1 /*
   2  * Copyright (c) 2008, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import java.lang.constant.ClassDesc;
  29 import java.lang.constant.Constable;
  30 import java.lang.constant.MethodTypeDesc;
  31 import java.lang.ref.Reference;
  32 import java.lang.ref.ReferenceQueue;
  33 import java.lang.ref.WeakReference;
  34 import java.util.Arrays;
  35 import java.util.Collections;
  36 import java.util.List;
  37 import java.util.NoSuchElementException;
  38 import java.util.Objects;
  39 import java.util.Optional;
  40 import java.util.StringJoiner;
  41 import java.util.concurrent.ConcurrentHashMap;
  42 import java.util.concurrent.ConcurrentMap;
  43 import java.util.stream.Stream;
  44 
  45 import jdk.internal.vm.annotation.Stable;
  46 import sun.invoke.util.BytecodeDescriptor;
  47 import sun.invoke.util.VerifyType;
  48 import sun.invoke.util.Wrapper;
  49 
  50 import static java.lang.invoke.MethodHandleStatics.UNSAFE;
  51 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException;
  52 
  53 /**
  54  * A method type represents the arguments and return type accepted and
  55  * returned by a method handle, or the arguments and return type passed
  56  * and expected  by a method handle caller.  Method types must be properly
  57  * matched between a method handle and all its callers,
  58  * and the JVM's operations enforce this matching at, specifically
  59  * during calls to {@link MethodHandle#invokeExact MethodHandle.invokeExact}
  60  * and {@link MethodHandle#invoke MethodHandle.invoke}, and during execution
  61  * of {@code invokedynamic} instructions.
  62  * <p>
  63  * The structure is a return type accompanied by any number of parameter types.
  64  * The types (primitive, {@code void}, and reference) are represented by {@link Class} objects.
  65  * (For ease of exposition, we treat {@code void} as if it were a type.
  66  * In fact, it denotes the absence of a return type.)
  67  * <p>
  68  * All instances of {@code MethodType} are immutable.
  69  * Two instances are completely interchangeable if they compare equal.
  70  * Equality depends on pairwise correspondence of the return and parameter types and on nothing else.
  71  * <p>
  72  * This type can be created only by factory methods.
  73  * All factory methods may cache values, though caching is not guaranteed.
  74  * Some factory methods are static, while others are virtual methods which
  75  * modify precursor method types, e.g., by changing a selected parameter.
  76  * <p>
  77  * Factory methods which operate on groups of parameter types
  78  * are systematically presented in two versions, so that both Java arrays and
  79  * Java lists can be used to work with groups of parameter types.
  80  * The query methods {@code parameterArray} and {@code parameterList}
  81  * also provide a choice between arrays and lists.
  82  * <p>
  83  * {@code MethodType} objects are sometimes derived from bytecode instructions
  84  * such as {@code invokedynamic}, specifically from the type descriptor strings associated
  85  * with the instructions in a class file's constant pool.
  86  * <p>
  87  * Like classes and strings, method types can also be represented directly
  88  * in a class file's constant pool as constants.
  89  * A method type may be loaded by an {@code ldc} instruction which refers
  90  * to a suitable {@code CONSTANT_MethodType} constant pool entry.
  91  * The entry refers to a {@code CONSTANT_Utf8} spelling for the descriptor string.
  92  * (For full details on method type constants,
  93  * see sections 4.4.8 and 5.4.3.5 of the Java Virtual Machine Specification.)
  94  * <p>
  95  * When the JVM materializes a {@code MethodType} from a descriptor string,
  96  * all classes named in the descriptor must be accessible, and will be loaded.
  97  * (But the classes need not be initialized, as is the case with a {@code CONSTANT_Class}.)
  98  * This loading may occur at any time before the {@code MethodType} object is first derived.
  99  * @author John Rose, JSR 292 EG
 100  * @since 1.7
 101  */
 102 public final
 103 class MethodType
 104         implements Constable,
 105                    TypeDescriptor.OfMethod<Class<?>, MethodType>,
 106                    java.io.Serializable {
 107     @java.io.Serial
 108     private static final long serialVersionUID = 292L;  // {rtype, {ptype...}}
 109 
 110     // The rtype and ptypes fields define the structural identity of the method type:
 111     private final @Stable Class<?>   rtype;
 112     private final @Stable Class<?>[] ptypes;
 113 
 114     // The remaining fields are caches of various sorts:
 115     private @Stable MethodTypeForm form; // erased form, plus cached data about primitives
 116     private @Stable MethodType wrapAlt;  // alternative wrapped/unwrapped version
 117     private @Stable Invokers invokers;   // cache of handy higher-order adapters
 118     private @Stable String methodDescriptor;  // cache for toMethodDescriptorString
 119 
 120     /**
 121      * Constructor that performs no copying or validation.
 122      * Should only be called from the factory method makeImpl
 123      */
 124     private MethodType(Class<?> rtype, Class<?>[] ptypes) {
 125         this.rtype = rtype;
 126         this.ptypes = ptypes;
 127     }
 128 
 129     /*trusted*/ MethodTypeForm form() { return form; }
 130     /*trusted*/ Class<?> rtype() { return rtype; }
 131     /*trusted*/ Class<?>[] ptypes() { return ptypes; }
 132 
 133     void setForm(MethodTypeForm f) { form = f; }
 134 
 135     /** This number, mandated by the JVM spec as 255,
 136      *  is the maximum number of <em>slots</em>
 137      *  that any Java method can receive in its argument list.
 138      *  It limits both JVM signatures and method type objects.
 139      *  The longest possible invocation will look like
 140      *  {@code staticMethod(arg1, arg2, ..., arg255)} or
 141      *  {@code x.virtualMethod(arg1, arg2, ..., arg254)}.
 142      */
 143     /*non-public*/ static final int MAX_JVM_ARITY = 255;  // this is mandated by the JVM spec.
 144 
 145     /** This number is the maximum arity of a method handle, 254.
 146      *  It is derived from the absolute JVM-imposed arity by subtracting one,
 147      *  which is the slot occupied by the method handle itself at the
 148      *  beginning of the argument list used to invoke the method handle.
 149      *  The longest possible invocation will look like
 150      *  {@code mh.invoke(arg1, arg2, ..., arg254)}.
 151      */
 152     // Issue:  Should we allow MH.invokeWithArguments to go to the full 255?
 153     /*non-public*/ static final int MAX_MH_ARITY = MAX_JVM_ARITY-1;  // deduct one for mh receiver
 154 
 155     /** This number is the maximum arity of a method handle invoker, 253.
 156      *  It is derived from the absolute JVM-imposed arity by subtracting two,
 157      *  which are the slots occupied by invoke method handle, and the
 158      *  target method handle, which are both at the beginning of the argument
 159      *  list used to invoke the target method handle.
 160      *  The longest possible invocation will look like
 161      *  {@code invokermh.invoke(targetmh, arg1, arg2, ..., arg253)}.
 162      */
 163     /*non-public*/ static final int MAX_MH_INVOKER_ARITY = MAX_MH_ARITY-1;  // deduct one more for invoker
 164 
 165     private static void checkRtype(Class<?> rtype) {
 166         Objects.requireNonNull(rtype);
 167     }
 168     private static void checkPtype(Class<?> ptype) {
 169         Objects.requireNonNull(ptype);
 170         if (ptype == void.class)
 171             throw newIllegalArgumentException("parameter type cannot be void");
 172     }
 173     /** Return number of extra slots (count of long/double args). */
 174     private static int checkPtypes(Class<?>[] ptypes) {
 175         int slots = 0;
 176         for (Class<?> ptype : ptypes) {
 177             checkPtype(ptype);
 178             if (ptype == double.class || ptype == long.class) {
 179                 slots++;
 180             }
 181         }
 182         checkSlotCount(ptypes.length + slots);
 183         return slots;
 184     }
 185 
 186     static {
 187         // MAX_JVM_ARITY must be power of 2 minus 1 for following code trick to work:
 188         assert((MAX_JVM_ARITY & (MAX_JVM_ARITY+1)) == 0);
 189     }
 190     static void checkSlotCount(int count) {
 191         if ((count & MAX_JVM_ARITY) != count)
 192             throw newIllegalArgumentException("bad parameter count "+count);
 193     }
 194     private static IndexOutOfBoundsException newIndexOutOfBoundsException(Object num) {
 195         if (num instanceof Integer)  num = "bad index: "+num;
 196         return new IndexOutOfBoundsException(num.toString());
 197     }
 198 
 199     static final ConcurrentWeakInternSet<MethodType> internTable = new ConcurrentWeakInternSet<>();
 200 
 201     static final Class<?>[] NO_PTYPES = {};
 202 
 203     /**
 204      * Finds or creates an instance of the given method type.
 205      * @param rtype  the return type
 206      * @param ptypes the parameter types
 207      * @return a method type with the given components
 208      * @throws NullPointerException if {@code rtype} or {@code ptypes} or any element of {@code ptypes} is null
 209      * @throws IllegalArgumentException if any element of {@code ptypes} is {@code void.class}
 210      */
 211     public static
 212     MethodType methodType(Class<?> rtype, Class<?>[] ptypes) {
 213         return makeImpl(rtype, ptypes, false);
 214     }
 215 
 216     /**
 217      * Finds or creates a method type with the given components.
 218      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 219      * @param rtype  the return type
 220      * @param ptypes the parameter types
 221      * @return a method type with the given components
 222      * @throws NullPointerException if {@code rtype} or {@code ptypes} or any element of {@code ptypes} is null
 223      * @throws IllegalArgumentException if any element of {@code ptypes} is {@code void.class}
 224      */
 225     public static
 226     MethodType methodType(Class<?> rtype, List<Class<?>> ptypes) {
 227         boolean notrust = false;  // random List impl. could return evil ptypes array
 228         return makeImpl(rtype, listToArray(ptypes), notrust);
 229     }
 230 
 231     private static Class<?>[] listToArray(List<Class<?>> ptypes) {
 232         // sanity check the size before the toArray call, since size might be huge
 233         checkSlotCount(ptypes.size());
 234         return ptypes.toArray(NO_PTYPES);
 235     }
 236 
 237     /**
 238      * Finds or creates a method type with the given components.
 239      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 240      * The leading parameter type is prepended to the remaining array.
 241      * @param rtype  the return type
 242      * @param ptype0 the first parameter type
 243      * @param ptypes the remaining parameter types
 244      * @return a method type with the given components
 245      * @throws NullPointerException if {@code rtype} or {@code ptype0} or {@code ptypes} or any element of {@code ptypes} is null
 246      * @throws IllegalArgumentException if {@code ptype0} or {@code ptypes} or any element of {@code ptypes} is {@code void.class}
 247      */
 248     public static
 249     MethodType methodType(Class<?> rtype, Class<?> ptype0, Class<?>... ptypes) {
 250         Class<?>[] ptypes1 = new Class<?>[1+ptypes.length];
 251         ptypes1[0] = ptype0;
 252         System.arraycopy(ptypes, 0, ptypes1, 1, ptypes.length);
 253         return makeImpl(rtype, ptypes1, true);
 254     }
 255 
 256     /**
 257      * Finds or creates a method type with the given components.
 258      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 259      * The resulting method has no parameter types.
 260      * @param rtype  the return type
 261      * @return a method type with the given return value
 262      * @throws NullPointerException if {@code rtype} is null
 263      */
 264     public static
 265     MethodType methodType(Class<?> rtype) {
 266         return makeImpl(rtype, NO_PTYPES, true);
 267     }
 268 
 269     /**
 270      * Finds or creates a method type with the given components.
 271      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 272      * The resulting method has the single given parameter type.
 273      * @param rtype  the return type
 274      * @param ptype0 the parameter type
 275      * @return a method type with the given return value and parameter type
 276      * @throws NullPointerException if {@code rtype} or {@code ptype0} is null
 277      * @throws IllegalArgumentException if {@code ptype0} is {@code void.class}
 278      */
 279     public static
 280     MethodType methodType(Class<?> rtype, Class<?> ptype0) {
 281         return makeImpl(rtype, new Class<?>[]{ ptype0 }, true);
 282     }
 283 
 284     /**
 285      * Finds or creates a method type with the given components.
 286      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 287      * The resulting method has the same parameter types as {@code ptypes},
 288      * and the specified return type.
 289      * @param rtype  the return type
 290      * @param ptypes the method type which supplies the parameter types
 291      * @return a method type with the given components
 292      * @throws NullPointerException if {@code rtype} or {@code ptypes} is null
 293      */
 294     public static
 295     MethodType methodType(Class<?> rtype, MethodType ptypes) {
 296         return makeImpl(rtype, ptypes.ptypes, true);
 297     }
 298 
 299     /**
 300      * Sole factory method to find or create an interned method type.
 301      * @param rtype desired return type
 302      * @param ptypes desired parameter types
 303      * @param trusted whether the ptypes can be used without cloning
 304      * @return the unique method type of the desired structure
 305      */
 306     /*trusted*/ static
 307     MethodType makeImpl(Class<?> rtype, Class<?>[] ptypes, boolean trusted) {
 308         if (ptypes.length == 0) {
 309             ptypes = NO_PTYPES; trusted = true;
 310         }
 311         MethodType primordialMT = new MethodType(rtype, ptypes);
 312         MethodType mt = internTable.get(primordialMT);
 313         if (mt != null)
 314             return mt;
 315 
 316         // promote the object to the Real Thing, and reprobe
 317         MethodType.checkRtype(rtype);
 318         if (trusted) {
 319             MethodType.checkPtypes(ptypes);
 320             mt = primordialMT;
 321         } else {
 322             // Make defensive copy then validate
 323             ptypes = Arrays.copyOf(ptypes, ptypes.length);
 324             MethodType.checkPtypes(ptypes);
 325             mt = new MethodType(rtype, ptypes);
 326         }
 327         mt.form = MethodTypeForm.findForm(mt);
 328         return internTable.add(mt);
 329     }
 330     private static final @Stable MethodType[] objectOnlyTypes = new MethodType[20];
 331 
 332     /**
 333      * Finds or creates a method type whose components are {@code Object} with an optional trailing {@code Object[]} array.
 334      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 335      * All parameters and the return type will be {@code Object},
 336      * except the final array parameter if any, which will be {@code Object[]}.
 337      * @param objectArgCount number of parameters (excluding the final array parameter if any)
 338      * @param finalArray whether there will be a trailing array parameter, of type {@code Object[]}
 339      * @return a generally applicable method type, for all calls of the given fixed argument count and a collected array of further arguments
 340      * @throws IllegalArgumentException if {@code objectArgCount} is negative or greater than 255 (or 254, if {@code finalArray} is true)
 341      * @see #genericMethodType(int)
 342      */
 343     public static
 344     MethodType genericMethodType(int objectArgCount, boolean finalArray) {
 345         MethodType mt;
 346         checkSlotCount(objectArgCount);
 347         int ivarargs = (!finalArray ? 0 : 1);
 348         int ootIndex = objectArgCount*2 + ivarargs;
 349         if (ootIndex < objectOnlyTypes.length) {
 350             mt = objectOnlyTypes[ootIndex];
 351             if (mt != null)  return mt;
 352         }
 353         Class<?>[] ptypes = new Class<?>[objectArgCount + ivarargs];
 354         Arrays.fill(ptypes, Object.class);
 355         if (ivarargs != 0)  ptypes[objectArgCount] = Object[].class;
 356         mt = makeImpl(Object.class, ptypes, true);
 357         if (ootIndex < objectOnlyTypes.length) {
 358             objectOnlyTypes[ootIndex] = mt;     // cache it here also!
 359         }
 360         return mt;
 361     }
 362 
 363     /**
 364      * Finds or creates a method type whose components are all {@code Object}.
 365      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 366      * All parameters and the return type will be Object.
 367      * @param objectArgCount number of parameters
 368      * @return a generally applicable method type, for all calls of the given argument count
 369      * @throws IllegalArgumentException if {@code objectArgCount} is negative or greater than 255
 370      * @see #genericMethodType(int, boolean)
 371      */
 372     public static
 373     MethodType genericMethodType(int objectArgCount) {
 374         return genericMethodType(objectArgCount, false);
 375     }
 376 
 377     /**
 378      * Finds or creates a method type with a single different parameter type.
 379      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 380      * @param num    the index (zero-based) of the parameter type to change
 381      * @param nptype a new parameter type to replace the old one with
 382      * @return the same type, except with the selected parameter changed
 383      * @throws IndexOutOfBoundsException if {@code num} is not a valid index into {@code parameterArray()}
 384      * @throws IllegalArgumentException if {@code nptype} is {@code void.class}
 385      * @throws NullPointerException if {@code nptype} is null
 386      */
 387     public MethodType changeParameterType(int num, Class<?> nptype) {
 388         if (parameterType(num) == nptype)  return this;
 389         checkPtype(nptype);
 390         Class<?>[] nptypes = ptypes.clone();
 391         nptypes[num] = nptype;
 392         return makeImpl(rtype, nptypes, true);
 393     }
 394 
 395     /**
 396      * Finds or creates a method type with additional parameter types.
 397      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 398      * @param num    the position (zero-based) of the inserted parameter type(s)
 399      * @param ptypesToInsert zero or more new parameter types to insert into the parameter list
 400      * @return the same type, except with the selected parameter(s) inserted
 401      * @throws IndexOutOfBoundsException if {@code num} is negative or greater than {@code parameterCount()}
 402      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
 403      *                                  or if the resulting method type would have more than 255 parameter slots
 404      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
 405      */
 406     public MethodType insertParameterTypes(int num, Class<?>... ptypesToInsert) {
 407         int len = ptypes.length;
 408         if (num < 0 || num > len)
 409             throw newIndexOutOfBoundsException(num);
 410         int ins = checkPtypes(ptypesToInsert);
 411         checkSlotCount(parameterSlotCount() + ptypesToInsert.length + ins);
 412         int ilen = ptypesToInsert.length;
 413         if (ilen == 0)  return this;
 414         Class<?>[] nptypes = new Class<?>[len + ilen];
 415         if (num > 0) {
 416             System.arraycopy(ptypes, 0, nptypes, 0, num);
 417         }
 418         System.arraycopy(ptypesToInsert, 0, nptypes, num, ilen);
 419         if (num < len) {
 420             System.arraycopy(ptypes, num, nptypes, num+ilen, len-num);
 421         }
 422         return makeImpl(rtype, nptypes, true);
 423     }
 424 
 425     /**
 426      * Finds or creates a method type with additional parameter types.
 427      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 428      * @param ptypesToInsert zero or more new parameter types to insert after the end of the parameter list
 429      * @return the same type, except with the selected parameter(s) appended
 430      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
 431      *                                  or if the resulting method type would have more than 255 parameter slots
 432      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
 433      */
 434     public MethodType appendParameterTypes(Class<?>... ptypesToInsert) {
 435         return insertParameterTypes(parameterCount(), ptypesToInsert);
 436     }
 437 
 438     /**
 439      * Finds or creates a method type with additional parameter types.
 440      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 441      * @param num    the position (zero-based) of the inserted parameter type(s)
 442      * @param ptypesToInsert zero or more new parameter types to insert into the parameter list
 443      * @return the same type, except with the selected parameter(s) inserted
 444      * @throws IndexOutOfBoundsException if {@code num} is negative or greater than {@code parameterCount()}
 445      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
 446      *                                  or if the resulting method type would have more than 255 parameter slots
 447      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
 448      */
 449     public MethodType insertParameterTypes(int num, List<Class<?>> ptypesToInsert) {
 450         return insertParameterTypes(num, listToArray(ptypesToInsert));
 451     }
 452 
 453     /**
 454      * Finds or creates a method type with additional parameter types.
 455      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 456      * @param ptypesToInsert zero or more new parameter types to insert after the end of the parameter list
 457      * @return the same type, except with the selected parameter(s) appended
 458      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
 459      *                                  or if the resulting method type would have more than 255 parameter slots
 460      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
 461      */
 462     public MethodType appendParameterTypes(List<Class<?>> ptypesToInsert) {
 463         return insertParameterTypes(parameterCount(), ptypesToInsert);
 464     }
 465 
 466      /**
 467      * Finds or creates a method type with modified parameter types.
 468      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 469      * @param start  the position (zero-based) of the first replaced parameter type(s)
 470      * @param end    the position (zero-based) after the last replaced parameter type(s)
 471      * @param ptypesToInsert zero or more new parameter types to insert into the parameter list
 472      * @return the same type, except with the selected parameter(s) replaced
 473      * @throws IndexOutOfBoundsException if {@code start} is negative or greater than {@code parameterCount()}
 474      *                                  or if {@code end} is negative or greater than {@code parameterCount()}
 475      *                                  or if {@code start} is greater than {@code end}
 476      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
 477      *                                  or if the resulting method type would have more than 255 parameter slots
 478      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
 479      */
 480     /*non-public*/ MethodType replaceParameterTypes(int start, int end, Class<?>... ptypesToInsert) {
 481         if (start == end)
 482             return insertParameterTypes(start, ptypesToInsert);
 483         int len = ptypes.length;
 484         if (!(0 <= start && start <= end && end <= len))
 485             throw newIndexOutOfBoundsException("start="+start+" end="+end);
 486         int ilen = ptypesToInsert.length;
 487         if (ilen == 0)
 488             return dropParameterTypes(start, end);
 489         return dropParameterTypes(start, end).insertParameterTypes(start, ptypesToInsert);
 490     }
 491 
 492     /** Replace the last arrayLength parameter types with the component type of arrayType.
 493      * @param arrayType any array type
 494      * @param pos position at which to spread
 495      * @param arrayLength the number of parameter types to change
 496      * @return the resulting type
 497      */
 498     /*non-public*/ MethodType asSpreaderType(Class<?> arrayType, int pos, int arrayLength) {
 499         assert(parameterCount() >= arrayLength);
 500         int spreadPos = pos;
 501         if (arrayLength == 0)  return this;  // nothing to change
 502         if (arrayType == Object[].class) {
 503             if (isGeneric())  return this;  // nothing to change
 504             if (spreadPos == 0) {
 505                 // no leading arguments to preserve; go generic
 506                 MethodType res = genericMethodType(arrayLength);
 507                 if (rtype != Object.class) {
 508                     res = res.changeReturnType(rtype);
 509                 }
 510                 return res;
 511             }
 512         }
 513         Class<?> elemType = arrayType.getComponentType();
 514         assert(elemType != null);
 515         for (int i = spreadPos; i < spreadPos + arrayLength; i++) {
 516             if (ptypes[i] != elemType) {
 517                 Class<?>[] fixedPtypes = ptypes.clone();
 518                 Arrays.fill(fixedPtypes, i, spreadPos + arrayLength, elemType);
 519                 return methodType(rtype, fixedPtypes);
 520             }
 521         }
 522         return this;  // arguments check out; no change
 523     }
 524 
 525     /** Return the leading parameter type, which must exist and be a reference.
 526      *  @return the leading parameter type, after error checks
 527      */
 528     /*non-public*/ Class<?> leadingReferenceParameter() {
 529         Class<?> ptype;
 530         if (ptypes.length == 0 ||
 531             (ptype = ptypes[0]).isPrimitive())
 532             throw newIllegalArgumentException("no leading reference parameter");
 533         return ptype;
 534     }
 535 
 536     /** Delete the last parameter type and replace it with arrayLength copies of the component type of arrayType.
 537      * @param arrayType any array type
 538      * @param pos position at which to insert parameters
 539      * @param arrayLength the number of parameter types to insert
 540      * @return the resulting type
 541      */
 542     /*non-public*/ MethodType asCollectorType(Class<?> arrayType, int pos, int arrayLength) {
 543         assert(parameterCount() >= 1);
 544         assert(pos < ptypes.length);
 545         assert(ptypes[pos].isAssignableFrom(arrayType));
 546         MethodType res;
 547         if (arrayType == Object[].class) {
 548             res = genericMethodType(arrayLength);
 549             if (rtype != Object.class) {
 550                 res = res.changeReturnType(rtype);
 551             }
 552         } else {
 553             Class<?> elemType = arrayType.getComponentType();
 554             assert(elemType != null);
 555             res = methodType(rtype, Collections.nCopies(arrayLength, elemType));
 556         }
 557         if (ptypes.length == 1) {
 558             return res;
 559         } else {
 560             // insert after (if need be), then before
 561             if (pos < ptypes.length - 1) {
 562                 res = res.insertParameterTypes(arrayLength, Arrays.copyOfRange(ptypes, pos + 1, ptypes.length));
 563             }
 564             return res.insertParameterTypes(0, Arrays.copyOf(ptypes, pos));
 565         }
 566     }
 567 
 568     /**
 569      * Finds or creates a method type with some parameter types omitted.
 570      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 571      * @param start  the index (zero-based) of the first parameter type to remove
 572      * @param end    the index (greater than {@code start}) of the first parameter type after not to remove
 573      * @return the same type, except with the selected parameter(s) removed
 574      * @throws IndexOutOfBoundsException if {@code start} is negative or greater than {@code parameterCount()}
 575      *                                  or if {@code end} is negative or greater than {@code parameterCount()}
 576      *                                  or if {@code start} is greater than {@code end}
 577      */
 578     public MethodType dropParameterTypes(int start, int end) {
 579         int len = ptypes.length;
 580         if (!(0 <= start && start <= end && end <= len))
 581             throw newIndexOutOfBoundsException("start="+start+" end="+end);
 582         if (start == end)  return this;
 583         Class<?>[] nptypes;
 584         if (start == 0) {
 585             if (end == len) {
 586                 // drop all parameters
 587                 nptypes = NO_PTYPES;
 588             } else {
 589                 // drop initial parameter(s)
 590                 nptypes = Arrays.copyOfRange(ptypes, end, len);
 591             }
 592         } else {
 593             if (end == len) {
 594                 // drop trailing parameter(s)
 595                 nptypes = Arrays.copyOfRange(ptypes, 0, start);
 596             } else {
 597                 int tail = len - end;
 598                 nptypes = Arrays.copyOfRange(ptypes, 0, start + tail);
 599                 System.arraycopy(ptypes, end, nptypes, start, tail);
 600             }
 601         }
 602         return makeImpl(rtype, nptypes, true);
 603     }
 604 
 605     /**
 606      * Finds or creates a method type with a different return type.
 607      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 608      * @param nrtype a return parameter type to replace the old one with
 609      * @return the same type, except with the return type change
 610      * @throws NullPointerException if {@code nrtype} is null
 611      */
 612     public MethodType changeReturnType(Class<?> nrtype) {
 613         if (returnType() == nrtype)  return this;
 614         return makeImpl(nrtype, ptypes, true);
 615     }
 616 
 617     /**
 618      * Reports if this type contains a primitive argument or return value.
 619      * The return type {@code void} counts as a primitive.
 620      * @return true if any of the types are primitives
 621      */
 622     public boolean hasPrimitives() {
 623         return form.hasPrimitives();
 624     }
 625 
 626     /**
 627      * Reports if this type contains a wrapper argument or return value.
 628      * Wrappers are types which box primitive values, such as {@link Integer}.
 629      * The reference type {@code java.lang.Void} counts as a wrapper,
 630      * if it occurs as a return type.
 631      * @return true if any of the types are wrappers
 632      */
 633     public boolean hasWrappers() {
 634         return unwrap() != this;
 635     }
 636 
 637     /**
 638      * Erases all reference types to {@code Object}.
 639      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 640      * All primitive types (including {@code void}) will remain unchanged.
 641      * @return a version of the original type with all reference types replaced
 642      */
 643     public MethodType erase() {
 644         return form.erasedType();
 645     }
 646 
 647     /**
 648      * Erases all reference types to {@code Object}, and all subword types to {@code int}.
 649      * This is the reduced type polymorphism used by private methods
 650      * such as {@link MethodHandle#invokeBasic invokeBasic}.
 651      * @return a version of the original type with all reference and subword types replaced
 652      */
 653     /*non-public*/ MethodType basicType() {
 654         return form.basicType();
 655     }
 656 
 657     private static final @Stable Class<?>[] METHOD_HANDLE_ARRAY
 658             = new Class<?>[] { MethodHandle.class };
 659 
 660     /**
 661      * @return a version of the original type with MethodHandle prepended as the first argument
 662      */
 663     /*non-public*/ MethodType invokerType() {
 664         return insertParameterTypes(0, METHOD_HANDLE_ARRAY);
 665     }
 666 
 667     /**
 668      * Converts all types, both reference and primitive, to {@code Object}.
 669      * Convenience method for {@link #genericMethodType(int) genericMethodType}.
 670      * The expression {@code type.wrap().erase()} produces the same value
 671      * as {@code type.generic()}.
 672      * @return a version of the original type with all types replaced
 673      */
 674     public MethodType generic() {
 675         return genericMethodType(parameterCount());
 676     }
 677 
 678     /*non-public*/ boolean isGeneric() {
 679         return this == erase() && !hasPrimitives();
 680     }
 681 
 682     /**
 683      * Converts all primitive types to their corresponding wrapper types.
 684      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 685      * All reference types (including wrapper types) will remain unchanged.
 686      * A {@code void} return type is changed to the type {@code java.lang.Void}.
 687      * The expression {@code type.wrap().erase()} produces the same value
 688      * as {@code type.generic()}.
 689      * @return a version of the original type with all primitive types replaced
 690      */
 691     public MethodType wrap() {
 692         return hasPrimitives() ? wrapWithPrims(this) : this;
 693     }
 694 
 695     /**
 696      * Converts all wrapper types to their corresponding primitive types.
 697      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 698      * All primitive types (including {@code void}) will remain unchanged.
 699      * A return type of {@code java.lang.Void} is changed to {@code void}.
 700      * @return a version of the original type with all wrapper types replaced
 701      */
 702     public MethodType unwrap() {
 703         MethodType noprims = !hasPrimitives() ? this : wrapWithPrims(this);
 704         return unwrapWithNoPrims(noprims);
 705     }
 706 
 707     private static MethodType wrapWithPrims(MethodType pt) {
 708         assert(pt.hasPrimitives());
 709         MethodType wt = pt.wrapAlt;
 710         if (wt == null) {
 711             // fill in lazily
 712             wt = MethodTypeForm.canonicalize(pt, MethodTypeForm.WRAP, MethodTypeForm.WRAP);
 713             assert(wt != null);
 714             pt.wrapAlt = wt;
 715         }
 716         return wt;
 717     }
 718 
 719     private static MethodType unwrapWithNoPrims(MethodType wt) {
 720         assert(!wt.hasPrimitives());
 721         MethodType uwt = wt.wrapAlt;
 722         if (uwt == null) {
 723             // fill in lazily
 724             uwt = MethodTypeForm.canonicalize(wt, MethodTypeForm.UNWRAP, MethodTypeForm.UNWRAP);
 725             if (uwt == null)
 726                 uwt = wt;    // type has no wrappers or prims at all
 727             wt.wrapAlt = uwt;
 728         }
 729         return uwt;
 730     }
 731 
 732     /**
 733      * Returns the parameter type at the specified index, within this method type.
 734      * @param num the index (zero-based) of the desired parameter type
 735      * @return the selected parameter type
 736      * @throws IndexOutOfBoundsException if {@code num} is not a valid index into {@code parameterArray()}
 737      */
 738     public Class<?> parameterType(int num) {
 739         return ptypes[num];
 740     }
 741     /**
 742      * Returns the number of parameter types in this method type.
 743      * @return the number of parameter types
 744      */
 745     public int parameterCount() {
 746         return ptypes.length;
 747     }
 748     /**
 749      * Returns the return type of this method type.
 750      * @return the return type
 751      */
 752     public Class<?> returnType() {
 753         return rtype;
 754     }
 755 
 756     /**
 757      * Presents the parameter types as a list (a convenience method).
 758      * The list will be immutable.
 759      * @return the parameter types (as an immutable list)
 760      */
 761     public List<Class<?>> parameterList() {
 762         return Collections.unmodifiableList(Arrays.asList(ptypes.clone()));
 763     }
 764 
 765     /**
 766      * Returns the last parameter type of this method type.
 767      * If this type has no parameters, the sentinel value
 768      * {@code void.class} is returned instead.
 769      * @apiNote
 770      * <p>
 771      * The sentinel value is chosen so that reflective queries can be
 772      * made directly against the result value.
 773      * The sentinel value cannot be confused with a real parameter,
 774      * since {@code void} is never acceptable as a parameter type.
 775      * For variable arity invocation modes, the expression
 776      * {@link Class#getComponentType lastParameterType().getComponentType()}
 777      * is useful to query the type of the "varargs" parameter.
 778      * @return the last parameter type if any, else {@code void.class}
 779      * @since 10
 780      */
 781     public Class<?> lastParameterType() {
 782         int len = ptypes.length;
 783         return len == 0 ? void.class : ptypes[len-1];
 784     }
 785 
 786     /**
 787      * Presents the parameter types as an array (a convenience method).
 788      * Changes to the array will not result in changes to the type.
 789      * @return the parameter types (as a fresh copy if necessary)
 790      */
 791     public Class<?>[] parameterArray() {
 792         return ptypes.clone();
 793     }
 794 
 795     /**
 796      * Compares the specified object with this type for equality.
 797      * That is, it returns {@code true} if and only if the specified object
 798      * is also a method type with exactly the same parameters and return type.
 799      * @param x object to compare
 800      * @see Object#equals(Object)
 801      */
 802     // This implementation may also return true if x is a WeakEntry containing
 803     // a method type that is equal to this. This is an internal implementation
 804     // detail to allow for faster method type lookups.
 805     // See ConcurrentWeakInternSet.WeakEntry#equals(Object)
 806     @Override
 807     public boolean equals(Object x) {
 808         if (this == x) {
 809             return true;
 810         }
 811         if (x instanceof MethodType) {
 812             return equals((MethodType)x);
 813         }
 814         if (x instanceof ConcurrentWeakInternSet.WeakEntry) {
 815             Object o = ((ConcurrentWeakInternSet.WeakEntry)x).get();
 816             if (o instanceof MethodType) {
 817                 return equals((MethodType)o);
 818             }
 819         }
 820         return false;
 821     }
 822 
 823     private boolean equals(MethodType that) {
 824         return this.rtype == that.rtype
 825             && Arrays.equals(this.ptypes, that.ptypes);
 826     }
 827 
 828     /**
 829      * Returns the hash code value for this method type.
 830      * It is defined to be the same as the hashcode of a List
 831      * whose elements are the return type followed by the
 832      * parameter types.
 833      * @return the hash code value for this method type
 834      * @see Object#hashCode()
 835      * @see #equals(Object)
 836      * @see List#hashCode()
 837      */
 838     @Override
 839     public int hashCode() {
 840         int hashCode = 31 + rtype.hashCode();
 841         for (Class<?> ptype : ptypes)
 842             hashCode = 31 * hashCode + ptype.hashCode();
 843         return hashCode;
 844     }
 845 
 846     /**
 847      * Returns a string representation of the method type,
 848      * of the form {@code "(PT0,PT1...)RT"}.
 849      * The string representation of a method type is a
 850      * parenthesis enclosed, comma separated list of type names,
 851      * followed immediately by the return type.
 852      * <p>
 853      * Each type is represented by its
 854      * {@link java.lang.Class#getSimpleName simple name}.
 855      */
 856     @Override
 857     public String toString() {
 858         StringJoiner sj = new StringJoiner(",", "(",
 859                 ")" + rtype.getSimpleName());
 860         for (int i = 0; i < ptypes.length; i++) {
 861             sj.add(ptypes[i].getSimpleName());
 862         }
 863         return sj.toString();
 864     }
 865 
 866     /** True if my parameter list is effectively identical to the given full list,
 867      *  after skipping the given number of my own initial parameters.
 868      *  In other words, after disregarding {@code skipPos} parameters,
 869      *  my remaining parameter list is no longer than the {@code fullList}, and
 870      *  is equal to the same-length initial sublist of {@code fullList}.
 871      */
 872     /*non-public*/
 873     boolean effectivelyIdenticalParameters(int skipPos, List<Class<?>> fullList) {
 874         int myLen = ptypes.length, fullLen = fullList.size();
 875         if (skipPos > myLen || myLen - skipPos > fullLen)
 876             return false;
 877         List<Class<?>> myList = Arrays.asList(ptypes);
 878         if (skipPos != 0) {
 879             myList = myList.subList(skipPos, myLen);
 880             myLen -= skipPos;
 881         }
 882         if (fullLen == myLen)
 883             return myList.equals(fullList);
 884         else
 885             return myList.equals(fullList.subList(0, myLen));
 886     }
 887 
 888     /** True if the old return type can always be viewed (w/o casting) under new return type,
 889      *  and the new parameters can be viewed (w/o casting) under the old parameter types.
 890      */
 891     /*non-public*/
 892     boolean isViewableAs(MethodType newType, boolean keepInterfaces) {
 893         if (!VerifyType.isNullConversion(returnType(), newType.returnType(), keepInterfaces))
 894             return false;
 895         if (form == newType.form && form.erasedType == this)
 896             return true;  // my reference parameters are all Object
 897         if (ptypes == newType.ptypes)
 898             return true;
 899         int argc = parameterCount();
 900         if (argc != newType.parameterCount())
 901             return false;
 902         for (int i = 0; i < argc; i++) {
 903             if (!VerifyType.isNullConversion(newType.parameterType(i), parameterType(i), keepInterfaces))
 904                 return false;
 905         }
 906         return true;
 907     }
 908     /*non-public*/
 909     boolean isConvertibleTo(MethodType newType) {
 910         MethodTypeForm oldForm = this.form();
 911         MethodTypeForm newForm = newType.form();
 912         if (oldForm == newForm)
 913             // same parameter count, same primitive/object mix
 914             return true;
 915         if (!canConvert(returnType(), newType.returnType()))
 916             return false;
 917         Class<?>[] srcTypes = newType.ptypes;
 918         Class<?>[] dstTypes = ptypes;
 919         if (srcTypes == dstTypes)
 920             return true;
 921         int argc;
 922         if ((argc = srcTypes.length) != dstTypes.length)
 923             return false;
 924         if (argc <= 1) {
 925             if (argc == 1 && !canConvert(srcTypes[0], dstTypes[0]))
 926                 return false;
 927             return true;
 928         }
 929         if ((oldForm.primitiveParameterCount() == 0 && oldForm.erasedType == this) ||
 930             (newForm.primitiveParameterCount() == 0 && newForm.erasedType == newType)) {
 931             // Somewhat complicated test to avoid a loop of 2 or more trips.
 932             // If either type has only Object parameters, we know we can convert.
 933             assert(canConvertParameters(srcTypes, dstTypes));
 934             return true;
 935         }
 936         return canConvertParameters(srcTypes, dstTypes);
 937     }
 938 
 939     /** Returns true if MHs.explicitCastArguments produces the same result as MH.asType.
 940      *  If the type conversion is impossible for either, the result should be false.
 941      */
 942     /*non-public*/
 943     boolean explicitCastEquivalentToAsType(MethodType newType) {
 944         if (this == newType)  return true;
 945         if (!explicitCastEquivalentToAsType(rtype, newType.rtype)) {
 946             return false;
 947         }
 948         Class<?>[] srcTypes = newType.ptypes;
 949         Class<?>[] dstTypes = ptypes;
 950         if (dstTypes == srcTypes) {
 951             return true;
 952         }
 953         assert(dstTypes.length == srcTypes.length);
 954         for (int i = 0; i < dstTypes.length; i++) {
 955             if (!explicitCastEquivalentToAsType(srcTypes[i], dstTypes[i])) {
 956                 return false;
 957             }
 958         }
 959         return true;
 960     }
 961 
 962     /** Reports true if the src can be converted to the dst, by both asType and MHs.eCE,
 963      *  and with the same effect.
 964      *  MHs.eCA has the following "upgrades" to MH.asType:
 965      *  1. interfaces are unchecked (that is, treated as if aliased to Object)
 966      *     Therefore, {@code Object->CharSequence} is possible in both cases but has different semantics
 967      *  2. the full matrix of primitive-to-primitive conversions is supported
 968      *     Narrowing like {@code long->byte} and basic-typing like {@code boolean->int}
 969      *     are not supported by asType, but anything supported by asType is equivalent
 970      *     with MHs.eCE.
 971      *  3a. unboxing conversions can be followed by the full matrix of primitive conversions
 972      *  3b. unboxing of null is permitted (creates a zero primitive value)
 973      * Other than interfaces, reference-to-reference conversions are the same.
 974      * Boxing primitives to references is the same for both operators.
 975      */
 976     private static boolean explicitCastEquivalentToAsType(Class<?> src, Class<?> dst) {
 977         if (src == dst || dst == Object.class || dst == void.class)  return true;
 978         if (src.isPrimitive()) {
 979             // Could be a prim/prim conversion, where casting is a strict superset.
 980             // Or a boxing conversion, which is always to an exact wrapper class.
 981             return canConvert(src, dst);
 982         } else if (dst.isPrimitive()) {
 983             // Unboxing behavior is different between MHs.eCA & MH.asType (see 3b).
 984             return false;
 985         } else {
 986             // R->R always works, but we have to avoid a check-cast to an interface.
 987             return !dst.isInterface() || dst.isAssignableFrom(src);
 988         }
 989     }
 990 
 991     private boolean canConvertParameters(Class<?>[] srcTypes, Class<?>[] dstTypes) {
 992         for (int i = 0; i < srcTypes.length; i++) {
 993             if (!canConvert(srcTypes[i], dstTypes[i])) {
 994                 return false;
 995             }
 996         }
 997         return true;
 998     }
 999 
1000     /*non-public*/
1001     static boolean canConvert(Class<?> src, Class<?> dst) {
1002         // short-circuit a few cases:
1003         if (src == dst || src == Object.class || dst == Object.class)  return true;
1004         // the remainder of this logic is documented in MethodHandle.asType
1005         if (src.isPrimitive()) {
1006             // can force void to an explicit null, a la reflect.Method.invoke
1007             // can also force void to a primitive zero, by analogy
1008             if (src == void.class)  return true;  //or !dst.isPrimitive()?
1009             Wrapper sw = Wrapper.forPrimitiveType(src);
1010             if (dst.isPrimitive()) {
1011                 // P->P must widen
1012                 return Wrapper.forPrimitiveType(dst).isConvertibleFrom(sw);
1013             } else {
1014                 // P->R must box and widen
1015                 return dst.isAssignableFrom(sw.wrapperType());
1016             }
1017         } else if (dst.isPrimitive()) {
1018             // any value can be dropped
1019             if (dst == void.class)  return true;
1020             Wrapper dw = Wrapper.forPrimitiveType(dst);
1021             // R->P must be able to unbox (from a dynamically chosen type) and widen
1022             // For example:
1023             //   Byte/Number/Comparable/Object -> dw:Byte -> byte.
1024             //   Character/Comparable/Object -> dw:Character -> char
1025             //   Boolean/Comparable/Object -> dw:Boolean -> boolean
1026             // This means that dw must be cast-compatible with src.
1027             if (src.isAssignableFrom(dw.wrapperType())) {
1028                 return true;
1029             }
1030             // The above does not work if the source reference is strongly typed
1031             // to a wrapper whose primitive must be widened.  For example:
1032             //   Byte -> unbox:byte -> short/int/long/float/double
1033             //   Character -> unbox:char -> int/long/float/double
1034             if (Wrapper.isWrapperType(src) &&
1035                 dw.isConvertibleFrom(Wrapper.forWrapperType(src))) {
1036                 // can unbox from src and then widen to dst
1037                 return true;
1038             }
1039             // We have already covered cases which arise due to runtime unboxing
1040             // of a reference type which covers several wrapper types:
1041             //   Object -> cast:Integer -> unbox:int -> long/float/double
1042             //   Serializable -> cast:Byte -> unbox:byte -> byte/short/int/long/float/double
1043             // An marginal case is Number -> dw:Character -> char, which would be OK if there were a
1044             // subclass of Number which wraps a value that can convert to char.
1045             // Since there is none, we don't need an extra check here to cover char or boolean.
1046             return false;
1047         } else {
1048             // R->R always works, since null is always valid dynamically
1049             return true;
1050         }
1051     }
1052 
1053     /// Queries which have to do with the bytecode architecture
1054 
1055     /** Reports the number of JVM stack slots required to invoke a method
1056      * of this type.  Note that (for historical reasons) the JVM requires
1057      * a second stack slot to pass long and double arguments.
1058      * So this method returns {@link #parameterCount() parameterCount} plus the
1059      * number of long and double parameters (if any).
1060      * <p>
1061      * This method is included for the benefit of applications that must
1062      * generate bytecodes that process method handles and invokedynamic.
1063      * @return the number of JVM stack slots for this type's parameters
1064      */
1065     /*non-public*/ int parameterSlotCount() {
1066         return form.parameterSlotCount();
1067     }
1068 
1069     /*non-public*/ Invokers invokers() {
1070         Invokers inv = invokers;
1071         if (inv != null)  return inv;
1072         invokers = inv = new Invokers(this);
1073         return inv;
1074     }
1075 
1076     /** Reports the number of JVM stack slots which carry all parameters including and after
1077      * the given position, which must be in the range of 0 to
1078      * {@code parameterCount} inclusive.  Successive parameters are
1079      * more shallowly stacked, and parameters are indexed in the bytecodes
1080      * according to their trailing edge.  Thus, to obtain the depth
1081      * in the outgoing call stack of parameter {@code N}, obtain
1082      * the {@code parameterSlotDepth} of its trailing edge
1083      * at position {@code N+1}.
1084      * <p>
1085      * Parameters of type {@code long} and {@code double} occupy
1086      * two stack slots (for historical reasons) and all others occupy one.
1087      * Therefore, the number returned is the number of arguments
1088      * <em>including</em> and <em>after</em> the given parameter,
1089      * <em>plus</em> the number of long or double arguments
1090      * at or after the argument for the given parameter.
1091      * <p>
1092      * This method is included for the benefit of applications that must
1093      * generate bytecodes that process method handles and invokedynamic.
1094      * @param num an index (zero-based, inclusive) within the parameter types
1095      * @return the index of the (shallowest) JVM stack slot transmitting the
1096      *         given parameter
1097      * @throws IllegalArgumentException if {@code num} is negative or greater than {@code parameterCount()}
1098      */
1099     /*non-public*/ int parameterSlotDepth(int num) {
1100         if (num < 0 || num > ptypes.length)
1101             parameterType(num);  // force a range check
1102         return form.parameterToArgSlot(num-1);
1103     }
1104 
1105     /** Reports the number of JVM stack slots required to receive a return value
1106      * from a method of this type.
1107      * If the {@link #returnType() return type} is void, it will be zero,
1108      * else if the return type is long or double, it will be two, else one.
1109      * <p>
1110      * This method is included for the benefit of applications that must
1111      * generate bytecodes that process method handles and invokedynamic.
1112      * @return the number of JVM stack slots (0, 1, or 2) for this type's return value
1113      * Will be removed for PFD.
1114      */
1115     /*non-public*/ int returnSlotCount() {
1116         return form.returnSlotCount();
1117     }
1118 
1119     /**
1120      * Finds or creates an instance of a method type, given the spelling of its bytecode descriptor.
1121      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
1122      * Any class or interface name embedded in the descriptor string
1123      * will be resolved by calling {@link ClassLoader#loadClass(java.lang.String)}
1124      * on the given loader (or if it is null, on the system class loader).
1125      * <p>
1126      * Note that it is possible to encounter method types which cannot be
1127      * constructed by this method, because their component types are
1128      * not all reachable from a common class loader.
1129      * <p>
1130      * This method is included for the benefit of applications that must
1131      * generate bytecodes that process method handles and {@code invokedynamic}.
1132      * @param descriptor a bytecode-level type descriptor string "(T...)T"
1133      * @param loader the class loader in which to look up the types
1134      * @return a method type matching the bytecode-level type descriptor
1135      * @throws NullPointerException if the string is null
1136      * @throws IllegalArgumentException if the string is not well-formed
1137      * @throws TypeNotPresentException if a named type cannot be found
1138      */
1139     public static MethodType fromMethodDescriptorString(String descriptor, ClassLoader loader)
1140         throws IllegalArgumentException, TypeNotPresentException
1141     {
1142         return fromDescriptor(descriptor,
1143                               (loader == null) ? ClassLoader.getSystemClassLoader() : loader);
1144     }
1145 
1146     /**
1147      * Same as {@link #fromMethodDescriptorString(String, ClassLoader)}, but
1148      * {@code null} ClassLoader means the bootstrap loader is used here.
1149      * <p>
1150      * IMPORTANT: This method is preferable for JDK internal use as it more
1151      * correctly interprets {@code null} ClassLoader than
1152      * {@link #fromMethodDescriptorString(String, ClassLoader)}.
1153      * Use of this method also avoids early initialization issues when system
1154      * ClassLoader is not initialized yet.
1155      */
1156     static MethodType fromDescriptor(String descriptor, ClassLoader loader)
1157         throws IllegalArgumentException, TypeNotPresentException
1158     {
1159         if (!descriptor.startsWith("(") ||  // also generates NPE if needed
1160             descriptor.indexOf(')') < 0 ||
1161             descriptor.indexOf('.') >= 0)
1162             throw newIllegalArgumentException("not a method descriptor: "+descriptor);
1163         List<Class<?>> types = BytecodeDescriptor.parseMethod(descriptor, loader);
1164         Class<?> rtype = types.remove(types.size() - 1);
1165         Class<?>[] ptypes = listToArray(types);
1166         return makeImpl(rtype, ptypes, true);
1167     }
1168 
1169     /**
1170      * Produces a bytecode descriptor representation of the method type.
1171      * <p>
1172      * Note that this is not a strict inverse of {@link #fromMethodDescriptorString fromMethodDescriptorString}.
1173      * Two distinct classes which share a common name but have different class loaders
1174      * will appear identical when viewed within descriptor strings.
1175      * <p>
1176      * This method is included for the benefit of applications that must
1177      * generate bytecodes that process method handles and {@code invokedynamic}.
1178      * {@link #fromMethodDescriptorString(java.lang.String, java.lang.ClassLoader) fromMethodDescriptorString},
1179      * because the latter requires a suitable class loader argument.
1180      * @return the bytecode type descriptor representation
1181      */
1182     public String toMethodDescriptorString() {
1183         String desc = methodDescriptor;
1184         if (desc == null) {
1185             desc = BytecodeDescriptor.unparseMethod(this.rtype, this.ptypes);
1186             methodDescriptor = desc;
1187         }
1188         return desc;
1189     }
1190 
1191     /**
1192      * Return a field type descriptor string for this type
1193      *
1194      * @return the descriptor string
1195      * @jvms 4.3.2 Field Descriptors
1196      * @since 12
1197      */
1198     @Override
1199     public String descriptorString() {
1200         return toMethodDescriptorString();
1201     }
1202 
1203     /*non-public*/ static String toFieldDescriptorString(Class<?> cls) {
1204         return BytecodeDescriptor.unparse(cls);
1205     }
1206 
1207     /**
1208      * Return a nominal descriptor for this instance, if one can be
1209      * constructed, or an empty {@link Optional} if one cannot be.
1210      *
1211      * @return An {@link Optional} containing the resulting nominal descriptor,
1212      * or an empty {@link Optional} if one cannot be constructed.
1213      * @since 12
1214      */
1215     @Override
1216     public Optional<MethodTypeDesc> describeConstable() {
1217         try {
1218             return Optional.of(MethodTypeDesc.of(returnType().describeConstable().orElseThrow(),
1219                                                  Stream.of(parameterArray())
1220                                                       .map(p -> p.describeConstable().orElseThrow())
1221                                                       .toArray(ClassDesc[]::new)));
1222         }
1223         catch (NoSuchElementException e) {
1224             return Optional.empty();
1225         }
1226     }
1227 
1228     /// Serialization.
1229 
1230     /**
1231      * There are no serializable fields for {@code MethodType}.
1232      */
1233     @java.io.Serial
1234     private static final java.io.ObjectStreamField[] serialPersistentFields = { };
1235 
1236     /**
1237      * Save the {@code MethodType} instance to a stream.
1238      *
1239      * @serialData
1240      * For portability, the serialized format does not refer to named fields.
1241      * Instead, the return type and parameter type arrays are written directly
1242      * from the {@code writeObject} method, using two calls to {@code s.writeObject}
1243      * as follows:
1244      * <blockquote><pre>{@code
1245 s.writeObject(this.returnType());
1246 s.writeObject(this.parameterArray());
1247      * }</pre></blockquote>
1248      * <p>
1249      * The deserialized field values are checked as if they were
1250      * provided to the factory method {@link #methodType(Class,Class[]) methodType}.
1251      * For example, null values, or {@code void} parameter types,
1252      * will lead to exceptions during deserialization.
1253      * @param s the stream to write the object to
1254      * @throws java.io.IOException if there is a problem writing the object
1255      */
1256     @java.io.Serial
1257     private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
1258         s.defaultWriteObject();  // requires serialPersistentFields to be an empty array
1259         s.writeObject(returnType());
1260         s.writeObject(parameterArray());
1261     }
1262 
1263     /**
1264      * Reconstitute the {@code MethodType} instance from a stream (that is,
1265      * deserialize it).
1266      * This instance is a scratch object with bogus final fields.
1267      * It provides the parameters to the factory method called by
1268      * {@link #readResolve readResolve}.
1269      * After that call it is discarded.
1270      * @param s the stream to read the object from
1271      * @throws java.io.IOException if there is a problem reading the object
1272      * @throws ClassNotFoundException if one of the component classes cannot be resolved
1273      * @see #readResolve
1274      * @see #writeObject
1275      */
1276     @java.io.Serial
1277     private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
1278         // Assign temporary defaults in case this object escapes
1279         MethodType_init(void.class, NO_PTYPES);
1280 
1281         s.defaultReadObject();  // requires serialPersistentFields to be an empty array
1282 
1283         Class<?>   returnType     = (Class<?>)   s.readObject();
1284         Class<?>[] parameterArray = (Class<?>[]) s.readObject();
1285         parameterArray = parameterArray.clone();  // make sure it is unshared
1286 
1287         // Assign deserialized values
1288         MethodType_init(returnType, parameterArray);
1289     }
1290 
1291     // Initialization of state for deserialization only
1292     private void MethodType_init(Class<?> rtype, Class<?>[] ptypes) {
1293         // In order to communicate these values to readResolve, we must
1294         // store them into the implementation-specific final fields.
1295         checkRtype(rtype);
1296         checkPtypes(ptypes);
1297         UNSAFE.putReference(this, OffsetHolder.rtypeOffset, rtype);
1298         UNSAFE.putReference(this, OffsetHolder.ptypesOffset, ptypes);
1299     }
1300 
1301     // Support for resetting final fields while deserializing. Implement Holder
1302     // pattern to make the rarely needed offset calculation lazy.
1303     private static class OffsetHolder {
1304         static final long rtypeOffset
1305                 = UNSAFE.objectFieldOffset(MethodType.class, "rtype");
1306 
1307         static final long ptypesOffset
1308                 = UNSAFE.objectFieldOffset(MethodType.class, "ptypes");
1309     }
1310 
1311     /**
1312      * Resolves and initializes a {@code MethodType} object
1313      * after serialization.
1314      * @return the fully initialized {@code MethodType} object
1315      */
1316     @java.io.Serial
1317     private Object readResolve() {
1318         // Do not use a trusted path for deserialization:
1319         //    return makeImpl(rtype, ptypes, true);
1320         // Verify all operands, and make sure ptypes is unshared:
1321         try {
1322             return methodType(rtype, ptypes);
1323         } finally {
1324             // Re-assign defaults in case this object escapes
1325             MethodType_init(void.class, NO_PTYPES);
1326         }
1327     }
1328 
1329     /**
1330      * Simple implementation of weak concurrent intern set.
1331      *
1332      * @param <T> interned type
1333      */
1334     private static class ConcurrentWeakInternSet<T> {
1335 
1336         private final ConcurrentMap<WeakEntry<T>, WeakEntry<T>> map;
1337         private final ReferenceQueue<T> stale;
1338 
1339         public ConcurrentWeakInternSet() {
1340             this.map = new ConcurrentHashMap<>(512);
1341             this.stale = new ReferenceQueue<>();
1342         }
1343 
1344         /**
1345          * Get the existing interned element.
1346          * This method returns null if no element is interned.
1347          *
1348          * @param elem element to look up
1349          * @return the interned element
1350          */
1351         public T get(T elem) {
1352             if (elem == null) throw new NullPointerException();
1353             expungeStaleElements();
1354 
1355             WeakEntry<T> value = map.get(elem);
1356             if (value != null) {
1357                 T res = value.get();
1358                 if (res != null) {
1359                     return res;
1360                 }
1361             }
1362             return null;
1363         }
1364 
1365         /**
1366          * Interns the element.
1367          * Always returns non-null element, matching the one in the intern set.
1368          * Under the race against another add(), it can return <i>different</i>
1369          * element, if another thread beats us to interning it.
1370          *
1371          * @param elem element to add
1372          * @return element that was actually added
1373          */
1374         public T add(T elem) {
1375             if (elem == null) throw new NullPointerException();
1376 
1377             // Playing double race here, and so spinloop is required.
1378             // First race is with two concurrent updaters.
1379             // Second race is with GC purging weak ref under our feet.
1380             // Hopefully, we almost always end up with a single pass.
1381             T interned;
1382             WeakEntry<T> e = new WeakEntry<>(elem, stale);
1383             do {
1384                 expungeStaleElements();
1385                 WeakEntry<T> exist = map.putIfAbsent(e, e);
1386                 interned = (exist == null) ? elem : exist.get();
1387             } while (interned == null);
1388             return interned;
1389         }
1390 
1391         private void expungeStaleElements() {
1392             Reference<? extends T> reference;
1393             while ((reference = stale.poll()) != null) {
1394                 map.remove(reference);
1395             }
1396         }
1397 
1398         private static class WeakEntry<T> extends WeakReference<T> {
1399 
1400             public final int hashcode;
1401 
1402             public WeakEntry(T key, ReferenceQueue<T> queue) {
1403                 super(key, queue);
1404                 hashcode = key.hashCode();
1405             }
1406 
1407             /**
1408              * This implementation returns {@code true} if {@code obj} is another
1409              * {@code WeakEntry} whose referent is equals to this referent, or
1410              * if {@code obj} is equals to the referent of this. This allows
1411              * lookups to be made without wrapping in a {@code WeakEntry}.
1412              *
1413              * @param obj the object to compare
1414              * @return true if {@code obj} is equals to this or the referent of this
1415              * @see MethodType#equals(Object)
1416              * @see Object#equals(Object)
1417              */
1418             @Override
1419             public boolean equals(Object obj) {
1420                 Object mine = get();
1421                 if (obj instanceof WeakEntry) {
1422                     Object that = ((WeakEntry) obj).get();
1423                     return (that == null || mine == null) ? (this == obj) : mine.equals(that);
1424                 }
1425                 return (mine == null) ? (obj == null) : mine.equals(obj);
1426             }
1427 
1428             @Override
1429             public int hashCode() {
1430                 return hashcode;
1431             }
1432 
1433         }
1434     }
1435 
1436 }