1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_HEAPREGION_HPP
  26 #define SHARE_VM_GC_G1_HEAPREGION_HPP
  27 
  28 #include "gc/g1/g1AllocationContext.hpp"
  29 #include "gc/g1/g1BlockOffsetTable.hpp"
  30 #include "gc/g1/heapRegionType.hpp"
  31 #include "gc/g1/survRateGroup.hpp"
  32 #include "gc/shared/ageTable.hpp"
  33 #include "gc/shared/spaceDecorator.hpp"
  34 #include "utilities/macros.hpp"
  35 
  36 // A HeapRegion is the smallest piece of a G1CollectedHeap that
  37 // can be collected independently.
  38 
  39 // NOTE: Although a HeapRegion is a Space, its
  40 // Space::initDirtyCardClosure method must not be called.
  41 // The problem is that the existence of this method breaks
  42 // the independence of barrier sets from remembered sets.
  43 // The solution is to remove this method from the definition
  44 // of a Space.
  45 
  46 class G1CollectedHeap;
  47 class HeapRegionRemSet;
  48 class HeapRegionRemSetIterator;
  49 class HeapRegion;
  50 class HeapRegionSetBase;
  51 class nmethod;
  52 
  53 #define HR_FORMAT "%u:(%s)[" PTR_FORMAT "," PTR_FORMAT "," PTR_FORMAT "]"
  54 #define HR_FORMAT_PARAMS(_hr_) \
  55                 (_hr_)->hrm_index(), \
  56                 (_hr_)->get_short_type_str(), \
  57                 p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end())
  58 
  59 // sentinel value for hrm_index
  60 #define G1_NO_HRM_INDEX ((uint) -1)
  61 
  62 // A dirty card to oop closure for heap regions. It
  63 // knows how to get the G1 heap and how to use the bitmap
  64 // in the concurrent marker used by G1 to filter remembered
  65 // sets.
  66 
  67 class HeapRegionDCTOC : public DirtyCardToOopClosure {
  68 private:
  69   HeapRegion* _hr;
  70   G1ParPushHeapRSClosure* _rs_scan;
  71   G1CollectedHeap* _g1;
  72 
  73   // Walk the given memory region from bottom to (actual) top
  74   // looking for objects and applying the oop closure (_cl) to
  75   // them. The base implementation of this treats the area as
  76   // blocks, where a block may or may not be an object. Sub-
  77   // classes should override this to provide more accurate
  78   // or possibly more efficient walking.
  79   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
  80 
  81 public:
  82   HeapRegionDCTOC(G1CollectedHeap* g1,
  83                   HeapRegion* hr,
  84                   G1ParPushHeapRSClosure* cl,
  85                   CardTableModRefBS::PrecisionStyle precision);
  86 };
  87 
  88 // The complicating factor is that BlockOffsetTable diverged
  89 // significantly, and we need functionality that is only in the G1 version.
  90 // So I copied that code, which led to an alternate G1 version of
  91 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
  92 // be reconciled, then G1OffsetTableContigSpace could go away.
  93 
  94 // The idea behind time stamps is the following. We want to keep track of
  95 // the highest address where it's safe to scan objects for each region.
  96 // This is only relevant for current GC alloc regions so we keep a time stamp
  97 // per region to determine if the region has been allocated during the current
  98 // GC or not. If the time stamp is current we report a scan_top value which
  99 // was saved at the end of the previous GC for retained alloc regions and which is
 100 // equal to the bottom for all other regions.
 101 // There is a race between card scanners and allocating gc workers where we must ensure
 102 // that card scanners do not read the memory allocated by the gc workers.
 103 // In order to enforce that, we must not return a value of _top which is more recent than the
 104 // time stamp. This is due to the fact that a region may become a gc alloc region at
 105 // some point after we've read the timestamp value as being < the current time stamp.
 106 // The time stamps are re-initialized to zero at cleanup and at Full GCs.
 107 // The current scheme that uses sequential unsigned ints will fail only if we have 4b
 108 // evacuation pauses between two cleanups, which is _highly_ unlikely.
 109 class G1OffsetTableContigSpace: public CompactibleSpace {
 110   friend class VMStructs;
 111   HeapWord* volatile _top;
 112   HeapWord* volatile _scan_top;
 113  protected:
 114   G1BlockOffsetArrayContigSpace _offsets;
 115   Mutex _par_alloc_lock;
 116   volatile unsigned _gc_time_stamp;
 117   // When we need to retire an allocation region, while other threads
 118   // are also concurrently trying to allocate into it, we typically
 119   // allocate a dummy object at the end of the region to ensure that
 120   // no more allocations can take place in it. However, sometimes we
 121   // want to know where the end of the last "real" object we allocated
 122   // into the region was and this is what this keeps track.
 123   HeapWord* _pre_dummy_top;
 124 
 125  public:
 126   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
 127                            MemRegion mr);
 128 
 129   void set_top(HeapWord* value) { _top = value; }
 130   HeapWord* top() const { return _top; }
 131 
 132  protected:
 133   // Reset the G1OffsetTableContigSpace.
 134   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 135 
 136   HeapWord* volatile* top_addr() { return &_top; }
 137   // Try to allocate at least min_word_size and up to desired_size from this Space.
 138   // Returns NULL if not possible, otherwise sets actual_word_size to the amount of
 139   // space allocated.
 140   // This version assumes that all allocation requests to this Space are properly
 141   // synchronized.
 142   inline HeapWord* allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
 143   // Try to allocate at least min_word_size and up to desired_size from this Space.
 144   // Returns NULL if not possible, otherwise sets actual_word_size to the amount of
 145   // space allocated.
 146   // This version synchronizes with other calls to par_allocate_impl().
 147   inline HeapWord* par_allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
 148 
 149  public:
 150   void reset_after_compaction() { set_top(compaction_top()); }
 151 
 152   size_t used() const { return byte_size(bottom(), top()); }
 153   size_t free() const { return byte_size(top(), end()); }
 154   bool is_free_block(const HeapWord* p) const { return p >= top(); }
 155 
 156   MemRegion used_region() const { return MemRegion(bottom(), top()); }
 157 
 158   void object_iterate(ObjectClosure* blk);
 159   void safe_object_iterate(ObjectClosure* blk);
 160 
 161   void set_bottom(HeapWord* value);
 162   void set_end(HeapWord* value);
 163 
 164   void mangle_unused_area() PRODUCT_RETURN;
 165   void mangle_unused_area_complete() PRODUCT_RETURN;
 166 
 167   HeapWord* scan_top() const;
 168   void record_timestamp();
 169   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
 170   unsigned get_gc_time_stamp() { return _gc_time_stamp; }
 171   void record_retained_region();
 172 
 173   // See the comment above in the declaration of _pre_dummy_top for an
 174   // explanation of what it is.
 175   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
 176     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
 177     _pre_dummy_top = pre_dummy_top;
 178   }
 179   HeapWord* pre_dummy_top() {
 180     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
 181   }
 182   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
 183 
 184   virtual void clear(bool mangle_space);
 185 
 186   HeapWord* block_start(const void* p);
 187   HeapWord* block_start_const(const void* p) const;
 188 
 189   // Allocation (return NULL if full).  Assumes the caller has established
 190   // mutually exclusive access to the space.
 191   HeapWord* allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
 192   // Allocation (return NULL if full).  Enforces mutual exclusion internally.
 193   HeapWord* par_allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
 194 
 195   virtual HeapWord* allocate(size_t word_size);
 196   virtual HeapWord* par_allocate(size_t word_size);
 197 
 198   HeapWord* saved_mark_word() const { ShouldNotReachHere(); return NULL; }
 199 
 200   // MarkSweep support phase3
 201   virtual HeapWord* initialize_threshold();
 202   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
 203 
 204   virtual void print() const;
 205 
 206   void reset_bot() {
 207     _offsets.reset_bot();
 208   }
 209 
 210   void print_bot_on(outputStream* out) {
 211     _offsets.print_on(out);
 212   }
 213 };
 214 
 215 class HeapRegion: public G1OffsetTableContigSpace {
 216   friend class VMStructs;
 217   // Allow scan_and_forward to call (private) overrides for auxiliary functions on this class
 218   template <typename SpaceType>
 219   friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
 220  private:
 221 
 222   // The remembered set for this region.
 223   // (Might want to make this "inline" later, to avoid some alloc failure
 224   // issues.)
 225   HeapRegionRemSet* _rem_set;
 226 
 227   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
 228 
 229   // Auxiliary functions for scan_and_forward support.
 230   // See comments for CompactibleSpace for more information.
 231   inline HeapWord* scan_limit() const {
 232     return top();
 233   }
 234 
 235   inline bool scanned_block_is_obj(const HeapWord* addr) const {
 236     return true; // Always true, since scan_limit is top
 237   }
 238 
 239   inline size_t scanned_block_size(const HeapWord* addr) const {
 240     return HeapRegion::block_size(addr); // Avoid virtual call
 241   }
 242 
 243  protected:
 244   // The index of this region in the heap region sequence.
 245   uint  _hrm_index;
 246 
 247   AllocationContext_t _allocation_context;
 248 
 249   HeapRegionType _type;
 250 
 251   // For a humongous region, region in which it starts.
 252   HeapRegion* _humongous_start_region;
 253 
 254   // True iff an attempt to evacuate an object in the region failed.
 255   bool _evacuation_failed;
 256 
 257   // A heap region may be a member one of a number of special subsets, each
 258   // represented as linked lists through the field below.  Currently, there
 259   // is only one set:
 260   //   The collection set.
 261   HeapRegion* _next_in_special_set;
 262 
 263   // next region in the young "generation" region set
 264   HeapRegion* _next_young_region;
 265 
 266   // Next region whose cards need cleaning
 267   HeapRegion* _next_dirty_cards_region;
 268 
 269   // Fields used by the HeapRegionSetBase class and subclasses.
 270   HeapRegion* _next;
 271   HeapRegion* _prev;
 272 #ifdef ASSERT
 273   HeapRegionSetBase* _containing_set;
 274 #endif // ASSERT
 275 
 276   // We use concurrent marking to determine the amount of live data
 277   // in each heap region.
 278   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
 279   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
 280 
 281   // The calculated GC efficiency of the region.
 282   double _gc_efficiency;
 283 
 284   int  _young_index_in_cset;
 285   SurvRateGroup* _surv_rate_group;
 286   int  _age_index;
 287 
 288   // The start of the unmarked area. The unmarked area extends from this
 289   // word until the top and/or end of the region, and is the part
 290   // of the region for which no marking was done, i.e. objects may
 291   // have been allocated in this part since the last mark phase.
 292   // "prev" is the top at the start of the last completed marking.
 293   // "next" is the top at the start of the in-progress marking (if any.)
 294   HeapWord* _prev_top_at_mark_start;
 295   HeapWord* _next_top_at_mark_start;
 296   // If a collection pause is in progress, this is the top at the start
 297   // of that pause.
 298 
 299   void init_top_at_mark_start() {
 300     assert(_prev_marked_bytes == 0 &&
 301            _next_marked_bytes == 0,
 302            "Must be called after zero_marked_bytes.");
 303     HeapWord* bot = bottom();
 304     _prev_top_at_mark_start = bot;
 305     _next_top_at_mark_start = bot;
 306   }
 307 
 308   // Cached attributes used in the collection set policy information
 309 
 310   // The RSet length that was added to the total value
 311   // for the collection set.
 312   size_t _recorded_rs_length;
 313 
 314   // The predicted elapsed time that was added to total value
 315   // for the collection set.
 316   double _predicted_elapsed_time_ms;
 317 
 318   // The predicted number of bytes to copy that was added to
 319   // the total value for the collection set.
 320   size_t _predicted_bytes_to_copy;
 321 
 322  public:
 323   HeapRegion(uint hrm_index,
 324              G1BlockOffsetSharedArray* sharedOffsetArray,
 325              MemRegion mr);
 326 
 327   // Initializing the HeapRegion not only resets the data structure, but also
 328   // resets the BOT for that heap region.
 329   // The default values for clear_space means that we will do the clearing if
 330   // there's clearing to be done ourselves. We also always mangle the space.
 331   virtual void initialize(MemRegion mr, bool clear_space = false, bool mangle_space = SpaceDecorator::Mangle);
 332 
 333   static int    LogOfHRGrainBytes;
 334   static int    LogOfHRGrainWords;
 335 
 336   static size_t GrainBytes;
 337   static size_t GrainWords;
 338   static size_t CardsPerRegion;
 339 
 340   static size_t align_up_to_region_byte_size(size_t sz) {
 341     return (sz + (size_t) GrainBytes - 1) &
 342                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
 343   }
 344 
 345   static size_t max_region_size();
 346   static size_t min_region_size_in_words();
 347 
 348   // It sets up the heap region size (GrainBytes / GrainWords), as
 349   // well as other related fields that are based on the heap region
 350   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
 351   // CardsPerRegion). All those fields are considered constant
 352   // throughout the JVM's execution, therefore they should only be set
 353   // up once during initialization time.
 354   static void setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size);
 355 
 356   // All allocated blocks are occupied by objects in a HeapRegion
 357   bool block_is_obj(const HeapWord* p) const;
 358 
 359   // Returns the object size for all valid block starts
 360   // and the amount of unallocated words if called on top()
 361   size_t block_size(const HeapWord* p) const;
 362 
 363   // Override for scan_and_forward support.
 364   void prepare_for_compaction(CompactPoint* cp);
 365 
 366   inline HeapWord* par_allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* word_size);
 367   inline HeapWord* allocate_no_bot_updates(size_t word_size);
 368   inline HeapWord* allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* actual_size);
 369 
 370   // If this region is a member of a HeapRegionManager, the index in that
 371   // sequence, otherwise -1.
 372   uint hrm_index() const { return _hrm_index; }
 373 
 374   // The number of bytes marked live in the region in the last marking phase.
 375   size_t marked_bytes()    { return _prev_marked_bytes; }
 376   size_t live_bytes() {
 377     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
 378   }
 379 
 380   // The number of bytes counted in the next marking.
 381   size_t next_marked_bytes() { return _next_marked_bytes; }
 382   // The number of bytes live wrt the next marking.
 383   size_t next_live_bytes() {
 384     return
 385       (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
 386   }
 387 
 388   // A lower bound on the amount of garbage bytes in the region.
 389   size_t garbage_bytes() {
 390     size_t used_at_mark_start_bytes =
 391       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
 392     assert(used_at_mark_start_bytes >= marked_bytes(),
 393            "Can't mark more than we have.");
 394     return used_at_mark_start_bytes - marked_bytes();
 395   }
 396 
 397   // Return the amount of bytes we'll reclaim if we collect this
 398   // region. This includes not only the known garbage bytes in the
 399   // region but also any unallocated space in it, i.e., [top, end),
 400   // since it will also be reclaimed if we collect the region.
 401   size_t reclaimable_bytes() {
 402     size_t known_live_bytes = live_bytes();
 403     assert(known_live_bytes <= capacity(), "sanity");
 404     return capacity() - known_live_bytes;
 405   }
 406 
 407   // An upper bound on the number of live bytes in the region.
 408   size_t max_live_bytes() { return used() - garbage_bytes(); }
 409 
 410   void add_to_marked_bytes(size_t incr_bytes) {
 411     _next_marked_bytes = _next_marked_bytes + incr_bytes;
 412     assert(_next_marked_bytes <= used(), "invariant" );
 413   }
 414 
 415   void zero_marked_bytes()      {
 416     _prev_marked_bytes = _next_marked_bytes = 0;
 417   }
 418 
 419   const char* get_type_str() const { return _type.get_str(); }
 420   const char* get_short_type_str() const { return _type.get_short_str(); }
 421 
 422   bool is_free() const { return _type.is_free(); }
 423 
 424   bool is_young()    const { return _type.is_young();    }
 425   bool is_eden()     const { return _type.is_eden();     }
 426   bool is_survivor() const { return _type.is_survivor(); }
 427 
 428   bool is_humongous() const { return _type.is_humongous(); }
 429   bool is_starts_humongous() const { return _type.is_starts_humongous(); }
 430   bool is_continues_humongous() const { return _type.is_continues_humongous();   }
 431 
 432   bool is_old() const { return _type.is_old(); }
 433 
 434   // A pinned region contains objects which are not moved by garbage collections.
 435   // Humongous regions and archive regions are pinned.
 436   bool is_pinned() const { return _type.is_pinned(); }
 437 
 438   // An archive region is a pinned region, also tagged as old, which
 439   // should not be marked during mark/sweep. This allows the address
 440   // space to be shared by JVM instances.
 441   bool is_archive() const { return _type.is_archive(); }
 442 
 443   // For a humongous region, region in which it starts.
 444   HeapRegion* humongous_start_region() const {
 445     return _humongous_start_region;
 446   }
 447 
 448   // Return the number of distinct regions that are covered by this region:
 449   // 1 if the region is not humongous, >= 1 if the region is humongous.
 450   uint region_num() const {
 451     if (!is_humongous()) {
 452       return 1U;
 453     } else {
 454       assert(is_starts_humongous(), "doesn't make sense on HC regions");
 455       assert(capacity() % HeapRegion::GrainBytes == 0, "sanity");
 456       return (uint) (capacity() >> HeapRegion::LogOfHRGrainBytes);
 457     }
 458   }
 459 
 460   // Return the index + 1 of the last HC regions that's associated
 461   // with this HS region.
 462   uint last_hc_index() const {
 463     assert(is_starts_humongous(), "don't call this otherwise");
 464     return hrm_index() + region_num();
 465   }
 466 
 467   // Same as Space::is_in_reserved, but will use the original size of the region.
 468   // The original size is different only for start humongous regions. They get
 469   // their _end set up to be the end of the last continues region of the
 470   // corresponding humongous object.
 471   bool is_in_reserved_raw(const void* p) const {
 472     return _bottom <= p && p < orig_end();
 473   }
 474 
 475   // Makes the current region be a "starts humongous" region, i.e.,
 476   // the first region in a series of one or more contiguous regions
 477   // that will contain a single "humongous" object. The two parameters
 478   // are as follows:
 479   //
 480   // new_top : The new value of the top field of this region which
 481   // points to the end of the humongous object that's being
 482   // allocated. If there is more than one region in the series, top
 483   // will lie beyond this region's original end field and on the last
 484   // region in the series.
 485   //
 486   // new_end : The new value of the end field of this region which
 487   // points to the end of the last region in the series. If there is
 488   // one region in the series (namely: this one) end will be the same
 489   // as the original end of this region.
 490   //
 491   // Updating top and end as described above makes this region look as
 492   // if it spans the entire space taken up by all the regions in the
 493   // series and an single allocation moved its top to new_top. This
 494   // ensures that the space (capacity / allocated) taken up by all
 495   // humongous regions can be calculated by just looking at the
 496   // "starts humongous" regions and by ignoring the "continues
 497   // humongous" regions.
 498   void set_starts_humongous(HeapWord* new_top, HeapWord* new_end);
 499 
 500   // Makes the current region be a "continues humongous'
 501   // region. first_hr is the "start humongous" region of the series
 502   // which this region will be part of.
 503   void set_continues_humongous(HeapRegion* first_hr);
 504 
 505   // Unsets the humongous-related fields on the region.
 506   void clear_humongous();
 507 
 508   // If the region has a remembered set, return a pointer to it.
 509   HeapRegionRemSet* rem_set() const {
 510     return _rem_set;
 511   }
 512 
 513   inline bool in_collection_set() const;
 514 
 515   inline HeapRegion* next_in_collection_set() const;
 516   inline void set_next_in_collection_set(HeapRegion* r);
 517 
 518   void set_allocation_context(AllocationContext_t context) {
 519     _allocation_context = context;
 520   }
 521 
 522   AllocationContext_t  allocation_context() const {
 523     return _allocation_context;
 524   }
 525 
 526   // Methods used by the HeapRegionSetBase class and subclasses.
 527 
 528   // Getter and setter for the next and prev fields used to link regions into
 529   // linked lists.
 530   HeapRegion* next()              { return _next; }
 531   HeapRegion* prev()              { return _prev; }
 532 
 533   void set_next(HeapRegion* next) { _next = next; }
 534   void set_prev(HeapRegion* prev) { _prev = prev; }
 535 
 536   // Every region added to a set is tagged with a reference to that
 537   // set. This is used for doing consistency checking to make sure that
 538   // the contents of a set are as they should be and it's only
 539   // available in non-product builds.
 540 #ifdef ASSERT
 541   void set_containing_set(HeapRegionSetBase* containing_set) {
 542     assert((containing_set == NULL && _containing_set != NULL) ||
 543            (containing_set != NULL && _containing_set == NULL),
 544            "containing_set: " PTR_FORMAT " "
 545            "_containing_set: " PTR_FORMAT,
 546            p2i(containing_set), p2i(_containing_set));
 547 
 548     _containing_set = containing_set;
 549   }
 550 
 551   HeapRegionSetBase* containing_set() { return _containing_set; }
 552 #else // ASSERT
 553   void set_containing_set(HeapRegionSetBase* containing_set) { }
 554 
 555   // containing_set() is only used in asserts so there's no reason
 556   // to provide a dummy version of it.
 557 #endif // ASSERT
 558 
 559   HeapRegion* get_next_young_region() { return _next_young_region; }
 560   void set_next_young_region(HeapRegion* hr) {
 561     _next_young_region = hr;
 562   }
 563 
 564   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
 565   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
 566   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
 567   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
 568 
 569   // For the start region of a humongous sequence, it's original end().
 570   HeapWord* orig_end() const { return _bottom + GrainWords; }
 571 
 572   // Reset HR stuff to default values.
 573   void hr_clear(bool par, bool clear_space, bool locked = false);
 574   void par_clear();
 575 
 576   // Get the start of the unmarked area in this region.
 577   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
 578   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
 579 
 580   // Note the start or end of marking. This tells the heap region
 581   // that the collector is about to start or has finished (concurrently)
 582   // marking the heap.
 583 
 584   // Notify the region that concurrent marking is starting. Initialize
 585   // all fields related to the next marking info.
 586   inline void note_start_of_marking();
 587 
 588   // Notify the region that concurrent marking has finished. Copy the
 589   // (now finalized) next marking info fields into the prev marking
 590   // info fields.
 591   inline void note_end_of_marking();
 592 
 593   // Notify the region that it will be used as to-space during a GC
 594   // and we are about to start copying objects into it.
 595   inline void note_start_of_copying(bool during_initial_mark);
 596 
 597   // Notify the region that it ceases being to-space during a GC and
 598   // we will not copy objects into it any more.
 599   inline void note_end_of_copying(bool during_initial_mark);
 600 
 601   // Notify the region that we are about to start processing
 602   // self-forwarded objects during evac failure handling.
 603   void note_self_forwarding_removal_start(bool during_initial_mark,
 604                                           bool during_conc_mark);
 605 
 606   // Notify the region that we have finished processing self-forwarded
 607   // objects during evac failure handling.
 608   void note_self_forwarding_removal_end(bool during_initial_mark,
 609                                         bool during_conc_mark,
 610                                         size_t marked_bytes);
 611 
 612   // Returns "false" iff no object in the region was allocated when the
 613   // last mark phase ended.
 614   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
 615 
 616   void reset_during_compaction() {
 617     assert(is_starts_humongous(),
 618            "should only be called for starts humongous regions");
 619 
 620     zero_marked_bytes();
 621     init_top_at_mark_start();
 622   }
 623 
 624   void calc_gc_efficiency(void);
 625   double gc_efficiency() { return _gc_efficiency;}
 626 
 627   int  young_index_in_cset() const { return _young_index_in_cset; }
 628   void set_young_index_in_cset(int index) {
 629     assert( (index == -1) || is_young(), "pre-condition" );
 630     _young_index_in_cset = index;
 631   }
 632 
 633   int age_in_surv_rate_group() {
 634     assert( _surv_rate_group != NULL, "pre-condition" );
 635     assert( _age_index > -1, "pre-condition" );
 636     return _surv_rate_group->age_in_group(_age_index);
 637   }
 638 
 639   void record_surv_words_in_group(size_t words_survived) {
 640     assert( _surv_rate_group != NULL, "pre-condition" );
 641     assert( _age_index > -1, "pre-condition" );
 642     int age_in_group = age_in_surv_rate_group();
 643     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
 644   }
 645 
 646   int age_in_surv_rate_group_cond() {
 647     if (_surv_rate_group != NULL)
 648       return age_in_surv_rate_group();
 649     else
 650       return -1;
 651   }
 652 
 653   SurvRateGroup* surv_rate_group() {
 654     return _surv_rate_group;
 655   }
 656 
 657   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
 658     assert( surv_rate_group != NULL, "pre-condition" );
 659     assert( _surv_rate_group == NULL, "pre-condition" );
 660     assert( is_young(), "pre-condition" );
 661 
 662     _surv_rate_group = surv_rate_group;
 663     _age_index = surv_rate_group->next_age_index();
 664   }
 665 
 666   void uninstall_surv_rate_group() {
 667     if (_surv_rate_group != NULL) {
 668       assert( _age_index > -1, "pre-condition" );
 669       assert( is_young(), "pre-condition" );
 670 
 671       _surv_rate_group = NULL;
 672       _age_index = -1;
 673     } else {
 674       assert( _age_index == -1, "pre-condition" );
 675     }
 676   }
 677 
 678   void set_free() { _type.set_free(); }
 679 
 680   void set_eden()        { _type.set_eden();        }
 681   void set_eden_pre_gc() { _type.set_eden_pre_gc(); }
 682   void set_survivor()    { _type.set_survivor();    }
 683 
 684   void set_old() { _type.set_old(); }
 685 
 686   void set_archive() { _type.set_archive(); }
 687 
 688   // Determine if an object has been allocated since the last
 689   // mark performed by the collector. This returns true iff the object
 690   // is within the unmarked area of the region.
 691   bool obj_allocated_since_prev_marking(oop obj) const {
 692     return (HeapWord *) obj >= prev_top_at_mark_start();
 693   }
 694   bool obj_allocated_since_next_marking(oop obj) const {
 695     return (HeapWord *) obj >= next_top_at_mark_start();
 696   }
 697 
 698   // Returns the "evacuation_failed" property of the region.
 699   bool evacuation_failed() { return _evacuation_failed; }
 700 
 701   // Sets the "evacuation_failed" property of the region.
 702   void set_evacuation_failed(bool b) {
 703     _evacuation_failed = b;
 704 
 705     if (b) {
 706       _next_marked_bytes = 0;
 707     }
 708   }
 709 
 710   // Requires that "mr" be entirely within the region.
 711   // Apply "cl->do_object" to all objects that intersect with "mr".
 712   // If the iteration encounters an unparseable portion of the region,
 713   // or if "cl->abort()" is true after a closure application,
 714   // terminate the iteration and return the address of the start of the
 715   // subregion that isn't done.  (The two can be distinguished by querying
 716   // "cl->abort()".)  Return of "NULL" indicates that the iteration
 717   // completed.
 718   HeapWord*
 719   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
 720 
 721   // filter_young: if true and the region is a young region then we
 722   // skip the iteration.
 723   // card_ptr: if not NULL, and we decide that the card is not young
 724   // and we iterate over it, we'll clean the card before we start the
 725   // iteration.
 726   HeapWord*
 727   oops_on_card_seq_iterate_careful(MemRegion mr,
 728                                    FilterOutOfRegionClosure* cl,
 729                                    bool filter_young,
 730                                    jbyte* card_ptr);
 731 
 732   size_t recorded_rs_length() const        { return _recorded_rs_length; }
 733   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
 734   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
 735 
 736   void set_recorded_rs_length(size_t rs_length) {
 737     _recorded_rs_length = rs_length;
 738   }
 739 
 740   void set_predicted_elapsed_time_ms(double ms) {
 741     _predicted_elapsed_time_ms = ms;
 742   }
 743 
 744   void set_predicted_bytes_to_copy(size_t bytes) {
 745     _predicted_bytes_to_copy = bytes;
 746   }
 747 
 748   virtual CompactibleSpace* next_compaction_space() const;
 749 
 750   virtual void reset_after_compaction();
 751 
 752   // Routines for managing a list of code roots (attached to the
 753   // this region's RSet) that point into this heap region.
 754   void add_strong_code_root(nmethod* nm);
 755   void add_strong_code_root_locked(nmethod* nm);
 756   void remove_strong_code_root(nmethod* nm);
 757 
 758   // Applies blk->do_code_blob() to each of the entries in
 759   // the strong code roots list for this region
 760   void strong_code_roots_do(CodeBlobClosure* blk) const;
 761 
 762   // Verify that the entries on the strong code root list for this
 763   // region are live and include at least one pointer into this region.
 764   void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
 765 
 766   void print() const;
 767   void print_on(outputStream* st) const;
 768 
 769   // vo == UsePrevMarking  -> use "prev" marking information,
 770   // vo == UseNextMarking -> use "next" marking information
 771   // vo == UseMarkWord    -> use the mark word in the object header
 772   //
 773   // NOTE: Only the "prev" marking information is guaranteed to be
 774   // consistent most of the time, so most calls to this should use
 775   // vo == UsePrevMarking.
 776   // Currently, there is only one case where this is called with
 777   // vo == UseNextMarking, which is to verify the "next" marking
 778   // information at the end of remark.
 779   // Currently there is only one place where this is called with
 780   // vo == UseMarkWord, which is to verify the marking during a
 781   // full GC.
 782   void verify(VerifyOption vo, bool *failures) const;
 783 
 784   // Override; it uses the "prev" marking information
 785   virtual void verify() const;
 786 };
 787 
 788 // HeapRegionClosure is used for iterating over regions.
 789 // Terminates the iteration when the "doHeapRegion" method returns "true".
 790 class HeapRegionClosure : public StackObj {
 791   friend class HeapRegionManager;
 792   friend class G1CollectedHeap;
 793 
 794   bool _complete;
 795   void incomplete() { _complete = false; }
 796 
 797  public:
 798   HeapRegionClosure(): _complete(true) {}
 799 
 800   // Typically called on each region until it returns true.
 801   virtual bool doHeapRegion(HeapRegion* r) = 0;
 802 
 803   // True after iteration if the closure was applied to all heap regions
 804   // and returned "false" in all cases.
 805   bool complete() { return _complete; }
 806 };
 807 
 808 #endif // SHARE_VM_GC_G1_HEAPREGION_HPP