1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 
  30 import javax.lang.model.element.ElementKind;
  31 import javax.tools.JavaFileObject;
  32 
  33 import com.sun.source.tree.IdentifierTree;
  34 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
  35 import com.sun.source.tree.MemberSelectTree;
  36 import com.sun.source.tree.TreeVisitor;
  37 import com.sun.source.util.SimpleTreeVisitor;
  38 import com.sun.tools.javac.code.*;
  39 import com.sun.tools.javac.code.Lint.LintCategory;
  40 import com.sun.tools.javac.code.Scope.WriteableScope;
  41 import com.sun.tools.javac.code.Source.Feature;
  42 import com.sun.tools.javac.code.Symbol.*;
  43 import com.sun.tools.javac.code.Type.*;
  44 import com.sun.tools.javac.code.TypeMetadata.Annotations;
  45 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
  46 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext;
  47 import com.sun.tools.javac.comp.Check.CheckContext;
  48 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
  49 import com.sun.tools.javac.jvm.*;
  50 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond;
  51 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg;
  52 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs;
  53 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  54 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  55 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
  56 import com.sun.tools.javac.tree.*;
  57 import com.sun.tools.javac.tree.JCTree.*;
  58 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
  59 import com.sun.tools.javac.util.*;
  60 import com.sun.tools.javac.util.DefinedBy.Api;
  61 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  62 import com.sun.tools.javac.util.JCDiagnostic.Error;
  63 import com.sun.tools.javac.util.JCDiagnostic.Fragment;
  64 import com.sun.tools.javac.util.JCDiagnostic.Warning;
  65 import com.sun.tools.javac.util.List;
  66 
  67 import static com.sun.tools.javac.code.Flags.*;
  68 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  69 import static com.sun.tools.javac.code.Flags.BLOCK;
  70 import static com.sun.tools.javac.code.Kinds.*;
  71 import static com.sun.tools.javac.code.Kinds.Kind.*;
  72 import static com.sun.tools.javac.code.TypeTag.*;
  73 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  74 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  75 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
  76 
  77 /** This is the main context-dependent analysis phase in GJC. It
  78  *  encompasses name resolution, type checking and constant folding as
  79  *  subtasks. Some subtasks involve auxiliary classes.
  80  *  @see Check
  81  *  @see Resolve
  82  *  @see ConstFold
  83  *  @see Infer
  84  *
  85  *  <p><b>This is NOT part of any supported API.
  86  *  If you write code that depends on this, you do so at your own risk.
  87  *  This code and its internal interfaces are subject to change or
  88  *  deletion without notice.</b>
  89  */
  90 public class Attr extends JCTree.Visitor {
  91     protected static final Context.Key<Attr> attrKey = new Context.Key<>();
  92 
  93     final Names names;
  94     final Log log;
  95     final Symtab syms;
  96     final Resolve rs;
  97     final Operators operators;
  98     final Infer infer;
  99     final Analyzer analyzer;
 100     final DeferredAttr deferredAttr;
 101     final Check chk;
 102     final Flow flow;
 103     final MemberEnter memberEnter;
 104     final TypeEnter typeEnter;
 105     final TreeMaker make;
 106     final ConstFold cfolder;
 107     final Enter enter;
 108     final Target target;
 109     final Types types;
 110     final JCDiagnostic.Factory diags;
 111     final TypeAnnotations typeAnnotations;
 112     final DeferredLintHandler deferredLintHandler;
 113     final TypeEnvs typeEnvs;
 114     final Dependencies dependencies;
 115     final Annotate annotate;
 116     final ArgumentAttr argumentAttr;
 117 
 118     public static Attr instance(Context context) {
 119         Attr instance = context.get(attrKey);
 120         if (instance == null)
 121             instance = new Attr(context);
 122         return instance;
 123     }
 124 
 125     protected Attr(Context context) {
 126         context.put(attrKey, this);
 127 
 128         names = Names.instance(context);
 129         log = Log.instance(context);
 130         syms = Symtab.instance(context);
 131         rs = Resolve.instance(context);
 132         operators = Operators.instance(context);
 133         chk = Check.instance(context);
 134         flow = Flow.instance(context);
 135         memberEnter = MemberEnter.instance(context);
 136         typeEnter = TypeEnter.instance(context);
 137         make = TreeMaker.instance(context);
 138         enter = Enter.instance(context);
 139         infer = Infer.instance(context);
 140         analyzer = Analyzer.instance(context);
 141         deferredAttr = DeferredAttr.instance(context);
 142         cfolder = ConstFold.instance(context);
 143         target = Target.instance(context);
 144         types = Types.instance(context);
 145         diags = JCDiagnostic.Factory.instance(context);
 146         annotate = Annotate.instance(context);
 147         typeAnnotations = TypeAnnotations.instance(context);
 148         deferredLintHandler = DeferredLintHandler.instance(context);
 149         typeEnvs = TypeEnvs.instance(context);
 150         dependencies = Dependencies.instance(context);
 151         argumentAttr = ArgumentAttr.instance(context);
 152 
 153         Options options = Options.instance(context);
 154 
 155         Source source = Source.instance(context);
 156         allowPoly = Feature.POLY.allowedInSource(source);
 157         allowTypeAnnos = Feature.TYPE_ANNOTATIONS.allowedInSource(source);
 158         allowLambda = Feature.LAMBDA.allowedInSource(source);
 159         allowDefaultMethods = Feature.DEFAULT_METHODS.allowedInSource(source);
 160         allowStaticInterfaceMethods = Feature.STATIC_INTERFACE_METHODS.allowedInSource(source);
 161         sourceName = source.name;
 162         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
 163 
 164         statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
 165         varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
 166         unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
 167         methodAttrInfo = new MethodAttrInfo();
 168         unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
 169         unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
 170         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
 171     }
 172 
 173     /** Switch: support target-typing inference
 174      */
 175     boolean allowPoly;
 176 
 177     /** Switch: support type annotations.
 178      */
 179     boolean allowTypeAnnos;
 180 
 181     /** Switch: support lambda expressions ?
 182      */
 183     boolean allowLambda;
 184 
 185     /** Switch: support default methods ?
 186      */
 187     boolean allowDefaultMethods;
 188 
 189     /** Switch: static interface methods enabled?
 190      */
 191     boolean allowStaticInterfaceMethods;
 192 
 193     /**
 194      * Switch: warn about use of variable before declaration?
 195      * RFE: 6425594
 196      */
 197     boolean useBeforeDeclarationWarning;
 198 
 199     /**
 200      * Switch: name of source level; used for error reporting.
 201      */
 202     String sourceName;
 203 
 204     /** Check kind and type of given tree against protokind and prototype.
 205      *  If check succeeds, store type in tree and return it.
 206      *  If check fails, store errType in tree and return it.
 207      *  No checks are performed if the prototype is a method type.
 208      *  It is not necessary in this case since we know that kind and type
 209      *  are correct.
 210      *
 211      *  @param tree     The tree whose kind and type is checked
 212      *  @param found    The computed type of the tree
 213      *  @param ownkind  The computed kind of the tree
 214      *  @param resultInfo  The expected result of the tree
 215      */
 216     Type check(final JCTree tree,
 217                final Type found,
 218                final KindSelector ownkind,
 219                final ResultInfo resultInfo) {
 220         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
 221         Type owntype;
 222         boolean shouldCheck = !found.hasTag(ERROR) &&
 223                 !resultInfo.pt.hasTag(METHOD) &&
 224                 !resultInfo.pt.hasTag(FORALL);
 225         if (shouldCheck && !ownkind.subset(resultInfo.pkind)) {
 226             log.error(tree.pos(),
 227                       Errors.UnexpectedType(resultInfo.pkind.kindNames(),
 228                                             ownkind.kindNames()));
 229             owntype = types.createErrorType(found);
 230         } else if (allowPoly && inferenceContext.free(found)) {
 231             //delay the check if there are inference variables in the found type
 232             //this means we are dealing with a partially inferred poly expression
 233             owntype = shouldCheck ? resultInfo.pt : found;
 234             if (resultInfo.checkMode.installPostInferenceHook()) {
 235                 inferenceContext.addFreeTypeListener(List.of(found),
 236                         instantiatedContext -> {
 237                             ResultInfo pendingResult =
 238                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
 239                             check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
 240                         });
 241             }
 242         } else {
 243             owntype = shouldCheck ?
 244             resultInfo.check(tree, found) :
 245             found;
 246         }
 247         if (resultInfo.checkMode.updateTreeType()) {
 248             tree.type = owntype;
 249         }
 250         return owntype;
 251     }
 252 
 253     /** Is given blank final variable assignable, i.e. in a scope where it
 254      *  may be assigned to even though it is final?
 255      *  @param v      The blank final variable.
 256      *  @param env    The current environment.
 257      */
 258     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
 259         Symbol owner = env.info.scope.owner;
 260            // owner refers to the innermost variable, method or
 261            // initializer block declaration at this point.
 262         return
 263             v.owner == owner
 264             ||
 265             ((owner.name == names.init ||    // i.e. we are in a constructor
 266               owner.kind == VAR ||           // i.e. we are in a variable initializer
 267               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
 268              &&
 269              v.owner == owner.owner
 270              &&
 271              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
 272     }
 273 
 274     /** Check that variable can be assigned to.
 275      *  @param pos    The current source code position.
 276      *  @param v      The assigned variable
 277      *  @param base   If the variable is referred to in a Select, the part
 278      *                to the left of the `.', null otherwise.
 279      *  @param env    The current environment.
 280      */
 281     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
 282         if (v.name == names._this) {
 283             log.error(pos, Errors.CantAssignValToThis);
 284         } else if ((v.flags() & FINAL) != 0 &&
 285             ((v.flags() & HASINIT) != 0
 286              ||
 287              !((base == null ||
 288                TreeInfo.isThisQualifier(base)) &&
 289                isAssignableAsBlankFinal(v, env)))) {
 290             if (v.isResourceVariable()) { //TWR resource
 291                 log.error(pos, Errors.TryResourceMayNotBeAssigned(v));
 292             } else {
 293                 log.error(pos, Errors.CantAssignValToFinalVar(v));
 294             }
 295         }
 296     }
 297 
 298     /** Does tree represent a static reference to an identifier?
 299      *  It is assumed that tree is either a SELECT or an IDENT.
 300      *  We have to weed out selects from non-type names here.
 301      *  @param tree    The candidate tree.
 302      */
 303     boolean isStaticReference(JCTree tree) {
 304         if (tree.hasTag(SELECT)) {
 305             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
 306             if (lsym == null || lsym.kind != TYP) {
 307                 return false;
 308             }
 309         }
 310         return true;
 311     }
 312 
 313     /** Is this symbol a type?
 314      */
 315     static boolean isType(Symbol sym) {
 316         return sym != null && sym.kind == TYP;
 317     }
 318 
 319     /** The current `this' symbol.
 320      *  @param env    The current environment.
 321      */
 322     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
 323         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
 324     }
 325 
 326     /** Attribute a parsed identifier.
 327      * @param tree Parsed identifier name
 328      * @param topLevel The toplevel to use
 329      */
 330     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
 331         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
 332         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
 333                                            syms.errSymbol.name,
 334                                            null, null, null, null);
 335         localEnv.enclClass.sym = syms.errSymbol;
 336         return attribIdent(tree, localEnv);
 337     }
 338 
 339     /** Attribute a parsed identifier.
 340      * @param tree Parsed identifier name
 341      * @param env The env to use
 342      */
 343     public Symbol attribIdent(JCTree tree, Env<AttrContext> env) {
 344         return tree.accept(identAttributer, env);
 345     }
 346     // where
 347         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
 348         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
 349             @Override @DefinedBy(Api.COMPILER_TREE)
 350             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
 351                 Symbol site = visit(node.getExpression(), env);
 352                 if (site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN)
 353                     return site;
 354                 Name name = (Name)node.getIdentifier();
 355                 if (site.kind == PCK) {
 356                     env.toplevel.packge = (PackageSymbol)site;
 357                     return rs.findIdentInPackage(env, (TypeSymbol)site, name,
 358                             KindSelector.TYP_PCK);
 359                 } else {
 360                     env.enclClass.sym = (ClassSymbol)site;
 361                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
 362                 }
 363             }
 364 
 365             @Override @DefinedBy(Api.COMPILER_TREE)
 366             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
 367                 return rs.findIdent(env, (Name)node.getName(), KindSelector.TYP_PCK);
 368             }
 369         }
 370 
 371     public Type coerce(Type etype, Type ttype) {
 372         return cfolder.coerce(etype, ttype);
 373     }
 374 
 375     public Type attribType(JCTree node, TypeSymbol sym) {
 376         Env<AttrContext> env = typeEnvs.get(sym);
 377         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
 378         return attribTree(node, localEnv, unknownTypeInfo);
 379     }
 380 
 381     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
 382         // Attribute qualifying package or class.
 383         JCFieldAccess s = (JCFieldAccess)tree.qualid;
 384         return attribTree(s.selected, env,
 385                           new ResultInfo(tree.staticImport ?
 386                                          KindSelector.TYP : KindSelector.TYP_PCK,
 387                        Type.noType));
 388     }
 389 
 390     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
 391         breakTree = tree;
 392         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 393         try {
 394             attribExpr(expr, env);
 395         } catch (BreakAttr b) {
 396             return b.env;
 397         } catch (AssertionError ae) {
 398             if (ae.getCause() instanceof BreakAttr) {
 399                 return ((BreakAttr)(ae.getCause())).env;
 400             } else {
 401                 throw ae;
 402             }
 403         } finally {
 404             breakTree = null;
 405             log.useSource(prev);
 406         }
 407         return env;
 408     }
 409 
 410     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
 411         breakTree = tree;
 412         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 413         try {
 414             attribStat(stmt, env);
 415         } catch (BreakAttr b) {
 416             return b.env;
 417         } catch (AssertionError ae) {
 418             if (ae.getCause() instanceof BreakAttr) {
 419                 return ((BreakAttr)(ae.getCause())).env;
 420             } else {
 421                 throw ae;
 422             }
 423         } finally {
 424             breakTree = null;
 425             log.useSource(prev);
 426         }
 427         return env;
 428     }
 429 
 430     private JCTree breakTree = null;
 431 
 432     private static class BreakAttr extends RuntimeException {
 433         static final long serialVersionUID = -6924771130405446405L;
 434         private Env<AttrContext> env;
 435         private BreakAttr(Env<AttrContext> env) {
 436             this.env = env;
 437         }
 438     }
 439 
 440     /**
 441      * Mode controlling behavior of Attr.Check
 442      */
 443     enum CheckMode {
 444 
 445         NORMAL,
 446 
 447         /**
 448          * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is
 449          * that the captured var cache in {@code InferenceContext} will be used in read-only
 450          * mode when performing inference checks.
 451          */
 452         NO_TREE_UPDATE {
 453             @Override
 454             public boolean updateTreeType() {
 455                 return false;
 456             }
 457         },
 458         /**
 459          * Mode signalling that caller will manage free types in tree decorations.
 460          */
 461         NO_INFERENCE_HOOK {
 462             @Override
 463             public boolean installPostInferenceHook() {
 464                 return false;
 465             }
 466         };
 467 
 468         public boolean updateTreeType() {
 469             return true;
 470         }
 471         public boolean installPostInferenceHook() {
 472             return true;
 473         }
 474     }
 475 
 476 
 477     class ResultInfo {
 478         final KindSelector pkind;
 479         final Type pt;
 480         final CheckContext checkContext;
 481         final CheckMode checkMode;
 482 
 483         ResultInfo(KindSelector pkind, Type pt) {
 484             this(pkind, pt, chk.basicHandler, CheckMode.NORMAL);
 485         }
 486 
 487         ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) {
 488             this(pkind, pt, chk.basicHandler, checkMode);
 489         }
 490 
 491         protected ResultInfo(KindSelector pkind,
 492                              Type pt, CheckContext checkContext) {
 493             this(pkind, pt, checkContext, CheckMode.NORMAL);
 494         }
 495 
 496         protected ResultInfo(KindSelector pkind,
 497                              Type pt, CheckContext checkContext, CheckMode checkMode) {
 498             this.pkind = pkind;
 499             this.pt = pt;
 500             this.checkContext = checkContext;
 501             this.checkMode = checkMode;
 502         }
 503 
 504         /**
 505          * Should {@link Attr#attribTree} use the {@ArgumentAttr} visitor instead of this one?
 506          * @param tree The tree to be type-checked.
 507          * @return true if {@ArgumentAttr} should be used.
 508          */
 509         protected boolean needsArgumentAttr(JCTree tree) { return false; }
 510 
 511         protected Type check(final DiagnosticPosition pos, final Type found) {
 512             return chk.checkType(pos, found, pt, checkContext);
 513         }
 514 
 515         protected ResultInfo dup(Type newPt) {
 516             return new ResultInfo(pkind, newPt, checkContext, checkMode);
 517         }
 518 
 519         protected ResultInfo dup(CheckContext newContext) {
 520             return new ResultInfo(pkind, pt, newContext, checkMode);
 521         }
 522 
 523         protected ResultInfo dup(Type newPt, CheckContext newContext) {
 524             return new ResultInfo(pkind, newPt, newContext, checkMode);
 525         }
 526 
 527         protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
 528             return new ResultInfo(pkind, newPt, newContext, newMode);
 529         }
 530 
 531         protected ResultInfo dup(CheckMode newMode) {
 532             return new ResultInfo(pkind, pt, checkContext, newMode);
 533         }
 534 
 535         @Override
 536         public String toString() {
 537             if (pt != null) {
 538                 return pt.toString();
 539             } else {
 540                 return "";
 541             }
 542         }
 543     }
 544 
 545     class MethodAttrInfo extends ResultInfo {
 546         public MethodAttrInfo() {
 547             this(chk.basicHandler);
 548         }
 549 
 550         public MethodAttrInfo(CheckContext checkContext) {
 551             super(KindSelector.VAL, Infer.anyPoly, checkContext);
 552         }
 553 
 554         @Override
 555         protected boolean needsArgumentAttr(JCTree tree) {
 556             return true;
 557         }
 558 
 559         protected ResultInfo dup(Type newPt) {
 560             throw new IllegalStateException();
 561         }
 562 
 563         protected ResultInfo dup(CheckContext newContext) {
 564             return new MethodAttrInfo(newContext);
 565         }
 566 
 567         protected ResultInfo dup(Type newPt, CheckContext newContext) {
 568             throw new IllegalStateException();
 569         }
 570 
 571         protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
 572             throw new IllegalStateException();
 573         }
 574 
 575         protected ResultInfo dup(CheckMode newMode) {
 576             throw new IllegalStateException();
 577         }
 578     }
 579 
 580     class RecoveryInfo extends ResultInfo {
 581 
 582         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
 583             this(deferredAttrContext, Type.recoveryType);
 584         }
 585 
 586         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext, Type pt) {
 587             super(KindSelector.VAL, pt, new Check.NestedCheckContext(chk.basicHandler) {
 588                 @Override
 589                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
 590                     return deferredAttrContext;
 591                 }
 592                 @Override
 593                 public boolean compatible(Type found, Type req, Warner warn) {
 594                     return true;
 595                 }
 596                 @Override
 597                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
 598                     if (pt == Type.recoveryType) {
 599                         chk.basicHandler.report(pos, details);
 600                     }
 601                 }
 602             });
 603         }
 604     }
 605 
 606     final ResultInfo statInfo;
 607     final ResultInfo varAssignmentInfo;
 608     final ResultInfo methodAttrInfo;
 609     final ResultInfo unknownExprInfo;
 610     final ResultInfo unknownTypeInfo;
 611     final ResultInfo unknownTypeExprInfo;
 612     final ResultInfo recoveryInfo;
 613 
 614     Type pt() {
 615         return resultInfo.pt;
 616     }
 617 
 618     KindSelector pkind() {
 619         return resultInfo.pkind;
 620     }
 621 
 622 /* ************************************************************************
 623  * Visitor methods
 624  *************************************************************************/
 625 
 626     /** Visitor argument: the current environment.
 627      */
 628     Env<AttrContext> env;
 629 
 630     /** Visitor argument: the currently expected attribution result.
 631      */
 632     ResultInfo resultInfo;
 633 
 634     /** Visitor result: the computed type.
 635      */
 636     Type result;
 637 
 638     /** Visitor method: attribute a tree, catching any completion failure
 639      *  exceptions. Return the tree's type.
 640      *
 641      *  @param tree    The tree to be visited.
 642      *  @param env     The environment visitor argument.
 643      *  @param resultInfo   The result info visitor argument.
 644      */
 645     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
 646         Env<AttrContext> prevEnv = this.env;
 647         ResultInfo prevResult = this.resultInfo;
 648         try {
 649             this.env = env;
 650             this.resultInfo = resultInfo;
 651             if (resultInfo.needsArgumentAttr(tree)) {
 652                 result = argumentAttr.attribArg(tree, env);
 653             } else {
 654                 tree.accept(this);
 655             }
 656             if (tree == breakTree &&
 657                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
 658                 breakTreeFound(copyEnv(env));
 659             }
 660             return result;
 661         } catch (CompletionFailure ex) {
 662             tree.type = syms.errType;
 663             return chk.completionError(tree.pos(), ex);
 664         } finally {
 665             this.env = prevEnv;
 666             this.resultInfo = prevResult;
 667         }
 668     }
 669 
 670     protected void breakTreeFound(Env<AttrContext> env) {
 671         throw new BreakAttr(env);
 672     }
 673 
 674     Env<AttrContext> copyEnv(Env<AttrContext> env) {
 675         Env<AttrContext> newEnv =
 676                 env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
 677         if (newEnv.outer != null) {
 678             newEnv.outer = copyEnv(newEnv.outer);
 679         }
 680         return newEnv;
 681     }
 682 
 683     WriteableScope copyScope(WriteableScope sc) {
 684         WriteableScope newScope = WriteableScope.create(sc.owner);
 685         List<Symbol> elemsList = List.nil();
 686         for (Symbol sym : sc.getSymbols()) {
 687             elemsList = elemsList.prepend(sym);
 688         }
 689         for (Symbol s : elemsList) {
 690             newScope.enter(s);
 691         }
 692         return newScope;
 693     }
 694 
 695     /** Derived visitor method: attribute an expression tree.
 696      */
 697     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
 698         return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
 699     }
 700 
 701     /** Derived visitor method: attribute an expression tree with
 702      *  no constraints on the computed type.
 703      */
 704     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
 705         return attribTree(tree, env, unknownExprInfo);
 706     }
 707 
 708     /** Derived visitor method: attribute a type tree.
 709      */
 710     public Type attribType(JCTree tree, Env<AttrContext> env) {
 711         Type result = attribType(tree, env, Type.noType);
 712         return result;
 713     }
 714 
 715     /** Derived visitor method: attribute a type tree.
 716      */
 717     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
 718         Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
 719         return result;
 720     }
 721 
 722     /** Derived visitor method: attribute a statement or definition tree.
 723      */
 724     public Type attribStat(JCTree tree, Env<AttrContext> env) {
 725         Env<AttrContext> analyzeEnv = analyzer.copyEnvIfNeeded(tree, env);
 726         try {
 727             return attribTree(tree, env, statInfo);
 728         } finally {
 729             analyzer.analyzeIfNeeded(tree, analyzeEnv);
 730         }
 731     }
 732 
 733     /** Attribute a list of expressions, returning a list of types.
 734      */
 735     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
 736         ListBuffer<Type> ts = new ListBuffer<>();
 737         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 738             ts.append(attribExpr(l.head, env, pt));
 739         return ts.toList();
 740     }
 741 
 742     /** Attribute a list of statements, returning nothing.
 743      */
 744     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
 745         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
 746             attribStat(l.head, env);
 747     }
 748 
 749     /** Attribute the arguments in a method call, returning the method kind.
 750      */
 751     KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
 752         KindSelector kind = initialKind;
 753         for (JCExpression arg : trees) {
 754             Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, allowPoly ? methodAttrInfo : unknownExprInfo));
 755             if (argtype.hasTag(DEFERRED)) {
 756                 kind = KindSelector.of(KindSelector.POLY, kind);
 757             }
 758             argtypes.append(argtype);
 759         }
 760         return kind;
 761     }
 762 
 763     /** Attribute a type argument list, returning a list of types.
 764      *  Caller is responsible for calling checkRefTypes.
 765      */
 766     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
 767         ListBuffer<Type> argtypes = new ListBuffer<>();
 768         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 769             argtypes.append(attribType(l.head, env));
 770         return argtypes.toList();
 771     }
 772 
 773     /** Attribute a type argument list, returning a list of types.
 774      *  Check that all the types are references.
 775      */
 776     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
 777         List<Type> types = attribAnyTypes(trees, env);
 778         return chk.checkRefTypes(trees, types);
 779     }
 780 
 781     /**
 782      * Attribute type variables (of generic classes or methods).
 783      * Compound types are attributed later in attribBounds.
 784      * @param typarams the type variables to enter
 785      * @param env      the current environment
 786      */
 787     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
 788         for (JCTypeParameter tvar : typarams) {
 789             TypeVar a = (TypeVar)tvar.type;
 790             a.tsym.flags_field |= UNATTRIBUTED;
 791             a.bound = Type.noType;
 792             if (!tvar.bounds.isEmpty()) {
 793                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
 794                 for (JCExpression bound : tvar.bounds.tail)
 795                     bounds = bounds.prepend(attribType(bound, env));
 796                 types.setBounds(a, bounds.reverse());
 797             } else {
 798                 // if no bounds are given, assume a single bound of
 799                 // java.lang.Object.
 800                 types.setBounds(a, List.of(syms.objectType));
 801             }
 802             a.tsym.flags_field &= ~UNATTRIBUTED;
 803         }
 804         for (JCTypeParameter tvar : typarams) {
 805             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
 806         }
 807     }
 808 
 809     /**
 810      * Attribute the type references in a list of annotations.
 811      */
 812     void attribAnnotationTypes(List<JCAnnotation> annotations,
 813                                Env<AttrContext> env) {
 814         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
 815             JCAnnotation a = al.head;
 816             attribType(a.annotationType, env);
 817         }
 818     }
 819 
 820     /**
 821      * Attribute a "lazy constant value".
 822      *  @param env         The env for the const value
 823      *  @param variable    The initializer for the const value
 824      *  @param type        The expected type, or null
 825      *  @see VarSymbol#setLazyConstValue
 826      */
 827     public Object attribLazyConstantValue(Env<AttrContext> env,
 828                                       JCVariableDecl variable,
 829                                       Type type) {
 830 
 831         DiagnosticPosition prevLintPos
 832                 = deferredLintHandler.setPos(variable.pos());
 833 
 834         final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
 835         try {
 836             Type itype = attribExpr(variable.init, env, type);
 837             if (variable.isImplicitlyTyped()) {
 838                 //fixup local variable type
 839                 type = variable.type = variable.sym.type = chk.checkLocalVarType(variable, itype.baseType(), variable.name);
 840             }
 841             if (itype.constValue() != null) {
 842                 return coerce(itype, type).constValue();
 843             } else {
 844                 return null;
 845             }
 846         } finally {
 847             log.useSource(prevSource);
 848             deferredLintHandler.setPos(prevLintPos);
 849         }
 850     }
 851 
 852     /** Attribute type reference in an `extends' or `implements' clause.
 853      *  Supertypes of anonymous inner classes are usually already attributed.
 854      *
 855      *  @param tree              The tree making up the type reference.
 856      *  @param env               The environment current at the reference.
 857      *  @param classExpected     true if only a class is expected here.
 858      *  @param interfaceExpected true if only an interface is expected here.
 859      */
 860     Type attribBase(JCTree tree,
 861                     Env<AttrContext> env,
 862                     boolean classExpected,
 863                     boolean interfaceExpected,
 864                     boolean checkExtensible) {
 865         Type t = tree.type != null ?
 866             tree.type :
 867             attribType(tree, env);
 868         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
 869     }
 870     Type checkBase(Type t,
 871                    JCTree tree,
 872                    Env<AttrContext> env,
 873                    boolean classExpected,
 874                    boolean interfaceExpected,
 875                    boolean checkExtensible) {
 876         final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ?
 877                 (((JCTypeApply) tree).clazz).pos() : tree.pos();
 878         if (t.tsym.isAnonymous()) {
 879             log.error(pos, Errors.CantInheritFromAnon);
 880             return types.createErrorType(t);
 881         }
 882         if (t.isErroneous())
 883             return t;
 884         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
 885             // check that type variable is already visible
 886             if (t.getUpperBound() == null) {
 887                 log.error(pos, Errors.IllegalForwardRef);
 888                 return types.createErrorType(t);
 889             }
 890         } else {
 891             t = chk.checkClassType(pos, t, checkExtensible);
 892         }
 893         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
 894             log.error(pos, Errors.IntfExpectedHere);
 895             // return errType is necessary since otherwise there might
 896             // be undetected cycles which cause attribution to loop
 897             return types.createErrorType(t);
 898         } else if (checkExtensible &&
 899                    classExpected &&
 900                    (t.tsym.flags() & INTERFACE) != 0) {
 901             log.error(pos, Errors.NoIntfExpectedHere);
 902             return types.createErrorType(t);
 903         }
 904         if (checkExtensible &&
 905             ((t.tsym.flags() & FINAL) != 0)) {
 906             log.error(pos,
 907                       Errors.CantInheritFromFinal(t.tsym));
 908         }
 909         chk.checkNonCyclic(pos, t);
 910         return t;
 911     }
 912 
 913     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
 914         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
 915         id.type = env.info.scope.owner.enclClass().type;
 916         id.sym = env.info.scope.owner.enclClass();
 917         return id.type;
 918     }
 919 
 920     public void visitClassDef(JCClassDecl tree) {
 921         Optional<ArgumentAttr.LocalCacheContext> localCacheContext =
 922                 Optional.ofNullable(env.info.isSpeculative ?
 923                         argumentAttr.withLocalCacheContext() : null);
 924         try {
 925             // Local and anonymous classes have not been entered yet, so we need to
 926             // do it now.
 927             if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
 928                 enter.classEnter(tree, env);
 929             } else {
 930                 // If this class declaration is part of a class level annotation,
 931                 // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
 932                 // order to simplify later steps and allow for sensible error
 933                 // messages.
 934                 if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
 935                     enter.classEnter(tree, env);
 936             }
 937 
 938             ClassSymbol c = tree.sym;
 939             if (c == null) {
 940                 // exit in case something drastic went wrong during enter.
 941                 result = null;
 942             } else {
 943                 // make sure class has been completed:
 944                 c.complete();
 945 
 946                 // If this class appears as an anonymous class
 947                 // in a superclass constructor call
 948                 // disable implicit outer instance from being passed.
 949                 // (This would be an illegal access to "this before super").
 950                 if (env.info.isSelfCall &&
 951                         env.tree.hasTag(NEWCLASS)) {
 952                     c.flags_field |= NOOUTERTHIS;
 953                 }
 954                 attribClass(tree.pos(), c);
 955                 result = tree.type = c.type;
 956             }
 957         } finally {
 958             localCacheContext.ifPresent(LocalCacheContext::leave);
 959         }
 960     }
 961 
 962     public void visitMethodDef(JCMethodDecl tree) {
 963         MethodSymbol m = tree.sym;
 964         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
 965 
 966         Lint lint = env.info.lint.augment(m);
 967         Lint prevLint = chk.setLint(lint);
 968         MethodSymbol prevMethod = chk.setMethod(m);
 969         try {
 970             deferredLintHandler.flush(tree.pos());
 971             chk.checkDeprecatedAnnotation(tree.pos(), m);
 972 
 973 
 974             // Create a new environment with local scope
 975             // for attributing the method.
 976             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
 977             localEnv.info.lint = lint;
 978 
 979             attribStats(tree.typarams, localEnv);
 980 
 981             // If we override any other methods, check that we do so properly.
 982             // JLS ???
 983             if (m.isStatic()) {
 984                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
 985             } else {
 986                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
 987             }
 988             chk.checkOverride(env, tree, m);
 989 
 990             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
 991                 log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location()));
 992             }
 993 
 994             // Enter all type parameters into the local method scope.
 995             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
 996                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
 997 
 998             ClassSymbol owner = env.enclClass.sym;
 999             if ((owner.flags() & ANNOTATION) != 0 &&
1000                     (tree.params.nonEmpty() ||
1001                     tree.recvparam != null))
1002                 log.error(tree.params.nonEmpty() ?
1003                         tree.params.head.pos() :
1004                         tree.recvparam.pos(),
1005                         Errors.IntfAnnotationMembersCantHaveParams);
1006 
1007             // Attribute all value parameters.
1008             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
1009                 attribStat(l.head, localEnv);
1010             }
1011 
1012             chk.checkVarargsMethodDecl(localEnv, tree);
1013 
1014             // Check that type parameters are well-formed.
1015             chk.validate(tree.typarams, localEnv);
1016 
1017             // Check that result type is well-formed.
1018             if (tree.restype != null && !tree.restype.type.hasTag(VOID))
1019                 chk.validate(tree.restype, localEnv);
1020 
1021             // Check that receiver type is well-formed.
1022             if (tree.recvparam != null) {
1023                 // Use a new environment to check the receiver parameter.
1024                 // Otherwise I get "might not have been initialized" errors.
1025                 // Is there a better way?
1026                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
1027                 attribType(tree.recvparam, newEnv);
1028                 chk.validate(tree.recvparam, newEnv);
1029             }
1030 
1031             // annotation method checks
1032             if ((owner.flags() & ANNOTATION) != 0) {
1033                 // annotation method cannot have throws clause
1034                 if (tree.thrown.nonEmpty()) {
1035                     log.error(tree.thrown.head.pos(),
1036                               Errors.ThrowsNotAllowedInIntfAnnotation);
1037                 }
1038                 // annotation method cannot declare type-parameters
1039                 if (tree.typarams.nonEmpty()) {
1040                     log.error(tree.typarams.head.pos(),
1041                               Errors.IntfAnnotationMembersCantHaveTypeParams);
1042                 }
1043                 // validate annotation method's return type (could be an annotation type)
1044                 chk.validateAnnotationType(tree.restype);
1045                 // ensure that annotation method does not clash with members of Object/Annotation
1046                 chk.validateAnnotationMethod(tree.pos(), m);
1047             }
1048 
1049             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
1050                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
1051 
1052             if (tree.body == null) {
1053                 // Empty bodies are only allowed for
1054                 // abstract, native, or interface methods, or for methods
1055                 // in a retrofit signature class.
1056                 if (tree.defaultValue != null) {
1057                     if ((owner.flags() & ANNOTATION) == 0)
1058                         log.error(tree.pos(),
1059                                   Errors.DefaultAllowedInIntfAnnotationMember);
1060                 }
1061                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0)
1062                     log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract);
1063             } else if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
1064                 if ((owner.flags() & INTERFACE) != 0) {
1065                     log.error(tree.body.pos(), Errors.IntfMethCantHaveBody);
1066                 } else {
1067                     log.error(tree.pos(), Errors.AbstractMethCantHaveBody);
1068                 }
1069             } else if ((tree.mods.flags & NATIVE) != 0) {
1070                 log.error(tree.pos(), Errors.NativeMethCantHaveBody);
1071             } else {
1072                 // Add an implicit super() call unless an explicit call to
1073                 // super(...) or this(...) is given
1074                 // or we are compiling class java.lang.Object.
1075                 if (tree.name == names.init && owner.type != syms.objectType) {
1076                     JCBlock body = tree.body;
1077                     if (body.stats.isEmpty() ||
1078                             !TreeInfo.isSelfCall(body.stats.head)) {
1079                         body.stats = body.stats.
1080                                 prepend(typeEnter.SuperCall(make.at(body.pos),
1081                                         List.nil(),
1082                                         List.nil(),
1083                                         false));
1084                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1085                             (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1086                             TreeInfo.isSuperCall(body.stats.head)) {
1087                         // enum constructors are not allowed to call super
1088                         // directly, so make sure there aren't any super calls
1089                         // in enum constructors, except in the compiler
1090                         // generated one.
1091                         log.error(tree.body.stats.head.pos(),
1092                                   Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym));
1093                     }
1094                 }
1095 
1096                 // Attribute all type annotations in the body
1097                 annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null);
1098                 annotate.flush();
1099 
1100                 // Attribute method body.
1101                 attribStat(tree.body, localEnv);
1102             }
1103 
1104             localEnv.info.scope.leave();
1105             result = tree.type = m.type;
1106         } finally {
1107             chk.setLint(prevLint);
1108             chk.setMethod(prevMethod);
1109         }
1110     }
1111 
1112     public void visitVarDef(JCVariableDecl tree) {
1113         // Local variables have not been entered yet, so we need to do it now:
1114         if (env.info.scope.owner.kind == MTH) {
1115             if (tree.sym != null) {
1116                 // parameters have already been entered
1117                 env.info.scope.enter(tree.sym);
1118             } else {
1119                 if (tree.isImplicitlyTyped() && (tree.getModifiers().flags & PARAMETER) == 0) {
1120                     if (tree.init == null) {
1121                         //cannot use 'var' without initializer
1122                         log.error(tree, Errors.CantInferLocalVarType(tree.name, Fragments.LocalMissingInit));
1123                         tree.vartype = make.Erroneous();
1124                     } else {
1125                         Fragment msg = canInferLocalVarType(tree);
1126                         if (msg != null) {
1127                             //cannot use 'var' with initializer which require an explicit target
1128                             //(e.g. lambda, method reference, array initializer).
1129                             log.error(tree, Errors.CantInferLocalVarType(tree.name, msg));
1130                             tree.vartype = make.Erroneous();
1131                         }
1132                     }
1133                 }
1134                 try {
1135                     annotate.blockAnnotations();
1136                     memberEnter.memberEnter(tree, env);
1137                 } finally {
1138                     annotate.unblockAnnotations();
1139                 }
1140             }
1141         } else {
1142             if (tree.init != null) {
1143                 // Field initializer expression need to be entered.
1144                 annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree.pos());
1145                 annotate.flush();
1146             }
1147         }
1148 
1149         VarSymbol v = tree.sym;
1150         Lint lint = env.info.lint.augment(v);
1151         Lint prevLint = chk.setLint(lint);
1152 
1153         // Check that the variable's declared type is well-formed.
1154         boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1155                 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1156                 (tree.sym.flags() & PARAMETER) != 0;
1157         chk.validate(tree.vartype, env, !isImplicitLambdaParameter && !tree.isImplicitlyTyped());
1158 
1159         try {
1160             v.getConstValue(); // ensure compile-time constant initializer is evaluated
1161             deferredLintHandler.flush(tree.pos());
1162             chk.checkDeprecatedAnnotation(tree.pos(), v);
1163 
1164             if (tree.init != null) {
1165                 if ((v.flags_field & FINAL) == 0 ||
1166                     !memberEnter.needsLazyConstValue(tree.init)) {
1167                     // Not a compile-time constant
1168                     // Attribute initializer in a new environment
1169                     // with the declared variable as owner.
1170                     // Check that initializer conforms to variable's declared type.
1171                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1172                     initEnv.info.lint = lint;
1173                     // In order to catch self-references, we set the variable's
1174                     // declaration position to maximal possible value, effectively
1175                     // marking the variable as undefined.
1176                     initEnv.info.enclVar = v;
1177                     attribExpr(tree.init, initEnv, v.type);
1178                     if (tree.isImplicitlyTyped()) {
1179                         //fixup local variable type
1180                         v.type = chk.checkLocalVarType(tree, tree.init.type.baseType(), tree.name);
1181                     }
1182                 }
1183                 if (tree.isImplicitlyTyped()) {
1184                     setSyntheticVariableType(tree, v.type);
1185                 }
1186             }
1187             result = tree.type = v.type;
1188         }
1189         finally {
1190             chk.setLint(prevLint);
1191         }
1192     }
1193 
1194     Fragment canInferLocalVarType(JCVariableDecl tree) {
1195         LocalInitScanner lis = new LocalInitScanner();
1196         lis.scan(tree.init);
1197         return lis.badInferenceMsg;
1198     }
1199 
1200     static class LocalInitScanner extends TreeScanner {
1201         Fragment badInferenceMsg = null;
1202         boolean needsTarget = true;
1203 
1204         @Override
1205         public void visitNewArray(JCNewArray tree) {
1206             if (tree.elemtype == null && needsTarget) {
1207                 badInferenceMsg = Fragments.LocalArrayMissingTarget;
1208             }
1209         }
1210 
1211         @Override
1212         public void visitLambda(JCLambda tree) {
1213             if (needsTarget) {
1214                 badInferenceMsg = Fragments.LocalLambdaMissingTarget;
1215             }
1216         }
1217 
1218         @Override
1219         public void visitTypeCast(JCTypeCast tree) {
1220             boolean prevNeedsTarget = needsTarget;
1221             try {
1222                 needsTarget = false;
1223                 super.visitTypeCast(tree);
1224             } finally {
1225                 needsTarget = prevNeedsTarget;
1226             }
1227         }
1228 
1229         @Override
1230         public void visitReference(JCMemberReference tree) {
1231             if (needsTarget) {
1232                 badInferenceMsg = Fragments.LocalMrefMissingTarget;
1233             }
1234         }
1235 
1236         @Override
1237         public void visitNewClass(JCNewClass tree) {
1238             boolean prevNeedsTarget = needsTarget;
1239             try {
1240                 needsTarget = false;
1241                 super.visitNewClass(tree);
1242             } finally {
1243                 needsTarget = prevNeedsTarget;
1244             }
1245         }
1246 
1247         @Override
1248         public void visitApply(JCMethodInvocation tree) {
1249             boolean prevNeedsTarget = needsTarget;
1250             try {
1251                 needsTarget = false;
1252                 super.visitApply(tree);
1253             } finally {
1254                 needsTarget = prevNeedsTarget;
1255             }
1256         }
1257     }
1258 
1259     public void visitSkip(JCSkip tree) {
1260         result = null;
1261     }
1262 
1263     public void visitBlock(JCBlock tree) {
1264         if (env.info.scope.owner.kind == TYP) {
1265             // Block is a static or instance initializer;
1266             // let the owner of the environment be a freshly
1267             // created BLOCK-method.
1268             Symbol fakeOwner =
1269                 new MethodSymbol(tree.flags | BLOCK |
1270                     env.info.scope.owner.flags() & STRICTFP, names.empty, null,
1271                     env.info.scope.owner);
1272             final Env<AttrContext> localEnv =
1273                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
1274 
1275             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
1276             // Attribute all type annotations in the block
1277             annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
1278             annotate.flush();
1279             attribStats(tree.stats, localEnv);
1280 
1281             {
1282                 // Store init and clinit type annotations with the ClassSymbol
1283                 // to allow output in Gen.normalizeDefs.
1284                 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1285                 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1286                 if ((tree.flags & STATIC) != 0) {
1287                     cs.appendClassInitTypeAttributes(tas);
1288                 } else {
1289                     cs.appendInitTypeAttributes(tas);
1290                 }
1291             }
1292         } else {
1293             // Create a new local environment with a local scope.
1294             Env<AttrContext> localEnv =
1295                 env.dup(tree, env.info.dup(env.info.scope.dup()));
1296             try {
1297                 attribStats(tree.stats, localEnv);
1298             } finally {
1299                 localEnv.info.scope.leave();
1300             }
1301         }
1302         result = null;
1303     }
1304 
1305     public void visitDoLoop(JCDoWhileLoop tree) {
1306         attribStat(tree.body, env.dup(tree));
1307         attribExpr(tree.cond, env, syms.booleanType);
1308         result = null;
1309     }
1310 
1311     public void visitWhileLoop(JCWhileLoop tree) {
1312         attribExpr(tree.cond, env, syms.booleanType);
1313         attribStat(tree.body, env.dup(tree));
1314         result = null;
1315     }
1316 
1317     public void visitForLoop(JCForLoop tree) {
1318         Env<AttrContext> loopEnv =
1319             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1320         try {
1321             attribStats(tree.init, loopEnv);
1322             if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
1323             loopEnv.tree = tree; // before, we were not in loop!
1324             attribStats(tree.step, loopEnv);
1325             attribStat(tree.body, loopEnv);
1326             result = null;
1327         }
1328         finally {
1329             loopEnv.info.scope.leave();
1330         }
1331     }
1332 
1333     public void visitForeachLoop(JCEnhancedForLoop tree) {
1334         Env<AttrContext> loopEnv =
1335             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1336         try {
1337             //the Formal Parameter of a for-each loop is not in the scope when
1338             //attributing the for-each expression; we mimick this by attributing
1339             //the for-each expression first (against original scope).
1340             Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1341             chk.checkNonVoid(tree.pos(), exprType);
1342             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1343             if (elemtype == null) {
1344                 // or perhaps expr implements Iterable<T>?
1345                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
1346                 if (base == null) {
1347                     log.error(tree.expr.pos(),
1348                               Errors.ForeachNotApplicableToType(exprType,
1349                                                                 Fragments.TypeReqArrayOrIterable));
1350                     elemtype = types.createErrorType(exprType);
1351                 } else {
1352                     List<Type> iterableParams = base.allparams();
1353                     elemtype = iterableParams.isEmpty()
1354                         ? syms.objectType
1355                         : types.wildUpperBound(iterableParams.head);
1356                 }
1357             }
1358             if (tree.var.isImplicitlyTyped()) {
1359                 Type inferredType = chk.checkLocalVarType(tree.var, elemtype, tree.var.name);
1360                 setSyntheticVariableType(tree.var, inferredType);
1361             }
1362             attribStat(tree.var, loopEnv);
1363             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1364             loopEnv.tree = tree; // before, we were not in loop!
1365             attribStat(tree.body, loopEnv);
1366             result = null;
1367         }
1368         finally {
1369             loopEnv.info.scope.leave();
1370         }
1371     }
1372 
1373     public void visitLabelled(JCLabeledStatement tree) {
1374         // Check that label is not used in an enclosing statement
1375         Env<AttrContext> env1 = env;
1376         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1377             if (env1.tree.hasTag(LABELLED) &&
1378                 ((JCLabeledStatement) env1.tree).label == tree.label) {
1379                 log.error(tree.pos(),
1380                           Errors.LabelAlreadyInUse(tree.label));
1381                 break;
1382             }
1383             env1 = env1.next;
1384         }
1385 
1386         attribStat(tree.body, env.dup(tree));
1387         result = null;
1388     }
1389 
1390     public void visitSwitch(JCSwitch tree) {
1391         Type seltype = attribExpr(tree.selector, env);
1392 
1393         Env<AttrContext> switchEnv =
1394             env.dup(tree, env.info.dup(env.info.scope.dup()));
1395 
1396         try {
1397 
1398             boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
1399             boolean stringSwitch = types.isSameType(seltype, syms.stringType);
1400             if (!enumSwitch && !stringSwitch)
1401                 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
1402 
1403             // Attribute all cases and
1404             // check that there are no duplicate case labels or default clauses.
1405             Set<Object> labels = new HashSet<>(); // The set of case labels.
1406             boolean hasDefault = false;      // Is there a default label?
1407             for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
1408                 JCCase c = l.head;
1409                 if (c.pat != null) {
1410                     if (enumSwitch) {
1411                         Symbol sym = enumConstant(c.pat, seltype);
1412                         if (sym == null) {
1413                             log.error(c.pat.pos(), Errors.EnumLabelMustBeUnqualifiedEnum);
1414                         } else if (!labels.add(sym)) {
1415                             log.error(c.pos(), Errors.DuplicateCaseLabel);
1416                         }
1417                     } else {
1418                         Type pattype = attribExpr(c.pat, switchEnv, seltype);
1419                         if (!pattype.hasTag(ERROR)) {
1420                             if (pattype.constValue() == null) {
1421                                 log.error(c.pat.pos(),
1422                                           (stringSwitch ? Errors.StringConstReq : Errors.ConstExprReq));
1423                             } else if (!labels.add(pattype.constValue())) {
1424                                 log.error(c.pos(), Errors.DuplicateCaseLabel);
1425                             }
1426                         }
1427                     }
1428                 } else if (hasDefault) {
1429                     log.error(c.pos(), Errors.DuplicateDefaultLabel);
1430                 } else {
1431                     hasDefault = true;
1432                 }
1433                 Env<AttrContext> caseEnv =
1434                     switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
1435                 try {
1436                     attribStats(c.stats, caseEnv);
1437                 } finally {
1438                     caseEnv.info.scope.leave();
1439                     addVars(c.stats, switchEnv.info.scope);
1440                 }
1441             }
1442 
1443             result = null;
1444         }
1445         finally {
1446             switchEnv.info.scope.leave();
1447         }
1448     }
1449     // where
1450         /** Add any variables defined in stats to the switch scope. */
1451         private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
1452             for (;stats.nonEmpty(); stats = stats.tail) {
1453                 JCTree stat = stats.head;
1454                 if (stat.hasTag(VARDEF))
1455                     switchScope.enter(((JCVariableDecl) stat).sym);
1456             }
1457         }
1458     // where
1459     /** Return the selected enumeration constant symbol, or null. */
1460     private Symbol enumConstant(JCTree tree, Type enumType) {
1461         if (tree.hasTag(IDENT)) {
1462             JCIdent ident = (JCIdent)tree;
1463             Name name = ident.name;
1464             for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
1465                 if (sym.kind == VAR) {
1466                     Symbol s = ident.sym = sym;
1467                     ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1468                     ident.type = s.type;
1469                     return ((s.flags_field & Flags.ENUM) == 0)
1470                         ? null : s;
1471                 }
1472             }
1473         }
1474         return null;
1475     }
1476 
1477     public void visitSynchronized(JCSynchronized tree) {
1478         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1479         attribStat(tree.body, env);
1480         result = null;
1481     }
1482 
1483     public void visitTry(JCTry tree) {
1484         // Create a new local environment with a local
1485         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1486         try {
1487             boolean isTryWithResource = tree.resources.nonEmpty();
1488             // Create a nested environment for attributing the try block if needed
1489             Env<AttrContext> tryEnv = isTryWithResource ?
1490                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1491                 localEnv;
1492             try {
1493                 // Attribute resource declarations
1494                 for (JCTree resource : tree.resources) {
1495                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1496                         @Override
1497                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
1498                             chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details)));
1499                         }
1500                     };
1501                     ResultInfo twrResult =
1502                         new ResultInfo(KindSelector.VAR,
1503                                        syms.autoCloseableType,
1504                                        twrContext);
1505                     if (resource.hasTag(VARDEF)) {
1506                         attribStat(resource, tryEnv);
1507                         twrResult.check(resource, resource.type);
1508 
1509                         //check that resource type cannot throw InterruptedException
1510                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
1511 
1512                         VarSymbol var = ((JCVariableDecl) resource).sym;
1513                         var.setData(ElementKind.RESOURCE_VARIABLE);
1514                     } else {
1515                         attribTree(resource, tryEnv, twrResult);
1516                     }
1517                 }
1518                 // Attribute body
1519                 attribStat(tree.body, tryEnv);
1520             } finally {
1521                 if (isTryWithResource)
1522                     tryEnv.info.scope.leave();
1523             }
1524 
1525             // Attribute catch clauses
1526             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
1527                 JCCatch c = l.head;
1528                 Env<AttrContext> catchEnv =
1529                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
1530                 try {
1531                     Type ctype = attribStat(c.param, catchEnv);
1532                     if (TreeInfo.isMultiCatch(c)) {
1533                         //multi-catch parameter is implicitly marked as final
1534                         c.param.sym.flags_field |= FINAL | UNION;
1535                     }
1536                     if (c.param.sym.kind == VAR) {
1537                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1538                     }
1539                     chk.checkType(c.param.vartype.pos(),
1540                                   chk.checkClassType(c.param.vartype.pos(), ctype),
1541                                   syms.throwableType);
1542                     attribStat(c.body, catchEnv);
1543                 } finally {
1544                     catchEnv.info.scope.leave();
1545                 }
1546             }
1547 
1548             // Attribute finalizer
1549             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
1550             result = null;
1551         }
1552         finally {
1553             localEnv.info.scope.leave();
1554         }
1555     }
1556 
1557     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
1558         if (!resource.isErroneous() &&
1559             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
1560             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
1561             Symbol close = syms.noSymbol;
1562             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
1563             try {
1564                 close = rs.resolveQualifiedMethod(pos,
1565                         env,
1566                         types.skipTypeVars(resource, false),
1567                         names.close,
1568                         List.nil(),
1569                         List.nil());
1570             }
1571             finally {
1572                 log.popDiagnosticHandler(discardHandler);
1573             }
1574             if (close.kind == MTH &&
1575                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
1576                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
1577                     env.info.lint.isEnabled(LintCategory.TRY)) {
1578                 log.warning(LintCategory.TRY, pos, Warnings.TryResourceThrowsInterruptedExc(resource));
1579             }
1580         }
1581     }
1582 
1583     public void visitConditional(JCConditional tree) {
1584         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
1585 
1586         tree.polyKind = (!allowPoly ||
1587                 pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly ||
1588                 isBooleanOrNumeric(env, tree)) ?
1589                 PolyKind.STANDALONE : PolyKind.POLY;
1590 
1591         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1592             //this means we are returning a poly conditional from void-compatible lambda expression
1593             resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid));
1594             result = tree.type = types.createErrorType(resultInfo.pt);
1595             return;
1596         }
1597 
1598         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1599                 unknownExprInfo :
1600                 resultInfo.dup(conditionalContext(resultInfo.checkContext));
1601 
1602         Type truetype = attribTree(tree.truepart, env, condInfo);
1603         Type falsetype = attribTree(tree.falsepart, env, condInfo);
1604 
1605         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
1606         if (condtype.constValue() != null &&
1607                 truetype.constValue() != null &&
1608                 falsetype.constValue() != null &&
1609                 !owntype.hasTag(NONE)) {
1610             //constant folding
1611             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
1612         }
1613         result = check(tree, owntype, KindSelector.VAL, resultInfo);
1614     }
1615     //where
1616         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
1617             switch (tree.getTag()) {
1618                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
1619                               ((JCLiteral)tree).typetag == BOOLEAN ||
1620                               ((JCLiteral)tree).typetag == BOT;
1621                 case LAMBDA: case REFERENCE: return false;
1622                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
1623                 case CONDEXPR:
1624                     JCConditional condTree = (JCConditional)tree;
1625                     return isBooleanOrNumeric(env, condTree.truepart) &&
1626                             isBooleanOrNumeric(env, condTree.falsepart);
1627                 case APPLY:
1628                     JCMethodInvocation speculativeMethodTree =
1629                             (JCMethodInvocation)deferredAttr.attribSpeculative(
1630                                     tree, env, unknownExprInfo,
1631                                     argumentAttr.withLocalCacheContext());
1632                     Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
1633                     Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
1634                             env.enclClass.type :
1635                             ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
1636                     Type owntype = types.memberType(receiverType, msym).getReturnType();
1637                     return primitiveOrBoxed(owntype);
1638                 case NEWCLASS:
1639                     JCExpression className =
1640                             removeClassParams.translate(((JCNewClass)tree).clazz);
1641                     JCExpression speculativeNewClassTree =
1642                             (JCExpression)deferredAttr.attribSpeculative(
1643                                     className, env, unknownTypeInfo,
1644                                     argumentAttr.withLocalCacheContext());
1645                     return primitiveOrBoxed(speculativeNewClassTree.type);
1646                 default:
1647                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo,
1648                             argumentAttr.withLocalCacheContext()).type;
1649                     return primitiveOrBoxed(speculativeType);
1650             }
1651         }
1652         //where
1653             boolean primitiveOrBoxed(Type t) {
1654                 return (!t.hasTag(TYPEVAR) && types.unboxedTypeOrType(t).isPrimitive());
1655             }
1656 
1657             TreeTranslator removeClassParams = new TreeTranslator() {
1658                 @Override
1659                 public void visitTypeApply(JCTypeApply tree) {
1660                     result = translate(tree.clazz);
1661                 }
1662             };
1663 
1664         CheckContext conditionalContext(CheckContext checkContext) {
1665             return new Check.NestedCheckContext(checkContext) {
1666                 //this will use enclosing check context to check compatibility of
1667                 //subexpression against target type; if we are in a method check context,
1668                 //depending on whether boxing is allowed, we could have incompatibilities
1669                 @Override
1670                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
1671                     enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details)));
1672                 }
1673             };
1674         }
1675 
1676         /** Compute the type of a conditional expression, after
1677          *  checking that it exists.  See JLS 15.25. Does not take into
1678          *  account the special case where condition and both arms
1679          *  are constants.
1680          *
1681          *  @param pos      The source position to be used for error
1682          *                  diagnostics.
1683          *  @param thentype The type of the expression's then-part.
1684          *  @param elsetype The type of the expression's else-part.
1685          */
1686         Type condType(DiagnosticPosition pos,
1687                                Type thentype, Type elsetype) {
1688             // If same type, that is the result
1689             if (types.isSameType(thentype, elsetype))
1690                 return thentype.baseType();
1691 
1692             Type thenUnboxed = (thentype.isPrimitive())
1693                 ? thentype : types.unboxedType(thentype);
1694             Type elseUnboxed = (elsetype.isPrimitive())
1695                 ? elsetype : types.unboxedType(elsetype);
1696 
1697             // Otherwise, if both arms can be converted to a numeric
1698             // type, return the least numeric type that fits both arms
1699             // (i.e. return larger of the two, or return int if one
1700             // arm is short, the other is char).
1701             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
1702                 // If one arm has an integer subrange type (i.e., byte,
1703                 // short, or char), and the other is an integer constant
1704                 // that fits into the subrange, return the subrange type.
1705                 if (thenUnboxed.getTag().isStrictSubRangeOf(INT) &&
1706                     elseUnboxed.hasTag(INT) &&
1707                     types.isAssignable(elseUnboxed, thenUnboxed)) {
1708                     return thenUnboxed.baseType();
1709                 }
1710                 if (elseUnboxed.getTag().isStrictSubRangeOf(INT) &&
1711                     thenUnboxed.hasTag(INT) &&
1712                     types.isAssignable(thenUnboxed, elseUnboxed)) {
1713                     return elseUnboxed.baseType();
1714                 }
1715 
1716                 for (TypeTag tag : primitiveTags) {
1717                     Type candidate = syms.typeOfTag[tag.ordinal()];
1718                     if (types.isSubtype(thenUnboxed, candidate) &&
1719                         types.isSubtype(elseUnboxed, candidate)) {
1720                         return candidate;
1721                     }
1722                 }
1723             }
1724 
1725             // Those were all the cases that could result in a primitive
1726             if (thentype.isPrimitive())
1727                 thentype = types.boxedClass(thentype).type;
1728             if (elsetype.isPrimitive())
1729                 elsetype = types.boxedClass(elsetype).type;
1730 
1731             if (types.isSubtype(thentype, elsetype))
1732                 return elsetype.baseType();
1733             if (types.isSubtype(elsetype, thentype))
1734                 return thentype.baseType();
1735 
1736             if (thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
1737                 log.error(pos,
1738                           Errors.NeitherConditionalSubtype(thentype,
1739                                                            elsetype));
1740                 return thentype.baseType();
1741             }
1742 
1743             // both are known to be reference types.  The result is
1744             // lub(thentype,elsetype). This cannot fail, as it will
1745             // always be possible to infer "Object" if nothing better.
1746             return types.lub(thentype.baseType(), elsetype.baseType());
1747         }
1748 
1749     final static TypeTag[] primitiveTags = new TypeTag[]{
1750         BYTE,
1751         CHAR,
1752         SHORT,
1753         INT,
1754         LONG,
1755         FLOAT,
1756         DOUBLE,
1757         BOOLEAN,
1758     };
1759 
1760     public void visitIf(JCIf tree) {
1761         attribExpr(tree.cond, env, syms.booleanType);
1762         attribStat(tree.thenpart, env);
1763         if (tree.elsepart != null)
1764             attribStat(tree.elsepart, env);
1765         chk.checkEmptyIf(tree);
1766         result = null;
1767     }
1768 
1769     public void visitExec(JCExpressionStatement tree) {
1770         //a fresh environment is required for 292 inference to work properly ---
1771         //see Infer.instantiatePolymorphicSignatureInstance()
1772         Env<AttrContext> localEnv = env.dup(tree);
1773         attribExpr(tree.expr, localEnv);
1774         result = null;
1775     }
1776 
1777     public void visitBreak(JCBreak tree) {
1778         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1779         result = null;
1780     }
1781 
1782     public void visitContinue(JCContinue tree) {
1783         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1784         result = null;
1785     }
1786     //where
1787         /** Return the target of a break or continue statement, if it exists,
1788          *  report an error if not.
1789          *  Note: The target of a labelled break or continue is the
1790          *  (non-labelled) statement tree referred to by the label,
1791          *  not the tree representing the labelled statement itself.
1792          *
1793          *  @param pos     The position to be used for error diagnostics
1794          *  @param tag     The tag of the jump statement. This is either
1795          *                 Tree.BREAK or Tree.CONTINUE.
1796          *  @param label   The label of the jump statement, or null if no
1797          *                 label is given.
1798          *  @param env     The environment current at the jump statement.
1799          */
1800         private JCTree findJumpTarget(DiagnosticPosition pos,
1801                                     JCTree.Tag tag,
1802                                     Name label,
1803                                     Env<AttrContext> env) {
1804             // Search environments outwards from the point of jump.
1805             Env<AttrContext> env1 = env;
1806             LOOP:
1807             while (env1 != null) {
1808                 switch (env1.tree.getTag()) {
1809                     case LABELLED:
1810                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
1811                         if (label == labelled.label) {
1812                             // If jump is a continue, check that target is a loop.
1813                             if (tag == CONTINUE) {
1814                                 if (!labelled.body.hasTag(DOLOOP) &&
1815                                         !labelled.body.hasTag(WHILELOOP) &&
1816                                         !labelled.body.hasTag(FORLOOP) &&
1817                                         !labelled.body.hasTag(FOREACHLOOP))
1818                                     log.error(pos, Errors.NotLoopLabel(label));
1819                                 // Found labelled statement target, now go inwards
1820                                 // to next non-labelled tree.
1821                                 return TreeInfo.referencedStatement(labelled);
1822                             } else {
1823                                 return labelled;
1824                             }
1825                         }
1826                         break;
1827                     case DOLOOP:
1828                     case WHILELOOP:
1829                     case FORLOOP:
1830                     case FOREACHLOOP:
1831                         if (label == null) return env1.tree;
1832                         break;
1833                     case SWITCH:
1834                         if (label == null && tag == BREAK) return env1.tree;
1835                         break;
1836                     case LAMBDA:
1837                     case METHODDEF:
1838                     case CLASSDEF:
1839                         break LOOP;
1840                     default:
1841                 }
1842                 env1 = env1.next;
1843             }
1844             if (label != null)
1845                 log.error(pos, Errors.UndefLabel(label));
1846             else if (tag == CONTINUE)
1847                 log.error(pos, Errors.ContOutsideLoop);
1848             else
1849                 log.error(pos, Errors.BreakOutsideSwitchLoop);
1850             return null;
1851         }
1852 
1853     public void visitReturn(JCReturn tree) {
1854         // Check that there is an enclosing method which is
1855         // nested within than the enclosing class.
1856         if (env.info.returnResult == null) {
1857             log.error(tree.pos(), Errors.RetOutsideMeth);
1858         } else {
1859             // Attribute return expression, if it exists, and check that
1860             // it conforms to result type of enclosing method.
1861             if (tree.expr != null) {
1862                 if (env.info.returnResult.pt.hasTag(VOID)) {
1863                     env.info.returnResult.checkContext.report(tree.expr.pos(),
1864                               diags.fragment(Fragments.UnexpectedRetVal));
1865                 }
1866                 attribTree(tree.expr, env, env.info.returnResult);
1867             } else if (!env.info.returnResult.pt.hasTag(VOID) &&
1868                     !env.info.returnResult.pt.hasTag(NONE)) {
1869                 env.info.returnResult.checkContext.report(tree.pos(),
1870                               diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt)));
1871             }
1872         }
1873         result = null;
1874     }
1875 
1876     public void visitThrow(JCThrow tree) {
1877         Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
1878         if (allowPoly) {
1879             chk.checkType(tree, owntype, syms.throwableType);
1880         }
1881         result = null;
1882     }
1883 
1884     public void visitAssert(JCAssert tree) {
1885         attribExpr(tree.cond, env, syms.booleanType);
1886         if (tree.detail != null) {
1887             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
1888         }
1889         result = null;
1890     }
1891 
1892      /** Visitor method for method invocations.
1893      *  NOTE: The method part of an application will have in its type field
1894      *        the return type of the method, not the method's type itself!
1895      */
1896     public void visitApply(JCMethodInvocation tree) {
1897         // The local environment of a method application is
1898         // a new environment nested in the current one.
1899         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1900 
1901         // The types of the actual method arguments.
1902         List<Type> argtypes;
1903 
1904         // The types of the actual method type arguments.
1905         List<Type> typeargtypes = null;
1906 
1907         Name methName = TreeInfo.name(tree.meth);
1908 
1909         boolean isConstructorCall =
1910             methName == names._this || methName == names._super;
1911 
1912         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
1913         if (isConstructorCall) {
1914             // We are seeing a ...this(...) or ...super(...) call.
1915             // Check that this is the first statement in a constructor.
1916             if (checkFirstConstructorStat(tree, env)) {
1917 
1918                 // Record the fact
1919                 // that this is a constructor call (using isSelfCall).
1920                 localEnv.info.isSelfCall = true;
1921 
1922                 // Attribute arguments, yielding list of argument types.
1923                 KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
1924                 argtypes = argtypesBuf.toList();
1925                 typeargtypes = attribTypes(tree.typeargs, localEnv);
1926 
1927                 // Variable `site' points to the class in which the called
1928                 // constructor is defined.
1929                 Type site = env.enclClass.sym.type;
1930                 if (methName == names._super) {
1931                     if (site == syms.objectType) {
1932                         log.error(tree.meth.pos(), Errors.NoSuperclass(site));
1933                         site = types.createErrorType(syms.objectType);
1934                     } else {
1935                         site = types.supertype(site);
1936                     }
1937                 }
1938 
1939                 if (site.hasTag(CLASS)) {
1940                     Type encl = site.getEnclosingType();
1941                     while (encl != null && encl.hasTag(TYPEVAR))
1942                         encl = encl.getUpperBound();
1943                     if (encl.hasTag(CLASS)) {
1944                         // we are calling a nested class
1945 
1946                         if (tree.meth.hasTag(SELECT)) {
1947                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
1948 
1949                             // We are seeing a prefixed call, of the form
1950                             //     <expr>.super(...).
1951                             // Check that the prefix expression conforms
1952                             // to the outer instance type of the class.
1953                             chk.checkRefType(qualifier.pos(),
1954                                              attribExpr(qualifier, localEnv,
1955                                                         encl));
1956                         } else if (methName == names._super) {
1957                             // qualifier omitted; check for existence
1958                             // of an appropriate implicit qualifier.
1959                             rs.resolveImplicitThis(tree.meth.pos(),
1960                                                    localEnv, site, true);
1961                         }
1962                     } else if (tree.meth.hasTag(SELECT)) {
1963                         log.error(tree.meth.pos(),
1964                                   Errors.IllegalQualNotIcls(site.tsym));
1965                     }
1966 
1967                     // if we're calling a java.lang.Enum constructor,
1968                     // prefix the implicit String and int parameters
1969                     if (site.tsym == syms.enumSym)
1970                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
1971 
1972                     // Resolve the called constructor under the assumption
1973                     // that we are referring to a superclass instance of the
1974                     // current instance (JLS ???).
1975                     boolean selectSuperPrev = localEnv.info.selectSuper;
1976                     localEnv.info.selectSuper = true;
1977                     localEnv.info.pendingResolutionPhase = null;
1978                     Symbol sym = rs.resolveConstructor(
1979                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
1980                     localEnv.info.selectSuper = selectSuperPrev;
1981 
1982                     // Set method symbol to resolved constructor...
1983                     TreeInfo.setSymbol(tree.meth, sym);
1984 
1985                     // ...and check that it is legal in the current context.
1986                     // (this will also set the tree's type)
1987                     Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1988                     checkId(tree.meth, site, sym, localEnv,
1989                             new ResultInfo(kind, mpt));
1990                 }
1991                 // Otherwise, `site' is an error type and we do nothing
1992             }
1993             result = tree.type = syms.voidType;
1994         } else {
1995             // Otherwise, we are seeing a regular method call.
1996             // Attribute the arguments, yielding list of argument types, ...
1997             KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
1998             argtypes = argtypesBuf.toList();
1999             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
2000 
2001             // ... and attribute the method using as a prototype a methodtype
2002             // whose formal argument types is exactly the list of actual
2003             // arguments (this will also set the method symbol).
2004             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
2005             localEnv.info.pendingResolutionPhase = null;
2006             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
2007 
2008             // Compute the result type.
2009             Type restype = mtype.getReturnType();
2010             if (restype.hasTag(WILDCARD))
2011                 throw new AssertionError(mtype);
2012 
2013             Type qualifier = (tree.meth.hasTag(SELECT))
2014                     ? ((JCFieldAccess) tree.meth).selected.type
2015                     : env.enclClass.sym.type;
2016             Symbol msym = TreeInfo.symbol(tree.meth);
2017             restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype);
2018 
2019             chk.checkRefTypes(tree.typeargs, typeargtypes);
2020 
2021             // Check that value of resulting type is admissible in the
2022             // current context.  Also, capture the return type
2023             Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true);
2024             result = check(tree, capturedRes, KindSelector.VAL, resultInfo);
2025         }
2026         chk.validate(tree.typeargs, localEnv);
2027     }
2028     //where
2029         Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
2030             if (msym != null &&
2031                     msym.owner == syms.objectType.tsym &&
2032                     methodName == names.getClass &&
2033                     argtypes.isEmpty()) {
2034                 // as a special case, x.getClass() has type Class<? extends |X|>
2035                 return new ClassType(restype.getEnclosingType(),
2036                         List.of(new WildcardType(types.erasure(qualifierType),
2037                                 BoundKind.EXTENDS,
2038                                 syms.boundClass)),
2039                         restype.tsym,
2040                         restype.getMetadata());
2041             } else if (msym != null &&
2042                     msym.owner == syms.arrayClass &&
2043                     methodName == names.clone &&
2044                     types.isArray(qualifierType)) {
2045                 // as a special case, array.clone() has a result that is
2046                 // the same as static type of the array being cloned
2047                 return qualifierType;
2048             } else {
2049                 return restype;
2050             }
2051         }
2052 
2053         /** Check that given application node appears as first statement
2054          *  in a constructor call.
2055          *  @param tree   The application node
2056          *  @param env    The environment current at the application.
2057          */
2058         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
2059             JCMethodDecl enclMethod = env.enclMethod;
2060             if (enclMethod != null && enclMethod.name == names.init) {
2061                 JCBlock body = enclMethod.body;
2062                 if (body.stats.head.hasTag(EXEC) &&
2063                     ((JCExpressionStatement) body.stats.head).expr == tree)
2064                     return true;
2065             }
2066             log.error(tree.pos(),
2067                       Errors.CallMustBeFirstStmtInCtor(TreeInfo.name(tree.meth)));
2068             return false;
2069         }
2070 
2071         /** Obtain a method type with given argument types.
2072          */
2073         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
2074             MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass);
2075             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
2076         }
2077 
2078     public void visitNewClass(final JCNewClass tree) {
2079         Type owntype = types.createErrorType(tree.type);
2080 
2081         // The local environment of a class creation is
2082         // a new environment nested in the current one.
2083         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
2084 
2085         // The anonymous inner class definition of the new expression,
2086         // if one is defined by it.
2087         JCClassDecl cdef = tree.def;
2088 
2089         // If enclosing class is given, attribute it, and
2090         // complete class name to be fully qualified
2091         JCExpression clazz = tree.clazz; // Class field following new
2092         JCExpression clazzid;            // Identifier in class field
2093         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
2094         annoclazzid = null;
2095 
2096         if (clazz.hasTag(TYPEAPPLY)) {
2097             clazzid = ((JCTypeApply) clazz).clazz;
2098             if (clazzid.hasTag(ANNOTATED_TYPE)) {
2099                 annoclazzid = (JCAnnotatedType) clazzid;
2100                 clazzid = annoclazzid.underlyingType;
2101             }
2102         } else {
2103             if (clazz.hasTag(ANNOTATED_TYPE)) {
2104                 annoclazzid = (JCAnnotatedType) clazz;
2105                 clazzid = annoclazzid.underlyingType;
2106             } else {
2107                 clazzid = clazz;
2108             }
2109         }
2110 
2111         JCExpression clazzid1 = clazzid; // The same in fully qualified form
2112 
2113         if (tree.encl != null) {
2114             // We are seeing a qualified new, of the form
2115             //    <expr>.new C <...> (...) ...
2116             // In this case, we let clazz stand for the name of the
2117             // allocated class C prefixed with the type of the qualifier
2118             // expression, so that we can
2119             // resolve it with standard techniques later. I.e., if
2120             // <expr> has type T, then <expr>.new C <...> (...)
2121             // yields a clazz T.C.
2122             Type encltype = chk.checkRefType(tree.encl.pos(),
2123                                              attribExpr(tree.encl, env));
2124             // TODO 308: in <expr>.new C, do we also want to add the type annotations
2125             // from expr to the combined type, or not? Yes, do this.
2126             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
2127                                                  ((JCIdent) clazzid).name);
2128 
2129             EndPosTable endPosTable = this.env.toplevel.endPositions;
2130             endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
2131             if (clazz.hasTag(ANNOTATED_TYPE)) {
2132                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
2133                 List<JCAnnotation> annos = annoType.annotations;
2134 
2135                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
2136                     clazzid1 = make.at(tree.pos).
2137                         TypeApply(clazzid1,
2138                                   ((JCTypeApply) clazz).arguments);
2139                 }
2140 
2141                 clazzid1 = make.at(tree.pos).
2142                     AnnotatedType(annos, clazzid1);
2143             } else if (clazz.hasTag(TYPEAPPLY)) {
2144                 clazzid1 = make.at(tree.pos).
2145                     TypeApply(clazzid1,
2146                               ((JCTypeApply) clazz).arguments);
2147             }
2148 
2149             clazz = clazzid1;
2150         }
2151 
2152         // Attribute clazz expression and store
2153         // symbol + type back into the attributed tree.
2154         Type clazztype;
2155 
2156         try {
2157             env.info.isNewClass = true;
2158             clazztype = TreeInfo.isEnumInit(env.tree) ?
2159                 attribIdentAsEnumType(env, (JCIdent)clazz) :
2160                 attribType(clazz, env);
2161         } finally {
2162             env.info.isNewClass = false;
2163         }
2164 
2165         clazztype = chk.checkDiamond(tree, clazztype);
2166         chk.validate(clazz, localEnv);
2167         if (tree.encl != null) {
2168             // We have to work in this case to store
2169             // symbol + type back into the attributed tree.
2170             tree.clazz.type = clazztype;
2171             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
2172             clazzid.type = ((JCIdent) clazzid).sym.type;
2173             if (annoclazzid != null) {
2174                 annoclazzid.type = clazzid.type;
2175             }
2176             if (!clazztype.isErroneous()) {
2177                 if (cdef != null && clazztype.tsym.isInterface()) {
2178                     log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew);
2179                 } else if (clazztype.tsym.isStatic()) {
2180                     log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym));
2181                 }
2182             }
2183         } else if (!clazztype.tsym.isInterface() &&
2184                    clazztype.getEnclosingType().hasTag(CLASS)) {
2185             // Check for the existence of an apropos outer instance
2186             rs.resolveImplicitThis(tree.pos(), env, clazztype);
2187         }
2188 
2189         // Attribute constructor arguments.
2190         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2191         final KindSelector pkind =
2192             attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2193         List<Type> argtypes = argtypesBuf.toList();
2194         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
2195 
2196         if (clazztype.hasTag(CLASS) || clazztype.hasTag(ERROR)) {
2197             // Enums may not be instantiated except implicitly
2198             if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
2199                 (!env.tree.hasTag(VARDEF) ||
2200                  (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
2201                  ((JCVariableDecl) env.tree).init != tree))
2202                 log.error(tree.pos(), Errors.EnumCantBeInstantiated);
2203 
2204             boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) &&
2205                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2206             boolean skipNonDiamondPath = false;
2207             // Check that class is not abstract
2208             if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy
2209                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
2210                 log.error(tree.pos(),
2211                           Errors.AbstractCantBeInstantiated(clazztype.tsym));
2212                 skipNonDiamondPath = true;
2213             } else if (cdef != null && clazztype.tsym.isInterface()) {
2214                 // Check that no constructor arguments are given to
2215                 // anonymous classes implementing an interface
2216                 if (!argtypes.isEmpty())
2217                     log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs);
2218 
2219                 if (!typeargtypes.isEmpty())
2220                     log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs);
2221 
2222                 // Error recovery: pretend no arguments were supplied.
2223                 argtypes = List.nil();
2224                 typeargtypes = List.nil();
2225                 skipNonDiamondPath = true;
2226             }
2227             if (TreeInfo.isDiamond(tree)) {
2228                 ClassType site = new ClassType(clazztype.getEnclosingType(),
2229                             clazztype.tsym.type.getTypeArguments(),
2230                                                clazztype.tsym,
2231                                                clazztype.getMetadata());
2232 
2233                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
2234                 diamondEnv.info.selectSuper = cdef != null;
2235                 diamondEnv.info.pendingResolutionPhase = null;
2236 
2237                 //if the type of the instance creation expression is a class type
2238                 //apply method resolution inference (JLS 15.12.2.7). The return type
2239                 //of the resolved constructor will be a partially instantiated type
2240                 Symbol constructor = rs.resolveDiamond(tree.pos(),
2241                             diamondEnv,
2242                             site,
2243                             argtypes,
2244                             typeargtypes);
2245                 tree.constructor = constructor.baseSymbol();
2246 
2247                 final TypeSymbol csym = clazztype.tsym;
2248                 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes),
2249                         diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
2250                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2251                 constructorType = checkId(tree, site,
2252                         constructor,
2253                         diamondEnv,
2254                         diamondResult);
2255 
2256                 tree.clazz.type = types.createErrorType(clazztype);
2257                 if (!constructorType.isErroneous()) {
2258                     tree.clazz.type = clazz.type = constructorType.getReturnType();
2259                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2260                 }
2261                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2262             }
2263 
2264             // Resolve the called constructor under the assumption
2265             // that we are referring to a superclass instance of the
2266             // current instance (JLS ???).
2267             else if (!skipNonDiamondPath) {
2268                 //the following code alters some of the fields in the current
2269                 //AttrContext - hence, the current context must be dup'ed in
2270                 //order to avoid downstream failures
2271                 Env<AttrContext> rsEnv = localEnv.dup(tree);
2272                 rsEnv.info.selectSuper = cdef != null;
2273                 rsEnv.info.pendingResolutionPhase = null;
2274                 tree.constructor = rs.resolveConstructor(
2275                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2276                 if (cdef == null) { //do not check twice!
2277                     tree.constructorType = checkId(tree,
2278                             clazztype,
2279                             tree.constructor,
2280                             rsEnv,
2281                             new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2282                     if (rsEnv.info.lastResolveVarargs())
2283                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2284                 }
2285             }
2286 
2287             if (cdef != null) {
2288                 visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind);
2289                 return;
2290             }
2291 
2292             if (tree.constructor != null && tree.constructor.kind == MTH)
2293                 owntype = clazztype;
2294         }
2295         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2296         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2297         if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
2298             //we need to wait for inference to finish and then replace inference vars in the constructor type
2299             inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
2300                     instantiatedContext -> {
2301                         tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2302                     });
2303         }
2304         chk.validate(tree.typeargs, localEnv);
2305     }
2306 
2307         // where
2308         private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype,
2309                                                    JCClassDecl cdef, Env<AttrContext> localEnv,
2310                                                    List<Type> argtypes, List<Type> typeargtypes,
2311                                                    KindSelector pkind) {
2312             // We are seeing an anonymous class instance creation.
2313             // In this case, the class instance creation
2314             // expression
2315             //
2316             //    E.new <typeargs1>C<typargs2>(args) { ... }
2317             //
2318             // is represented internally as
2319             //
2320             //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2321             //
2322             // This expression is then *transformed* as follows:
2323             //
2324             // (1) add an extends or implements clause
2325             // (2) add a constructor.
2326             //
2327             // For instance, if C is a class, and ET is the type of E,
2328             // the expression
2329             //
2330             //    E.new <typeargs1>C<typargs2>(args) { ... }
2331             //
2332             // is translated to (where X is a fresh name and typarams is the
2333             // parameter list of the super constructor):
2334             //
2335             //   new <typeargs1>X(<*nullchk*>E, args) where
2336             //     X extends C<typargs2> {
2337             //       <typarams> X(ET e, args) {
2338             //         e.<typeargs1>super(args)
2339             //       }
2340             //       ...
2341             //     }
2342             InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2343             final boolean isDiamond = TreeInfo.isDiamond(tree);
2344             if (isDiamond
2345                     && ((tree.constructorType != null && inferenceContext.free(tree.constructorType))
2346                     || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) {
2347                 final ResultInfo resultInfoForClassDefinition = this.resultInfo;
2348                 inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type),
2349                         instantiatedContext -> {
2350                             tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2351                             tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type);
2352                             ResultInfo prevResult = this.resultInfo;
2353                             try {
2354                                 this.resultInfo = resultInfoForClassDefinition;
2355                                 visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef,
2356                                                             localEnv, argtypes, typeargtypes, pkind);
2357                             } finally {
2358                                 this.resultInfo = prevResult;
2359                             }
2360                         });
2361             } else {
2362                 if (isDiamond && clazztype.hasTag(CLASS)) {
2363                     List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype);
2364                     if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
2365                         // One or more types inferred in the previous steps is non-denotable.
2366                         Fragment fragment = Diamond(clazztype.tsym);
2367                         log.error(tree.clazz.pos(),
2368                                 Errors.CantApplyDiamond1(
2369                                         fragment,
2370                                         invalidDiamondArgs.size() > 1 ?
2371                                                 DiamondInvalidArgs(invalidDiamondArgs, fragment) :
2372                                                 DiamondInvalidArg(invalidDiamondArgs, fragment)));
2373                     }
2374                     // For <>(){}, inferred types must also be accessible.
2375                     for (Type t : clazztype.getTypeArguments()) {
2376                         rs.checkAccessibleType(env, t);
2377                     }
2378                 }
2379 
2380                 // If we already errored, be careful to avoid a further avalanche. ErrorType answers
2381                 // false for isInterface call even when the original type is an interface.
2382                 boolean implementing = clazztype.tsym.isInterface() ||
2383                         clazztype.isErroneous() && !clazztype.getOriginalType().hasTag(NONE) &&
2384                         clazztype.getOriginalType().tsym.isInterface();
2385 
2386                 if (implementing) {
2387                     cdef.implementing = List.of(clazz);
2388                 } else {
2389                     cdef.extending = clazz;
2390                 }
2391 
2392                 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2393                     isSerializable(clazztype)) {
2394                     localEnv.info.isSerializable = true;
2395                 }
2396 
2397                 attribStat(cdef, localEnv);
2398 
2399                 List<Type> finalargtypes;
2400                 // If an outer instance is given,
2401                 // prefix it to the constructor arguments
2402                 // and delete it from the new expression
2403                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
2404                     finalargtypes = argtypes.prepend(tree.encl.type);
2405                 } else {
2406                     finalargtypes = argtypes;
2407                 }
2408 
2409                 // Reassign clazztype and recompute constructor. As this necessarily involves
2410                 // another attribution pass for deferred types in the case of <>, replicate
2411                 // them. Original arguments have right decorations already.
2412                 if (isDiamond && pkind.contains(KindSelector.POLY)) {
2413                     finalargtypes = finalargtypes.map(deferredAttr.deferredCopier);
2414                 }
2415 
2416                 clazztype = clazztype.hasTag(ERROR) ? types.createErrorType(cdef.sym.type)
2417                                                     : cdef.sym.type;
2418                 Symbol sym = tree.constructor = rs.resolveConstructor(
2419                         tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes);
2420                 Assert.check(!sym.kind.isResolutionError());
2421                 tree.constructor = sym;
2422                 tree.constructorType = checkId(tree,
2423                         clazztype,
2424                         tree.constructor,
2425                         localEnv,
2426                         new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2427             }
2428             Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ?
2429                                 clazztype : types.createErrorType(tree.type);
2430             result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK));
2431             chk.validate(tree.typeargs, localEnv);
2432         }
2433 
2434         CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) {
2435             return new Check.NestedCheckContext(checkContext) {
2436                 @Override
2437                 public void report(DiagnosticPosition _unused, JCDiagnostic details) {
2438                     enclosingContext.report(clazz.clazz,
2439                             diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details)));
2440                 }
2441             };
2442         }
2443 
2444     /** Make an attributed null check tree.
2445      */
2446     public JCExpression makeNullCheck(JCExpression arg) {
2447         // optimization: new Outer() can never be null; skip null check
2448         if (arg.getTag() == NEWCLASS)
2449             return arg;
2450         // optimization: X.this is never null; skip null check
2451         Name name = TreeInfo.name(arg);
2452         if (name == names._this || name == names._super) return arg;
2453 
2454         JCTree.Tag optag = NULLCHK;
2455         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
2456         tree.operator = operators.resolveUnary(arg, optag, arg.type);
2457         tree.type = arg.type;
2458         return tree;
2459     }
2460 
2461     public void visitNewArray(JCNewArray tree) {
2462         Type owntype = types.createErrorType(tree.type);
2463         Env<AttrContext> localEnv = env.dup(tree);
2464         Type elemtype;
2465         if (tree.elemtype != null) {
2466             elemtype = attribType(tree.elemtype, localEnv);
2467             chk.validate(tree.elemtype, localEnv);
2468             owntype = elemtype;
2469             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2470                 attribExpr(l.head, localEnv, syms.intType);
2471                 owntype = new ArrayType(owntype, syms.arrayClass);
2472             }
2473         } else {
2474             // we are seeing an untyped aggregate { ... }
2475             // this is allowed only if the prototype is an array
2476             if (pt().hasTag(ARRAY)) {
2477                 elemtype = types.elemtype(pt());
2478             } else {
2479                 if (!pt().hasTag(ERROR) &&
2480                         (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
2481                     log.error(tree.pos(),
2482                               Errors.IllegalInitializerForType(pt()));
2483                 }
2484                 elemtype = types.createErrorType(pt());
2485             }
2486         }
2487         if (tree.elems != null) {
2488             attribExprs(tree.elems, localEnv, elemtype);
2489             owntype = new ArrayType(elemtype, syms.arrayClass);
2490         }
2491         if (!types.isReifiable(elemtype))
2492             log.error(tree.pos(), Errors.GenericArrayCreation);
2493         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2494     }
2495 
2496     /*
2497      * A lambda expression can only be attributed when a target-type is available.
2498      * In addition, if the target-type is that of a functional interface whose
2499      * descriptor contains inference variables in argument position the lambda expression
2500      * is 'stuck' (see DeferredAttr).
2501      */
2502     @Override
2503     public void visitLambda(final JCLambda that) {
2504         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2505             if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
2506                 //lambda only allowed in assignment or method invocation/cast context
2507                 log.error(that.pos(), Errors.UnexpectedLambda);
2508             }
2509             resultInfo = recoveryInfo;
2510         }
2511         //create an environment for attribution of the lambda expression
2512         final Env<AttrContext> localEnv = lambdaEnv(that, env);
2513         boolean needsRecovery =
2514                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
2515         try {
2516             if (needsRecovery && isSerializable(pt())) {
2517                 localEnv.info.isSerializable = true;
2518                 localEnv.info.isLambda = true;
2519             }
2520             List<Type> explicitParamTypes = null;
2521             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
2522                 //attribute lambda parameters
2523                 attribStats(that.params, localEnv);
2524                 explicitParamTypes = TreeInfo.types(that.params);
2525             }
2526 
2527             TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes);
2528             Type currentTarget = targetInfo.target;
2529             Type lambdaType = targetInfo.descriptor;
2530 
2531             if (currentTarget.isErroneous()) {
2532                 result = that.type = currentTarget;
2533                 return;
2534             }
2535 
2536             setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
2537 
2538             if (lambdaType.hasTag(FORALL)) {
2539                 //lambda expression target desc cannot be a generic method
2540                 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
2541                                                                     kindName(currentTarget.tsym),
2542                                                                     currentTarget.tsym);
2543                 resultInfo.checkContext.report(that, diags.fragment(msg));
2544                 result = that.type = types.createErrorType(pt());
2545                 return;
2546             }
2547 
2548             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
2549                 //add param type info in the AST
2550                 List<Type> actuals = lambdaType.getParameterTypes();
2551                 List<JCVariableDecl> params = that.params;
2552 
2553                 boolean arityMismatch = false;
2554 
2555                 while (params.nonEmpty()) {
2556                     if (actuals.isEmpty()) {
2557                         //not enough actuals to perform lambda parameter inference
2558                         arityMismatch = true;
2559                     }
2560                     //reset previously set info
2561                     Type argType = arityMismatch ?
2562                             syms.errType :
2563                             actuals.head;
2564                     if (params.head.isImplicitlyTyped()) {
2565                         setSyntheticVariableType(params.head, argType);
2566                     }
2567                     params.head.sym = null;
2568                     actuals = actuals.isEmpty() ?
2569                             actuals :
2570                             actuals.tail;
2571                     params = params.tail;
2572                 }
2573 
2574                 //attribute lambda parameters
2575                 attribStats(that.params, localEnv);
2576 
2577                 if (arityMismatch) {
2578                     resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
2579                         result = that.type = types.createErrorType(currentTarget);
2580                         return;
2581                 }
2582             }
2583 
2584             //from this point on, no recovery is needed; if we are in assignment context
2585             //we will be able to attribute the whole lambda body, regardless of errors;
2586             //if we are in a 'check' method context, and the lambda is not compatible
2587             //with the target-type, it will be recovered anyway in Attr.checkId
2588             needsRecovery = false;
2589 
2590             ResultInfo bodyResultInfo = localEnv.info.returnResult =
2591                     lambdaBodyResult(that, lambdaType, resultInfo);
2592 
2593             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
2594                 attribTree(that.getBody(), localEnv, bodyResultInfo);
2595             } else {
2596                 JCBlock body = (JCBlock)that.body;
2597                 if (body == breakTree &&
2598                         resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
2599                     breakTreeFound(copyEnv(localEnv));
2600                 }
2601                 attribStats(body.stats, localEnv);
2602             }
2603 
2604             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2605 
2606             boolean isSpeculativeRound =
2607                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2608 
2609             preFlow(that);
2610             flow.analyzeLambda(env, that, make, isSpeculativeRound);
2611 
2612             that.type = currentTarget; //avoids recovery at this stage
2613             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
2614 
2615             if (!isSpeculativeRound) {
2616                 //add thrown types as bounds to the thrown types free variables if needed:
2617                 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
2618                     List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
2619                     if(!checkExConstraints(inferredThrownTypes, lambdaType.getThrownTypes(), resultInfo.checkContext.inferenceContext())) {
2620                         log.error(that, Errors.IncompatibleThrownTypesInMref(lambdaType.getThrownTypes()));
2621                     }
2622                 }
2623 
2624                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
2625             }
2626             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2627         } catch (Types.FunctionDescriptorLookupError ex) {
2628             JCDiagnostic cause = ex.getDiagnostic();
2629             resultInfo.checkContext.report(that, cause);
2630             result = that.type = types.createErrorType(pt());
2631             return;
2632         } catch (Throwable t) {
2633             //when an unexpected exception happens, avoid attempts to attribute the same tree again
2634             //as that would likely cause the same exception again.
2635             needsRecovery = false;
2636             throw t;
2637         } finally {
2638             localEnv.info.scope.leave();
2639             if (needsRecovery) {
2640                 attribTree(that, env, recoveryInfo);
2641             }
2642         }
2643     }
2644     //where
2645         class TargetInfo {
2646             Type target;
2647             Type descriptor;
2648 
2649             public TargetInfo(Type target, Type descriptor) {
2650                 this.target = target;
2651                 this.descriptor = descriptor;
2652             }
2653         }
2654 
2655         TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) {
2656             Type lambdaType;
2657             Type currentTarget = resultInfo.pt;
2658             if (resultInfo.pt != Type.recoveryType) {
2659                 /* We need to adjust the target. If the target is an
2660                  * intersection type, for example: SAM & I1 & I2 ...
2661                  * the target will be updated to SAM
2662                  */
2663                 currentTarget = targetChecker.visit(currentTarget, that);
2664                 if (!currentTarget.isIntersection()) {
2665                     if (explicitParamTypes != null) {
2666                         currentTarget = infer.instantiateFunctionalInterface(that,
2667                                 currentTarget, explicitParamTypes, resultInfo.checkContext);
2668                     }
2669                     currentTarget = types.removeWildcards(currentTarget);
2670                     lambdaType = types.findDescriptorType(currentTarget);
2671                 } else {
2672                     IntersectionClassType ict = (IntersectionClassType)currentTarget;
2673                     ListBuffer<Type> components = new ListBuffer<>();
2674                     for (Type bound : ict.getExplicitComponents()) {
2675                         if (explicitParamTypes != null) {
2676                             try {
2677                                 bound = infer.instantiateFunctionalInterface(that,
2678                                         bound, explicitParamTypes, resultInfo.checkContext);
2679                             } catch (FunctionDescriptorLookupError t) {
2680                                 // do nothing
2681                             }
2682                         }
2683                         bound = types.removeWildcards(bound);
2684                         components.add(bound);
2685                     }
2686                     currentTarget = types.makeIntersectionType(components.toList());
2687                     currentTarget.tsym.flags_field |= INTERFACE;
2688                     lambdaType = types.findDescriptorType(currentTarget);
2689                 }
2690 
2691             } else {
2692                 currentTarget = Type.recoveryType;
2693                 lambdaType = fallbackDescriptorType(that);
2694             }
2695             if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) {
2696                 //lambda expression target desc cannot be a generic method
2697                 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
2698                                                                     kindName(currentTarget.tsym),
2699                                                                     currentTarget.tsym);
2700                 resultInfo.checkContext.report(that, diags.fragment(msg));
2701                 currentTarget = types.createErrorType(pt());
2702             }
2703             return new TargetInfo(currentTarget, lambdaType);
2704         }
2705 
2706         void preFlow(JCLambda tree) {
2707             new PostAttrAnalyzer() {
2708                 @Override
2709                 public void scan(JCTree tree) {
2710                     if (tree == null ||
2711                             (tree.type != null &&
2712                             tree.type == Type.stuckType)) {
2713                         //don't touch stuck expressions!
2714                         return;
2715                     }
2716                     super.scan(tree);
2717                 }
2718             }.scan(tree);
2719         }
2720 
2721         Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
2722 
2723             @Override
2724             public Type visitClassType(ClassType t, DiagnosticPosition pos) {
2725                 return t.isIntersection() ?
2726                         visitIntersectionClassType((IntersectionClassType)t, pos) : t;
2727             }
2728 
2729             public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
2730                 types.findDescriptorSymbol(makeNotionalInterface(ict, pos));
2731                 return ict;
2732             }
2733 
2734             private TypeSymbol makeNotionalInterface(IntersectionClassType ict, DiagnosticPosition pos) {
2735                 ListBuffer<Type> targs = new ListBuffer<>();
2736                 ListBuffer<Type> supertypes = new ListBuffer<>();
2737                 for (Type i : ict.interfaces_field) {
2738                     if (i.isParameterized()) {
2739                         targs.appendList(i.tsym.type.allparams());
2740                     }
2741                     supertypes.append(i.tsym.type);
2742                 }
2743                 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
2744                 notionalIntf.allparams_field = targs.toList();
2745                 notionalIntf.tsym.flags_field |= INTERFACE;
2746                 return notionalIntf.tsym;
2747             }
2748         };
2749 
2750         private Type fallbackDescriptorType(JCExpression tree) {
2751             switch (tree.getTag()) {
2752                 case LAMBDA:
2753                     JCLambda lambda = (JCLambda)tree;
2754                     List<Type> argtypes = List.nil();
2755                     for (JCVariableDecl param : lambda.params) {
2756                         argtypes = param.vartype != null ?
2757                                 argtypes.append(param.vartype.type) :
2758                                 argtypes.append(syms.errType);
2759                     }
2760                     return new MethodType(argtypes, Type.recoveryType,
2761                             List.of(syms.throwableType), syms.methodClass);
2762                 case REFERENCE:
2763                     return new MethodType(List.nil(), Type.recoveryType,
2764                             List.of(syms.throwableType), syms.methodClass);
2765                 default:
2766                     Assert.error("Cannot get here!");
2767             }
2768             return null;
2769         }
2770 
2771         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2772                 final InferenceContext inferenceContext, final Type... ts) {
2773             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
2774         }
2775 
2776         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2777                 final InferenceContext inferenceContext, final List<Type> ts) {
2778             if (inferenceContext.free(ts)) {
2779                 inferenceContext.addFreeTypeListener(ts,
2780                         solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts)));
2781             } else {
2782                 for (Type t : ts) {
2783                     rs.checkAccessibleType(env, t);
2784                 }
2785             }
2786         }
2787 
2788         /**
2789          * Lambda/method reference have a special check context that ensures
2790          * that i.e. a lambda return type is compatible with the expected
2791          * type according to both the inherited context and the assignment
2792          * context.
2793          */
2794         class FunctionalReturnContext extends Check.NestedCheckContext {
2795 
2796             FunctionalReturnContext(CheckContext enclosingContext) {
2797                 super(enclosingContext);
2798             }
2799 
2800             @Override
2801             public boolean compatible(Type found, Type req, Warner warn) {
2802                 //return type must be compatible in both current context and assignment context
2803                 return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn);
2804             }
2805 
2806             @Override
2807             public void report(DiagnosticPosition pos, JCDiagnostic details) {
2808                 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details)));
2809             }
2810         }
2811 
2812         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
2813 
2814             JCExpression expr;
2815             boolean expStmtExpected;
2816 
2817             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
2818                 super(enclosingContext);
2819                 this.expr = expr;
2820             }
2821 
2822             @Override
2823             public void report(DiagnosticPosition pos, JCDiagnostic details) {
2824                 if (expStmtExpected) {
2825                     enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected));
2826                 } else {
2827                     super.report(pos, details);
2828                 }
2829             }
2830 
2831             @Override
2832             public boolean compatible(Type found, Type req, Warner warn) {
2833                 //a void return is compatible with an expression statement lambda
2834                 if (req.hasTag(VOID)) {
2835                     expStmtExpected = true;
2836                     return TreeInfo.isExpressionStatement(expr);
2837                 } else {
2838                     return super.compatible(found, req, warn);
2839                 }
2840             }
2841         }
2842 
2843         ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) {
2844             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
2845                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
2846                     new FunctionalReturnContext(resultInfo.checkContext);
2847 
2848             return descriptor.getReturnType() == Type.recoveryType ?
2849                     recoveryInfo :
2850                     new ResultInfo(KindSelector.VAL,
2851                             descriptor.getReturnType(), funcContext);
2852         }
2853 
2854         /**
2855         * Lambda compatibility. Check that given return types, thrown types, parameter types
2856         * are compatible with the expected functional interface descriptor. This means that:
2857         * (i) parameter types must be identical to those of the target descriptor; (ii) return
2858         * types must be compatible with the return type of the expected descriptor.
2859         */
2860         void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
2861             Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
2862 
2863             //return values have already been checked - but if lambda has no return
2864             //values, we must ensure that void/value compatibility is correct;
2865             //this amounts at checking that, if a lambda body can complete normally,
2866             //the descriptor's return type must be void
2867             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
2868                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
2869                 Fragment msg =
2870                         Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType));
2871                 checkContext.report(tree,
2872                                     diags.fragment(msg));
2873             }
2874 
2875             List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
2876             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
2877                 checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
2878             }
2879         }
2880 
2881         /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a
2882          * static field and that lambda has type annotations, these annotations will
2883          * also be stored at these fake clinit methods.
2884          *
2885          * LambdaToMethod also use fake clinit methods so they can be reused.
2886          * Also as LTM is a phase subsequent to attribution, the methods from
2887          * clinits can be safely removed by LTM to save memory.
2888          */
2889         private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>();
2890 
2891         public MethodSymbol removeClinit(ClassSymbol sym) {
2892             return clinits.remove(sym);
2893         }
2894 
2895         /* This method returns an environment to be used to attribute a lambda
2896          * expression.
2897          *
2898          * The owner of this environment is a method symbol. If the current owner
2899          * is not a method, for example if the lambda is used to initialize
2900          * a field, then if the field is:
2901          *
2902          * - an instance field, we use the first constructor.
2903          * - a static field, we create a fake clinit method.
2904          */
2905         public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
2906             Env<AttrContext> lambdaEnv;
2907             Symbol owner = env.info.scope.owner;
2908             if (owner.kind == VAR && owner.owner.kind == TYP) {
2909                 //field initializer
2910                 ClassSymbol enclClass = owner.enclClass();
2911                 Symbol newScopeOwner = env.info.scope.owner;
2912                 /* if the field isn't static, then we can get the first constructor
2913                  * and use it as the owner of the environment. This is what
2914                  * LTM code is doing to look for type annotations so we are fine.
2915                  */
2916                 if ((owner.flags() & STATIC) == 0) {
2917                     for (Symbol s : enclClass.members_field.getSymbolsByName(names.init)) {
2918                         newScopeOwner = s;
2919                         break;
2920                     }
2921                 } else {
2922                     /* if the field is static then we need to create a fake clinit
2923                      * method, this method can later be reused by LTM.
2924                      */
2925                     MethodSymbol clinit = clinits.get(enclClass);
2926                     if (clinit == null) {
2927                         Type clinitType = new MethodType(List.nil(),
2928                                 syms.voidType, List.nil(), syms.methodClass);
2929                         clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
2930                                 names.clinit, clinitType, enclClass);
2931                         clinit.params = List.nil();
2932                         clinits.put(enclClass, clinit);
2933                     }
2934                     newScopeOwner = clinit;
2935                 }
2936                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(newScopeOwner)));
2937             } else {
2938                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
2939             }
2940             return lambdaEnv;
2941         }
2942 
2943     @Override
2944     public void visitReference(final JCMemberReference that) {
2945         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2946             if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
2947                 //method reference only allowed in assignment or method invocation/cast context
2948                 log.error(that.pos(), Errors.UnexpectedMref);
2949             }
2950             result = that.type = types.createErrorType(pt());
2951             return;
2952         }
2953         final Env<AttrContext> localEnv = env.dup(that);
2954         try {
2955             //attribute member reference qualifier - if this is a constructor
2956             //reference, the expected kind must be a type
2957             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
2958 
2959             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
2960                 exprType = chk.checkConstructorRefType(that.expr, exprType);
2961                 if (!exprType.isErroneous() &&
2962                     exprType.isRaw() &&
2963                     that.typeargs != null) {
2964                     log.error(that.expr.pos(),
2965                               Errors.InvalidMref(Kinds.kindName(that.getMode()),
2966                                                  Fragments.MrefInferAndExplicitParams));
2967                     exprType = types.createErrorType(exprType);
2968                 }
2969             }
2970 
2971             if (exprType.isErroneous()) {
2972                 //if the qualifier expression contains problems,
2973                 //give up attribution of method reference
2974                 result = that.type = exprType;
2975                 return;
2976             }
2977 
2978             if (TreeInfo.isStaticSelector(that.expr, names)) {
2979                 //if the qualifier is a type, validate it; raw warning check is
2980                 //omitted as we don't know at this stage as to whether this is a
2981                 //raw selector (because of inference)
2982                 chk.validate(that.expr, env, false);
2983             } else {
2984                 Symbol lhsSym = TreeInfo.symbol(that.expr);
2985                 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super;
2986             }
2987             //attrib type-arguments
2988             List<Type> typeargtypes = List.nil();
2989             if (that.typeargs != null) {
2990                 typeargtypes = attribTypes(that.typeargs, localEnv);
2991             }
2992 
2993             boolean isTargetSerializable =
2994                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2995                     isSerializable(pt());
2996             TargetInfo targetInfo = getTargetInfo(that, resultInfo, null);
2997             Type currentTarget = targetInfo.target;
2998             Type desc = targetInfo.descriptor;
2999 
3000             setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
3001             List<Type> argtypes = desc.getParameterTypes();
3002             Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
3003 
3004             if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
3005                 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
3006             }
3007 
3008             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
3009             List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
3010             try {
3011                 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
3012                         that.name, argtypes, typeargtypes, targetInfo.descriptor, referenceCheck,
3013                         resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser);
3014             } finally {
3015                 resultInfo.checkContext.inferenceContext().rollback(saved_undet);
3016             }
3017 
3018             Symbol refSym = refResult.fst;
3019             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
3020 
3021             /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing
3022              *  JDK-8075541
3023              */
3024             if (refSym.kind != MTH) {
3025                 boolean targetError;
3026                 switch (refSym.kind) {
3027                     case ABSENT_MTH:
3028                     case MISSING_ENCL:
3029                         targetError = false;
3030                         break;
3031                     case WRONG_MTH:
3032                     case WRONG_MTHS:
3033                     case AMBIGUOUS:
3034                     case HIDDEN:
3035                     case STATICERR:
3036                         targetError = true;
3037                         break;
3038                     default:
3039                         Assert.error("unexpected result kind " + refSym.kind);
3040                         targetError = false;
3041                 }
3042 
3043                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol())
3044                         .getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
3045                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
3046 
3047                 JCDiagnostic diag = diags.create(log.currentSource(), that,
3048                         targetError ?
3049                             Fragments.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag) :
3050                             Errors.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag));
3051 
3052                 if (targetError && currentTarget == Type.recoveryType) {
3053                     //a target error doesn't make sense during recovery stage
3054                     //as we don't know what actual parameter types are
3055                     result = that.type = currentTarget;
3056                     return;
3057                 } else {
3058                     if (targetError) {
3059                         resultInfo.checkContext.report(that, diag);
3060                     } else {
3061                         log.report(diag);
3062                     }
3063                     result = that.type = types.createErrorType(currentTarget);
3064                     return;
3065                 }
3066             }
3067 
3068             that.sym = refSym.isConstructor() ? refSym.baseSymbol() : refSym;
3069             that.kind = lookupHelper.referenceKind(that.sym);
3070             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
3071 
3072             if (desc.getReturnType() == Type.recoveryType) {
3073                 // stop here
3074                 result = that.type = currentTarget;
3075                 return;
3076             }
3077 
3078             if (!env.info.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3079                 Type enclosingType = exprType.getEnclosingType();
3080                 if (enclosingType != null && enclosingType.hasTag(CLASS)) {
3081                     // Check for the existence of an apropriate outer instance
3082                     rs.resolveImplicitThis(that.pos(), env, exprType);
3083                 }
3084             }
3085 
3086             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
3087 
3088                 if (that.getMode() == ReferenceMode.INVOKE &&
3089                         TreeInfo.isStaticSelector(that.expr, names) &&
3090                         that.kind.isUnbound() &&
3091                         lookupHelper.site.isRaw()) {
3092                     chk.checkRaw(that.expr, localEnv);
3093                 }
3094 
3095                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
3096                         exprType.getTypeArguments().nonEmpty()) {
3097                     //static ref with class type-args
3098                     log.error(that.expr.pos(),
3099                               Errors.InvalidMref(Kinds.kindName(that.getMode()),
3100                                                  Fragments.StaticMrefWithTargs));
3101                     result = that.type = types.createErrorType(currentTarget);
3102                     return;
3103                 }
3104 
3105                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
3106                     // Check that super-qualified symbols are not abstract (JLS)
3107                     rs.checkNonAbstract(that.pos(), that.sym);
3108                 }
3109 
3110                 if (isTargetSerializable) {
3111                     chk.checkAccessFromSerializableElement(that, true);
3112                 }
3113             }
3114 
3115             ResultInfo checkInfo =
3116                     resultInfo.dup(newMethodTemplate(
3117                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
3118                         that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
3119                         new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
3120 
3121             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
3122 
3123             if (that.kind.isUnbound() &&
3124                     resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
3125                 //re-generate inference constraints for unbound receiver
3126                 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
3127                     //cannot happen as this has already been checked - we just need
3128                     //to regenerate the inference constraints, as that has been lost
3129                     //as a result of the call to inferenceContext.save()
3130                     Assert.error("Can't get here");
3131                 }
3132             }
3133 
3134             if (!refType.isErroneous()) {
3135                 refType = types.createMethodTypeWithReturn(refType,
3136                         adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
3137             }
3138 
3139             //go ahead with standard method reference compatibility check - note that param check
3140             //is a no-op (as this has been taken care during method applicability)
3141             boolean isSpeculativeRound =
3142                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3143 
3144             that.type = currentTarget; //avoids recovery at this stage
3145             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
3146             if (!isSpeculativeRound) {
3147                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
3148             }
3149             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3150         } catch (Types.FunctionDescriptorLookupError ex) {
3151             JCDiagnostic cause = ex.getDiagnostic();
3152             resultInfo.checkContext.report(that, cause);
3153             result = that.type = types.createErrorType(pt());
3154             return;
3155         }
3156     }
3157     //where
3158         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
3159             //if this is a constructor reference, the expected kind must be a type
3160             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
3161                                   KindSelector.VAL_TYP : KindSelector.TYP,
3162                                   Type.noType);
3163         }
3164 
3165 
3166     @SuppressWarnings("fallthrough")
3167     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
3168         InferenceContext inferenceContext = checkContext.inferenceContext();
3169         Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType());
3170 
3171         Type resType;
3172         switch (tree.getMode()) {
3173             case NEW:
3174                 if (!tree.expr.type.isRaw()) {
3175                     resType = tree.expr.type;
3176                     break;
3177                 }
3178             default:
3179                 resType = refType.getReturnType();
3180         }
3181 
3182         Type incompatibleReturnType = resType;
3183 
3184         if (returnType.hasTag(VOID)) {
3185             incompatibleReturnType = null;
3186         }
3187 
3188         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
3189             if (resType.isErroneous() ||
3190                     new FunctionalReturnContext(checkContext).compatible(resType, returnType,
3191                             checkContext.checkWarner(tree, resType, returnType))) {
3192                 incompatibleReturnType = null;
3193             }
3194         }
3195 
3196         if (incompatibleReturnType != null) {
3197             Fragment msg =
3198                     Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType()));
3199             checkContext.report(tree, diags.fragment(msg));
3200         } else {
3201             if (inferenceContext.free(refType)) {
3202                 // we need to wait for inference to finish and then replace inference vars in the referent type
3203                 inferenceContext.addFreeTypeListener(List.of(refType),
3204                         instantiatedContext -> {
3205                             tree.referentType = instantiatedContext.asInstType(refType);
3206                         });
3207             } else {
3208                 tree.referentType = refType;
3209             }
3210         }
3211 
3212         if (!speculativeAttr) {
3213             if (!checkExConstraints(refType.getThrownTypes(), descriptor.getThrownTypes(), inferenceContext)) {
3214                 log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes()));
3215             }
3216         }
3217     }
3218 
3219     boolean checkExConstraints(
3220             List<Type> thrownByFuncExpr,
3221             List<Type> thrownAtFuncType,
3222             InferenceContext inferenceContext) {
3223         /** 18.2.5: Otherwise, let E1, ..., En be the types in the function type's throws clause that
3224          *  are not proper types
3225          */
3226         List<Type> nonProperList = thrownAtFuncType.stream()
3227                 .filter(e -> inferenceContext.free(e)).collect(List.collector());
3228         List<Type> properList = thrownAtFuncType.diff(nonProperList);
3229 
3230         /** Let X1,...,Xm be the checked exception types that the lambda body can throw or
3231          *  in the throws clause of the invocation type of the method reference's compile-time
3232          *  declaration
3233          */
3234         List<Type> checkedList = thrownByFuncExpr.stream()
3235                 .filter(e -> chk.isChecked(e)).collect(List.collector());
3236 
3237         /** If n = 0 (the function type's throws clause consists only of proper types), then
3238          *  if there exists some i (1 <= i <= m) such that Xi is not a subtype of any proper type
3239          *  in the throws clause, the constraint reduces to false; otherwise, the constraint
3240          *  reduces to true
3241          */
3242         ListBuffer<Type> uncaughtByProperTypes = new ListBuffer<>();
3243         for (Type checked : checkedList) {
3244             boolean isSubtype = false;
3245             for (Type proper : properList) {
3246                 if (types.isSubtype(checked, proper)) {
3247                     isSubtype = true;
3248                     break;
3249                 }
3250             }
3251             if (!isSubtype) {
3252                 uncaughtByProperTypes.add(checked);
3253             }
3254         }
3255 
3256         if (nonProperList.isEmpty() && !uncaughtByProperTypes.isEmpty()) {
3257             return false;
3258         }
3259 
3260         /** If n > 0, the constraint reduces to a set of subtyping constraints:
3261          *  for all i (1 <= i <= m), if Xi is not a subtype of any proper type in the
3262          *  throws clause, then the constraints include, for all j (1 <= j <= n), <Xi <: Ej>
3263          */
3264         List<Type> nonProperAsUndet = inferenceContext.asUndetVars(nonProperList);
3265         uncaughtByProperTypes.forEach(checkedEx -> {
3266             nonProperAsUndet.forEach(nonProper -> {
3267                 types.isSubtype(checkedEx, nonProper);
3268             });
3269         });
3270 
3271         /** In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej
3272          */
3273         nonProperAsUndet.stream()
3274                 .filter(t -> t.hasTag(UNDETVAR))
3275                 .forEach(t -> ((UndetVar)t).setThrow());
3276         return true;
3277     }
3278 
3279     /**
3280      * Set functional type info on the underlying AST. Note: as the target descriptor
3281      * might contain inference variables, we might need to register an hook in the
3282      * current inference context.
3283      */
3284     private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
3285             final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
3286         if (checkContext.inferenceContext().free(descriptorType)) {
3287             checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType),
3288                     inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
3289                     inferenceContext.asInstType(primaryTarget), checkContext));
3290         } else {
3291             if (pt.hasTag(CLASS)) {
3292                 fExpr.target = primaryTarget;
3293             }
3294             if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3295                     pt != Type.recoveryType) {
3296                 //check that functional interface class is well-formed
3297                 try {
3298                     /* Types.makeFunctionalInterfaceClass() may throw an exception
3299                      * when it's executed post-inference. See the listener code
3300                      * above.
3301                      */
3302                     ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
3303                             names.empty, fExpr.target, ABSTRACT);
3304                     if (csym != null) {
3305                         chk.checkImplementations(env.tree, csym, csym);
3306                         try {
3307                             //perform an additional functional interface check on the synthetic class,
3308                             //as there may be spurious errors for raw targets - because of existing issues
3309                             //with membership and inheritance (see JDK-8074570).
3310                             csym.flags_field |= INTERFACE;
3311                             types.findDescriptorType(csym.type);
3312                         } catch (FunctionDescriptorLookupError err) {
3313                             resultInfo.checkContext.report(fExpr,
3314                                     diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.target)));
3315                         }
3316                     }
3317                 } catch (Types.FunctionDescriptorLookupError ex) {
3318                     JCDiagnostic cause = ex.getDiagnostic();
3319                     resultInfo.checkContext.report(env.tree, cause);
3320                 }
3321             }
3322         }
3323     }
3324 
3325     public void visitParens(JCParens tree) {
3326         Type owntype = attribTree(tree.expr, env, resultInfo);
3327         result = check(tree, owntype, pkind(), resultInfo);
3328         Symbol sym = TreeInfo.symbol(tree);
3329         if (sym != null && sym.kind.matches(KindSelector.TYP_PCK))
3330             log.error(tree.pos(), Errors.IllegalParenthesizedExpression);
3331     }
3332 
3333     public void visitAssign(JCAssign tree) {
3334         Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
3335         Type capturedType = capture(owntype);
3336         attribExpr(tree.rhs, env, owntype);
3337         result = check(tree, capturedType, KindSelector.VAL, resultInfo);
3338     }
3339 
3340     public void visitAssignop(JCAssignOp tree) {
3341         // Attribute arguments.
3342         Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
3343         Type operand = attribExpr(tree.rhs, env);
3344         // Find operator.
3345         Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand);
3346         if (operator != operators.noOpSymbol &&
3347                 !owntype.isErroneous() &&
3348                 !operand.isErroneous()) {
3349             chk.checkDivZero(tree.rhs.pos(), operator, operand);
3350             chk.checkCastable(tree.rhs.pos(),
3351                               operator.type.getReturnType(),
3352                               owntype);
3353         }
3354         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3355     }
3356 
3357     public void visitUnary(JCUnary tree) {
3358         // Attribute arguments.
3359         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
3360             ? attribTree(tree.arg, env, varAssignmentInfo)
3361             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
3362 
3363         // Find operator.
3364         Symbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype);
3365         Type owntype = types.createErrorType(tree.type);
3366         if (operator != operators.noOpSymbol &&
3367                 !argtype.isErroneous()) {
3368             owntype = (tree.getTag().isIncOrDecUnaryOp())
3369                 ? tree.arg.type
3370                 : operator.type.getReturnType();
3371             int opc = ((OperatorSymbol)operator).opcode;
3372 
3373             // If the argument is constant, fold it.
3374             if (argtype.constValue() != null) {
3375                 Type ctype = cfolder.fold1(opc, argtype);
3376                 if (ctype != null) {
3377                     owntype = cfolder.coerce(ctype, owntype);
3378                 }
3379             }
3380         }
3381         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3382     }
3383 
3384     public void visitBinary(JCBinary tree) {
3385         // Attribute arguments.
3386         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
3387         Type right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, env));
3388         // Find operator.
3389         Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right);
3390         Type owntype = types.createErrorType(tree.type);
3391         if (operator != operators.noOpSymbol &&
3392                 !left.isErroneous() &&
3393                 !right.isErroneous()) {
3394             owntype = operator.type.getReturnType();
3395             int opc = ((OperatorSymbol)operator).opcode;
3396             // If both arguments are constants, fold them.
3397             if (left.constValue() != null && right.constValue() != null) {
3398                 Type ctype = cfolder.fold2(opc, left, right);
3399                 if (ctype != null) {
3400                     owntype = cfolder.coerce(ctype, owntype);
3401                 }
3402             }
3403 
3404             // Check that argument types of a reference ==, != are
3405             // castable to each other, (JLS 15.21).  Note: unboxing
3406             // comparisons will not have an acmp* opc at this point.
3407             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
3408                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
3409                     log.error(tree.pos(), Errors.IncomparableTypes(left, right));
3410                 }
3411             }
3412 
3413             chk.checkDivZero(tree.rhs.pos(), operator, right);
3414         }
3415         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3416     }
3417 
3418     public void visitTypeCast(final JCTypeCast tree) {
3419         Type clazztype = attribType(tree.clazz, env);
3420         chk.validate(tree.clazz, env, false);
3421         //a fresh environment is required for 292 inference to work properly ---
3422         //see Infer.instantiatePolymorphicSignatureInstance()
3423         Env<AttrContext> localEnv = env.dup(tree);
3424         //should we propagate the target type?
3425         final ResultInfo castInfo;
3426         JCExpression expr = TreeInfo.skipParens(tree.expr);
3427         boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
3428         if (isPoly) {
3429             //expression is a poly - we need to propagate target type info
3430             castInfo = new ResultInfo(KindSelector.VAL, clazztype,
3431                                       new Check.NestedCheckContext(resultInfo.checkContext) {
3432                 @Override
3433                 public boolean compatible(Type found, Type req, Warner warn) {
3434                     return types.isCastable(found, req, warn);
3435                 }
3436             });
3437         } else {
3438             //standalone cast - target-type info is not propagated
3439             castInfo = unknownExprInfo;
3440         }
3441         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
3442         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3443         if (exprtype.constValue() != null)
3444             owntype = cfolder.coerce(exprtype, owntype);
3445         result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
3446         if (!isPoly)
3447             chk.checkRedundantCast(localEnv, tree);
3448     }
3449 
3450     public void visitTypeTest(JCInstanceOf tree) {
3451         Type exprtype = chk.checkNullOrRefType(
3452                 tree.expr.pos(), attribExpr(tree.expr, env));
3453         Type clazztype = attribType(tree.clazz, env);
3454         if (!clazztype.hasTag(TYPEVAR)) {
3455             clazztype = chk.checkClassOrArrayType(tree.clazz.pos(), clazztype);
3456         }
3457         if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
3458             log.error(tree.clazz.pos(), Errors.IllegalGenericTypeForInstof);
3459             clazztype = types.createErrorType(clazztype);
3460         }
3461         chk.validate(tree.clazz, env, false);
3462         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3463         result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
3464     }
3465 
3466     public void visitIndexed(JCArrayAccess tree) {
3467         Type owntype = types.createErrorType(tree.type);
3468         Type atype = attribExpr(tree.indexed, env);
3469         attribExpr(tree.index, env, syms.intType);
3470         if (types.isArray(atype))
3471             owntype = types.elemtype(atype);
3472         else if (!atype.hasTag(ERROR))
3473             log.error(tree.pos(), Errors.ArrayReqButFound(atype));
3474         if (!pkind().contains(KindSelector.VAL))
3475             owntype = capture(owntype);
3476         result = check(tree, owntype, KindSelector.VAR, resultInfo);
3477     }
3478 
3479     public void visitIdent(JCIdent tree) {
3480         Symbol sym;
3481 
3482         // Find symbol
3483         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
3484             // If we are looking for a method, the prototype `pt' will be a
3485             // method type with the type of the call's arguments as parameters.
3486             env.info.pendingResolutionPhase = null;
3487             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
3488         } else if (tree.sym != null && tree.sym.kind != VAR) {
3489             sym = tree.sym;
3490         } else {
3491             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
3492         }
3493         tree.sym = sym;
3494 
3495         // (1) Also find the environment current for the class where
3496         //     sym is defined (`symEnv').
3497         // Only for pre-tiger versions (1.4 and earlier):
3498         // (2) Also determine whether we access symbol out of an anonymous
3499         //     class in a this or super call.  This is illegal for instance
3500         //     members since such classes don't carry a this$n link.
3501         //     (`noOuterThisPath').
3502         Env<AttrContext> symEnv = env;
3503         boolean noOuterThisPath = false;
3504         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
3505             sym.kind.matches(KindSelector.VAL_MTH) &&
3506             sym.owner.kind == TYP &&
3507             tree.name != names._this && tree.name != names._super) {
3508 
3509             // Find environment in which identifier is defined.
3510             while (symEnv.outer != null &&
3511                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
3512                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
3513                     noOuterThisPath = false;
3514                 symEnv = symEnv.outer;
3515             }
3516         }
3517 
3518         // If symbol is a variable, ...
3519         if (sym.kind == VAR) {
3520             VarSymbol v = (VarSymbol)sym;
3521 
3522             // ..., evaluate its initializer, if it has one, and check for
3523             // illegal forward reference.
3524             checkInit(tree, env, v, false);
3525 
3526             // If we are expecting a variable (as opposed to a value), check
3527             // that the variable is assignable in the current environment.
3528             if (KindSelector.ASG.subset(pkind()))
3529                 checkAssignable(tree.pos(), v, null, env);
3530         }
3531 
3532         // In a constructor body,
3533         // if symbol is a field or instance method, check that it is
3534         // not accessed before the supertype constructor is called.
3535         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
3536             sym.kind.matches(KindSelector.VAL_MTH) &&
3537             sym.owner.kind == TYP &&
3538             (sym.flags() & STATIC) == 0) {
3539             chk.earlyRefError(tree.pos(), sym.kind == VAR ?
3540                                           sym : thisSym(tree.pos(), env));
3541         }
3542         Env<AttrContext> env1 = env;
3543         if (sym.kind != ERR && sym.kind != TYP &&
3544             sym.owner != null && sym.owner != env1.enclClass.sym) {
3545             // If the found symbol is inaccessible, then it is
3546             // accessed through an enclosing instance.  Locate this
3547             // enclosing instance:
3548             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
3549                 env1 = env1.outer;
3550         }
3551 
3552         if (env.info.isSerializable) {
3553             chk.checkAccessFromSerializableElement(tree, env.info.isLambda);
3554         }
3555 
3556         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
3557     }
3558 
3559     public void visitSelect(JCFieldAccess tree) {
3560         // Determine the expected kind of the qualifier expression.
3561         KindSelector skind = KindSelector.NIL;
3562         if (tree.name == names._this || tree.name == names._super ||
3563                 tree.name == names._class)
3564         {
3565             skind = KindSelector.TYP;
3566         } else {
3567             if (pkind().contains(KindSelector.PCK))
3568                 skind = KindSelector.of(skind, KindSelector.PCK);
3569             if (pkind().contains(KindSelector.TYP))
3570                 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
3571             if (pkind().contains(KindSelector.VAL_MTH))
3572                 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
3573         }
3574 
3575         // Attribute the qualifier expression, and determine its symbol (if any).
3576         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType));
3577         if (!pkind().contains(KindSelector.TYP_PCK))
3578             site = capture(site); // Capture field access
3579 
3580         // don't allow T.class T[].class, etc
3581         if (skind == KindSelector.TYP) {
3582             Type elt = site;
3583             while (elt.hasTag(ARRAY))
3584                 elt = ((ArrayType)elt).elemtype;
3585             if (elt.hasTag(TYPEVAR)) {
3586                 log.error(tree.pos(), Errors.TypeVarCantBeDeref);
3587                 result = tree.type = types.createErrorType(tree.name, site.tsym, site);
3588                 tree.sym = tree.type.tsym;
3589                 return ;
3590             }
3591         }
3592 
3593         // If qualifier symbol is a type or `super', assert `selectSuper'
3594         // for the selection. This is relevant for determining whether
3595         // protected symbols are accessible.
3596         Symbol sitesym = TreeInfo.symbol(tree.selected);
3597         boolean selectSuperPrev = env.info.selectSuper;
3598         env.info.selectSuper =
3599             sitesym != null &&
3600             sitesym.name == names._super;
3601 
3602         // Determine the symbol represented by the selection.
3603         env.info.pendingResolutionPhase = null;
3604         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
3605         if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
3606             log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym));
3607             sym = syms.errSymbol;
3608         }
3609         if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
3610             site = capture(site);
3611             sym = selectSym(tree, sitesym, site, env, resultInfo);
3612         }
3613         boolean varArgs = env.info.lastResolveVarargs();
3614         tree.sym = sym;
3615 
3616         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
3617             site = types.skipTypeVars(site, true);
3618         }
3619 
3620         // If that symbol is a variable, ...
3621         if (sym.kind == VAR) {
3622             VarSymbol v = (VarSymbol)sym;
3623 
3624             // ..., evaluate its initializer, if it has one, and check for
3625             // illegal forward reference.
3626             checkInit(tree, env, v, true);
3627 
3628             // If we are expecting a variable (as opposed to a value), check
3629             // that the variable is assignable in the current environment.
3630             if (KindSelector.ASG.subset(pkind()))
3631                 checkAssignable(tree.pos(), v, tree.selected, env);
3632         }
3633 
3634         if (sitesym != null &&
3635                 sitesym.kind == VAR &&
3636                 ((VarSymbol)sitesym).isResourceVariable() &&
3637                 sym.kind == MTH &&
3638                 sym.name.equals(names.close) &&
3639                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
3640                 env.info.lint.isEnabled(LintCategory.TRY)) {
3641             log.warning(LintCategory.TRY, tree, Warnings.TryExplicitCloseCall);
3642         }
3643 
3644         // Disallow selecting a type from an expression
3645         if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
3646             tree.type = check(tree.selected, pt(),
3647                               sitesym == null ?
3648                                       KindSelector.VAL : sitesym.kind.toSelector(),
3649                               new ResultInfo(KindSelector.TYP_PCK, pt()));
3650         }
3651 
3652         if (isType(sitesym)) {
3653             if (sym.name == names._this) {
3654                 // If `C' is the currently compiled class, check that
3655                 // C.this' does not appear in a call to a super(...)
3656                 if (env.info.isSelfCall &&
3657                     site.tsym == env.enclClass.sym) {
3658                     chk.earlyRefError(tree.pos(), sym);
3659                 }
3660             } else {
3661                 // Check if type-qualified fields or methods are static (JLS)
3662                 if ((sym.flags() & STATIC) == 0 &&
3663                     sym.name != names._super &&
3664                     (sym.kind == VAR || sym.kind == MTH)) {
3665                     rs.accessBase(rs.new StaticError(sym),
3666                               tree.pos(), site, sym.name, true);
3667                 }
3668             }
3669             if (!allowStaticInterfaceMethods && sitesym.isInterface() &&
3670                     sym.isStatic() && sym.kind == MTH) {
3671                 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), Feature.STATIC_INTERFACE_METHODS_INVOKE.error(sourceName));
3672             }
3673         } else if (sym.kind != ERR &&
3674                    (sym.flags() & STATIC) != 0 &&
3675                    sym.name != names._class) {
3676             // If the qualified item is not a type and the selected item is static, report
3677             // a warning. Make allowance for the class of an array type e.g. Object[].class)
3678             chk.warnStatic(tree, Warnings.StaticNotQualifiedByType(sym.kind.kindName(), sym.owner));
3679         }
3680 
3681         // If we are selecting an instance member via a `super', ...
3682         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
3683 
3684             // Check that super-qualified symbols are not abstract (JLS)
3685             rs.checkNonAbstract(tree.pos(), sym);
3686 
3687             if (site.isRaw()) {
3688                 // Determine argument types for site.
3689                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
3690                 if (site1 != null) site = site1;
3691             }
3692         }
3693 
3694         if (env.info.isSerializable) {
3695             chk.checkAccessFromSerializableElement(tree, env.info.isLambda);
3696         }
3697 
3698         env.info.selectSuper = selectSuperPrev;
3699         result = checkId(tree, site, sym, env, resultInfo);
3700     }
3701     //where
3702         /** Determine symbol referenced by a Select expression,
3703          *
3704          *  @param tree   The select tree.
3705          *  @param site   The type of the selected expression,
3706          *  @param env    The current environment.
3707          *  @param resultInfo The current result.
3708          */
3709         private Symbol selectSym(JCFieldAccess tree,
3710                                  Symbol location,
3711                                  Type site,
3712                                  Env<AttrContext> env,
3713                                  ResultInfo resultInfo) {
3714             DiagnosticPosition pos = tree.pos();
3715             Name name = tree.name;
3716             switch (site.getTag()) {
3717             case PACKAGE:
3718                 return rs.accessBase(
3719                     rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
3720                     pos, location, site, name, true);
3721             case ARRAY:
3722             case CLASS:
3723                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
3724                     return rs.resolveQualifiedMethod(
3725                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
3726                 } else if (name == names._this || name == names._super) {
3727                     return rs.resolveSelf(pos, env, site.tsym, name);
3728                 } else if (name == names._class) {
3729                     // In this case, we have already made sure in
3730                     // visitSelect that qualifier expression is a type.
3731                     return syms.getClassField(site, types);
3732                 } else {
3733                     // We are seeing a plain identifier as selector.
3734                     Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
3735                         sym = rs.accessBase(sym, pos, location, site, name, true);
3736                     return sym;
3737                 }
3738             case WILDCARD:
3739                 throw new AssertionError(tree);
3740             case TYPEVAR:
3741                 // Normally, site.getUpperBound() shouldn't be null.
3742                 // It should only happen during memberEnter/attribBase
3743                 // when determining the super type which *must* beac
3744                 // done before attributing the type variables.  In
3745                 // other words, we are seeing this illegal program:
3746                 // class B<T> extends A<T.foo> {}
3747                 Symbol sym = (site.getUpperBound() != null)
3748                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
3749                     : null;
3750                 if (sym == null) {
3751                     log.error(pos, Errors.TypeVarCantBeDeref);
3752                     return syms.errSymbol;
3753                 } else {
3754                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
3755                         rs.new AccessError(env, site, sym) :
3756                                 sym;
3757                     rs.accessBase(sym2, pos, location, site, name, true);
3758                     return sym;
3759                 }
3760             case ERROR:
3761                 // preserve identifier names through errors
3762                 return types.createErrorType(name, site.tsym, site).tsym;
3763             default:
3764                 // The qualifier expression is of a primitive type -- only
3765                 // .class is allowed for these.
3766                 if (name == names._class) {
3767                     // In this case, we have already made sure in Select that
3768                     // qualifier expression is a type.
3769                     return syms.getClassField(site, types);
3770                 } else {
3771                     log.error(pos, Errors.CantDeref(site));
3772                     return syms.errSymbol;
3773                 }
3774             }
3775         }
3776 
3777         /** Determine type of identifier or select expression and check that
3778          *  (1) the referenced symbol is not deprecated
3779          *  (2) the symbol's type is safe (@see checkSafe)
3780          *  (3) if symbol is a variable, check that its type and kind are
3781          *      compatible with the prototype and protokind.
3782          *  (4) if symbol is an instance field of a raw type,
3783          *      which is being assigned to, issue an unchecked warning if its
3784          *      type changes under erasure.
3785          *  (5) if symbol is an instance method of a raw type, issue an
3786          *      unchecked warning if its argument types change under erasure.
3787          *  If checks succeed:
3788          *    If symbol is a constant, return its constant type
3789          *    else if symbol is a method, return its result type
3790          *    otherwise return its type.
3791          *  Otherwise return errType.
3792          *
3793          *  @param tree       The syntax tree representing the identifier
3794          *  @param site       If this is a select, the type of the selected
3795          *                    expression, otherwise the type of the current class.
3796          *  @param sym        The symbol representing the identifier.
3797          *  @param env        The current environment.
3798          *  @param resultInfo    The expected result
3799          */
3800         Type checkId(JCTree tree,
3801                      Type site,
3802                      Symbol sym,
3803                      Env<AttrContext> env,
3804                      ResultInfo resultInfo) {
3805             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
3806                     checkMethodIdInternal(tree, site, sym, env, resultInfo) :
3807                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3808         }
3809 
3810         Type checkMethodIdInternal(JCTree tree,
3811                      Type site,
3812                      Symbol sym,
3813                      Env<AttrContext> env,
3814                      ResultInfo resultInfo) {
3815             if (resultInfo.pkind.contains(KindSelector.POLY)) {
3816                 Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
3817                 Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
3818                 resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3819                 return owntype;
3820             } else {
3821                 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3822             }
3823         }
3824 
3825         Type checkIdInternal(JCTree tree,
3826                      Type site,
3827                      Symbol sym,
3828                      Type pt,
3829                      Env<AttrContext> env,
3830                      ResultInfo resultInfo) {
3831             if (pt.isErroneous()) {
3832                 return types.createErrorType(site);
3833             }
3834             Type owntype; // The computed type of this identifier occurrence.
3835             switch (sym.kind) {
3836             case TYP:
3837                 // For types, the computed type equals the symbol's type,
3838                 // except for two situations:
3839                 owntype = sym.type;
3840                 if (owntype.hasTag(CLASS)) {
3841                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
3842                     Type ownOuter = owntype.getEnclosingType();
3843 
3844                     // (a) If the symbol's type is parameterized, erase it
3845                     // because no type parameters were given.
3846                     // We recover generic outer type later in visitTypeApply.
3847                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
3848                         owntype = types.erasure(owntype);
3849                     }
3850 
3851                     // (b) If the symbol's type is an inner class, then
3852                     // we have to interpret its outer type as a superclass
3853                     // of the site type. Example:
3854                     //
3855                     // class Tree<A> { class Visitor { ... } }
3856                     // class PointTree extends Tree<Point> { ... }
3857                     // ...PointTree.Visitor...
3858                     //
3859                     // Then the type of the last expression above is
3860                     // Tree<Point>.Visitor.
3861                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
3862                         Type normOuter = site;
3863                         if (normOuter.hasTag(CLASS)) {
3864                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
3865                         }
3866                         if (normOuter == null) // perhaps from an import
3867                             normOuter = types.erasure(ownOuter);
3868                         if (normOuter != ownOuter)
3869                             owntype = new ClassType(
3870                                 normOuter, List.nil(), owntype.tsym,
3871                                 owntype.getMetadata());
3872                     }
3873                 }
3874                 break;
3875             case VAR:
3876                 VarSymbol v = (VarSymbol)sym;
3877 
3878                 if (env.info.enclVar != null
3879                         && v.type.hasTag(NONE)) {
3880                     //self reference to implicitly typed variable declaration
3881                     log.error(TreeInfo.positionFor(v, env.enclClass), Errors.CantInferLocalVarType(v.name, Fragments.LocalSelfRef));
3882                     return v.type = types.createErrorType(v.type);
3883                 }
3884 
3885                 // Test (4): if symbol is an instance field of a raw type,
3886                 // which is being assigned to, issue an unchecked warning if
3887                 // its type changes under erasure.
3888                 if (KindSelector.ASG.subset(pkind()) &&
3889                     v.owner.kind == TYP &&
3890                     (v.flags() & STATIC) == 0 &&
3891                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3892                     Type s = types.asOuterSuper(site, v.owner);
3893                     if (s != null &&
3894                         s.isRaw() &&
3895                         !types.isSameType(v.type, v.erasure(types))) {
3896                         chk.warnUnchecked(tree.pos(), Warnings.UncheckedAssignToVar(v, s));
3897                     }
3898                 }
3899                 // The computed type of a variable is the type of the
3900                 // variable symbol, taken as a member of the site type.
3901                 owntype = (sym.owner.kind == TYP &&
3902                            sym.name != names._this && sym.name != names._super)
3903                     ? types.memberType(site, sym)
3904                     : sym.type;
3905 
3906                 // If the variable is a constant, record constant value in
3907                 // computed type.
3908                 if (v.getConstValue() != null && isStaticReference(tree))
3909                     owntype = owntype.constType(v.getConstValue());
3910 
3911                 if (resultInfo.pkind == KindSelector.VAL) {
3912                     owntype = capture(owntype); // capture "names as expressions"
3913                 }
3914                 break;
3915             case MTH: {
3916                 owntype = checkMethod(site, sym,
3917                         new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode),
3918                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
3919                         resultInfo.pt.getTypeArguments());
3920                 break;
3921             }
3922             case PCK: case ERR:
3923                 owntype = sym.type;
3924                 break;
3925             default:
3926                 throw new AssertionError("unexpected kind: " + sym.kind +
3927                                          " in tree " + tree);
3928             }
3929 
3930             // Emit a `deprecation' warning if symbol is deprecated.
3931             // (for constructors (but not for constructor references), the error
3932             // was given when the constructor was resolved)
3933 
3934             if (sym.name != names.init || tree.hasTag(REFERENCE)) {
3935                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
3936                 chk.checkSunAPI(tree.pos(), sym);
3937                 chk.checkProfile(tree.pos(), sym);
3938             }
3939 
3940             // If symbol is a variable, check that its type and
3941             // kind are compatible with the prototype and protokind.
3942             return check(tree, owntype, sym.kind.toSelector(), resultInfo);
3943         }
3944 
3945         /** Check that variable is initialized and evaluate the variable's
3946          *  initializer, if not yet done. Also check that variable is not
3947          *  referenced before it is defined.
3948          *  @param tree    The tree making up the variable reference.
3949          *  @param env     The current environment.
3950          *  @param v       The variable's symbol.
3951          */
3952         private void checkInit(JCTree tree,
3953                                Env<AttrContext> env,
3954                                VarSymbol v,
3955                                boolean onlyWarning) {
3956             // A forward reference is diagnosed if the declaration position
3957             // of the variable is greater than the current tree position
3958             // and the tree and variable definition occur in the same class
3959             // definition.  Note that writes don't count as references.
3960             // This check applies only to class and instance
3961             // variables.  Local variables follow different scope rules,
3962             // and are subject to definite assignment checking.
3963             Env<AttrContext> initEnv = enclosingInitEnv(env);
3964             if (initEnv != null &&
3965                 (initEnv.info.enclVar == v || v.pos > tree.pos) &&
3966                 v.owner.kind == TYP &&
3967                 v.owner == env.info.scope.owner.enclClass() &&
3968                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
3969                 (!env.tree.hasTag(ASSIGN) ||
3970                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
3971                 if (!onlyWarning || isStaticEnumField(v)) {
3972                     Error errkey = (initEnv.info.enclVar == v) ?
3973                                 Errors.IllegalSelfRef : Errors.IllegalForwardRef;
3974                     log.error(tree.pos(), errkey);
3975                 } else if (useBeforeDeclarationWarning) {
3976                     Warning warnkey = (initEnv.info.enclVar == v) ?
3977                                 Warnings.SelfRef(v) : Warnings.ForwardRef(v);
3978                     log.warning(tree.pos(), warnkey);
3979                 }
3980             }
3981 
3982             v.getConstValue(); // ensure initializer is evaluated
3983 
3984             checkEnumInitializer(tree, env, v);
3985         }
3986 
3987         /**
3988          * Returns the enclosing init environment associated with this env (if any). An init env
3989          * can be either a field declaration env or a static/instance initializer env.
3990          */
3991         Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
3992             while (true) {
3993                 switch (env.tree.getTag()) {
3994                     case VARDEF:
3995                         JCVariableDecl vdecl = (JCVariableDecl)env.tree;
3996                         if (vdecl.sym.owner.kind == TYP) {
3997                             //field
3998                             return env;
3999                         }
4000                         break;
4001                     case BLOCK:
4002                         if (env.next.tree.hasTag(CLASSDEF)) {
4003                             //instance/static initializer
4004                             return env;
4005                         }
4006                         break;
4007                     case METHODDEF:
4008                     case CLASSDEF:
4009                     case TOPLEVEL:
4010                         return null;
4011                 }
4012                 Assert.checkNonNull(env.next);
4013                 env = env.next;
4014             }
4015         }
4016 
4017         /**
4018          * Check for illegal references to static members of enum.  In
4019          * an enum type, constructors and initializers may not
4020          * reference its static members unless they are constant.
4021          *
4022          * @param tree    The tree making up the variable reference.
4023          * @param env     The current environment.
4024          * @param v       The variable's symbol.
4025          * @jls  section 8.9 Enums
4026          */
4027         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
4028             // JLS:
4029             //
4030             // "It is a compile-time error to reference a static field
4031             // of an enum type that is not a compile-time constant
4032             // (15.28) from constructors, instance initializer blocks,
4033             // or instance variable initializer expressions of that
4034             // type. It is a compile-time error for the constructors,
4035             // instance initializer blocks, or instance variable
4036             // initializer expressions of an enum constant e to refer
4037             // to itself or to an enum constant of the same type that
4038             // is declared to the right of e."
4039             if (isStaticEnumField(v)) {
4040                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
4041 
4042                 if (enclClass == null || enclClass.owner == null)
4043                     return;
4044 
4045                 // See if the enclosing class is the enum (or a
4046                 // subclass thereof) declaring v.  If not, this
4047                 // reference is OK.
4048                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
4049                     return;
4050 
4051                 // If the reference isn't from an initializer, then
4052                 // the reference is OK.
4053                 if (!Resolve.isInitializer(env))
4054                     return;
4055 
4056                 log.error(tree.pos(), Errors.IllegalEnumStaticRef);
4057             }
4058         }
4059 
4060         /** Is the given symbol a static, non-constant field of an Enum?
4061          *  Note: enum literals should not be regarded as such
4062          */
4063         private boolean isStaticEnumField(VarSymbol v) {
4064             return Flags.isEnum(v.owner) &&
4065                    Flags.isStatic(v) &&
4066                    !Flags.isConstant(v) &&
4067                    v.name != names._class;
4068         }
4069 
4070     /**
4071      * Check that method arguments conform to its instantiation.
4072      **/
4073     public Type checkMethod(Type site,
4074                             final Symbol sym,
4075                             ResultInfo resultInfo,
4076                             Env<AttrContext> env,
4077                             final List<JCExpression> argtrees,
4078                             List<Type> argtypes,
4079                             List<Type> typeargtypes) {
4080         // Test (5): if symbol is an instance method of a raw type, issue
4081         // an unchecked warning if its argument types change under erasure.
4082         if ((sym.flags() & STATIC) == 0 &&
4083             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
4084             Type s = types.asOuterSuper(site, sym.owner);
4085             if (s != null && s.isRaw() &&
4086                 !types.isSameTypes(sym.type.getParameterTypes(),
4087                                    sym.erasure(types).getParameterTypes())) {
4088                 chk.warnUnchecked(env.tree.pos(), Warnings.UncheckedCallMbrOfRawType(sym, s));
4089             }
4090         }
4091 
4092         if (env.info.defaultSuperCallSite != null) {
4093             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
4094                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
4095                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
4096                 List<MethodSymbol> icand_sup =
4097                         types.interfaceCandidates(sup, (MethodSymbol)sym);
4098                 if (icand_sup.nonEmpty() &&
4099                         icand_sup.head != sym &&
4100                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
4101                     log.error(env.tree.pos(),
4102                               Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup)));
4103                     break;
4104                 }
4105             }
4106             env.info.defaultSuperCallSite = null;
4107         }
4108 
4109         if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
4110             JCMethodInvocation app = (JCMethodInvocation)env.tree;
4111             if (app.meth.hasTag(SELECT) &&
4112                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
4113                 log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site));
4114             }
4115         }
4116 
4117         // Compute the identifier's instantiated type.
4118         // For methods, we need to compute the instance type by
4119         // Resolve.instantiate from the symbol's type as well as
4120         // any type arguments and value arguments.
4121         Warner noteWarner = new Warner();
4122         try {
4123             Type owntype = rs.checkMethod(
4124                     env,
4125                     site,
4126                     sym,
4127                     resultInfo,
4128                     argtypes,
4129                     typeargtypes,
4130                     noteWarner);
4131 
4132             DeferredAttr.DeferredTypeMap<Void> checkDeferredMap =
4133                 deferredAttr.new DeferredTypeMap<>(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
4134 
4135             argtypes = argtypes.map(checkDeferredMap);
4136 
4137             if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
4138                 chk.warnUnchecked(env.tree.pos(), Warnings.UncheckedMethInvocationApplied(kindName(sym),
4139                         sym.name,
4140                         rs.methodArguments(sym.type.getParameterTypes()),
4141                         rs.methodArguments(argtypes.map(checkDeferredMap)),
4142                         kindName(sym.location()),
4143                         sym.location()));
4144                 if (resultInfo.pt != Infer.anyPoly ||
4145                         !owntype.hasTag(METHOD) ||
4146                         !owntype.isPartial()) {
4147                     //if this is not a partially inferred method type, erase return type. Otherwise,
4148                     //erasure is carried out in PartiallyInferredMethodType.check().
4149                     owntype = new MethodType(owntype.getParameterTypes(),
4150                             types.erasure(owntype.getReturnType()),
4151                             types.erasure(owntype.getThrownTypes()),
4152                             syms.methodClass);
4153                 }
4154             }
4155 
4156             PolyKind pkind = (sym.type.hasTag(FORALL) &&
4157                  sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
4158                  PolyKind.POLY : PolyKind.STANDALONE;
4159             TreeInfo.setPolyKind(env.tree, pkind);
4160 
4161             return (resultInfo.pt == Infer.anyPoly) ?
4162                     owntype :
4163                     chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
4164                             resultInfo.checkContext.inferenceContext());
4165         } catch (Infer.InferenceException ex) {
4166             //invalid target type - propagate exception outwards or report error
4167             //depending on the current check context
4168             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
4169             return types.createErrorType(site);
4170         } catch (Resolve.InapplicableMethodException ex) {
4171             final JCDiagnostic diag = ex.getDiagnostic();
4172             Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
4173                 @Override
4174                 protected Pair<Symbol, JCDiagnostic> errCandidate() {
4175                     return new Pair<>(sym, diag);
4176                 }
4177             };
4178             List<Type> argtypes2 = argtypes.map(
4179                     rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
4180             JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
4181                     env.tree, sym, site, sym.name, argtypes2, typeargtypes);
4182             log.report(errDiag);
4183             return types.createErrorType(site);
4184         }
4185     }
4186 
4187     public void visitLiteral(JCLiteral tree) {
4188         result = check(tree, litType(tree.typetag).constType(tree.value),
4189                 KindSelector.VAL, resultInfo);
4190     }
4191     //where
4192     /** Return the type of a literal with given type tag.
4193      */
4194     Type litType(TypeTag tag) {
4195         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
4196     }
4197 
4198     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
4199         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
4200     }
4201 
4202     public void visitTypeArray(JCArrayTypeTree tree) {
4203         Type etype = attribType(tree.elemtype, env);
4204         Type type = new ArrayType(etype, syms.arrayClass);
4205         result = check(tree, type, KindSelector.TYP, resultInfo);
4206     }
4207 
4208     /** Visitor method for parameterized types.
4209      *  Bound checking is left until later, since types are attributed
4210      *  before supertype structure is completely known
4211      */
4212     public void visitTypeApply(JCTypeApply tree) {
4213         Type owntype = types.createErrorType(tree.type);
4214 
4215         // Attribute functor part of application and make sure it's a class.
4216         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
4217 
4218         // Attribute type parameters
4219         List<Type> actuals = attribTypes(tree.arguments, env);
4220 
4221         if (clazztype.hasTag(CLASS)) {
4222             List<Type> formals = clazztype.tsym.type.getTypeArguments();
4223             if (actuals.isEmpty()) //diamond
4224                 actuals = formals;
4225 
4226             if (actuals.length() == formals.length()) {
4227                 List<Type> a = actuals;
4228                 List<Type> f = formals;
4229                 while (a.nonEmpty()) {
4230                     a.head = a.head.withTypeVar(f.head);
4231                     a = a.tail;
4232                     f = f.tail;
4233                 }
4234                 // Compute the proper generic outer
4235                 Type clazzOuter = clazztype.getEnclosingType();
4236                 if (clazzOuter.hasTag(CLASS)) {
4237                     Type site;
4238                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
4239                     if (clazz.hasTag(IDENT)) {
4240                         site = env.enclClass.sym.type;
4241                     } else if (clazz.hasTag(SELECT)) {
4242                         site = ((JCFieldAccess) clazz).selected.type;
4243                     } else throw new AssertionError(""+tree);
4244                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
4245                         if (site.hasTag(CLASS))
4246                             site = types.asOuterSuper(site, clazzOuter.tsym);
4247                         if (site == null)
4248                             site = types.erasure(clazzOuter);
4249                         clazzOuter = site;
4250                     }
4251                 }
4252                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
4253                                         clazztype.getMetadata());
4254             } else {
4255                 if (formals.length() != 0) {
4256                     log.error(tree.pos(),
4257                               Errors.WrongNumberTypeArgs(Integer.toString(formals.length())));
4258                 } else {
4259                     log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym));
4260                 }
4261                 owntype = types.createErrorType(tree.type);
4262             }
4263         }
4264         result = check(tree, owntype, KindSelector.TYP, resultInfo);
4265     }
4266 
4267     public void visitTypeUnion(JCTypeUnion tree) {
4268         ListBuffer<Type> multicatchTypes = new ListBuffer<>();
4269         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
4270         for (JCExpression typeTree : tree.alternatives) {
4271             Type ctype = attribType(typeTree, env);
4272             ctype = chk.checkType(typeTree.pos(),
4273                           chk.checkClassType(typeTree.pos(), ctype),
4274                           syms.throwableType);
4275             if (!ctype.isErroneous()) {
4276                 //check that alternatives of a union type are pairwise
4277                 //unrelated w.r.t. subtyping
4278                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
4279                     for (Type t : multicatchTypes) {
4280                         boolean sub = types.isSubtype(ctype, t);
4281                         boolean sup = types.isSubtype(t, ctype);
4282                         if (sub || sup) {
4283                             //assume 'a' <: 'b'
4284                             Type a = sub ? ctype : t;
4285                             Type b = sub ? t : ctype;
4286                             log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b));
4287                         }
4288                     }
4289                 }
4290                 multicatchTypes.append(ctype);
4291                 if (all_multicatchTypes != null)
4292                     all_multicatchTypes.append(ctype);
4293             } else {
4294                 if (all_multicatchTypes == null) {
4295                     all_multicatchTypes = new ListBuffer<>();
4296                     all_multicatchTypes.appendList(multicatchTypes);
4297                 }
4298                 all_multicatchTypes.append(ctype);
4299             }
4300         }
4301         Type t = check(tree, types.lub(multicatchTypes.toList()),
4302                 KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE));
4303         if (t.hasTag(CLASS)) {
4304             List<Type> alternatives =
4305                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
4306             t = new UnionClassType((ClassType) t, alternatives);
4307         }
4308         tree.type = result = t;
4309     }
4310 
4311     public void visitTypeIntersection(JCTypeIntersection tree) {
4312         attribTypes(tree.bounds, env);
4313         tree.type = result = checkIntersection(tree, tree.bounds);
4314     }
4315 
4316     public void visitTypeParameter(JCTypeParameter tree) {
4317         TypeVar typeVar = (TypeVar) tree.type;
4318 
4319         if (tree.annotations != null && tree.annotations.nonEmpty()) {
4320             annotate.annotateTypeParameterSecondStage(tree, tree.annotations);
4321         }
4322 
4323         if (!typeVar.bound.isErroneous()) {
4324             //fixup type-parameter bound computed in 'attribTypeVariables'
4325             typeVar.bound = checkIntersection(tree, tree.bounds);
4326         }
4327     }
4328 
4329     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
4330         Set<Type> boundSet = new HashSet<>();
4331         if (bounds.nonEmpty()) {
4332             // accept class or interface or typevar as first bound.
4333             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
4334             boundSet.add(types.erasure(bounds.head.type));
4335             if (bounds.head.type.isErroneous()) {
4336                 return bounds.head.type;
4337             }
4338             else if (bounds.head.type.hasTag(TYPEVAR)) {
4339                 // if first bound was a typevar, do not accept further bounds.
4340                 if (bounds.tail.nonEmpty()) {
4341                     log.error(bounds.tail.head.pos(),
4342                               Errors.TypeVarMayNotBeFollowedByOtherBounds);
4343                     return bounds.head.type;
4344                 }
4345             } else {
4346                 // if first bound was a class or interface, accept only interfaces
4347                 // as further bounds.
4348                 for (JCExpression bound : bounds.tail) {
4349                     bound.type = checkBase(bound.type, bound, env, false, true, false);
4350                     if (bound.type.isErroneous()) {
4351                         bounds = List.of(bound);
4352                     }
4353                     else if (bound.type.hasTag(CLASS)) {
4354                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
4355                     }
4356                 }
4357             }
4358         }
4359 
4360         if (bounds.length() == 0) {
4361             return syms.objectType;
4362         } else if (bounds.length() == 1) {
4363             return bounds.head.type;
4364         } else {
4365             Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
4366             // ... the variable's bound is a class type flagged COMPOUND
4367             // (see comment for TypeVar.bound).
4368             // In this case, generate a class tree that represents the
4369             // bound class, ...
4370             JCExpression extending;
4371             List<JCExpression> implementing;
4372             if (!bounds.head.type.isInterface()) {
4373                 extending = bounds.head;
4374                 implementing = bounds.tail;
4375             } else {
4376                 extending = null;
4377                 implementing = bounds;
4378             }
4379             JCClassDecl cd = make.at(tree).ClassDef(
4380                 make.Modifiers(PUBLIC | ABSTRACT),
4381                 names.empty, List.nil(),
4382                 extending, implementing, List.nil());
4383 
4384             ClassSymbol c = (ClassSymbol)owntype.tsym;
4385             Assert.check((c.flags() & COMPOUND) != 0);
4386             cd.sym = c;
4387             c.sourcefile = env.toplevel.sourcefile;
4388 
4389             // ... and attribute the bound class
4390             c.flags_field |= UNATTRIBUTED;
4391             Env<AttrContext> cenv = enter.classEnv(cd, env);
4392             typeEnvs.put(c, cenv);
4393             attribClass(c);
4394             return owntype;
4395         }
4396     }
4397 
4398     public void visitWildcard(JCWildcard tree) {
4399         //- System.err.println("visitWildcard("+tree+");");//DEBUG
4400         Type type = (tree.kind.kind == BoundKind.UNBOUND)
4401             ? syms.objectType
4402             : attribType(tree.inner, env);
4403         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
4404                                               tree.kind.kind,
4405                                               syms.boundClass),
4406                 KindSelector.TYP, resultInfo);
4407     }
4408 
4409     public void visitAnnotation(JCAnnotation tree) {
4410         Assert.error("should be handled in annotate");
4411     }
4412 
4413     public void visitAnnotatedType(JCAnnotatedType tree) {
4414         attribAnnotationTypes(tree.annotations, env);
4415         Type underlyingType = attribType(tree.underlyingType, env);
4416         Type annotatedType = underlyingType.annotatedType(Annotations.TO_BE_SET);
4417 
4418         if (!env.info.isNewClass)
4419             annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType);
4420         result = tree.type = annotatedType;
4421     }
4422 
4423     public void visitErroneous(JCErroneous tree) {
4424         if (tree.errs != null)
4425             for (JCTree err : tree.errs)
4426                 attribTree(err, env, new ResultInfo(KindSelector.ERR, pt()));
4427         result = tree.type = syms.errType;
4428     }
4429 
4430     /** Default visitor method for all other trees.
4431      */
4432     public void visitTree(JCTree tree) {
4433         throw new AssertionError();
4434     }
4435 
4436     /**
4437      * Attribute an env for either a top level tree or class or module declaration.
4438      */
4439     public void attrib(Env<AttrContext> env) {
4440         switch (env.tree.getTag()) {
4441             case MODULEDEF:
4442                 attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym);
4443                 break;
4444             case TOPLEVEL:
4445                 attribTopLevel(env);
4446                 break;
4447             case PACKAGEDEF:
4448                 attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge);
4449                 break;
4450             default:
4451                 attribClass(env.tree.pos(), env.enclClass.sym);
4452         }
4453     }
4454 
4455     /**
4456      * Attribute a top level tree. These trees are encountered when the
4457      * package declaration has annotations.
4458      */
4459     public void attribTopLevel(Env<AttrContext> env) {
4460         JCCompilationUnit toplevel = env.toplevel;
4461         try {
4462             annotate.flush();
4463         } catch (CompletionFailure ex) {
4464             chk.completionError(toplevel.pos(), ex);
4465         }
4466     }
4467 
4468     public void attribPackage(DiagnosticPosition pos, PackageSymbol p) {
4469         try {
4470             annotate.flush();
4471             attribPackage(p);
4472         } catch (CompletionFailure ex) {
4473             chk.completionError(pos, ex);
4474         }
4475     }
4476 
4477     void attribPackage(PackageSymbol p) {
4478         Env<AttrContext> env = typeEnvs.get(p);
4479         chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p);
4480     }
4481 
4482     public void attribModule(DiagnosticPosition pos, ModuleSymbol m) {
4483         try {
4484             annotate.flush();
4485             attribModule(m);
4486         } catch (CompletionFailure ex) {
4487             chk.completionError(pos, ex);
4488         }
4489     }
4490 
4491     void attribModule(ModuleSymbol m) {
4492         // Get environment current at the point of module definition.
4493         Env<AttrContext> env = enter.typeEnvs.get(m);
4494         attribStat(env.tree, env);
4495     }
4496 
4497     /** Main method: attribute class definition associated with given class symbol.
4498      *  reporting completion failures at the given position.
4499      *  @param pos The source position at which completion errors are to be
4500      *             reported.
4501      *  @param c   The class symbol whose definition will be attributed.
4502      */
4503     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
4504         try {
4505             annotate.flush();
4506             attribClass(c);
4507         } catch (CompletionFailure ex) {
4508             chk.completionError(pos, ex);
4509         }
4510     }
4511 
4512     /** Attribute class definition associated with given class symbol.
4513      *  @param c   The class symbol whose definition will be attributed.
4514      */
4515     void attribClass(ClassSymbol c) throws CompletionFailure {
4516         if (c.type.hasTag(ERROR)) return;
4517 
4518         // Check for cycles in the inheritance graph, which can arise from
4519         // ill-formed class files.
4520         chk.checkNonCyclic(null, c.type);
4521 
4522         Type st = types.supertype(c.type);
4523         if ((c.flags_field & Flags.COMPOUND) == 0) {
4524             // First, attribute superclass.
4525             if (st.hasTag(CLASS))
4526                 attribClass((ClassSymbol)st.tsym);
4527 
4528             // Next attribute owner, if it is a class.
4529             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
4530                 attribClass((ClassSymbol)c.owner);
4531         }
4532 
4533         // The previous operations might have attributed the current class
4534         // if there was a cycle. So we test first whether the class is still
4535         // UNATTRIBUTED.
4536         if ((c.flags_field & UNATTRIBUTED) != 0) {
4537             c.flags_field &= ~UNATTRIBUTED;
4538 
4539             // Get environment current at the point of class definition.
4540             Env<AttrContext> env = typeEnvs.get(c);
4541 
4542             // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
4543             // because the annotations were not available at the time the env was created. Therefore,
4544             // we look up the environment chain for the first enclosing environment for which the
4545             // lint value is set. Typically, this is the parent env, but might be further if there
4546             // are any envs created as a result of TypeParameter nodes.
4547             Env<AttrContext> lintEnv = env;
4548             while (lintEnv.info.lint == null)
4549                 lintEnv = lintEnv.next;
4550 
4551             // Having found the enclosing lint value, we can initialize the lint value for this class
4552             env.info.lint = lintEnv.info.lint.augment(c);
4553 
4554             Lint prevLint = chk.setLint(env.info.lint);
4555             JavaFileObject prev = log.useSource(c.sourcefile);
4556             ResultInfo prevReturnRes = env.info.returnResult;
4557 
4558             try {
4559                 deferredLintHandler.flush(env.tree);
4560                 env.info.returnResult = null;
4561                 // java.lang.Enum may not be subclassed by a non-enum
4562                 if (st.tsym == syms.enumSym &&
4563                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
4564                     log.error(env.tree.pos(), Errors.EnumNoSubclassing);
4565 
4566                 // Enums may not be extended by source-level classes
4567                 if (st.tsym != null &&
4568                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
4569                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
4570                     log.error(env.tree.pos(), Errors.EnumTypesNotExtensible);
4571                 }
4572 
4573                 if (isSerializable(c.type)) {
4574                     env.info.isSerializable = true;
4575                 }
4576 
4577                 attribClassBody(env, c);
4578 
4579                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
4580                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
4581                 chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
4582                 chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree);
4583             } finally {
4584                 env.info.returnResult = prevReturnRes;
4585                 log.useSource(prev);
4586                 chk.setLint(prevLint);
4587             }
4588 
4589         }
4590     }
4591 
4592     public void visitImport(JCImport tree) {
4593         // nothing to do
4594     }
4595 
4596     public void visitModuleDef(JCModuleDecl tree) {
4597         tree.sym.completeUsesProvides();
4598         ModuleSymbol msym = tree.sym;
4599         Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym);
4600         Lint prevLint = chk.setLint(lint);
4601         chk.checkModuleName(tree);
4602         chk.checkDeprecatedAnnotation(tree, msym);
4603 
4604         try {
4605             deferredLintHandler.flush(tree.pos());
4606         } finally {
4607             chk.setLint(prevLint);
4608         }
4609     }
4610 
4611     /** Finish the attribution of a class. */
4612     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
4613         JCClassDecl tree = (JCClassDecl)env.tree;
4614         Assert.check(c == tree.sym);
4615 
4616         // Validate type parameters, supertype and interfaces.
4617         attribStats(tree.typarams, env);
4618         if (!c.isAnonymous()) {
4619             //already checked if anonymous
4620             chk.validate(tree.typarams, env);
4621             chk.validate(tree.extending, env);
4622             chk.validate(tree.implementing, env);
4623         }
4624 
4625         c.markAbstractIfNeeded(types);
4626 
4627         // If this is a non-abstract class, check that it has no abstract
4628         // methods or unimplemented methods of an implemented interface.
4629         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
4630             chk.checkAllDefined(tree.pos(), c);
4631         }
4632 
4633         if ((c.flags() & ANNOTATION) != 0) {
4634             if (tree.implementing.nonEmpty())
4635                 log.error(tree.implementing.head.pos(),
4636                           Errors.CantExtendIntfAnnotation);
4637             if (tree.typarams.nonEmpty()) {
4638                 log.error(tree.typarams.head.pos(),
4639                           Errors.IntfAnnotationCantHaveTypeParams(c));
4640             }
4641 
4642             // If this annotation type has a @Repeatable, validate
4643             Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable();
4644             // If this annotation type has a @Repeatable, validate
4645             if (repeatable != null) {
4646                 // get diagnostic position for error reporting
4647                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
4648                 Assert.checkNonNull(cbPos);
4649 
4650                 chk.validateRepeatable(c, repeatable, cbPos);
4651             }
4652         } else {
4653             // Check that all extended classes and interfaces
4654             // are compatible (i.e. no two define methods with same arguments
4655             // yet different return types).  (JLS 8.4.6.3)
4656             chk.checkCompatibleSupertypes(tree.pos(), c.type);
4657             if (allowDefaultMethods) {
4658                 chk.checkDefaultMethodClashes(tree.pos(), c.type);
4659             }
4660         }
4661 
4662         // Check that class does not import the same parameterized interface
4663         // with two different argument lists.
4664         chk.checkClassBounds(tree.pos(), c.type);
4665 
4666         tree.type = c.type;
4667 
4668         for (List<JCTypeParameter> l = tree.typarams;
4669              l.nonEmpty(); l = l.tail) {
4670              Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
4671         }
4672 
4673         // Check that a generic class doesn't extend Throwable
4674         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
4675             log.error(tree.extending.pos(), Errors.GenericThrowable);
4676 
4677         // Check that all methods which implement some
4678         // method conform to the method they implement.
4679         chk.checkImplementations(tree);
4680 
4681         //check that a resource implementing AutoCloseable cannot throw InterruptedException
4682         checkAutoCloseable(tree.pos(), env, c.type);
4683 
4684         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
4685             // Attribute declaration
4686             attribStat(l.head, env);
4687             // Check that declarations in inner classes are not static (JLS 8.1.2)
4688             // Make an exception for static constants.
4689             if (c.owner.kind != PCK &&
4690                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
4691                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
4692                 Symbol sym = null;
4693                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
4694                 if (sym == null ||
4695                     sym.kind != VAR ||
4696                     ((VarSymbol) sym).getConstValue() == null)
4697                     log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c));
4698             }
4699         }
4700 
4701         // Check for cycles among non-initial constructors.
4702         chk.checkCyclicConstructors(tree);
4703 
4704         // Check for cycles among annotation elements.
4705         chk.checkNonCyclicElements(tree);
4706 
4707         // Check for proper use of serialVersionUID
4708         if (env.info.lint.isEnabled(LintCategory.SERIAL)
4709                 && isSerializable(c.type)
4710                 && (c.flags() & (Flags.ENUM | Flags.INTERFACE)) == 0
4711                 && !c.isAnonymous()) {
4712             checkSerialVersionUID(tree, c);
4713         }
4714         if (allowTypeAnnos) {
4715             // Correctly organize the postions of the type annotations
4716             typeAnnotations.organizeTypeAnnotationsBodies(tree);
4717 
4718             // Check type annotations applicability rules
4719             validateTypeAnnotations(tree, false);
4720         }
4721     }
4722         // where
4723         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
4724         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
4725             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
4726                 if (types.isSameType(al.head.annotationType.type, t))
4727                     return al.head.pos();
4728             }
4729 
4730             return null;
4731         }
4732 
4733         /** check if a type is a subtype of Serializable, if that is available. */
4734         boolean isSerializable(Type t) {
4735             try {
4736                 syms.serializableType.complete();
4737             }
4738             catch (CompletionFailure e) {
4739                 return false;
4740             }
4741             return types.isSubtype(t, syms.serializableType);
4742         }
4743 
4744         /** Check that an appropriate serialVersionUID member is defined. */
4745         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
4746 
4747             // check for presence of serialVersionUID
4748             VarSymbol svuid = null;
4749             for (Symbol sym : c.members().getSymbolsByName(names.serialVersionUID)) {
4750                 if (sym.kind == VAR) {
4751                     svuid = (VarSymbol)sym;
4752                     break;
4753                 }
4754             }
4755 
4756             if (svuid == null) {
4757                 log.warning(LintCategory.SERIAL,
4758                         tree.pos(), Warnings.MissingSVUID(c));
4759                 return;
4760             }
4761 
4762             // check that it is static final
4763             if ((svuid.flags() & (STATIC | FINAL)) !=
4764                 (STATIC | FINAL))
4765                 log.warning(LintCategory.SERIAL,
4766                         TreeInfo.diagnosticPositionFor(svuid, tree), Warnings.ImproperSVUID(c));
4767 
4768             // check that it is long
4769             else if (!svuid.type.hasTag(LONG))
4770                 log.warning(LintCategory.SERIAL,
4771                         TreeInfo.diagnosticPositionFor(svuid, tree), Warnings.LongSVUID(c));
4772 
4773             // check constant
4774             else if (svuid.getConstValue() == null)
4775                 log.warning(LintCategory.SERIAL,
4776                         TreeInfo.diagnosticPositionFor(svuid, tree), Warnings.ConstantSVUID(c));
4777         }
4778 
4779     private Type capture(Type type) {
4780         return types.capture(type);
4781     }
4782 
4783     private void setSyntheticVariableType(JCVariableDecl tree, Type type) {
4784         if (type.isErroneous()) {
4785             tree.vartype = make.at(Position.NOPOS).Erroneous();
4786         } else {
4787             tree.vartype = make.at(Position.NOPOS).Type(type);
4788         }
4789     }
4790 
4791     public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
4792         tree.accept(new TypeAnnotationsValidator(sigOnly));
4793     }
4794     //where
4795     private final class TypeAnnotationsValidator extends TreeScanner {
4796 
4797         private final boolean sigOnly;
4798         public TypeAnnotationsValidator(boolean sigOnly) {
4799             this.sigOnly = sigOnly;
4800         }
4801 
4802         public void visitAnnotation(JCAnnotation tree) {
4803             chk.validateTypeAnnotation(tree, false);
4804             super.visitAnnotation(tree);
4805         }
4806         public void visitAnnotatedType(JCAnnotatedType tree) {
4807             if (!tree.underlyingType.type.isErroneous()) {
4808                 super.visitAnnotatedType(tree);
4809             }
4810         }
4811         public void visitTypeParameter(JCTypeParameter tree) {
4812             chk.validateTypeAnnotations(tree.annotations, true);
4813             scan(tree.bounds);
4814             // Don't call super.
4815             // This is needed because above we call validateTypeAnnotation with
4816             // false, which would forbid annotations on type parameters.
4817             // super.visitTypeParameter(tree);
4818         }
4819         public void visitMethodDef(JCMethodDecl tree) {
4820             if (tree.recvparam != null &&
4821                     !tree.recvparam.vartype.type.isErroneous()) {
4822                 checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
4823                         tree.recvparam.vartype.type.tsym);
4824             }
4825             if (tree.restype != null && tree.restype.type != null) {
4826                 validateAnnotatedType(tree.restype, tree.restype.type);
4827             }
4828             if (sigOnly) {
4829                 scan(tree.mods);
4830                 scan(tree.restype);
4831                 scan(tree.typarams);
4832                 scan(tree.recvparam);
4833                 scan(tree.params);
4834                 scan(tree.thrown);
4835             } else {
4836                 scan(tree.defaultValue);
4837                 scan(tree.body);
4838             }
4839         }
4840         public void visitVarDef(final JCVariableDecl tree) {
4841             //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
4842             if (tree.sym != null && tree.sym.type != null && !tree.isImplicitlyTyped())
4843                 validateAnnotatedType(tree.vartype, tree.sym.type);
4844             scan(tree.mods);
4845             scan(tree.vartype);
4846             if (!sigOnly) {
4847                 scan(tree.init);
4848             }
4849         }
4850         public void visitTypeCast(JCTypeCast tree) {
4851             if (tree.clazz != null && tree.clazz.type != null)
4852                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4853             super.visitTypeCast(tree);
4854         }
4855         public void visitTypeTest(JCInstanceOf tree) {
4856             if (tree.clazz != null && tree.clazz.type != null)
4857                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4858             super.visitTypeTest(tree);
4859         }
4860         public void visitNewClass(JCNewClass tree) {
4861             if (tree.clazz != null && tree.clazz.type != null) {
4862                 if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
4863                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
4864                             tree.clazz.type.tsym);
4865                 }
4866                 if (tree.def != null) {
4867                     checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
4868                 }
4869 
4870                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4871             }
4872             super.visitNewClass(tree);
4873         }
4874         public void visitNewArray(JCNewArray tree) {
4875             if (tree.elemtype != null && tree.elemtype.type != null) {
4876                 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
4877                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
4878                             tree.elemtype.type.tsym);
4879                 }
4880                 validateAnnotatedType(tree.elemtype, tree.elemtype.type);
4881             }
4882             super.visitNewArray(tree);
4883         }
4884         public void visitClassDef(JCClassDecl tree) {
4885             //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
4886             if (sigOnly) {
4887                 scan(tree.mods);
4888                 scan(tree.typarams);
4889                 scan(tree.extending);
4890                 scan(tree.implementing);
4891             }
4892             for (JCTree member : tree.defs) {
4893                 if (member.hasTag(Tag.CLASSDEF)) {
4894                     continue;
4895                 }
4896                 scan(member);
4897             }
4898         }
4899         public void visitBlock(JCBlock tree) {
4900             if (!sigOnly) {
4901                 scan(tree.stats);
4902             }
4903         }
4904 
4905         /* I would want to model this after
4906          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
4907          * and override visitSelect and visitTypeApply.
4908          * However, we only set the annotated type in the top-level type
4909          * of the symbol.
4910          * Therefore, we need to override each individual location where a type
4911          * can occur.
4912          */
4913         private void validateAnnotatedType(final JCTree errtree, final Type type) {
4914             //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
4915 
4916             if (type.isPrimitiveOrVoid()) {
4917                 return;
4918             }
4919 
4920             JCTree enclTr = errtree;
4921             Type enclTy = type;
4922 
4923             boolean repeat = true;
4924             while (repeat) {
4925                 if (enclTr.hasTag(TYPEAPPLY)) {
4926                     List<Type> tyargs = enclTy.getTypeArguments();
4927                     List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
4928                     if (trargs.length() > 0) {
4929                         // Nothing to do for diamonds
4930                         if (tyargs.length() == trargs.length()) {
4931                             for (int i = 0; i < tyargs.length(); ++i) {
4932                                 validateAnnotatedType(trargs.get(i), tyargs.get(i));
4933                             }
4934                         }
4935                         // If the lengths don't match, it's either a diamond
4936                         // or some nested type that redundantly provides
4937                         // type arguments in the tree.
4938                     }
4939 
4940                     // Look at the clazz part of a generic type
4941                     enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
4942                 }
4943 
4944                 if (enclTr.hasTag(SELECT)) {
4945                     enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
4946                     if (enclTy != null &&
4947                             !enclTy.hasTag(NONE)) {
4948                         enclTy = enclTy.getEnclosingType();
4949                     }
4950                 } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
4951                     JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
4952                     if (enclTy == null || enclTy.hasTag(NONE)) {
4953                         if (at.getAnnotations().size() == 1) {
4954                             log.error(at.underlyingType.pos(), Errors.CantTypeAnnotateScoping1(at.getAnnotations().head.attribute));
4955                         } else {
4956                             ListBuffer<Attribute.Compound> comps = new ListBuffer<>();
4957                             for (JCAnnotation an : at.getAnnotations()) {
4958                                 comps.add(an.attribute);
4959                             }
4960                             log.error(at.underlyingType.pos(), Errors.CantTypeAnnotateScoping(comps.toList()));
4961                         }
4962                         repeat = false;
4963                     }
4964                     enclTr = at.underlyingType;
4965                     // enclTy doesn't need to be changed
4966                 } else if (enclTr.hasTag(IDENT)) {
4967                     repeat = false;
4968                 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
4969                     JCWildcard wc = (JCWildcard) enclTr;
4970                     if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD ||
4971                             wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
4972                         validateAnnotatedType(wc.getBound(), wc.getBound().type);
4973                     } else {
4974                         // Nothing to do for UNBOUND
4975                     }
4976                     repeat = false;
4977                 } else if (enclTr.hasTag(TYPEARRAY)) {
4978                     JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
4979                     validateAnnotatedType(art.getType(), art.elemtype.type);
4980                     repeat = false;
4981                 } else if (enclTr.hasTag(TYPEUNION)) {
4982                     JCTypeUnion ut = (JCTypeUnion) enclTr;
4983                     for (JCTree t : ut.getTypeAlternatives()) {
4984                         validateAnnotatedType(t, t.type);
4985                     }
4986                     repeat = false;
4987                 } else if (enclTr.hasTag(TYPEINTERSECTION)) {
4988                     JCTypeIntersection it = (JCTypeIntersection) enclTr;
4989                     for (JCTree t : it.getBounds()) {
4990                         validateAnnotatedType(t, t.type);
4991                     }
4992                     repeat = false;
4993                 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
4994                            enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
4995                     repeat = false;
4996                 } else {
4997                     Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
4998                             " within: "+ errtree + " with kind: " + errtree.getKind());
4999                 }
5000             }
5001         }
5002 
5003         private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
5004                 Symbol sym) {
5005             // Ensure that no declaration annotations are present.
5006             // Note that a tree type might be an AnnotatedType with
5007             // empty annotations, if only declaration annotations were given.
5008             // This method will raise an error for such a type.
5009             for (JCAnnotation ai : annotations) {
5010                 if (!ai.type.isErroneous() &&
5011                         typeAnnotations.annotationTargetType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
5012                     log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type));
5013                 }
5014             }
5015         }
5016     }
5017 
5018     // <editor-fold desc="post-attribution visitor">
5019 
5020     /**
5021      * Handle missing types/symbols in an AST. This routine is useful when
5022      * the compiler has encountered some errors (which might have ended up
5023      * terminating attribution abruptly); if the compiler is used in fail-over
5024      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
5025      * prevents NPE to be progagated during subsequent compilation steps.
5026      */
5027     public void postAttr(JCTree tree) {
5028         new PostAttrAnalyzer().scan(tree);
5029     }
5030 
5031     class PostAttrAnalyzer extends TreeScanner {
5032 
5033         private void initTypeIfNeeded(JCTree that) {
5034             if (that.type == null) {
5035                 if (that.hasTag(METHODDEF)) {
5036                     that.type = dummyMethodType((JCMethodDecl)that);
5037                 } else {
5038                     that.type = syms.unknownType;
5039                 }
5040             }
5041         }
5042 
5043         /* Construct a dummy method type. If we have a method declaration,
5044          * and the declared return type is void, then use that return type
5045          * instead of UNKNOWN to avoid spurious error messages in lambda
5046          * bodies (see:JDK-8041704).
5047          */
5048         private Type dummyMethodType(JCMethodDecl md) {
5049             Type restype = syms.unknownType;
5050             if (md != null && md.restype != null && md.restype.hasTag(TYPEIDENT)) {
5051                 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
5052                 if (prim.typetag == VOID)
5053                     restype = syms.voidType;
5054             }
5055             return new MethodType(List.nil(), restype,
5056                                   List.nil(), syms.methodClass);
5057         }
5058         private Type dummyMethodType() {
5059             return dummyMethodType(null);
5060         }
5061 
5062         @Override
5063         public void scan(JCTree tree) {
5064             if (tree == null) return;
5065             if (tree instanceof JCExpression) {
5066                 initTypeIfNeeded(tree);
5067             }
5068             super.scan(tree);
5069         }
5070 
5071         @Override
5072         public void visitIdent(JCIdent that) {
5073             if (that.sym == null) {
5074                 that.sym = syms.unknownSymbol;
5075             }
5076         }
5077 
5078         @Override
5079         public void visitSelect(JCFieldAccess that) {
5080             if (that.sym == null) {
5081                 that.sym = syms.unknownSymbol;
5082             }
5083             super.visitSelect(that);
5084         }
5085 
5086         @Override
5087         public void visitClassDef(JCClassDecl that) {
5088             initTypeIfNeeded(that);
5089             if (that.sym == null) {
5090                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
5091             }
5092             super.visitClassDef(that);
5093         }
5094 
5095         @Override
5096         public void visitMethodDef(JCMethodDecl that) {
5097             initTypeIfNeeded(that);
5098             if (that.sym == null) {
5099                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
5100             }
5101             super.visitMethodDef(that);
5102         }
5103 
5104         @Override
5105         public void visitVarDef(JCVariableDecl that) {
5106             initTypeIfNeeded(that);
5107             if (that.sym == null) {
5108                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
5109                 that.sym.adr = 0;
5110             }
5111             if (that.vartype == null) {
5112                 that.vartype = make.at(Position.NOPOS).Erroneous();
5113             }
5114             super.visitVarDef(that);
5115         }
5116 
5117         @Override
5118         public void visitNewClass(JCNewClass that) {
5119             if (that.constructor == null) {
5120                 that.constructor = new MethodSymbol(0, names.init,
5121                         dummyMethodType(), syms.noSymbol);
5122             }
5123             if (that.constructorType == null) {
5124                 that.constructorType = syms.unknownType;
5125             }
5126             super.visitNewClass(that);
5127         }
5128 
5129         @Override
5130         public void visitAssignop(JCAssignOp that) {
5131             if (that.operator == null) {
5132                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
5133                         -1, syms.noSymbol);
5134             }
5135             super.visitAssignop(that);
5136         }
5137 
5138         @Override
5139         public void visitBinary(JCBinary that) {
5140             if (that.operator == null) {
5141                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
5142                         -1, syms.noSymbol);
5143             }
5144             super.visitBinary(that);
5145         }
5146 
5147         @Override
5148         public void visitUnary(JCUnary that) {
5149             if (that.operator == null) {
5150                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
5151                         -1, syms.noSymbol);
5152             }
5153             super.visitUnary(that);
5154         }
5155 
5156         @Override
5157         public void visitLambda(JCLambda that) {
5158             super.visitLambda(that);
5159             if (that.target == null) {
5160                 that.target = syms.unknownType;
5161             }
5162         }
5163 
5164         @Override
5165         public void visitReference(JCMemberReference that) {
5166             super.visitReference(that);
5167             if (that.sym == null) {
5168                 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
5169                         syms.noSymbol);
5170             }
5171             if (that.target == null) {
5172                 that.target = syms.unknownType;
5173             }
5174         }
5175     }
5176     // </editor-fold>
5177 
5178     public void setPackageSymbols(JCExpression pid, Symbol pkg) {
5179         new TreeScanner() {
5180             Symbol packge = pkg;
5181             @Override
5182             public void visitIdent(JCIdent that) {
5183                 that.sym = packge;
5184             }
5185 
5186             @Override
5187             public void visitSelect(JCFieldAccess that) {
5188                 that.sym = packge;
5189                 packge = packge.owner;
5190                 super.visitSelect(that);
5191             }
5192         }.scan(pid);
5193     }
5194 
5195 }