1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.util.function.Consumer;
  29 import java.util.function.Predicate;
  30 import java.util.function.UnaryOperator;
  31 import jdk.internal.access.SharedSecrets;
  32 import jdk.internal.util.ArraysSupport;
  33 
  34 /**
  35  * Resizable-array implementation of the {@code List} interface.  Implements
  36  * all optional list operations, and permits all elements, including
  37  * {@code null}.  In addition to implementing the {@code List} interface,
  38  * this class provides methods to manipulate the size of the array that is
  39  * used internally to store the list.  (This class is roughly equivalent to
  40  * {@code Vector}, except that it is unsynchronized.)
  41  *
  42  * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
  43  * {@code iterator}, and {@code listIterator} operations run in constant
  44  * time.  The {@code add} operation runs in <i>amortized constant time</i>,
  45  * that is, adding n elements requires O(n) time.  All of the other operations
  46  * run in linear time (roughly speaking).  The constant factor is low compared
  47  * to that for the {@code LinkedList} implementation.
  48  *
  49  * <p>Each {@code ArrayList} instance has a <i>capacity</i>.  The capacity is
  50  * the size of the array used to store the elements in the list.  It is always
  51  * at least as large as the list size.  As elements are added to an ArrayList,
  52  * its capacity grows automatically.  The details of the growth policy are not
  53  * specified beyond the fact that adding an element has constant amortized
  54  * time cost.
  55  *
  56  * <p>An application can increase the capacity of an {@code ArrayList} instance
  57  * before adding a large number of elements using the {@code ensureCapacity}
  58  * operation.  This may reduce the amount of incremental reallocation.
  59  *
  60  * <p><strong>Note that this implementation is not synchronized.</strong>
  61  * If multiple threads access an {@code ArrayList} instance concurrently,
  62  * and at least one of the threads modifies the list structurally, it
  63  * <i>must</i> be synchronized externally.  (A structural modification is
  64  * any operation that adds or deletes one or more elements, or explicitly
  65  * resizes the backing array; merely setting the value of an element is not
  66  * a structural modification.)  This is typically accomplished by
  67  * synchronizing on some object that naturally encapsulates the list.
  68  *
  69  * If no such object exists, the list should be "wrapped" using the
  70  * {@link Collections#synchronizedList Collections.synchronizedList}
  71  * method.  This is best done at creation time, to prevent accidental
  72  * unsynchronized access to the list:<pre>
  73  *   List list = Collections.synchronizedList(new ArrayList(...));</pre>
  74  *
  75  * <p id="fail-fast">
  76  * The iterators returned by this class's {@link #iterator() iterator} and
  77  * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
  78  * if the list is structurally modified at any time after the iterator is
  79  * created, in any way except through the iterator's own
  80  * {@link ListIterator#remove() remove} or
  81  * {@link ListIterator#add(Object) add} methods, the iterator will throw a
  82  * {@link ConcurrentModificationException}.  Thus, in the face of
  83  * concurrent modification, the iterator fails quickly and cleanly, rather
  84  * than risking arbitrary, non-deterministic behavior at an undetermined
  85  * time in the future.
  86  *
  87  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
  88  * as it is, generally speaking, impossible to make any hard guarantees in the
  89  * presence of unsynchronized concurrent modification.  Fail-fast iterators
  90  * throw {@code ConcurrentModificationException} on a best-effort basis.
  91  * Therefore, it would be wrong to write a program that depended on this
  92  * exception for its correctness:  <i>the fail-fast behavior of iterators
  93  * should be used only to detect bugs.</i>
  94  *
  95  * <p>This class is a member of the
  96  * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
  97  * Java Collections Framework</a>.
  98  *
  99  * @param <E> the type of elements in this list
 100  *
 101  * @author  Josh Bloch
 102  * @author  Neal Gafter
 103  * @see     Collection
 104  * @see     List
 105  * @see     LinkedList
 106  * @see     Vector
 107  * @since   1.2
 108  */
 109 public class ArrayList<E> extends AbstractList<E>
 110         implements List<E>, RandomAccess, Cloneable, java.io.Serializable
 111 {
 112     private static final long serialVersionUID = 8683452581122892189L;
 113 
 114     /**
 115      * Default initial capacity.
 116      */
 117     private static final int DEFAULT_CAPACITY = 10;
 118 
 119     /**
 120      * Shared empty array instance used for empty instances.
 121      */
 122     private static final Object[] EMPTY_ELEMENTDATA = {};
 123 
 124     /**
 125      * Shared empty array instance used for default sized empty instances. We
 126      * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
 127      * first element is added.
 128      */
 129     private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
 130 
 131     /**
 132      * The array buffer into which the elements of the ArrayList are stored.
 133      * The capacity of the ArrayList is the length of this array buffer. Any
 134      * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
 135      * will be expanded to DEFAULT_CAPACITY when the first element is added.
 136      */
 137     transient Object[] elementData; // non-private to simplify nested class access
 138 
 139     /**
 140      * The size of the ArrayList (the number of elements it contains).
 141      *
 142      * @serial
 143      */
 144     private int size;
 145 
 146     /**
 147      * Constructs an empty list with the specified initial capacity.
 148      *
 149      * @param  initialCapacity  the initial capacity of the list
 150      * @throws IllegalArgumentException if the specified initial capacity
 151      *         is negative
 152      */
 153     public ArrayList(int initialCapacity) {
 154         if (initialCapacity > 0) {
 155             this.elementData = new Object[initialCapacity];
 156         } else if (initialCapacity == 0) {
 157             this.elementData = EMPTY_ELEMENTDATA;
 158         } else {
 159             throw new IllegalArgumentException("Illegal Capacity: "+
 160                                                initialCapacity);
 161         }
 162     }
 163 
 164     /**
 165      * Constructs an empty list with an initial capacity of ten.
 166      */
 167     public ArrayList() {
 168         this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
 169     }
 170 
 171     /**
 172      * Constructs a list containing the elements of the specified
 173      * collection, in the order they are returned by the collection's
 174      * iterator.
 175      *
 176      * @param c the collection whose elements are to be placed into this list
 177      * @throws NullPointerException if the specified collection is null
 178      */
 179     public ArrayList(Collection<? extends E> c) {
 180         elementData = c.toArray();
 181         if ((size = elementData.length) != 0) {
 182             // defend against c.toArray (incorrectly) not returning Object[]
 183             // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
 184             if (elementData.getClass() != Object[].class)
 185                 elementData = Arrays.copyOf(elementData, size, Object[].class);
 186         } else {
 187             // replace with empty array.
 188             this.elementData = EMPTY_ELEMENTDATA;
 189         }
 190     }
 191 
 192     /**
 193      * Trims the capacity of this {@code ArrayList} instance to be the
 194      * list's current size.  An application can use this operation to minimize
 195      * the storage of an {@code ArrayList} instance.
 196      */
 197     public void trimToSize() {
 198         modCount++;
 199         if (size < elementData.length) {
 200             elementData = (size == 0)
 201               ? EMPTY_ELEMENTDATA
 202               : Arrays.copyOf(elementData, size);
 203         }
 204     }
 205 
 206     /**
 207      * Increases the capacity of this {@code ArrayList} instance, if
 208      * necessary, to ensure that it can hold at least the number of elements
 209      * specified by the minimum capacity argument.
 210      *
 211      * @param minCapacity the desired minimum capacity
 212      */
 213     public void ensureCapacity(int minCapacity) {
 214         if (minCapacity > elementData.length
 215             && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
 216                  && minCapacity <= DEFAULT_CAPACITY)) {
 217             modCount++;
 218             grow(minCapacity);
 219         }
 220     }
 221 
 222     /**
 223      * Increases the capacity to ensure that it can hold at least the
 224      * number of elements specified by the minimum capacity argument.
 225      *
 226      * @param minCapacity the desired minimum capacity
 227      * @throws OutOfMemoryError if minCapacity is less than zero
 228      */
 229     private Object[] grow(int minCapacity) {
 230         int oldCapacity = elementData.length;
 231         if (oldCapacity > 0 || elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
 232             int newCapacity = ArraysSupport.newLength(oldCapacity,
 233                     minCapacity - oldCapacity, /* minimum growth */
 234                     oldCapacity >> 1           /* preferred growth */);
 235             return elementData = Arrays.copyOf(elementData, newCapacity);
 236         } else {
 237             return elementData = new Object[Math.max(DEFAULT_CAPACITY, minCapacity)];
 238         }
 239     }
 240 
 241     private Object[] grow() {
 242         return grow(size + 1);
 243     }
 244 
 245     /**
 246      * Returns the number of elements in this list.
 247      *
 248      * @return the number of elements in this list
 249      */
 250     public int size() {
 251         return size;
 252     }
 253 
 254     /**
 255      * Returns {@code true} if this list contains no elements.
 256      *
 257      * @return {@code true} if this list contains no elements
 258      */
 259     public boolean isEmpty() {
 260         return size == 0;
 261     }
 262 
 263     /**
 264      * Returns {@code true} if this list contains the specified element.
 265      * More formally, returns {@code true} if and only if this list contains
 266      * at least one element {@code e} such that
 267      * {@code Objects.equals(o, e)}.
 268      *
 269      * @param o element whose presence in this list is to be tested
 270      * @return {@code true} if this list contains the specified element
 271      */
 272     public boolean contains(Object o) {
 273         return indexOf(o) >= 0;
 274     }
 275 
 276     /**
 277      * Returns the index of the first occurrence of the specified element
 278      * in this list, or -1 if this list does not contain the element.
 279      * More formally, returns the lowest index {@code i} such that
 280      * {@code Objects.equals(o, get(i))},
 281      * or -1 if there is no such index.
 282      */
 283     public int indexOf(Object o) {
 284         return indexOfRange(o, 0, size);
 285     }
 286 
 287     int indexOfRange(Object o, int start, int end) {
 288         Object[] es = elementData;
 289         if (o == null) {
 290             for (int i = start; i < end; i++) {
 291                 if (es[i] == null) {
 292                     return i;
 293                 }
 294             }
 295         } else {
 296             for (int i = start; i < end; i++) {
 297                 if (o.equals(es[i])) {
 298                     return i;
 299                 }
 300             }
 301         }
 302         return -1;
 303     }
 304 
 305     /**
 306      * Returns the index of the last occurrence of the specified element
 307      * in this list, or -1 if this list does not contain the element.
 308      * More formally, returns the highest index {@code i} such that
 309      * {@code Objects.equals(o, get(i))},
 310      * or -1 if there is no such index.
 311      */
 312     public int lastIndexOf(Object o) {
 313         return lastIndexOfRange(o, 0, size);
 314     }
 315 
 316     int lastIndexOfRange(Object o, int start, int end) {
 317         Object[] es = elementData;
 318         if (o == null) {
 319             for (int i = end - 1; i >= start; i--) {
 320                 if (es[i] == null) {
 321                     return i;
 322                 }
 323             }
 324         } else {
 325             for (int i = end - 1; i >= start; i--) {
 326                 if (o.equals(es[i])) {
 327                     return i;
 328                 }
 329             }
 330         }
 331         return -1;
 332     }
 333 
 334     /**
 335      * Returns a shallow copy of this {@code ArrayList} instance.  (The
 336      * elements themselves are not copied.)
 337      *
 338      * @return a clone of this {@code ArrayList} instance
 339      */
 340     public Object clone() {
 341         try {
 342             ArrayList<?> v = (ArrayList<?>) super.clone();
 343             v.elementData = Arrays.copyOf(elementData, size);
 344             v.modCount = 0;
 345             return v;
 346         } catch (CloneNotSupportedException e) {
 347             // this shouldn't happen, since we are Cloneable
 348             throw new InternalError(e);
 349         }
 350     }
 351 
 352     /**
 353      * Returns an array containing all of the elements in this list
 354      * in proper sequence (from first to last element).
 355      *
 356      * <p>The returned array will be "safe" in that no references to it are
 357      * maintained by this list.  (In other words, this method must allocate
 358      * a new array).  The caller is thus free to modify the returned array.
 359      *
 360      * <p>This method acts as bridge between array-based and collection-based
 361      * APIs.
 362      *
 363      * @return an array containing all of the elements in this list in
 364      *         proper sequence
 365      */
 366     public Object[] toArray() {
 367         return Arrays.copyOf(elementData, size);
 368     }
 369 
 370     /**
 371      * Returns an array containing all of the elements in this list in proper
 372      * sequence (from first to last element); the runtime type of the returned
 373      * array is that of the specified array.  If the list fits in the
 374      * specified array, it is returned therein.  Otherwise, a new array is
 375      * allocated with the runtime type of the specified array and the size of
 376      * this list.
 377      *
 378      * <p>If the list fits in the specified array with room to spare
 379      * (i.e., the array has more elements than the list), the element in
 380      * the array immediately following the end of the collection is set to
 381      * {@code null}.  (This is useful in determining the length of the
 382      * list <i>only</i> if the caller knows that the list does not contain
 383      * any null elements.)
 384      *
 385      * @param a the array into which the elements of the list are to
 386      *          be stored, if it is big enough; otherwise, a new array of the
 387      *          same runtime type is allocated for this purpose.
 388      * @return an array containing the elements of the list
 389      * @throws ArrayStoreException if the runtime type of the specified array
 390      *         is not a supertype of the runtime type of every element in
 391      *         this list
 392      * @throws NullPointerException if the specified array is null
 393      */
 394     @SuppressWarnings("unchecked")
 395     public <T> T[] toArray(T[] a) {
 396         if (a.length < size)
 397             // Make a new array of a's runtime type, but my contents:
 398             return (T[]) Arrays.copyOf(elementData, size, a.getClass());
 399         System.arraycopy(elementData, 0, a, 0, size);
 400         if (a.length > size)
 401             a[size] = null;
 402         return a;
 403     }
 404 
 405     // Positional Access Operations
 406 
 407     @SuppressWarnings("unchecked")
 408     E elementData(int index) {
 409         return (E) elementData[index];
 410     }
 411 
 412     @SuppressWarnings("unchecked")
 413     static <E> E elementAt(Object[] es, int index) {
 414         return (E) es[index];
 415     }
 416 
 417     /**
 418      * Returns the element at the specified position in this list.
 419      *
 420      * @param  index index of the element to return
 421      * @return the element at the specified position in this list
 422      * @throws IndexOutOfBoundsException {@inheritDoc}
 423      */
 424     public E get(int index) {
 425         Objects.checkIndex(index, size);
 426         return elementData(index);
 427     }
 428 
 429     /**
 430      * Replaces the element at the specified position in this list with
 431      * the specified element.
 432      *
 433      * @param index index of the element to replace
 434      * @param element element to be stored at the specified position
 435      * @return the element previously at the specified position
 436      * @throws IndexOutOfBoundsException {@inheritDoc}
 437      */
 438     public E set(int index, E element) {
 439         Objects.checkIndex(index, size);
 440         E oldValue = elementData(index);
 441         elementData[index] = element;
 442         return oldValue;
 443     }
 444 
 445     /**
 446      * This helper method split out from add(E) to keep method
 447      * bytecode size under 35 (the -XX:MaxInlineSize default value),
 448      * which helps when add(E) is called in a C1-compiled loop.
 449      */
 450     private void add(E e, Object[] elementData, int s) {
 451         if (s == elementData.length)
 452             elementData = grow();
 453         elementData[s] = e;
 454         size = s + 1;
 455     }
 456 
 457     /**
 458      * Appends the specified element to the end of this list.
 459      *
 460      * @param e element to be appended to this list
 461      * @return {@code true} (as specified by {@link Collection#add})
 462      */
 463     public boolean add(E e) {
 464         modCount++;
 465         add(e, elementData, size);
 466         return true;
 467     }
 468 
 469     /**
 470      * Inserts the specified element at the specified position in this
 471      * list. Shifts the element currently at that position (if any) and
 472      * any subsequent elements to the right (adds one to their indices).
 473      *
 474      * @param index index at which the specified element is to be inserted
 475      * @param element element to be inserted
 476      * @throws IndexOutOfBoundsException {@inheritDoc}
 477      */
 478     public void add(int index, E element) {
 479         rangeCheckForAdd(index);
 480         modCount++;
 481         final int s;
 482         Object[] elementData;
 483         if ((s = size) == (elementData = this.elementData).length)
 484             elementData = grow();
 485         System.arraycopy(elementData, index,
 486                          elementData, index + 1,
 487                          s - index);
 488         elementData[index] = element;
 489         size = s + 1;
 490     }
 491 
 492     /**
 493      * Removes the element at the specified position in this list.
 494      * Shifts any subsequent elements to the left (subtracts one from their
 495      * indices).
 496      *
 497      * @param index the index of the element to be removed
 498      * @return the element that was removed from the list
 499      * @throws IndexOutOfBoundsException {@inheritDoc}
 500      */
 501     public E remove(int index) {
 502         Objects.checkIndex(index, size);
 503         final Object[] es = elementData;
 504 
 505         @SuppressWarnings("unchecked") E oldValue = (E) es[index];
 506         fastRemove(es, index);
 507 
 508         return oldValue;
 509     }
 510 
 511     /**
 512      * {@inheritDoc}
 513      */
 514     public boolean equals(Object o) {
 515         if (o == this) {
 516             return true;
 517         }
 518 
 519         if (!(o instanceof List)) {
 520             return false;
 521         }
 522 
 523         final int expectedModCount = modCount;
 524         // ArrayList can be subclassed and given arbitrary behavior, but we can
 525         // still deal with the common case where o is ArrayList precisely
 526         boolean equal = (o.getClass() == ArrayList.class)
 527             ? equalsArrayList((ArrayList<?>) o)
 528             : equalsRange((List<?>) o, 0, size);
 529 
 530         checkForComodification(expectedModCount);
 531         return equal;
 532     }
 533 
 534     boolean equalsRange(List<?> other, int from, int to) {
 535         final Object[] es = elementData;
 536         if (to > es.length) {
 537             throw new ConcurrentModificationException();
 538         }
 539         var oit = other.iterator();
 540         for (; from < to; from++) {
 541             if (!oit.hasNext() || !Objects.equals(es[from], oit.next())) {
 542                 return false;
 543             }
 544         }
 545         return !oit.hasNext();
 546     }
 547 
 548     private boolean equalsArrayList(ArrayList<?> other) {
 549         final int otherModCount = other.modCount;
 550         final int s = size;
 551         boolean equal;
 552         if (equal = (s == other.size)) {
 553             final Object[] otherEs = other.elementData;
 554             final Object[] es = elementData;
 555             if (s > es.length || s > otherEs.length) {
 556                 throw new ConcurrentModificationException();
 557             }
 558             for (int i = 0; i < s; i++) {
 559                 if (!Objects.equals(es[i], otherEs[i])) {
 560                     equal = false;
 561                     break;
 562                 }
 563             }
 564         }
 565         other.checkForComodification(otherModCount);
 566         return equal;
 567     }
 568 
 569     private void checkForComodification(final int expectedModCount) {
 570         if (modCount != expectedModCount) {
 571             throw new ConcurrentModificationException();
 572         }
 573     }
 574 
 575     /**
 576      * {@inheritDoc}
 577      */
 578     public int hashCode() {
 579         int expectedModCount = modCount;
 580         int hash = hashCodeRange(0, size);
 581         checkForComodification(expectedModCount);
 582         return hash;
 583     }
 584 
 585     int hashCodeRange(int from, int to) {
 586         final Object[] es = elementData;
 587         if (to > es.length) {
 588             throw new ConcurrentModificationException();
 589         }
 590         int hashCode = 1;
 591         for (int i = from; i < to; i++) {
 592             Object e = es[i];
 593             hashCode = 31 * hashCode + (e == null ? 0 : e.hashCode());
 594         }
 595         return hashCode;
 596     }
 597 
 598     /**
 599      * Removes the first occurrence of the specified element from this list,
 600      * if it is present.  If the list does not contain the element, it is
 601      * unchanged.  More formally, removes the element with the lowest index
 602      * {@code i} such that
 603      * {@code Objects.equals(o, get(i))}
 604      * (if such an element exists).  Returns {@code true} if this list
 605      * contained the specified element (or equivalently, if this list
 606      * changed as a result of the call).
 607      *
 608      * @param o element to be removed from this list, if present
 609      * @return {@code true} if this list contained the specified element
 610      */
 611     public boolean remove(Object o) {
 612         final Object[] es = elementData;
 613         final int size = this.size;
 614         int i = 0;
 615         found: {
 616             if (o == null) {
 617                 for (; i < size; i++)
 618                     if (es[i] == null)
 619                         break found;
 620             } else {
 621                 for (; i < size; i++)
 622                     if (o.equals(es[i]))
 623                         break found;
 624             }
 625             return false;
 626         }
 627         fastRemove(es, i);
 628         return true;
 629     }
 630 
 631     /**
 632      * Private remove method that skips bounds checking and does not
 633      * return the value removed.
 634      */
 635     private void fastRemove(Object[] es, int i) {
 636         modCount++;
 637         final int newSize;
 638         if ((newSize = size - 1) > i)
 639             System.arraycopy(es, i + 1, es, i, newSize - i);
 640         es[size = newSize] = null;
 641     }
 642 
 643     /**
 644      * Removes all of the elements from this list.  The list will
 645      * be empty after this call returns.
 646      */
 647     public void clear() {
 648         modCount++;
 649         final Object[] es = elementData;
 650         for (int to = size, i = size = 0; i < to; i++)
 651             es[i] = null;
 652     }
 653 
 654     /**
 655      * Appends all of the elements in the specified collection to the end of
 656      * this list, in the order that they are returned by the
 657      * specified collection's Iterator.  The behavior of this operation is
 658      * undefined if the specified collection is modified while the operation
 659      * is in progress.  (This implies that the behavior of this call is
 660      * undefined if the specified collection is this list, and this
 661      * list is nonempty.)
 662      *
 663      * @param c collection containing elements to be added to this list
 664      * @return {@code true} if this list changed as a result of the call
 665      * @throws NullPointerException if the specified collection is null
 666      */
 667     public boolean addAll(Collection<? extends E> c) {
 668         Object[] a = c.toArray();
 669         modCount++;
 670         int numNew = a.length;
 671         if (numNew == 0)
 672             return false;
 673         Object[] elementData;
 674         final int s;
 675         if (numNew > (elementData = this.elementData).length - (s = size))
 676             elementData = grow(s + numNew);
 677         System.arraycopy(a, 0, elementData, s, numNew);
 678         size = s + numNew;
 679         return true;
 680     }
 681 
 682     /**
 683      * Inserts all of the elements in the specified collection into this
 684      * list, starting at the specified position.  Shifts the element
 685      * currently at that position (if any) and any subsequent elements to
 686      * the right (increases their indices).  The new elements will appear
 687      * in the list in the order that they are returned by the
 688      * specified collection's iterator.
 689      *
 690      * @param index index at which to insert the first element from the
 691      *              specified collection
 692      * @param c collection containing elements to be added to this list
 693      * @return {@code true} if this list changed as a result of the call
 694      * @throws IndexOutOfBoundsException {@inheritDoc}
 695      * @throws NullPointerException if the specified collection is null
 696      */
 697     public boolean addAll(int index, Collection<? extends E> c) {
 698         rangeCheckForAdd(index);
 699 
 700         Object[] a = c.toArray();
 701         modCount++;
 702         int numNew = a.length;
 703         if (numNew == 0)
 704             return false;
 705         Object[] elementData;
 706         final int s;
 707         if (numNew > (elementData = this.elementData).length - (s = size))
 708             elementData = grow(s + numNew);
 709 
 710         int numMoved = s - index;
 711         if (numMoved > 0)
 712             System.arraycopy(elementData, index,
 713                              elementData, index + numNew,
 714                              numMoved);
 715         System.arraycopy(a, 0, elementData, index, numNew);
 716         size = s + numNew;
 717         return true;
 718     }
 719 
 720     /**
 721      * Removes from this list all of the elements whose index is between
 722      * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
 723      * Shifts any succeeding elements to the left (reduces their index).
 724      * This call shortens the list by {@code (toIndex - fromIndex)} elements.
 725      * (If {@code toIndex==fromIndex}, this operation has no effect.)
 726      *
 727      * @throws IndexOutOfBoundsException if {@code fromIndex} or
 728      *         {@code toIndex} is out of range
 729      *         ({@code fromIndex < 0 ||
 730      *          toIndex > size() ||
 731      *          toIndex < fromIndex})
 732      */
 733     protected void removeRange(int fromIndex, int toIndex) {
 734         if (fromIndex > toIndex) {
 735             throw new IndexOutOfBoundsException(
 736                     outOfBoundsMsg(fromIndex, toIndex));
 737         }
 738         modCount++;
 739         shiftTailOverGap(elementData, fromIndex, toIndex);
 740     }
 741 
 742     /** Erases the gap from lo to hi, by sliding down following elements. */
 743     private void shiftTailOverGap(Object[] es, int lo, int hi) {
 744         System.arraycopy(es, hi, es, lo, size - hi);
 745         for (int to = size, i = (size -= hi - lo); i < to; i++)
 746             es[i] = null;
 747     }
 748 
 749     /**
 750      * A version of rangeCheck used by add and addAll.
 751      */
 752     private void rangeCheckForAdd(int index) {
 753         if (index > size || index < 0)
 754             throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
 755     }
 756 
 757     /**
 758      * Constructs an IndexOutOfBoundsException detail message.
 759      * Of the many possible refactorings of the error handling code,
 760      * this "outlining" performs best with both server and client VMs.
 761      */
 762     private String outOfBoundsMsg(int index) {
 763         return "Index: "+index+", Size: "+size;
 764     }
 765 
 766     /**
 767      * A version used in checking (fromIndex > toIndex) condition
 768      */
 769     private static String outOfBoundsMsg(int fromIndex, int toIndex) {
 770         return "From Index: " + fromIndex + " > To Index: " + toIndex;
 771     }
 772 
 773     /**
 774      * Removes from this list all of its elements that are contained in the
 775      * specified collection.
 776      *
 777      * @param c collection containing elements to be removed from this list
 778      * @return {@code true} if this list changed as a result of the call
 779      * @throws ClassCastException if the class of an element of this list
 780      *         is incompatible with the specified collection
 781      * (<a href="Collection.html#optional-restrictions">optional</a>)
 782      * @throws NullPointerException if this list contains a null element and the
 783      *         specified collection does not permit null elements
 784      * (<a href="Collection.html#optional-restrictions">optional</a>),
 785      *         or if the specified collection is null
 786      * @see Collection#contains(Object)
 787      */
 788     public boolean removeAll(Collection<?> c) {
 789         return batchRemove(c, false, 0, size);
 790     }
 791 
 792     /**
 793      * Retains only the elements in this list that are contained in the
 794      * specified collection.  In other words, removes from this list all
 795      * of its elements that are not contained in the specified collection.
 796      *
 797      * @param c collection containing elements to be retained in this list
 798      * @return {@code true} if this list changed as a result of the call
 799      * @throws ClassCastException if the class of an element of this list
 800      *         is incompatible with the specified collection
 801      * (<a href="Collection.html#optional-restrictions">optional</a>)
 802      * @throws NullPointerException if this list contains a null element and the
 803      *         specified collection does not permit null elements
 804      * (<a href="Collection.html#optional-restrictions">optional</a>),
 805      *         or if the specified collection is null
 806      * @see Collection#contains(Object)
 807      */
 808     public boolean retainAll(Collection<?> c) {
 809         return batchRemove(c, true, 0, size);
 810     }
 811 
 812     boolean batchRemove(Collection<?> c, boolean complement,
 813                         final int from, final int end) {
 814         Objects.requireNonNull(c);
 815         final Object[] es = elementData;
 816         int r;
 817         // Optimize for initial run of survivors
 818         for (r = from;; r++) {
 819             if (r == end)
 820                 return false;
 821             if (c.contains(es[r]) != complement)
 822                 break;
 823         }
 824         int w = r++;
 825         try {
 826             for (Object e; r < end; r++)
 827                 if (c.contains(e = es[r]) == complement)
 828                     es[w++] = e;
 829         } catch (Throwable ex) {
 830             // Preserve behavioral compatibility with AbstractCollection,
 831             // even if c.contains() throws.
 832             System.arraycopy(es, r, es, w, end - r);
 833             w += end - r;
 834             throw ex;
 835         } finally {
 836             modCount += end - w;
 837             shiftTailOverGap(es, w, end);
 838         }
 839         return true;
 840     }
 841 
 842     /**
 843      * Saves the state of the {@code ArrayList} instance to a stream
 844      * (that is, serializes it).
 845      *
 846      * @param s the stream
 847      * @throws java.io.IOException if an I/O error occurs
 848      * @serialData The length of the array backing the {@code ArrayList}
 849      *             instance is emitted (int), followed by all of its elements
 850      *             (each an {@code Object}) in the proper order.
 851      */
 852     private void writeObject(java.io.ObjectOutputStream s)
 853         throws java.io.IOException {
 854         // Write out element count, and any hidden stuff
 855         int expectedModCount = modCount;
 856         s.defaultWriteObject();
 857 
 858         // Write out size as capacity for behavioral compatibility with clone()
 859         s.writeInt(size);
 860 
 861         // Write out all elements in the proper order.
 862         for (int i=0; i<size; i++) {
 863             s.writeObject(elementData[i]);
 864         }
 865 
 866         if (modCount != expectedModCount) {
 867             throw new ConcurrentModificationException();
 868         }
 869     }
 870 
 871     /**
 872      * Reconstitutes the {@code ArrayList} instance from a stream (that is,
 873      * deserializes it).
 874      * @param s the stream
 875      * @throws ClassNotFoundException if the class of a serialized object
 876      *         could not be found
 877      * @throws java.io.IOException if an I/O error occurs
 878      */
 879     private void readObject(java.io.ObjectInputStream s)
 880         throws java.io.IOException, ClassNotFoundException {
 881 
 882         // Read in size, and any hidden stuff
 883         s.defaultReadObject();
 884 
 885         // Read in capacity
 886         s.readInt(); // ignored
 887 
 888         if (size > 0) {
 889             // like clone(), allocate array based upon size not capacity
 890             SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size);
 891             Object[] elements = new Object[size];
 892 
 893             // Read in all elements in the proper order.
 894             for (int i = 0; i < size; i++) {
 895                 elements[i] = s.readObject();
 896             }
 897 
 898             elementData = elements;
 899         } else if (size == 0) {
 900             elementData = EMPTY_ELEMENTDATA;
 901         } else {
 902             throw new java.io.InvalidObjectException("Invalid size: " + size);
 903         }
 904     }
 905 
 906     /**
 907      * Returns a list iterator over the elements in this list (in proper
 908      * sequence), starting at the specified position in the list.
 909      * The specified index indicates the first element that would be
 910      * returned by an initial call to {@link ListIterator#next next}.
 911      * An initial call to {@link ListIterator#previous previous} would
 912      * return the element with the specified index minus one.
 913      *
 914      * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
 915      *
 916      * @throws IndexOutOfBoundsException {@inheritDoc}
 917      */
 918     public ListIterator<E> listIterator(int index) {
 919         rangeCheckForAdd(index);
 920         return new ListItr(index);
 921     }
 922 
 923     /**
 924      * Returns a list iterator over the elements in this list (in proper
 925      * sequence).
 926      *
 927      * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
 928      *
 929      * @see #listIterator(int)
 930      */
 931     public ListIterator<E> listIterator() {
 932         return new ListItr(0);
 933     }
 934 
 935     /**
 936      * Returns an iterator over the elements in this list in proper sequence.
 937      *
 938      * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
 939      *
 940      * @return an iterator over the elements in this list in proper sequence
 941      */
 942     public Iterator<E> iterator() {
 943         return new Itr();
 944     }
 945 
 946     /**
 947      * An optimized version of AbstractList.Itr
 948      */
 949     private class Itr implements Iterator<E> {
 950         int cursor;       // index of next element to return
 951         int lastRet = -1; // index of last element returned; -1 if no such
 952         int expectedModCount = modCount;
 953 
 954         // prevent creating a synthetic constructor
 955         Itr() {}
 956 
 957         public boolean hasNext() {
 958             return cursor != size;
 959         }
 960 
 961         @SuppressWarnings("unchecked")
 962         public E next() {
 963             checkForComodification();
 964             int i = cursor;
 965             if (i >= size)
 966                 throw new NoSuchElementException();
 967             Object[] elementData = ArrayList.this.elementData;
 968             if (i >= elementData.length)
 969                 throw new ConcurrentModificationException();
 970             cursor = i + 1;
 971             return (E) elementData[lastRet = i];
 972         }
 973 
 974         public void remove() {
 975             if (lastRet < 0)
 976                 throw new IllegalStateException();
 977             checkForComodification();
 978 
 979             try {
 980                 ArrayList.this.remove(lastRet);
 981                 cursor = lastRet;
 982                 lastRet = -1;
 983                 expectedModCount = modCount;
 984             } catch (IndexOutOfBoundsException ex) {
 985                 throw new ConcurrentModificationException();
 986             }
 987         }
 988 
 989         @Override
 990         public void forEachRemaining(Consumer<? super E> action) {
 991             Objects.requireNonNull(action);
 992             final int size = ArrayList.this.size;
 993             int i = cursor;
 994             if (i < size) {
 995                 final Object[] es = elementData;
 996                 if (i >= es.length)
 997                     throw new ConcurrentModificationException();
 998                 for (; i < size && modCount == expectedModCount; i++)
 999                     action.accept(elementAt(es, i));
1000                 // update once at end to reduce heap write traffic
1001                 cursor = i;
1002                 lastRet = i - 1;
1003                 checkForComodification();
1004             }
1005         }
1006 
1007         final void checkForComodification() {
1008             if (modCount != expectedModCount)
1009                 throw new ConcurrentModificationException();
1010         }
1011     }
1012 
1013     /**
1014      * An optimized version of AbstractList.ListItr
1015      */
1016     private class ListItr extends Itr implements ListIterator<E> {
1017         ListItr(int index) {
1018             super();
1019             cursor = index;
1020         }
1021 
1022         public boolean hasPrevious() {
1023             return cursor != 0;
1024         }
1025 
1026         public int nextIndex() {
1027             return cursor;
1028         }
1029 
1030         public int previousIndex() {
1031             return cursor - 1;
1032         }
1033 
1034         @SuppressWarnings("unchecked")
1035         public E previous() {
1036             checkForComodification();
1037             int i = cursor - 1;
1038             if (i < 0)
1039                 throw new NoSuchElementException();
1040             Object[] elementData = ArrayList.this.elementData;
1041             if (i >= elementData.length)
1042                 throw new ConcurrentModificationException();
1043             cursor = i;
1044             return (E) elementData[lastRet = i];
1045         }
1046 
1047         public void set(E e) {
1048             if (lastRet < 0)
1049                 throw new IllegalStateException();
1050             checkForComodification();
1051 
1052             try {
1053                 ArrayList.this.set(lastRet, e);
1054             } catch (IndexOutOfBoundsException ex) {
1055                 throw new ConcurrentModificationException();
1056             }
1057         }
1058 
1059         public void add(E e) {
1060             checkForComodification();
1061 
1062             try {
1063                 int i = cursor;
1064                 ArrayList.this.add(i, e);
1065                 cursor = i + 1;
1066                 lastRet = -1;
1067                 expectedModCount = modCount;
1068             } catch (IndexOutOfBoundsException ex) {
1069                 throw new ConcurrentModificationException();
1070             }
1071         }
1072     }
1073 
1074     /**
1075      * Returns a view of the portion of this list between the specified
1076      * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.  (If
1077      * {@code fromIndex} and {@code toIndex} are equal, the returned list is
1078      * empty.)  The returned list is backed by this list, so non-structural
1079      * changes in the returned list are reflected in this list, and vice-versa.
1080      * The returned list supports all of the optional list operations.
1081      *
1082      * <p>This method eliminates the need for explicit range operations (of
1083      * the sort that commonly exist for arrays).  Any operation that expects
1084      * a list can be used as a range operation by passing a subList view
1085      * instead of a whole list.  For example, the following idiom
1086      * removes a range of elements from a list:
1087      * <pre>
1088      *      list.subList(from, to).clear();
1089      * </pre>
1090      * Similar idioms may be constructed for {@link #indexOf(Object)} and
1091      * {@link #lastIndexOf(Object)}, and all of the algorithms in the
1092      * {@link Collections} class can be applied to a subList.
1093      *
1094      * <p>The semantics of the list returned by this method become undefined if
1095      * the backing list (i.e., this list) is <i>structurally modified</i> in
1096      * any way other than via the returned list.  (Structural modifications are
1097      * those that change the size of this list, or otherwise perturb it in such
1098      * a fashion that iterations in progress may yield incorrect results.)
1099      *
1100      * @throws IndexOutOfBoundsException {@inheritDoc}
1101      * @throws IllegalArgumentException {@inheritDoc}
1102      */
1103     public List<E> subList(int fromIndex, int toIndex) {
1104         subListRangeCheck(fromIndex, toIndex, size);
1105         return new SubList<>(this, fromIndex, toIndex);
1106     }
1107 
1108     private static class SubList<E> extends AbstractList<E> implements RandomAccess {
1109         private final ArrayList<E> root;
1110         private final SubList<E> parent;
1111         private final int offset;
1112         private int size;
1113 
1114         /**
1115          * Constructs a sublist of an arbitrary ArrayList.
1116          */
1117         public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
1118             this.root = root;
1119             this.parent = null;
1120             this.offset = fromIndex;
1121             this.size = toIndex - fromIndex;
1122             this.modCount = root.modCount;
1123         }
1124 
1125         /**
1126          * Constructs a sublist of another SubList.
1127          */
1128         private SubList(SubList<E> parent, int fromIndex, int toIndex) {
1129             this.root = parent.root;
1130             this.parent = parent;
1131             this.offset = parent.offset + fromIndex;
1132             this.size = toIndex - fromIndex;
1133             this.modCount = root.modCount;
1134         }
1135 
1136         public E set(int index, E element) {
1137             Objects.checkIndex(index, size);
1138             checkForComodification();
1139             E oldValue = root.elementData(offset + index);
1140             root.elementData[offset + index] = element;
1141             return oldValue;
1142         }
1143 
1144         public E get(int index) {
1145             Objects.checkIndex(index, size);
1146             checkForComodification();
1147             return root.elementData(offset + index);
1148         }
1149 
1150         public int size() {
1151             checkForComodification();
1152             return size;
1153         }
1154 
1155         public void add(int index, E element) {
1156             rangeCheckForAdd(index);
1157             checkForComodification();
1158             root.add(offset + index, element);
1159             updateSizeAndModCount(1);
1160         }
1161 
1162         public E remove(int index) {
1163             Objects.checkIndex(index, size);
1164             checkForComodification();
1165             E result = root.remove(offset + index);
1166             updateSizeAndModCount(-1);
1167             return result;
1168         }
1169 
1170         protected void removeRange(int fromIndex, int toIndex) {
1171             checkForComodification();
1172             root.removeRange(offset + fromIndex, offset + toIndex);
1173             updateSizeAndModCount(fromIndex - toIndex);
1174         }
1175 
1176         public boolean addAll(Collection<? extends E> c) {
1177             return addAll(this.size, c);
1178         }
1179 
1180         public boolean addAll(int index, Collection<? extends E> c) {
1181             rangeCheckForAdd(index);
1182             int cSize = c.size();
1183             if (cSize==0)
1184                 return false;
1185             checkForComodification();
1186             root.addAll(offset + index, c);
1187             updateSizeAndModCount(cSize);
1188             return true;
1189         }
1190 
1191         public void replaceAll(UnaryOperator<E> operator) {
1192             root.replaceAllRange(operator, offset, offset + size);
1193         }
1194 
1195         public boolean removeAll(Collection<?> c) {
1196             return batchRemove(c, false);
1197         }
1198 
1199         public boolean retainAll(Collection<?> c) {
1200             return batchRemove(c, true);
1201         }
1202 
1203         private boolean batchRemove(Collection<?> c, boolean complement) {
1204             checkForComodification();
1205             int oldSize = root.size;
1206             boolean modified =
1207                 root.batchRemove(c, complement, offset, offset + size);
1208             if (modified)
1209                 updateSizeAndModCount(root.size - oldSize);
1210             return modified;
1211         }
1212 
1213         public boolean removeIf(Predicate<? super E> filter) {
1214             checkForComodification();
1215             int oldSize = root.size;
1216             boolean modified = root.removeIf(filter, offset, offset + size);
1217             if (modified)
1218                 updateSizeAndModCount(root.size - oldSize);
1219             return modified;
1220         }
1221 
1222         public Object[] toArray() {
1223             checkForComodification();
1224             return Arrays.copyOfRange(root.elementData, offset, offset + size);
1225         }
1226 
1227         @SuppressWarnings("unchecked")
1228         public <T> T[] toArray(T[] a) {
1229             checkForComodification();
1230             if (a.length < size)
1231                 return (T[]) Arrays.copyOfRange(
1232                         root.elementData, offset, offset + size, a.getClass());
1233             System.arraycopy(root.elementData, offset, a, 0, size);
1234             if (a.length > size)
1235                 a[size] = null;
1236             return a;
1237         }
1238 
1239         public boolean equals(Object o) {
1240             if (o == this) {
1241                 return true;
1242             }
1243 
1244             if (!(o instanceof List)) {
1245                 return false;
1246             }
1247 
1248             boolean equal = root.equalsRange((List<?>)o, offset, offset + size);
1249             checkForComodification();
1250             return equal;
1251         }
1252 
1253         public int hashCode() {
1254             int hash = root.hashCodeRange(offset, offset + size);
1255             checkForComodification();
1256             return hash;
1257         }
1258 
1259         public int indexOf(Object o) {
1260             int index = root.indexOfRange(o, offset, offset + size);
1261             checkForComodification();
1262             return index >= 0 ? index - offset : -1;
1263         }
1264 
1265         public int lastIndexOf(Object o) {
1266             int index = root.lastIndexOfRange(o, offset, offset + size);
1267             checkForComodification();
1268             return index >= 0 ? index - offset : -1;
1269         }
1270 
1271         public boolean contains(Object o) {
1272             return indexOf(o) >= 0;
1273         }
1274 
1275         public Iterator<E> iterator() {
1276             return listIterator();
1277         }
1278 
1279         public ListIterator<E> listIterator(int index) {
1280             checkForComodification();
1281             rangeCheckForAdd(index);
1282 
1283             return new ListIterator<E>() {
1284                 int cursor = index;
1285                 int lastRet = -1;
1286                 int expectedModCount = root.modCount;
1287 
1288                 public boolean hasNext() {
1289                     return cursor != SubList.this.size;
1290                 }
1291 
1292                 @SuppressWarnings("unchecked")
1293                 public E next() {
1294                     checkForComodification();
1295                     int i = cursor;
1296                     if (i >= SubList.this.size)
1297                         throw new NoSuchElementException();
1298                     Object[] elementData = root.elementData;
1299                     if (offset + i >= elementData.length)
1300                         throw new ConcurrentModificationException();
1301                     cursor = i + 1;
1302                     return (E) elementData[offset + (lastRet = i)];
1303                 }
1304 
1305                 public boolean hasPrevious() {
1306                     return cursor != 0;
1307                 }
1308 
1309                 @SuppressWarnings("unchecked")
1310                 public E previous() {
1311                     checkForComodification();
1312                     int i = cursor - 1;
1313                     if (i < 0)
1314                         throw new NoSuchElementException();
1315                     Object[] elementData = root.elementData;
1316                     if (offset + i >= elementData.length)
1317                         throw new ConcurrentModificationException();
1318                     cursor = i;
1319                     return (E) elementData[offset + (lastRet = i)];
1320                 }
1321 
1322                 public void forEachRemaining(Consumer<? super E> action) {
1323                     Objects.requireNonNull(action);
1324                     final int size = SubList.this.size;
1325                     int i = cursor;
1326                     if (i < size) {
1327                         final Object[] es = root.elementData;
1328                         if (offset + i >= es.length)
1329                             throw new ConcurrentModificationException();
1330                         for (; i < size && modCount == expectedModCount; i++)
1331                             action.accept(elementAt(es, offset + i));
1332                         // update once at end to reduce heap write traffic
1333                         cursor = i;
1334                         lastRet = i - 1;
1335                         checkForComodification();
1336                     }
1337                 }
1338 
1339                 public int nextIndex() {
1340                     return cursor;
1341                 }
1342 
1343                 public int previousIndex() {
1344                     return cursor - 1;
1345                 }
1346 
1347                 public void remove() {
1348                     if (lastRet < 0)
1349                         throw new IllegalStateException();
1350                     checkForComodification();
1351 
1352                     try {
1353                         SubList.this.remove(lastRet);
1354                         cursor = lastRet;
1355                         lastRet = -1;
1356                         expectedModCount = root.modCount;
1357                     } catch (IndexOutOfBoundsException ex) {
1358                         throw new ConcurrentModificationException();
1359                     }
1360                 }
1361 
1362                 public void set(E e) {
1363                     if (lastRet < 0)
1364                         throw new IllegalStateException();
1365                     checkForComodification();
1366 
1367                     try {
1368                         root.set(offset + lastRet, e);
1369                     } catch (IndexOutOfBoundsException ex) {
1370                         throw new ConcurrentModificationException();
1371                     }
1372                 }
1373 
1374                 public void add(E e) {
1375                     checkForComodification();
1376 
1377                     try {
1378                         int i = cursor;
1379                         SubList.this.add(i, e);
1380                         cursor = i + 1;
1381                         lastRet = -1;
1382                         expectedModCount = root.modCount;
1383                     } catch (IndexOutOfBoundsException ex) {
1384                         throw new ConcurrentModificationException();
1385                     }
1386                 }
1387 
1388                 final void checkForComodification() {
1389                     if (root.modCount != expectedModCount)
1390                         throw new ConcurrentModificationException();
1391                 }
1392             };
1393         }
1394 
1395         public List<E> subList(int fromIndex, int toIndex) {
1396             subListRangeCheck(fromIndex, toIndex, size);
1397             return new SubList<>(this, fromIndex, toIndex);
1398         }
1399 
1400         private void rangeCheckForAdd(int index) {
1401             if (index < 0 || index > this.size)
1402                 throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1403         }
1404 
1405         private String outOfBoundsMsg(int index) {
1406             return "Index: "+index+", Size: "+this.size;
1407         }
1408 
1409         private void checkForComodification() {
1410             if (root.modCount != modCount)
1411                 throw new ConcurrentModificationException();
1412         }
1413 
1414         private void updateSizeAndModCount(int sizeChange) {
1415             SubList<E> slist = this;
1416             do {
1417                 slist.size += sizeChange;
1418                 slist.modCount = root.modCount;
1419                 slist = slist.parent;
1420             } while (slist != null);
1421         }
1422 
1423         public Spliterator<E> spliterator() {
1424             checkForComodification();
1425 
1426             // ArrayListSpliterator not used here due to late-binding
1427             return new Spliterator<E>() {
1428                 private int index = offset; // current index, modified on advance/split
1429                 private int fence = -1; // -1 until used; then one past last index
1430                 private int expectedModCount; // initialized when fence set
1431 
1432                 private int getFence() { // initialize fence to size on first use
1433                     int hi; // (a specialized variant appears in method forEach)
1434                     if ((hi = fence) < 0) {
1435                         expectedModCount = modCount;
1436                         hi = fence = offset + size;
1437                     }
1438                     return hi;
1439                 }
1440 
1441                 public ArrayList<E>.ArrayListSpliterator trySplit() {
1442                     int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1443                     // ArrayListSpliterator can be used here as the source is already bound
1444                     return (lo >= mid) ? null : // divide range in half unless too small
1445                         root.new ArrayListSpliterator(lo, index = mid, expectedModCount);
1446                 }
1447 
1448                 public boolean tryAdvance(Consumer<? super E> action) {
1449                     Objects.requireNonNull(action);
1450                     int hi = getFence(), i = index;
1451                     if (i < hi) {
1452                         index = i + 1;
1453                         @SuppressWarnings("unchecked") E e = (E)root.elementData[i];
1454                         action.accept(e);
1455                         if (root.modCount != expectedModCount)
1456                             throw new ConcurrentModificationException();
1457                         return true;
1458                     }
1459                     return false;
1460                 }
1461 
1462                 public void forEachRemaining(Consumer<? super E> action) {
1463                     Objects.requireNonNull(action);
1464                     int i, hi, mc; // hoist accesses and checks from loop
1465                     ArrayList<E> lst = root;
1466                     Object[] a;
1467                     if ((a = lst.elementData) != null) {
1468                         if ((hi = fence) < 0) {
1469                             mc = modCount;
1470                             hi = offset + size;
1471                         }
1472                         else
1473                             mc = expectedModCount;
1474                         if ((i = index) >= 0 && (index = hi) <= a.length) {
1475                             for (; i < hi; ++i) {
1476                                 @SuppressWarnings("unchecked") E e = (E) a[i];
1477                                 action.accept(e);
1478                             }
1479                             if (lst.modCount == mc)
1480                                 return;
1481                         }
1482                     }
1483                     throw new ConcurrentModificationException();
1484                 }
1485 
1486                 public long estimateSize() {
1487                     return getFence() - index;
1488                 }
1489 
1490                 public int characteristics() {
1491                     return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1492                 }
1493             };
1494         }
1495     }
1496 
1497     /**
1498      * @throws NullPointerException {@inheritDoc}
1499      */
1500     @Override
1501     public void forEach(Consumer<? super E> action) {
1502         Objects.requireNonNull(action);
1503         final int expectedModCount = modCount;
1504         final Object[] es = elementData;
1505         final int size = this.size;
1506         for (int i = 0; modCount == expectedModCount && i < size; i++)
1507             action.accept(elementAt(es, i));
1508         if (modCount != expectedModCount)
1509             throw new ConcurrentModificationException();
1510     }
1511 
1512     /**
1513      * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1514      * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1515      * list.
1516      *
1517      * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1518      * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1519      * Overriding implementations should document the reporting of additional
1520      * characteristic values.
1521      *
1522      * @return a {@code Spliterator} over the elements in this list
1523      * @since 1.8
1524      */
1525     @Override
1526     public Spliterator<E> spliterator() {
1527         return new ArrayListSpliterator(0, -1, 0);
1528     }
1529 
1530     /** Index-based split-by-two, lazily initialized Spliterator */
1531     final class ArrayListSpliterator implements Spliterator<E> {
1532 
1533         /*
1534          * If ArrayLists were immutable, or structurally immutable (no
1535          * adds, removes, etc), we could implement their spliterators
1536          * with Arrays.spliterator. Instead we detect as much
1537          * interference during traversal as practical without
1538          * sacrificing much performance. We rely primarily on
1539          * modCounts. These are not guaranteed to detect concurrency
1540          * violations, and are sometimes overly conservative about
1541          * within-thread interference, but detect enough problems to
1542          * be worthwhile in practice. To carry this out, we (1) lazily
1543          * initialize fence and expectedModCount until the latest
1544          * point that we need to commit to the state we are checking
1545          * against; thus improving precision.  (This doesn't apply to
1546          * SubLists, that create spliterators with current non-lazy
1547          * values).  (2) We perform only a single
1548          * ConcurrentModificationException check at the end of forEach
1549          * (the most performance-sensitive method). When using forEach
1550          * (as opposed to iterators), we can normally only detect
1551          * interference after actions, not before. Further
1552          * CME-triggering checks apply to all other possible
1553          * violations of assumptions for example null or too-small
1554          * elementData array given its size(), that could only have
1555          * occurred due to interference.  This allows the inner loop
1556          * of forEach to run without any further checks, and
1557          * simplifies lambda-resolution. While this does entail a
1558          * number of checks, note that in the common case of
1559          * list.stream().forEach(a), no checks or other computation
1560          * occur anywhere other than inside forEach itself.  The other
1561          * less-often-used methods cannot take advantage of most of
1562          * these streamlinings.
1563          */
1564 
1565         private int index; // current index, modified on advance/split
1566         private int fence; // -1 until used; then one past last index
1567         private int expectedModCount; // initialized when fence set
1568 
1569         /** Creates new spliterator covering the given range. */
1570         ArrayListSpliterator(int origin, int fence, int expectedModCount) {
1571             this.index = origin;
1572             this.fence = fence;
1573             this.expectedModCount = expectedModCount;
1574         }
1575 
1576         private int getFence() { // initialize fence to size on first use
1577             int hi; // (a specialized variant appears in method forEach)
1578             if ((hi = fence) < 0) {
1579                 expectedModCount = modCount;
1580                 hi = fence = size;
1581             }
1582             return hi;
1583         }
1584 
1585         public ArrayListSpliterator trySplit() {
1586             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1587             return (lo >= mid) ? null : // divide range in half unless too small
1588                 new ArrayListSpliterator(lo, index = mid, expectedModCount);
1589         }
1590 
1591         public boolean tryAdvance(Consumer<? super E> action) {
1592             if (action == null)
1593                 throw new NullPointerException();
1594             int hi = getFence(), i = index;
1595             if (i < hi) {
1596                 index = i + 1;
1597                 @SuppressWarnings("unchecked") E e = (E)elementData[i];
1598                 action.accept(e);
1599                 if (modCount != expectedModCount)
1600                     throw new ConcurrentModificationException();
1601                 return true;
1602             }
1603             return false;
1604         }
1605 
1606         public void forEachRemaining(Consumer<? super E> action) {
1607             int i, hi, mc; // hoist accesses and checks from loop
1608             Object[] a;
1609             if (action == null)
1610                 throw new NullPointerException();
1611             if ((a = elementData) != null) {
1612                 if ((hi = fence) < 0) {
1613                     mc = modCount;
1614                     hi = size;
1615                 }
1616                 else
1617                     mc = expectedModCount;
1618                 if ((i = index) >= 0 && (index = hi) <= a.length) {
1619                     for (; i < hi; ++i) {
1620                         @SuppressWarnings("unchecked") E e = (E) a[i];
1621                         action.accept(e);
1622                     }
1623                     if (modCount == mc)
1624                         return;
1625                 }
1626             }
1627             throw new ConcurrentModificationException();
1628         }
1629 
1630         public long estimateSize() {
1631             return getFence() - index;
1632         }
1633 
1634         public int characteristics() {
1635             return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1636         }
1637     }
1638 
1639     // A tiny bit set implementation
1640 
1641     private static long[] nBits(int n) {
1642         return new long[((n - 1) >> 6) + 1];
1643     }
1644     private static void setBit(long[] bits, int i) {
1645         bits[i >> 6] |= 1L << i;
1646     }
1647     private static boolean isClear(long[] bits, int i) {
1648         return (bits[i >> 6] & (1L << i)) == 0;
1649     }
1650 
1651     /**
1652      * @throws NullPointerException {@inheritDoc}
1653      */
1654     @Override
1655     public boolean removeIf(Predicate<? super E> filter) {
1656         return removeIf(filter, 0, size);
1657     }
1658 
1659     /**
1660      * Removes all elements satisfying the given predicate, from index
1661      * i (inclusive) to index end (exclusive).
1662      */
1663     boolean removeIf(Predicate<? super E> filter, int i, final int end) {
1664         Objects.requireNonNull(filter);
1665         int expectedModCount = modCount;
1666         final Object[] es = elementData;
1667         // Optimize for initial run of survivors
1668         for (; i < end && !filter.test(elementAt(es, i)); i++)
1669             ;
1670         // Tolerate predicates that reentrantly access the collection for
1671         // read (but writers still get CME), so traverse once to find
1672         // elements to delete, a second pass to physically expunge.
1673         if (i < end) {
1674             final int beg = i;
1675             final long[] deathRow = nBits(end - beg);
1676             deathRow[0] = 1L;   // set bit 0
1677             for (i = beg + 1; i < end; i++)
1678                 if (filter.test(elementAt(es, i)))
1679                     setBit(deathRow, i - beg);
1680             if (modCount != expectedModCount)
1681                 throw new ConcurrentModificationException();
1682             modCount++;
1683             int w = beg;
1684             for (i = beg; i < end; i++)
1685                 if (isClear(deathRow, i - beg))
1686                     es[w++] = es[i];
1687             shiftTailOverGap(es, w, end);
1688             return true;
1689         } else {
1690             if (modCount != expectedModCount)
1691                 throw new ConcurrentModificationException();
1692             return false;
1693         }
1694     }
1695 
1696     @Override
1697     public void replaceAll(UnaryOperator<E> operator) {
1698         replaceAllRange(operator, 0, size);
1699         // TODO(8203662): remove increment of modCount from ...
1700         modCount++;
1701     }
1702 
1703     private void replaceAllRange(UnaryOperator<E> operator, int i, int end) {
1704         Objects.requireNonNull(operator);
1705         final int expectedModCount = modCount;
1706         final Object[] es = elementData;
1707         for (; modCount == expectedModCount && i < end; i++)
1708             es[i] = operator.apply(elementAt(es, i));
1709         if (modCount != expectedModCount)
1710             throw new ConcurrentModificationException();
1711     }
1712 
1713     @Override
1714     @SuppressWarnings("unchecked")
1715     public void sort(Comparator<? super E> c) {
1716         final int expectedModCount = modCount;
1717         Arrays.sort((E[]) elementData, 0, size, c);
1718         if (modCount != expectedModCount)
1719             throw new ConcurrentModificationException();
1720         modCount++;
1721     }
1722 
1723     void checkInvariants() {
1724         // assert size >= 0;
1725         // assert size == elementData.length || elementData[size] == null;
1726     }
1727 }