1 /*
   2  * Copyright 2003-2005 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  */
  23 
  24 /*
  25  * @test
  26  * @bug 4860891 4826732 4780454 4939441 4826652
  27  * @summary Tests for IEEE 754[R] recommended functions and similar methods
  28  * @author Joseph D. Darcy
  29  */
  30 
  31 import sun.misc.FpUtils;
  32 import sun.misc.DoubleConsts;
  33 import sun.misc.FloatConsts;
  34 
  35 public class IeeeRecommendedTests {
  36     private IeeeRecommendedTests(){}
  37 
  38     static final float  NaNf = Float.NaN;
  39     static final double NaNd = Double.NaN;
  40     static final float  infinityF = Float.POSITIVE_INFINITY;
  41     static final double infinityD = Double.POSITIVE_INFINITY;
  42 
  43     static final float  Float_MAX_VALUEmm       = 0x1.fffffcP+127f;
  44     static final float  Float_MAX_SUBNORMAL     = 0x0.fffffeP-126f;
  45     static final float  Float_MAX_SUBNORMALmm   = 0x0.fffffcP-126f;
  46 
  47     static final double Double_MAX_VALUEmm      = 0x1.ffffffffffffeP+1023;
  48     static final double Double_MAX_SUBNORMAL    = 0x0.fffffffffffffP-1022;
  49     static final double Double_MAX_SUBNORMALmm  = 0x0.ffffffffffffeP-1022;
  50 
  51     // Initialize shared random number generator
  52     static java.util.Random rand = new java.util.Random();
  53 
  54     /**
  55      * Returns a floating-point power of two in the normal range.
  56      */
  57     static double powerOfTwoD(int n) {
  58         return Double.longBitsToDouble((((long)n + (long)DoubleConsts.MAX_EXPONENT) <<
  59                                         (DoubleConsts.SIGNIFICAND_WIDTH-1))
  60                                        & DoubleConsts.EXP_BIT_MASK);
  61     }
  62 
  63     /**
  64      * Returns a floating-point power of two in the normal range.
  65      */
  66     static float powerOfTwoF(int n) {
  67         return Float.intBitsToFloat(((n + FloatConsts.MAX_EXPONENT) <<
  68                                      (FloatConsts.SIGNIFICAND_WIDTH-1))
  69                                     & FloatConsts.EXP_BIT_MASK);
  70     }
  71 
  72     /* ******************** getExponent tests ****************************** */
  73 
  74     /*
  75      * The tests for getExponent should test the special values (NaN, +/-
  76      * infinity, etc.), test the endpoints of each binade (set of
  77      * floating-point values with the same exponent), and for good
  78      * measure, test some random values within each binade.  Testing
  79      * the endpoints of each binade includes testing both positive and
  80      * negative numbers.  Subnormal values with different normalized
  81      * exponents should be tested too.  Both Math and StrictMath
  82      * methods should return the same results.
  83      */
  84 
  85     /*
  86      * Test Math.getExponent and StrictMath.getExponent with +d and -d.
  87      */
  88     static int testGetExponentCase(float f, int expected) {
  89         float minus_f = -f;
  90         int failures=0;
  91 
  92         failures+=Tests.test("Math.getExponent(float)", f,
  93                              Math.getExponent(f), expected);
  94         failures+=Tests.test("Math.getExponent(float)", minus_f,
  95                              Math.getExponent(minus_f), expected);
  96 
  97         failures+=Tests.test("StrictMath.getExponent(float)", f,
  98                              StrictMath.getExponent(f), expected);
  99         failures+=Tests.test("StrictMath.getExponent(float)", minus_f,
 100                              StrictMath.getExponent(minus_f), expected);
 101         return failures;
 102     }
 103 
 104     /*
 105      * Test Math.getExponent and StrictMath.getExponent with +d and -d.
 106      */
 107     static int testGetExponentCase(double d, int expected) {
 108         double minus_d = -d;
 109         int failures=0;
 110 
 111         failures+=Tests.test("Math.getExponent(double)", d,
 112                              Math.getExponent(d), expected);
 113         failures+=Tests.test("Math.getExponent(double)", minus_d,
 114                              Math.getExponent(minus_d), expected);
 115 
 116         failures+=Tests.test("StrictMath.getExponent(double)", d,
 117                              StrictMath.getExponent(d), expected);
 118         failures+=Tests.test("StrictMath.getExponent(double)", minus_d,
 119                              StrictMath.getExponent(minus_d), expected);
 120         return failures;
 121     }
 122 
 123     public static int testFloatGetExponent() {
 124         int failures = 0;
 125         float [] specialValues = {NaNf,
 126                                    Float.POSITIVE_INFINITY,
 127                                    +0.0f,
 128                                   +1.0f,
 129                                   +2.0f,
 130                                   +16.0f,
 131                                   +Float.MIN_VALUE,
 132                                   +Float_MAX_SUBNORMAL,
 133                                   +FloatConsts.MIN_NORMAL,
 134                                   +Float.MAX_VALUE
 135         };
 136 
 137         int [] specialResults = {Float.MAX_EXPONENT + 1, // NaN results
 138                                  Float.MAX_EXPONENT + 1, // Infinite results
 139                                  Float.MIN_EXPONENT - 1, // Zero results
 140                                  0,
 141                                  1,
 142                                  4,
 143                                  FloatConsts.MIN_EXPONENT - 1,
 144                                  -FloatConsts.MAX_EXPONENT,
 145                                  FloatConsts.MIN_EXPONENT,
 146                                  FloatConsts.MAX_EXPONENT
 147         };
 148 
 149         // Special value tests
 150         for(int i = 0; i < specialValues.length; i++) {
 151             failures += testGetExponentCase(specialValues[i], specialResults[i]);
 152         }
 153 
 154 
 155         // Normal exponent tests
 156         for(int i = FloatConsts.MIN_EXPONENT; i <= FloatConsts.MAX_EXPONENT; i++) {
 157             int result;
 158 
 159             // Create power of two
 160             float po2 = powerOfTwoF(i);
 161 
 162             failures += testGetExponentCase(po2, i);
 163 
 164             // Generate some random bit patterns for the significand
 165             for(int j = 0; j < 10; j++) {
 166                 int randSignif = rand.nextInt();
 167                 float randFloat;
 168 
 169                 randFloat = Float.intBitsToFloat( // Exponent
 170                                                  (Float.floatToIntBits(po2)&
 171                                                   (~FloatConsts.SIGNIF_BIT_MASK)) |
 172                                                  // Significand
 173                                                  (randSignif &
 174                                                   FloatConsts.SIGNIF_BIT_MASK) );
 175 
 176                 failures += testGetExponentCase(randFloat, i);
 177             }
 178 
 179             if (i > FloatConsts.MIN_EXPONENT) {
 180                 float po2minus = FpUtils.nextAfter(po2,
 181                                                  Float.NEGATIVE_INFINITY);
 182                 failures += testGetExponentCase(po2minus, i-1);
 183             }
 184         }
 185 
 186         // Subnormal exponent tests
 187 
 188         /*
 189          * Start with MIN_VALUE, left shift, test high value, low
 190          * values, and random in between.
 191          *
 192          * Use nextAfter to calculate, high value of previous binade,
 193          * loop count i will indicate how many random bits, if any are
 194          * needed.
 195          */
 196 
 197         float top=Float.MIN_VALUE;
 198         for( int i = 1;
 199             i < FloatConsts.SIGNIFICAND_WIDTH;
 200             i++, top *= 2.0f) {
 201 
 202             failures += testGetExponentCase(top,
 203                                             FloatConsts.MIN_EXPONENT - 1);
 204 
 205             // Test largest value in next smaller binade
 206             if (i >= 3) {// (i == 1) would test 0.0;
 207                          // (i == 2) would just retest MIN_VALUE
 208                 testGetExponentCase(FpUtils.nextAfter(top, 0.0f),
 209                                     FloatConsts.MIN_EXPONENT - 1);
 210 
 211                 if( i >= 10) {
 212                     // create a bit mask with (i-1) 1's in the low order
 213                     // bits
 214                     int mask = ~((~0)<<(i-1));
 215                     float randFloat = Float.intBitsToFloat( // Exponent
 216                                                  Float.floatToIntBits(top) |
 217                                                  // Significand
 218                                                  (rand.nextInt() & mask ) ) ;
 219 
 220                     failures += testGetExponentCase(randFloat,
 221                                                     FloatConsts.MIN_EXPONENT - 1);
 222                 }
 223             }
 224         }
 225 
 226         return failures;
 227     }
 228 
 229 
 230     public static int testDoubleGetExponent() {
 231         int failures = 0;
 232         double [] specialValues = {NaNd,
 233                                    infinityD,
 234                                    +0.0,
 235                                    +1.0,
 236                                    +2.0,
 237                                    +16.0,
 238                                    +Double.MIN_VALUE,
 239                                    +Double_MAX_SUBNORMAL,
 240                                    +DoubleConsts.MIN_NORMAL,
 241                                    +Double.MAX_VALUE
 242         };
 243 
 244         int [] specialResults = {Double.MAX_EXPONENT + 1, // NaN results
 245                                  Double.MAX_EXPONENT + 1, // Infinite results
 246                                  Double.MIN_EXPONENT - 1, // Zero results
 247                                  0,
 248                                  1,
 249                                  4,
 250                                  DoubleConsts.MIN_EXPONENT - 1,
 251                                  -DoubleConsts.MAX_EXPONENT,
 252                                  DoubleConsts.MIN_EXPONENT,
 253                                  DoubleConsts.MAX_EXPONENT
 254         };
 255 
 256         // Special value tests
 257         for(int i = 0; i < specialValues.length; i++) {
 258             failures += testGetExponentCase(specialValues[i], specialResults[i]);
 259         }
 260 
 261 
 262         // Normal exponent tests
 263         for(int i = DoubleConsts.MIN_EXPONENT; i <= DoubleConsts.MAX_EXPONENT; i++) {
 264             int result;
 265 
 266             // Create power of two
 267             double po2 = powerOfTwoD(i);
 268 
 269             failures += testGetExponentCase(po2, i);
 270 
 271             // Generate some random bit patterns for the significand
 272             for(int j = 0; j < 10; j++) {
 273                 long randSignif = rand.nextLong();
 274                 double randFloat;
 275 
 276                 randFloat = Double.longBitsToDouble( // Exponent
 277                                                  (Double.doubleToLongBits(po2)&
 278                                                   (~DoubleConsts.SIGNIF_BIT_MASK)) |
 279                                                  // Significand
 280                                                  (randSignif &
 281                                                   DoubleConsts.SIGNIF_BIT_MASK) );
 282 
 283                 failures += testGetExponentCase(randFloat, i);
 284             }
 285 
 286             if (i > DoubleConsts.MIN_EXPONENT) {
 287                 double po2minus = FpUtils.nextAfter(po2,
 288                                                     Double.NEGATIVE_INFINITY);
 289                 failures += testGetExponentCase(po2minus, i-1);
 290             }
 291         }
 292 
 293         // Subnormal exponent tests
 294 
 295         /*
 296          * Start with MIN_VALUE, left shift, test high value, low
 297          * values, and random in between.
 298          *
 299          * Use nextAfter to calculate, high value of previous binade;
 300          * loop count i will indicate how many random bits, if any are
 301          * needed.
 302          */
 303 
 304         double top=Double.MIN_VALUE;
 305         for( int i = 1;
 306             i < DoubleConsts.SIGNIFICAND_WIDTH;
 307             i++, top *= 2.0f) {
 308 
 309             failures += testGetExponentCase(top,
 310                                             DoubleConsts.MIN_EXPONENT - 1);
 311 
 312             // Test largest value in next smaller binade
 313             if (i >= 3) {// (i == 1) would test 0.0;
 314                          // (i == 2) would just retest MIN_VALUE
 315                 testGetExponentCase(FpUtils.nextAfter(top, 0.0),
 316                                     DoubleConsts.MIN_EXPONENT - 1);
 317 
 318                 if( i >= 10) {
 319                     // create a bit mask with (i-1) 1's in the low order
 320                     // bits
 321                     long mask = ~((~0L)<<(i-1));
 322                     double randFloat = Double.longBitsToDouble( // Exponent
 323                                                  Double.doubleToLongBits(top) |
 324                                                  // Significand
 325                                                  (rand.nextLong() & mask ) ) ;
 326 
 327                     failures += testGetExponentCase(randFloat,
 328                                                     DoubleConsts.MIN_EXPONENT - 1);
 329                 }
 330             }
 331         }
 332 
 333         return failures;
 334     }
 335 
 336 
 337     /* ******************** nextAfter tests ****************************** */
 338 
 339     static int testNextAfterCase(float start, double direction, float expected) {
 340         int failures=0;
 341         float minus_start = -start;
 342         double minus_direction = -direction;
 343         float minus_expected = -expected;
 344 
 345         failures+=Tests.test("Math.nextAfter(float,double)", start, direction,
 346                              Math.nextAfter(start, direction), expected);
 347         failures+=Tests.test("Math.nextAfter(float,double)", minus_start, minus_direction,
 348                              Math.nextAfter(minus_start, minus_direction), minus_expected);
 349 
 350         failures+=Tests.test("StrictMath.nextAfter(float,double)", start, direction,
 351                              StrictMath.nextAfter(start, direction), expected);
 352         failures+=Tests.test("StrictMath.nextAfter(float,double)", minus_start, minus_direction,
 353                              StrictMath.nextAfter(minus_start, minus_direction), minus_expected);
 354         return failures;
 355     }
 356 
 357     static int testNextAfterCase(double start, double direction, double expected) {
 358         int failures=0;
 359 
 360         double minus_start = -start;
 361         double minus_direction = -direction;
 362         double minus_expected = -expected;
 363 
 364         failures+=Tests.test("Math.nextAfter(double,double)", start, direction,
 365                              Math.nextAfter(start, direction), expected);
 366         failures+=Tests.test("Math.nextAfter(double,double)", minus_start, minus_direction,
 367                              Math.nextAfter(minus_start, minus_direction), minus_expected);
 368 
 369         failures+=Tests.test("StrictMath.nextAfter(double,double)", start, direction,
 370                              StrictMath.nextAfter(start, direction), expected);
 371         failures+=Tests.test("StrictMath.nextAfter(double,double)", minus_start, minus_direction,
 372                              StrictMath.nextAfter(minus_start, minus_direction), minus_expected);
 373         return failures;
 374     }
 375 
 376     public static int testFloatNextAfter() {
 377         int failures=0;
 378 
 379         /*
 380          * Each row of the testCases matrix represents one test case
 381          * for nexAfter; given the input of the first two columns, the
 382          * result in the last column is expected.
 383          */
 384         float [][] testCases  = {
 385             {NaNf,              NaNf,                   NaNf},
 386             {NaNf,              0.0f,                   NaNf},
 387             {0.0f,              NaNf,                   NaNf},
 388             {NaNf,              infinityF,              NaNf},
 389             {infinityF,         NaNf,                   NaNf},
 390 
 391             {infinityF,         infinityF,              infinityF},
 392             {infinityF,         -infinityF,             Float.MAX_VALUE},
 393             {infinityF,         0.0f,                   Float.MAX_VALUE},
 394 
 395             {Float.MAX_VALUE,   infinityF,              infinityF},
 396             {Float.MAX_VALUE,   -infinityF,             Float_MAX_VALUEmm},
 397             {Float.MAX_VALUE,   Float.MAX_VALUE,        Float.MAX_VALUE},
 398             {Float.MAX_VALUE,   0.0f,                   Float_MAX_VALUEmm},
 399 
 400             {Float_MAX_VALUEmm, Float.MAX_VALUE,        Float.MAX_VALUE},
 401             {Float_MAX_VALUEmm, infinityF,              Float.MAX_VALUE},
 402             {Float_MAX_VALUEmm, Float_MAX_VALUEmm,      Float_MAX_VALUEmm},
 403 
 404             {FloatConsts.MIN_NORMAL,    infinityF,              FloatConsts.MIN_NORMAL+
 405                                                                 Float.MIN_VALUE},
 406             {FloatConsts.MIN_NORMAL,    -infinityF,             Float_MAX_SUBNORMAL},
 407             {FloatConsts.MIN_NORMAL,    1.0f,                   FloatConsts.MIN_NORMAL+
 408                                                                 Float.MIN_VALUE},
 409             {FloatConsts.MIN_NORMAL,    -1.0f,                  Float_MAX_SUBNORMAL},
 410             {FloatConsts.MIN_NORMAL,    FloatConsts.MIN_NORMAL, FloatConsts.MIN_NORMAL},
 411 
 412             {Float_MAX_SUBNORMAL,       FloatConsts.MIN_NORMAL, FloatConsts.MIN_NORMAL},
 413             {Float_MAX_SUBNORMAL,       Float_MAX_SUBNORMAL,    Float_MAX_SUBNORMAL},
 414             {Float_MAX_SUBNORMAL,       0.0f,                   Float_MAX_SUBNORMALmm},
 415 
 416             {Float_MAX_SUBNORMALmm,     Float_MAX_SUBNORMAL,    Float_MAX_SUBNORMAL},
 417             {Float_MAX_SUBNORMALmm,     0.0f,                   Float_MAX_SUBNORMALmm-Float.MIN_VALUE},
 418             {Float_MAX_SUBNORMALmm,     Float_MAX_SUBNORMALmm,  Float_MAX_SUBNORMALmm},
 419 
 420             {Float.MIN_VALUE,   0.0f,                   0.0f},
 421             {-Float.MIN_VALUE,  0.0f,                   -0.0f},
 422             {Float.MIN_VALUE,   Float.MIN_VALUE,        Float.MIN_VALUE},
 423             {Float.MIN_VALUE,   1.0f,                   2*Float.MIN_VALUE},
 424 
 425             // Make sure zero behavior is tested
 426             {0.0f,              0.0f,                   0.0f},
 427             {0.0f,              -0.0f,                  -0.0f},
 428             {-0.0f,             0.0f,                   0.0f},
 429             {-0.0f,             -0.0f,                  -0.0f},
 430             {0.0f,              infinityF,              Float.MIN_VALUE},
 431             {0.0f,              -infinityF,             -Float.MIN_VALUE},
 432             {-0.0f,             infinityF,              Float.MIN_VALUE},
 433             {-0.0f,             -infinityF,             -Float.MIN_VALUE},
 434             {0.0f,              Float.MIN_VALUE,        Float.MIN_VALUE},
 435             {0.0f,              -Float.MIN_VALUE,       -Float.MIN_VALUE},
 436             {-0.0f,             Float.MIN_VALUE,        Float.MIN_VALUE},
 437             {-0.0f,             -Float.MIN_VALUE,       -Float.MIN_VALUE}
 438         };
 439 
 440         for(int i = 0; i < testCases.length; i++) {
 441             failures += testNextAfterCase(testCases[i][0], testCases[i][1],
 442                                           testCases[i][2]);
 443         }
 444 
 445         return failures;
 446     }
 447 
 448     public static int testDoubleNextAfter() {
 449         int failures =0;
 450 
 451         /*
 452          * Each row of the testCases matrix represents one test case
 453          * for nexAfter; given the input of the first two columns, the
 454          * result in the last column is expected.
 455          */
 456         double [][] testCases  = {
 457             {NaNd,              NaNd,                   NaNd},
 458             {NaNd,              0.0d,                   NaNd},
 459             {0.0d,              NaNd,                   NaNd},
 460             {NaNd,              infinityD,              NaNd},
 461             {infinityD,         NaNd,                   NaNd},
 462 
 463             {infinityD,         infinityD,              infinityD},
 464             {infinityD,         -infinityD,             Double.MAX_VALUE},
 465             {infinityD,         0.0d,                   Double.MAX_VALUE},
 466 
 467             {Double.MAX_VALUE,  infinityD,              infinityD},
 468             {Double.MAX_VALUE,  -infinityD,             Double_MAX_VALUEmm},
 469             {Double.MAX_VALUE,  Double.MAX_VALUE,       Double.MAX_VALUE},
 470             {Double.MAX_VALUE,  0.0d,                   Double_MAX_VALUEmm},
 471 
 472             {Double_MAX_VALUEmm,        Double.MAX_VALUE,       Double.MAX_VALUE},
 473             {Double_MAX_VALUEmm,        infinityD,              Double.MAX_VALUE},
 474             {Double_MAX_VALUEmm,        Double_MAX_VALUEmm,     Double_MAX_VALUEmm},
 475 
 476             {DoubleConsts.MIN_NORMAL,   infinityD,              DoubleConsts.MIN_NORMAL+
 477                                                                 Double.MIN_VALUE},
 478             {DoubleConsts.MIN_NORMAL,   -infinityD,             Double_MAX_SUBNORMAL},
 479             {DoubleConsts.MIN_NORMAL,   1.0f,                   DoubleConsts.MIN_NORMAL+
 480                                                                 Double.MIN_VALUE},
 481             {DoubleConsts.MIN_NORMAL,   -1.0f,                  Double_MAX_SUBNORMAL},
 482             {DoubleConsts.MIN_NORMAL,   DoubleConsts.MIN_NORMAL,DoubleConsts.MIN_NORMAL},
 483 
 484             {Double_MAX_SUBNORMAL,      DoubleConsts.MIN_NORMAL,DoubleConsts.MIN_NORMAL},
 485             {Double_MAX_SUBNORMAL,      Double_MAX_SUBNORMAL,   Double_MAX_SUBNORMAL},
 486             {Double_MAX_SUBNORMAL,      0.0d,                   Double_MAX_SUBNORMALmm},
 487 
 488             {Double_MAX_SUBNORMALmm,    Double_MAX_SUBNORMAL,   Double_MAX_SUBNORMAL},
 489             {Double_MAX_SUBNORMALmm,    0.0d,                   Double_MAX_SUBNORMALmm-Double.MIN_VALUE},
 490             {Double_MAX_SUBNORMALmm,    Double_MAX_SUBNORMALmm, Double_MAX_SUBNORMALmm},
 491 
 492             {Double.MIN_VALUE,  0.0d,                   0.0d},
 493             {-Double.MIN_VALUE, 0.0d,                   -0.0d},
 494             {Double.MIN_VALUE,  Double.MIN_VALUE,       Double.MIN_VALUE},
 495             {Double.MIN_VALUE,  1.0f,                   2*Double.MIN_VALUE},
 496 
 497             // Make sure zero behavior is tested
 498             {0.0d,              0.0d,                   0.0d},
 499             {0.0d,              -0.0d,                  -0.0d},
 500             {-0.0d,             0.0d,                   0.0d},
 501             {-0.0d,             -0.0d,                  -0.0d},
 502             {0.0d,              infinityD,              Double.MIN_VALUE},
 503             {0.0d,              -infinityD,             -Double.MIN_VALUE},
 504             {-0.0d,             infinityD,              Double.MIN_VALUE},
 505             {-0.0d,             -infinityD,             -Double.MIN_VALUE},
 506             {0.0d,              Double.MIN_VALUE,       Double.MIN_VALUE},
 507             {0.0d,              -Double.MIN_VALUE,      -Double.MIN_VALUE},
 508             {-0.0d,             Double.MIN_VALUE,       Double.MIN_VALUE},
 509             {-0.0d,             -Double.MIN_VALUE,      -Double.MIN_VALUE}
 510         };
 511 
 512         for(int i = 0; i < testCases.length; i++) {
 513             failures += testNextAfterCase(testCases[i][0], testCases[i][1],
 514                                           testCases[i][2]);
 515         }
 516         return failures;
 517     }
 518 
 519     /* ******************** nextUp tests ********************************* */
 520 
 521     public static int testFloatNextUp() {
 522         int failures=0;
 523 
 524         /*
 525          * Each row of testCases represents one test case for nextUp;
 526          * the first column is the input and the second column is the
 527          * expected result.
 528          */
 529         float testCases [][] = {
 530             {NaNf,                      NaNf},
 531             {-infinityF,                -Float.MAX_VALUE},
 532             {-Float.MAX_VALUE,          -Float_MAX_VALUEmm},
 533             {-FloatConsts.MIN_NORMAL,   -Float_MAX_SUBNORMAL},
 534             {-Float_MAX_SUBNORMAL,      -Float_MAX_SUBNORMALmm},
 535             {-Float.MIN_VALUE,          -0.0f},
 536             {-0.0f,                     Float.MIN_VALUE},
 537             {+0.0f,                     Float.MIN_VALUE},
 538             {Float.MIN_VALUE,           Float.MIN_VALUE*2},
 539             {Float_MAX_SUBNORMALmm,     Float_MAX_SUBNORMAL},
 540             {Float_MAX_SUBNORMAL,       FloatConsts.MIN_NORMAL},
 541             {FloatConsts.MIN_NORMAL,    FloatConsts.MIN_NORMAL+Float.MIN_VALUE},
 542             {Float_MAX_VALUEmm,         Float.MAX_VALUE},
 543             {Float.MAX_VALUE,           infinityF},
 544             {infinityF,                 infinityF}
 545         };
 546 
 547         for(int i = 0; i < testCases.length; i++) {
 548             failures+=Tests.test("Math.nextUp(float)",
 549                                  testCases[i][0], Math.nextUp(testCases[i][0]), testCases[i][1]);
 550 
 551             failures+=Tests.test("StrictMath.nextUp(float)",
 552                                  testCases[i][0], StrictMath.nextUp(testCases[i][0]), testCases[i][1]);
 553         }
 554 
 555         return failures;
 556     }
 557 
 558 
 559     public static int testDoubleNextUp() {
 560         int failures=0;
 561 
 562         /*
 563          * Each row of testCases represents one test case for nextUp;
 564          * the first column is the input and the second column is the
 565          * expected result.
 566          */
 567         double testCases [][] = {
 568             {NaNd,                      NaNd},
 569             {-infinityD,                -Double.MAX_VALUE},
 570             {-Double.MAX_VALUE,         -Double_MAX_VALUEmm},
 571             {-DoubleConsts.MIN_NORMAL,  -Double_MAX_SUBNORMAL},
 572             {-Double_MAX_SUBNORMAL,     -Double_MAX_SUBNORMALmm},
 573             {-Double.MIN_VALUE,         -0.0d},
 574             {-0.0d,                     Double.MIN_VALUE},
 575             {+0.0d,                     Double.MIN_VALUE},
 576             {Double.MIN_VALUE,          Double.MIN_VALUE*2},
 577             {Double_MAX_SUBNORMALmm,    Double_MAX_SUBNORMAL},
 578             {Double_MAX_SUBNORMAL,      DoubleConsts.MIN_NORMAL},
 579             {DoubleConsts.MIN_NORMAL,   DoubleConsts.MIN_NORMAL+Double.MIN_VALUE},
 580             {Double_MAX_VALUEmm,        Double.MAX_VALUE},
 581             {Double.MAX_VALUE,          infinityD},
 582             {infinityD,                 infinityD}
 583         };
 584 
 585         for(int i = 0; i < testCases.length; i++) {
 586             failures+=Tests.test("Math.nextUp(double)",
 587                                  testCases[i][0], Math.nextUp(testCases[i][0]), testCases[i][1]);
 588 
 589             failures+=Tests.test("StrictMath.nextUp(double)",
 590                                  testCases[i][0], StrictMath.nextUp(testCases[i][0]), testCases[i][1]);
 591         }
 592 
 593         return failures;
 594     }
 595 
 596     /* ******************** nextDown tests ********************************* */
 597 
 598     public static int testFloatNextDown() {
 599         int failures=0;
 600 
 601         /*
 602          * Each row of testCases represents one test case for nextDown;
 603          * the first column is the input and the second column is the
 604          * expected result.
 605          */
 606         float testCases [][] = {
 607             {NaNf,                      NaNf},
 608             {-infinityF,                -infinityF},
 609             {-Float.MAX_VALUE,          -infinityF},
 610             {-Float_MAX_VALUEmm,        -Float.MAX_VALUE},
 611             {-Float_MAX_SUBNORMAL,      -FloatConsts.MIN_NORMAL},
 612             {-Float_MAX_SUBNORMALmm,    -Float_MAX_SUBNORMAL},
 613             {-0.0f,                     -Float.MIN_VALUE},
 614             {+0.0f,                     -Float.MIN_VALUE},
 615             {Float.MIN_VALUE,           0.0f},
 616             {Float.MIN_VALUE*2,         Float.MIN_VALUE},
 617             {Float_MAX_SUBNORMAL,       Float_MAX_SUBNORMALmm},
 618             {FloatConsts.MIN_NORMAL,    Float_MAX_SUBNORMAL},
 619             {FloatConsts.MIN_NORMAL+
 620              Float.MIN_VALUE,           FloatConsts.MIN_NORMAL},
 621             {Float.MAX_VALUE,           Float_MAX_VALUEmm},
 622             {infinityF,                 Float.MAX_VALUE},
 623         };
 624 
 625         for(int i = 0; i < testCases.length; i++) {
 626             failures+=Tests.test("FpUtils.nextDown(float)",
 627                                  testCases[i][0], FpUtils.nextDown(testCases[i][0]), testCases[i][1]);
 628         }
 629 
 630         return failures;
 631     }
 632 
 633 
 634     public static int testDoubleNextDown() {
 635         int failures=0;
 636 
 637         /*
 638          * Each row of testCases represents one test case for nextDown;
 639          * the first column is the input and the second column is the
 640          * expected result.
 641          */
 642         double testCases [][] = {
 643             {NaNd,                      NaNd},
 644             {-infinityD,                -infinityD},
 645             {-Double.MAX_VALUE,         -infinityD},
 646             {-Double_MAX_VALUEmm,       -Double.MAX_VALUE},
 647             {-Double_MAX_SUBNORMAL,     -DoubleConsts.MIN_NORMAL},
 648             {-Double_MAX_SUBNORMALmm,   -Double_MAX_SUBNORMAL},
 649             {-0.0d,                     -Double.MIN_VALUE},
 650             {+0.0d,                     -Double.MIN_VALUE},
 651             {Double.MIN_VALUE,          0.0d},
 652             {Double.MIN_VALUE*2,        Double.MIN_VALUE},
 653             {Double_MAX_SUBNORMAL,      Double_MAX_SUBNORMALmm},
 654             {DoubleConsts.MIN_NORMAL,   Double_MAX_SUBNORMAL},
 655             {DoubleConsts.MIN_NORMAL+
 656              Double.MIN_VALUE,          DoubleConsts.MIN_NORMAL},
 657             {Double.MAX_VALUE,          Double_MAX_VALUEmm},
 658             {infinityD,                 Double.MAX_VALUE},
 659         };
 660 
 661         for(int i = 0; i < testCases.length; i++) {
 662             failures+=Tests.test("FpUtils.nextDown(double)",
 663                                  testCases[i][0], FpUtils.nextDown(testCases[i][0]), testCases[i][1]);
 664         }
 665 
 666         return failures;
 667     }
 668 
 669 
 670     /* ********************** boolean tests ****************************** */
 671 
 672     /*
 673      * Combined tests for boolean functions, isFinite, isInfinite,
 674      * isNaN, isUnordered.
 675      */
 676 
 677     public static int testFloatBooleanMethods() {
 678         int failures = 0;
 679 
 680         float testCases [] = {
 681             NaNf,
 682             -infinityF,
 683             infinityF,
 684             -Float.MAX_VALUE,
 685             -3.0f,
 686             -1.0f,
 687             -FloatConsts.MIN_NORMAL,
 688             -Float_MAX_SUBNORMALmm,
 689             -Float_MAX_SUBNORMAL,
 690             -Float.MIN_VALUE,
 691             -0.0f,
 692             +0.0f,
 693             Float.MIN_VALUE,
 694             Float_MAX_SUBNORMALmm,
 695             Float_MAX_SUBNORMAL,
 696             FloatConsts.MIN_NORMAL,
 697             1.0f,
 698             3.0f,
 699             Float_MAX_VALUEmm,
 700             Float.MAX_VALUE
 701         };
 702 
 703         for(int i = 0; i < testCases.length; i++) {
 704             // isNaN
 705             failures+=Tests.test("FpUtils.isNaN(float)", testCases[i],
 706                                  FpUtils.isNaN(testCases[i]), (i ==0));
 707 
 708             // isFinite
 709             failures+=Tests.test("FpUtils.isFinite(float)", testCases[i],
 710                                  FpUtils.isFinite(testCases[i]), (i >= 3));
 711 
 712             // isInfinite
 713             failures+=Tests.test("FpUtils.isInfinite(float)", testCases[i],
 714                                  FpUtils.isInfinite(testCases[i]), (i==1 || i==2));
 715 
 716             // isUnorderd
 717             for(int j = 0; j < testCases.length; j++) {
 718                 failures+=Tests.test("FpUtils.isUnordered(float, float)", testCases[i],testCases[j],
 719                                      FpUtils.isUnordered(testCases[i],testCases[j]), (i==0 || j==0));
 720             }
 721         }
 722 
 723         return failures;
 724     }
 725 
 726     public static int testDoubleBooleanMethods() {
 727         int failures = 0;
 728         boolean result = false;
 729 
 730         double testCases [] = {
 731             NaNd,
 732             -infinityD,
 733             infinityD,
 734             -Double.MAX_VALUE,
 735             -3.0d,
 736             -1.0d,
 737             -DoubleConsts.MIN_NORMAL,
 738             -Double_MAX_SUBNORMALmm,
 739             -Double_MAX_SUBNORMAL,
 740             -Double.MIN_VALUE,
 741             -0.0d,
 742             +0.0d,
 743             Double.MIN_VALUE,
 744             Double_MAX_SUBNORMALmm,
 745             Double_MAX_SUBNORMAL,
 746             DoubleConsts.MIN_NORMAL,
 747             1.0d,
 748             3.0d,
 749             Double_MAX_VALUEmm,
 750             Double.MAX_VALUE
 751         };
 752 
 753         for(int i = 0; i < testCases.length; i++) {
 754             // isNaN
 755             failures+=Tests.test("FpUtils.isNaN(double)", testCases[i],
 756                                  FpUtils.isNaN(testCases[i]), (i ==0));
 757 
 758             // isFinite
 759             failures+=Tests.test("FpUtils.isFinite(double)", testCases[i],
 760                                  FpUtils.isFinite(testCases[i]), (i >= 3));
 761 
 762             // isInfinite
 763             failures+=Tests.test("FpUtils.isInfinite(double)", testCases[i],
 764                                  FpUtils.isInfinite(testCases[i]), (i==1 || i==2));
 765 
 766             // isUnorderd
 767             for(int j = 0; j < testCases.length; j++) {
 768                 failures+=Tests.test("FpUtils.isUnordered(double, double)", testCases[i],testCases[j],
 769                                      FpUtils.isUnordered(testCases[i],testCases[j]), (i==0 || j==0));
 770             }
 771         }
 772 
 773         return failures;
 774     }
 775 
 776     /* ******************** copySign tests******************************** */
 777 
 778    public static int testFloatCopySign() {
 779         int failures = 0;
 780 
 781         // testCases[0] are logically positive numbers;
 782         // testCases[1] are negative numbers.
 783         float testCases [][] = {
 784             {+0.0f,
 785              Float.MIN_VALUE,
 786              Float_MAX_SUBNORMALmm,
 787              Float_MAX_SUBNORMAL,
 788              FloatConsts.MIN_NORMAL,
 789              1.0f,
 790              3.0f,
 791              Float_MAX_VALUEmm,
 792              Float.MAX_VALUE,
 793              infinityF,
 794             },
 795             {-infinityF,
 796              -Float.MAX_VALUE,
 797              -3.0f,
 798              -1.0f,
 799              -FloatConsts.MIN_NORMAL,
 800              -Float_MAX_SUBNORMALmm,
 801              -Float_MAX_SUBNORMAL,
 802              -Float.MIN_VALUE,
 803              -0.0f}
 804         };
 805 
 806         float NaNs[] = {Float.intBitsToFloat(0x7fc00000),       // "positive" NaN
 807                         Float.intBitsToFloat(0xFfc00000)};      // "negative" NaN
 808 
 809         // Tests shared between raw and non-raw versions
 810         for(int i = 0; i < 2; i++) {
 811             for(int j = 0; j < 2; j++) {
 812                 for(int m = 0; m < testCases[i].length; m++) {
 813                     for(int n = 0; n < testCases[j].length; n++) {
 814                         // copySign(magnitude, sign)
 815                         failures+=Tests.test("Math.copySign(float,float)",
 816                                              testCases[i][m],testCases[j][n],
 817                                              Math.copySign(testCases[i][m], testCases[j][n]),
 818                                              (j==0?1.0f:-1.0f)*Math.abs(testCases[i][m]) );
 819 
 820                         failures+=Tests.test("StrictMath.copySign(float,float)",
 821                                              testCases[i][m],testCases[j][n],
 822                                              StrictMath.copySign(testCases[i][m], testCases[j][n]),
 823                                              (j==0?1.0f:-1.0f)*Math.abs(testCases[i][m]) );
 824                     }
 825                 }
 826             }
 827         }
 828 
 829         // For rawCopySign, NaN may effectively have either sign bit
 830         // while for copySign NaNs are treated as if they always have
 831         // a zero sign bit (i.e. as positive numbers)
 832         for(int i = 0; i < 2; i++) {
 833             for(int j = 0; j < NaNs.length; j++) {
 834                 for(int m = 0; m < testCases[i].length; m++) {
 835                     // copySign(magnitude, sign)
 836 
 837                     failures += (Math.abs(Math.copySign(testCases[i][m], NaNs[j])) ==
 838                                  Math.abs(testCases[i][m])) ? 0:1;
 839 
 840 
 841                     failures+=Tests.test("StrictMath.copySign(float,float)",
 842                                          testCases[i][m], NaNs[j],
 843                                          StrictMath.copySign(testCases[i][m], NaNs[j]),
 844                                          Math.abs(testCases[i][m]) );
 845                 }
 846             }
 847         }
 848 
 849         return failures;
 850     }
 851 
 852     public static int testDoubleCopySign() {
 853         int failures = 0;
 854 
 855         // testCases[0] are logically positive numbers;
 856         // testCases[1] are negative numbers.
 857         double testCases [][] = {
 858             {+0.0d,
 859              Double.MIN_VALUE,
 860              Double_MAX_SUBNORMALmm,
 861              Double_MAX_SUBNORMAL,
 862              DoubleConsts.MIN_NORMAL,
 863              1.0d,
 864              3.0d,
 865              Double_MAX_VALUEmm,
 866              Double.MAX_VALUE,
 867              infinityD,
 868             },
 869             {-infinityD,
 870              -Double.MAX_VALUE,
 871              -3.0d,
 872              -1.0d,
 873              -DoubleConsts.MIN_NORMAL,
 874              -Double_MAX_SUBNORMALmm,
 875              -Double_MAX_SUBNORMAL,
 876              -Double.MIN_VALUE,
 877              -0.0d}
 878         };
 879 
 880         double NaNs[] = {Double.longBitsToDouble(0x7ff8000000000000L),  // "positive" NaN
 881                          Double.longBitsToDouble(0xfff8000000000000L),  // "negative" NaN
 882                          Double.longBitsToDouble(0x7FF0000000000001L),
 883                          Double.longBitsToDouble(0xFFF0000000000001L),
 884                          Double.longBitsToDouble(0x7FF8555555555555L),
 885                          Double.longBitsToDouble(0xFFF8555555555555L),
 886                          Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL),
 887                          Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL),
 888                          Double.longBitsToDouble(0x7FFDeadBeef00000L),
 889                          Double.longBitsToDouble(0xFFFDeadBeef00000L),
 890                          Double.longBitsToDouble(0x7FFCafeBabe00000L),
 891                          Double.longBitsToDouble(0xFFFCafeBabe00000L)};
 892 
 893         // Tests shared between Math and StrictMath versions
 894         for(int i = 0; i < 2; i++) {
 895             for(int j = 0; j < 2; j++) {
 896                 for(int m = 0; m < testCases[i].length; m++) {
 897                     for(int n = 0; n < testCases[j].length; n++) {
 898                         // copySign(magnitude, sign)
 899                         failures+=Tests.test("MathcopySign(double,double)",
 900                                              testCases[i][m],testCases[j][n],
 901                                              Math.copySign(testCases[i][m], testCases[j][n]),
 902                                              (j==0?1.0f:-1.0f)*Math.abs(testCases[i][m]) );
 903 
 904                         failures+=Tests.test("StrictMath.copySign(double,double)",
 905                                              testCases[i][m],testCases[j][n],
 906                                              StrictMath.copySign(testCases[i][m], testCases[j][n]),
 907                                              (j==0?1.0f:-1.0f)*Math.abs(testCases[i][m]) );
 908                     }
 909                 }
 910             }
 911         }
 912 
 913         // For Math.copySign, NaN may effectively have either sign bit
 914         // while for StrictMath.copySign NaNs are treated as if they
 915         // always have a zero sign bit (i.e. as positive numbers)
 916         for(int i = 0; i < 2; i++) {
 917             for(int j = 0; j < NaNs.length; j++) {
 918                 for(int m = 0; m < testCases[i].length; m++) {
 919                     // copySign(magnitude, sign)
 920 
 921                     failures += (Math.abs(Math.copySign(testCases[i][m], NaNs[j])) ==
 922                                  Math.abs(testCases[i][m])) ? 0:1;
 923 
 924 
 925                     failures+=Tests.test("StrictMath.copySign(double,double)",
 926                                          testCases[i][m], NaNs[j],
 927                                          StrictMath.copySign(testCases[i][m], NaNs[j]),
 928                                          Math.abs(testCases[i][m]) );
 929                 }
 930             }
 931         }
 932 
 933 
 934         return failures;
 935     }
 936 
 937     /* ************************ scalb tests ******************************* */
 938 
 939     static int testScalbCase(float value, int scale_factor, float expected) {
 940         int failures=0;
 941 
 942         failures+=Tests.test("Math.scalb(float,int)",
 943                              value, scale_factor,
 944                              Math.scalb(value, scale_factor), expected);
 945 
 946         failures+=Tests.test("Math.scalb(float,int)",
 947                              -value, scale_factor,
 948                              Math.scalb(-value, scale_factor), -expected);
 949 
 950         failures+=Tests.test("StrictMath.scalb(float,int)",
 951                              value, scale_factor,
 952                              StrictMath.scalb(value, scale_factor), expected);
 953 
 954         failures+=Tests.test("StrictMath.scalb(float,int)",
 955                              -value, scale_factor,
 956                              StrictMath.scalb(-value, scale_factor), -expected);
 957         return failures;
 958     }
 959 
 960     public static int testFloatScalb() {
 961         int failures=0;
 962         int MAX_SCALE = FloatConsts.MAX_EXPONENT + -FloatConsts.MIN_EXPONENT +
 963                         FloatConsts.SIGNIFICAND_WIDTH + 1;
 964 
 965 
 966         // Arguments x, where scalb(x,n) is x for any n.
 967         float [] identityTestCases = {NaNf,
 968                                       -0.0f,
 969                                       +0.0f,
 970                                       infinityF,
 971                                       -infinityF
 972         };
 973 
 974         float [] subnormalTestCases = {
 975             Float.MIN_VALUE,
 976             3.0f*Float.MIN_VALUE,
 977             Float_MAX_SUBNORMALmm,
 978             Float_MAX_SUBNORMAL
 979         };
 980 
 981         float [] someTestCases = {
 982             Float.MIN_VALUE,
 983             3.0f*Float.MIN_VALUE,
 984             Float_MAX_SUBNORMALmm,
 985             Float_MAX_SUBNORMAL,
 986             FloatConsts.MIN_NORMAL,
 987             1.0f,
 988             2.0f,
 989             3.0f,
 990             (float)Math.PI,
 991             Float_MAX_VALUEmm,
 992             Float.MAX_VALUE
 993         };
 994 
 995         int [] oneMultiplyScalingFactors = {
 996             FloatConsts.MIN_EXPONENT,
 997             FloatConsts.MIN_EXPONENT+1,
 998             -3,
 999             -2,
1000             -1,
1001             0,
1002             1,
1003             2,
1004             3,
1005             FloatConsts.MAX_EXPONENT-1,
1006             FloatConsts.MAX_EXPONENT
1007         };
1008 
1009         int [] manyScalingFactors = {
1010             Integer.MIN_VALUE,
1011             Integer.MIN_VALUE+1,
1012             -MAX_SCALE -1,
1013             -MAX_SCALE,
1014             -MAX_SCALE+1,
1015 
1016             2*FloatConsts.MIN_EXPONENT-1,       // -253
1017             2*FloatConsts.MIN_EXPONENT,         // -252
1018             2*FloatConsts.MIN_EXPONENT+1,       // -251
1019 
1020             FpUtils.ilogb(Float.MIN_VALUE)-1,   // -150
1021             FpUtils.ilogb(Float.MIN_VALUE),     // -149
1022             -FloatConsts.MAX_EXPONENT,          // -127
1023             FloatConsts.MIN_EXPONENT,           // -126
1024 
1025             -2,
1026             -1,
1027             0,
1028             1,
1029             2,
1030 
1031             FloatConsts.MAX_EXPONENT-1,         // 126
1032             FloatConsts.MAX_EXPONENT,           // 127
1033             FloatConsts.MAX_EXPONENT+1,         // 128
1034 
1035             2*FloatConsts.MAX_EXPONENT-1,       // 253
1036             2*FloatConsts.MAX_EXPONENT,         // 254
1037             2*FloatConsts.MAX_EXPONENT+1,       // 255
1038 
1039             MAX_SCALE-1,
1040             MAX_SCALE,
1041             MAX_SCALE+1,
1042             Integer.MAX_VALUE-1,
1043             Integer.MAX_VALUE
1044         };
1045 
1046         // Test cases where scaling is always a no-op
1047         for(int i=0; i < identityTestCases.length; i++) {
1048             for(int j=0; j < manyScalingFactors.length; j++) {
1049                 failures += testScalbCase(identityTestCases[i],
1050                                           manyScalingFactors[j],
1051                                           identityTestCases[i]);
1052             }
1053         }
1054 
1055         // Test cases where result is 0.0 or infinity due to magnitude
1056         // of the scaling factor
1057         for(int i=0; i < someTestCases.length; i++) {
1058             for(int j=0; j < manyScalingFactors.length; j++) {
1059                 int scaleFactor = manyScalingFactors[j];
1060                 if (Math.abs(scaleFactor) >= MAX_SCALE) {
1061                     float value = someTestCases[i];
1062                     failures+=testScalbCase(value,
1063                                             scaleFactor,
1064                                             FpUtils.copySign( (scaleFactor>0?infinityF:0.0f), value) );
1065                 }
1066             }
1067         }
1068 
1069         // Test cases that could be done with one floating-point
1070         // multiply.
1071         for(int i=0; i < someTestCases.length; i++) {
1072             for(int j=0; j < oneMultiplyScalingFactors.length; j++) {
1073                 int scaleFactor = oneMultiplyScalingFactors[j];
1074                     float value = someTestCases[i];
1075 
1076                     failures+=testScalbCase(value,
1077                                             scaleFactor,
1078                                             value*powerOfTwoF(scaleFactor));
1079             }
1080         }
1081 
1082         // Create 2^MAX_EXPONENT
1083         float twoToTheMaxExp = 1.0f; // 2^0
1084         for(int i = 0; i < FloatConsts.MAX_EXPONENT; i++)
1085             twoToTheMaxExp *=2.0f;
1086 
1087         // Scale-up subnormal values until they all overflow
1088         for(int i=0; i < subnormalTestCases.length; i++) {
1089             float scale = 1.0f; // 2^j
1090             float value = subnormalTestCases[i];
1091 
1092             for(int j=FloatConsts.MAX_EXPONENT*2; j < MAX_SCALE; j++) { // MAX_SCALE -1 should cause overflow
1093                 int scaleFactor = j;
1094 
1095                 failures+=testScalbCase(value,
1096                                         scaleFactor,
1097                                         (FpUtils.ilogb(value) +j > FloatConsts.MAX_EXPONENT ) ?
1098                                         FpUtils.copySign(infinityF, value) : // overflow
1099                                         // calculate right answer
1100                                         twoToTheMaxExp*(twoToTheMaxExp*(scale*value)) );
1101                 scale*=2.0f;
1102             }
1103         }
1104 
1105         // Scale down a large number until it underflows.  By scaling
1106         // down MAX_NORMALmm, the first subnormal result will be exact
1107         // but the next one will round -- all those results can be
1108         // checked by halving a separate value in the loop.  Actually,
1109         // we can keep halving and checking until the product is zero
1110         // since:
1111         //
1112         // 1. If the scalb of MAX_VALUEmm is subnormal and *not* exact
1113         // it will round *up*
1114         //
1115         // 2. When rounding first occurs in the expected product, it
1116         // too rounds up, to 2^-MAX_EXPONENT.
1117         //
1118         // Halving expected after rounding happends to give the same
1119         // result as the scalb operation.
1120         float expected = Float_MAX_VALUEmm *0.5f;
1121         for(int i = -1; i > -MAX_SCALE; i--) {
1122             failures+=testScalbCase(Float_MAX_VALUEmm, i, expected);
1123 
1124             expected *= 0.5f;
1125         }
1126 
1127         // Tricky rounding tests:
1128         // Scale down a large number into subnormal range such that if
1129         // scalb is being implemented with multiple floating-point
1130         // multiplies, the value would round twice if the multiplies
1131         // were done in the wrong order.
1132 
1133         float value = 0x8.0000bP-5f;
1134         expected = 0x1.00001p-129f;
1135 
1136         for(int i = 0; i < 129; i++) {
1137             failures+=testScalbCase(value,
1138                                     -127-i,
1139                                     expected);
1140             value *=2.0f;
1141         }
1142 
1143         return failures;
1144     }
1145 
1146     static int testScalbCase(double value, int scale_factor, double expected) {
1147         int failures=0;
1148 
1149         failures+=Tests.test("Math.scalb(double,int)",
1150                              value, scale_factor,
1151                              Math.scalb(value, scale_factor), expected);
1152 
1153         failures+=Tests.test("Math.scalb(double,int)",
1154                              -value, scale_factor,
1155                              Math.scalb(-value, scale_factor), -expected);
1156 
1157         failures+=Tests.test("StrictMath.scalb(double,int)",
1158                              value, scale_factor,
1159                              StrictMath.scalb(value, scale_factor), expected);
1160 
1161         failures+=Tests.test("StrictMath.scalb(double,int)",
1162                              -value, scale_factor,
1163                              StrictMath.scalb(-value, scale_factor), -expected);
1164 
1165         return failures;
1166     }
1167 
1168     public static int testDoubleScalb() {
1169         int failures=0;
1170         int MAX_SCALE = DoubleConsts.MAX_EXPONENT + -DoubleConsts.MIN_EXPONENT +
1171                         DoubleConsts.SIGNIFICAND_WIDTH + 1;
1172 
1173 
1174         // Arguments x, where scalb(x,n) is x for any n.
1175         double [] identityTestCases = {NaNd,
1176                                       -0.0,
1177                                       +0.0,
1178                                       infinityD,
1179         };
1180 
1181         double [] subnormalTestCases = {
1182             Double.MIN_VALUE,
1183             3.0d*Double.MIN_VALUE,
1184             Double_MAX_SUBNORMALmm,
1185             Double_MAX_SUBNORMAL
1186         };
1187 
1188         double [] someTestCases = {
1189             Double.MIN_VALUE,
1190             3.0d*Double.MIN_VALUE,
1191             Double_MAX_SUBNORMALmm,
1192             Double_MAX_SUBNORMAL,
1193             DoubleConsts.MIN_NORMAL,
1194             1.0d,
1195             2.0d,
1196             3.0d,
1197             Math.PI,
1198             Double_MAX_VALUEmm,
1199             Double.MAX_VALUE
1200         };
1201 
1202         int [] oneMultiplyScalingFactors = {
1203             DoubleConsts.MIN_EXPONENT,
1204             DoubleConsts.MIN_EXPONENT+1,
1205             -3,
1206             -2,
1207             -1,
1208             0,
1209             1,
1210             2,
1211             3,
1212             DoubleConsts.MAX_EXPONENT-1,
1213             DoubleConsts.MAX_EXPONENT
1214         };
1215 
1216         int [] manyScalingFactors = {
1217             Integer.MIN_VALUE,
1218             Integer.MIN_VALUE+1,
1219             -MAX_SCALE -1,
1220             -MAX_SCALE,
1221             -MAX_SCALE+1,
1222 
1223             2*DoubleConsts.MIN_EXPONENT-1,      // -2045
1224             2*DoubleConsts.MIN_EXPONENT,        // -2044
1225             2*DoubleConsts.MIN_EXPONENT+1,      // -2043
1226 
1227             FpUtils.ilogb(Double.MIN_VALUE)-1,  // -1076
1228             FpUtils.ilogb(Double.MIN_VALUE),    // -1075
1229             -DoubleConsts.MAX_EXPONENT,         // -1023
1230             DoubleConsts.MIN_EXPONENT,          // -1022
1231 
1232             -2,
1233             -1,
1234             0,
1235             1,
1236             2,
1237 
1238             DoubleConsts.MAX_EXPONENT-1,        // 1022
1239             DoubleConsts.MAX_EXPONENT,          // 1023
1240             DoubleConsts.MAX_EXPONENT+1,        // 1024
1241 
1242             2*DoubleConsts.MAX_EXPONENT-1,      // 2045
1243             2*DoubleConsts.MAX_EXPONENT,        // 2046
1244             2*DoubleConsts.MAX_EXPONENT+1,      // 2047
1245 
1246             MAX_SCALE-1,
1247             MAX_SCALE,
1248             MAX_SCALE+1,
1249             Integer.MAX_VALUE-1,
1250             Integer.MAX_VALUE
1251         };
1252 
1253         // Test cases where scaling is always a no-op
1254         for(int i=0; i < identityTestCases.length; i++) {
1255             for(int j=0; j < manyScalingFactors.length; j++) {
1256                 failures += testScalbCase(identityTestCases[i],
1257                                           manyScalingFactors[j],
1258                                           identityTestCases[i]);
1259             }
1260         }
1261 
1262         // Test cases where result is 0.0 or infinity due to magnitude
1263         // of the scaling factor
1264         for(int i=0; i < someTestCases.length; i++) {
1265             for(int j=0; j < manyScalingFactors.length; j++) {
1266                 int scaleFactor = manyScalingFactors[j];
1267                 if (Math.abs(scaleFactor) >= MAX_SCALE) {
1268                     double value = someTestCases[i];
1269                     failures+=testScalbCase(value,
1270                                             scaleFactor,
1271                                             FpUtils.copySign( (scaleFactor>0?infinityD:0.0), value) );
1272                 }
1273             }
1274         }
1275 
1276         // Test cases that could be done with one floating-point
1277         // multiply.
1278         for(int i=0; i < someTestCases.length; i++) {
1279             for(int j=0; j < oneMultiplyScalingFactors.length; j++) {
1280                 int scaleFactor = oneMultiplyScalingFactors[j];
1281                     double value = someTestCases[i];
1282 
1283                     failures+=testScalbCase(value,
1284                                             scaleFactor,
1285                                             value*powerOfTwoD(scaleFactor));
1286             }
1287         }
1288 
1289         // Create 2^MAX_EXPONENT
1290         double twoToTheMaxExp = 1.0; // 2^0
1291         for(int i = 0; i < DoubleConsts.MAX_EXPONENT; i++)
1292             twoToTheMaxExp *=2.0;
1293 
1294         // Scale-up subnormal values until they all overflow
1295         for(int i=0; i < subnormalTestCases.length; i++) {
1296             double scale = 1.0; // 2^j
1297             double value = subnormalTestCases[i];
1298 
1299             for(int j=DoubleConsts.MAX_EXPONENT*2; j < MAX_SCALE; j++) { // MAX_SCALE -1 should cause overflow
1300                 int scaleFactor = j;
1301 
1302                 failures+=testScalbCase(value,
1303                                         scaleFactor,
1304                                         (FpUtils.ilogb(value) +j > DoubleConsts.MAX_EXPONENT ) ?
1305                                         FpUtils.copySign(infinityD, value) : // overflow
1306                                         // calculate right answer
1307                                         twoToTheMaxExp*(twoToTheMaxExp*(scale*value)) );
1308                 scale*=2.0;
1309             }
1310         }
1311 
1312         // Scale down a large number until it underflows.  By scaling
1313         // down MAX_NORMALmm, the first subnormal result will be exact
1314         // but the next one will round -- all those results can be
1315         // checked by halving a separate value in the loop.  Actually,
1316         // we can keep halving and checking until the product is zero
1317         // since:
1318         //
1319         // 1. If the scalb of MAX_VALUEmm is subnormal and *not* exact
1320         // it will round *up*
1321         //
1322         // 2. When rounding first occurs in the expected product, it
1323         // too rounds up, to 2^-MAX_EXPONENT.
1324         //
1325         // Halving expected after rounding happends to give the same
1326         // result as the scalb operation.
1327         double expected = Double_MAX_VALUEmm *0.5f;
1328         for(int i = -1; i > -MAX_SCALE; i--) {
1329             failures+=testScalbCase(Double_MAX_VALUEmm, i, expected);
1330 
1331             expected *= 0.5;
1332         }
1333 
1334         // Tricky rounding tests:
1335         // Scale down a large number into subnormal range such that if
1336         // scalb is being implemented with multiple floating-point
1337         // multiplies, the value would round twice if the multiplies
1338         // were done in the wrong order.
1339 
1340         double value = 0x1.000000000000bP-1;
1341         expected     = 0x0.2000000000001P-1022;
1342         for(int i = 0; i < DoubleConsts.MAX_EXPONENT+2; i++) {
1343             failures+=testScalbCase(value,
1344                                     -1024-i,
1345                                     expected);
1346             value *=2.0;
1347         }
1348 
1349         return failures;
1350     }
1351 
1352     /* ************************* ulp tests ******************************* */
1353 
1354 
1355     /*
1356      * Test Math.ulp and StrictMath.ulp with +d and -d.
1357      */
1358     static int testUlpCase(float f, float expected) {
1359         float minus_f = -f;
1360         int failures=0;
1361 
1362         failures+=Tests.test("Math.ulp(float)", f,
1363                              Math.ulp(f), expected);
1364         failures+=Tests.test("Math.ulp(float)", minus_f,
1365                              Math.ulp(minus_f), expected);
1366         failures+=Tests.test("StrictMath.ulp(float)", f,
1367                              StrictMath.ulp(f), expected);
1368         failures+=Tests.test("StrictMath.ulp(float)", minus_f,
1369                              StrictMath.ulp(minus_f), expected);
1370         return failures;
1371     }
1372 
1373     static int testUlpCase(double d, double expected) {
1374         double minus_d = -d;
1375         int failures=0;
1376 
1377         failures+=Tests.test("Math.ulp(double)", d,
1378                              Math.ulp(d), expected);
1379         failures+=Tests.test("Math.ulp(double)", minus_d,
1380                              Math.ulp(minus_d), expected);
1381         failures+=Tests.test("StrictMath.ulp(double)", d,
1382                              StrictMath.ulp(d), expected);
1383         failures+=Tests.test("StrictMath.ulp(double)", minus_d,
1384                              StrictMath.ulp(minus_d), expected);
1385         return failures;
1386     }
1387 
1388     public static int testFloatUlp() {
1389         int failures = 0;
1390         float [] specialValues = {NaNf,
1391                                   Float.POSITIVE_INFINITY,
1392                                   +0.0f,
1393                                   +1.0f,
1394                                   +2.0f,
1395                                   +16.0f,
1396                                   +Float.MIN_VALUE,
1397                                   +Float_MAX_SUBNORMAL,
1398                                   +FloatConsts.MIN_NORMAL,
1399                                   +Float.MAX_VALUE
1400         };
1401 
1402         float [] specialResults = {NaNf,
1403                                    Float.POSITIVE_INFINITY,
1404                                    Float.MIN_VALUE,
1405                                    powerOfTwoF(-23),
1406                                    powerOfTwoF(-22),
1407                                    powerOfTwoF(-19),
1408                                    Float.MIN_VALUE,
1409                                    Float.MIN_VALUE,
1410                                    Float.MIN_VALUE,
1411                                    powerOfTwoF(104)
1412         };
1413 
1414         // Special value tests
1415         for(int i = 0; i < specialValues.length; i++) {
1416             failures += testUlpCase(specialValues[i], specialResults[i]);
1417         }
1418 
1419 
1420         // Normal exponent tests
1421         for(int i = FloatConsts.MIN_EXPONENT; i <= FloatConsts.MAX_EXPONENT; i++) {
1422             float expected;
1423 
1424             // Create power of two
1425             float po2 = powerOfTwoF(i);
1426             expected = FpUtils.scalb(1.0f, i - (FloatConsts.SIGNIFICAND_WIDTH-1));
1427 
1428             failures += testUlpCase(po2, expected);
1429 
1430             // Generate some random bit patterns for the significand
1431             for(int j = 0; j < 10; j++) {
1432                 int randSignif = rand.nextInt();
1433                 float randFloat;
1434 
1435                 randFloat = Float.intBitsToFloat( // Exponent
1436                                                  (Float.floatToIntBits(po2)&
1437                                                   (~FloatConsts.SIGNIF_BIT_MASK)) |
1438                                                  // Significand
1439                                                  (randSignif &
1440                                                   FloatConsts.SIGNIF_BIT_MASK) );
1441 
1442                 failures += testUlpCase(randFloat, expected);
1443             }
1444 
1445             if (i > FloatConsts.MIN_EXPONENT) {
1446                 float po2minus = FpUtils.nextAfter(po2,
1447                                                    Float.NEGATIVE_INFINITY);
1448                 failures += testUlpCase(po2minus, expected/2.0f);
1449             }
1450         }
1451 
1452         // Subnormal tests
1453 
1454         /*
1455          * Start with MIN_VALUE, left shift, test high value, low
1456          * values, and random in between.
1457          *
1458          * Use nextAfter to calculate, high value of previous binade,
1459          * loop count i will indicate how many random bits, if any are
1460          * needed.
1461          */
1462 
1463         float top=Float.MIN_VALUE;
1464         for( int i = 1;
1465             i < FloatConsts.SIGNIFICAND_WIDTH;
1466             i++, top *= 2.0f) {
1467 
1468             failures += testUlpCase(top, Float.MIN_VALUE);
1469 
1470             // Test largest value in next smaller binade
1471             if (i >= 3) {// (i == 1) would test 0.0;
1472                          // (i == 2) would just retest MIN_VALUE
1473                 testUlpCase(FpUtils.nextAfter(top, 0.0f),
1474                             Float.MIN_VALUE);
1475 
1476                 if( i >= 10) {
1477                     // create a bit mask with (i-1) 1's in the low order
1478                     // bits
1479                     int mask = ~((~0)<<(i-1));
1480                     float randFloat = Float.intBitsToFloat( // Exponent
1481                                                  Float.floatToIntBits(top) |
1482                                                  // Significand
1483                                                  (rand.nextInt() & mask ) ) ;
1484 
1485                     failures += testUlpCase(randFloat, Float.MIN_VALUE);
1486                 }
1487             }
1488         }
1489 
1490         return failures;
1491     }
1492 
1493     public static int testDoubleUlp() {
1494         int failures = 0;
1495         double [] specialValues = {NaNd,
1496                                   Double.POSITIVE_INFINITY,
1497                                   +0.0d,
1498                                   +1.0d,
1499                                   +2.0d,
1500                                   +16.0d,
1501                                   +Double.MIN_VALUE,
1502                                   +Double_MAX_SUBNORMAL,
1503                                   +DoubleConsts.MIN_NORMAL,
1504                                   +Double.MAX_VALUE
1505         };
1506 
1507         double [] specialResults = {NaNf,
1508                                    Double.POSITIVE_INFINITY,
1509                                    Double.MIN_VALUE,
1510                                    powerOfTwoD(-52),
1511                                    powerOfTwoD(-51),
1512                                    powerOfTwoD(-48),
1513                                    Double.MIN_VALUE,
1514                                    Double.MIN_VALUE,
1515                                    Double.MIN_VALUE,
1516                                    powerOfTwoD(971)
1517         };
1518 
1519         // Special value tests
1520         for(int i = 0; i < specialValues.length; i++) {
1521             failures += testUlpCase(specialValues[i], specialResults[i]);
1522         }
1523 
1524 
1525         // Normal exponent tests
1526         for(int i = DoubleConsts.MIN_EXPONENT; i <= DoubleConsts.MAX_EXPONENT; i++) {
1527             double expected;
1528 
1529             // Create power of two
1530             double po2 = powerOfTwoD(i);
1531             expected = FpUtils.scalb(1.0, i - (DoubleConsts.SIGNIFICAND_WIDTH-1));
1532 
1533             failures += testUlpCase(po2, expected);
1534 
1535             // Generate some random bit patterns for the significand
1536             for(int j = 0; j < 10; j++) {
1537                 long randSignif = rand.nextLong();
1538                 double randDouble;
1539 
1540                 randDouble = Double.longBitsToDouble( // Exponent
1541                                                  (Double.doubleToLongBits(po2)&
1542                                                   (~DoubleConsts.SIGNIF_BIT_MASK)) |
1543                                                  // Significand
1544                                                  (randSignif &
1545                                                   DoubleConsts.SIGNIF_BIT_MASK) );
1546 
1547                 failures += testUlpCase(randDouble, expected);
1548             }
1549 
1550             if (i > DoubleConsts.MIN_EXPONENT) {
1551                 double po2minus = FpUtils.nextAfter(po2,
1552                                                     Double.NEGATIVE_INFINITY);
1553                 failures += testUlpCase(po2minus, expected/2.0f);
1554             }
1555         }
1556 
1557         // Subnormal tests
1558 
1559         /*
1560          * Start with MIN_VALUE, left shift, test high value, low
1561          * values, and random in between.
1562          *
1563          * Use nextAfter to calculate, high value of previous binade,
1564          * loop count i will indicate how many random bits, if any are
1565          * needed.
1566          */
1567 
1568         double top=Double.MIN_VALUE;
1569         for( int i = 1;
1570             i < DoubleConsts.SIGNIFICAND_WIDTH;
1571             i++, top *= 2.0f) {
1572 
1573             failures += testUlpCase(top, Double.MIN_VALUE);
1574 
1575             // Test largest value in next smaller binade
1576             if (i >= 3) {// (i == 1) would test 0.0;
1577                          // (i == 2) would just retest MIN_VALUE
1578                 testUlpCase(FpUtils.nextAfter(top, 0.0f),
1579                             Double.MIN_VALUE);
1580 
1581                 if( i >= 10) {
1582                     // create a bit mask with (i-1) 1's in the low order
1583                     // bits
1584                     int mask = ~((~0)<<(i-1));
1585                     double randDouble = Double.longBitsToDouble( // Exponent
1586                                                  Double.doubleToLongBits(top) |
1587                                                  // Significand
1588                                                  (rand.nextLong() & mask ) ) ;
1589 
1590                     failures += testUlpCase(randDouble, Double.MIN_VALUE);
1591                 }
1592             }
1593         }
1594 
1595         return failures;
1596     }
1597 
1598     public static int testFloatSignum() {
1599         int failures = 0;
1600         float testCases [][] = {
1601             {NaNf,                      NaNf},
1602             {-infinityF,                -1.0f},
1603             {-Float.MAX_VALUE,          -1.0f},
1604             {-FloatConsts.MIN_NORMAL,   -1.0f},
1605             {-1.0f,                     -1.0f},
1606             {-2.0f,                     -1.0f},
1607             {-Float_MAX_SUBNORMAL,      -1.0f},
1608             {-Float.MIN_VALUE,          -1.0f},
1609             {-0.0f,                     -0.0f},
1610             {+0.0f,                     +0.0f},
1611             {Float.MIN_VALUE,            1.0f},
1612             {Float_MAX_SUBNORMALmm,      1.0f},
1613             {Float_MAX_SUBNORMAL,        1.0f},
1614             {FloatConsts.MIN_NORMAL,     1.0f},
1615             {1.0f,                       1.0f},
1616             {2.0f,                       1.0f},
1617             {Float_MAX_VALUEmm,          1.0f},
1618             {Float.MAX_VALUE,            1.0f},
1619             {infinityF,                  1.0f}
1620         };
1621 
1622         for(int i = 0; i < testCases.length; i++) {
1623             failures+=Tests.test("Math.signum(float)",
1624                                  testCases[i][0], Math.signum(testCases[i][0]), testCases[i][1]);
1625             failures+=Tests.test("StrictMath.signum(float)",
1626                                  testCases[i][0], StrictMath.signum(testCases[i][0]), testCases[i][1]);
1627         }
1628 
1629         return failures;
1630     }
1631 
1632     public static int testDoubleSignum() {
1633         int failures = 0;
1634         double testCases [][] = {
1635             {NaNd,                      NaNd},
1636             {-infinityD,                -1.0},
1637             {-Double.MAX_VALUE,         -1.0},
1638             {-DoubleConsts.MIN_NORMAL,  -1.0},
1639             {-1.0,                      -1.0},
1640             {-2.0,                      -1.0},
1641             {-Double_MAX_SUBNORMAL,     -1.0},
1642             {-Double.MIN_VALUE,         -1.0d},
1643             {-0.0d,                     -0.0d},
1644             {+0.0d,                     +0.0d},
1645             {Double.MIN_VALUE,           1.0},
1646             {Double_MAX_SUBNORMALmm,     1.0},
1647             {Double_MAX_SUBNORMAL,       1.0},
1648             {DoubleConsts.MIN_NORMAL,    1.0},
1649             {1.0,                        1.0},
1650             {2.0,                        1.0},
1651             {Double_MAX_VALUEmm,         1.0},
1652             {Double.MAX_VALUE,           1.0},
1653             {infinityD,                  1.0}
1654         };
1655 
1656         for(int i = 0; i < testCases.length; i++) {
1657             failures+=Tests.test("Math.signum(double)",
1658                                  testCases[i][0], Math.signum(testCases[i][0]), testCases[i][1]);
1659             failures+=Tests.test("StrictMath.signum(double)",
1660                                  testCases[i][0], StrictMath.signum(testCases[i][0]), testCases[i][1]);
1661         }
1662 
1663         return failures;
1664     }
1665 
1666 
1667     public static void main(String argv[]) {
1668         int failures = 0;
1669 
1670         failures += testFloatGetExponent();
1671         failures += testDoubleGetExponent();
1672 
1673         failures += testFloatNextAfter();
1674         failures += testDoubleNextAfter();
1675 
1676         failures += testFloatNextUp();
1677         failures += testDoubleNextUp();
1678 
1679         failures += testFloatNextDown();
1680         failures += testDoubleNextDown();
1681 
1682         failures += testFloatBooleanMethods();
1683         failures += testDoubleBooleanMethods();
1684 
1685         failures += testFloatCopySign();
1686         failures += testDoubleCopySign();
1687 
1688         failures += testFloatScalb();
1689         failures += testDoubleScalb();
1690 
1691         failures += testFloatUlp();
1692         failures += testDoubleUlp();
1693 
1694         failures += testFloatSignum();
1695         failures += testDoubleSignum();
1696 
1697         if (failures > 0) {
1698             System.err.println("Testing the recommended functions incurred "
1699                                + failures + " failures.");
1700             throw new RuntimeException();
1701         }
1702     }
1703 }