1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1Allocator.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ErgoVerbose.hpp"
  39 #include "gc/g1/g1EvacFailure.hpp"
  40 #include "gc/g1/g1GCPhaseTimes.hpp"
  41 #include "gc/g1/g1Log.hpp"
  42 #include "gc/g1/g1MarkSweep.hpp"
  43 #include "gc/g1/g1OopClosures.inline.hpp"
  44 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  45 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  46 #include "gc/g1/g1RemSet.inline.hpp"
  47 #include "gc/g1/g1RootClosures.hpp"
  48 #include "gc/g1/g1RootProcessor.hpp"
  49 #include "gc/g1/g1StringDedup.hpp"
  50 #include "gc/g1/g1YCTypes.hpp"
  51 #include "gc/g1/heapRegion.inline.hpp"
  52 #include "gc/g1/heapRegionRemSet.hpp"
  53 #include "gc/g1/heapRegionSet.inline.hpp"
  54 #include "gc/g1/suspendibleThreadSet.hpp"
  55 #include "gc/g1/vm_operations_g1.hpp"
  56 #include "gc/shared/gcHeapSummary.hpp"
  57 #include "gc/shared/gcId.hpp"
  58 #include "gc/shared/gcLocker.inline.hpp"
  59 #include "gc/shared/gcTimer.hpp"
  60 #include "gc/shared/gcTrace.hpp"
  61 #include "gc/shared/gcTraceTime.hpp"
  62 #include "gc/shared/generationSpec.hpp"
  63 #include "gc/shared/isGCActiveMark.hpp"
  64 #include "gc/shared/referenceProcessor.hpp"
  65 #include "gc/shared/taskqueue.inline.hpp"
  66 #include "memory/allocation.hpp"
  67 #include "memory/iterator.hpp"
  68 #include "oops/oop.inline.hpp"
  69 #include "runtime/atomic.inline.hpp"
  70 #include "runtime/init.hpp"
  71 #include "runtime/orderAccess.inline.hpp"
  72 #include "runtime/vmThread.hpp"
  73 #include "utilities/globalDefinitions.hpp"
  74 #include "utilities/stack.inline.hpp"
  75 
  76 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  77 
  78 // INVARIANTS/NOTES
  79 //
  80 // All allocation activity covered by the G1CollectedHeap interface is
  81 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  82 // and allocate_new_tlab, which are the "entry" points to the
  83 // allocation code from the rest of the JVM.  (Note that this does not
  84 // apply to TLAB allocation, which is not part of this interface: it
  85 // is done by clients of this interface.)
  86 
  87 // Local to this file.
  88 
  89 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  90   bool _concurrent;
  91 public:
  92   RefineCardTableEntryClosure() : _concurrent(true) { }
  93 
  94   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  95     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  96     // This path is executed by the concurrent refine or mutator threads,
  97     // concurrently, and so we do not care if card_ptr contains references
  98     // that point into the collection set.
  99     assert(!oops_into_cset, "should be");
 100 
 101     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 102       // Caller will actually yield.
 103       return false;
 104     }
 105     // Otherwise, we finished successfully; return true.
 106     return true;
 107   }
 108 
 109   void set_concurrent(bool b) { _concurrent = b; }
 110 };
 111 
 112 
 113 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 114  private:
 115   size_t _num_processed;
 116 
 117  public:
 118   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 119 
 120   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 121     *card_ptr = CardTableModRefBS::dirty_card_val();
 122     _num_processed++;
 123     return true;
 124   }
 125 
 126   size_t num_processed() const { return _num_processed; }
 127 };
 128 
 129 
 130 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 131   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 132 }
 133 
 134 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 135   // The from card cache is not the memory that is actually committed. So we cannot
 136   // take advantage of the zero_filled parameter.
 137   reset_from_card_cache(start_idx, num_regions);
 138 }
 139 
 140 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 141 {
 142   // Claim the right to put the region on the dirty cards region list
 143   // by installing a self pointer.
 144   HeapRegion* next = hr->get_next_dirty_cards_region();
 145   if (next == NULL) {
 146     HeapRegion* res = (HeapRegion*)
 147       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 148                           NULL);
 149     if (res == NULL) {
 150       HeapRegion* head;
 151       do {
 152         // Put the region to the dirty cards region list.
 153         head = _dirty_cards_region_list;
 154         next = (HeapRegion*)
 155           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 156         if (next == head) {
 157           assert(hr->get_next_dirty_cards_region() == hr,
 158                  "hr->get_next_dirty_cards_region() != hr");
 159           if (next == NULL) {
 160             // The last region in the list points to itself.
 161             hr->set_next_dirty_cards_region(hr);
 162           } else {
 163             hr->set_next_dirty_cards_region(next);
 164           }
 165         }
 166       } while (next != head);
 167     }
 168   }
 169 }
 170 
 171 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 172 {
 173   HeapRegion* head;
 174   HeapRegion* hr;
 175   do {
 176     head = _dirty_cards_region_list;
 177     if (head == NULL) {
 178       return NULL;
 179     }
 180     HeapRegion* new_head = head->get_next_dirty_cards_region();
 181     if (head == new_head) {
 182       // The last region.
 183       new_head = NULL;
 184     }
 185     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 186                                           head);
 187   } while (hr != head);
 188   assert(hr != NULL, "invariant");
 189   hr->set_next_dirty_cards_region(NULL);
 190   return hr;
 191 }
 192 
 193 // Returns true if the reference points to an object that
 194 // can move in an incremental collection.
 195 bool G1CollectedHeap::is_scavengable(const void* p) {
 196   HeapRegion* hr = heap_region_containing(p);
 197   return !hr->is_pinned();
 198 }
 199 
 200 // Private methods.
 201 
 202 HeapRegion*
 203 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 204   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 205   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 206     if (!_secondary_free_list.is_empty()) {
 207       if (G1ConcRegionFreeingVerbose) {
 208         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 209                                "secondary_free_list has %u entries",
 210                                _secondary_free_list.length());
 211       }
 212       // It looks as if there are free regions available on the
 213       // secondary_free_list. Let's move them to the free_list and try
 214       // again to allocate from it.
 215       append_secondary_free_list();
 216 
 217       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 218              "empty we should have moved at least one entry to the free_list");
 219       HeapRegion* res = _hrm.allocate_free_region(is_old);
 220       if (G1ConcRegionFreeingVerbose) {
 221         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 222                                "allocated " HR_FORMAT " from secondary_free_list",
 223                                HR_FORMAT_PARAMS(res));
 224       }
 225       return res;
 226     }
 227 
 228     // Wait here until we get notified either when (a) there are no
 229     // more free regions coming or (b) some regions have been moved on
 230     // the secondary_free_list.
 231     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 232   }
 233 
 234   if (G1ConcRegionFreeingVerbose) {
 235     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 236                            "could not allocate from secondary_free_list");
 237   }
 238   return NULL;
 239 }
 240 
 241 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 242   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 243          "the only time we use this to allocate a humongous region is "
 244          "when we are allocating a single humongous region");
 245 
 246   HeapRegion* res;
 247   if (G1StressConcRegionFreeing) {
 248     if (!_secondary_free_list.is_empty()) {
 249       if (G1ConcRegionFreeingVerbose) {
 250         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 251                                "forced to look at the secondary_free_list");
 252       }
 253       res = new_region_try_secondary_free_list(is_old);
 254       if (res != NULL) {
 255         return res;
 256       }
 257     }
 258   }
 259 
 260   res = _hrm.allocate_free_region(is_old);
 261 
 262   if (res == NULL) {
 263     if (G1ConcRegionFreeingVerbose) {
 264       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 265                              "res == NULL, trying the secondary_free_list");
 266     }
 267     res = new_region_try_secondary_free_list(is_old);
 268   }
 269   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 270     // Currently, only attempts to allocate GC alloc regions set
 271     // do_expand to true. So, we should only reach here during a
 272     // safepoint. If this assumption changes we might have to
 273     // reconsider the use of _expand_heap_after_alloc_failure.
 274     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 275 
 276     ergo_verbose1(ErgoHeapSizing,
 277                   "attempt heap expansion",
 278                   ergo_format_reason("region allocation request failed")
 279                   ergo_format_byte("allocation request"),
 280                   word_size * HeapWordSize);
 281     if (expand(word_size * HeapWordSize)) {
 282       // Given that expand() succeeded in expanding the heap, and we
 283       // always expand the heap by an amount aligned to the heap
 284       // region size, the free list should in theory not be empty.
 285       // In either case allocate_free_region() will check for NULL.
 286       res = _hrm.allocate_free_region(is_old);
 287     } else {
 288       _expand_heap_after_alloc_failure = false;
 289     }
 290   }
 291   return res;
 292 }
 293 
 294 HeapWord*
 295 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 296                                                            uint num_regions,
 297                                                            size_t word_size,
 298                                                            AllocationContext_t context) {
 299   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 300   assert(is_humongous(word_size), "word_size should be humongous");
 301   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 302 
 303   // Index of last region in the series + 1.
 304   uint last = first + num_regions;
 305 
 306   // We need to initialize the region(s) we just discovered. This is
 307   // a bit tricky given that it can happen concurrently with
 308   // refinement threads refining cards on these regions and
 309   // potentially wanting to refine the BOT as they are scanning
 310   // those cards (this can happen shortly after a cleanup; see CR
 311   // 6991377). So we have to set up the region(s) carefully and in
 312   // a specific order.
 313 
 314   // The word size sum of all the regions we will allocate.
 315   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 316   assert(word_size <= word_size_sum, "sanity");
 317 
 318   // This will be the "starts humongous" region.
 319   HeapRegion* first_hr = region_at(first);
 320   // The header of the new object will be placed at the bottom of
 321   // the first region.
 322   HeapWord* new_obj = first_hr->bottom();
 323   // This will be the new top of the new object.
 324   HeapWord* obj_top = new_obj + word_size;
 325 
 326   // First, we need to zero the header of the space that we will be
 327   // allocating. When we update top further down, some refinement
 328   // threads might try to scan the region. By zeroing the header we
 329   // ensure that any thread that will try to scan the region will
 330   // come across the zero klass word and bail out.
 331   //
 332   // NOTE: It would not have been correct to have used
 333   // CollectedHeap::fill_with_object() and make the space look like
 334   // an int array. The thread that is doing the allocation will
 335   // later update the object header to a potentially different array
 336   // type and, for a very short period of time, the klass and length
 337   // fields will be inconsistent. This could cause a refinement
 338   // thread to calculate the object size incorrectly.
 339   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 340 
 341   // We will set up the first region as "starts humongous". This
 342   // will also update the BOT covering all the regions to reflect
 343   // that there is a single object that starts at the bottom of the
 344   // first region.
 345   first_hr->set_starts_humongous(obj_top);
 346   first_hr->set_allocation_context(context);
 347   // Then, if there are any, we will set up the "continues
 348   // humongous" regions.
 349   HeapRegion* hr = NULL;
 350   for (uint i = first + 1; i < last; ++i) {
 351     hr = region_at(i);
 352     hr->set_continues_humongous(first_hr);
 353     hr->set_allocation_context(context);
 354   }
 355 
 356   // Up to this point no concurrent thread would have been able to
 357   // do any scanning on any region in this series. All the top
 358   // fields still point to bottom, so the intersection between
 359   // [bottom,top] and [card_start,card_end] will be empty. Before we
 360   // update the top fields, we'll do a storestore to make sure that
 361   // no thread sees the update to top before the zeroing of the
 362   // object header and the BOT initialization.
 363   OrderAccess::storestore();
 364 
 365   // Now that the BOT and the object header have been initialized,
 366   // we can update top of the "starts humongous" region.
 367   first_hr->set_top(MIN2(first_hr->end(), obj_top));
 368   if (_hr_printer.is_active()) {
 369     if ((first + 1) == last) {
 370       // the series has a single humongous region
 371       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, obj_top);
 372     } else {
 373       // the series has more than one humongous regions
 374       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, first_hr->end());
 375     }
 376   }
 377 
 378   // Now, we will update the top fields of the "continues humongous"
 379   // regions. The reason we need to do this is that, otherwise,
 380   // these regions would look empty and this will confuse parts of
 381   // G1. For example, the code that looks for a consecutive number
 382   // of empty regions will consider them empty and try to
 383   // re-allocate them. We can extend is_empty() to also include
 384   // !is_continues_humongous(), but it is easier to just update the top
 385   // fields here. The way we set top for all regions (i.e., top ==
 386   // end for all regions but the last one, top == new_top for the
 387   // last one) is actually used when we will free up the humongous
 388   // region in free_humongous_region().
 389   hr = NULL;
 390   for (uint i = first + 1; i < last; ++i) {
 391     hr = region_at(i);
 392     if ((i + 1) == last) {
 393       // last continues humongous region
 394       assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 395              "new_top should fall on this region");
 396       hr->set_top(obj_top);
 397       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, obj_top);
 398     } else {
 399       // not last one
 400       assert(obj_top > hr->end(), "obj_top should be above this region");
 401       hr->set_top(hr->end());
 402       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 403     }
 404   }
 405   // If we have continues humongous regions (hr != NULL), its top should
 406   // match obj_top.
 407   assert(hr == NULL || (hr->top() == obj_top), "sanity");
 408   check_bitmaps("Humongous Region Allocation", first_hr);
 409 
 410   increase_used(word_size * HeapWordSize);
 411 
 412   for (uint i = first; i < last; ++i) {
 413     _humongous_set.add(region_at(i));
 414   }
 415 
 416   return new_obj;
 417 }
 418 
 419 // If could fit into free regions w/o expansion, try.
 420 // Otherwise, if can expand, do so.
 421 // Otherwise, if using ex regions might help, try with ex given back.
 422 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 423   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 424 
 425   verify_region_sets_optional();
 426 
 427   uint first = G1_NO_HRM_INDEX;
 428   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 429 
 430   if (obj_regions == 1) {
 431     // Only one region to allocate, try to use a fast path by directly allocating
 432     // from the free lists. Do not try to expand here, we will potentially do that
 433     // later.
 434     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 435     if (hr != NULL) {
 436       first = hr->hrm_index();
 437     }
 438   } else {
 439     // We can't allocate humongous regions spanning more than one region while
 440     // cleanupComplete() is running, since some of the regions we find to be
 441     // empty might not yet be added to the free list. It is not straightforward
 442     // to know in which list they are on so that we can remove them. We only
 443     // need to do this if we need to allocate more than one region to satisfy the
 444     // current humongous allocation request. If we are only allocating one region
 445     // we use the one-region region allocation code (see above), that already
 446     // potentially waits for regions from the secondary free list.
 447     wait_while_free_regions_coming();
 448     append_secondary_free_list_if_not_empty_with_lock();
 449 
 450     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 451     // are lucky enough to find some.
 452     first = _hrm.find_contiguous_only_empty(obj_regions);
 453     if (first != G1_NO_HRM_INDEX) {
 454       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 455     }
 456   }
 457 
 458   if (first == G1_NO_HRM_INDEX) {
 459     // Policy: We could not find enough regions for the humongous object in the
 460     // free list. Look through the heap to find a mix of free and uncommitted regions.
 461     // If so, try expansion.
 462     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 463     if (first != G1_NO_HRM_INDEX) {
 464       // We found something. Make sure these regions are committed, i.e. expand
 465       // the heap. Alternatively we could do a defragmentation GC.
 466       ergo_verbose1(ErgoHeapSizing,
 467                     "attempt heap expansion",
 468                     ergo_format_reason("humongous allocation request failed")
 469                     ergo_format_byte("allocation request"),
 470                     word_size * HeapWordSize);
 471 
 472       _hrm.expand_at(first, obj_regions);
 473       g1_policy()->record_new_heap_size(num_regions());
 474 
 475 #ifdef ASSERT
 476       for (uint i = first; i < first + obj_regions; ++i) {
 477         HeapRegion* hr = region_at(i);
 478         assert(hr->is_free(), "sanity");
 479         assert(hr->is_empty(), "sanity");
 480         assert(is_on_master_free_list(hr), "sanity");
 481       }
 482 #endif
 483       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 484     } else {
 485       // Policy: Potentially trigger a defragmentation GC.
 486     }
 487   }
 488 
 489   HeapWord* result = NULL;
 490   if (first != G1_NO_HRM_INDEX) {
 491     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 492                                                        word_size, context);
 493     assert(result != NULL, "it should always return a valid result");
 494 
 495     // A successful humongous object allocation changes the used space
 496     // information of the old generation so we need to recalculate the
 497     // sizes and update the jstat counters here.
 498     g1mm()->update_sizes();
 499   }
 500 
 501   verify_region_sets_optional();
 502 
 503   return result;
 504 }
 505 
 506 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 507   assert_heap_not_locked_and_not_at_safepoint();
 508   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 509 
 510   uint dummy_gc_count_before;
 511   uint dummy_gclocker_retry_count = 0;
 512   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 513 }
 514 
 515 HeapWord*
 516 G1CollectedHeap::mem_allocate(size_t word_size,
 517                               bool*  gc_overhead_limit_was_exceeded) {
 518   assert_heap_not_locked_and_not_at_safepoint();
 519 
 520   // Loop until the allocation is satisfied, or unsatisfied after GC.
 521   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 522     uint gc_count_before;
 523 
 524     HeapWord* result = NULL;
 525     if (!is_humongous(word_size)) {
 526       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 527     } else {
 528       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 529     }
 530     if (result != NULL) {
 531       return result;
 532     }
 533 
 534     // Create the garbage collection operation...
 535     VM_G1CollectForAllocation op(gc_count_before, word_size);
 536     op.set_allocation_context(AllocationContext::current());
 537 
 538     // ...and get the VM thread to execute it.
 539     VMThread::execute(&op);
 540 
 541     if (op.prologue_succeeded() && op.pause_succeeded()) {
 542       // If the operation was successful we'll return the result even
 543       // if it is NULL. If the allocation attempt failed immediately
 544       // after a Full GC, it's unlikely we'll be able to allocate now.
 545       HeapWord* result = op.result();
 546       if (result != NULL && !is_humongous(word_size)) {
 547         // Allocations that take place on VM operations do not do any
 548         // card dirtying and we have to do it here. We only have to do
 549         // this for non-humongous allocations, though.
 550         dirty_young_block(result, word_size);
 551       }
 552       return result;
 553     } else {
 554       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 555         return NULL;
 556       }
 557       assert(op.result() == NULL,
 558              "the result should be NULL if the VM op did not succeed");
 559     }
 560 
 561     // Give a warning if we seem to be looping forever.
 562     if ((QueuedAllocationWarningCount > 0) &&
 563         (try_count % QueuedAllocationWarningCount == 0)) {
 564       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 565     }
 566   }
 567 
 568   ShouldNotReachHere();
 569   return NULL;
 570 }
 571 
 572 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 573                                                    AllocationContext_t context,
 574                                                    uint* gc_count_before_ret,
 575                                                    uint* gclocker_retry_count_ret) {
 576   // Make sure you read the note in attempt_allocation_humongous().
 577 
 578   assert_heap_not_locked_and_not_at_safepoint();
 579   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 580          "be called for humongous allocation requests");
 581 
 582   // We should only get here after the first-level allocation attempt
 583   // (attempt_allocation()) failed to allocate.
 584 
 585   // We will loop until a) we manage to successfully perform the
 586   // allocation or b) we successfully schedule a collection which
 587   // fails to perform the allocation. b) is the only case when we'll
 588   // return NULL.
 589   HeapWord* result = NULL;
 590   for (int try_count = 1; /* we'll return */; try_count += 1) {
 591     bool should_try_gc;
 592     uint gc_count_before;
 593 
 594     {
 595       MutexLockerEx x(Heap_lock);
 596       result = _allocator->attempt_allocation_locked(word_size, context);
 597       if (result != NULL) {
 598         return result;
 599       }
 600 
 601       if (GC_locker::is_active_and_needs_gc()) {
 602         if (g1_policy()->can_expand_young_list()) {
 603           // No need for an ergo verbose message here,
 604           // can_expand_young_list() does this when it returns true.
 605           result = _allocator->attempt_allocation_force(word_size, context);
 606           if (result != NULL) {
 607             return result;
 608           }
 609         }
 610         should_try_gc = false;
 611       } else {
 612         // The GCLocker may not be active but the GCLocker initiated
 613         // GC may not yet have been performed (GCLocker::needs_gc()
 614         // returns true). In this case we do not try this GC and
 615         // wait until the GCLocker initiated GC is performed, and
 616         // then retry the allocation.
 617         if (GC_locker::needs_gc()) {
 618           should_try_gc = false;
 619         } else {
 620           // Read the GC count while still holding the Heap_lock.
 621           gc_count_before = total_collections();
 622           should_try_gc = true;
 623         }
 624       }
 625     }
 626 
 627     if (should_try_gc) {
 628       bool succeeded;
 629       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 630                                    GCCause::_g1_inc_collection_pause);
 631       if (result != NULL) {
 632         assert(succeeded, "only way to get back a non-NULL result");
 633         return result;
 634       }
 635 
 636       if (succeeded) {
 637         // If we get here we successfully scheduled a collection which
 638         // failed to allocate. No point in trying to allocate
 639         // further. We'll just return NULL.
 640         MutexLockerEx x(Heap_lock);
 641         *gc_count_before_ret = total_collections();
 642         return NULL;
 643       }
 644     } else {
 645       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 646         MutexLockerEx x(Heap_lock);
 647         *gc_count_before_ret = total_collections();
 648         return NULL;
 649       }
 650       // The GCLocker is either active or the GCLocker initiated
 651       // GC has not yet been performed. Stall until it is and
 652       // then retry the allocation.
 653       GC_locker::stall_until_clear();
 654       (*gclocker_retry_count_ret) += 1;
 655     }
 656 
 657     // We can reach here if we were unsuccessful in scheduling a
 658     // collection (because another thread beat us to it) or if we were
 659     // stalled due to the GC locker. In either can we should retry the
 660     // allocation attempt in case another thread successfully
 661     // performed a collection and reclaimed enough space. We do the
 662     // first attempt (without holding the Heap_lock) here and the
 663     // follow-on attempt will be at the start of the next loop
 664     // iteration (after taking the Heap_lock).
 665     result = _allocator->attempt_allocation(word_size, context);
 666     if (result != NULL) {
 667       return result;
 668     }
 669 
 670     // Give a warning if we seem to be looping forever.
 671     if ((QueuedAllocationWarningCount > 0) &&
 672         (try_count % QueuedAllocationWarningCount == 0)) {
 673       warning("G1CollectedHeap::attempt_allocation_slow() "
 674               "retries %d times", try_count);
 675     }
 676   }
 677 
 678   ShouldNotReachHere();
 679   return NULL;
 680 }
 681 
 682 void G1CollectedHeap::begin_archive_alloc_range() {
 683   assert_at_safepoint(true /* should_be_vm_thread */);
 684   if (_archive_allocator == NULL) {
 685     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 686   }
 687 }
 688 
 689 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 690   // Allocations in archive regions cannot be of a size that would be considered
 691   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 692   // may be different at archive-restore time.
 693   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 694 }
 695 
 696 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 697   assert_at_safepoint(true /* should_be_vm_thread */);
 698   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 699   if (is_archive_alloc_too_large(word_size)) {
 700     return NULL;
 701   }
 702   return _archive_allocator->archive_mem_allocate(word_size);
 703 }
 704 
 705 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 706                                               size_t end_alignment_in_bytes) {
 707   assert_at_safepoint(true /* should_be_vm_thread */);
 708   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 709 
 710   // Call complete_archive to do the real work, filling in the MemRegion
 711   // array with the archive regions.
 712   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 713   delete _archive_allocator;
 714   _archive_allocator = NULL;
 715 }
 716 
 717 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 718   assert(ranges != NULL, "MemRegion array NULL");
 719   assert(count != 0, "No MemRegions provided");
 720   MemRegion reserved = _hrm.reserved();
 721   for (size_t i = 0; i < count; i++) {
 722     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 723       return false;
 724     }
 725   }
 726   return true;
 727 }
 728 
 729 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 730   assert(!is_init_completed(), "Expect to be called at JVM init time");
 731   assert(ranges != NULL, "MemRegion array NULL");
 732   assert(count != 0, "No MemRegions provided");
 733   MutexLockerEx x(Heap_lock);
 734 
 735   MemRegion reserved = _hrm.reserved();
 736   HeapWord* prev_last_addr = NULL;
 737   HeapRegion* prev_last_region = NULL;
 738 
 739   // Temporarily disable pretouching of heap pages. This interface is used
 740   // when mmap'ing archived heap data in, so pre-touching is wasted.
 741   FlagSetting fs(AlwaysPreTouch, false);
 742 
 743   // Enable archive object checking in G1MarkSweep. We have to let it know
 744   // about each archive range, so that objects in those ranges aren't marked.
 745   G1MarkSweep::enable_archive_object_check();
 746 
 747   // For each specified MemRegion range, allocate the corresponding G1
 748   // regions and mark them as archive regions. We expect the ranges in
 749   // ascending starting address order, without overlap.
 750   for (size_t i = 0; i < count; i++) {
 751     MemRegion curr_range = ranges[i];
 752     HeapWord* start_address = curr_range.start();
 753     size_t word_size = curr_range.word_size();
 754     HeapWord* last_address = curr_range.last();
 755     size_t commits = 0;
 756 
 757     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 758               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 759               p2i(start_address), p2i(last_address));
 760     guarantee(start_address > prev_last_addr,
 761               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 762               p2i(start_address), p2i(prev_last_addr));
 763     prev_last_addr = last_address;
 764 
 765     // Check for ranges that start in the same G1 region in which the previous
 766     // range ended, and adjust the start address so we don't try to allocate
 767     // the same region again. If the current range is entirely within that
 768     // region, skip it, just adjusting the recorded top.
 769     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 770     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 771       start_address = start_region->end();
 772       if (start_address > last_address) {
 773         increase_used(word_size * HeapWordSize);
 774         start_region->set_top(last_address + 1);
 775         continue;
 776       }
 777       start_region->set_top(start_address);
 778       curr_range = MemRegion(start_address, last_address + 1);
 779       start_region = _hrm.addr_to_region(start_address);
 780     }
 781 
 782     // Perform the actual region allocation, exiting if it fails.
 783     // Then note how much new space we have allocated.
 784     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
 785       return false;
 786     }
 787     increase_used(word_size * HeapWordSize);
 788     if (commits != 0) {
 789       ergo_verbose1(ErgoHeapSizing,
 790                     "attempt heap expansion",
 791                     ergo_format_reason("allocate archive regions")
 792                     ergo_format_byte("total size"),
 793                     HeapRegion::GrainWords * HeapWordSize * commits);
 794     }
 795 
 796     // Mark each G1 region touched by the range as archive, add it to the old set,
 797     // and set the allocation context and top.
 798     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 799     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 800     prev_last_region = last_region;
 801 
 802     while (curr_region != NULL) {
 803       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 804              "Region already in use (index %u)", curr_region->hrm_index());
 805       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
 806       curr_region->set_allocation_context(AllocationContext::system());
 807       curr_region->set_archive();
 808       _old_set.add(curr_region);
 809       if (curr_region != last_region) {
 810         curr_region->set_top(curr_region->end());
 811         curr_region = _hrm.next_region_in_heap(curr_region);
 812       } else {
 813         curr_region->set_top(last_address + 1);
 814         curr_region = NULL;
 815       }
 816     }
 817 
 818     // Notify mark-sweep of the archive range.
 819     G1MarkSweep::set_range_archive(curr_range, true);
 820   }
 821   return true;
 822 }
 823 
 824 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 825   assert(!is_init_completed(), "Expect to be called at JVM init time");
 826   assert(ranges != NULL, "MemRegion array NULL");
 827   assert(count != 0, "No MemRegions provided");
 828   MemRegion reserved = _hrm.reserved();
 829   HeapWord *prev_last_addr = NULL;
 830   HeapRegion* prev_last_region = NULL;
 831 
 832   // For each MemRegion, create filler objects, if needed, in the G1 regions
 833   // that contain the address range. The address range actually within the
 834   // MemRegion will not be modified. That is assumed to have been initialized
 835   // elsewhere, probably via an mmap of archived heap data.
 836   MutexLockerEx x(Heap_lock);
 837   for (size_t i = 0; i < count; i++) {
 838     HeapWord* start_address = ranges[i].start();
 839     HeapWord* last_address = ranges[i].last();
 840 
 841     assert(reserved.contains(start_address) && reserved.contains(last_address),
 842            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 843            p2i(start_address), p2i(last_address));
 844     assert(start_address > prev_last_addr,
 845            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 846            p2i(start_address), p2i(prev_last_addr));
 847 
 848     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 849     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 850     HeapWord* bottom_address = start_region->bottom();
 851 
 852     // Check for a range beginning in the same region in which the
 853     // previous one ended.
 854     if (start_region == prev_last_region) {
 855       bottom_address = prev_last_addr + 1;
 856     }
 857 
 858     // Verify that the regions were all marked as archive regions by
 859     // alloc_archive_regions.
 860     HeapRegion* curr_region = start_region;
 861     while (curr_region != NULL) {
 862       guarantee(curr_region->is_archive(),
 863                 "Expected archive region at index %u", curr_region->hrm_index());
 864       if (curr_region != last_region) {
 865         curr_region = _hrm.next_region_in_heap(curr_region);
 866       } else {
 867         curr_region = NULL;
 868       }
 869     }
 870 
 871     prev_last_addr = last_address;
 872     prev_last_region = last_region;
 873 
 874     // Fill the memory below the allocated range with dummy object(s),
 875     // if the region bottom does not match the range start, or if the previous
 876     // range ended within the same G1 region, and there is a gap.
 877     if (start_address != bottom_address) {
 878       size_t fill_size = pointer_delta(start_address, bottom_address);
 879       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 880       increase_used(fill_size * HeapWordSize);
 881     }
 882   }
 883 }
 884 
 885 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 886                                                      uint* gc_count_before_ret,
 887                                                      uint* gclocker_retry_count_ret) {
 888   assert_heap_not_locked_and_not_at_safepoint();
 889   assert(!is_humongous(word_size), "attempt_allocation() should not "
 890          "be called for humongous allocation requests");
 891 
 892   AllocationContext_t context = AllocationContext::current();
 893   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 894 
 895   if (result == NULL) {
 896     result = attempt_allocation_slow(word_size,
 897                                      context,
 898                                      gc_count_before_ret,
 899                                      gclocker_retry_count_ret);
 900   }
 901   assert_heap_not_locked();
 902   if (result != NULL) {
 903     dirty_young_block(result, word_size);
 904   }
 905   return result;
 906 }
 907 
 908 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 909   assert(!is_init_completed(), "Expect to be called at JVM init time");
 910   assert(ranges != NULL, "MemRegion array NULL");
 911   assert(count != 0, "No MemRegions provided");
 912   MemRegion reserved = _hrm.reserved();
 913   HeapWord* prev_last_addr = NULL;
 914   HeapRegion* prev_last_region = NULL;
 915   size_t size_used = 0;
 916   size_t uncommitted_regions = 0;
 917 
 918   // For each Memregion, free the G1 regions that constitute it, and
 919   // notify mark-sweep that the range is no longer to be considered 'archive.'
 920   MutexLockerEx x(Heap_lock);
 921   for (size_t i = 0; i < count; i++) {
 922     HeapWord* start_address = ranges[i].start();
 923     HeapWord* last_address = ranges[i].last();
 924 
 925     assert(reserved.contains(start_address) && reserved.contains(last_address),
 926            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 927            p2i(start_address), p2i(last_address));
 928     assert(start_address > prev_last_addr,
 929            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 930            p2i(start_address), p2i(prev_last_addr));
 931     size_used += ranges[i].byte_size();
 932     prev_last_addr = last_address;
 933 
 934     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 935     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 936 
 937     // Check for ranges that start in the same G1 region in which the previous
 938     // range ended, and adjust the start address so we don't try to free
 939     // the same region again. If the current range is entirely within that
 940     // region, skip it.
 941     if (start_region == prev_last_region) {
 942       start_address = start_region->end();
 943       if (start_address > last_address) {
 944         continue;
 945       }
 946       start_region = _hrm.addr_to_region(start_address);
 947     }
 948     prev_last_region = last_region;
 949 
 950     // After verifying that each region was marked as an archive region by
 951     // alloc_archive_regions, set it free and empty and uncommit it.
 952     HeapRegion* curr_region = start_region;
 953     while (curr_region != NULL) {
 954       guarantee(curr_region->is_archive(),
 955                 "Expected archive region at index %u", curr_region->hrm_index());
 956       uint curr_index = curr_region->hrm_index();
 957       _old_set.remove(curr_region);
 958       curr_region->set_free();
 959       curr_region->set_top(curr_region->bottom());
 960       if (curr_region != last_region) {
 961         curr_region = _hrm.next_region_in_heap(curr_region);
 962       } else {
 963         curr_region = NULL;
 964       }
 965       _hrm.shrink_at(curr_index, 1);
 966       uncommitted_regions++;
 967     }
 968 
 969     // Notify mark-sweep that this is no longer an archive range.
 970     G1MarkSweep::set_range_archive(ranges[i], false);
 971   }
 972 
 973   if (uncommitted_regions != 0) {
 974     ergo_verbose1(ErgoHeapSizing,
 975                   "attempt heap shrinking",
 976                   ergo_format_reason("uncommitted archive regions")
 977                   ergo_format_byte("total size"),
 978                   HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 979   }
 980   decrease_used(size_used);
 981 }
 982 
 983 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 984                                                         uint* gc_count_before_ret,
 985                                                         uint* gclocker_retry_count_ret) {
 986   // The structure of this method has a lot of similarities to
 987   // attempt_allocation_slow(). The reason these two were not merged
 988   // into a single one is that such a method would require several "if
 989   // allocation is not humongous do this, otherwise do that"
 990   // conditional paths which would obscure its flow. In fact, an early
 991   // version of this code did use a unified method which was harder to
 992   // follow and, as a result, it had subtle bugs that were hard to
 993   // track down. So keeping these two methods separate allows each to
 994   // be more readable. It will be good to keep these two in sync as
 995   // much as possible.
 996 
 997   assert_heap_not_locked_and_not_at_safepoint();
 998   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 999          "should only be called for humongous allocations");
1000 
1001   // Humongous objects can exhaust the heap quickly, so we should check if we
1002   // need to start a marking cycle at each humongous object allocation. We do
1003   // the check before we do the actual allocation. The reason for doing it
1004   // before the allocation is that we avoid having to keep track of the newly
1005   // allocated memory while we do a GC.
1006   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1007                                            word_size)) {
1008     collect(GCCause::_g1_humongous_allocation);
1009   }
1010 
1011   // We will loop until a) we manage to successfully perform the
1012   // allocation or b) we successfully schedule a collection which
1013   // fails to perform the allocation. b) is the only case when we'll
1014   // return NULL.
1015   HeapWord* result = NULL;
1016   for (int try_count = 1; /* we'll return */; try_count += 1) {
1017     bool should_try_gc;
1018     uint gc_count_before;
1019 
1020     {
1021       MutexLockerEx x(Heap_lock);
1022 
1023       // Given that humongous objects are not allocated in young
1024       // regions, we'll first try to do the allocation without doing a
1025       // collection hoping that there's enough space in the heap.
1026       result = humongous_obj_allocate(word_size, AllocationContext::current());
1027       if (result != NULL) {
1028         return result;
1029       }
1030 
1031       if (GC_locker::is_active_and_needs_gc()) {
1032         should_try_gc = false;
1033       } else {
1034          // The GCLocker may not be active but the GCLocker initiated
1035         // GC may not yet have been performed (GCLocker::needs_gc()
1036         // returns true). In this case we do not try this GC and
1037         // wait until the GCLocker initiated GC is performed, and
1038         // then retry the allocation.
1039         if (GC_locker::needs_gc()) {
1040           should_try_gc = false;
1041         } else {
1042           // Read the GC count while still holding the Heap_lock.
1043           gc_count_before = total_collections();
1044           should_try_gc = true;
1045         }
1046       }
1047     }
1048 
1049     if (should_try_gc) {
1050       // If we failed to allocate the humongous object, we should try to
1051       // do a collection pause (if we're allowed) in case it reclaims
1052       // enough space for the allocation to succeed after the pause.
1053 
1054       bool succeeded;
1055       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1056                                    GCCause::_g1_humongous_allocation);
1057       if (result != NULL) {
1058         assert(succeeded, "only way to get back a non-NULL result");
1059         return result;
1060       }
1061 
1062       if (succeeded) {
1063         // If we get here we successfully scheduled a collection which
1064         // failed to allocate. No point in trying to allocate
1065         // further. We'll just return NULL.
1066         MutexLockerEx x(Heap_lock);
1067         *gc_count_before_ret = total_collections();
1068         return NULL;
1069       }
1070     } else {
1071       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1072         MutexLockerEx x(Heap_lock);
1073         *gc_count_before_ret = total_collections();
1074         return NULL;
1075       }
1076       // The GCLocker is either active or the GCLocker initiated
1077       // GC has not yet been performed. Stall until it is and
1078       // then retry the allocation.
1079       GC_locker::stall_until_clear();
1080       (*gclocker_retry_count_ret) += 1;
1081     }
1082 
1083     // We can reach here if we were unsuccessful in scheduling a
1084     // collection (because another thread beat us to it) or if we were
1085     // stalled due to the GC locker. In either can we should retry the
1086     // allocation attempt in case another thread successfully
1087     // performed a collection and reclaimed enough space.  Give a
1088     // warning if we seem to be looping forever.
1089 
1090     if ((QueuedAllocationWarningCount > 0) &&
1091         (try_count % QueuedAllocationWarningCount == 0)) {
1092       warning("G1CollectedHeap::attempt_allocation_humongous() "
1093               "retries %d times", try_count);
1094     }
1095   }
1096 
1097   ShouldNotReachHere();
1098   return NULL;
1099 }
1100 
1101 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1102                                                            AllocationContext_t context,
1103                                                            bool expect_null_mutator_alloc_region) {
1104   assert_at_safepoint(true /* should_be_vm_thread */);
1105   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1106          "the current alloc region was unexpectedly found to be non-NULL");
1107 
1108   if (!is_humongous(word_size)) {
1109     return _allocator->attempt_allocation_locked(word_size, context);
1110   } else {
1111     HeapWord* result = humongous_obj_allocate(word_size, context);
1112     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1113       collector_state()->set_initiate_conc_mark_if_possible(true);
1114     }
1115     return result;
1116   }
1117 
1118   ShouldNotReachHere();
1119 }
1120 
1121 class PostMCRemSetClearClosure: public HeapRegionClosure {
1122   G1CollectedHeap* _g1h;
1123   ModRefBarrierSet* _mr_bs;
1124 public:
1125   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1126     _g1h(g1h), _mr_bs(mr_bs) {}
1127 
1128   bool doHeapRegion(HeapRegion* r) {
1129     HeapRegionRemSet* hrrs = r->rem_set();
1130 
1131     _g1h->reset_gc_time_stamps(r);
1132 
1133     if (r->is_continues_humongous()) {
1134       // We'll assert that the strong code root list and RSet is empty
1135       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1136       assert(hrrs->occupied() == 0, "RSet should be empty");
1137       return false;
1138     }
1139 
1140     hrrs->clear();
1141     // You might think here that we could clear just the cards
1142     // corresponding to the used region.  But no: if we leave a dirty card
1143     // in a region we might allocate into, then it would prevent that card
1144     // from being enqueued, and cause it to be missed.
1145     // Re: the performance cost: we shouldn't be doing full GC anyway!
1146     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1147 
1148     return false;
1149   }
1150 };
1151 
1152 void G1CollectedHeap::clear_rsets_post_compaction() {
1153   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1154   heap_region_iterate(&rs_clear);
1155 }
1156 
1157 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1158   G1CollectedHeap*   _g1h;
1159   UpdateRSOopClosure _cl;
1160 public:
1161   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1162     _cl(g1->g1_rem_set(), worker_i),
1163     _g1h(g1)
1164   { }
1165 
1166   bool doHeapRegion(HeapRegion* r) {
1167     if (!r->is_continues_humongous()) {
1168       _cl.set_from(r);
1169       r->oop_iterate(&_cl);
1170     }
1171     return false;
1172   }
1173 };
1174 
1175 class ParRebuildRSTask: public AbstractGangTask {
1176   G1CollectedHeap* _g1;
1177   HeapRegionClaimer _hrclaimer;
1178 
1179 public:
1180   ParRebuildRSTask(G1CollectedHeap* g1) :
1181       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1182 
1183   void work(uint worker_id) {
1184     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1185     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1186   }
1187 };
1188 
1189 class PostCompactionPrinterClosure: public HeapRegionClosure {
1190 private:
1191   G1HRPrinter* _hr_printer;
1192 public:
1193   bool doHeapRegion(HeapRegion* hr) {
1194     assert(!hr->is_young(), "not expecting to find young regions");
1195     if (hr->is_free()) {
1196       // We only generate output for non-empty regions.
1197     } else if (hr->is_starts_humongous()) {
1198       _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1199     } else if (hr->is_continues_humongous()) {
1200       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1201     } else if (hr->is_archive()) {
1202       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1203     } else if (hr->is_old()) {
1204       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1205     } else {
1206       ShouldNotReachHere();
1207     }
1208     return false;
1209   }
1210 
1211   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1212     : _hr_printer(hr_printer) { }
1213 };
1214 
1215 void G1CollectedHeap::print_hrm_post_compaction() {
1216   PostCompactionPrinterClosure cl(hr_printer());
1217   heap_region_iterate(&cl);
1218 }
1219 
1220 bool G1CollectedHeap::do_collection(bool explicit_gc,
1221                                     bool clear_all_soft_refs,
1222                                     size_t word_size) {
1223   assert_at_safepoint(true /* should_be_vm_thread */);
1224 
1225   if (GC_locker::check_active_before_gc()) {
1226     return false;
1227   }
1228 
1229   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1230   gc_timer->register_gc_start();
1231 
1232   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1233   GCIdMark gc_id_mark;
1234   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1235 
1236   SvcGCMarker sgcm(SvcGCMarker::FULL);
1237   ResourceMark rm;
1238 
1239   G1Log::update_level();
1240   print_heap_before_gc();
1241   trace_heap_before_gc(gc_tracer);
1242 
1243   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1244 
1245   verify_region_sets_optional();
1246 
1247   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1248                            collector_policy()->should_clear_all_soft_refs();
1249 
1250   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1251 
1252   {
1253     IsGCActiveMark x;
1254 
1255     // Timing
1256     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1257     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1258 
1259     {
1260       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1261       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1262       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1263 
1264       g1_policy()->record_full_collection_start();
1265 
1266       // Note: When we have a more flexible GC logging framework that
1267       // allows us to add optional attributes to a GC log record we
1268       // could consider timing and reporting how long we wait in the
1269       // following two methods.
1270       wait_while_free_regions_coming();
1271       // If we start the compaction before the CM threads finish
1272       // scanning the root regions we might trip them over as we'll
1273       // be moving objects / updating references. So let's wait until
1274       // they are done. By telling them to abort, they should complete
1275       // early.
1276       _cm->root_regions()->abort();
1277       _cm->root_regions()->wait_until_scan_finished();
1278       append_secondary_free_list_if_not_empty_with_lock();
1279 
1280       gc_prologue(true);
1281       increment_total_collections(true /* full gc */);
1282       increment_old_marking_cycles_started();
1283 
1284       assert(used() == recalculate_used(), "Should be equal");
1285 
1286       verify_before_gc();
1287 
1288       check_bitmaps("Full GC Start");
1289       pre_full_gc_dump(gc_timer);
1290 
1291 #if defined(COMPILER2) || INCLUDE_JVMCI
1292       DerivedPointerTable::clear();
1293 #endif
1294 
1295       // Disable discovery and empty the discovered lists
1296       // for the CM ref processor.
1297       ref_processor_cm()->disable_discovery();
1298       ref_processor_cm()->abandon_partial_discovery();
1299       ref_processor_cm()->verify_no_references_recorded();
1300 
1301       // Abandon current iterations of concurrent marking and concurrent
1302       // refinement, if any are in progress. We have to do this before
1303       // wait_until_scan_finished() below.
1304       concurrent_mark()->abort();
1305 
1306       // Make sure we'll choose a new allocation region afterwards.
1307       _allocator->release_mutator_alloc_region();
1308       _allocator->abandon_gc_alloc_regions();
1309       g1_rem_set()->cleanupHRRS();
1310 
1311       // We should call this after we retire any currently active alloc
1312       // regions so that all the ALLOC / RETIRE events are generated
1313       // before the start GC event.
1314       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1315 
1316       // We may have added regions to the current incremental collection
1317       // set between the last GC or pause and now. We need to clear the
1318       // incremental collection set and then start rebuilding it afresh
1319       // after this full GC.
1320       abandon_collection_set(g1_policy()->inc_cset_head());
1321       g1_policy()->clear_incremental_cset();
1322       g1_policy()->stop_incremental_cset_building();
1323 
1324       tear_down_region_sets(false /* free_list_only */);
1325       collector_state()->set_gcs_are_young(true);
1326 
1327       // See the comments in g1CollectedHeap.hpp and
1328       // G1CollectedHeap::ref_processing_init() about
1329       // how reference processing currently works in G1.
1330 
1331       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1332       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1333 
1334       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1335       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1336 
1337       ref_processor_stw()->enable_discovery();
1338       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1339 
1340       // Do collection work
1341       {
1342         HandleMark hm;  // Discard invalid handles created during gc
1343         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1344       }
1345 
1346       assert(num_free_regions() == 0, "we should not have added any free regions");
1347       rebuild_region_sets(false /* free_list_only */);
1348 
1349       // Enqueue any discovered reference objects that have
1350       // not been removed from the discovered lists.
1351       ref_processor_stw()->enqueue_discovered_references();
1352 
1353 #if defined(COMPILER2) || INCLUDE_JVMCI
1354       DerivedPointerTable::update_pointers();
1355 #endif
1356 
1357       MemoryService::track_memory_usage();
1358 
1359       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1360       ref_processor_stw()->verify_no_references_recorded();
1361 
1362       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1363       ClassLoaderDataGraph::purge();
1364       MetaspaceAux::verify_metrics();
1365 
1366       // Note: since we've just done a full GC, concurrent
1367       // marking is no longer active. Therefore we need not
1368       // re-enable reference discovery for the CM ref processor.
1369       // That will be done at the start of the next marking cycle.
1370       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1371       ref_processor_cm()->verify_no_references_recorded();
1372 
1373       reset_gc_time_stamp();
1374       // Since everything potentially moved, we will clear all remembered
1375       // sets, and clear all cards.  Later we will rebuild remembered
1376       // sets. We will also reset the GC time stamps of the regions.
1377       clear_rsets_post_compaction();
1378       check_gc_time_stamps();
1379 
1380       // Resize the heap if necessary.
1381       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1382 
1383       if (_hr_printer.is_active()) {
1384         // We should do this after we potentially resize the heap so
1385         // that all the COMMIT / UNCOMMIT events are generated before
1386         // the end GC event.
1387 
1388         print_hrm_post_compaction();
1389         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1390       }
1391 
1392       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1393       if (hot_card_cache->use_cache()) {
1394         hot_card_cache->reset_card_counts();
1395         hot_card_cache->reset_hot_cache();
1396       }
1397 
1398       // Rebuild remembered sets of all regions.
1399       uint n_workers =
1400         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1401                                                 workers()->active_workers(),
1402                                                 Threads::number_of_non_daemon_threads());
1403       workers()->set_active_workers(n_workers);
1404 
1405       ParRebuildRSTask rebuild_rs_task(this);
1406       workers()->run_task(&rebuild_rs_task);
1407 
1408       // Rebuild the strong code root lists for each region
1409       rebuild_strong_code_roots();
1410 
1411       if (true) { // FIXME
1412         MetaspaceGC::compute_new_size();
1413       }
1414 
1415 #ifdef TRACESPINNING
1416       ParallelTaskTerminator::print_termination_counts();
1417 #endif
1418 
1419       // Discard all rset updates
1420       JavaThread::dirty_card_queue_set().abandon_logs();
1421       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1422 
1423       _young_list->reset_sampled_info();
1424       // At this point there should be no regions in the
1425       // entire heap tagged as young.
1426       assert(check_young_list_empty(true /* check_heap */),
1427              "young list should be empty at this point");
1428 
1429       // Update the number of full collections that have been completed.
1430       increment_old_marking_cycles_completed(false /* concurrent */);
1431 
1432       _hrm.verify_optional();
1433       verify_region_sets_optional();
1434 
1435       verify_after_gc();
1436 
1437       // Clear the previous marking bitmap, if needed for bitmap verification.
1438       // Note we cannot do this when we clear the next marking bitmap in
1439       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1440       // objects marked during a full GC against the previous bitmap.
1441       // But we need to clear it before calling check_bitmaps below since
1442       // the full GC has compacted objects and updated TAMS but not updated
1443       // the prev bitmap.
1444       if (G1VerifyBitmaps) {
1445         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1446       }
1447       check_bitmaps("Full GC End");
1448 
1449       // Start a new incremental collection set for the next pause
1450       assert(g1_policy()->collection_set() == NULL, "must be");
1451       g1_policy()->start_incremental_cset_building();
1452 
1453       clear_cset_fast_test();
1454 
1455       _allocator->init_mutator_alloc_region();
1456 
1457       g1_policy()->record_full_collection_end();
1458 
1459       if (G1Log::fine()) {
1460         g1_policy()->print_heap_transition();
1461       }
1462 
1463       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1464       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1465       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1466       // before any GC notifications are raised.
1467       g1mm()->update_sizes();
1468 
1469       gc_epilogue(true);
1470     }
1471 
1472     if (G1Log::finer()) {
1473       g1_policy()->print_detailed_heap_transition(true /* full */);
1474     }
1475 
1476     print_heap_after_gc();
1477     trace_heap_after_gc(gc_tracer);
1478 
1479     post_full_gc_dump(gc_timer);
1480 
1481     gc_timer->register_gc_end();
1482     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1483   }
1484 
1485   return true;
1486 }
1487 
1488 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1489   // do_collection() will return whether it succeeded in performing
1490   // the GC. Currently, there is no facility on the
1491   // do_full_collection() API to notify the caller than the collection
1492   // did not succeed (e.g., because it was locked out by the GC
1493   // locker). So, right now, we'll ignore the return value.
1494   bool dummy = do_collection(true,                /* explicit_gc */
1495                              clear_all_soft_refs,
1496                              0                    /* word_size */);
1497 }
1498 
1499 // This code is mostly copied from TenuredGeneration.
1500 void
1501 G1CollectedHeap::
1502 resize_if_necessary_after_full_collection(size_t word_size) {
1503   // Include the current allocation, if any, and bytes that will be
1504   // pre-allocated to support collections, as "used".
1505   const size_t used_after_gc = used();
1506   const size_t capacity_after_gc = capacity();
1507   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1508 
1509   // This is enforced in arguments.cpp.
1510   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1511          "otherwise the code below doesn't make sense");
1512 
1513   // We don't have floating point command-line arguments
1514   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1515   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1516   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1517   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1518 
1519   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1520   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1521 
1522   // We have to be careful here as these two calculations can overflow
1523   // 32-bit size_t's.
1524   double used_after_gc_d = (double) used_after_gc;
1525   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1526   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1527 
1528   // Let's make sure that they are both under the max heap size, which
1529   // by default will make them fit into a size_t.
1530   double desired_capacity_upper_bound = (double) max_heap_size;
1531   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1532                                     desired_capacity_upper_bound);
1533   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1534                                     desired_capacity_upper_bound);
1535 
1536   // We can now safely turn them into size_t's.
1537   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1538   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1539 
1540   // This assert only makes sense here, before we adjust them
1541   // with respect to the min and max heap size.
1542   assert(minimum_desired_capacity <= maximum_desired_capacity,
1543          "minimum_desired_capacity = " SIZE_FORMAT ", "
1544          "maximum_desired_capacity = " SIZE_FORMAT,
1545          minimum_desired_capacity, maximum_desired_capacity);
1546 
1547   // Should not be greater than the heap max size. No need to adjust
1548   // it with respect to the heap min size as it's a lower bound (i.e.,
1549   // we'll try to make the capacity larger than it, not smaller).
1550   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1551   // Should not be less than the heap min size. No need to adjust it
1552   // with respect to the heap max size as it's an upper bound (i.e.,
1553   // we'll try to make the capacity smaller than it, not greater).
1554   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1555 
1556   if (capacity_after_gc < minimum_desired_capacity) {
1557     // Don't expand unless it's significant
1558     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1559     ergo_verbose4(ErgoHeapSizing,
1560                   "attempt heap expansion",
1561                   ergo_format_reason("capacity lower than "
1562                                      "min desired capacity after Full GC")
1563                   ergo_format_byte("capacity")
1564                   ergo_format_byte("occupancy")
1565                   ergo_format_byte_perc("min desired capacity"),
1566                   capacity_after_gc, used_after_gc,
1567                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1568     expand(expand_bytes);
1569 
1570     // No expansion, now see if we want to shrink
1571   } else if (capacity_after_gc > maximum_desired_capacity) {
1572     // Capacity too large, compute shrinking size
1573     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1574     ergo_verbose4(ErgoHeapSizing,
1575                   "attempt heap shrinking",
1576                   ergo_format_reason("capacity higher than "
1577                                      "max desired capacity after Full GC")
1578                   ergo_format_byte("capacity")
1579                   ergo_format_byte("occupancy")
1580                   ergo_format_byte_perc("max desired capacity"),
1581                   capacity_after_gc, used_after_gc,
1582                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1583     shrink(shrink_bytes);
1584   }
1585 }
1586 
1587 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1588                                                             AllocationContext_t context,
1589                                                             bool do_gc,
1590                                                             bool clear_all_soft_refs,
1591                                                             bool expect_null_mutator_alloc_region,
1592                                                             bool* gc_succeeded) {
1593   *gc_succeeded = true;
1594   // Let's attempt the allocation first.
1595   HeapWord* result =
1596     attempt_allocation_at_safepoint(word_size,
1597                                     context,
1598                                     expect_null_mutator_alloc_region);
1599   if (result != NULL) {
1600     assert(*gc_succeeded, "sanity");
1601     return result;
1602   }
1603 
1604   // In a G1 heap, we're supposed to keep allocation from failing by
1605   // incremental pauses.  Therefore, at least for now, we'll favor
1606   // expansion over collection.  (This might change in the future if we can
1607   // do something smarter than full collection to satisfy a failed alloc.)
1608   result = expand_and_allocate(word_size, context);
1609   if (result != NULL) {
1610     assert(*gc_succeeded, "sanity");
1611     return result;
1612   }
1613 
1614   if (do_gc) {
1615     // Expansion didn't work, we'll try to do a Full GC.
1616     *gc_succeeded = do_collection(false, /* explicit_gc */
1617                                   clear_all_soft_refs,
1618                                   word_size);
1619   }
1620 
1621   return NULL;
1622 }
1623 
1624 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1625                                                      AllocationContext_t context,
1626                                                      bool* succeeded) {
1627   assert_at_safepoint(true /* should_be_vm_thread */);
1628 
1629   // Attempts to allocate followed by Full GC.
1630   HeapWord* result =
1631     satisfy_failed_allocation_helper(word_size,
1632                                      context,
1633                                      true,  /* do_gc */
1634                                      false, /* clear_all_soft_refs */
1635                                      false, /* expect_null_mutator_alloc_region */
1636                                      succeeded);
1637 
1638   if (result != NULL || !*succeeded) {
1639     return result;
1640   }
1641 
1642   // Attempts to allocate followed by Full GC that will collect all soft references.
1643   result = satisfy_failed_allocation_helper(word_size,
1644                                             context,
1645                                             true, /* do_gc */
1646                                             true, /* clear_all_soft_refs */
1647                                             true, /* expect_null_mutator_alloc_region */
1648                                             succeeded);
1649 
1650   if (result != NULL || !*succeeded) {
1651     return result;
1652   }
1653 
1654   // Attempts to allocate, no GC
1655   result = satisfy_failed_allocation_helper(word_size,
1656                                             context,
1657                                             false, /* do_gc */
1658                                             false, /* clear_all_soft_refs */
1659                                             true,  /* expect_null_mutator_alloc_region */
1660                                             succeeded);
1661 
1662   if (result != NULL) {
1663     assert(*succeeded, "sanity");
1664     return result;
1665   }
1666 
1667   assert(!collector_policy()->should_clear_all_soft_refs(),
1668          "Flag should have been handled and cleared prior to this point");
1669 
1670   // What else?  We might try synchronous finalization later.  If the total
1671   // space available is large enough for the allocation, then a more
1672   // complete compaction phase than we've tried so far might be
1673   // appropriate.
1674   assert(*succeeded, "sanity");
1675   return NULL;
1676 }
1677 
1678 // Attempting to expand the heap sufficiently
1679 // to support an allocation of the given "word_size".  If
1680 // successful, perform the allocation and return the address of the
1681 // allocated block, or else "NULL".
1682 
1683 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1684   assert_at_safepoint(true /* should_be_vm_thread */);
1685 
1686   verify_region_sets_optional();
1687 
1688   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1689   ergo_verbose1(ErgoHeapSizing,
1690                 "attempt heap expansion",
1691                 ergo_format_reason("allocation request failed")
1692                 ergo_format_byte("allocation request"),
1693                 word_size * HeapWordSize);
1694   if (expand(expand_bytes)) {
1695     _hrm.verify_optional();
1696     verify_region_sets_optional();
1697     return attempt_allocation_at_safepoint(word_size,
1698                                            context,
1699                                            false /* expect_null_mutator_alloc_region */);
1700   }
1701   return NULL;
1702 }
1703 
1704 bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) {
1705   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1706   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1707                                        HeapRegion::GrainBytes);
1708   ergo_verbose2(ErgoHeapSizing,
1709                 "expand the heap",
1710                 ergo_format_byte("requested expansion amount")
1711                 ergo_format_byte("attempted expansion amount"),
1712                 expand_bytes, aligned_expand_bytes);
1713 
1714   if (is_maximal_no_gc()) {
1715     ergo_verbose0(ErgoHeapSizing,
1716                       "did not expand the heap",
1717                       ergo_format_reason("heap already fully expanded"));
1718     return false;
1719   }
1720 
1721   double expand_heap_start_time_sec = os::elapsedTime();
1722   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1723   assert(regions_to_expand > 0, "Must expand by at least one region");
1724 
1725   uint expanded_by = _hrm.expand_by(regions_to_expand);
1726   if (expand_time_ms != NULL) {
1727     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1728   }
1729 
1730   if (expanded_by > 0) {
1731     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1732     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1733     g1_policy()->record_new_heap_size(num_regions());
1734   } else {
1735     ergo_verbose0(ErgoHeapSizing,
1736                   "did not expand the heap",
1737                   ergo_format_reason("heap expansion operation failed"));
1738     // The expansion of the virtual storage space was unsuccessful.
1739     // Let's see if it was because we ran out of swap.
1740     if (G1ExitOnExpansionFailure &&
1741         _hrm.available() >= regions_to_expand) {
1742       // We had head room...
1743       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1744     }
1745   }
1746   return regions_to_expand > 0;
1747 }
1748 
1749 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1750   size_t aligned_shrink_bytes =
1751     ReservedSpace::page_align_size_down(shrink_bytes);
1752   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1753                                          HeapRegion::GrainBytes);
1754   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1755 
1756   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1757   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1758 
1759   ergo_verbose3(ErgoHeapSizing,
1760                 "shrink the heap",
1761                 ergo_format_byte("requested shrinking amount")
1762                 ergo_format_byte("aligned shrinking amount")
1763                 ergo_format_byte("attempted shrinking amount"),
1764                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1765   if (num_regions_removed > 0) {
1766     g1_policy()->record_new_heap_size(num_regions());
1767   } else {
1768     ergo_verbose0(ErgoHeapSizing,
1769                   "did not shrink the heap",
1770                   ergo_format_reason("heap shrinking operation failed"));
1771   }
1772 }
1773 
1774 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1775   verify_region_sets_optional();
1776 
1777   // We should only reach here at the end of a Full GC which means we
1778   // should not not be holding to any GC alloc regions. The method
1779   // below will make sure of that and do any remaining clean up.
1780   _allocator->abandon_gc_alloc_regions();
1781 
1782   // Instead of tearing down / rebuilding the free lists here, we
1783   // could instead use the remove_all_pending() method on free_list to
1784   // remove only the ones that we need to remove.
1785   tear_down_region_sets(true /* free_list_only */);
1786   shrink_helper(shrink_bytes);
1787   rebuild_region_sets(true /* free_list_only */);
1788 
1789   _hrm.verify_optional();
1790   verify_region_sets_optional();
1791 }
1792 
1793 // Public methods.
1794 
1795 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1796 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1797 #endif // _MSC_VER
1798 
1799 
1800 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1801   CollectedHeap(),
1802   _g1_policy(policy_),
1803   _dirty_card_queue_set(false),
1804   _into_cset_dirty_card_queue_set(false),
1805   _is_alive_closure_cm(this),
1806   _is_alive_closure_stw(this),
1807   _ref_processor_cm(NULL),
1808   _ref_processor_stw(NULL),
1809   _bot_shared(NULL),
1810   _cg1r(NULL),
1811   _g1mm(NULL),
1812   _refine_cte_cl(NULL),
1813   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1814   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1815   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1816   _humongous_reclaim_candidates(),
1817   _has_humongous_reclaim_candidates(false),
1818   _archive_allocator(NULL),
1819   _free_regions_coming(false),
1820   _young_list(new YoungList(this)),
1821   _gc_time_stamp(0),
1822   _summary_bytes_used(0),
1823   _survivor_evac_stats(YoungPLABSize, PLABWeight),
1824   _old_evac_stats(OldPLABSize, PLABWeight),
1825   _expand_heap_after_alloc_failure(true),
1826   _old_marking_cycles_started(0),
1827   _old_marking_cycles_completed(0),
1828   _heap_summary_sent(false),
1829   _in_cset_fast_test(),
1830   _dirty_cards_region_list(NULL),
1831   _worker_cset_start_region(NULL),
1832   _worker_cset_start_region_time_stamp(NULL),
1833   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1834   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1835   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1836   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1837 
1838   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1839                           /* are_GC_task_threads */true,
1840                           /* are_ConcurrentGC_threads */false);
1841   _workers->initialize_workers();
1842 
1843   _allocator = G1Allocator::create_allocator(this);
1844   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1845 
1846   // Override the default _filler_array_max_size so that no humongous filler
1847   // objects are created.
1848   _filler_array_max_size = _humongous_object_threshold_in_words;
1849 
1850   uint n_queues = ParallelGCThreads;
1851   _task_queues = new RefToScanQueueSet(n_queues);
1852 
1853   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1854   assert(n_rem_sets > 0, "Invariant.");
1855 
1856   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1857   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1858   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1859 
1860   for (uint i = 0; i < n_queues; i++) {
1861     RefToScanQueue* q = new RefToScanQueue();
1862     q->initialize();
1863     _task_queues->register_queue(i, q);
1864     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1865   }
1866   clear_cset_start_regions();
1867 
1868   // Initialize the G1EvacuationFailureALot counters and flags.
1869   NOT_PRODUCT(reset_evacuation_should_fail();)
1870 
1871   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1872 }
1873 
1874 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1875                                                                  size_t size,
1876                                                                  size_t translation_factor) {
1877   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1878   // Allocate a new reserved space, preferring to use large pages.
1879   ReservedSpace rs(size, preferred_page_size);
1880   G1RegionToSpaceMapper* result  =
1881     G1RegionToSpaceMapper::create_mapper(rs,
1882                                          size,
1883                                          rs.alignment(),
1884                                          HeapRegion::GrainBytes,
1885                                          translation_factor,
1886                                          mtGC);
1887   if (TracePageSizes) {
1888     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1889                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1890   }
1891   return result;
1892 }
1893 
1894 jint G1CollectedHeap::initialize() {
1895   CollectedHeap::pre_initialize();
1896   os::enable_vtime();
1897 
1898   G1Log::init();
1899 
1900   // Necessary to satisfy locking discipline assertions.
1901 
1902   MutexLocker x(Heap_lock);
1903 
1904   // We have to initialize the printer before committing the heap, as
1905   // it will be used then.
1906   _hr_printer.set_active(G1PrintHeapRegions);
1907 
1908   // While there are no constraints in the GC code that HeapWordSize
1909   // be any particular value, there are multiple other areas in the
1910   // system which believe this to be true (e.g. oop->object_size in some
1911   // cases incorrectly returns the size in wordSize units rather than
1912   // HeapWordSize).
1913   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1914 
1915   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1916   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1917   size_t heap_alignment = collector_policy()->heap_alignment();
1918 
1919   // Ensure that the sizes are properly aligned.
1920   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1921   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1922   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1923 
1924   _refine_cte_cl = new RefineCardTableEntryClosure();
1925 
1926   jint ecode = JNI_OK;
1927   _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);
1928   if (_cg1r == NULL) {
1929     return ecode;
1930   }
1931 
1932   // Reserve the maximum.
1933 
1934   // When compressed oops are enabled, the preferred heap base
1935   // is calculated by subtracting the requested size from the
1936   // 32Gb boundary and using the result as the base address for
1937   // heap reservation. If the requested size is not aligned to
1938   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1939   // into the ReservedHeapSpace constructor) then the actual
1940   // base of the reserved heap may end up differing from the
1941   // address that was requested (i.e. the preferred heap base).
1942   // If this happens then we could end up using a non-optimal
1943   // compressed oops mode.
1944 
1945   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1946                                                  heap_alignment);
1947 
1948   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1949 
1950   // Create the barrier set for the entire reserved region.
1951   G1SATBCardTableLoggingModRefBS* bs
1952     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1953   bs->initialize();
1954   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1955   set_barrier_set(bs);
1956 
1957   // Also create a G1 rem set.
1958   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1959 
1960   // Carve out the G1 part of the heap.
1961 
1962   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1963   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1964   G1RegionToSpaceMapper* heap_storage =
1965     G1RegionToSpaceMapper::create_mapper(g1_rs,
1966                                          g1_rs.size(),
1967                                          page_size,
1968                                          HeapRegion::GrainBytes,
1969                                          1,
1970                                          mtJavaHeap);
1971   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
1972                        max_byte_size, page_size,
1973                        heap_rs.base(),
1974                        heap_rs.size());
1975   heap_storage->set_mapping_changed_listener(&_listener);
1976 
1977   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1978   G1RegionToSpaceMapper* bot_storage =
1979     create_aux_memory_mapper("Block offset table",
1980                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1981                              G1BlockOffsetSharedArray::heap_map_factor());
1982 
1983   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1984   G1RegionToSpaceMapper* cardtable_storage =
1985     create_aux_memory_mapper("Card table",
1986                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1987                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1988 
1989   G1RegionToSpaceMapper* card_counts_storage =
1990     create_aux_memory_mapper("Card counts table",
1991                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1992                              G1CardCounts::heap_map_factor());
1993 
1994   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1995   G1RegionToSpaceMapper* prev_bitmap_storage =
1996     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1997   G1RegionToSpaceMapper* next_bitmap_storage =
1998     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1999 
2000   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2001   g1_barrier_set()->initialize(cardtable_storage);
2002    // Do later initialization work for concurrent refinement.
2003   _cg1r->init(card_counts_storage);
2004 
2005   // 6843694 - ensure that the maximum region index can fit
2006   // in the remembered set structures.
2007   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2008   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2009 
2010   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2011   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2012   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2013             "too many cards per region");
2014 
2015   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2016 
2017   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
2018 
2019   {
2020     HeapWord* start = _hrm.reserved().start();
2021     HeapWord* end = _hrm.reserved().end();
2022     size_t granularity = HeapRegion::GrainBytes;
2023 
2024     _in_cset_fast_test.initialize(start, end, granularity);
2025     _humongous_reclaim_candidates.initialize(start, end, granularity);
2026   }
2027 
2028   // Create the ConcurrentMark data structure and thread.
2029   // (Must do this late, so that "max_regions" is defined.)
2030   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2031   if (_cm == NULL || !_cm->completed_initialization()) {
2032     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2033     return JNI_ENOMEM;
2034   }
2035   _cmThread = _cm->cmThread();
2036 
2037   // Initialize the from_card cache structure of HeapRegionRemSet.
2038   HeapRegionRemSet::init_heap(max_regions());
2039 
2040   // Now expand into the initial heap size.
2041   if (!expand(init_byte_size)) {
2042     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2043     return JNI_ENOMEM;
2044   }
2045 
2046   // Perform any initialization actions delegated to the policy.
2047   g1_policy()->init();
2048 
2049   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2050                                                SATB_Q_FL_lock,
2051                                                G1SATBProcessCompletedThreshold,
2052                                                Shared_SATB_Q_lock);
2053 
2054   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2055                                                 DirtyCardQ_CBL_mon,
2056                                                 DirtyCardQ_FL_lock,
2057                                                 concurrent_g1_refine()->yellow_zone(),
2058                                                 concurrent_g1_refine()->red_zone(),
2059                                                 Shared_DirtyCardQ_lock);
2060 
2061   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2062                                     DirtyCardQ_CBL_mon,
2063                                     DirtyCardQ_FL_lock,
2064                                     -1, // never trigger processing
2065                                     -1, // no limit on length
2066                                     Shared_DirtyCardQ_lock,
2067                                     &JavaThread::dirty_card_queue_set());
2068 
2069   // Initialize the card queue set used to hold cards containing
2070   // references into the collection set.
2071   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2072                                              DirtyCardQ_CBL_mon,
2073                                              DirtyCardQ_FL_lock,
2074                                              -1, // never trigger processing
2075                                              -1, // no limit on length
2076                                              Shared_DirtyCardQ_lock,
2077                                              &JavaThread::dirty_card_queue_set());
2078 
2079   // Here we allocate the dummy HeapRegion that is required by the
2080   // G1AllocRegion class.
2081   HeapRegion* dummy_region = _hrm.get_dummy_region();
2082 
2083   // We'll re-use the same region whether the alloc region will
2084   // require BOT updates or not and, if it doesn't, then a non-young
2085   // region will complain that it cannot support allocations without
2086   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2087   dummy_region->set_eden();
2088   // Make sure it's full.
2089   dummy_region->set_top(dummy_region->end());
2090   G1AllocRegion::setup(this, dummy_region);
2091 
2092   _allocator->init_mutator_alloc_region();
2093 
2094   // Do create of the monitoring and management support so that
2095   // values in the heap have been properly initialized.
2096   _g1mm = new G1MonitoringSupport(this);
2097 
2098   G1StringDedup::initialize();
2099 
2100   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2101   for (uint i = 0; i < ParallelGCThreads; i++) {
2102     new (&_preserved_objs[i]) OopAndMarkOopStack();
2103   }
2104 
2105   return JNI_OK;
2106 }
2107 
2108 void G1CollectedHeap::stop() {
2109   // Stop all concurrent threads. We do this to make sure these threads
2110   // do not continue to execute and access resources (e.g. gclog_or_tty)
2111   // that are destroyed during shutdown.
2112   _cg1r->stop();
2113   _cmThread->stop();
2114   if (G1StringDedup::is_enabled()) {
2115     G1StringDedup::stop();
2116   }
2117 }
2118 
2119 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2120   return HeapRegion::max_region_size();
2121 }
2122 
2123 void G1CollectedHeap::post_initialize() {
2124   CollectedHeap::post_initialize();
2125   ref_processing_init();
2126 }
2127 
2128 void G1CollectedHeap::ref_processing_init() {
2129   // Reference processing in G1 currently works as follows:
2130   //
2131   // * There are two reference processor instances. One is
2132   //   used to record and process discovered references
2133   //   during concurrent marking; the other is used to
2134   //   record and process references during STW pauses
2135   //   (both full and incremental).
2136   // * Both ref processors need to 'span' the entire heap as
2137   //   the regions in the collection set may be dotted around.
2138   //
2139   // * For the concurrent marking ref processor:
2140   //   * Reference discovery is enabled at initial marking.
2141   //   * Reference discovery is disabled and the discovered
2142   //     references processed etc during remarking.
2143   //   * Reference discovery is MT (see below).
2144   //   * Reference discovery requires a barrier (see below).
2145   //   * Reference processing may or may not be MT
2146   //     (depending on the value of ParallelRefProcEnabled
2147   //     and ParallelGCThreads).
2148   //   * A full GC disables reference discovery by the CM
2149   //     ref processor and abandons any entries on it's
2150   //     discovered lists.
2151   //
2152   // * For the STW processor:
2153   //   * Non MT discovery is enabled at the start of a full GC.
2154   //   * Processing and enqueueing during a full GC is non-MT.
2155   //   * During a full GC, references are processed after marking.
2156   //
2157   //   * Discovery (may or may not be MT) is enabled at the start
2158   //     of an incremental evacuation pause.
2159   //   * References are processed near the end of a STW evacuation pause.
2160   //   * For both types of GC:
2161   //     * Discovery is atomic - i.e. not concurrent.
2162   //     * Reference discovery will not need a barrier.
2163 
2164   MemRegion mr = reserved_region();
2165 
2166   // Concurrent Mark ref processor
2167   _ref_processor_cm =
2168     new ReferenceProcessor(mr,    // span
2169                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2170                                 // mt processing
2171                            ParallelGCThreads,
2172                                 // degree of mt processing
2173                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2174                                 // mt discovery
2175                            MAX2(ParallelGCThreads, ConcGCThreads),
2176                                 // degree of mt discovery
2177                            false,
2178                                 // Reference discovery is not atomic
2179                            &_is_alive_closure_cm);
2180                                 // is alive closure
2181                                 // (for efficiency/performance)
2182 
2183   // STW ref processor
2184   _ref_processor_stw =
2185     new ReferenceProcessor(mr,    // span
2186                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2187                                 // mt processing
2188                            ParallelGCThreads,
2189                                 // degree of mt processing
2190                            (ParallelGCThreads > 1),
2191                                 // mt discovery
2192                            ParallelGCThreads,
2193                                 // degree of mt discovery
2194                            true,
2195                                 // Reference discovery is atomic
2196                            &_is_alive_closure_stw);
2197                                 // is alive closure
2198                                 // (for efficiency/performance)
2199 }
2200 
2201 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2202   return g1_policy();
2203 }
2204 
2205 size_t G1CollectedHeap::capacity() const {
2206   return _hrm.length() * HeapRegion::GrainBytes;
2207 }
2208 
2209 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2210   hr->reset_gc_time_stamp();
2211 }
2212 
2213 #ifndef PRODUCT
2214 
2215 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2216 private:
2217   unsigned _gc_time_stamp;
2218   bool _failures;
2219 
2220 public:
2221   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2222     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2223 
2224   virtual bool doHeapRegion(HeapRegion* hr) {
2225     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2226     if (_gc_time_stamp != region_gc_time_stamp) {
2227       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2228                              "expected %d", HR_FORMAT_PARAMS(hr),
2229                              region_gc_time_stamp, _gc_time_stamp);
2230       _failures = true;
2231     }
2232     return false;
2233   }
2234 
2235   bool failures() { return _failures; }
2236 };
2237 
2238 void G1CollectedHeap::check_gc_time_stamps() {
2239   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2240   heap_region_iterate(&cl);
2241   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2242 }
2243 #endif // PRODUCT
2244 
2245 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2246   _cg1r->hot_card_cache()->drain(cl, worker_i);
2247 }
2248 
2249 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2250   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2251   size_t n_completed_buffers = 0;
2252   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2253     n_completed_buffers++;
2254   }
2255   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2256   dcqs.clear_n_completed_buffers();
2257   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2258 }
2259 
2260 // Computes the sum of the storage used by the various regions.
2261 size_t G1CollectedHeap::used() const {
2262   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2263   if (_archive_allocator != NULL) {
2264     result += _archive_allocator->used();
2265   }
2266   return result;
2267 }
2268 
2269 size_t G1CollectedHeap::used_unlocked() const {
2270   return _summary_bytes_used;
2271 }
2272 
2273 class SumUsedClosure: public HeapRegionClosure {
2274   size_t _used;
2275 public:
2276   SumUsedClosure() : _used(0) {}
2277   bool doHeapRegion(HeapRegion* r) {
2278     _used += r->used();
2279     return false;
2280   }
2281   size_t result() { return _used; }
2282 };
2283 
2284 size_t G1CollectedHeap::recalculate_used() const {
2285   double recalculate_used_start = os::elapsedTime();
2286 
2287   SumUsedClosure blk;
2288   heap_region_iterate(&blk);
2289 
2290   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2291   return blk.result();
2292 }
2293 
2294 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2295   switch (cause) {
2296     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2297     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2298     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;
2299     case GCCause::_g1_humongous_allocation: return true;
2300     case GCCause::_update_allocation_context_stats_inc: return true;
2301     case GCCause::_wb_conc_mark:            return true;
2302     default:                                return false;
2303   }
2304 }
2305 
2306 #ifndef PRODUCT
2307 void G1CollectedHeap::allocate_dummy_regions() {
2308   // Let's fill up most of the region
2309   size_t word_size = HeapRegion::GrainWords - 1024;
2310   // And as a result the region we'll allocate will be humongous.
2311   guarantee(is_humongous(word_size), "sanity");
2312 
2313   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2314     // Let's use the existing mechanism for the allocation
2315     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2316                                                  AllocationContext::system());
2317     if (dummy_obj != NULL) {
2318       MemRegion mr(dummy_obj, word_size);
2319       CollectedHeap::fill_with_object(mr);
2320     } else {
2321       // If we can't allocate once, we probably cannot allocate
2322       // again. Let's get out of the loop.
2323       break;
2324     }
2325   }
2326 }
2327 #endif // !PRODUCT
2328 
2329 void G1CollectedHeap::increment_old_marking_cycles_started() {
2330   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2331          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2332          "Wrong marking cycle count (started: %d, completed: %d)",
2333          _old_marking_cycles_started, _old_marking_cycles_completed);
2334 
2335   _old_marking_cycles_started++;
2336 }
2337 
2338 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2339   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2340 
2341   // We assume that if concurrent == true, then the caller is a
2342   // concurrent thread that was joined the Suspendible Thread
2343   // Set. If there's ever a cheap way to check this, we should add an
2344   // assert here.
2345 
2346   // Given that this method is called at the end of a Full GC or of a
2347   // concurrent cycle, and those can be nested (i.e., a Full GC can
2348   // interrupt a concurrent cycle), the number of full collections
2349   // completed should be either one (in the case where there was no
2350   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2351   // behind the number of full collections started.
2352 
2353   // This is the case for the inner caller, i.e. a Full GC.
2354   assert(concurrent ||
2355          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2356          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2357          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2358          "is inconsistent with _old_marking_cycles_completed = %u",
2359          _old_marking_cycles_started, _old_marking_cycles_completed);
2360 
2361   // This is the case for the outer caller, i.e. the concurrent cycle.
2362   assert(!concurrent ||
2363          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2364          "for outer caller (concurrent cycle): "
2365          "_old_marking_cycles_started = %u "
2366          "is inconsistent with _old_marking_cycles_completed = %u",
2367          _old_marking_cycles_started, _old_marking_cycles_completed);
2368 
2369   _old_marking_cycles_completed += 1;
2370 
2371   // We need to clear the "in_progress" flag in the CM thread before
2372   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2373   // is set) so that if a waiter requests another System.gc() it doesn't
2374   // incorrectly see that a marking cycle is still in progress.
2375   if (concurrent) {
2376     _cmThread->set_idle();
2377   }
2378 
2379   // This notify_all() will ensure that a thread that called
2380   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2381   // and it's waiting for a full GC to finish will be woken up. It is
2382   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2383   FullGCCount_lock->notify_all();
2384 }
2385 
2386 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2387   GCIdMarkAndRestore conc_gc_id_mark;
2388   collector_state()->set_concurrent_cycle_started(true);
2389   _gc_timer_cm->register_gc_start(start_time);
2390 
2391   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2392   trace_heap_before_gc(_gc_tracer_cm);
2393   _cmThread->set_gc_id(GCId::current());
2394 }
2395 
2396 void G1CollectedHeap::register_concurrent_cycle_end() {
2397   if (collector_state()->concurrent_cycle_started()) {
2398     GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2399     if (_cm->has_aborted()) {
2400       _gc_tracer_cm->report_concurrent_mode_failure();
2401     }
2402 
2403     _gc_timer_cm->register_gc_end();
2404     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2405 
2406     // Clear state variables to prepare for the next concurrent cycle.
2407      collector_state()->set_concurrent_cycle_started(false);
2408     _heap_summary_sent = false;
2409   }
2410 }
2411 
2412 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2413   if (collector_state()->concurrent_cycle_started()) {
2414     // This function can be called when:
2415     //  the cleanup pause is run
2416     //  the concurrent cycle is aborted before the cleanup pause.
2417     //  the concurrent cycle is aborted after the cleanup pause,
2418     //   but before the concurrent cycle end has been registered.
2419     // Make sure that we only send the heap information once.
2420     if (!_heap_summary_sent) {
2421       GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2422       trace_heap_after_gc(_gc_tracer_cm);
2423       _heap_summary_sent = true;
2424     }
2425   }
2426 }
2427 
2428 void G1CollectedHeap::collect(GCCause::Cause cause) {
2429   assert_heap_not_locked();
2430 
2431   uint gc_count_before;
2432   uint old_marking_count_before;
2433   uint full_gc_count_before;
2434   bool retry_gc;
2435 
2436   do {
2437     retry_gc = false;
2438 
2439     {
2440       MutexLocker ml(Heap_lock);
2441 
2442       // Read the GC count while holding the Heap_lock
2443       gc_count_before = total_collections();
2444       full_gc_count_before = total_full_collections();
2445       old_marking_count_before = _old_marking_cycles_started;
2446     }
2447 
2448     if (should_do_concurrent_full_gc(cause)) {
2449       // Schedule an initial-mark evacuation pause that will start a
2450       // concurrent cycle. We're setting word_size to 0 which means that
2451       // we are not requesting a post-GC allocation.
2452       VM_G1IncCollectionPause op(gc_count_before,
2453                                  0,     /* word_size */
2454                                  true,  /* should_initiate_conc_mark */
2455                                  g1_policy()->max_pause_time_ms(),
2456                                  cause);
2457       op.set_allocation_context(AllocationContext::current());
2458 
2459       VMThread::execute(&op);
2460       if (!op.pause_succeeded()) {
2461         if (old_marking_count_before == _old_marking_cycles_started) {
2462           retry_gc = op.should_retry_gc();
2463         } else {
2464           // A Full GC happened while we were trying to schedule the
2465           // initial-mark GC. No point in starting a new cycle given
2466           // that the whole heap was collected anyway.
2467         }
2468 
2469         if (retry_gc) {
2470           if (GC_locker::is_active_and_needs_gc()) {
2471             GC_locker::stall_until_clear();
2472           }
2473         }
2474       }
2475     } else {
2476       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2477           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2478 
2479         // Schedule a standard evacuation pause. We're setting word_size
2480         // to 0 which means that we are not requesting a post-GC allocation.
2481         VM_G1IncCollectionPause op(gc_count_before,
2482                                    0,     /* word_size */
2483                                    false, /* should_initiate_conc_mark */
2484                                    g1_policy()->max_pause_time_ms(),
2485                                    cause);
2486         VMThread::execute(&op);
2487       } else {
2488         // Schedule a Full GC.
2489         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2490         VMThread::execute(&op);
2491       }
2492     }
2493   } while (retry_gc);
2494 }
2495 
2496 bool G1CollectedHeap::is_in(const void* p) const {
2497   if (_hrm.reserved().contains(p)) {
2498     // Given that we know that p is in the reserved space,
2499     // heap_region_containing() should successfully
2500     // return the containing region.
2501     HeapRegion* hr = heap_region_containing(p);
2502     return hr->is_in(p);
2503   } else {
2504     return false;
2505   }
2506 }
2507 
2508 #ifdef ASSERT
2509 bool G1CollectedHeap::is_in_exact(const void* p) const {
2510   bool contains = reserved_region().contains(p);
2511   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2512   if (contains && available) {
2513     return true;
2514   } else {
2515     return false;
2516   }
2517 }
2518 #endif
2519 
2520 bool G1CollectedHeap::obj_in_cs(oop obj) {
2521   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2522   return r != NULL && r->in_collection_set();
2523 }
2524 
2525 // Iteration functions.
2526 
2527 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2528 
2529 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2530   ExtendedOopClosure* _cl;
2531 public:
2532   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2533   bool doHeapRegion(HeapRegion* r) {
2534     if (!r->is_continues_humongous()) {
2535       r->oop_iterate(_cl);
2536     }
2537     return false;
2538   }
2539 };
2540 
2541 // Iterates an ObjectClosure over all objects within a HeapRegion.
2542 
2543 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2544   ObjectClosure* _cl;
2545 public:
2546   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2547   bool doHeapRegion(HeapRegion* r) {
2548     if (!r->is_continues_humongous()) {
2549       r->object_iterate(_cl);
2550     }
2551     return false;
2552   }
2553 };
2554 
2555 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2556   IterateObjectClosureRegionClosure blk(cl);
2557   heap_region_iterate(&blk);
2558 }
2559 
2560 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2561   _hrm.iterate(cl);
2562 }
2563 
2564 void
2565 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2566                                          uint worker_id,
2567                                          HeapRegionClaimer *hrclaimer,
2568                                          bool concurrent) const {
2569   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2570 }
2571 
2572 // Clear the cached CSet starting regions and (more importantly)
2573 // the time stamps. Called when we reset the GC time stamp.
2574 void G1CollectedHeap::clear_cset_start_regions() {
2575   assert(_worker_cset_start_region != NULL, "sanity");
2576   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2577 
2578   for (uint i = 0; i < ParallelGCThreads; i++) {
2579     _worker_cset_start_region[i] = NULL;
2580     _worker_cset_start_region_time_stamp[i] = 0;
2581   }
2582 }
2583 
2584 // Given the id of a worker, obtain or calculate a suitable
2585 // starting region for iterating over the current collection set.
2586 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2587   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2588 
2589   HeapRegion* result = NULL;
2590   unsigned gc_time_stamp = get_gc_time_stamp();
2591 
2592   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2593     // Cached starting region for current worker was set
2594     // during the current pause - so it's valid.
2595     // Note: the cached starting heap region may be NULL
2596     // (when the collection set is empty).
2597     result = _worker_cset_start_region[worker_i];
2598     assert(result == NULL || result->in_collection_set(), "sanity");
2599     return result;
2600   }
2601 
2602   // The cached entry was not valid so let's calculate
2603   // a suitable starting heap region for this worker.
2604 
2605   // We want the parallel threads to start their collection
2606   // set iteration at different collection set regions to
2607   // avoid contention.
2608   // If we have:
2609   //          n collection set regions
2610   //          p threads
2611   // Then thread t will start at region floor ((t * n) / p)
2612 
2613   result = g1_policy()->collection_set();
2614   uint cs_size = g1_policy()->cset_region_length();
2615   uint active_workers = workers()->active_workers();
2616 
2617   uint end_ind   = (cs_size * worker_i) / active_workers;
2618   uint start_ind = 0;
2619 
2620   if (worker_i > 0 &&
2621       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2622     // Previous workers starting region is valid
2623     // so let's iterate from there
2624     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2625     result = _worker_cset_start_region[worker_i - 1];
2626   }
2627 
2628   for (uint i = start_ind; i < end_ind; i++) {
2629     result = result->next_in_collection_set();
2630   }
2631 
2632   // Note: the calculated starting heap region may be NULL
2633   // (when the collection set is empty).
2634   assert(result == NULL || result->in_collection_set(), "sanity");
2635   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2636          "should be updated only once per pause");
2637   _worker_cset_start_region[worker_i] = result;
2638   OrderAccess::storestore();
2639   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2640   return result;
2641 }
2642 
2643 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2644   HeapRegion* r = g1_policy()->collection_set();
2645   while (r != NULL) {
2646     HeapRegion* next = r->next_in_collection_set();
2647     if (cl->doHeapRegion(r)) {
2648       cl->incomplete();
2649       return;
2650     }
2651     r = next;
2652   }
2653 }
2654 
2655 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2656                                                   HeapRegionClosure *cl) {
2657   if (r == NULL) {
2658     // The CSet is empty so there's nothing to do.
2659     return;
2660   }
2661 
2662   assert(r->in_collection_set(),
2663          "Start region must be a member of the collection set.");
2664   HeapRegion* cur = r;
2665   while (cur != NULL) {
2666     HeapRegion* next = cur->next_in_collection_set();
2667     if (cl->doHeapRegion(cur) && false) {
2668       cl->incomplete();
2669       return;
2670     }
2671     cur = next;
2672   }
2673   cur = g1_policy()->collection_set();
2674   while (cur != r) {
2675     HeapRegion* next = cur->next_in_collection_set();
2676     if (cl->doHeapRegion(cur) && false) {
2677       cl->incomplete();
2678       return;
2679     }
2680     cur = next;
2681   }
2682 }
2683 
2684 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2685   HeapRegion* result = _hrm.next_region_in_heap(from);
2686   while (result != NULL && result->is_pinned()) {
2687     result = _hrm.next_region_in_heap(result);
2688   }
2689   return result;
2690 }
2691 
2692 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2693   HeapRegion* hr = heap_region_containing(addr);
2694   return hr->block_start(addr);
2695 }
2696 
2697 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2698   HeapRegion* hr = heap_region_containing(addr);
2699   return hr->block_size(addr);
2700 }
2701 
2702 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2703   HeapRegion* hr = heap_region_containing(addr);
2704   return hr->block_is_obj(addr);
2705 }
2706 
2707 bool G1CollectedHeap::supports_tlab_allocation() const {
2708   return true;
2709 }
2710 
2711 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2712   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2713 }
2714 
2715 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2716   return young_list()->eden_used_bytes();
2717 }
2718 
2719 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2720 // must be equal to the humongous object limit.
2721 size_t G1CollectedHeap::max_tlab_size() const {
2722   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2723 }
2724 
2725 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2726   AllocationContext_t context = AllocationContext::current();
2727   return _allocator->unsafe_max_tlab_alloc(context);
2728 }
2729 
2730 size_t G1CollectedHeap::max_capacity() const {
2731   return _hrm.reserved().byte_size();
2732 }
2733 
2734 jlong G1CollectedHeap::millis_since_last_gc() {
2735   // assert(false, "NYI");
2736   return 0;
2737 }
2738 
2739 void G1CollectedHeap::prepare_for_verify() {
2740   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2741     ensure_parsability(false);
2742   }
2743   g1_rem_set()->prepare_for_verify();
2744 }
2745 
2746 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2747                                               VerifyOption vo) {
2748   switch (vo) {
2749   case VerifyOption_G1UsePrevMarking:
2750     return hr->obj_allocated_since_prev_marking(obj);
2751   case VerifyOption_G1UseNextMarking:
2752     return hr->obj_allocated_since_next_marking(obj);
2753   case VerifyOption_G1UseMarkWord:
2754     return false;
2755   default:
2756     ShouldNotReachHere();
2757   }
2758   return false; // keep some compilers happy
2759 }
2760 
2761 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2762   switch (vo) {
2763   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2764   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2765   case VerifyOption_G1UseMarkWord:    return NULL;
2766   default:                            ShouldNotReachHere();
2767   }
2768   return NULL; // keep some compilers happy
2769 }
2770 
2771 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2772   switch (vo) {
2773   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2774   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2775   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2776   default:                            ShouldNotReachHere();
2777   }
2778   return false; // keep some compilers happy
2779 }
2780 
2781 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2782   switch (vo) {
2783   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2784   case VerifyOption_G1UseNextMarking: return "NTAMS";
2785   case VerifyOption_G1UseMarkWord:    return "NONE";
2786   default:                            ShouldNotReachHere();
2787   }
2788   return NULL; // keep some compilers happy
2789 }
2790 
2791 class VerifyRootsClosure: public OopClosure {
2792 private:
2793   G1CollectedHeap* _g1h;
2794   VerifyOption     _vo;
2795   bool             _failures;
2796 public:
2797   // _vo == UsePrevMarking -> use "prev" marking information,
2798   // _vo == UseNextMarking -> use "next" marking information,
2799   // _vo == UseMarkWord    -> use mark word from object header.
2800   VerifyRootsClosure(VerifyOption vo) :
2801     _g1h(G1CollectedHeap::heap()),
2802     _vo(vo),
2803     _failures(false) { }
2804 
2805   bool failures() { return _failures; }
2806 
2807   template <class T> void do_oop_nv(T* p) {
2808     T heap_oop = oopDesc::load_heap_oop(p);
2809     if (!oopDesc::is_null(heap_oop)) {
2810       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2811       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2812         gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
2813                                "points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
2814         if (_vo == VerifyOption_G1UseMarkWord) {
2815           gclog_or_tty->print_cr("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
2816         }
2817         obj->print_on(gclog_or_tty);
2818         _failures = true;
2819       }
2820     }
2821   }
2822 
2823   void do_oop(oop* p)       { do_oop_nv(p); }
2824   void do_oop(narrowOop* p) { do_oop_nv(p); }
2825 };
2826 
2827 class G1VerifyCodeRootOopClosure: public OopClosure {
2828   G1CollectedHeap* _g1h;
2829   OopClosure* _root_cl;
2830   nmethod* _nm;
2831   VerifyOption _vo;
2832   bool _failures;
2833 
2834   template <class T> void do_oop_work(T* p) {
2835     // First verify that this root is live
2836     _root_cl->do_oop(p);
2837 
2838     if (!G1VerifyHeapRegionCodeRoots) {
2839       // We're not verifying the code roots attached to heap region.
2840       return;
2841     }
2842 
2843     // Don't check the code roots during marking verification in a full GC
2844     if (_vo == VerifyOption_G1UseMarkWord) {
2845       return;
2846     }
2847 
2848     // Now verify that the current nmethod (which contains p) is
2849     // in the code root list of the heap region containing the
2850     // object referenced by p.
2851 
2852     T heap_oop = oopDesc::load_heap_oop(p);
2853     if (!oopDesc::is_null(heap_oop)) {
2854       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2855 
2856       // Now fetch the region containing the object
2857       HeapRegion* hr = _g1h->heap_region_containing(obj);
2858       HeapRegionRemSet* hrrs = hr->rem_set();
2859       // Verify that the strong code root list for this region
2860       // contains the nmethod
2861       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2862         gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
2863                                "from nmethod " PTR_FORMAT " not in strong "
2864                                "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
2865                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2866         _failures = true;
2867       }
2868     }
2869   }
2870 
2871 public:
2872   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2873     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2874 
2875   void do_oop(oop* p) { do_oop_work(p); }
2876   void do_oop(narrowOop* p) { do_oop_work(p); }
2877 
2878   void set_nmethod(nmethod* nm) { _nm = nm; }
2879   bool failures() { return _failures; }
2880 };
2881 
2882 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2883   G1VerifyCodeRootOopClosure* _oop_cl;
2884 
2885 public:
2886   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2887     _oop_cl(oop_cl) {}
2888 
2889   void do_code_blob(CodeBlob* cb) {
2890     nmethod* nm = cb->as_nmethod_or_null();
2891     if (nm != NULL) {
2892       _oop_cl->set_nmethod(nm);
2893       nm->oops_do(_oop_cl);
2894     }
2895   }
2896 };
2897 
2898 class YoungRefCounterClosure : public OopClosure {
2899   G1CollectedHeap* _g1h;
2900   int              _count;
2901  public:
2902   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2903   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2904   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2905 
2906   int count() { return _count; }
2907   void reset_count() { _count = 0; };
2908 };
2909 
2910 class VerifyKlassClosure: public KlassClosure {
2911   YoungRefCounterClosure _young_ref_counter_closure;
2912   OopClosure *_oop_closure;
2913  public:
2914   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2915   void do_klass(Klass* k) {
2916     k->oops_do(_oop_closure);
2917 
2918     _young_ref_counter_closure.reset_count();
2919     k->oops_do(&_young_ref_counter_closure);
2920     if (_young_ref_counter_closure.count() > 0) {
2921       guarantee(k->has_modified_oops(), "Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k));
2922     }
2923   }
2924 };
2925 
2926 class VerifyLivenessOopClosure: public OopClosure {
2927   G1CollectedHeap* _g1h;
2928   VerifyOption _vo;
2929 public:
2930   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2931     _g1h(g1h), _vo(vo)
2932   { }
2933   void do_oop(narrowOop *p) { do_oop_work(p); }
2934   void do_oop(      oop *p) { do_oop_work(p); }
2935 
2936   template <class T> void do_oop_work(T *p) {
2937     oop obj = oopDesc::load_decode_heap_oop(p);
2938     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2939               "Dead object referenced by a not dead object");
2940   }
2941 };
2942 
2943 class VerifyObjsInRegionClosure: public ObjectClosure {
2944 private:
2945   G1CollectedHeap* _g1h;
2946   size_t _live_bytes;
2947   HeapRegion *_hr;
2948   VerifyOption _vo;
2949 public:
2950   // _vo == UsePrevMarking -> use "prev" marking information,
2951   // _vo == UseNextMarking -> use "next" marking information,
2952   // _vo == UseMarkWord    -> use mark word from object header.
2953   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2954     : _live_bytes(0), _hr(hr), _vo(vo) {
2955     _g1h = G1CollectedHeap::heap();
2956   }
2957   void do_object(oop o) {
2958     VerifyLivenessOopClosure isLive(_g1h, _vo);
2959     assert(o != NULL, "Huh?");
2960     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2961       // If the object is alive according to the mark word,
2962       // then verify that the marking information agrees.
2963       // Note we can't verify the contra-positive of the
2964       // above: if the object is dead (according to the mark
2965       // word), it may not be marked, or may have been marked
2966       // but has since became dead, or may have been allocated
2967       // since the last marking.
2968       if (_vo == VerifyOption_G1UseMarkWord) {
2969         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2970       }
2971 
2972       o->oop_iterate_no_header(&isLive);
2973       if (!_hr->obj_allocated_since_prev_marking(o)) {
2974         size_t obj_size = o->size();    // Make sure we don't overflow
2975         _live_bytes += (obj_size * HeapWordSize);
2976       }
2977     }
2978   }
2979   size_t live_bytes() { return _live_bytes; }
2980 };
2981 
2982 class VerifyArchiveOopClosure: public OopClosure {
2983 public:
2984   VerifyArchiveOopClosure(HeapRegion *hr) { }
2985   void do_oop(narrowOop *p) { do_oop_work(p); }
2986   void do_oop(      oop *p) { do_oop_work(p); }
2987 
2988   template <class T> void do_oop_work(T *p) {
2989     oop obj = oopDesc::load_decode_heap_oop(p);
2990     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
2991               "Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
2992               p2i(p), p2i(obj));
2993   }
2994 };
2995 
2996 class VerifyArchiveRegionClosure: public ObjectClosure {
2997 public:
2998   VerifyArchiveRegionClosure(HeapRegion *hr) { }
2999   // Verify that all object pointers are to archive regions.
3000   void do_object(oop o) {
3001     VerifyArchiveOopClosure checkOop(NULL);
3002     assert(o != NULL, "Should not be here for NULL oops");
3003     o->oop_iterate_no_header(&checkOop);
3004   }
3005 };
3006 
3007 class VerifyRegionClosure: public HeapRegionClosure {
3008 private:
3009   bool             _par;
3010   VerifyOption     _vo;
3011   bool             _failures;
3012 public:
3013   // _vo == UsePrevMarking -> use "prev" marking information,
3014   // _vo == UseNextMarking -> use "next" marking information,
3015   // _vo == UseMarkWord    -> use mark word from object header.
3016   VerifyRegionClosure(bool par, VerifyOption vo)
3017     : _par(par),
3018       _vo(vo),
3019       _failures(false) {}
3020 
3021   bool failures() {
3022     return _failures;
3023   }
3024 
3025   bool doHeapRegion(HeapRegion* r) {
3026     // For archive regions, verify there are no heap pointers to
3027     // non-pinned regions. For all others, verify liveness info.
3028     if (r->is_archive()) {
3029       VerifyArchiveRegionClosure verify_oop_pointers(r);
3030       r->object_iterate(&verify_oop_pointers);
3031       return true;
3032     }
3033     if (!r->is_continues_humongous()) {
3034       bool failures = false;
3035       r->verify(_vo, &failures);
3036       if (failures) {
3037         _failures = true;
3038       } else if (!r->is_starts_humongous()) {
3039         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3040         r->object_iterate(&not_dead_yet_cl);
3041         if (_vo != VerifyOption_G1UseNextMarking) {
3042           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3043             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3044                                    "max_live_bytes " SIZE_FORMAT " "
3045                                    "< calculated " SIZE_FORMAT,
3046                                    p2i(r->bottom()), p2i(r->end()),
3047                                    r->max_live_bytes(),
3048                                  not_dead_yet_cl.live_bytes());
3049             _failures = true;
3050           }
3051         } else {
3052           // When vo == UseNextMarking we cannot currently do a sanity
3053           // check on the live bytes as the calculation has not been
3054           // finalized yet.
3055         }
3056       }
3057     }
3058     return false; // stop the region iteration if we hit a failure
3059   }
3060 };
3061 
3062 // This is the task used for parallel verification of the heap regions
3063 
3064 class G1ParVerifyTask: public AbstractGangTask {
3065 private:
3066   G1CollectedHeap*  _g1h;
3067   VerifyOption      _vo;
3068   bool              _failures;
3069   HeapRegionClaimer _hrclaimer;
3070 
3071 public:
3072   // _vo == UsePrevMarking -> use "prev" marking information,
3073   // _vo == UseNextMarking -> use "next" marking information,
3074   // _vo == UseMarkWord    -> use mark word from object header.
3075   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3076       AbstractGangTask("Parallel verify task"),
3077       _g1h(g1h),
3078       _vo(vo),
3079       _failures(false),
3080       _hrclaimer(g1h->workers()->active_workers()) {}
3081 
3082   bool failures() {
3083     return _failures;
3084   }
3085 
3086   void work(uint worker_id) {
3087     HandleMark hm;
3088     VerifyRegionClosure blk(true, _vo);
3089     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3090     if (blk.failures()) {
3091       _failures = true;
3092     }
3093   }
3094 };
3095 
3096 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3097   if (SafepointSynchronize::is_at_safepoint()) {
3098     assert(Thread::current()->is_VM_thread(),
3099            "Expected to be executed serially by the VM thread at this point");
3100 
3101     if (!silent) { gclog_or_tty->print("Roots "); }
3102     VerifyRootsClosure rootsCl(vo);
3103     VerifyKlassClosure klassCl(this, &rootsCl);
3104     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3105 
3106     // We apply the relevant closures to all the oops in the
3107     // system dictionary, class loader data graph, the string table
3108     // and the nmethods in the code cache.
3109     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3110     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3111 
3112     {
3113       G1RootProcessor root_processor(this, 1);
3114       root_processor.process_all_roots(&rootsCl,
3115                                        &cldCl,
3116                                        &blobsCl);
3117     }
3118 
3119     bool failures = rootsCl.failures() || codeRootsCl.failures();
3120 
3121     if (vo != VerifyOption_G1UseMarkWord) {
3122       // If we're verifying during a full GC then the region sets
3123       // will have been torn down at the start of the GC. Therefore
3124       // verifying the region sets will fail. So we only verify
3125       // the region sets when not in a full GC.
3126       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3127       verify_region_sets();
3128     }
3129 
3130     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3131     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3132 
3133       G1ParVerifyTask task(this, vo);
3134       workers()->run_task(&task);
3135       if (task.failures()) {
3136         failures = true;
3137       }
3138 
3139     } else {
3140       VerifyRegionClosure blk(false, vo);
3141       heap_region_iterate(&blk);
3142       if (blk.failures()) {
3143         failures = true;
3144       }
3145     }
3146 
3147     if (G1StringDedup::is_enabled()) {
3148       if (!silent) gclog_or_tty->print("StrDedup ");
3149       G1StringDedup::verify();
3150     }
3151 
3152     if (failures) {
3153       gclog_or_tty->print_cr("Heap:");
3154       // It helps to have the per-region information in the output to
3155       // help us track down what went wrong. This is why we call
3156       // print_extended_on() instead of print_on().
3157       print_extended_on(gclog_or_tty);
3158       gclog_or_tty->cr();
3159       gclog_or_tty->flush();
3160     }
3161     guarantee(!failures, "there should not have been any failures");
3162   } else {
3163     if (!silent) {
3164       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3165       if (G1StringDedup::is_enabled()) {
3166         gclog_or_tty->print(", StrDedup");
3167       }
3168       gclog_or_tty->print(") ");
3169     }
3170   }
3171 }
3172 
3173 void G1CollectedHeap::verify(bool silent) {
3174   verify(silent, VerifyOption_G1UsePrevMarking);
3175 }
3176 
3177 double G1CollectedHeap::verify(bool guard, const char* msg) {
3178   double verify_time_ms = 0.0;
3179 
3180   if (guard && total_collections() >= VerifyGCStartAt) {
3181     double verify_start = os::elapsedTime();
3182     HandleMark hm;  // Discard invalid handles created during verification
3183     prepare_for_verify();
3184     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3185     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3186   }
3187 
3188   return verify_time_ms;
3189 }
3190 
3191 void G1CollectedHeap::verify_before_gc() {
3192   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3193   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3194 }
3195 
3196 void G1CollectedHeap::verify_after_gc() {
3197   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3198   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3199 }
3200 
3201 class PrintRegionClosure: public HeapRegionClosure {
3202   outputStream* _st;
3203 public:
3204   PrintRegionClosure(outputStream* st) : _st(st) {}
3205   bool doHeapRegion(HeapRegion* r) {
3206     r->print_on(_st);
3207     return false;
3208   }
3209 };
3210 
3211 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3212                                        const HeapRegion* hr,
3213                                        const VerifyOption vo) const {
3214   switch (vo) {
3215   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3216   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3217   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3218   default:                            ShouldNotReachHere();
3219   }
3220   return false; // keep some compilers happy
3221 }
3222 
3223 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3224                                        const VerifyOption vo) const {
3225   switch (vo) {
3226   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3227   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3228   case VerifyOption_G1UseMarkWord: {
3229     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3230     return !obj->is_gc_marked() && !hr->is_archive();
3231   }
3232   default:                            ShouldNotReachHere();
3233   }
3234   return false; // keep some compilers happy
3235 }
3236 
3237 void G1CollectedHeap::print_on(outputStream* st) const {
3238   st->print(" %-20s", "garbage-first heap");
3239   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3240             capacity()/K, used_unlocked()/K);
3241   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3242             p2i(_hrm.reserved().start()),
3243             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3244             p2i(_hrm.reserved().end()));
3245   st->cr();
3246   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3247   uint young_regions = _young_list->length();
3248   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3249             (size_t) young_regions * HeapRegion::GrainBytes / K);
3250   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3251   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3252             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3253   st->cr();
3254   MetaspaceAux::print_on(st);
3255 }
3256 
3257 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3258   print_on(st);
3259 
3260   // Print the per-region information.
3261   st->cr();
3262   st->print_cr("Heap Regions: (E=young(eden), S=young(survivor), O=old, "
3263                "HS=humongous(starts), HC=humongous(continues), "
3264                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3265                "PTAMS=previous top-at-mark-start, "
3266                "NTAMS=next top-at-mark-start)");
3267   PrintRegionClosure blk(st);
3268   heap_region_iterate(&blk);
3269 }
3270 
3271 void G1CollectedHeap::print_on_error(outputStream* st) const {
3272   this->CollectedHeap::print_on_error(st);
3273 
3274   if (_cm != NULL) {
3275     st->cr();
3276     _cm->print_on_error(st);
3277   }
3278 }
3279 
3280 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3281   workers()->print_worker_threads_on(st);
3282   _cmThread->print_on(st);
3283   st->cr();
3284   _cm->print_worker_threads_on(st);
3285   _cg1r->print_worker_threads_on(st);
3286   if (G1StringDedup::is_enabled()) {
3287     G1StringDedup::print_worker_threads_on(st);
3288   }
3289 }
3290 
3291 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3292   workers()->threads_do(tc);
3293   tc->do_thread(_cmThread);
3294   _cg1r->threads_do(tc);
3295   if (G1StringDedup::is_enabled()) {
3296     G1StringDedup::threads_do(tc);
3297   }
3298 }
3299 
3300 void G1CollectedHeap::print_tracing_info() const {
3301   // We'll overload this to mean "trace GC pause statistics."
3302   if (TraceYoungGenTime || TraceOldGenTime) {
3303     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3304     // to that.
3305     g1_policy()->print_tracing_info();
3306   }
3307   if (G1SummarizeRSetStats) {
3308     g1_rem_set()->print_summary_info();
3309   }
3310   if (G1SummarizeConcMark) {
3311     concurrent_mark()->print_summary_info();
3312   }
3313   g1_policy()->print_yg_surv_rate_info();
3314 }
3315 
3316 #ifndef PRODUCT
3317 // Helpful for debugging RSet issues.
3318 
3319 class PrintRSetsClosure : public HeapRegionClosure {
3320 private:
3321   const char* _msg;
3322   size_t _occupied_sum;
3323 
3324 public:
3325   bool doHeapRegion(HeapRegion* r) {
3326     HeapRegionRemSet* hrrs = r->rem_set();
3327     size_t occupied = hrrs->occupied();
3328     _occupied_sum += occupied;
3329 
3330     gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
3331                            HR_FORMAT_PARAMS(r));
3332     if (occupied == 0) {
3333       gclog_or_tty->print_cr("  RSet is empty");
3334     } else {
3335       hrrs->print();
3336     }
3337     gclog_or_tty->print_cr("----------");
3338     return false;
3339   }
3340 
3341   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3342     gclog_or_tty->cr();
3343     gclog_or_tty->print_cr("========================================");
3344     gclog_or_tty->print_cr("%s", msg);
3345     gclog_or_tty->cr();
3346   }
3347 
3348   ~PrintRSetsClosure() {
3349     gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3350     gclog_or_tty->print_cr("========================================");
3351     gclog_or_tty->cr();
3352   }
3353 };
3354 
3355 void G1CollectedHeap::print_cset_rsets() {
3356   PrintRSetsClosure cl("Printing CSet RSets");
3357   collection_set_iterate(&cl);
3358 }
3359 
3360 void G1CollectedHeap::print_all_rsets() {
3361   PrintRSetsClosure cl("Printing All RSets");;
3362   heap_region_iterate(&cl);
3363 }
3364 #endif // PRODUCT
3365 
3366 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3367   YoungList* young_list = heap()->young_list();
3368 
3369   size_t eden_used_bytes = young_list->eden_used_bytes();
3370   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3371 
3372   size_t eden_capacity_bytes =
3373     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3374 
3375   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3376   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
3377 }
3378 
3379 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
3380   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
3381                        stats->unused(), stats->used(), stats->region_end_waste(),
3382                        stats->regions_filled(), stats->direct_allocated(),
3383                        stats->failure_used(), stats->failure_waste());
3384 }
3385 
3386 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
3387   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3388   gc_tracer->report_gc_heap_summary(when, heap_summary);
3389 
3390   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3391   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3392 }
3393 
3394 
3395 G1CollectedHeap* G1CollectedHeap::heap() {
3396   CollectedHeap* heap = Universe::heap();
3397   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3398   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3399   return (G1CollectedHeap*)heap;
3400 }
3401 
3402 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3403   // always_do_update_barrier = false;
3404   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3405   // Fill TLAB's and such
3406   accumulate_statistics_all_tlabs();
3407   ensure_parsability(true);
3408 
3409   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3410       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3411     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3412   }
3413 }
3414 
3415 void G1CollectedHeap::gc_epilogue(bool full) {
3416 
3417   if (G1SummarizeRSetStats &&
3418       (G1SummarizeRSetStatsPeriod > 0) &&
3419       // we are at the end of the GC. Total collections has already been increased.
3420       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3421     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3422   }
3423 
3424   // FIXME: what is this about?
3425   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3426   // is set.
3427 #if defined(COMPILER2) || INCLUDE_JVMCI
3428   assert(DerivedPointerTable::is_empty(), "derived pointer present");
3429 #endif
3430   // always_do_update_barrier = true;
3431 
3432   resize_all_tlabs();
3433   allocation_context_stats().update(full);
3434 
3435   // We have just completed a GC. Update the soft reference
3436   // policy with the new heap occupancy
3437   Universe::update_heap_info_at_gc();
3438 }
3439 
3440 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3441                                                uint gc_count_before,
3442                                                bool* succeeded,
3443                                                GCCause::Cause gc_cause) {
3444   assert_heap_not_locked_and_not_at_safepoint();
3445   g1_policy()->record_stop_world_start();
3446   VM_G1IncCollectionPause op(gc_count_before,
3447                              word_size,
3448                              false, /* should_initiate_conc_mark */
3449                              g1_policy()->max_pause_time_ms(),
3450                              gc_cause);
3451 
3452   op.set_allocation_context(AllocationContext::current());
3453   VMThread::execute(&op);
3454 
3455   HeapWord* result = op.result();
3456   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3457   assert(result == NULL || ret_succeeded,
3458          "the result should be NULL if the VM did not succeed");
3459   *succeeded = ret_succeeded;
3460 
3461   assert_heap_not_locked();
3462   return result;
3463 }
3464 
3465 void
3466 G1CollectedHeap::doConcurrentMark() {
3467   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3468   if (!_cmThread->in_progress()) {
3469     _cmThread->set_started();
3470     CGC_lock->notify();
3471   }
3472 }
3473 
3474 size_t G1CollectedHeap::pending_card_num() {
3475   size_t extra_cards = 0;
3476   JavaThread *curr = Threads::first();
3477   while (curr != NULL) {
3478     DirtyCardQueue& dcq = curr->dirty_card_queue();
3479     extra_cards += dcq.size();
3480     curr = curr->next();
3481   }
3482   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3483   size_t buffer_size = dcqs.buffer_size();
3484   size_t buffer_num = dcqs.completed_buffers_num();
3485 
3486   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3487   // in bytes - not the number of 'entries'. We need to convert
3488   // into a number of cards.
3489   return (buffer_size * buffer_num + extra_cards) / oopSize;
3490 }
3491 
3492 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3493  private:
3494   size_t _total_humongous;
3495   size_t _candidate_humongous;
3496 
3497   DirtyCardQueue _dcq;
3498 
3499   // We don't nominate objects with many remembered set entries, on
3500   // the assumption that such objects are likely still live.
3501   bool is_remset_small(HeapRegion* region) const {
3502     HeapRegionRemSet* const rset = region->rem_set();
3503     return G1EagerReclaimHumongousObjectsWithStaleRefs
3504       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3505       : rset->is_empty();
3506   }
3507 
3508   bool is_typeArray_region(HeapRegion* region) const {
3509     return oop(region->bottom())->is_typeArray();
3510   }
3511 
3512   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3513     assert(region->is_starts_humongous(), "Must start a humongous object");
3514 
3515     // Candidate selection must satisfy the following constraints
3516     // while concurrent marking is in progress:
3517     //
3518     // * In order to maintain SATB invariants, an object must not be
3519     // reclaimed if it was allocated before the start of marking and
3520     // has not had its references scanned.  Such an object must have
3521     // its references (including type metadata) scanned to ensure no
3522     // live objects are missed by the marking process.  Objects
3523     // allocated after the start of concurrent marking don't need to
3524     // be scanned.
3525     //
3526     // * An object must not be reclaimed if it is on the concurrent
3527     // mark stack.  Objects allocated after the start of concurrent
3528     // marking are never pushed on the mark stack.
3529     //
3530     // Nominating only objects allocated after the start of concurrent
3531     // marking is sufficient to meet both constraints.  This may miss
3532     // some objects that satisfy the constraints, but the marking data
3533     // structures don't support efficiently performing the needed
3534     // additional tests or scrubbing of the mark stack.
3535     //
3536     // However, we presently only nominate is_typeArray() objects.
3537     // A humongous object containing references induces remembered
3538     // set entries on other regions.  In order to reclaim such an
3539     // object, those remembered sets would need to be cleaned up.
3540     //
3541     // We also treat is_typeArray() objects specially, allowing them
3542     // to be reclaimed even if allocated before the start of
3543     // concurrent mark.  For this we rely on mark stack insertion to
3544     // exclude is_typeArray() objects, preventing reclaiming an object
3545     // that is in the mark stack.  We also rely on the metadata for
3546     // such objects to be built-in and so ensured to be kept live.
3547     // Frequent allocation and drop of large binary blobs is an
3548     // important use case for eager reclaim, and this special handling
3549     // may reduce needed headroom.
3550 
3551     return is_typeArray_region(region) && is_remset_small(region);
3552   }
3553 
3554  public:
3555   RegisterHumongousWithInCSetFastTestClosure()
3556   : _total_humongous(0),
3557     _candidate_humongous(0),
3558     _dcq(&JavaThread::dirty_card_queue_set()) {
3559   }
3560 
3561   virtual bool doHeapRegion(HeapRegion* r) {
3562     if (!r->is_starts_humongous()) {
3563       return false;
3564     }
3565     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3566 
3567     bool is_candidate = humongous_region_is_candidate(g1h, r);
3568     uint rindex = r->hrm_index();
3569     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3570     if (is_candidate) {
3571       _candidate_humongous++;
3572       g1h->register_humongous_region_with_cset(rindex);
3573       // Is_candidate already filters out humongous object with large remembered sets.
3574       // If we have a humongous object with a few remembered sets, we simply flush these
3575       // remembered set entries into the DCQS. That will result in automatic
3576       // re-evaluation of their remembered set entries during the following evacuation
3577       // phase.
3578       if (!r->rem_set()->is_empty()) {
3579         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3580                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3581         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3582         HeapRegionRemSetIterator hrrs(r->rem_set());
3583         size_t card_index;
3584         while (hrrs.has_next(card_index)) {
3585           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3586           // The remembered set might contain references to already freed
3587           // regions. Filter out such entries to avoid failing card table
3588           // verification.
3589           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3590             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3591               *card_ptr = CardTableModRefBS::dirty_card_val();
3592               _dcq.enqueue(card_ptr);
3593             }
3594           }
3595         }
3596         r->rem_set()->clear_locked();
3597       }
3598       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3599     }
3600     _total_humongous++;
3601 
3602     return false;
3603   }
3604 
3605   size_t total_humongous() const { return _total_humongous; }
3606   size_t candidate_humongous() const { return _candidate_humongous; }
3607 
3608   void flush_rem_set_entries() { _dcq.flush(); }
3609 };
3610 
3611 void G1CollectedHeap::register_humongous_regions_with_cset() {
3612   if (!G1EagerReclaimHumongousObjects) {
3613     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3614     return;
3615   }
3616   double time = os::elapsed_counter();
3617 
3618   // Collect reclaim candidate information and register candidates with cset.
3619   RegisterHumongousWithInCSetFastTestClosure cl;
3620   heap_region_iterate(&cl);
3621 
3622   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3623   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3624                                                                   cl.total_humongous(),
3625                                                                   cl.candidate_humongous());
3626   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3627 
3628   // Finally flush all remembered set entries to re-check into the global DCQS.
3629   cl.flush_rem_set_entries();
3630 }
3631 
3632 #ifdef ASSERT
3633 class VerifyCSetClosure: public HeapRegionClosure {
3634 public:
3635   bool doHeapRegion(HeapRegion* hr) {
3636     // Here we check that the CSet region's RSet is ready for parallel
3637     // iteration. The fields that we'll verify are only manipulated
3638     // when the region is part of a CSet and is collected. Afterwards,
3639     // we reset these fields when we clear the region's RSet (when the
3640     // region is freed) so they are ready when the region is
3641     // re-allocated. The only exception to this is if there's an
3642     // evacuation failure and instead of freeing the region we leave
3643     // it in the heap. In that case, we reset these fields during
3644     // evacuation failure handling.
3645     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3646 
3647     // Here's a good place to add any other checks we'd like to
3648     // perform on CSet regions.
3649     return false;
3650   }
3651 };
3652 #endif // ASSERT
3653 
3654 uint G1CollectedHeap::num_task_queues() const {
3655   return _task_queues->size();
3656 }
3657 
3658 #if TASKQUEUE_STATS
3659 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3660   st->print_raw_cr("GC Task Stats");
3661   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3662   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3663 }
3664 
3665 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3666   print_taskqueue_stats_hdr(st);
3667 
3668   TaskQueueStats totals;
3669   const uint n = num_task_queues();
3670   for (uint i = 0; i < n; ++i) {
3671     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3672     totals += task_queue(i)->stats;
3673   }
3674   st->print_raw("tot "); totals.print(st); st->cr();
3675 
3676   DEBUG_ONLY(totals.verify());
3677 }
3678 
3679 void G1CollectedHeap::reset_taskqueue_stats() {
3680   const uint n = num_task_queues();
3681   for (uint i = 0; i < n; ++i) {
3682     task_queue(i)->stats.reset();
3683   }
3684 }
3685 #endif // TASKQUEUE_STATS
3686 
3687 void G1CollectedHeap::log_gc_header() {
3688   if (!G1Log::fine()) {
3689     return;
3690   }
3691 
3692   gclog_or_tty->gclog_stamp();
3693 
3694   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3695     .append(collector_state()->gcs_are_young() ? "(young)" : "(mixed)")
3696     .append(collector_state()->during_initial_mark_pause() ? " (initial-mark)" : "");
3697 
3698   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3699 }
3700 
3701 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3702   if (!G1Log::fine()) {
3703     return;
3704   }
3705 
3706   if (G1Log::finer()) {
3707     if (evacuation_failed()) {
3708       gclog_or_tty->print(" (to-space exhausted)");
3709     }
3710     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3711     g1_policy()->print_phases(pause_time_sec);
3712     g1_policy()->print_detailed_heap_transition();
3713   } else {
3714     if (evacuation_failed()) {
3715       gclog_or_tty->print("--");
3716     }
3717     g1_policy()->print_heap_transition();
3718     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3719   }
3720   gclog_or_tty->flush();
3721 }
3722 
3723 void G1CollectedHeap::wait_for_root_region_scanning() {
3724   double scan_wait_start = os::elapsedTime();
3725   // We have to wait until the CM threads finish scanning the
3726   // root regions as it's the only way to ensure that all the
3727   // objects on them have been correctly scanned before we start
3728   // moving them during the GC.
3729   bool waited = _cm->root_regions()->wait_until_scan_finished();
3730   double wait_time_ms = 0.0;
3731   if (waited) {
3732     double scan_wait_end = os::elapsedTime();
3733     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3734   }
3735   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3736 }
3737 
3738 bool
3739 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3740   assert_at_safepoint(true /* should_be_vm_thread */);
3741   guarantee(!is_gc_active(), "collection is not reentrant");
3742 
3743   if (GC_locker::check_active_before_gc()) {
3744     return false;
3745   }
3746 
3747   _gc_timer_stw->register_gc_start();
3748 
3749   GCIdMark gc_id_mark;
3750   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3751 
3752   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3753   ResourceMark rm;
3754 
3755   wait_for_root_region_scanning();
3756 
3757   G1Log::update_level();
3758   print_heap_before_gc();
3759   trace_heap_before_gc(_gc_tracer_stw);
3760 
3761   verify_region_sets_optional();
3762   verify_dirty_young_regions();
3763 
3764   // This call will decide whether this pause is an initial-mark
3765   // pause. If it is, during_initial_mark_pause() will return true
3766   // for the duration of this pause.
3767   g1_policy()->decide_on_conc_mark_initiation();
3768 
3769   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3770   assert(!collector_state()->during_initial_mark_pause() ||
3771           collector_state()->gcs_are_young(), "sanity");
3772 
3773   // We also do not allow mixed GCs during marking.
3774   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3775 
3776   // Record whether this pause is an initial mark. When the current
3777   // thread has completed its logging output and it's safe to signal
3778   // the CM thread, the flag's value in the policy has been reset.
3779   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3780 
3781   // Inner scope for scope based logging, timers, and stats collection
3782   {
3783     EvacuationInfo evacuation_info;
3784 
3785     if (collector_state()->during_initial_mark_pause()) {
3786       // We are about to start a marking cycle, so we increment the
3787       // full collection counter.
3788       increment_old_marking_cycles_started();
3789       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3790     }
3791 
3792     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3793 
3794     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3795 
3796     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3797                                                                   workers()->active_workers(),
3798                                                                   Threads::number_of_non_daemon_threads());
3799     workers()->set_active_workers(active_workers);
3800 
3801     double pause_start_sec = os::elapsedTime();
3802     g1_policy()->note_gc_start(active_workers);
3803     log_gc_header();
3804 
3805     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3806     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3807 
3808     // If the secondary_free_list is not empty, append it to the
3809     // free_list. No need to wait for the cleanup operation to finish;
3810     // the region allocation code will check the secondary_free_list
3811     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3812     // set, skip this step so that the region allocation code has to
3813     // get entries from the secondary_free_list.
3814     if (!G1StressConcRegionFreeing) {
3815       append_secondary_free_list_if_not_empty_with_lock();
3816     }
3817 
3818     assert(check_young_list_well_formed(), "young list should be well formed");
3819 
3820     // Don't dynamically change the number of GC threads this early.  A value of
3821     // 0 is used to indicate serial work.  When parallel work is done,
3822     // it will be set.
3823 
3824     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3825       IsGCActiveMark x;
3826 
3827       gc_prologue(false);
3828       increment_total_collections(false /* full gc */);
3829       increment_gc_time_stamp();
3830 
3831       verify_before_gc();
3832 
3833       check_bitmaps("GC Start");
3834 
3835 #if defined(COMPILER2) || INCLUDE_JVMCI
3836       DerivedPointerTable::clear();
3837 #endif
3838 
3839       // Please see comment in g1CollectedHeap.hpp and
3840       // G1CollectedHeap::ref_processing_init() to see how
3841       // reference processing currently works in G1.
3842 
3843       // Enable discovery in the STW reference processor
3844       ref_processor_stw()->enable_discovery();
3845 
3846       {
3847         // We want to temporarily turn off discovery by the
3848         // CM ref processor, if necessary, and turn it back on
3849         // on again later if we do. Using a scoped
3850         // NoRefDiscovery object will do this.
3851         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3852 
3853         // Forget the current alloc region (we might even choose it to be part
3854         // of the collection set!).
3855         _allocator->release_mutator_alloc_region();
3856 
3857         // We should call this after we retire the mutator alloc
3858         // region(s) so that all the ALLOC / RETIRE events are generated
3859         // before the start GC event.
3860         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3861 
3862         // This timing is only used by the ergonomics to handle our pause target.
3863         // It is unclear why this should not include the full pause. We will
3864         // investigate this in CR 7178365.
3865         //
3866         // Preserving the old comment here if that helps the investigation:
3867         //
3868         // The elapsed time induced by the start time below deliberately elides
3869         // the possible verification above.
3870         double sample_start_time_sec = os::elapsedTime();
3871 
3872         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3873 
3874         if (collector_state()->during_initial_mark_pause()) {
3875           concurrent_mark()->checkpointRootsInitialPre();
3876         }
3877 
3878         double time_remaining_ms = g1_policy()->finalize_young_cset_part(target_pause_time_ms);
3879         g1_policy()->finalize_old_cset_part(time_remaining_ms);
3880 
3881         evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length());
3882 
3883         register_humongous_regions_with_cset();
3884 
3885         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3886 
3887         _cm->note_start_of_gc();
3888         // We call this after finalize_cset() to
3889         // ensure that the CSet has been finalized.
3890         _cm->verify_no_cset_oops();
3891 
3892         if (_hr_printer.is_active()) {
3893           HeapRegion* hr = g1_policy()->collection_set();
3894           while (hr != NULL) {
3895             _hr_printer.cset(hr);
3896             hr = hr->next_in_collection_set();
3897           }
3898         }
3899 
3900 #ifdef ASSERT
3901         VerifyCSetClosure cl;
3902         collection_set_iterate(&cl);
3903 #endif // ASSERT
3904 
3905         // Initialize the GC alloc regions.
3906         _allocator->init_gc_alloc_regions(evacuation_info);
3907 
3908         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), g1_policy()->young_cset_region_length());
3909         pre_evacuate_collection_set();
3910 
3911         // Actually do the work...
3912         evacuate_collection_set(evacuation_info, &per_thread_states);
3913 
3914         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3915 
3916         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3917         free_collection_set(g1_policy()->collection_set(), evacuation_info, surviving_young_words);
3918 
3919         eagerly_reclaim_humongous_regions();
3920 
3921         g1_policy()->clear_collection_set();
3922 
3923         // Start a new incremental collection set for the next pause.
3924         g1_policy()->start_incremental_cset_building();
3925 
3926         clear_cset_fast_test();
3927 
3928         _young_list->reset_sampled_info();
3929 
3930         // Don't check the whole heap at this point as the
3931         // GC alloc regions from this pause have been tagged
3932         // as survivors and moved on to the survivor list.
3933         // Survivor regions will fail the !is_young() check.
3934         assert(check_young_list_empty(false /* check_heap */),
3935           "young list should be empty");
3936 
3937         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3938                                              _young_list->first_survivor_region(),
3939                                              _young_list->last_survivor_region());
3940 
3941         _young_list->reset_auxilary_lists();
3942 
3943         if (evacuation_failed()) {
3944           set_used(recalculate_used());
3945           if (_archive_allocator != NULL) {
3946             _archive_allocator->clear_used();
3947           }
3948           for (uint i = 0; i < ParallelGCThreads; i++) {
3949             if (_evacuation_failed_info_array[i].has_failed()) {
3950               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3951             }
3952           }
3953         } else {
3954           // The "used" of the the collection set have already been subtracted
3955           // when they were freed.  Add in the bytes evacuated.
3956           increase_used(g1_policy()->bytes_copied_during_gc());
3957         }
3958 
3959         if (collector_state()->during_initial_mark_pause()) {
3960           // We have to do this before we notify the CM threads that
3961           // they can start working to make sure that all the
3962           // appropriate initialization is done on the CM object.
3963           concurrent_mark()->checkpointRootsInitialPost();
3964           collector_state()->set_mark_in_progress(true);
3965           // Note that we don't actually trigger the CM thread at
3966           // this point. We do that later when we're sure that
3967           // the current thread has completed its logging output.
3968         }
3969 
3970         allocate_dummy_regions();
3971 
3972         _allocator->init_mutator_alloc_region();
3973 
3974         {
3975           size_t expand_bytes = g1_policy()->expansion_amount();
3976           if (expand_bytes > 0) {
3977             size_t bytes_before = capacity();
3978             // No need for an ergo verbose message here,
3979             // expansion_amount() does this when it returns a value > 0.
3980             double expand_ms;
3981             if (!expand(expand_bytes, &expand_ms)) {
3982               // We failed to expand the heap. Cannot do anything about it.
3983             }
3984             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3985           }
3986         }
3987 
3988         // We redo the verification but now wrt to the new CSet which
3989         // has just got initialized after the previous CSet was freed.
3990         _cm->verify_no_cset_oops();
3991         _cm->note_end_of_gc();
3992 
3993         // This timing is only used by the ergonomics to handle our pause target.
3994         // It is unclear why this should not include the full pause. We will
3995         // investigate this in CR 7178365.
3996         double sample_end_time_sec = os::elapsedTime();
3997         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3998         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3999         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned);
4000 
4001         evacuation_info.set_collectionset_used_before(g1_policy()->collection_set_bytes_used_before());
4002         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
4003 
4004         MemoryService::track_memory_usage();
4005 
4006         // In prepare_for_verify() below we'll need to scan the deferred
4007         // update buffers to bring the RSets up-to-date if
4008         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4009         // the update buffers we'll probably need to scan cards on the
4010         // regions we just allocated to (i.e., the GC alloc
4011         // regions). However, during the last GC we called
4012         // set_saved_mark() on all the GC alloc regions, so card
4013         // scanning might skip the [saved_mark_word()...top()] area of
4014         // those regions (i.e., the area we allocated objects into
4015         // during the last GC). But it shouldn't. Given that
4016         // saved_mark_word() is conditional on whether the GC time stamp
4017         // on the region is current or not, by incrementing the GC time
4018         // stamp here we invalidate all the GC time stamps on all the
4019         // regions and saved_mark_word() will simply return top() for
4020         // all the regions. This is a nicer way of ensuring this rather
4021         // than iterating over the regions and fixing them. In fact, the
4022         // GC time stamp increment here also ensures that
4023         // saved_mark_word() will return top() between pauses, i.e.,
4024         // during concurrent refinement. So we don't need the
4025         // is_gc_active() check to decided which top to use when
4026         // scanning cards (see CR 7039627).
4027         increment_gc_time_stamp();
4028 
4029         verify_after_gc();
4030         check_bitmaps("GC End");
4031 
4032         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4033         ref_processor_stw()->verify_no_references_recorded();
4034 
4035         // CM reference discovery will be re-enabled if necessary.
4036       }
4037 
4038       // We should do this after we potentially expand the heap so
4039       // that all the COMMIT events are generated before the end GC
4040       // event, and after we retire the GC alloc regions so that all
4041       // RETIRE events are generated before the end GC event.
4042       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4043 
4044 #ifdef TRACESPINNING
4045       ParallelTaskTerminator::print_termination_counts();
4046 #endif
4047 
4048       gc_epilogue(false);
4049     }
4050 
4051     // Print the remainder of the GC log output.
4052     log_gc_footer(os::elapsedTime() - pause_start_sec);
4053 
4054     // It is not yet to safe to tell the concurrent mark to
4055     // start as we have some optional output below. We don't want the
4056     // output from the concurrent mark thread interfering with this
4057     // logging output either.
4058 
4059     _hrm.verify_optional();
4060     verify_region_sets_optional();
4061 
4062     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4063     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4064 
4065     print_heap_after_gc();
4066     trace_heap_after_gc(_gc_tracer_stw);
4067 
4068     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4069     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4070     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4071     // before any GC notifications are raised.
4072     g1mm()->update_sizes();
4073 
4074     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4075     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4076     _gc_timer_stw->register_gc_end();
4077     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4078   }
4079   // It should now be safe to tell the concurrent mark thread to start
4080   // without its logging output interfering with the logging output
4081   // that came from the pause.
4082 
4083   if (should_start_conc_mark) {
4084     // CAUTION: after the doConcurrentMark() call below,
4085     // the concurrent marking thread(s) could be running
4086     // concurrently with us. Make sure that anything after
4087     // this point does not assume that we are the only GC thread
4088     // running. Note: of course, the actual marking work will
4089     // not start until the safepoint itself is released in
4090     // SuspendibleThreadSet::desynchronize().
4091     doConcurrentMark();
4092   }
4093 
4094   return true;
4095 }
4096 
4097 void G1CollectedHeap::remove_self_forwarding_pointers() {
4098   double remove_self_forwards_start = os::elapsedTime();
4099 
4100   G1ParRemoveSelfForwardPtrsTask rsfp_task;
4101   workers()->run_task(&rsfp_task);
4102 
4103   // Now restore saved marks, if any.
4104   for (uint i = 0; i < ParallelGCThreads; i++) {
4105     OopAndMarkOopStack& cur = _preserved_objs[i];
4106     while (!cur.is_empty()) {
4107       OopAndMarkOop elem = cur.pop();
4108       elem.set_mark();
4109     }
4110     cur.clear(true);
4111   }
4112 
4113   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4114 }
4115 
4116 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
4117   if (!_evacuation_failed) {
4118     _evacuation_failed = true;
4119   }
4120 
4121   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
4122 
4123   // We want to call the "for_promotion_failure" version only in the
4124   // case of a promotion failure.
4125   if (m->must_be_preserved_for_promotion_failure(obj)) {
4126     OopAndMarkOop elem(obj, m);
4127     _preserved_objs[worker_id].push(elem);
4128   }
4129 }
4130 
4131 class G1ParEvacuateFollowersClosure : public VoidClosure {
4132 private:
4133   double _start_term;
4134   double _term_time;
4135   size_t _term_attempts;
4136 
4137   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
4138   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
4139 protected:
4140   G1CollectedHeap*              _g1h;
4141   G1ParScanThreadState*         _par_scan_state;
4142   RefToScanQueueSet*            _queues;
4143   ParallelTaskTerminator*       _terminator;
4144 
4145   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4146   RefToScanQueueSet*      queues()         { return _queues; }
4147   ParallelTaskTerminator* terminator()     { return _terminator; }
4148 
4149 public:
4150   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4151                                 G1ParScanThreadState* par_scan_state,
4152                                 RefToScanQueueSet* queues,
4153                                 ParallelTaskTerminator* terminator)
4154     : _g1h(g1h), _par_scan_state(par_scan_state),
4155       _queues(queues), _terminator(terminator),
4156       _start_term(0.0), _term_time(0.0), _term_attempts(0) {}
4157 
4158   void do_void();
4159 
4160   double term_time() const { return _term_time; }
4161   size_t term_attempts() const { return _term_attempts; }
4162 
4163 private:
4164   inline bool offer_termination();
4165 };
4166 
4167 bool G1ParEvacuateFollowersClosure::offer_termination() {
4168   G1ParScanThreadState* const pss = par_scan_state();
4169   start_term_time();
4170   const bool res = terminator()->offer_termination();
4171   end_term_time();
4172   return res;
4173 }
4174 
4175 void G1ParEvacuateFollowersClosure::do_void() {
4176   G1ParScanThreadState* const pss = par_scan_state();
4177   pss->trim_queue();
4178   do {
4179     pss->steal_and_trim_queue(queues());
4180   } while (!offer_termination());
4181 }
4182 
4183 class G1ParTask : public AbstractGangTask {
4184 protected:
4185   G1CollectedHeap*         _g1h;
4186   G1ParScanThreadStateSet* _pss;
4187   RefToScanQueueSet*       _queues;
4188   G1RootProcessor*         _root_processor;
4189   ParallelTaskTerminator   _terminator;
4190   uint                     _n_workers;
4191 
4192 public:
4193   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4194     : AbstractGangTask("G1 collection"),
4195       _g1h(g1h),
4196       _pss(per_thread_states),
4197       _queues(task_queues),
4198       _root_processor(root_processor),
4199       _terminator(n_workers, _queues),
4200       _n_workers(n_workers)
4201   {}
4202 
4203   void work(uint worker_id) {
4204     if (worker_id >= _n_workers) return;  // no work needed this round
4205 
4206     double start_sec = os::elapsedTime();
4207     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
4208 
4209     {
4210       ResourceMark rm;
4211       HandleMark   hm;
4212 
4213       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4214 
4215       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
4216       pss->set_ref_processor(rp);
4217 
4218       double start_strong_roots_sec = os::elapsedTime();
4219 
4220       _root_processor->evacuate_roots(pss->closures(), worker_id);
4221 
4222       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
4223 
4224       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
4225       // treating the nmethods visited to act as roots for concurrent marking.
4226       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
4227       // objects copied by the current evacuation.
4228       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
4229                                                                              pss->closures()->weak_codeblobs(),
4230                                                                              worker_id);
4231 
4232       _pss->add_cards_scanned(worker_id, cards_scanned);
4233 
4234       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
4235 
4236       double term_sec = 0.0;
4237       size_t evac_term_attempts = 0;
4238       {
4239         double start = os::elapsedTime();
4240         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
4241         evac.do_void();
4242 
4243         evac_term_attempts = evac.term_attempts();
4244         term_sec = evac.term_time();
4245         double elapsed_sec = os::elapsedTime() - start;
4246         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4247         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4248         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
4249       }
4250 
4251       assert(pss->queue_is_empty(), "should be empty");
4252 
4253       if (PrintTerminationStats) {
4254         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4255         size_t lab_waste;
4256         size_t lab_undo_waste;
4257         pss->waste(lab_waste, lab_undo_waste);
4258         _g1h->print_termination_stats(gclog_or_tty,
4259                                       worker_id,
4260                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
4261                                       strong_roots_sec * 1000.0,                  /* strong roots time */
4262                                       term_sec * 1000.0,                          /* evac term time */
4263                                       evac_term_attempts,                         /* evac term attempts */
4264                                       lab_waste,                                  /* alloc buffer waste */
4265                                       lab_undo_waste                              /* undo waste */
4266                                       );
4267       }
4268 
4269       // Close the inner scope so that the ResourceMark and HandleMark
4270       // destructors are executed here and are included as part of the
4271       // "GC Worker Time".
4272     }
4273     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4274   }
4275 };
4276 
4277 void G1CollectedHeap::print_termination_stats_hdr(outputStream* const st) {
4278   st->print_raw_cr("GC Termination Stats");
4279   st->print_raw_cr("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
4280   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts  total   alloc    undo");
4281   st->print_raw_cr("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
4282 }
4283 
4284 void G1CollectedHeap::print_termination_stats(outputStream* const st,
4285                                               uint worker_id,
4286                                               double elapsed_ms,
4287                                               double strong_roots_ms,
4288                                               double term_ms,
4289                                               size_t term_attempts,
4290                                               size_t alloc_buffer_waste,
4291                                               size_t undo_waste) const {
4292   st->print_cr("%3d %9.2f %9.2f %6.2f "
4293                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4294                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4295                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
4296                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
4297                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
4298                alloc_buffer_waste * HeapWordSize / K,
4299                undo_waste * HeapWordSize / K);
4300 }
4301 
4302 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4303 private:
4304   BoolObjectClosure* _is_alive;
4305   int _initial_string_table_size;
4306   int _initial_symbol_table_size;
4307 
4308   bool  _process_strings;
4309   int _strings_processed;
4310   int _strings_removed;
4311 
4312   bool  _process_symbols;
4313   int _symbols_processed;
4314   int _symbols_removed;
4315 
4316 public:
4317   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4318     AbstractGangTask("String/Symbol Unlinking"),
4319     _is_alive(is_alive),
4320     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4321     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4322 
4323     _initial_string_table_size = StringTable::the_table()->table_size();
4324     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4325     if (process_strings) {
4326       StringTable::clear_parallel_claimed_index();
4327     }
4328     if (process_symbols) {
4329       SymbolTable::clear_parallel_claimed_index();
4330     }
4331   }
4332 
4333   ~G1StringSymbolTableUnlinkTask() {
4334     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4335               "claim value %d after unlink less than initial string table size %d",
4336               StringTable::parallel_claimed_index(), _initial_string_table_size);
4337     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4338               "claim value %d after unlink less than initial symbol table size %d",
4339               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
4340 
4341     if (G1TraceStringSymbolTableScrubbing) {
4342       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4343                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4344                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4345                              strings_processed(), strings_removed(),
4346                              symbols_processed(), symbols_removed());
4347     }
4348   }
4349 
4350   void work(uint worker_id) {
4351     int strings_processed = 0;
4352     int strings_removed = 0;
4353     int symbols_processed = 0;
4354     int symbols_removed = 0;
4355     if (_process_strings) {
4356       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4357       Atomic::add(strings_processed, &_strings_processed);
4358       Atomic::add(strings_removed, &_strings_removed);
4359     }
4360     if (_process_symbols) {
4361       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4362       Atomic::add(symbols_processed, &_symbols_processed);
4363       Atomic::add(symbols_removed, &_symbols_removed);
4364     }
4365   }
4366 
4367   size_t strings_processed() const { return (size_t)_strings_processed; }
4368   size_t strings_removed()   const { return (size_t)_strings_removed; }
4369 
4370   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4371   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4372 };
4373 
4374 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4375 private:
4376   static Monitor* _lock;
4377 
4378   BoolObjectClosure* const _is_alive;
4379   const bool               _unloading_occurred;
4380   const uint               _num_workers;
4381 
4382   // Variables used to claim nmethods.
4383   nmethod* _first_nmethod;
4384   volatile nmethod* _claimed_nmethod;
4385 
4386   // The list of nmethods that need to be processed by the second pass.
4387   volatile nmethod* _postponed_list;
4388   volatile uint     _num_entered_barrier;
4389 
4390  public:
4391   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4392       _is_alive(is_alive),
4393       _unloading_occurred(unloading_occurred),
4394       _num_workers(num_workers),
4395       _first_nmethod(NULL),
4396       _claimed_nmethod(NULL),
4397       _postponed_list(NULL),
4398       _num_entered_barrier(0)
4399   {
4400     nmethod::increase_unloading_clock();
4401     // Get first alive nmethod
4402     NMethodIterator iter = NMethodIterator();
4403     if(iter.next_alive()) {
4404       _first_nmethod = iter.method();
4405     }
4406     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4407   }
4408 
4409   ~G1CodeCacheUnloadingTask() {
4410     CodeCache::verify_clean_inline_caches();
4411 
4412     CodeCache::set_needs_cache_clean(false);
4413     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4414 
4415     CodeCache::verify_icholder_relocations();
4416   }
4417 
4418  private:
4419   void add_to_postponed_list(nmethod* nm) {
4420       nmethod* old;
4421       do {
4422         old = (nmethod*)_postponed_list;
4423         nm->set_unloading_next(old);
4424       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4425   }
4426 
4427   void clean_nmethod(nmethod* nm) {
4428     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4429 
4430     if (postponed) {
4431       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4432       add_to_postponed_list(nm);
4433     }
4434 
4435     // Mark that this thread has been cleaned/unloaded.
4436     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4437     nm->set_unloading_clock(nmethod::global_unloading_clock());
4438   }
4439 
4440   void clean_nmethod_postponed(nmethod* nm) {
4441     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4442   }
4443 
4444   static const int MaxClaimNmethods = 16;
4445 
4446   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4447     nmethod* first;
4448     NMethodIterator last;
4449 
4450     do {
4451       *num_claimed_nmethods = 0;
4452 
4453       first = (nmethod*)_claimed_nmethod;
4454       last = NMethodIterator(first);
4455 
4456       if (first != NULL) {
4457 
4458         for (int i = 0; i < MaxClaimNmethods; i++) {
4459           if (!last.next_alive()) {
4460             break;
4461           }
4462           claimed_nmethods[i] = last.method();
4463           (*num_claimed_nmethods)++;
4464         }
4465       }
4466 
4467     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4468   }
4469 
4470   nmethod* claim_postponed_nmethod() {
4471     nmethod* claim;
4472     nmethod* next;
4473 
4474     do {
4475       claim = (nmethod*)_postponed_list;
4476       if (claim == NULL) {
4477         return NULL;
4478       }
4479 
4480       next = claim->unloading_next();
4481 
4482     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4483 
4484     return claim;
4485   }
4486 
4487  public:
4488   // Mark that we're done with the first pass of nmethod cleaning.
4489   void barrier_mark(uint worker_id) {
4490     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4491     _num_entered_barrier++;
4492     if (_num_entered_barrier == _num_workers) {
4493       ml.notify_all();
4494     }
4495   }
4496 
4497   // See if we have to wait for the other workers to
4498   // finish their first-pass nmethod cleaning work.
4499   void barrier_wait(uint worker_id) {
4500     if (_num_entered_barrier < _num_workers) {
4501       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4502       while (_num_entered_barrier < _num_workers) {
4503           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4504       }
4505     }
4506   }
4507 
4508   // Cleaning and unloading of nmethods. Some work has to be postponed
4509   // to the second pass, when we know which nmethods survive.
4510   void work_first_pass(uint worker_id) {
4511     // The first nmethods is claimed by the first worker.
4512     if (worker_id == 0 && _first_nmethod != NULL) {
4513       clean_nmethod(_first_nmethod);
4514       _first_nmethod = NULL;
4515     }
4516 
4517     int num_claimed_nmethods;
4518     nmethod* claimed_nmethods[MaxClaimNmethods];
4519 
4520     while (true) {
4521       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4522 
4523       if (num_claimed_nmethods == 0) {
4524         break;
4525       }
4526 
4527       for (int i = 0; i < num_claimed_nmethods; i++) {
4528         clean_nmethod(claimed_nmethods[i]);
4529       }
4530     }
4531   }
4532 
4533   void work_second_pass(uint worker_id) {
4534     nmethod* nm;
4535     // Take care of postponed nmethods.
4536     while ((nm = claim_postponed_nmethod()) != NULL) {
4537       clean_nmethod_postponed(nm);
4538     }
4539   }
4540 };
4541 
4542 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4543 
4544 class G1KlassCleaningTask : public StackObj {
4545   BoolObjectClosure*                      _is_alive;
4546   volatile jint                           _clean_klass_tree_claimed;
4547   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4548 
4549  public:
4550   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4551       _is_alive(is_alive),
4552       _clean_klass_tree_claimed(0),
4553       _klass_iterator() {
4554   }
4555 
4556  private:
4557   bool claim_clean_klass_tree_task() {
4558     if (_clean_klass_tree_claimed) {
4559       return false;
4560     }
4561 
4562     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4563   }
4564 
4565   InstanceKlass* claim_next_klass() {
4566     Klass* klass;
4567     do {
4568       klass =_klass_iterator.next_klass();
4569     } while (klass != NULL && !klass->is_instance_klass());
4570 
4571     // this can be null so don't call InstanceKlass::cast
4572     return static_cast<InstanceKlass*>(klass);
4573   }
4574 
4575 public:
4576 
4577   void clean_klass(InstanceKlass* ik) {
4578     ik->clean_weak_instanceklass_links(_is_alive);
4579   }
4580 
4581   void work() {
4582     ResourceMark rm;
4583 
4584     // One worker will clean the subklass/sibling klass tree.
4585     if (claim_clean_klass_tree_task()) {
4586       Klass::clean_subklass_tree(_is_alive);
4587     }
4588 
4589     // All workers will help cleaning the classes,
4590     InstanceKlass* klass;
4591     while ((klass = claim_next_klass()) != NULL) {
4592       clean_klass(klass);
4593     }
4594   }
4595 };
4596 
4597 // To minimize the remark pause times, the tasks below are done in parallel.
4598 class G1ParallelCleaningTask : public AbstractGangTask {
4599 private:
4600   G1StringSymbolTableUnlinkTask _string_symbol_task;
4601   G1CodeCacheUnloadingTask      _code_cache_task;
4602   G1KlassCleaningTask           _klass_cleaning_task;
4603 
4604 public:
4605   // The constructor is run in the VMThread.
4606   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4607       AbstractGangTask("Parallel Cleaning"),
4608       _string_symbol_task(is_alive, process_strings, process_symbols),
4609       _code_cache_task(num_workers, is_alive, unloading_occurred),
4610       _klass_cleaning_task(is_alive) {
4611   }
4612 
4613   // The parallel work done by all worker threads.
4614   void work(uint worker_id) {
4615     // Do first pass of code cache cleaning.
4616     _code_cache_task.work_first_pass(worker_id);
4617 
4618     // Let the threads mark that the first pass is done.
4619     _code_cache_task.barrier_mark(worker_id);
4620 
4621     // Clean the Strings and Symbols.
4622     _string_symbol_task.work(worker_id);
4623 
4624     // Wait for all workers to finish the first code cache cleaning pass.
4625     _code_cache_task.barrier_wait(worker_id);
4626 
4627     // Do the second code cache cleaning work, which realize on
4628     // the liveness information gathered during the first pass.
4629     _code_cache_task.work_second_pass(worker_id);
4630 
4631     // Clean all klasses that were not unloaded.
4632     _klass_cleaning_task.work();
4633   }
4634 };
4635 
4636 
4637 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4638                                         bool process_strings,
4639                                         bool process_symbols,
4640                                         bool class_unloading_occurred) {
4641   uint n_workers = workers()->active_workers();
4642 
4643   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4644                                         n_workers, class_unloading_occurred);
4645   workers()->run_task(&g1_unlink_task);
4646 }
4647 
4648 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4649                                                      bool process_strings, bool process_symbols) {
4650   {
4651     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4652     workers()->run_task(&g1_unlink_task);
4653   }
4654 
4655   if (G1StringDedup::is_enabled()) {
4656     G1StringDedup::unlink(is_alive);
4657   }
4658 }
4659 
4660 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4661  private:
4662   DirtyCardQueueSet* _queue;
4663  public:
4664   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4665 
4666   virtual void work(uint worker_id) {
4667     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4668     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4669 
4670     RedirtyLoggedCardTableEntryClosure cl;
4671     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4672 
4673     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4674   }
4675 };
4676 
4677 void G1CollectedHeap::redirty_logged_cards() {
4678   double redirty_logged_cards_start = os::elapsedTime();
4679 
4680   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4681   dirty_card_queue_set().reset_for_par_iteration();
4682   workers()->run_task(&redirty_task);
4683 
4684   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4685   dcq.merge_bufferlists(&dirty_card_queue_set());
4686   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4687 
4688   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4689 }
4690 
4691 // Weak Reference Processing support
4692 
4693 // An always "is_alive" closure that is used to preserve referents.
4694 // If the object is non-null then it's alive.  Used in the preservation
4695 // of referent objects that are pointed to by reference objects
4696 // discovered by the CM ref processor.
4697 class G1AlwaysAliveClosure: public BoolObjectClosure {
4698   G1CollectedHeap* _g1;
4699 public:
4700   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4701   bool do_object_b(oop p) {
4702     if (p != NULL) {
4703       return true;
4704     }
4705     return false;
4706   }
4707 };
4708 
4709 bool G1STWIsAliveClosure::do_object_b(oop p) {
4710   // An object is reachable if it is outside the collection set,
4711   // or is inside and copied.
4712   return !_g1->is_in_cset(p) || p->is_forwarded();
4713 }
4714 
4715 // Non Copying Keep Alive closure
4716 class G1KeepAliveClosure: public OopClosure {
4717   G1CollectedHeap* _g1;
4718 public:
4719   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4720   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4721   void do_oop(oop* p) {
4722     oop obj = *p;
4723     assert(obj != NULL, "the caller should have filtered out NULL values");
4724 
4725     const InCSetState cset_state = _g1->in_cset_state(obj);
4726     if (!cset_state.is_in_cset_or_humongous()) {
4727       return;
4728     }
4729     if (cset_state.is_in_cset()) {
4730       assert( obj->is_forwarded(), "invariant" );
4731       *p = obj->forwardee();
4732     } else {
4733       assert(!obj->is_forwarded(), "invariant" );
4734       assert(cset_state.is_humongous(),
4735              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
4736       _g1->set_humongous_is_live(obj);
4737     }
4738   }
4739 };
4740 
4741 // Copying Keep Alive closure - can be called from both
4742 // serial and parallel code as long as different worker
4743 // threads utilize different G1ParScanThreadState instances
4744 // and different queues.
4745 
4746 class G1CopyingKeepAliveClosure: public OopClosure {
4747   G1CollectedHeap*         _g1h;
4748   OopClosure*              _copy_non_heap_obj_cl;
4749   G1ParScanThreadState*    _par_scan_state;
4750 
4751 public:
4752   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4753                             OopClosure* non_heap_obj_cl,
4754                             G1ParScanThreadState* pss):
4755     _g1h(g1h),
4756     _copy_non_heap_obj_cl(non_heap_obj_cl),
4757     _par_scan_state(pss)
4758   {}
4759 
4760   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4761   virtual void do_oop(      oop* p) { do_oop_work(p); }
4762 
4763   template <class T> void do_oop_work(T* p) {
4764     oop obj = oopDesc::load_decode_heap_oop(p);
4765 
4766     if (_g1h->is_in_cset_or_humongous(obj)) {
4767       // If the referent object has been forwarded (either copied
4768       // to a new location or to itself in the event of an
4769       // evacuation failure) then we need to update the reference
4770       // field and, if both reference and referent are in the G1
4771       // heap, update the RSet for the referent.
4772       //
4773       // If the referent has not been forwarded then we have to keep
4774       // it alive by policy. Therefore we have copy the referent.
4775       //
4776       // If the reference field is in the G1 heap then we can push
4777       // on the PSS queue. When the queue is drained (after each
4778       // phase of reference processing) the object and it's followers
4779       // will be copied, the reference field set to point to the
4780       // new location, and the RSet updated. Otherwise we need to
4781       // use the the non-heap or metadata closures directly to copy
4782       // the referent object and update the pointer, while avoiding
4783       // updating the RSet.
4784 
4785       if (_g1h->is_in_g1_reserved(p)) {
4786         _par_scan_state->push_on_queue(p);
4787       } else {
4788         assert(!Metaspace::contains((const void*)p),
4789                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4790         _copy_non_heap_obj_cl->do_oop(p);
4791       }
4792     }
4793   }
4794 };
4795 
4796 // Serial drain queue closure. Called as the 'complete_gc'
4797 // closure for each discovered list in some of the
4798 // reference processing phases.
4799 
4800 class G1STWDrainQueueClosure: public VoidClosure {
4801 protected:
4802   G1CollectedHeap* _g1h;
4803   G1ParScanThreadState* _par_scan_state;
4804 
4805   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4806 
4807 public:
4808   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4809     _g1h(g1h),
4810     _par_scan_state(pss)
4811   { }
4812 
4813   void do_void() {
4814     G1ParScanThreadState* const pss = par_scan_state();
4815     pss->trim_queue();
4816   }
4817 };
4818 
4819 // Parallel Reference Processing closures
4820 
4821 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4822 // processing during G1 evacuation pauses.
4823 
4824 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4825 private:
4826   G1CollectedHeap*          _g1h;
4827   G1ParScanThreadStateSet*  _pss;
4828   RefToScanQueueSet*        _queues;
4829   WorkGang*                 _workers;
4830   uint                      _active_workers;
4831 
4832 public:
4833   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4834                            G1ParScanThreadStateSet* per_thread_states,
4835                            WorkGang* workers,
4836                            RefToScanQueueSet *task_queues,
4837                            uint n_workers) :
4838     _g1h(g1h),
4839     _pss(per_thread_states),
4840     _queues(task_queues),
4841     _workers(workers),
4842     _active_workers(n_workers)
4843   {
4844     assert(n_workers > 0, "shouldn't call this otherwise");
4845   }
4846 
4847   // Executes the given task using concurrent marking worker threads.
4848   virtual void execute(ProcessTask& task);
4849   virtual void execute(EnqueueTask& task);
4850 };
4851 
4852 // Gang task for possibly parallel reference processing
4853 
4854 class G1STWRefProcTaskProxy: public AbstractGangTask {
4855   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4856   ProcessTask&     _proc_task;
4857   G1CollectedHeap* _g1h;
4858   G1ParScanThreadStateSet* _pss;
4859   RefToScanQueueSet* _task_queues;
4860   ParallelTaskTerminator* _terminator;
4861 
4862 public:
4863   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4864                         G1CollectedHeap* g1h,
4865                         G1ParScanThreadStateSet* per_thread_states,
4866                         RefToScanQueueSet *task_queues,
4867                         ParallelTaskTerminator* terminator) :
4868     AbstractGangTask("Process reference objects in parallel"),
4869     _proc_task(proc_task),
4870     _g1h(g1h),
4871     _pss(per_thread_states),
4872     _task_queues(task_queues),
4873     _terminator(terminator)
4874   {}
4875 
4876   virtual void work(uint worker_id) {
4877     // The reference processing task executed by a single worker.
4878     ResourceMark rm;
4879     HandleMark   hm;
4880 
4881     G1STWIsAliveClosure is_alive(_g1h);
4882 
4883     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4884     pss->set_ref_processor(NULL);
4885 
4886     // Keep alive closure.
4887     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4888 
4889     // Complete GC closure
4890     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4891 
4892     // Call the reference processing task's work routine.
4893     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4894 
4895     // Note we cannot assert that the refs array is empty here as not all
4896     // of the processing tasks (specifically phase2 - pp2_work) execute
4897     // the complete_gc closure (which ordinarily would drain the queue) so
4898     // the queue may not be empty.
4899   }
4900 };
4901 
4902 // Driver routine for parallel reference processing.
4903 // Creates an instance of the ref processing gang
4904 // task and has the worker threads execute it.
4905 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4906   assert(_workers != NULL, "Need parallel worker threads.");
4907 
4908   ParallelTaskTerminator terminator(_active_workers, _queues);
4909   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4910 
4911   _workers->run_task(&proc_task_proxy);
4912 }
4913 
4914 // Gang task for parallel reference enqueueing.
4915 
4916 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4917   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4918   EnqueueTask& _enq_task;
4919 
4920 public:
4921   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4922     AbstractGangTask("Enqueue reference objects in parallel"),
4923     _enq_task(enq_task)
4924   { }
4925 
4926   virtual void work(uint worker_id) {
4927     _enq_task.work(worker_id);
4928   }
4929 };
4930 
4931 // Driver routine for parallel reference enqueueing.
4932 // Creates an instance of the ref enqueueing gang
4933 // task and has the worker threads execute it.
4934 
4935 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4936   assert(_workers != NULL, "Need parallel worker threads.");
4937 
4938   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4939 
4940   _workers->run_task(&enq_task_proxy);
4941 }
4942 
4943 // End of weak reference support closures
4944 
4945 // Abstract task used to preserve (i.e. copy) any referent objects
4946 // that are in the collection set and are pointed to by reference
4947 // objects discovered by the CM ref processor.
4948 
4949 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4950 protected:
4951   G1CollectedHeap*         _g1h;
4952   G1ParScanThreadStateSet* _pss;
4953   RefToScanQueueSet*       _queues;
4954   ParallelTaskTerminator   _terminator;
4955   uint                     _n_workers;
4956 
4957 public:
4958   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4959     AbstractGangTask("ParPreserveCMReferents"),
4960     _g1h(g1h),
4961     _pss(per_thread_states),
4962     _queues(task_queues),
4963     _terminator(workers, _queues),
4964     _n_workers(workers)
4965   { }
4966 
4967   void work(uint worker_id) {
4968     ResourceMark rm;
4969     HandleMark   hm;
4970 
4971     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4972     pss->set_ref_processor(NULL);
4973     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4974 
4975     // Is alive closure
4976     G1AlwaysAliveClosure always_alive(_g1h);
4977 
4978     // Copying keep alive closure. Applied to referent objects that need
4979     // to be copied.
4980     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4981 
4982     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4983 
4984     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4985     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4986 
4987     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4988     // So this must be true - but assert just in case someone decides to
4989     // change the worker ids.
4990     assert(worker_id < limit, "sanity");
4991     assert(!rp->discovery_is_atomic(), "check this code");
4992 
4993     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4994     for (uint idx = worker_id; idx < limit; idx += stride) {
4995       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4996 
4997       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4998       while (iter.has_next()) {
4999         // Since discovery is not atomic for the CM ref processor, we
5000         // can see some null referent objects.
5001         iter.load_ptrs(DEBUG_ONLY(true));
5002         oop ref = iter.obj();
5003 
5004         // This will filter nulls.
5005         if (iter.is_referent_alive()) {
5006           iter.make_referent_alive();
5007         }
5008         iter.move_to_next();
5009       }
5010     }
5011 
5012     // Drain the queue - which may cause stealing
5013     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
5014     drain_queue.do_void();
5015     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5016     assert(pss->queue_is_empty(), "should be");
5017   }
5018 };
5019 
5020 // Weak Reference processing during an evacuation pause (part 1).
5021 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5022   double ref_proc_start = os::elapsedTime();
5023 
5024   ReferenceProcessor* rp = _ref_processor_stw;
5025   assert(rp->discovery_enabled(), "should have been enabled");
5026 
5027   // Any reference objects, in the collection set, that were 'discovered'
5028   // by the CM ref processor should have already been copied (either by
5029   // applying the external root copy closure to the discovered lists, or
5030   // by following an RSet entry).
5031   //
5032   // But some of the referents, that are in the collection set, that these
5033   // reference objects point to may not have been copied: the STW ref
5034   // processor would have seen that the reference object had already
5035   // been 'discovered' and would have skipped discovering the reference,
5036   // but would not have treated the reference object as a regular oop.
5037   // As a result the copy closure would not have been applied to the
5038   // referent object.
5039   //
5040   // We need to explicitly copy these referent objects - the references
5041   // will be processed at the end of remarking.
5042   //
5043   // We also need to do this copying before we process the reference
5044   // objects discovered by the STW ref processor in case one of these
5045   // referents points to another object which is also referenced by an
5046   // object discovered by the STW ref processor.
5047 
5048   uint no_of_gc_workers = workers()->active_workers();
5049 
5050   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5051                                                  per_thread_states,
5052                                                  no_of_gc_workers,
5053                                                  _task_queues);
5054 
5055   workers()->run_task(&keep_cm_referents);
5056 
5057   // Closure to test whether a referent is alive.
5058   G1STWIsAliveClosure is_alive(this);
5059 
5060   // Even when parallel reference processing is enabled, the processing
5061   // of JNI refs is serial and performed serially by the current thread
5062   // rather than by a worker. The following PSS will be used for processing
5063   // JNI refs.
5064 
5065   // Use only a single queue for this PSS.
5066   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
5067   pss->set_ref_processor(NULL);
5068   assert(pss->queue_is_empty(), "pre-condition");
5069 
5070   // Keep alive closure.
5071   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
5072 
5073   // Serial Complete GC closure
5074   G1STWDrainQueueClosure drain_queue(this, pss);
5075 
5076   // Setup the soft refs policy...
5077   rp->setup_policy(false);
5078 
5079   ReferenceProcessorStats stats;
5080   if (!rp->processing_is_mt()) {
5081     // Serial reference processing...
5082     stats = rp->process_discovered_references(&is_alive,
5083                                               &keep_alive,
5084                                               &drain_queue,
5085                                               NULL,
5086                                               _gc_timer_stw);
5087   } else {
5088     // Parallel reference processing
5089     assert(rp->num_q() == no_of_gc_workers, "sanity");
5090     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5091 
5092     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
5093     stats = rp->process_discovered_references(&is_alive,
5094                                               &keep_alive,
5095                                               &drain_queue,
5096                                               &par_task_executor,
5097                                               _gc_timer_stw);
5098   }
5099 
5100   _gc_tracer_stw->report_gc_reference_stats(stats);
5101 
5102   // We have completed copying any necessary live referent objects.
5103   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
5104 
5105   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5106   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5107 }
5108 
5109 // Weak Reference processing during an evacuation pause (part 2).
5110 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5111   double ref_enq_start = os::elapsedTime();
5112 
5113   ReferenceProcessor* rp = _ref_processor_stw;
5114   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5115 
5116   // Now enqueue any remaining on the discovered lists on to
5117   // the pending list.
5118   if (!rp->processing_is_mt()) {
5119     // Serial reference processing...
5120     rp->enqueue_discovered_references();
5121   } else {
5122     // Parallel reference enqueueing
5123 
5124     uint n_workers = workers()->active_workers();
5125 
5126     assert(rp->num_q() == n_workers, "sanity");
5127     assert(n_workers <= rp->max_num_q(), "sanity");
5128 
5129     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
5130     rp->enqueue_discovered_references(&par_task_executor);
5131   }
5132 
5133   rp->verify_no_references_recorded();
5134   assert(!rp->discovery_enabled(), "should have been disabled");
5135 
5136   // FIXME
5137   // CM's reference processing also cleans up the string and symbol tables.
5138   // Should we do that here also? We could, but it is a serial operation
5139   // and could significantly increase the pause time.
5140 
5141   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5142   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5143 }
5144 
5145 void G1CollectedHeap::pre_evacuate_collection_set() {
5146   _expand_heap_after_alloc_failure = true;
5147   _evacuation_failed = false;
5148 
5149   // Disable the hot card cache.
5150   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5151   hot_card_cache->reset_hot_cache_claimed_index();
5152   hot_card_cache->set_use_cache(false);
5153 
5154 }
5155 
5156 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5157   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5158 
5159   // Should G1EvacuationFailureALot be in effect for this GC?
5160   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5161 
5162   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5163   double start_par_time_sec = os::elapsedTime();
5164   double end_par_time_sec;
5165 
5166   {
5167     const uint n_workers = workers()->active_workers();
5168     G1RootProcessor root_processor(this, n_workers);
5169     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
5170     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5171     if (collector_state()->during_initial_mark_pause()) {
5172       ClassLoaderDataGraph::clear_claimed_marks();
5173     }
5174 
5175     // The individual threads will set their evac-failure closures.
5176     if (PrintTerminationStats) {
5177       print_termination_stats_hdr(gclog_or_tty);
5178     }
5179 
5180     workers()->run_task(&g1_par_task);
5181     end_par_time_sec = os::elapsedTime();
5182 
5183     // Closing the inner scope will execute the destructor
5184     // for the G1RootProcessor object. We record the current
5185     // elapsed time before closing the scope so that time
5186     // taken for the destructor is NOT included in the
5187     // reported parallel time.
5188   }
5189 
5190   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5191 
5192   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5193   phase_times->record_par_time(par_time_ms);
5194 
5195   double code_root_fixup_time_ms =
5196         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5197   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5198 
5199   // Process any discovered reference objects - we have
5200   // to do this _before_ we retire the GC alloc regions
5201   // as we may have to copy some 'reachable' referent
5202   // objects (and their reachable sub-graphs) that were
5203   // not copied during the pause.
5204   process_discovered_references(per_thread_states);
5205 
5206   if (G1StringDedup::is_enabled()) {
5207     double fixup_start = os::elapsedTime();
5208 
5209     G1STWIsAliveClosure is_alive(this);
5210     G1KeepAliveClosure keep_alive(this);
5211     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5212 
5213     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5214     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5215   }
5216 
5217   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5218 
5219   if (evacuation_failed()) {
5220     remove_self_forwarding_pointers();
5221 
5222     // Reset the G1EvacuationFailureALot counters and flags
5223     // Note: the values are reset only when an actual
5224     // evacuation failure occurs.
5225     NOT_PRODUCT(reset_evacuation_should_fail();)
5226   }
5227 
5228   // Enqueue any remaining references remaining on the STW
5229   // reference processor's discovered lists. We need to do
5230   // this after the card table is cleaned (and verified) as
5231   // the act of enqueueing entries on to the pending list
5232   // will log these updates (and dirty their associated
5233   // cards). We need these updates logged to update any
5234   // RSets.
5235   enqueue_discovered_references(per_thread_states);
5236 }
5237 
5238 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5239   _allocator->release_gc_alloc_regions(evacuation_info);
5240 
5241   per_thread_states->flush();
5242 
5243   record_obj_copy_mem_stats();
5244 
5245   // Reset and re-enable the hot card cache.
5246   // Note the counts for the cards in the regions in the
5247   // collection set are reset when the collection set is freed.
5248   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5249   hot_card_cache->reset_hot_cache();
5250   hot_card_cache->set_use_cache(true);
5251 
5252   purge_code_root_memory();
5253 
5254   redirty_logged_cards();
5255 #if defined(COMPILER2) || INCLUDE_JVMCI
5256   DerivedPointerTable::update_pointers();
5257 #endif
5258 }
5259 
5260 void G1CollectedHeap::record_obj_copy_mem_stats() {
5261   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
5262                                                create_g1_evac_summary(&_old_evac_stats));
5263 }
5264 
5265 void G1CollectedHeap::free_region(HeapRegion* hr,
5266                                   FreeRegionList* free_list,
5267                                   bool par,
5268                                   bool locked) {
5269   assert(!hr->is_free(), "the region should not be free");
5270   assert(!hr->is_empty(), "the region should not be empty");
5271   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5272   assert(free_list != NULL, "pre-condition");
5273 
5274   if (G1VerifyBitmaps) {
5275     MemRegion mr(hr->bottom(), hr->end());
5276     concurrent_mark()->clearRangePrevBitmap(mr);
5277   }
5278 
5279   // Clear the card counts for this region.
5280   // Note: we only need to do this if the region is not young
5281   // (since we don't refine cards in young regions).
5282   if (!hr->is_young()) {
5283     _cg1r->hot_card_cache()->reset_card_counts(hr);
5284   }
5285   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5286   free_list->add_ordered(hr);
5287 }
5288 
5289 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5290                                             FreeRegionList* free_list,
5291                                             bool par) {
5292   assert(hr->is_humongous(), "this is only for humongous regions");
5293   assert(free_list != NULL, "pre-condition");
5294   hr->clear_humongous();
5295   free_region(hr, free_list, par);
5296 }
5297 
5298 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5299                                            const HeapRegionSetCount& humongous_regions_removed) {
5300   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5301     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5302     _old_set.bulk_remove(old_regions_removed);
5303     _humongous_set.bulk_remove(humongous_regions_removed);
5304   }
5305 
5306 }
5307 
5308 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5309   assert(list != NULL, "list can't be null");
5310   if (!list->is_empty()) {
5311     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5312     _hrm.insert_list_into_free_list(list);
5313   }
5314 }
5315 
5316 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5317   decrease_used(bytes);
5318 }
5319 
5320 class G1ParCleanupCTTask : public AbstractGangTask {
5321   G1SATBCardTableModRefBS* _ct_bs;
5322   G1CollectedHeap* _g1h;
5323   HeapRegion* volatile _su_head;
5324 public:
5325   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5326                      G1CollectedHeap* g1h) :
5327     AbstractGangTask("G1 Par Cleanup CT Task"),
5328     _ct_bs(ct_bs), _g1h(g1h) { }
5329 
5330   void work(uint worker_id) {
5331     HeapRegion* r;
5332     while (r = _g1h->pop_dirty_cards_region()) {
5333       clear_cards(r);
5334     }
5335   }
5336 
5337   void clear_cards(HeapRegion* r) {
5338     // Cards of the survivors should have already been dirtied.
5339     if (!r->is_survivor()) {
5340       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5341     }
5342   }
5343 };
5344 
5345 #ifndef PRODUCT
5346 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5347   G1CollectedHeap* _g1h;
5348   G1SATBCardTableModRefBS* _ct_bs;
5349 public:
5350   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5351     : _g1h(g1h), _ct_bs(ct_bs) { }
5352   virtual bool doHeapRegion(HeapRegion* r) {
5353     if (r->is_survivor()) {
5354       _g1h->verify_dirty_region(r);
5355     } else {
5356       _g1h->verify_not_dirty_region(r);
5357     }
5358     return false;
5359   }
5360 };
5361 
5362 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5363   // All of the region should be clean.
5364   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5365   MemRegion mr(hr->bottom(), hr->end());
5366   ct_bs->verify_not_dirty_region(mr);
5367 }
5368 
5369 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5370   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5371   // dirty allocated blocks as they allocate them. The thread that
5372   // retires each region and replaces it with a new one will do a
5373   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5374   // not dirty that area (one less thing to have to do while holding
5375   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5376   // is dirty.
5377   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5378   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5379   if (hr->is_young()) {
5380     ct_bs->verify_g1_young_region(mr);
5381   } else {
5382     ct_bs->verify_dirty_region(mr);
5383   }
5384 }
5385 
5386 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5387   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5388   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5389     verify_dirty_region(hr);
5390   }
5391 }
5392 
5393 void G1CollectedHeap::verify_dirty_young_regions() {
5394   verify_dirty_young_list(_young_list->first_region());
5395 }
5396 
5397 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5398                                                HeapWord* tams, HeapWord* end) {
5399   guarantee(tams <= end,
5400             "tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end));
5401   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5402   if (result < end) {
5403     gclog_or_tty->cr();
5404     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
5405                            bitmap_name, p2i(result));
5406     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
5407                            bitmap_name, p2i(tams), p2i(end));
5408     return false;
5409   }
5410   return true;
5411 }
5412 
5413 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5414   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5415   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5416 
5417   HeapWord* bottom = hr->bottom();
5418   HeapWord* ptams  = hr->prev_top_at_mark_start();
5419   HeapWord* ntams  = hr->next_top_at_mark_start();
5420   HeapWord* end    = hr->end();
5421 
5422   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5423 
5424   bool res_n = true;
5425   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5426   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5427   // if we happen to be in that state.
5428   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5429     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5430   }
5431   if (!res_p || !res_n) {
5432     gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
5433                            HR_FORMAT_PARAMS(hr));
5434     gclog_or_tty->print_cr("#### Caller: %s", caller);
5435     return false;
5436   }
5437   return true;
5438 }
5439 
5440 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5441   if (!G1VerifyBitmaps) return;
5442 
5443   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5444 }
5445 
5446 class G1VerifyBitmapClosure : public HeapRegionClosure {
5447 private:
5448   const char* _caller;
5449   G1CollectedHeap* _g1h;
5450   bool _failures;
5451 
5452 public:
5453   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5454     _caller(caller), _g1h(g1h), _failures(false) { }
5455 
5456   bool failures() { return _failures; }
5457 
5458   virtual bool doHeapRegion(HeapRegion* hr) {
5459     bool result = _g1h->verify_bitmaps(_caller, hr);
5460     if (!result) {
5461       _failures = true;
5462     }
5463     return false;
5464   }
5465 };
5466 
5467 void G1CollectedHeap::check_bitmaps(const char* caller) {
5468   if (!G1VerifyBitmaps) return;
5469 
5470   G1VerifyBitmapClosure cl(caller, this);
5471   heap_region_iterate(&cl);
5472   guarantee(!cl.failures(), "bitmap verification");
5473 }
5474 
5475 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5476  private:
5477   bool _failures;
5478  public:
5479   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5480 
5481   virtual bool doHeapRegion(HeapRegion* hr) {
5482     uint i = hr->hrm_index();
5483     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5484     if (hr->is_humongous()) {
5485       if (hr->in_collection_set()) {
5486         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5487         _failures = true;
5488         return true;
5489       }
5490       if (cset_state.is_in_cset()) {
5491         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5492         _failures = true;
5493         return true;
5494       }
5495       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5496         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5497         _failures = true;
5498         return true;
5499       }
5500     } else {
5501       if (cset_state.is_humongous()) {
5502         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5503         _failures = true;
5504         return true;
5505       }
5506       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5507         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5508                                hr->in_collection_set(), cset_state.value(), i);
5509         _failures = true;
5510         return true;
5511       }
5512       if (cset_state.is_in_cset()) {
5513         if (hr->is_young() != (cset_state.is_young())) {
5514           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5515                                  hr->is_young(), cset_state.value(), i);
5516           _failures = true;
5517           return true;
5518         }
5519         if (hr->is_old() != (cset_state.is_old())) {
5520           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5521                                  hr->is_old(), cset_state.value(), i);
5522           _failures = true;
5523           return true;
5524         }
5525       }
5526     }
5527     return false;
5528   }
5529 
5530   bool failures() const { return _failures; }
5531 };
5532 
5533 bool G1CollectedHeap::check_cset_fast_test() {
5534   G1CheckCSetFastTableClosure cl;
5535   _hrm.iterate(&cl);
5536   return !cl.failures();
5537 }
5538 #endif // PRODUCT
5539 
5540 void G1CollectedHeap::cleanUpCardTable() {
5541   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5542   double start = os::elapsedTime();
5543 
5544   {
5545     // Iterate over the dirty cards region list.
5546     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5547 
5548     workers()->run_task(&cleanup_task);
5549 #ifndef PRODUCT
5550     if (G1VerifyCTCleanup || VerifyAfterGC) {
5551       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5552       heap_region_iterate(&cleanup_verifier);
5553     }
5554 #endif
5555   }
5556 
5557   double elapsed = os::elapsedTime() - start;
5558   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5559 }
5560 
5561 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
5562   size_t pre_used = 0;
5563   FreeRegionList local_free_list("Local List for CSet Freeing");
5564 
5565   double young_time_ms     = 0.0;
5566   double non_young_time_ms = 0.0;
5567 
5568   // Since the collection set is a superset of the the young list,
5569   // all we need to do to clear the young list is clear its
5570   // head and length, and unlink any young regions in the code below
5571   _young_list->clear();
5572 
5573   G1CollectorPolicy* policy = g1_policy();
5574 
5575   double start_sec = os::elapsedTime();
5576   bool non_young = true;
5577 
5578   HeapRegion* cur = cs_head;
5579   int age_bound = -1;
5580   size_t rs_lengths = 0;
5581 
5582   while (cur != NULL) {
5583     assert(!is_on_master_free_list(cur), "sanity");
5584     if (non_young) {
5585       if (cur->is_young()) {
5586         double end_sec = os::elapsedTime();
5587         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5588         non_young_time_ms += elapsed_ms;
5589 
5590         start_sec = os::elapsedTime();
5591         non_young = false;
5592       }
5593     } else {
5594       if (!cur->is_young()) {
5595         double end_sec = os::elapsedTime();
5596         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5597         young_time_ms += elapsed_ms;
5598 
5599         start_sec = os::elapsedTime();
5600         non_young = true;
5601       }
5602     }
5603 
5604     rs_lengths += cur->rem_set()->occupied_locked();
5605 
5606     HeapRegion* next = cur->next_in_collection_set();
5607     assert(cur->in_collection_set(), "bad CS");
5608     cur->set_next_in_collection_set(NULL);
5609     clear_in_cset(cur);
5610 
5611     if (cur->is_young()) {
5612       int index = cur->young_index_in_cset();
5613       assert(index != -1, "invariant");
5614       assert((uint) index < policy->young_cset_region_length(), "invariant");
5615       size_t words_survived = surviving_young_words[index];
5616       cur->record_surv_words_in_group(words_survived);
5617 
5618       // At this point the we have 'popped' cur from the collection set
5619       // (linked via next_in_collection_set()) but it is still in the
5620       // young list (linked via next_young_region()). Clear the
5621       // _next_young_region field.
5622       cur->set_next_young_region(NULL);
5623     } else {
5624       int index = cur->young_index_in_cset();
5625       assert(index == -1, "invariant");
5626     }
5627 
5628     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5629             (!cur->is_young() && cur->young_index_in_cset() == -1),
5630             "invariant" );
5631 
5632     if (!cur->evacuation_failed()) {
5633       MemRegion used_mr = cur->used_region();
5634 
5635       // And the region is empty.
5636       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5637       pre_used += cur->used();
5638       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5639     } else {
5640       cur->uninstall_surv_rate_group();
5641       if (cur->is_young()) {
5642         cur->set_young_index_in_cset(-1);
5643       }
5644       cur->set_evacuation_failed(false);
5645       // The region is now considered to be old.
5646       cur->set_old();
5647       // Do some allocation statistics accounting. Regions that failed evacuation
5648       // are always made old, so there is no need to update anything in the young
5649       // gen statistics, but we need to update old gen statistics.
5650       size_t used_words = cur->marked_bytes() / HeapWordSize;
5651       _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words);
5652       _old_set.add(cur);
5653       evacuation_info.increment_collectionset_used_after(cur->used());
5654     }
5655     cur = next;
5656   }
5657 
5658   evacuation_info.set_regions_freed(local_free_list.length());
5659   policy->record_max_rs_lengths(rs_lengths);
5660   policy->cset_regions_freed();
5661 
5662   double end_sec = os::elapsedTime();
5663   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5664 
5665   if (non_young) {
5666     non_young_time_ms += elapsed_ms;
5667   } else {
5668     young_time_ms += elapsed_ms;
5669   }
5670 
5671   prepend_to_freelist(&local_free_list);
5672   decrement_summary_bytes(pre_used);
5673   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5674   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5675 }
5676 
5677 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5678  private:
5679   FreeRegionList* _free_region_list;
5680   HeapRegionSet* _proxy_set;
5681   HeapRegionSetCount _humongous_regions_removed;
5682   size_t _freed_bytes;
5683  public:
5684 
5685   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5686     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5687   }
5688 
5689   virtual bool doHeapRegion(HeapRegion* r) {
5690     if (!r->is_starts_humongous()) {
5691       return false;
5692     }
5693 
5694     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5695 
5696     oop obj = (oop)r->bottom();
5697     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5698 
5699     // The following checks whether the humongous object is live are sufficient.
5700     // The main additional check (in addition to having a reference from the roots
5701     // or the young gen) is whether the humongous object has a remembered set entry.
5702     //
5703     // A humongous object cannot be live if there is no remembered set for it
5704     // because:
5705     // - there can be no references from within humongous starts regions referencing
5706     // the object because we never allocate other objects into them.
5707     // (I.e. there are no intra-region references that may be missed by the
5708     // remembered set)
5709     // - as soon there is a remembered set entry to the humongous starts region
5710     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5711     // until the end of a concurrent mark.
5712     //
5713     // It is not required to check whether the object has been found dead by marking
5714     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5715     // all objects allocated during that time are considered live.
5716     // SATB marking is even more conservative than the remembered set.
5717     // So if at this point in the collection there is no remembered set entry,
5718     // nobody has a reference to it.
5719     // At the start of collection we flush all refinement logs, and remembered sets
5720     // are completely up-to-date wrt to references to the humongous object.
5721     //
5722     // Other implementation considerations:
5723     // - never consider object arrays at this time because they would pose
5724     // considerable effort for cleaning up the the remembered sets. This is
5725     // required because stale remembered sets might reference locations that
5726     // are currently allocated into.
5727     uint region_idx = r->hrm_index();
5728     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5729         !r->rem_set()->is_empty()) {
5730 
5731       if (G1TraceEagerReclaimHumongousObjects) {
5732         gclog_or_tty->print_cr("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5733                                region_idx,
5734                                (size_t)obj->size() * HeapWordSize,
5735                                p2i(r->bottom()),
5736                                r->rem_set()->occupied(),
5737                                r->rem_set()->strong_code_roots_list_length(),
5738                                next_bitmap->isMarked(r->bottom()),
5739                                g1h->is_humongous_reclaim_candidate(region_idx),
5740                                obj->is_typeArray()
5741                               );
5742       }
5743 
5744       return false;
5745     }
5746 
5747     guarantee(obj->is_typeArray(),
5748               "Only eagerly reclaiming type arrays is supported, but the object "
5749               PTR_FORMAT " is not.", p2i(r->bottom()));
5750 
5751     if (G1TraceEagerReclaimHumongousObjects) {
5752       gclog_or_tty->print_cr("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5753                              region_idx,
5754                              (size_t)obj->size() * HeapWordSize,
5755                              p2i(r->bottom()),
5756                              r->rem_set()->occupied(),
5757                              r->rem_set()->strong_code_roots_list_length(),
5758                              next_bitmap->isMarked(r->bottom()),
5759                              g1h->is_humongous_reclaim_candidate(region_idx),
5760                              obj->is_typeArray()
5761                             );
5762     }
5763     // Need to clear mark bit of the humongous object if already set.
5764     if (next_bitmap->isMarked(r->bottom())) {
5765       next_bitmap->clear(r->bottom());
5766     }
5767     do {
5768       HeapRegion* next = g1h->next_region_by_index(r);
5769       _freed_bytes += r->used();
5770       r->set_containing_set(NULL);
5771       _humongous_regions_removed.increment(1u, r->capacity());
5772       g1h->free_humongous_region(r, _free_region_list, false);
5773       r = next;
5774     } while (r != NULL && r->is_continues_humongous());
5775 
5776     return false;
5777   }
5778 
5779   HeapRegionSetCount& humongous_free_count() {
5780     return _humongous_regions_removed;
5781   }
5782 
5783   size_t bytes_freed() const {
5784     return _freed_bytes;
5785   }
5786 
5787   size_t humongous_reclaimed() const {
5788     return _humongous_regions_removed.length();
5789   }
5790 };
5791 
5792 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5793   assert_at_safepoint(true);
5794 
5795   if (!G1EagerReclaimHumongousObjects ||
5796       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
5797     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5798     return;
5799   }
5800 
5801   double start_time = os::elapsedTime();
5802 
5803   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5804 
5805   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5806   heap_region_iterate(&cl);
5807 
5808   HeapRegionSetCount empty_set;
5809   remove_from_old_sets(empty_set, cl.humongous_free_count());
5810 
5811   G1HRPrinter* hrp = hr_printer();
5812   if (hrp->is_active()) {
5813     FreeRegionListIterator iter(&local_cleanup_list);
5814     while (iter.more_available()) {
5815       HeapRegion* hr = iter.get_next();
5816       hrp->cleanup(hr);
5817     }
5818   }
5819 
5820   prepend_to_freelist(&local_cleanup_list);
5821   decrement_summary_bytes(cl.bytes_freed());
5822 
5823   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5824                                                                     cl.humongous_reclaimed());
5825 }
5826 
5827 // This routine is similar to the above but does not record
5828 // any policy statistics or update free lists; we are abandoning
5829 // the current incremental collection set in preparation of a
5830 // full collection. After the full GC we will start to build up
5831 // the incremental collection set again.
5832 // This is only called when we're doing a full collection
5833 // and is immediately followed by the tearing down of the young list.
5834 
5835 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5836   HeapRegion* cur = cs_head;
5837 
5838   while (cur != NULL) {
5839     HeapRegion* next = cur->next_in_collection_set();
5840     assert(cur->in_collection_set(), "bad CS");
5841     cur->set_next_in_collection_set(NULL);
5842     clear_in_cset(cur);
5843     cur->set_young_index_in_cset(-1);
5844     cur = next;
5845   }
5846 }
5847 
5848 void G1CollectedHeap::set_free_regions_coming() {
5849   if (G1ConcRegionFreeingVerbose) {
5850     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5851                            "setting free regions coming");
5852   }
5853 
5854   assert(!free_regions_coming(), "pre-condition");
5855   _free_regions_coming = true;
5856 }
5857 
5858 void G1CollectedHeap::reset_free_regions_coming() {
5859   assert(free_regions_coming(), "pre-condition");
5860 
5861   {
5862     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5863     _free_regions_coming = false;
5864     SecondaryFreeList_lock->notify_all();
5865   }
5866 
5867   if (G1ConcRegionFreeingVerbose) {
5868     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5869                            "reset free regions coming");
5870   }
5871 }
5872 
5873 void G1CollectedHeap::wait_while_free_regions_coming() {
5874   // Most of the time we won't have to wait, so let's do a quick test
5875   // first before we take the lock.
5876   if (!free_regions_coming()) {
5877     return;
5878   }
5879 
5880   if (G1ConcRegionFreeingVerbose) {
5881     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5882                            "waiting for free regions");
5883   }
5884 
5885   {
5886     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5887     while (free_regions_coming()) {
5888       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5889     }
5890   }
5891 
5892   if (G1ConcRegionFreeingVerbose) {
5893     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5894                            "done waiting for free regions");
5895   }
5896 }
5897 
5898 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5899   return _allocator->is_retained_old_region(hr);
5900 }
5901 
5902 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5903   _young_list->push_region(hr);
5904 }
5905 
5906 class NoYoungRegionsClosure: public HeapRegionClosure {
5907 private:
5908   bool _success;
5909 public:
5910   NoYoungRegionsClosure() : _success(true) { }
5911   bool doHeapRegion(HeapRegion* r) {
5912     if (r->is_young()) {
5913       gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5914                              p2i(r->bottom()), p2i(r->end()));
5915       _success = false;
5916     }
5917     return false;
5918   }
5919   bool success() { return _success; }
5920 };
5921 
5922 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5923   bool ret = _young_list->check_list_empty(check_sample);
5924 
5925   if (check_heap) {
5926     NoYoungRegionsClosure closure;
5927     heap_region_iterate(&closure);
5928     ret = ret && closure.success();
5929   }
5930 
5931   return ret;
5932 }
5933 
5934 class TearDownRegionSetsClosure : public HeapRegionClosure {
5935 private:
5936   HeapRegionSet *_old_set;
5937 
5938 public:
5939   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5940 
5941   bool doHeapRegion(HeapRegion* r) {
5942     if (r->is_old()) {
5943       _old_set->remove(r);
5944     } else {
5945       // We ignore free regions, we'll empty the free list afterwards.
5946       // We ignore young regions, we'll empty the young list afterwards.
5947       // We ignore humongous regions, we're not tearing down the
5948       // humongous regions set.
5949       assert(r->is_free() || r->is_young() || r->is_humongous(),
5950              "it cannot be another type");
5951     }
5952     return false;
5953   }
5954 
5955   ~TearDownRegionSetsClosure() {
5956     assert(_old_set->is_empty(), "post-condition");
5957   }
5958 };
5959 
5960 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5961   assert_at_safepoint(true /* should_be_vm_thread */);
5962 
5963   if (!free_list_only) {
5964     TearDownRegionSetsClosure cl(&_old_set);
5965     heap_region_iterate(&cl);
5966 
5967     // Note that emptying the _young_list is postponed and instead done as
5968     // the first step when rebuilding the regions sets again. The reason for
5969     // this is that during a full GC string deduplication needs to know if
5970     // a collected region was young or old when the full GC was initiated.
5971   }
5972   _hrm.remove_all_free_regions();
5973 }
5974 
5975 void G1CollectedHeap::increase_used(size_t bytes) {
5976   _summary_bytes_used += bytes;
5977 }
5978 
5979 void G1CollectedHeap::decrease_used(size_t bytes) {
5980   assert(_summary_bytes_used >= bytes,
5981          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5982          _summary_bytes_used, bytes);
5983   _summary_bytes_used -= bytes;
5984 }
5985 
5986 void G1CollectedHeap::set_used(size_t bytes) {
5987   _summary_bytes_used = bytes;
5988 }
5989 
5990 class RebuildRegionSetsClosure : public HeapRegionClosure {
5991 private:
5992   bool            _free_list_only;
5993   HeapRegionSet*   _old_set;
5994   HeapRegionManager*   _hrm;
5995   size_t          _total_used;
5996 
5997 public:
5998   RebuildRegionSetsClosure(bool free_list_only,
5999                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6000     _free_list_only(free_list_only),
6001     _old_set(old_set), _hrm(hrm), _total_used(0) {
6002     assert(_hrm->num_free_regions() == 0, "pre-condition");
6003     if (!free_list_only) {
6004       assert(_old_set->is_empty(), "pre-condition");
6005     }
6006   }
6007 
6008   bool doHeapRegion(HeapRegion* r) {
6009     if (r->is_empty()) {
6010       // Add free regions to the free list
6011       r->set_free();
6012       r->set_allocation_context(AllocationContext::system());
6013       _hrm->insert_into_free_list(r);
6014     } else if (!_free_list_only) {
6015       assert(!r->is_young(), "we should not come across young regions");
6016 
6017       if (r->is_humongous()) {
6018         // We ignore humongous regions. We left the humongous set unchanged.
6019       } else {
6020         // Objects that were compacted would have ended up on regions
6021         // that were previously old or free.  Archive regions (which are
6022         // old) will not have been touched.
6023         assert(r->is_free() || r->is_old(), "invariant");
6024         // We now consider them old, so register as such. Leave
6025         // archive regions set that way, however, while still adding
6026         // them to the old set.
6027         if (!r->is_archive()) {
6028           r->set_old();
6029         }
6030         _old_set->add(r);
6031       }
6032       _total_used += r->used();
6033     }
6034 
6035     return false;
6036   }
6037 
6038   size_t total_used() {
6039     return _total_used;
6040   }
6041 };
6042 
6043 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6044   assert_at_safepoint(true /* should_be_vm_thread */);
6045 
6046   if (!free_list_only) {
6047     _young_list->empty_list();
6048   }
6049 
6050   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6051   heap_region_iterate(&cl);
6052 
6053   if (!free_list_only) {
6054     set_used(cl.total_used());
6055     if (_archive_allocator != NULL) {
6056       _archive_allocator->clear_used();
6057     }
6058   }
6059   assert(used_unlocked() == recalculate_used(),
6060          "inconsistent used_unlocked(), "
6061          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
6062          used_unlocked(), recalculate_used());
6063 }
6064 
6065 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6066   _refine_cte_cl->set_concurrent(concurrent);
6067 }
6068 
6069 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6070   HeapRegion* hr = heap_region_containing(p);
6071   return hr->is_in(p);
6072 }
6073 
6074 // Methods for the mutator alloc region
6075 
6076 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6077                                                       bool force) {
6078   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6079   assert(!force || g1_policy()->can_expand_young_list(),
6080          "if force is true we should be able to expand the young list");
6081   bool young_list_full = g1_policy()->is_young_list_full();
6082   if (force || !young_list_full) {
6083     HeapRegion* new_alloc_region = new_region(word_size,
6084                                               false /* is_old */,
6085                                               false /* do_expand */);
6086     if (new_alloc_region != NULL) {
6087       set_region_short_lived_locked(new_alloc_region);
6088       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6089       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6090       return new_alloc_region;
6091     }
6092   }
6093   return NULL;
6094 }
6095 
6096 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6097                                                   size_t allocated_bytes) {
6098   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6099   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6100 
6101   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6102   increase_used(allocated_bytes);
6103   _hr_printer.retire(alloc_region);
6104   // We update the eden sizes here, when the region is retired,
6105   // instead of when it's allocated, since this is the point that its
6106   // used space has been recored in _summary_bytes_used.
6107   g1mm()->update_eden_size();
6108 }
6109 
6110 // Methods for the GC alloc regions
6111 
6112 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6113                                                  uint count,
6114                                                  InCSetState dest) {
6115   assert(FreeList_lock->owned_by_self(), "pre-condition");
6116 
6117   if (count < g1_policy()->max_regions(dest)) {
6118     const bool is_survivor = (dest.is_young());
6119     HeapRegion* new_alloc_region = new_region(word_size,
6120                                               !is_survivor,
6121                                               true /* do_expand */);
6122     if (new_alloc_region != NULL) {
6123       // We really only need to do this for old regions given that we
6124       // should never scan survivors. But it doesn't hurt to do it
6125       // for survivors too.
6126       new_alloc_region->record_timestamp();
6127       if (is_survivor) {
6128         new_alloc_region->set_survivor();
6129         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6130         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6131       } else {
6132         new_alloc_region->set_old();
6133         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6134         check_bitmaps("Old Region Allocation", new_alloc_region);
6135       }
6136       bool during_im = collector_state()->during_initial_mark_pause();
6137       new_alloc_region->note_start_of_copying(during_im);
6138       return new_alloc_region;
6139     }
6140   }
6141   return NULL;
6142 }
6143 
6144 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6145                                              size_t allocated_bytes,
6146                                              InCSetState dest) {
6147   bool during_im = collector_state()->during_initial_mark_pause();
6148   alloc_region->note_end_of_copying(during_im);
6149   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6150   if (dest.is_young()) {
6151     young_list()->add_survivor_region(alloc_region);
6152   } else {
6153     _old_set.add(alloc_region);
6154   }
6155   _hr_printer.retire(alloc_region);
6156 }
6157 
6158 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6159   bool expanded = false;
6160   uint index = _hrm.find_highest_free(&expanded);
6161 
6162   if (index != G1_NO_HRM_INDEX) {
6163     if (expanded) {
6164       ergo_verbose1(ErgoHeapSizing,
6165                     "attempt heap expansion",
6166                     ergo_format_reason("requested address range outside heap bounds")
6167                     ergo_format_byte("region size"),
6168                     HeapRegion::GrainWords * HeapWordSize);
6169     }
6170     _hrm.allocate_free_regions_starting_at(index, 1);
6171     return region_at(index);
6172   }
6173   return NULL;
6174 }
6175 
6176 // Heap region set verification
6177 
6178 class VerifyRegionListsClosure : public HeapRegionClosure {
6179 private:
6180   HeapRegionSet*   _old_set;
6181   HeapRegionSet*   _humongous_set;
6182   HeapRegionManager*   _hrm;
6183 
6184 public:
6185   HeapRegionSetCount _old_count;
6186   HeapRegionSetCount _humongous_count;
6187   HeapRegionSetCount _free_count;
6188 
6189   VerifyRegionListsClosure(HeapRegionSet* old_set,
6190                            HeapRegionSet* humongous_set,
6191                            HeapRegionManager* hrm) :
6192     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6193     _old_count(), _humongous_count(), _free_count(){ }
6194 
6195   bool doHeapRegion(HeapRegion* hr) {
6196     if (hr->is_young()) {
6197       // TODO
6198     } else if (hr->is_humongous()) {
6199       assert(hr->containing_set() == _humongous_set, "Heap region %u is humongous but not in humongous set.", hr->hrm_index());
6200       _humongous_count.increment(1u, hr->capacity());
6201     } else if (hr->is_empty()) {
6202       assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index());
6203       _free_count.increment(1u, hr->capacity());
6204     } else if (hr->is_old()) {
6205       assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index());
6206       _old_count.increment(1u, hr->capacity());
6207     } else {
6208       // There are no other valid region types. Check for one invalid
6209       // one we can identify: pinned without old or humongous set.
6210       assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index());
6211       ShouldNotReachHere();
6212     }
6213     return false;
6214   }
6215 
6216   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6217     guarantee(old_set->length() == _old_count.length(), "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length());
6218     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), "Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6219               old_set->total_capacity_bytes(), _old_count.capacity());
6220 
6221     guarantee(humongous_set->length() == _humongous_count.length(), "Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length());
6222     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), "Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6223               humongous_set->total_capacity_bytes(), _humongous_count.capacity());
6224 
6225     guarantee(free_list->num_free_regions() == _free_count.length(), "Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length());
6226     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), "Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6227               free_list->total_capacity_bytes(), _free_count.capacity());
6228   }
6229 };
6230 
6231 void G1CollectedHeap::verify_region_sets() {
6232   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6233 
6234   // First, check the explicit lists.
6235   _hrm.verify();
6236   {
6237     // Given that a concurrent operation might be adding regions to
6238     // the secondary free list we have to take the lock before
6239     // verifying it.
6240     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6241     _secondary_free_list.verify_list();
6242   }
6243 
6244   // If a concurrent region freeing operation is in progress it will
6245   // be difficult to correctly attributed any free regions we come
6246   // across to the correct free list given that they might belong to
6247   // one of several (free_list, secondary_free_list, any local lists,
6248   // etc.). So, if that's the case we will skip the rest of the
6249   // verification operation. Alternatively, waiting for the concurrent
6250   // operation to complete will have a non-trivial effect on the GC's
6251   // operation (no concurrent operation will last longer than the
6252   // interval between two calls to verification) and it might hide
6253   // any issues that we would like to catch during testing.
6254   if (free_regions_coming()) {
6255     return;
6256   }
6257 
6258   // Make sure we append the secondary_free_list on the free_list so
6259   // that all free regions we will come across can be safely
6260   // attributed to the free_list.
6261   append_secondary_free_list_if_not_empty_with_lock();
6262 
6263   // Finally, make sure that the region accounting in the lists is
6264   // consistent with what we see in the heap.
6265 
6266   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6267   heap_region_iterate(&cl);
6268   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6269 }
6270 
6271 // Optimized nmethod scanning
6272 
6273 class RegisterNMethodOopClosure: public OopClosure {
6274   G1CollectedHeap* _g1h;
6275   nmethod* _nm;
6276 
6277   template <class T> void do_oop_work(T* p) {
6278     T heap_oop = oopDesc::load_heap_oop(p);
6279     if (!oopDesc::is_null(heap_oop)) {
6280       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6281       HeapRegion* hr = _g1h->heap_region_containing(obj);
6282       assert(!hr->is_continues_humongous(),
6283              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6284              " starting at " HR_FORMAT,
6285              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6286 
6287       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6288       hr->add_strong_code_root_locked(_nm);
6289     }
6290   }
6291 
6292 public:
6293   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6294     _g1h(g1h), _nm(nm) {}
6295 
6296   void do_oop(oop* p)       { do_oop_work(p); }
6297   void do_oop(narrowOop* p) { do_oop_work(p); }
6298 };
6299 
6300 class UnregisterNMethodOopClosure: public OopClosure {
6301   G1CollectedHeap* _g1h;
6302   nmethod* _nm;
6303 
6304   template <class T> void do_oop_work(T* p) {
6305     T heap_oop = oopDesc::load_heap_oop(p);
6306     if (!oopDesc::is_null(heap_oop)) {
6307       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6308       HeapRegion* hr = _g1h->heap_region_containing(obj);
6309       assert(!hr->is_continues_humongous(),
6310              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6311              " starting at " HR_FORMAT,
6312              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6313 
6314       hr->remove_strong_code_root(_nm);
6315     }
6316   }
6317 
6318 public:
6319   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6320     _g1h(g1h), _nm(nm) {}
6321 
6322   void do_oop(oop* p)       { do_oop_work(p); }
6323   void do_oop(narrowOop* p) { do_oop_work(p); }
6324 };
6325 
6326 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6327   CollectedHeap::register_nmethod(nm);
6328 
6329   guarantee(nm != NULL, "sanity");
6330   RegisterNMethodOopClosure reg_cl(this, nm);
6331   nm->oops_do(&reg_cl);
6332 }
6333 
6334 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6335   CollectedHeap::unregister_nmethod(nm);
6336 
6337   guarantee(nm != NULL, "sanity");
6338   UnregisterNMethodOopClosure reg_cl(this, nm);
6339   nm->oops_do(&reg_cl, true);
6340 }
6341 
6342 void G1CollectedHeap::purge_code_root_memory() {
6343   double purge_start = os::elapsedTime();
6344   G1CodeRootSet::purge();
6345   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6346   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6347 }
6348 
6349 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6350   G1CollectedHeap* _g1h;
6351 
6352 public:
6353   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6354     _g1h(g1h) {}
6355 
6356   void do_code_blob(CodeBlob* cb) {
6357     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6358     if (nm == NULL) {
6359       return;
6360     }
6361 
6362     if (ScavengeRootsInCode) {
6363       _g1h->register_nmethod(nm);
6364     }
6365   }
6366 };
6367 
6368 void G1CollectedHeap::rebuild_strong_code_roots() {
6369   RebuildStrongCodeRootClosure blob_cl(this);
6370   CodeCache::blobs_do(&blob_cl);
6371 }