/* * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * This file is available under and governed by the GNU General Public * License version 2 only, as published by the Free Software Foundation. * However, the following notice accompanied the original version of this * file: * * Written by Josh Bloch of Google Inc. and released to the public domain, * as explained at http://creativecommons.org/publicdomain/zero/1.0/. */ package java.util; import java.io.Serializable; import java.util.function.Consumer; import java.util.function.Predicate; import jdk.internal.access.SharedSecrets; /** * Resizable-array implementation of the {@link Deque} interface. Array * deques have no capacity restrictions; they grow as necessary to support * usage. They are not thread-safe; in the absence of external * synchronization, they do not support concurrent access by multiple threads. * Null elements are prohibited. This class is likely to be faster than * {@link Stack} when used as a stack, and faster than {@link LinkedList} * when used as a queue. * *

Most {@code ArrayDeque} operations run in amortized constant time. * Exceptions include * {@link #remove(Object) remove}, * {@link #removeFirstOccurrence removeFirstOccurrence}, * {@link #removeLastOccurrence removeLastOccurrence}, * {@link #contains contains}, * {@link #iterator iterator.remove()}, * and the bulk operations, all of which run in linear time. * *

The iterators returned by this class's {@link #iterator() iterator} * method are fail-fast: If the deque is modified at any time after * the iterator is created, in any way except through the iterator's own * {@code remove} method, the iterator will generally throw a {@link * ConcurrentModificationException}. Thus, in the face of concurrent * modification, the iterator fails quickly and cleanly, rather than risking * arbitrary, non-deterministic behavior at an undetermined time in the * future. * *

Note that the fail-fast behavior of an iterator cannot be guaranteed * as it is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification. Fail-fast iterators * throw {@code ConcurrentModificationException} on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: the fail-fast behavior of iterators * should be used only to detect bugs. * *

This class and its iterator implement all of the * optional methods of the {@link Collection} and {@link * Iterator} interfaces. * *

This class is a member of the * * Java Collections Framework. * * @author Josh Bloch and Doug Lea * @param the type of elements held in this deque * @since 1.6 */ public class ArrayDeque extends AbstractCollection implements Deque, Cloneable, Serializable { /* * VMs excel at optimizing simple array loops where indices are * incrementing or decrementing over a valid slice, e.g. * * for (int i = start; i < end; i++) ... elements[i] * * Because in a circular array, elements are in general stored in * two disjoint such slices, we help the VM by writing unusual * nested loops for all traversals over the elements. Having only * one hot inner loop body instead of two or three eases human * maintenance and encourages VM loop inlining into the caller. */ /** * The array in which the elements of the deque are stored. * All array cells not holding deque elements are always null. * The array always has at least one null slot (at tail). */ transient Object[] elements; /** * The index of the element at the head of the deque (which is the * element that would be removed by remove() or pop()); or an * arbitrary number 0 <= head < elements.length equal to tail if * the deque is empty. */ transient int head; /** * The index at which the next element would be added to the tail * of the deque (via addLast(E), add(E), or push(E)); * elements[tail] is always null. */ transient int tail; /** * The maximum size of array to allocate. * Some VMs reserve some header words in an array. * Attempts to allocate larger arrays may result in * OutOfMemoryError: Requested array size exceeds VM limit */ private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; /** * Increases the capacity of this deque by at least the given amount. * * @param needed the required minimum extra capacity; must be positive */ private void grow(int needed) { // overflow-conscious code final int oldCapacity = elements.length; int newCapacity; // Double capacity if small; else grow by 50% int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1); if (jump < needed || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0) newCapacity = newCapacity(needed, jump); final Object[] es = elements = Arrays.copyOf(elements, newCapacity); // Exceptionally, here tail == head needs to be disambiguated if (tail < head || (tail == head && es[head] != null)) { // wrap around; slide first leg forward to end of array int newSpace = newCapacity - oldCapacity; System.arraycopy(es, head, es, head + newSpace, oldCapacity - head); for (int i = head, to = (head += newSpace); i < to; i++) es[i] = null; } } /** Capacity calculation for edge conditions, especially overflow. */ private int newCapacity(int needed, int jump) { final int oldCapacity = elements.length, minCapacity; if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) { if (minCapacity < 0) throw new IllegalStateException("Sorry, deque too big"); return Integer.MAX_VALUE; } if (needed > jump) return minCapacity; return (oldCapacity + jump - MAX_ARRAY_SIZE < 0) ? oldCapacity + jump : MAX_ARRAY_SIZE; } /** * Constructs an empty array deque with an initial capacity * sufficient to hold 16 elements. */ public ArrayDeque() { elements = new Object[16 + 1]; } /** * Constructs an empty array deque with an initial capacity * sufficient to hold the specified number of elements. * * @param numElements lower bound on initial capacity of the deque */ public ArrayDeque(int numElements) { elements = new Object[(numElements < 1) ? 1 : (numElements == Integer.MAX_VALUE) ? Integer.MAX_VALUE : numElements + 1]; } /** * Constructs a deque containing the elements of the specified * collection, in the order they are returned by the collection's * iterator. (The first element returned by the collection's * iterator becomes the first element, or front of the * deque.) * * @param c the collection whose elements are to be placed into the deque * @throws NullPointerException if the specified collection is null */ public ArrayDeque(Collection c) { this(c.size()); copyElements(c); } /** * Circularly increments i, mod modulus. * Precondition and postcondition: 0 <= i < modulus. */ static final int inc(int i, int modulus) { if (++i >= modulus) i = 0; return i; } /** * Circularly decrements i, mod modulus. * Precondition and postcondition: 0 <= i < modulus. */ static final int dec(int i, int modulus) { if (--i < 0) i = modulus - 1; return i; } /** * Circularly adds the given distance to index i, mod modulus. * Precondition: 0 <= i < modulus, 0 <= distance <= modulus. * @return index 0 <= i < modulus */ static final int inc(int i, int distance, int modulus) { if ((i += distance) - modulus >= 0) i -= modulus; return i; } /** * Subtracts j from i, mod modulus. * Index i must be logically ahead of index j. * Precondition: 0 <= i < modulus, 0 <= j < modulus. * @return the "circular distance" from j to i; corner case i == j * is disambiguated to "empty", returning 0. */ static final int sub(int i, int j, int modulus) { if ((i -= j) < 0) i += modulus; return i; } /** * Returns element at array index i. * This is a slight abuse of generics, accepted by javac. */ @SuppressWarnings("unchecked") static final E elementAt(Object[] es, int i) { return (E) es[i]; } /** * A version of elementAt that checks for null elements. * This check doesn't catch all possible comodifications, * but does catch ones that corrupt traversal. */ static final E nonNullElementAt(Object[] es, int i) { @SuppressWarnings("unchecked") E e = (E) es[i]; if (e == null) throw new ConcurrentModificationException(); return e; } // The main insertion and extraction methods are addFirst, // addLast, pollFirst, pollLast. The other methods are defined in // terms of these. /** * Inserts the specified element at the front of this deque. * * @param e the element to add * @throws NullPointerException if the specified element is null */ public void addFirst(E e) { if (e == null) throw new NullPointerException(); final Object[] es = elements; es[head = dec(head, es.length)] = e; if (head == tail) grow(1); } /** * Inserts the specified element at the end of this deque. * *

This method is equivalent to {@link #add}. * * @param e the element to add * @throws NullPointerException if the specified element is null */ public void addLast(E e) { if (e == null) throw new NullPointerException(); final Object[] es = elements; es[tail] = e; if (head == (tail = inc(tail, es.length))) grow(1); } /** * Adds all of the elements in the specified collection at the end * of this deque, as if by calling {@link #addLast} on each one, * in the order that they are returned by the collection's iterator. * * @param c the elements to be inserted into this deque * @return {@code true} if this deque changed as a result of the call * @throws NullPointerException if the specified collection or any * of its elements are null */ public boolean addAll(Collection c) { final int s, needed; if ((needed = (s = size()) + c.size() + 1 - elements.length) > 0) grow(needed); copyElements(c); return size() > s; } private void copyElements(Collection c) { c.forEach(this::addLast); } /** * Inserts the specified element at the front of this deque. * * @param e the element to add * @return {@code true} (as specified by {@link Deque#offerFirst}) * @throws NullPointerException if the specified element is null */ public boolean offerFirst(E e) { addFirst(e); return true; } /** * Inserts the specified element at the end of this deque. * * @param e the element to add * @return {@code true} (as specified by {@link Deque#offerLast}) * @throws NullPointerException if the specified element is null */ public boolean offerLast(E e) { addLast(e); return true; } /** * @throws NoSuchElementException {@inheritDoc} */ public E removeFirst() { E e = pollFirst(); if (e == null) throw new NoSuchElementException(); return e; } /** * @throws NoSuchElementException {@inheritDoc} */ public E removeLast() { E e = pollLast(); if (e == null) throw new NoSuchElementException(); return e; } public E pollFirst() { final Object[] es; final int h; E e = elementAt(es = elements, h = head); if (e != null) { es[h] = null; head = inc(h, es.length); } return e; } public E pollLast() { final Object[] es; final int t; E e = elementAt(es = elements, t = dec(tail, es.length)); if (e != null) es[tail = t] = null; return e; } /** * @throws NoSuchElementException {@inheritDoc} */ public E getFirst() { E e = elementAt(elements, head); if (e == null) throw new NoSuchElementException(); return e; } /** * @throws NoSuchElementException {@inheritDoc} */ public E getLast() { final Object[] es = elements; E e = elementAt(es, dec(tail, es.length)); if (e == null) throw new NoSuchElementException(); return e; } public E peekFirst() { return elementAt(elements, head); } public E peekLast() { final Object[] es; return elementAt(es = elements, dec(tail, es.length)); } /** * Removes the first occurrence of the specified element in this * deque (when traversing the deque from head to tail). * If the deque does not contain the element, it is unchanged. * More formally, removes the first element {@code e} such that * {@code o.equals(e)} (if such an element exists). * Returns {@code true} if this deque contained the specified element * (or equivalently, if this deque changed as a result of the call). * * @param o element to be removed from this deque, if present * @return {@code true} if the deque contained the specified element */ public boolean removeFirstOccurrence(Object o) { if (o != null) { final Object[] es = elements; for (int i = head, end = tail, to = (i <= end) ? end : es.length; ; i = 0, to = end) { for (; i < to; i++) if (o.equals(es[i])) { delete(i); return true; } if (to == end) break; } } return false; } /** * Removes the last occurrence of the specified element in this * deque (when traversing the deque from head to tail). * If the deque does not contain the element, it is unchanged. * More formally, removes the last element {@code e} such that * {@code o.equals(e)} (if such an element exists). * Returns {@code true} if this deque contained the specified element * (or equivalently, if this deque changed as a result of the call). * * @param o element to be removed from this deque, if present * @return {@code true} if the deque contained the specified element */ public boolean removeLastOccurrence(Object o) { if (o != null) { final Object[] es = elements; for (int i = tail, end = head, to = (i >= end) ? end : 0; ; i = es.length, to = end) { for (i--; i > to - 1; i--) if (o.equals(es[i])) { delete(i); return true; } if (to == end) break; } } return false; } // *** Queue methods *** /** * Inserts the specified element at the end of this deque. * *

This method is equivalent to {@link #addLast}. * * @param e the element to add * @return {@code true} (as specified by {@link Collection#add}) * @throws NullPointerException if the specified element is null */ public boolean add(E e) { addLast(e); return true; } /** * Inserts the specified element at the end of this deque. * *

This method is equivalent to {@link #offerLast}. * * @param e the element to add * @return {@code true} (as specified by {@link Queue#offer}) * @throws NullPointerException if the specified element is null */ public boolean offer(E e) { return offerLast(e); } /** * Retrieves and removes the head of the queue represented by this deque. * * This method differs from {@link #poll() poll()} only in that it * throws an exception if this deque is empty. * *

This method is equivalent to {@link #removeFirst}. * * @return the head of the queue represented by this deque * @throws NoSuchElementException {@inheritDoc} */ public E remove() { return removeFirst(); } /** * Retrieves and removes the head of the queue represented by this deque * (in other words, the first element of this deque), or returns * {@code null} if this deque is empty. * *

This method is equivalent to {@link #pollFirst}. * * @return the head of the queue represented by this deque, or * {@code null} if this deque is empty */ public E poll() { return pollFirst(); } /** * Retrieves, but does not remove, the head of the queue represented by * this deque. This method differs from {@link #peek peek} only in * that it throws an exception if this deque is empty. * *

This method is equivalent to {@link #getFirst}. * * @return the head of the queue represented by this deque * @throws NoSuchElementException {@inheritDoc} */ public E element() { return getFirst(); } /** * Retrieves, but does not remove, the head of the queue represented by * this deque, or returns {@code null} if this deque is empty. * *

This method is equivalent to {@link #peekFirst}. * * @return the head of the queue represented by this deque, or * {@code null} if this deque is empty */ public E peek() { return peekFirst(); } // *** Stack methods *** /** * Pushes an element onto the stack represented by this deque. In other * words, inserts the element at the front of this deque. * *

This method is equivalent to {@link #addFirst}. * * @param e the element to push * @throws NullPointerException if the specified element is null */ public void push(E e) { addFirst(e); } /** * Pops an element from the stack represented by this deque. In other * words, removes and returns the first element of this deque. * *

This method is equivalent to {@link #removeFirst()}. * * @return the element at the front of this deque (which is the top * of the stack represented by this deque) * @throws NoSuchElementException {@inheritDoc} */ public E pop() { return removeFirst(); } /** * Removes the element at the specified position in the elements array. * This can result in forward or backwards motion of array elements. * We optimize for least element motion. * *

This method is called delete rather than remove to emphasize * that its semantics differ from those of {@link List#remove(int)}. * * @return true if elements near tail moved backwards */ boolean delete(int i) { final Object[] es = elements; final int capacity = es.length; final int h, t; // number of elements before to-be-deleted elt final int front = sub(i, h = head, capacity); // number of elements after to-be-deleted elt final int back = sub(t = tail, i, capacity) - 1; if (front < back) { // move front elements forwards if (h <= i) { System.arraycopy(es, h, es, h + 1, front); } else { // Wrap around System.arraycopy(es, 0, es, 1, i); es[0] = es[capacity - 1]; System.arraycopy(es, h, es, h + 1, front - (i + 1)); } es[h] = null; head = inc(h, capacity); return false; } else { // move back elements backwards tail = dec(t, capacity); if (i <= tail) { System.arraycopy(es, i + 1, es, i, back); } else { // Wrap around System.arraycopy(es, i + 1, es, i, capacity - (i + 1)); es[capacity - 1] = es[0]; System.arraycopy(es, 1, es, 0, t - 1); } es[tail] = null; return true; } } // *** Collection Methods *** /** * Returns the number of elements in this deque. * * @return the number of elements in this deque */ public int size() { return sub(tail, head, elements.length); } /** * Returns {@code true} if this deque contains no elements. * * @return {@code true} if this deque contains no elements */ public boolean isEmpty() { return head == tail; } /** * Returns an iterator over the elements in this deque. The elements * will be ordered from first (head) to last (tail). This is the same * order that elements would be dequeued (via successive calls to * {@link #remove} or popped (via successive calls to {@link #pop}). * * @return an iterator over the elements in this deque */ public Iterator iterator() { return new DeqIterator(); } public Iterator descendingIterator() { return new DescendingIterator(); } private class DeqIterator implements Iterator { /** Index of element to be returned by subsequent call to next. */ int cursor; /** Number of elements yet to be returned. */ int remaining = size(); /** * Index of element returned by most recent call to next. * Reset to -1 if element is deleted by a call to remove. */ int lastRet = -1; DeqIterator() { cursor = head; } public final boolean hasNext() { return remaining > 0; } public E next() { if (remaining <= 0) throw new NoSuchElementException(); final Object[] es = elements; E e = nonNullElementAt(es, cursor); cursor = inc(lastRet = cursor, es.length); remaining--; return e; } void postDelete(boolean leftShifted) { if (leftShifted) cursor = dec(cursor, elements.length); } public final void remove() { if (lastRet < 0) throw new IllegalStateException(); postDelete(delete(lastRet)); lastRet = -1; } public void forEachRemaining(Consumer action) { Objects.requireNonNull(action); int r; if ((r = remaining) <= 0) return; remaining = 0; final Object[] es = elements; if (es[cursor] == null || sub(tail, cursor, es.length) != r) throw new ConcurrentModificationException(); for (int i = cursor, end = tail, to = (i <= end) ? end : es.length; ; i = 0, to = end) { for (; i < to; i++) action.accept(elementAt(es, i)); if (to == end) { if (end != tail) throw new ConcurrentModificationException(); lastRet = dec(end, es.length); break; } } } } private class DescendingIterator extends DeqIterator { DescendingIterator() { cursor = dec(tail, elements.length); } public final E next() { if (remaining <= 0) throw new NoSuchElementException(); final Object[] es = elements; E e = nonNullElementAt(es, cursor); cursor = dec(lastRet = cursor, es.length); remaining--; return e; } void postDelete(boolean leftShifted) { if (!leftShifted) cursor = inc(cursor, elements.length); } public final void forEachRemaining(Consumer action) { Objects.requireNonNull(action); int r; if ((r = remaining) <= 0) return; remaining = 0; final Object[] es = elements; if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r) throw new ConcurrentModificationException(); for (int i = cursor, end = head, to = (i >= end) ? end : 0; ; i = es.length - 1, to = end) { // hotspot generates faster code than for: i >= to ! for (; i > to - 1; i--) action.accept(elementAt(es, i)); if (to == end) { if (end != head) throw new ConcurrentModificationException(); lastRet = end; break; } } } } /** * Creates a late-binding * and fail-fast {@link Spliterator} over the elements in this * deque. * *

The {@code Spliterator} reports {@link Spliterator#SIZED}, * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and * {@link Spliterator#NONNULL}. Overriding implementations should document * the reporting of additional characteristic values. * * @return a {@code Spliterator} over the elements in this deque * @since 1.8 */ public Spliterator spliterator() { return new DeqSpliterator(); } final class DeqSpliterator implements Spliterator { private int fence; // -1 until first use private int cursor; // current index, modified on traverse/split /** Constructs late-binding spliterator over all elements. */ DeqSpliterator() { this.fence = -1; } /** Constructs spliterator over the given range. */ DeqSpliterator(int origin, int fence) { // assert 0 <= origin && origin < elements.length; // assert 0 <= fence && fence < elements.length; this.cursor = origin; this.fence = fence; } /** Ensures late-binding initialization; then returns fence. */ private int getFence() { // force initialization int t; if ((t = fence) < 0) { t = fence = tail; cursor = head; } return t; } public DeqSpliterator trySplit() { final Object[] es = elements; final int i, n; return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0) ? null : new DeqSpliterator(i, cursor = inc(i, n, es.length)); } public void forEachRemaining(Consumer action) { if (action == null) throw new NullPointerException(); final int end = getFence(), cursor = this.cursor; final Object[] es = elements; if (cursor != end) { this.cursor = end; // null check at both ends of range is sufficient if (es[cursor] == null || es[dec(end, es.length)] == null) throw new ConcurrentModificationException(); for (int i = cursor, to = (i <= end) ? end : es.length; ; i = 0, to = end) { for (; i < to; i++) action.accept(elementAt(es, i)); if (to == end) break; } } } public boolean tryAdvance(Consumer action) { Objects.requireNonNull(action); final Object[] es = elements; if (fence < 0) { fence = tail; cursor = head; } // late-binding final int i; if ((i = cursor) == fence) return false; E e = nonNullElementAt(es, i); cursor = inc(i, es.length); action.accept(e); return true; } public long estimateSize() { return sub(getFence(), cursor, elements.length); } public int characteristics() { return Spliterator.NONNULL | Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; } } /** * @throws NullPointerException {@inheritDoc} */ public void forEach(Consumer action) { Objects.requireNonNull(action); final Object[] es = elements; for (int i = head, end = tail, to = (i <= end) ? end : es.length; ; i = 0, to = end) { for (; i < to; i++) action.accept(elementAt(es, i)); if (to == end) { if (end != tail) throw new ConcurrentModificationException(); break; } } } /** * @throws NullPointerException {@inheritDoc} */ public boolean removeIf(Predicate filter) { Objects.requireNonNull(filter); return bulkRemove(filter); } /** * @throws NullPointerException {@inheritDoc} */ public boolean removeAll(Collection c) { Objects.requireNonNull(c); return bulkRemove(e -> c.contains(e)); } /** * @throws NullPointerException {@inheritDoc} */ public boolean retainAll(Collection c) { Objects.requireNonNull(c); return bulkRemove(e -> !c.contains(e)); } /** Implementation of bulk remove methods. */ private boolean bulkRemove(Predicate filter) { final Object[] es = elements; // Optimize for initial run of survivors for (int i = head, end = tail, to = (i <= end) ? end : es.length; ; i = 0, to = end) { for (; i < to; i++) if (filter.test(elementAt(es, i))) return bulkRemoveModified(filter, i); if (to == end) { if (end != tail) throw new ConcurrentModificationException(); break; } } return false; } // A tiny bit set implementation private static long[] nBits(int n) { return new long[((n - 1) >> 6) + 1]; } private static void setBit(long[] bits, int i) { bits[i >> 6] |= 1L << i; } private static boolean isClear(long[] bits, int i) { return (bits[i >> 6] & (1L << i)) == 0; } /** * Helper for bulkRemove, in case of at least one deletion. * Tolerate predicates that reentrantly access the collection for * read (but writers still get CME), so traverse once to find * elements to delete, a second pass to physically expunge. * * @param beg valid index of first element to be deleted */ private boolean bulkRemoveModified( Predicate filter, final int beg) { final Object[] es = elements; final int capacity = es.length; final int end = tail; final long[] deathRow = nBits(sub(end, beg, capacity)); deathRow[0] = 1L; // set bit 0 for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg; ; i = 0, to = end, k -= capacity) { for (; i < to; i++) if (filter.test(elementAt(es, i))) setBit(deathRow, i - k); if (to == end) break; } // a two-finger traversal, with hare i reading, tortoise w writing int w = beg; for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg; ; w = 0) { // w rejoins i on second leg // In this loop, i and w are on the same leg, with i > w for (; i < to; i++) if (isClear(deathRow, i - k)) es[w++] = es[i]; if (to == end) break; // In this loop, w is on the first leg, i on the second for (i = 0, to = end, k -= capacity; i < to && w < capacity; i++) if (isClear(deathRow, i - k)) es[w++] = es[i]; if (i >= to) { if (w == capacity) w = 0; // "corner" case break; } } if (end != tail) throw new ConcurrentModificationException(); circularClear(es, tail = w, end); return true; } /** * Returns {@code true} if this deque contains the specified element. * More formally, returns {@code true} if and only if this deque contains * at least one element {@code e} such that {@code o.equals(e)}. * * @param o object to be checked for containment in this deque * @return {@code true} if this deque contains the specified element */ public boolean contains(Object o) { if (o != null) { final Object[] es = elements; for (int i = head, end = tail, to = (i <= end) ? end : es.length; ; i = 0, to = end) { for (; i < to; i++) if (o.equals(es[i])) return true; if (to == end) break; } } return false; } /** * Removes a single instance of the specified element from this deque. * If the deque does not contain the element, it is unchanged. * More formally, removes the first element {@code e} such that * {@code o.equals(e)} (if such an element exists). * Returns {@code true} if this deque contained the specified element * (or equivalently, if this deque changed as a result of the call). * *

This method is equivalent to {@link #removeFirstOccurrence(Object)}. * * @param o element to be removed from this deque, if present * @return {@code true} if this deque contained the specified element */ public boolean remove(Object o) { return removeFirstOccurrence(o); } /** * Removes all of the elements from this deque. * The deque will be empty after this call returns. */ public void clear() { circularClear(elements, head, tail); head = tail = 0; } /** * Nulls out slots starting at array index i, upto index end. * Condition i == end means "empty" - nothing to do. */ private static void circularClear(Object[] es, int i, int end) { // assert 0 <= i && i < es.length; // assert 0 <= end && end < es.length; for (int to = (i <= end) ? end : es.length; ; i = 0, to = end) { for (; i < to; i++) es[i] = null; if (to == end) break; } } /** * Returns an array containing all of the elements in this deque * in proper sequence (from first to last element). * *

The returned array will be "safe" in that no references to it are * maintained by this deque. (In other words, this method must allocate * a new array). The caller is thus free to modify the returned array. * *

This method acts as bridge between array-based and collection-based * APIs. * * @return an array containing all of the elements in this deque */ public Object[] toArray() { return toArray(Object[].class); } private T[] toArray(Class klazz) { final Object[] es = elements; final T[] a; final int head = this.head, tail = this.tail, end; if ((end = tail + ((head <= tail) ? 0 : es.length)) >= 0) { // Uses null extension feature of copyOfRange a = Arrays.copyOfRange(es, head, end, klazz); } else { // integer overflow! a = Arrays.copyOfRange(es, 0, end - head, klazz); System.arraycopy(es, head, a, 0, es.length - head); } if (end != tail) System.arraycopy(es, 0, a, es.length - head, tail); return a; } /** * Returns an array containing all of the elements in this deque in * proper sequence (from first to last element); the runtime type of the * returned array is that of the specified array. If the deque fits in * the specified array, it is returned therein. Otherwise, a new array * is allocated with the runtime type of the specified array and the * size of this deque. * *

If this deque fits in the specified array with room to spare * (i.e., the array has more elements than this deque), the element in * the array immediately following the end of the deque is set to * {@code null}. * *

Like the {@link #toArray()} method, this method acts as bridge between * array-based and collection-based APIs. Further, this method allows * precise control over the runtime type of the output array, and may, * under certain circumstances, be used to save allocation costs. * *

Suppose {@code x} is a deque known to contain only strings. * The following code can be used to dump the deque into a newly * allocated array of {@code String}: * *

 {@code String[] y = x.toArray(new String[0]);}
* * Note that {@code toArray(new Object[0])} is identical in function to * {@code toArray()}. * * @param a the array into which the elements of the deque are to * be stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose * @return an array containing all of the elements in this deque * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in * this deque * @throws NullPointerException if the specified array is null */ @SuppressWarnings("unchecked") public T[] toArray(T[] a) { final int size; if ((size = size()) > a.length) return toArray((Class) a.getClass()); final Object[] es = elements; for (int i = head, j = 0, len = Math.min(size, es.length - i); ; i = 0, len = tail) { System.arraycopy(es, i, a, j, len); if ((j += len) == size) break; } if (size < a.length) a[size] = null; return a; } // *** Object methods *** /** * Returns a copy of this deque. * * @return a copy of this deque */ public ArrayDeque clone() { try { @SuppressWarnings("unchecked") ArrayDeque result = (ArrayDeque) super.clone(); result.elements = Arrays.copyOf(elements, elements.length); return result; } catch (CloneNotSupportedException e) { throw new AssertionError(); } } @java.io.Serial private static final long serialVersionUID = 2340985798034038923L; /** * Saves this deque to a stream (that is, serializes it). * * @param s the stream * @throws java.io.IOException if an I/O error occurs * @serialData The current size ({@code int}) of the deque, * followed by all of its elements (each an object reference) in * first-to-last order. */ @java.io.Serial private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { s.defaultWriteObject(); // Write out size s.writeInt(size()); // Write out elements in order. final Object[] es = elements; for (int i = head, end = tail, to = (i <= end) ? end : es.length; ; i = 0, to = end) { for (; i < to; i++) s.writeObject(es[i]); if (to == end) break; } } /** * Reconstitutes this deque from a stream (that is, deserializes it). * @param s the stream * @throws ClassNotFoundException if the class of a serialized object * could not be found * @throws java.io.IOException if an I/O error occurs */ @java.io.Serial private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); // Read in size and allocate array int size = s.readInt(); SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size + 1); elements = new Object[size + 1]; this.tail = size; // Read in all elements in the proper order. for (int i = 0; i < size; i++) elements[i] = s.readObject(); } /** debugging */ void checkInvariants() { // Use head and tail fields with empty slot at tail strategy. // head == tail disambiguates to "empty". try { int capacity = elements.length; // assert 0 <= head && head < capacity; // assert 0 <= tail && tail < capacity; // assert capacity > 0; // assert size() < capacity; // assert head == tail || elements[head] != null; // assert elements[tail] == null; // assert head == tail || elements[dec(tail, capacity)] != null; } catch (Throwable t) { System.err.printf("head=%d tail=%d capacity=%d%n", head, tail, elements.length); System.err.printf("elements=%s%n", Arrays.toString(elements)); throw t; } } }