                 newMag[i++] = mag[j++] << nBits | mag[j] >>> nBits2;
2093             newMag[i] = mag[j] << nBits;
2094         }
2095 
2096         return new BigInteger(newMag, signum);
2097     }
2098 
2099     /**
2100      * Returns a BigInteger whose value is {@code (this >> n)}.  Sign
2101      * extension is performed.  The shift distance, {@code n}, may be
2102      * negative, in which case this method performs a left shift.
2103      * (Computes <tt>floor(this / 2<sup>n</sup>)</tt>.)
2104      *
2105      * @param  n shift distance, in bits.
2106      * @return {@code this >> n}
2107      * @throws ArithmeticException if the shift distance is {@code
2108      *         Integer.MIN_VALUE}.
2109      * @see #shiftLeft
2110      */
2111     public BigInteger shiftRight(int n) {
2112         if (n==0)
2113             return this;
2114         if (n<0) {
2115             if (n == Integer.MIN_VALUE) {
2116                 throw new ArithmeticException("Shift distance of Integer.MIN_VALUE not supported.");
2117             } else {
2118                 return shiftLeft(-n);
2119             }
2120         }
2121 
2122         int nInts = n >>> 5;
2123         int nBits = n & 0x1f;
2124         int magLen = mag.length;
2125         int newMag[] = null;
2126 
2127         // Special case: entire contents shifted off the end
2128         if (nInts >= magLen)
2129             return (signum >= 0 ? ZERO : negConst[1]);
2130 
2131         if (nBits == 0) {
2132             int newMagLen = magLen - nInts;
2133             newMag = new int[newMagLen];
2134             for (int i=0; i<newMagLen; i++)
2135                 newMag[i] = mag[i];
2136         } else {
2137             int i = 0;
2138             int highBits = mag[0] >>> nBits;
2139             if (highBits != 0) {
2140                 newMag = new int[magLen - nInts];
2141                 newMag[i++] = highBits;
2142             } else {
2143                 newMag = new int[magLen - nInts -1];
2144             }
2145 
2146             int nBits2 = 32 - nBits;
2147             int j=0;
2148             while (j < magLen - nInts - 1)
2149                 newMag[i++] = (mag[j++] << nBits2) | (mag[j] >>> nBits);
2150         }
2151 
2152         if (signum < 0) {
2153             // Find out whether any one-bits were shifted off the end.
2154             boolean onesLost = false;
2155             for (int i=magLen-1, j=magLen-nInts; i>=j && !onesLost; i--)
2156                 onesLost = (mag[i] != 0);
2157             if (!onesLost && nBits != 0)
2158                 onesLost = (mag[magLen - nInts - 1] << (32 - nBits) != 0);
2159 
2160             if (onesLost)
2161                 newMag = javaIncrement(newMag);
2162         }
2163 
2164         return new BigInteger(newMag, signum);
2165     }
2166 
2167     int[] javaIncrement(int[] val) {
2168         int lastSum = 0;
2169         for (int i=val.length-1;  i >= 0 && lastSum == 0; i--)
2170             lastSum = (val[i] += 1);
2171         if (lastSum == 0) {
2172             val = new int[val.length+1];
2173             val[0] = 1;
2174         }
2175         return val;
2176     }
2177 
2178     // Bitwise Operations
2179 
2180     /**
2181      * Returns a BigInteger whose value is {@code (this & val)}.  (This
2182      * method returns a negative BigInteger if and only if this and val are
2183      * both negative.)
2184      *
2185      * @param val value to be AND'ed with this BigInteger.
2186      * @return {@code this & val}
2187      */
2188     public BigInteger and(BigInteger val) {
2189         int[] result = new int[Math.max(intLength(), val.intLength())];
2190         for (int i=0; i<result.length; i++)
2191             result[i] = (getInt(result.length-i-1)
2192                          & val.getInt(result.length-i-1));
2193 
2194         return valueOf(result);
2195     }
2196 
2197     /**
2198      * Returns a BigInteger whose value is {@code (this | val)}.  (This method
2199      * returns a negative BigInteger if and only if either this or val is
2200      * negative.)
2201      *
2202      * @param val value to be OR'ed with this BigInteger.
2203      * @return {@code this | val}
2204      */
2205     public BigInteger or(BigInteger val) {
2206         int[] result = new int[Math.max(intLength(), val.intLength())];
2207         for (int i=0; i<result.length; i++)
2208             result[i] = (getInt(result.length-i-1)
2209                          | val.getInt(result.length-i-1));
2210 
2211         return valueOf(result);
2212     }
2213 
2214     /**
2215      * Returns a BigInteger whose value is {@code (this ^ val)}.  (This method
2216      * returns a negative BigInteger if and only if exactly one of this and
2217      * val are negative.)
2218      *
2219      * @param val value to be XOR'ed with this BigInteger.
2220      * @return {@code this ^ val}
2221      */
2222     public BigInteger xor(BigInteger val) {
2223         int[] result = new int[Math.max(intLength(), val.intLength())];
2224         for (int i=0; i<result.length; i++)
2225             result[i] = (getInt(result.length-i-1)
2226                          ^ val.getInt(result.length-i-1));
2227 
2228         return valueOf(result);
2229     }
2230 
2231     /**
2232      * Returns a BigInteger whose value is {@code (~this)}.  (This method
2233      * returns a negative value if and only if this BigInteger is
2234      * non-negative.)
2235      *
2236      * @return {@code ~this}
2237      */
2238     public BigInteger not() {
2239         int[] result = new int[intLength()];
2240         for (int i=0; i<result.length; i++)
2241             result[i] = ~getInt(result.length-i-1);
2242 
2243         return valueOf(result);
2244     }
2245 
2246     /**
2247      * Returns a BigInteger whose value is {@code (this & ~val)}.  This
2248      * method, which is equivalent to {@code and(val.not())}, is provided as
2249      * a convenience for masking operations.  (This method returns a negative
2250      * BigInteger if and only if {@code this} is negative and {@code val} is
2251      * positive.)
2252      *
2253      * @param val value to be complemented and AND'ed with this BigInteger.
2254      * @return {@code this & ~val}
2255      */
2256     public BigInteger andNot(BigInteger val) {
2257         int[] result = new int[Math.max(intLength(), val.intLength())];
2258         for (int i=0; i<result.length; i++)
2259             result[i] = (getInt(result.length-i-1)
2260                          & ~val.getInt(result.length-i-1));
2261 
2262         return valueOf(result);
2263     }
2264 
2265 
2266     // Single Bit Operations
2267 
2268     /**
2269      * Returns {@code true} if and only if the designated bit is set.
2270      * (Computes {@code ((this & (1<<n)) != 0)}.)
2271      *
2272      * @param  n index of bit to test.
2273      * @return {@code true} if and only if the designated bit is set.
2274      * @throws ArithmeticException {@code n} is negative.
2275      */
2276     public boolean testBit(int n) {
2277         if (n<0)
2278             throw new ArithmeticException("Negative bit address");
2279 
2280         return (getInt(n >>> 5) & (1 << (n & 31))) != 0;
2281     }
2282 
2283     /**
2284      * Returns a BigInteger whose value is equivalent to this BigInteger
2285      * with the designated bit set.  (Computes {@code (this | (1<<n))}.)
2286      *
2287      * @param  n index of bit to set.
2288      * @return {@code this | (1<<n)}
2289      * @throws ArithmeticException {@code n} is negative.
2290      */
2291     public BigInteger setBit(int n) {
2292         if (n<0)
2293             throw new ArithmeticException("Negative bit address");
2294 
2295         int intNum = n >>> 5;
2296         int[] result = new int[Math.max(intLength(), intNum+2)];
2297 
2298         for (int i=0; i<result.length; i++)
2299             result[result.length-i-1] = getInt(i);
2300 
2301         result[result.length-intNum-1] |= (1 << (n & 31));
2302 
2303         return valueOf(result);
2304     }
2305 
2306     /**
2307      * Returns a BigInteger whose value is equivalent to this BigInteger
2308      * with the designated bit cleared.
2309      * (Computes {@code (this & ~(1<<n))}.)
2310      *
2311      * @param  n index of bit to clear.
2312      * @return {@code this & ~(1<<n)}
2313      * @throws ArithmeticException {@code n} is negative.
2314      */
2315     public BigInteger clearBit(int n) {
2316         if (n<0)
2317             throw new ArithmeticException("Negative bit address");
2318 
2319         int intNum = n >>> 5;
2320         int[] result = new int[Math.max(intLength(), ((n + 1) >>> 5) + 1)];
2321 
2322         for (int i=0; i<result.length; i++)
2323             result[result.length-i-1] = getInt(i);
2324 
2325         result[result.length-intNum-1] &= ~(1 << (n & 31));
2326 
2327         return valueOf(result);
2328     }
2329 
2330     /**
2331      * Returns a BigInteger whose value is equivalent to this BigInteger
2332      * with the designated bit flipped.
2333      * (Computes {@code (this ^ (1<<n))}.)
2334      *
2335      * @param  n index of bit to flip.
2336      * @return {@code this ^ (1<<n)}
2337      * @throws ArithmeticException {@code n} is negative.
2338      */
2339     public BigInteger flipBit(int n) {
2340         if (n<0)
2341             throw new ArithmeticException("Negative bit address");
2342 
2343         int intNum = n >>> 5;
2344         int[] result = new int[Math.max(intLength(), intNum+2)];
2345 
2346         for (int i=0; i<result.length; i++)
2347             result[result.length-i-1] = getInt(i);
2348 
2349         result[result.length-intNum-1] ^= (1 << (n & 31));
2350 
2351         return valueOf(result);
2352     }
2353 
2354     /**
2355      * Returns the index of the rightmost (lowest-order) one bit in this
2356      * BigInteger (the number of zero bits to the right of the rightmost
2357      * one bit).  Returns -1 if this BigInteger contains no one bits.
2358      * (Computes {@code (this==0? -1 : log2(this & -this))}.)
2359      *
2360      * @return index of the rightmost one bit in this BigInteger.
2361      */
2362     public int getLowestSetBit() {
2363         @SuppressWarnings("deprecation") int lsb = lowestSetBit - 2;
2364         if (lsb == -2) {  // lowestSetBit not initialized yet
2365             lsb = 0;
2366             if (signum == 0) {
2367                 lsb -= 1;
2368             } else {
2369                 // Search for lowest order nonzero int
2370                 int i,b;
2371                 for (i=0; (b = getInt(i))==0; i++)
2372                     ;
2373                 lsb += (i << 5) + Integer.numberOfTrailingZeros(b);
2374             }
2375             lowestSetBit = lsb + 2;
2376         }
2377         return lsb;
2378     }
2379 
2380 
2381     // Miscellaneous Bit Operations
2382 
2383     /**
2384      * Returns the number of bits in the minimal two's-complement
2385      * representation of this BigInteger, <i>excluding</i> a sign bit.
2386      * For positive BigIntegers, this is equivalent to the number of bits in
2387      * the ordinary binary representation.  (Computes
2388      * {@code (ceil(log2(this < 0 ? -this : this+1)))}.)
2389      *
2390      * @return number of bits in the minimal two's-complement
2391      *         representation of this BigInteger, <i>excluding</i> a sign bit.
2392      */
2393     public int bitLength() {
2394         @SuppressWarnings("deprecation") int n = bitLength - 1;
2395         if (n == -1) { // bitLength not initialized yet
2396             int[] m = mag;
2397             int len = m.length;
2398             if (len == 0) {
2399                 n = 0; // offset by one to initialize
2400             }  else {
2401                 // Calculate the bit length of the magnitude
2402                 int magBitLength = ((len - 1) << 5) + bitLengthForInt(mag[0]);
2403                  if (signum < 0) {
2404                      // Check if magnitude is a power of two
2405                      boolean pow2 = (Integer.bitCount(mag[0]) == 1);
2406                      for(int i=1; i< len && pow2; i++)
2407                          pow2 = (mag[i] == 0);
2408 
2409                      n = (pow2 ? magBitLength -1 : magBitLength);
2410                  } else {
2411                      n = magBitLength;
2412                  }
2413             }
2414             bitLength = n + 1;
2415         }
2416         return n;
2417     }
2418 
2419     /**
2420      * Returns the number of bits in the two's complement representation
2421      * of this BigInteger that differ from its sign bit.  This method is
2422      * useful when implementing bit-vector style sets atop BigIntegers.
2423      *
2424      * @return number of bits in the two's complement representation
2425      *         of this BigInteger that differ from its sign bit.
2426      */
2427     public int bitCount() {
2428         @SuppressWarnings("deprecation") int bc = bitCount - 1;
2429         if (bc == -1) {  // bitCount not initialized yet
2430             bc = 0;      // offset by one to initialize
2431             // Count the bits in the magnitude
2432             for (int i=0; i<mag.length; i++)
2433                 bc += Integer.bitCount(mag[i]);
2434             if (signum < 0) {
2435                 // Count the trailing zeros in the magnitude
2436                 int magTrailingZeroCount = 0, j;
2437                 for (j=mag.length-1; mag[j]==0; j--)
2438                     magTrailingZeroCount += 32;
2439                 magTrailingZeroCount += Integer.numberOfTrailingZeros(mag[j]);
2440                 bc += magTrailingZeroCount - 1;
2441             }
2442             bitCount = bc + 1;
2443         }
2444         return bc;
2445     }
2446 
2447     // Primality Testing
2448 
2449     /**
2450      * Returns {@code true} if this BigInteger is probably prime,
2451      * {@code false} if it's definitely composite.  If
2452      * {@code certainty} is {@code  <= 0}, {@code true} is
2453      * returned.
2454      *
2455      * @param  certainty a measure of the uncertainty that the caller is
2456      *         willing to tolerate: if the call returns {@code true}
2457      *         the probability that this BigInteger is prime exceeds
2458      *         (1 - 1/2<sup>{@code certainty}</sup>).  The execution time of
2459      *         this method is proportional to the value of this parameter.
2460      * @return {@code true} if this BigInteger is probably prime,
2461      *         {@code false} if it's definitely composite.
2462      */
2463     public boolean isProbablePrime(int certainty) {
2464         if (certainty <= 0)
2465             return true;
2466         BigInteger w = this.abs();
2467         if (w.equals(TWO))
2468             return true;
2469         if (!w.testBit(0) || w.equals(ONE))
2470             return false;
2471 
2472         return w.primeToCertainty(certainty, null);
2473     }
2474 
2475     // Comparison Operations
2476 
2477     /**
2478      * Compares this BigInteger with the specified BigInteger.  This
2479      * method is provided in preference to individual methods for each
2480      * of the six boolean comparison operators ({@literal <}, ==,
2481      * {@literal >}, {@literal >=}, !=, {@literal <=}).  The suggested
2482      * idiom for performing these comparisons is: {@code
2483      * (x.compareTo(y)} &lt;<i>op</i>&gt; {@code 0)}, where
2484      * &lt;<i>op</i>&gt; is one of the six comparison operators.
2485      *
2486      * @param  val BigInteger to which this BigInteger is to be compared.
2487      * @return -1, 0 or 1 as this BigInteger is numerically less than, equal
2488      *         to, or greater than {@code val}.
2489      */
2490     public int compareTo(BigInteger val) {
2491         if (signum == val.signum) {
2492             switch (signum) {
2493             case 1:
2494                 return compareMagnitude(val);
2495             case -1:
2496                 return val.compareMagnitude(this);
2497             default:
2498                 return 0;
2499             }
2500         }
2501         return signum > val.signum ? 1 : -1;
2502     }
2503 
2504     /**
2505      * Compares the magnitude array of this BigInteger with the specified
2506      * BigInteger's. This is the version of compareTo ignoring sign.
2507      *
2508      * @param val BigInteger whose magnitude array to be compared.
2509      * @return -1, 0 or 1 as this magnitude array is less than, equal to or
2510      *         greater than the magnitude aray for the specified BigInteger's.
2511      */
2512     final int compareMagnitude(BigInteger val) {
2513         int[] m1 = mag;
2514         int len1 = m1.length;
2515         int[] m2 = val.mag;
2516         int len2 = m2.length;
2517         if (len1 < len2)
2518             return -1;
2519         if (len1 > len2)
2520             return 1;
2521         for (int i = 0; i < len1; i++) {
2522             int a = m1[i];
2523             int b = m2[i];
2524             if (a != b)
2525                 return ((a & LONG_MASK) < (b & LONG_MASK)) ? -1 : 1;
2526         }
2527         return 0;
2528     }
2529 
2530     /**
2531      * Compares this BigInteger with the specified Object for equality.
2532      *
2533      * @param  x Object to which this BigInteger is to be compared.
2534      * @return {@code true} if and only if the specified Object is a
2535      *         BigInteger whose value is numerically equal to this BigInteger.
2536      */
2537     public boolean equals(Object x) {
2538         // This test is just an optimization, which may or may not help
2539         if (x == this)
2540             return true;
2541 
2542         if (!(x instanceof BigInteger))
2543             return false;
2544 
2545         BigInteger xInt = (BigInteger) x;
2546         if (xInt.signum != signum)
2547             return false;
2548 
2549         int[] m = mag;
2550         int len = m.length;
2551         int[] xm = xInt.mag;
2552         if (len != xm.length)
2553             return false;
2554 
2555         for (int i = 0; i < len; i++)
2556             if (xm[i] != m[i])
2557                 return false;
2558 
2559         return true;
2560     }
2561 
2562     /**
2563      * Returns the minimum of this BigInteger and {@code val}.
2564      *
2565      * @param  val value with which the minimum is to be computed.
2566      * @return the BigInteger whose value is the lesser of this BigInteger and
2567      *         {@code val}.  If they are equal, either may be returned.
2568      */
2569     public BigInteger min(BigInteger val) {
2570         return (compareTo(val)<0 ? this : val);
2571     }
2572 
2573     /**
2574      * Returns the maximum of this BigInteger and {@code val}.
2575      *
2576      * @param  val value with which the maximum is to be computed.
2577      * @return the BigInteger whose value is the greater of this and
2578      *         {@code val}.  If they are equal, either may be returned.
2579      */
2580     public BigInteger max(BigInteger val) {
2581         return (compareTo(val)>0 ? this : val);
2582     }
2583 
2584 
2585     // Hash Function
2586 
2587     /**
2588      * Returns the hash code for this BigInteger.
2589      *
2590      * @return hash code for this BigInteger.
2591      */
2592     public int hashCode() {
2593         int hashCode = 0;
2594 
2595         for (int i=0; i<mag.length; i++)
2596             hashCode = (int)(31*hashCode + (mag[i] & LONG_MASK));
2597 
2598         return hashCode * signum;
2599     }
2600 
2601     /**
2602      * Returns the String representation of this BigInteger in the
2603      * given radix.  If the radix is outside the range from {@link
2604      * Character#MIN_RADIX} to {@link Character#MAX_RADIX} inclusive,
2605      * it will default to 10 (as is the case for
2606      * {@code Integer.toString}).  The digit-to-character mapping
2607      * provided by {@code Character.forDigit} is used, and a minus
2608      * sign is prepended if appropriate.  (This representation is
2609      * compatible with the {@link #BigInteger(String, int) (String,
2610      * int)} constructor.)
2611      *
2612      * @param  radix  radix of the String representation.
2613      * @return String representation of this BigInteger in the given radix.
2614      * @see    Integer#toString
2615      * @see    Character#forDigit
2616      * @see    #BigInteger(java.lang.String, int)
2617      */
2618     public String toString(int radix) {
2619         if (signum == 0)
2620             return "0";
2621         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
2622             radix = 10;
2623 
2624         // Compute upper bound on number of digit groups and allocate space
2625         int maxNumDigitGroups = (4*mag.length + 6)/7;
2626         String digitGroup[] = new String[maxNumDigitGroups];
2627 
2628         // Translate number to string, a digit group at a time
2629         BigInteger tmp = this.abs();
2630         int numGroups = 0;
2631         while (tmp.signum != 0) {
2632             BigInteger d = longRadix[radix];
2633 
2634             MutableBigInteger q = new MutableBigInteger(),
2635                               a = new MutableBigInteger(tmp.mag),
2636                               b = new MutableBigInteger(d.mag);
2637             MutableBigInteger r = a.divide(b, q);
2638             BigInteger q2 = q.toBigInteger(tmp.signum * d.signum);
2639             BigInteger r2 = r.toBigInteger(tmp.signum * d.signum);
2640 
2641             digitGroup[numGroups++] = Long.toString(r2.longValue(), radix);
2642             tmp = q2;
2643         }
2644 
2645         // Put sign (if any) and first digit group into result buffer
2646         StringBuilder buf = new StringBuilder(numGroups*digitsPerLong[radix]+1);
2647         if (signum<0)
2648             buf.append('-');
2649         buf.append(digitGroup[numGroups-1]);
2650 
2651         // Append remaining digit groups padded with leading zeros
2652         for (int i=numGroups-2; i>=0; i--) {
2653             // Prepend (any) leading zeros for this digit group
2654             int numLeadingZeros = digitsPerLong[radix]-digitGroup[i].length();
2655             if (numLeadingZeros != 0)
2656                 buf.append(zeros[numLeadingZeros]);
2657             buf.append(digitGroup[i]);
2658         }
2659         return buf.toString();
2660     }
2661 
2662     /* zero[i] is a string of i consecutive zeros. */
2663     private static String zeros[] = new String[64];
2664     static {
2665         zeros[63] =
2666             "000000000000000000000000000000000000000000000000000000000000000";
2667         for (int i=0; i<63; i++)
2668             zeros[i] = zeros[63].substring(0, i);
2669     }
2670 
2671     /**
2672      * Returns the decimal String representation of this BigInteger.
2673      * The digit-to-character mapping provided by
2674      * {@code Character.forDigit} is used, and a minus sign is
2675      * prepended if appropriate.  (This representation is compatible
2676      * with the {@link #BigInteger(String) (String)} constructor, and
2677      * allows for String concatenation with Java's + operator.)
2678      *
2679      * @return decimal String representation of this BigInteger.
2680      * @see    Character#forDigit
2681      * @see    #BigInteger(java.lang.String)
2682      */
2683     public String toString() {
2684         return toString(10);
2685     }
2686 
2687     /**
2688      * Returns a byte array containing the two's-complement
2689      * representation of this BigInteger.  The byte array will be in
2690      * <i>big-endian</i> byte-order: the most significant byte is in
2691      * the zeroth element.  The array will contain the minimum number
2692      * of bytes required to represent this BigInteger, including at
2693      * least one sign bit, which is {@code (ceil((this.bitLength() +
2694      * 1)/8))}.  (This representation is compatible with the
2695      * {@link #BigInteger(byte[]) (byte[])} constructor.)
2696      *
2697      * @return a byte array containing the two's-complement representation of
2698      *         this BigInteger.
2699      * @see    #BigInteger(byte[])
2700      */
2701     public byte[] toByteArray() {
2702         int byteLen = bitLength()/8 + 1;
2703         byte[] byteArray = new byte[byteLen];
2704 
2705         for (int i=byteLen-1, bytesCopied=4, nextInt=0, intIndex=0; i>=0; i--) {
2706             if (bytesCopied == 4) {
2707                 nextInt = getInt(intIndex++);
2708                 bytesCopied = 1;
2709             } else {
2710                 nextInt >>>= 8;
2711                 bytesCopied++;
2712             }
2713             byteArray[i] = (byte)nextInt;
2714         }
2715         return byteArray;
2716     }
2717 
2718     /**
2719      * Converts this BigInteger to an {@code int}.  This
2720      * conversion is analogous to a <a
2721      * href="http://java.sun.com/docs/books/jls/second_edition/html/conversions.doc.html#25363"><i>narrowing
2722      * primitive conversion</i></a> from {@code long} to
2723      * {@code int} as defined in the <a
2724      * href="http://java.sun.com/docs/books/jls/html/">Java Language
2725      * Specification</a>: if this BigInteger is too big to fit in an
2726      * {@code int}, only the low-order 32 bits are returned.
2727      * Note that this conversion can lose information about the
2728      * overall magnitude of the BigInteger value as well as return a
2729      * result with the opposite sign.
2730      *
2731      * @return this BigInteger converted to an {@code int}.
2732      */
2733     public int intValue() {
2734         int result = 0;
2735         result = getInt(0);
2736         return result;
2737     }
2738 
2739     /**
2740      * Converts this BigInteger to a {@code long}.  This
2741      * conversion is analogous to a <a
2742      * href="http://java.sun.com/docs/books/jls/second_edition/html/conversions.doc.html#25363"><i>narrowing
2743      * primitive conversion</i></a> from {@code long} to
2744      * {@code int} as defined in the <a
2745      * href="http://java.sun.com/docs/books/jls/html/">Java Language
2746      * Specification</a>: if this BigInteger is too big to fit in a
2747      * {@code long}, only the low-order 64 bits are returned.
2748      * Note that this conversion can lose information about the
2749      * overall magnitude of the BigInteger value as well as return a
2750      * result with the opposite sign.
2751      *
2752      * @return this BigInteger converted to a {@code long}.
2753      */
2754     public long longValue() {
2755         long result = 0;
2756 
2757         for (int i=1; i>=0; i--)
2758             result = (result << 32) + (getInt(i) & LONG_MASK);
2759         return result;
2760     }
2761 
2762     /**
2763      * Converts this BigInteger to a {@code float}.  This
2764      * conversion is similar to the <a
2765      * href="http://java.sun.com/docs/books/jls/second_edition/html/conversions.doc.html#25363"><i>narrowing
2766      * primitive conversion</i></a> from {@code double} to
2767      * {@code float} defined in the <a
2768      * href="http://java.sun.com/docs/books/jls/html/">Java Language
2769      * Specification</a>: if this BigInteger has too great a magnitude
2770      * to represent as a {@code float}, it will be converted to
2771      * {@link Float#NEGATIVE_INFINITY} or {@link
2772      * Float#POSITIVE_INFINITY} as appropriate.  Note that even when
2773      * the return value is finite, this conversion can lose
2774      * information about the precision of the BigInteger value.
2775      *
2776      * @return this BigInteger converted to a {@code float}.
2777      */
2778     public float floatValue() {
2779         // Somewhat inefficient, but guaranteed to work.
2780         return Float.parseFloat(this.toString());
2781     }
2782 
2783     /**
2784      * Converts this BigInteger to a {@code double}.  This
2785      * conversion is similar to the <a
2786      * href="http://java.sun.com/docs/books/jls/second_edition/html/conversions.doc.html#25363"><i>narrowing
2787      * primitive conversion</i></a> from {@code double} to
2788      * {@code float} defined in the <a
2789      * href="http://java.sun.com/docs/books/jls/html/">Java Language
2790      * Specification</a>: if this BigInteger has too great a magnitude
2791      * to represent as a {@code double}, it will be converted to
2792      * {@link Double#NEGATIVE_INFINITY} or {@link
2793      * Double#POSITIVE_INFINITY} as appropriate.  Note that even when
2794      * the return value is finite, this conversion can lose
2795      * information about the precision of the BigInteger value.
2796      *
2797      * @return this BigInteger converted to a {@code double}.
2798      */
2799     public double doubleValue() {
2800         // Somewhat inefficient, but guaranteed to work.
2801         return Double.parseDouble(this.toString());
2802     }
2803 
2804     /**
2805      * Returns a copy of the input array stripped of any leading zero bytes.
2806      */
2807     private static int[] stripLeadingZeroInts(int val[]) {
2808         int vlen = val.length;
2809         int keep;
2810 
2811         // Find first nonzero byte
2812         for (keep = 0; keep < vlen && val[keep] == 0; keep++)
2813             ;
2814         return java.util.Arrays.copyOfRange(val, keep, vlen);
2815     }
2816 
2817     /**
2818      * Returns the input array stripped of any leading zero bytes.
2819      * Since the source is trusted the copying may be skipped.
2820      */
2821     private static int[] trustedStripLeadingZeroInts(int val[]) {
2822         int vlen = val.length;
2823         int keep;
2824 
2825         // Find first nonzero byte
2826         for (keep = 0; keep < vlen && val[keep] == 0; keep++)
2827             ;
2828         return keep == 0 ? val : java.util.Arrays.copyOfRange(val, keep, vlen);
2829     }
2830 
2831     /**
2832      * Returns a copy of the input array stripped of any leading zero bytes.
2833      */
2834     private static int[] stripLeadingZeroBytes(byte a[]) {
2835         int byteLength = a.length;
2836         int keep;
2837 
2838         // Find first nonzero byte
2839         for (keep = 0; keep < byteLength && a[keep]==0; keep++)
2840             ;
2841 
2842         // Allocate new array and copy relevant part of input array
2843         int intLength = ((byteLength - keep) + 3) >>> 2;
2844         int[] result = new int[intLength];
2845         int b = byteLength - 1;
2846         for (int i = intLength-1; i >= 0; i--) {
2847             result[i] = a[b--] & 0xff;
2848             int bytesRemaining = b - keep + 1;
2849             int bytesToTransfer = Math.min(3, bytesRemaining);
2850             for (int j=8; j <= (bytesToTransfer << 3); j += 8)
2851                 result[i] |= ((a[b--] & 0xff) << j);
2852         }
2853         return result;
2854     }
2855 
2856     /**
2857      * Takes an array a representing a negative 2's-complement number and
2858      * returns the minimal (no leading zero bytes) unsigned whose value is -a.
2859      */
2860     private static int[] makePositive(byte a[]) {
2861         int keep, k;
2862         int byteLength = a.length;
2863 
2864         // Find first non-sign (0xff) byte of input
2865         for (keep=0; keep<byteLength && a[keep]==-1; keep++)
2866             ;
2867 
2868 
2869         /* Allocate output array.  If all non-sign bytes are 0x00, we must
2870          * allocate space for one extra output byte. */
2871         for (k=keep; k<byteLength && a[k]==0; k++)
2872             ;
2873 
2874         int extraByte = (k==byteLength) ? 1 : 0;
2875         int intLength = ((byteLength - keep + extraByte) + 3)/4;
2876         int result[] = new int[intLength];
2877 
2878         /* Copy one's complement of input into output, leaving extra
2879          * byte (if it exists) == 0x00 */
2880         int b = byteLength - 1;
2881         for (int i = intLength-1; i >= 0; i--) {
2882             result[i] = a[b--] & 0xff;
2883             int numBytesToTransfer = Math.min(3, b-keep+1);
2884             if (numBytesToTransfer < 0)
2885                 numBytesToTransfer = 0;
2886             for (int j=8; j <= 8*numBytesToTransfer; j += 8)
2887                 result[i] |= ((a[b--] & 0xff) << j);
2888 
2889             // Mask indicates which bits must be complemented
2890             int mask = -1 >>> (8*(3-numBytesToTransfer));
2891             result[i] = ~result[i] & mask;
2892         }
2893 
2894         // Add one to one's complement to generate two's complement
2895         for (int i=result.length-1; i>=0; i--) {
2896             result[i] = (int)((result[i] & LONG_MASK) + 1);
2897             if (result[i] != 0)
2898                 break;
2899         }
2900 
2901         return result;
2902     }
2903 
2904     /**
2905      * Takes an array a representing a negative 2's-complement number and
2906      * returns the minimal (no leading zero ints) unsigned whose value is -a.
2907      */
2908     private static int[] makePositive(int a[]) {
2909         int keep, j;
2910 
2911         // Find first non-sign (0xffffffff) int of input
2912         for (keep=0; keep<a.length && a[keep]==-1; keep++)
2913             ;
2914 
2915         /* Allocate output array.  If all non-sign ints are 0x00, we must
2916          * allocate space for one extra output int. */
2917         for (j=keep; j<a.length && a[j]==0; j++)
2918             ;
2919         int extraInt = (j==a.length ? 1 : 0);
2920         int result[] = new int[a.length - keep + extraInt];
2921 
2922         /* Copy one's complement of input into output, leaving extra
2923          * int (if it exists) == 0x00 */
2924         for (int i = keep; i<a.length; i++)
2925             result[i - keep + extraInt] = ~a[i];
2926 
2927         // Add one to one's complement to generate two's complement
2928         for (int i=result.length-1; ++result[i]==0; i--)
2929             ;
2930 
2931         return result;
2932     }
2933 
2934     /*
2935      * The following two arrays are used for fast String conversions.  Both
2936      * are indexed by radix.  The first is the number of digits of the given
2937      * radix that can fit in a Java long without "going negative", i.e., the
2938      * highest integer n such that radix**n < 2**63.  The second is the
2939      * "long radix" that tears each number into "long digits", each of which
2940      * consists of the number of digits in the corresponding element in
2941      * digitsPerLong (longRadix[i] = i**digitPerLong[i]).  Both arrays have
2942      * nonsense values in their 0 and 1 elements, as radixes 0 and 1 are not
2943      * used.
2944      */
2945     private static int digitsPerLong[] = {0, 0,
2946         62, 39, 31, 27, 24, 22, 20, 19, 18, 18, 17, 17, 16, 16, 15, 15, 15, 14,
2947         14, 14, 14, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12};
2948 
2949     private static BigInteger longRadix[] = {null, null,
2950         valueOf(0x4000000000000000L), valueOf(0x383d9170b85ff80bL),
2951         valueOf(0x4000000000000000L), valueOf(0x6765c793fa10079dL),
2952         valueOf(0x41c21cb8e1000000L), valueOf(0x3642798750226111L),
2953         valueOf(0x1000000000000000L), valueOf(0x12bf307ae81ffd59L),
2954         valueOf( 0xde0b6b3a7640000L), valueOf(0x4d28cb56c33fa539L),
2955         valueOf(0x1eca170c00000000L), valueOf(0x780c7372621bd74dL),
2956         valueOf(0x1e39a5057d810000L), valueOf(0x5b27ac993df97701L),
2957         valueOf(0x1000000000000000L), valueOf(0x27b95e997e21d9f1L),
2958         valueOf(0x5da0e1e53c5c8000L), valueOf( 0xb16a458ef403f19L),
2959         valueOf(0x16bcc41e90000000L), valueOf(0x2d04b7fdd9c0ef49L),
2960         valueOf(0x5658597bcaa24000L), valueOf( 0x6feb266931a75b7L),
2961         valueOf( 0xc29e98000000000L), valueOf(0x14adf4b7320334b9L),
2962         valueOf(0x226ed36478bfa000L), valueOf(0x383d9170b85ff80bL),
2963         valueOf(0x5a3c23e39c000000L), valueOf( 0x4e900abb53e6b71L),
2964         valueOf( 0x7600ec618141000L), valueOf( 0xaee5720ee830681L),
2965         valueOf(0x1000000000000000L), valueOf(0x172588ad4f5f0981L),
2966         valueOf(0x211e44f7d02c1000L), valueOf(0x2ee56725f06e5c71L),
2967         valueOf(0x41c21cb8e1000000L)};
2968 
2969     /*
2970      * These two arrays are the integer analogue of above.
2971      */
2972     private static int digitsPerInt[] = {0, 0, 30, 19, 15, 13, 11,
2973         11, 10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6,
2974         6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5};
2975 
2976     private static int intRadix[] = {0, 0,
2977         0x40000000, 0x4546b3db, 0x40000000, 0x48c27395, 0x159fd800,
2978         0x75db9c97, 0x40000000, 0x17179149, 0x3b9aca00, 0xcc6db61,
2979         0x19a10000, 0x309f1021, 0x57f6c100, 0xa2f1b6f,  0x10000000,
2980         0x18754571, 0x247dbc80, 0x3547667b, 0x4c4b4000, 0x6b5a6e1d,
2981         0x6c20a40,  0x8d2d931,  0xb640000,  0xe8d4a51,  0x1269ae40,
2982         0x17179149, 0x1cb91000, 0x23744899, 0x2b73a840, 0x34e63b41,
2983         0x40000000, 0x4cfa3cc1, 0x5c13d840, 0x6d91b519, 0x39aa400
2984     };
2985 
2986     /**
2987      * These routines provide access to the two's complement representation
2988      * of BigIntegers.
2989      */
2990 
2991     /**
2992      * Returns the length of the two's complement representation in ints,
2993      * including space for at least one sign bit.
2994      */
2995     private int intLength() {
2996         return (bitLength() >>> 5) + 1;
2997     }
2998 
2999     /* Returns sign bit */
3000     private int signBit() {
3001         return signum < 0 ? 1 : 0;
3002     }
3003 
3004     /* Returns an int of sign bits */
3005     private int signInt() {
3006         return signum < 0 ? -1 : 0;
3007     }
3008 
3009     /**
3010      * Returns the specified int of the little-endian two's complement
3011      * representation (int 0 is the least significant).  The int number can
3012      * be arbitrarily high (values are logically preceded by infinitely many
3013      * sign ints).
3014      */
3015     private int getInt(int n) {
3016         if (n < 0)
3017             return 0;
3018         if (n >= mag.length)
3019             return signInt();
3020 
3021         int magInt = mag[mag.length-n-1];
3022 
3023         return (signum >= 0 ? magInt :
3024                 (n <= firstNonzeroIntNum() ? -magInt : ~magInt));
3025     }
3026 
3027     /**
3028      * Returns the index of the int that contains the first nonzero int in the
3029      * little-endian binary representation of the magnitude (int 0 is the
3030      * least significant). If the magnitude is zero, return value is undefined.
3031      */
3032      private int firstNonzeroIntNum() {
3033          int fn = firstNonzeroIntNum - 2;
3034          if (fn == -2) { // firstNonzeroIntNum not initialized yet
3035              fn = 0;
3036 
3037              // Search for the first nonzero int
3038              int i;
3039              int mlen = mag.length;
3040              for (i = mlen - 1; i >= 0 && mag[i] == 0; i--)
3041                  ;
3042              fn = mlen - i - 1;
3043              firstNonzeroIntNum = fn + 2; // offset by two to initialize
3044          }
3045          return fn;
3046      }
3047 
3048     /** use serialVersionUID from JDK 1.1. for interoperability */
3049     private static final long serialVersionUID = -8287574255936472291L;
3050 
3051     /**
3052      * Serializable fields for BigInteger.
3053      *
3054      * @serialField signum  int
3055      *              signum of this BigInteger.
3056      * @serialField magnitude int[]
3057      *              magnitude array of this BigInteger.
3058      * @serialField bitCount  int
3059      *              number of bits in this BigInteger
3060      * @serialField bitLength int
3061      *              the number of bits in the minimal two's-complement
3062      *              representation of this BigInteger
3063      * @serialField lowestSetBit int
3064      *              lowest set bit in the twos complement representation
3065      */
3066     private static final ObjectStreamField[] serialPersistentFields = {
3067         new ObjectStreamField("signum", Integer.TYPE),
3068         new ObjectStreamField("magnitude", byte[].class),
3069         new ObjectStreamField("bitCount", Integer.TYPE),
3070         new ObjectStreamField("bitLength", Integer.TYPE),
3071         new ObjectStreamField("firstNonzeroByteNum", Integer.TYPE),
3072         new ObjectStreamField("lowestSetBit", Integer.TYPE)
3073         };
3074 
3075     /**
3076      * Reconstitute the {@code BigInteger} instance from a stream (that is,
3077      * deserialize it). The magnitude is read in as an array of bytes
3078      * for historical reasons, but it is converted to an array of ints
3079      * and the byte array is discarded.
3080      * Note:
3081      * The current convention is to initialize the cache fields, bitCount,
3082      * bitLength and lowestSetBit, to 0 rather than some other marker value.
3083      * Therefore, no explicit action to set these fields needs to be taken in
3084      * readObject because those fields already have a 0 value be default since
3085      * defaultReadObject is not being used.
3086      */
3087     private void readObject(java.io.ObjectInputStream s)
3088         throws java.io.IOException, ClassNotFoundException {
3089         /*
3090          * In order to maintain compatibility with previous serialized forms,
3091          * the magnitude of a BigInteger is serialized as an array of bytes.
3092          * The magnitude field is used as a temporary store for the byte array
3093          * that is deserialized. The cached computation fields should be
3094          * transient but are serialized for compatibility reasons.
3095          */
3096 
3097         // prepare to read the alternate persistent fields
3098         ObjectInputStream.GetField fields = s.readFields();
3099 
3100         // Read the alternate persistent fields that we care about
3101         int sign = fields.get("signum", -2);
3102         byte[] magnitude = (byte[])fields.get("magnitude", null);
3103 
3104         // Validate signum
3105         if (sign < -1 || sign > 1) {
3106             String message = "BigInteger: Invalid signum value";
3107             if (fields.defaulted("signum"))
3108                 message = "BigInteger: Signum not present in stream";
3109             throw new java.io.StreamCorruptedException(message);
3110         }
3111         if ((magnitude.length == 0) != (sign == 0)) {
3112             String message = "BigInteger: signum-magnitude mismatch";
3113             if (fields.defaulted("magnitude"))
3114                 message = "BigInteger: Magnitude not present in stream";
3115             throw new java.io.StreamCorruptedException(message);
3116         }
3117 
3118         // Commit final fields via Unsafe
3119         unsafe.putIntVolatile(this, signumOffset, sign);
3120 
3121         // Calculate mag field from magnitude and discard magnitude
3122         unsafe.putObjectVolatile(this, magOffset,
3123                                  stripLeadingZeroBytes(magnitude));
3124     }
3125 
3126     // Support for resetting final fields while deserializing
3127     private static final sun.misc.Unsafe unsafe = sun.misc.Unsafe.getUnsafe();
3128     private static final long signumOffset;
3129     private static final long magOffset;
3130     static {
3131         try {
3132             signumOffset = unsafe.objectFieldOffset
3133                 (BigInteger.class.getDeclaredField("signum"));
3134             magOffset = unsafe.objectFieldOffset
3135                 (BigInteger.class.getDeclaredField("mag"));
3136         } catch (Exception ex) {
3137             throw new Error(ex);
3138         }
3139     }
3140 
3141     /**
3142      * Save the {@code BigInteger} instance to a stream.
3143      * The magnitude of a BigInteger is serialized as a byte array for
3144      * historical reasons.
3145      *
3146      * @serialData two necessary fields are written as well as obsolete
3147      *             fields for compatibility with older versions.
3148      */
3149     private void writeObject(ObjectOutputStream s) throws IOException {
3150         // set the values of the Serializable fields
3151         ObjectOutputStream.PutField fields = s.putFields();
3152         fields.put("signum", signum);
3153         fields.put("magnitude", magSerializedForm());
3154         // The values written for cached fields are compatible with older
3155         // versions, but are ignored in readObject so don't otherwise matter.
3156         fields.put("bitCount", -1);
3157         fields.put("bitLength", -1);
3158         fields.put("lowestSetBit", -2);
3159         fields.put("firstNonzeroByteNum", -2);
3160 
3161         // save them
3162         s.writeFields();
3163 }
3164 
3165     /**
3166      * Returns the mag array as an array of bytes.
3167      */
3168     private byte[] magSerializedForm() {
3169         int len = mag.length;
3170 
3171         int bitLen = (len == 0 ? 0 : ((len - 1) << 5) + bitLengthForInt(mag[0]));
3172         int byteLen = (bitLen + 7) >>> 3;
3173         byte[] result = new byte[byteLen];
3174 
3175         for (int i = byteLen - 1, bytesCopied = 4, intIndex = len - 1, nextInt = 0;
3176              i>=0; i--) {
3177             if (bytesCopied == 4) {
3178                 nextInt = mag[intIndex--];
3179                 bytesCopied = 1;
3180             } else {
3181                 nextInt >>>= 8;
3182                 bytesCopied++;
3183             }
3184             result[i] = (byte)nextInt;
3185         }
3186         return result;
3187     }
3188 }