/* * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ import org.testng.Assert; import org.testng.annotations.Test; import java.util.SplittableRandom; import java.util.concurrent.ThreadLocalRandom; import java.util.concurrent.atomic.AtomicInteger; import java.util.concurrent.atomic.LongAdder; import java.util.function.BiConsumer; import static org.testng.Assert.assertEquals; import static org.testng.Assert.assertNotNull; import static org.testng.AssertJUnit.assertTrue; /** * @test * @run testng SplittableRandomTest * @run testng/othervm -Djava.util.secureRandomSeed=true SplittableRandomTest * @summary test methods on SplittableRandom * @key randomness */ @Test public class SplittableRandomTest { // Note: this test was copied from the 166 TCK SplittableRandomTest test // and modified to be a TestNG test /* * Testing coverage notes: * * 1. Many of the test methods are adapted from ThreadLocalRandomTest. * * 2. These tests do not check for random number generator quality. * But we check for minimal API compliance by requiring that * repeated calls to nextX methods, up to NCALLS tries, produce at * least two distinct results. (In some possible universe, a * "correct" implementation might fail, but the odds are vastly * less than that of encountering a hardware failure while running * the test.) For bounded nextX methods, we sample various * intervals across multiples of primes. In other tests, we repeat * under REPS different values. */ // max numbers of calls to detect getting stuck on one value static final int NCALLS = 10000; // max sampled int bound static final int MAX_INT_BOUND = (1 << 28); // max sampled long bound static final long MAX_LONG_BOUND = (1L << 42); // Number of replications for other checks static final int REPS = 20; /** * Repeated calls to nextInt produce at least two distinct results */ public void testNextInt() { SplittableRandom sr = new SplittableRandom(); int f = sr.nextInt(); int i = 0; while (i < NCALLS && sr.nextInt() == f) ++i; assertTrue(i < NCALLS); } /** * Repeated calls to nextLong produce at least two distinct results */ public void testNextLong() { SplittableRandom sr = new SplittableRandom(); long f = sr.nextLong(); int i = 0; while (i < NCALLS && sr.nextLong() == f) ++i; assertTrue(i < NCALLS); } /** * Repeated calls to nextDouble produce at least two distinct results */ public void testNextDouble() { SplittableRandom sr = new SplittableRandom(); double f = sr.nextDouble(); int i = 0; while (i < NCALLS && sr.nextDouble() == f) ++i; assertTrue(i < NCALLS); } /** * Two SplittableRandoms created with the same seed produce the * same values for nextLong. */ public void testSeedConstructor() { for (long seed = 2; seed < MAX_LONG_BOUND; seed += 15485863) { SplittableRandom sr1 = new SplittableRandom(seed); SplittableRandom sr2 = new SplittableRandom(seed); for (int i = 0; i < REPS; ++i) assertEquals(sr1.nextLong(), sr2.nextLong()); } } /** * A SplittableRandom produced by split() of a default-constructed * SplittableRandom generates a different sequence */ public void testSplit1() { SplittableRandom sr = new SplittableRandom(); for (int reps = 0; reps < REPS; ++reps) { SplittableRandom sc = sr.split(); int i = 0; while (i < NCALLS && sr.nextLong() == sc.nextLong()) ++i; assertTrue(i < NCALLS); } } /** * A SplittableRandom produced by split() of a seeded-constructed * SplittableRandom generates a different sequence */ public void testSplit2() { SplittableRandom sr = new SplittableRandom(12345); for (int reps = 0; reps < REPS; ++reps) { SplittableRandom sc = sr.split(); int i = 0; while (i < NCALLS && sr.nextLong() == sc.nextLong()) ++i; assertTrue(i < NCALLS); } } /** * nextInt(negative) throws IllegalArgumentException */ @Test(expectedExceptions = IllegalArgumentException.class) public void testNextIntBoundedNeg() { SplittableRandom sr = new SplittableRandom(); int f = sr.nextInt(-17); } /** * nextInt(least >= bound) throws IllegalArgumentException */ @Test(expectedExceptions = IllegalArgumentException.class) public void testNextIntBadBounds() { SplittableRandom sr = new SplittableRandom(); int f = sr.nextInt(17, 2); } /** * nextInt(bound) returns 0 <= value < bound; * repeated calls produce at least two distinct results */ public void testNextIntBounded() { SplittableRandom sr = new SplittableRandom(); // sample bound space across prime number increments for (int bound = 2; bound < MAX_INT_BOUND; bound += 524959) { int f = sr.nextInt(bound); assertTrue(0 <= f && f < bound); int i = 0; int j; while (i < NCALLS && (j = sr.nextInt(bound)) == f) { assertTrue(0 <= j && j < bound); ++i; } assertTrue(i < NCALLS); } } /** * nextInt(least, bound) returns least <= value < bound; * repeated calls produce at least two distinct results */ public void testNextIntBounded2() { SplittableRandom sr = new SplittableRandom(); for (int least = -15485863; least < MAX_INT_BOUND; least += 524959) { for (int bound = least + 2; bound > least && bound < MAX_INT_BOUND; bound += 49979687) { int f = sr.nextInt(least, bound); assertTrue(least <= f && f < bound); int i = 0; int j; while (i < NCALLS && (j = sr.nextInt(least, bound)) == f) { assertTrue(least <= j && j < bound); ++i; } assertTrue(i < NCALLS); } } } /** * nextLong(negative) throws IllegalArgumentException */ @Test(expectedExceptions = IllegalArgumentException.class) public void testNextLongBoundedNeg() { SplittableRandom sr = new SplittableRandom(); long f = sr.nextLong(-17); } /** * nextLong(least >= bound) throws IllegalArgumentException */ @Test(expectedExceptions = IllegalArgumentException.class) public void testNextLongBadBounds() { SplittableRandom sr = new SplittableRandom(); long f = sr.nextLong(17, 2); } /** * nextLong(bound) returns 0 <= value < bound; * repeated calls produce at least two distinct results */ public void testNextLongBounded() { SplittableRandom sr = new SplittableRandom(); for (long bound = 2; bound < MAX_LONG_BOUND; bound += 15485863) { long f = sr.nextLong(bound); assertTrue(0 <= f && f < bound); int i = 0; long j; while (i < NCALLS && (j = sr.nextLong(bound)) == f) { assertTrue(0 <= j && j < bound); ++i; } assertTrue(i < NCALLS); } } /** * nextLong(least, bound) returns least <= value < bound; * repeated calls produce at least two distinct results */ public void testNextLongBounded2() { SplittableRandom sr = new SplittableRandom(); for (long least = -86028121; least < MAX_LONG_BOUND; least += 982451653L) { for (long bound = least + 2; bound > least && bound < MAX_LONG_BOUND; bound += Math.abs(bound * 7919)) { long f = sr.nextLong(least, bound); assertTrue(least <= f && f < bound); int i = 0; long j; while (i < NCALLS && (j = sr.nextLong(least, bound)) == f) { assertTrue(least <= j && j < bound); ++i; } assertTrue(i < NCALLS); } } } /** * nextDouble(bound) throws IllegalArgumentException */ public void testNextDoubleBadBound() { SplittableRandom sr = new SplittableRandom(); executeAndCatchIAE(() -> sr.nextDouble(0.0)); executeAndCatchIAE(() -> sr.nextDouble(-0.0)); executeAndCatchIAE(() -> sr.nextDouble(+0.0)); executeAndCatchIAE(() -> sr.nextDouble(-1.0)); executeAndCatchIAE(() -> sr.nextDouble(Double.NaN)); executeAndCatchIAE(() -> sr.nextDouble(Double.NEGATIVE_INFINITY)); // Returns Double.MAX_VALUE // executeAndCatchIAE(() -> r.nextDouble(Double.POSITIVE_INFINITY)); } /** * nextDouble(origin, bound) throws IllegalArgumentException */ public void testNextDoubleBadOriginBound() { testDoubleBadOriginBound(new SplittableRandom()::nextDouble); } // An arbitrary finite double value static final double FINITE = Math.PI; void testDoubleBadOriginBound(BiConsumer bi) { executeAndCatchIAE(() -> bi.accept(17.0, 2.0)); executeAndCatchIAE(() -> bi.accept(0.0, 0.0)); executeAndCatchIAE(() -> bi.accept(Double.NaN, FINITE)); executeAndCatchIAE(() -> bi.accept(FINITE, Double.NaN)); executeAndCatchIAE(() -> bi.accept(Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY)); // Returns NaN // executeAndCatchIAE(() -> bi.accept(Double.NEGATIVE_INFINITY, FINITE)); // executeAndCatchIAE(() -> bi.accept(Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY)); executeAndCatchIAE(() -> bi.accept(FINITE, Double.NEGATIVE_INFINITY)); // Returns Double.MAX_VALUE // executeAndCatchIAE(() -> bi.accept(FINITE, Double.POSITIVE_INFINITY)); executeAndCatchIAE(() -> bi.accept(Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY)); executeAndCatchIAE(() -> bi.accept(Double.POSITIVE_INFINITY, FINITE)); executeAndCatchIAE(() -> bi.accept(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY)); } /** * nextDouble(least, bound) returns least <= value < bound; * repeated calls produce at least two distinct results */ public void testNextDoubleBounded2() { SplittableRandom sr = new SplittableRandom(); for (double least = 0.0001; least < 1.0e20; least *= 8) { for (double bound = least * 1.001; bound < 1.0e20; bound *= 16) { double f = sr.nextDouble(least, bound); assertTrue(least <= f && f < bound); int i = 0; double j; while (i < NCALLS && (j = sr.nextDouble(least, bound)) == f) { assertTrue(least <= j && j < bound); ++i; } assertTrue(i < NCALLS); } } } /** * Invoking sized ints, long, doubles, with negative sizes throws * IllegalArgumentException */ public void testBadStreamSize() { SplittableRandom r = new SplittableRandom(); executeAndCatchIAE(() -> r.ints(-1L)); executeAndCatchIAE(() -> r.ints(-1L, 2, 3)); executeAndCatchIAE(() -> r.longs(-1L)); executeAndCatchIAE(() -> r.longs(-1L, -1L, 1L)); executeAndCatchIAE(() -> r.doubles(-1L)); executeAndCatchIAE(() -> r.doubles(-1L, .5, .6)); } /** * Invoking bounded ints, long, doubles, with illegal bounds throws * IllegalArgumentException */ public void testBadStreamBounds() { SplittableRandom r = new SplittableRandom(); executeAndCatchIAE(() -> r.ints(2, 1)); executeAndCatchIAE(() -> r.ints(10, 42, 42)); executeAndCatchIAE(() -> r.longs(-1L, -1L)); executeAndCatchIAE(() -> r.longs(10, 1L, -2L)); testDoubleBadOriginBound((o, b) -> r.doubles(10, o, b)); } private void executeAndCatchIAE(Runnable r) { executeAndCatch(IllegalArgumentException.class, r); } private void executeAndCatch(Class expected, Runnable r) { Exception caught = null; try { r.run(); } catch (Exception e) { caught = e; } assertNotNull(caught, String.format("No Exception was thrown, expected an Exception of %s to be thrown", expected.getName())); Assert.assertTrue(expected.isInstance(caught), String.format("Exception thrown %s not an instance of %s", caught.getClass().getName(), expected.getName())); } /** * A parallel sized stream of ints generates the given number of values */ public void testIntsCount() { LongAdder counter = new LongAdder(); SplittableRandom r = new SplittableRandom(); long size = 0; for (int reps = 0; reps < REPS; ++reps) { counter.reset(); r.ints(size).parallel().forEach(x -> {counter.increment();}); assertEquals(counter.sum(), size); size += 524959; } } /** * A parallel sized stream of longs generates the given number of values */ public void testLongsCount() { LongAdder counter = new LongAdder(); SplittableRandom r = new SplittableRandom(); long size = 0; for (int reps = 0; reps < REPS; ++reps) { counter.reset(); r.longs(size).parallel().forEach(x -> {counter.increment();}); assertEquals(counter.sum(), size); size += 524959; } } /** * A parallel sized stream of doubles generates the given number of values */ public void testDoublesCount() { LongAdder counter = new LongAdder(); SplittableRandom r = new SplittableRandom(); long size = 0; for (int reps = 0; reps < REPS; ++reps) { counter.reset(); r.doubles(size).parallel().forEach(x -> {counter.increment();}); assertEquals(counter.sum(), size); size += 524959; } } /** * Each of a parallel sized stream of bounded ints is within bounds */ public void testBoundedInts() { AtomicInteger fails = new AtomicInteger(0); SplittableRandom r = new SplittableRandom(); long size = 12345L; for (int least = -15485867; least < MAX_INT_BOUND; least += 524959) { for (int bound = least + 2; bound > least && bound < MAX_INT_BOUND; bound += 67867967) { final int lo = least, hi = bound; r.ints(size, lo, hi).parallel(). forEach(x -> {if (x < lo || x >= hi) fails.getAndIncrement(); }); } } assertEquals(fails.get(), 0); } /** * Each of a parallel sized stream of bounded longs is within bounds */ public void testBoundedLongs() { AtomicInteger fails = new AtomicInteger(0); SplittableRandom r = new SplittableRandom(); long size = 123L; for (long least = -86028121; least < MAX_LONG_BOUND; least += 1982451653L) { for (long bound = least + 2; bound > least && bound < MAX_LONG_BOUND; bound += Math.abs(bound * 7919)) { final long lo = least, hi = bound; r.longs(size, lo, hi).parallel(). forEach(x -> {if (x < lo || x >= hi) fails.getAndIncrement(); }); } } assertEquals(fails.get(), 0); } /** * Each of a parallel sized stream of bounded doubles is within bounds */ public void testBoundedDoubles() { AtomicInteger fails = new AtomicInteger(0); SplittableRandom r = new SplittableRandom(); long size = 456; for (double least = 0.00011; least < 1.0e20; least *= 9) { for (double bound = least * 1.0011; bound < 1.0e20; bound *= 17) { final double lo = least, hi = bound; r.doubles(size, lo, hi).parallel(). forEach(x -> {if (x < lo || x >= hi) fails.getAndIncrement(); }); } } assertEquals(fails.get(), 0); } /** * A parallel unsized stream of ints generates at least 100 values */ public void testUnsizedIntsCount() { LongAdder counter = new LongAdder(); SplittableRandom r = new SplittableRandom(); long size = 100; r.ints().limit(size).parallel().forEach(x -> {counter.increment();}); assertEquals(counter.sum(), size); } /** * A parallel unsized stream of longs generates at least 100 values */ public void testUnsizedLongsCount() { LongAdder counter = new LongAdder(); SplittableRandom r = new SplittableRandom(); long size = 100; r.longs().limit(size).parallel().forEach(x -> {counter.increment();}); assertEquals(counter.sum(), size); } /** * A parallel unsized stream of doubles generates at least 100 values */ public void testUnsizedDoublesCount() { LongAdder counter = new LongAdder(); SplittableRandom r = new SplittableRandom(); long size = 100; r.doubles().limit(size).parallel().forEach(x -> {counter.increment();}); assertEquals(counter.sum(), size); } /** * A sequential unsized stream of ints generates at least 100 values */ public void testUnsizedIntsCountSeq() { LongAdder counter = new LongAdder(); SplittableRandom r = new SplittableRandom(); long size = 100; r.ints().limit(size).forEach(x -> {counter.increment();}); assertEquals(counter.sum(), size); } /** * A sequential unsized stream of longs generates at least 100 values */ public void testUnsizedLongsCountSeq() { LongAdder counter = new LongAdder(); SplittableRandom r = new SplittableRandom(); long size = 100; r.longs().limit(size).forEach(x -> {counter.increment();}); assertEquals(counter.sum(), size); } /** * A sequential unsized stream of doubles generates at least 100 values */ public void testUnsizedDoublesCountSeq() { LongAdder counter = new LongAdder(); SplittableRandom r = new SplittableRandom(); long size = 100; r.doubles().limit(size).forEach(x -> {counter.increment();}); assertEquals(counter.sum(), size); } }