< prev index next >

src/share/vm/gc/g1/g1CollectedHeap.cpp

Print this page




 303   // Index of last region in the series + 1.
 304   uint last = first + num_regions;
 305 
 306   // We need to initialize the region(s) we just discovered. This is
 307   // a bit tricky given that it can happen concurrently with
 308   // refinement threads refining cards on these regions and
 309   // potentially wanting to refine the BOT as they are scanning
 310   // those cards (this can happen shortly after a cleanup; see CR
 311   // 6991377). So we have to set up the region(s) carefully and in
 312   // a specific order.
 313 
 314   // The word size sum of all the regions we will allocate.
 315   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 316   assert(word_size <= word_size_sum, "sanity");
 317 
 318   // This will be the "starts humongous" region.
 319   HeapRegion* first_hr = region_at(first);
 320   // The header of the new object will be placed at the bottom of
 321   // the first region.
 322   HeapWord* new_obj = first_hr->bottom();
 323   // This will be the new end of the first region in the series that
 324   // should also match the end of the last region in the series.
 325   HeapWord* new_end = new_obj + word_size_sum;
 326   // This will be the new top of the first region that will reflect
 327   // this allocation.
 328   HeapWord* new_top = new_obj + word_size;
 329 
 330   // First, we need to zero the header of the space that we will be
 331   // allocating. When we update top further down, some refinement
 332   // threads might try to scan the region. By zeroing the header we
 333   // ensure that any thread that will try to scan the region will
 334   // come across the zero klass word and bail out.
 335   //
 336   // NOTE: It would not have been correct to have used
 337   // CollectedHeap::fill_with_object() and make the space look like
 338   // an int array. The thread that is doing the allocation will
 339   // later update the object header to a potentially different array
 340   // type and, for a very short period of time, the klass and length
 341   // fields will be inconsistent. This could cause a refinement
 342   // thread to calculate the object size incorrectly.
 343   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 344 
 345   // We will set up the first region as "starts humongous". This
 346   // will also update the BOT covering all the regions to reflect
 347   // that there is a single object that starts at the bottom of the
 348   // first region.
 349   first_hr->set_starts_humongous(new_top, new_end);
 350   first_hr->set_allocation_context(context);
 351   // Then, if there are any, we will set up the "continues
 352   // humongous" regions.
 353   HeapRegion* hr = NULL;
 354   for (uint i = first + 1; i < last; ++i) {
 355     hr = region_at(i);
 356     hr->set_continues_humongous(first_hr);
 357     hr->set_allocation_context(context);
 358   }
 359   // If we have "continues humongous" regions (hr != NULL), then the
 360   // end of the last one should match new_end.
 361   assert(hr == NULL || hr->end() == new_end, "sanity");
 362 
 363   // Up to this point no concurrent thread would have been able to
 364   // do any scanning on any region in this series. All the top
 365   // fields still point to bottom, so the intersection between
 366   // [bottom,top] and [card_start,card_end] will be empty. Before we
 367   // update the top fields, we'll do a storestore to make sure that
 368   // no thread sees the update to top before the zeroing of the
 369   // object header and the BOT initialization.
 370   OrderAccess::storestore();
 371 
 372   // Now that the BOT and the object header have been initialized,
 373   // we can update top of the "starts humongous" region.
 374   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 375          "new_top should be in this region");
 376   first_hr->set_top(new_top);
 377   if (_hr_printer.is_active()) {
 378     HeapWord* bottom = first_hr->bottom();
 379     HeapWord* end = first_hr->orig_end();
 380     if ((first + 1) == last) {
 381       // the series has a single humongous region
 382       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 383     } else {
 384       // the series has more than one humongous regions
 385       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 386     }
 387   }
 388 
 389   // Now, we will update the top fields of the "continues humongous"
 390   // regions. The reason we need to do this is that, otherwise,
 391   // these regions would look empty and this will confuse parts of
 392   // G1. For example, the code that looks for a consecutive number
 393   // of empty regions will consider them empty and try to
 394   // re-allocate them. We can extend is_empty() to also include
 395   // !is_continues_humongous(), but it is easier to just update the top
 396   // fields here. The way we set top for all regions (i.e., top ==
 397   // end for all regions but the last one, top == new_top for the
 398   // last one) is actually used when we will free up the humongous
 399   // region in free_humongous_region().
 400   hr = NULL;
 401   for (uint i = first + 1; i < last; ++i) {
 402     hr = region_at(i);
 403     if ((i + 1) == last) {
 404       // last continues humongous region
 405       assert(hr->bottom() < new_top && new_top <= hr->end(),
 406              "new_top should fall on this region");
 407       hr->set_top(new_top);
 408       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 409     } else {
 410       // not last one
 411       assert(new_top > hr->end(), "new_top should be above this region");
 412       hr->set_top(hr->end());
 413       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 414     }
 415   }
 416   // If we have continues humongous regions (hr != NULL), then the
 417   // end of the last one should match new_end and its top should
 418   // match new_top.
 419   assert(hr == NULL ||
 420          (hr->end() == new_end && hr->top() == new_top), "sanity");
 421   check_bitmaps("Humongous Region Allocation", first_hr);
 422 
 423   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 424   increase_used(first_hr->used());
 425   _humongous_set.add(first_hr);


 426 
 427   return new_obj;
 428 }
 429 
 430 // If could fit into free regions w/o expansion, try.
 431 // Otherwise, if can expand, do so.
 432 // Otherwise, if using ex regions might help, try with ex given back.
 433 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 434   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 435 
 436   verify_region_sets_optional();
 437 
 438   uint first = G1_NO_HRM_INDEX;
 439   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 440 
 441   if (obj_regions == 1) {
 442     // Only one region to allocate, try to use a fast path by directly allocating
 443     // from the free lists. Do not try to expand here, we will potentially do that
 444     // later.
 445     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);


1122     HeapWord* result = humongous_obj_allocate(word_size, context);
1123     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1124       collector_state()->set_initiate_conc_mark_if_possible(true);
1125     }
1126     return result;
1127   }
1128 
1129   ShouldNotReachHere();
1130 }
1131 
1132 class PostMCRemSetClearClosure: public HeapRegionClosure {
1133   G1CollectedHeap* _g1h;
1134   ModRefBarrierSet* _mr_bs;
1135 public:
1136   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1137     _g1h(g1h), _mr_bs(mr_bs) {}
1138 
1139   bool doHeapRegion(HeapRegion* r) {
1140     HeapRegionRemSet* hrrs = r->rem_set();
1141 
1142     if (r->is_continues_humongous()) {
1143       // We'll assert that the strong code root list and RSet is empty
1144       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1145       assert(hrrs->occupied() == 0, "RSet should be empty");
1146       return false;
1147     }
1148 
1149     _g1h->reset_gc_time_stamps(r);
1150     hrrs->clear();
1151     // You might think here that we could clear just the cards
1152     // corresponding to the used region.  But no: if we leave a dirty card
1153     // in a region we might allocate into, then it would prevent that card
1154     // from being enqueued, and cause it to be missed.
1155     // Re: the performance cost: we shouldn't be doing full GC anyway!
1156     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1157 
1158     return false;
1159   }
1160 };
1161 
1162 void G1CollectedHeap::clear_rsets_post_compaction() {
1163   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1164   heap_region_iterate(&rs_clear);
1165 }
1166 
1167 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1168   G1CollectedHeap*   _g1h;


1188 
1189 public:
1190   ParRebuildRSTask(G1CollectedHeap* g1) :
1191       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1192 
1193   void work(uint worker_id) {
1194     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1195     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1196   }
1197 };
1198 
1199 class PostCompactionPrinterClosure: public HeapRegionClosure {
1200 private:
1201   G1HRPrinter* _hr_printer;
1202 public:
1203   bool doHeapRegion(HeapRegion* hr) {
1204     assert(!hr->is_young(), "not expecting to find young regions");
1205     if (hr->is_free()) {
1206       // We only generate output for non-empty regions.
1207     } else if (hr->is_starts_humongous()) {
1208       if (hr->region_num() == 1) {
1209         // single humongous region
1210         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1211       } else {
1212         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1213       }
1214     } else if (hr->is_continues_humongous()) {
1215       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1216     } else if (hr->is_archive()) {
1217       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1218     } else if (hr->is_old()) {
1219       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1220     } else {
1221       ShouldNotReachHere();
1222     }
1223     return false;
1224   }
1225 
1226   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1227     : _hr_printer(hr_printer) { }
1228 };
1229 
1230 void G1CollectedHeap::print_hrm_post_compaction() {
1231   PostCompactionPrinterClosure cl(hr_printer());
1232   heap_region_iterate(&cl);
1233 }


2205                            (ParallelGCThreads > 1),
2206                                 // mt discovery
2207                            ParallelGCThreads,
2208                                 // degree of mt discovery
2209                            true,
2210                                 // Reference discovery is atomic
2211                            &_is_alive_closure_stw);
2212                                 // is alive closure
2213                                 // (for efficiency/performance)
2214 }
2215 
2216 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2217   return g1_policy();
2218 }
2219 
2220 size_t G1CollectedHeap::capacity() const {
2221   return _hrm.length() * HeapRegion::GrainBytes;
2222 }
2223 
2224 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2225   assert(!hr->is_continues_humongous(), "pre-condition");
2226   hr->reset_gc_time_stamp();
2227   if (hr->is_starts_humongous()) {
2228     uint first_index = hr->hrm_index() + 1;
2229     uint last_index = hr->last_hc_index();
2230     for (uint i = first_index; i < last_index; i += 1) {
2231       HeapRegion* chr = region_at(i);
2232       assert(chr->is_continues_humongous(), "sanity");
2233       chr->reset_gc_time_stamp();
2234     }
2235   }
2236 }
2237 
2238 #ifndef PRODUCT
2239 
2240 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2241 private:
2242   unsigned _gc_time_stamp;
2243   bool _failures;
2244 
2245 public:
2246   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2247     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2248 
2249   virtual bool doHeapRegion(HeapRegion* hr) {
2250     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2251     if (_gc_time_stamp != region_gc_time_stamp) {
2252       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2253                              "expected %d", HR_FORMAT_PARAMS(hr),
2254                              region_gc_time_stamp, _gc_time_stamp);
2255       _failures = true;


2283 }
2284 
2285 // Computes the sum of the storage used by the various regions.
2286 size_t G1CollectedHeap::used() const {
2287   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2288   if (_archive_allocator != NULL) {
2289     result += _archive_allocator->used();
2290   }
2291   return result;
2292 }
2293 
2294 size_t G1CollectedHeap::used_unlocked() const {
2295   return _summary_bytes_used;
2296 }
2297 
2298 class SumUsedClosure: public HeapRegionClosure {
2299   size_t _used;
2300 public:
2301   SumUsedClosure() : _used(0) {}
2302   bool doHeapRegion(HeapRegion* r) {
2303     if (!r->is_continues_humongous()) {
2304       _used += r->used();
2305     }
2306     return false;
2307   }
2308   size_t result() { return _used; }
2309 };
2310 
2311 size_t G1CollectedHeap::recalculate_used() const {
2312   double recalculate_used_start = os::elapsedTime();
2313 
2314   SumUsedClosure blk;
2315   heap_region_iterate(&blk);
2316 
2317   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2318   return blk.result();
2319 }
2320 
2321 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2322   switch (cause) {
2323     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2324     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2325     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;


2506         // Schedule a standard evacuation pause. We're setting word_size
2507         // to 0 which means that we are not requesting a post-GC allocation.
2508         VM_G1IncCollectionPause op(gc_count_before,
2509                                    0,     /* word_size */
2510                                    false, /* should_initiate_conc_mark */
2511                                    g1_policy()->max_pause_time_ms(),
2512                                    cause);
2513         VMThread::execute(&op);
2514       } else {
2515         // Schedule a Full GC.
2516         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2517         VMThread::execute(&op);
2518       }
2519     }
2520   } while (retry_gc);
2521 }
2522 
2523 bool G1CollectedHeap::is_in(const void* p) const {
2524   if (_hrm.reserved().contains(p)) {
2525     // Given that we know that p is in the reserved space,
2526     // heap_region_containing_raw() should successfully
2527     // return the containing region.
2528     HeapRegion* hr = heap_region_containing_raw(p);
2529     return hr->is_in(p);
2530   } else {
2531     return false;
2532   }
2533 }
2534 
2535 #ifdef ASSERT
2536 bool G1CollectedHeap::is_in_exact(const void* p) const {
2537   bool contains = reserved_region().contains(p);
2538   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2539   if (contains && available) {
2540     return true;
2541   } else {
2542     return false;
2543   }
2544 }
2545 #endif
2546 
2547 bool G1CollectedHeap::obj_in_cs(oop obj) {
2548   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);


3045       _vo(vo),
3046       _failures(false) {}
3047 
3048   bool failures() {
3049     return _failures;
3050   }
3051 
3052   bool doHeapRegion(HeapRegion* r) {
3053     // For archive regions, verify there are no heap pointers to
3054     // non-pinned regions. For all others, verify liveness info.
3055     if (r->is_archive()) {
3056       VerifyArchiveRegionClosure verify_oop_pointers(r);
3057       r->object_iterate(&verify_oop_pointers);
3058       return true;
3059     }
3060     if (!r->is_continues_humongous()) {
3061       bool failures = false;
3062       r->verify(_vo, &failures);
3063       if (failures) {
3064         _failures = true;
3065       } else {
3066         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3067         r->object_iterate(&not_dead_yet_cl);
3068         if (_vo != VerifyOption_G1UseNextMarking) {
3069           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3070             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3071                                    "max_live_bytes " SIZE_FORMAT " "
3072                                    "< calculated " SIZE_FORMAT,
3073                                    p2i(r->bottom()), p2i(r->end()),
3074                                    r->max_live_bytes(),
3075                                  not_dead_yet_cl.live_bytes());
3076             _failures = true;
3077           }
3078         } else {
3079           // When vo == UseNextMarking we cannot currently do a sanity
3080           // check on the live bytes as the calculation has not been
3081           // finalized yet.
3082         }
3083       }
3084     }
3085     return false; // stop the region iteration if we hit a failure


5299   assert(free_list != NULL, "pre-condition");
5300 
5301   if (G1VerifyBitmaps) {
5302     MemRegion mr(hr->bottom(), hr->end());
5303     concurrent_mark()->clearRangePrevBitmap(mr);
5304   }
5305 
5306   // Clear the card counts for this region.
5307   // Note: we only need to do this if the region is not young
5308   // (since we don't refine cards in young regions).
5309   if (!hr->is_young()) {
5310     _cg1r->hot_card_cache()->reset_card_counts(hr);
5311   }
5312   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5313   free_list->add_ordered(hr);
5314 }
5315 
5316 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5317                                      FreeRegionList* free_list,
5318                                      bool par) {
5319   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5320   assert(free_list != NULL, "pre-condition");
5321 
5322   size_t hr_capacity = hr->capacity();
5323   // We need to read this before we make the region non-humongous,
5324   // otherwise the information will be gone.
5325   uint last_index = hr->last_hc_index();
5326   hr->clear_humongous();
5327   free_region(hr, free_list, par);
5328 
5329   uint i = hr->hrm_index() + 1;
5330   while (i < last_index) {
5331     HeapRegion* curr_hr = region_at(i);
5332     assert(curr_hr->is_continues_humongous(), "invariant");
5333     curr_hr->clear_humongous();
5334     free_region(curr_hr, free_list, par);
5335     i += 1;
5336   }
5337 }
5338 
5339 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5340                                        const HeapRegionSetCount& humongous_regions_removed) {
5341   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5342     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5343     _old_set.bulk_remove(old_regions_removed);
5344     _humongous_set.bulk_remove(humongous_regions_removed);
5345   }
5346 
5347 }
5348 
5349 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5350   assert(list != NULL, "list can't be null");
5351   if (!list->is_empty()) {
5352     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5353     _hrm.insert_list_into_free_list(list);
5354   }
5355 }
5356 


5480 
5481 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5482   if (!G1VerifyBitmaps) return;
5483 
5484   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5485 }
5486 
5487 class G1VerifyBitmapClosure : public HeapRegionClosure {
5488 private:
5489   const char* _caller;
5490   G1CollectedHeap* _g1h;
5491   bool _failures;
5492 
5493 public:
5494   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5495     _caller(caller), _g1h(g1h), _failures(false) { }
5496 
5497   bool failures() { return _failures; }
5498 
5499   virtual bool doHeapRegion(HeapRegion* hr) {
5500     if (hr->is_continues_humongous()) return false;
5501 
5502     bool result = _g1h->verify_bitmaps(_caller, hr);
5503     if (!result) {
5504       _failures = true;
5505     }
5506     return false;
5507   }
5508 };
5509 
5510 void G1CollectedHeap::check_bitmaps(const char* caller) {
5511   if (!G1VerifyBitmaps) return;
5512 
5513   G1VerifyBitmapClosure cl(caller, this);
5514   heap_region_iterate(&cl);
5515   guarantee(!cl.failures(), "bitmap verification");
5516 }
5517 
5518 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5519  private:
5520   bool _failures;
5521  public:


5755     //
5756     // It is not required to check whether the object has been found dead by marking
5757     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5758     // all objects allocated during that time are considered live.
5759     // SATB marking is even more conservative than the remembered set.
5760     // So if at this point in the collection there is no remembered set entry,
5761     // nobody has a reference to it.
5762     // At the start of collection we flush all refinement logs, and remembered sets
5763     // are completely up-to-date wrt to references to the humongous object.
5764     //
5765     // Other implementation considerations:
5766     // - never consider object arrays at this time because they would pose
5767     // considerable effort for cleaning up the the remembered sets. This is
5768     // required because stale remembered sets might reference locations that
5769     // are currently allocated into.
5770     uint region_idx = r->hrm_index();
5771     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5772         !r->rem_set()->is_empty()) {
5773 
5774       if (G1TraceEagerReclaimHumongousObjects) {
5775         gclog_or_tty->print_cr("Live humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5776                                region_idx,
5777                                (size_t)obj->size() * HeapWordSize,
5778                                p2i(r->bottom()),
5779                                r->region_num(),
5780                                r->rem_set()->occupied(),
5781                                r->rem_set()->strong_code_roots_list_length(),
5782                                next_bitmap->isMarked(r->bottom()),
5783                                g1h->is_humongous_reclaim_candidate(region_idx),
5784                                obj->is_typeArray()
5785                               );
5786       }
5787 
5788       return false;
5789     }
5790 
5791     guarantee(obj->is_typeArray(),
5792               "Only eagerly reclaiming type arrays is supported, but the object "
5793               PTR_FORMAT " is not.", p2i(r->bottom()));
5794 
5795     if (G1TraceEagerReclaimHumongousObjects) {
5796       gclog_or_tty->print_cr("Dead humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5797                              region_idx,
5798                              (size_t)obj->size() * HeapWordSize,
5799                              p2i(r->bottom()),
5800                              r->region_num(),
5801                              r->rem_set()->occupied(),
5802                              r->rem_set()->strong_code_roots_list_length(),
5803                              next_bitmap->isMarked(r->bottom()),
5804                              g1h->is_humongous_reclaim_candidate(region_idx),
5805                              obj->is_typeArray()
5806                             );
5807     }
5808     // Need to clear mark bit of the humongous object if already set.
5809     if (next_bitmap->isMarked(r->bottom())) {
5810       next_bitmap->clear(r->bottom());
5811     }


5812     _freed_bytes += r->used();
5813     r->set_containing_set(NULL);
5814     _humongous_regions_removed.increment(1u, r->capacity());
5815     g1h->free_humongous_region(r, _free_region_list, false);


5816 
5817     return false;
5818   }
5819 
5820   HeapRegionSetCount& humongous_free_count() {
5821     return _humongous_regions_removed;
5822   }
5823 
5824   size_t bytes_freed() const {
5825     return _freed_bytes;
5826   }
5827 
5828   size_t humongous_reclaimed() const {
5829     return _humongous_regions_removed.length();
5830   }
5831 };
5832 
5833 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5834   assert_at_safepoint(true);
5835 


6030 
6031 class RebuildRegionSetsClosure : public HeapRegionClosure {
6032 private:
6033   bool            _free_list_only;
6034   HeapRegionSet*   _old_set;
6035   HeapRegionManager*   _hrm;
6036   size_t          _total_used;
6037 
6038 public:
6039   RebuildRegionSetsClosure(bool free_list_only,
6040                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6041     _free_list_only(free_list_only),
6042     _old_set(old_set), _hrm(hrm), _total_used(0) {
6043     assert(_hrm->num_free_regions() == 0, "pre-condition");
6044     if (!free_list_only) {
6045       assert(_old_set->is_empty(), "pre-condition");
6046     }
6047   }
6048 
6049   bool doHeapRegion(HeapRegion* r) {
6050     if (r->is_continues_humongous()) {
6051       return false;
6052     }
6053 
6054     if (r->is_empty()) {
6055       // Add free regions to the free list
6056       r->set_free();
6057       r->set_allocation_context(AllocationContext::system());
6058       _hrm->insert_into_free_list(r);
6059     } else if (!_free_list_only) {
6060       assert(!r->is_young(), "we should not come across young regions");
6061 
6062       if (r->is_humongous()) {
6063         // We ignore humongous regions. We left the humongous set unchanged.
6064       } else {
6065         // Objects that were compacted would have ended up on regions
6066         // that were previously old or free.  Archive regions (which are
6067         // old) will not have been touched.
6068         assert(r->is_free() || r->is_old(), "invariant");
6069         // We now consider them old, so register as such. Leave
6070         // archive regions set that way, however, while still adding
6071         // them to the old set.
6072         if (!r->is_archive()) {
6073           r->set_old();


6221 // Heap region set verification
6222 
6223 class VerifyRegionListsClosure : public HeapRegionClosure {
6224 private:
6225   HeapRegionSet*   _old_set;
6226   HeapRegionSet*   _humongous_set;
6227   HeapRegionManager*   _hrm;
6228 
6229 public:
6230   HeapRegionSetCount _old_count;
6231   HeapRegionSetCount _humongous_count;
6232   HeapRegionSetCount _free_count;
6233 
6234   VerifyRegionListsClosure(HeapRegionSet* old_set,
6235                            HeapRegionSet* humongous_set,
6236                            HeapRegionManager* hrm) :
6237     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6238     _old_count(), _humongous_count(), _free_count(){ }
6239 
6240   bool doHeapRegion(HeapRegion* hr) {
6241     if (hr->is_continues_humongous()) {
6242       return false;
6243     }
6244 
6245     if (hr->is_young()) {
6246       // TODO
6247     } else if (hr->is_starts_humongous()) {
6248       assert(hr->containing_set() == _humongous_set, "Heap region %u is starts humongous but not in humongous set.", hr->hrm_index());
6249       _humongous_count.increment(1u, hr->capacity());
6250     } else if (hr->is_empty()) {
6251       assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index());
6252       _free_count.increment(1u, hr->capacity());
6253     } else if (hr->is_old()) {
6254       assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index());
6255       _old_count.increment(1u, hr->capacity());
6256     } else {
6257       // There are no other valid region types. Check for one invalid
6258       // one we can identify: pinned without old or humongous set.
6259       assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index());
6260       ShouldNotReachHere();
6261     }
6262     return false;
6263   }
6264 
6265   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6266     guarantee(old_set->length() == _old_count.length(), "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length());
6267     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), "Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6268               old_set->total_capacity_bytes(), _old_count.capacity());




 303   // Index of last region in the series + 1.
 304   uint last = first + num_regions;
 305 
 306   // We need to initialize the region(s) we just discovered. This is
 307   // a bit tricky given that it can happen concurrently with
 308   // refinement threads refining cards on these regions and
 309   // potentially wanting to refine the BOT as they are scanning
 310   // those cards (this can happen shortly after a cleanup; see CR
 311   // 6991377). So we have to set up the region(s) carefully and in
 312   // a specific order.
 313 
 314   // The word size sum of all the regions we will allocate.
 315   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 316   assert(word_size <= word_size_sum, "sanity");
 317 
 318   // This will be the "starts humongous" region.
 319   HeapRegion* first_hr = region_at(first);
 320   // The header of the new object will be placed at the bottom of
 321   // the first region.
 322   HeapWord* new_obj = first_hr->bottom();
 323   // This will be the new top of the new object.
 324   HeapWord* obj_top = new_obj + word_size;




 325 
 326   // First, we need to zero the header of the space that we will be
 327   // allocating. When we update top further down, some refinement
 328   // threads might try to scan the region. By zeroing the header we
 329   // ensure that any thread that will try to scan the region will
 330   // come across the zero klass word and bail out.
 331   //
 332   // NOTE: It would not have been correct to have used
 333   // CollectedHeap::fill_with_object() and make the space look like
 334   // an int array. The thread that is doing the allocation will
 335   // later update the object header to a potentially different array
 336   // type and, for a very short period of time, the klass and length
 337   // fields will be inconsistent. This could cause a refinement
 338   // thread to calculate the object size incorrectly.
 339   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 340 
 341   // We will set up the first region as "starts humongous". This
 342   // will also update the BOT covering all the regions to reflect
 343   // that there is a single object that starts at the bottom of the
 344   // first region.
 345   first_hr->set_starts_humongous(obj_top);
 346   first_hr->set_allocation_context(context);
 347   // Then, if there are any, we will set up the "continues
 348   // humongous" regions.
 349   HeapRegion* hr = NULL;
 350   for (uint i = first + 1; i < last; ++i) {
 351     hr = region_at(i);
 352     hr->set_continues_humongous(first_hr);
 353     hr->set_allocation_context(context);
 354   }



 355 
 356   // Up to this point no concurrent thread would have been able to
 357   // do any scanning on any region in this series. All the top
 358   // fields still point to bottom, so the intersection between
 359   // [bottom,top] and [card_start,card_end] will be empty. Before we
 360   // update the top fields, we'll do a storestore to make sure that
 361   // no thread sees the update to top before the zeroing of the
 362   // object header and the BOT initialization.
 363   OrderAccess::storestore();
 364 
 365   // Now that the BOT and the object header have been initialized,
 366   // we can update top of the "starts humongous" region.
 367   first_hr->set_top(MIN2(first_hr->end(), obj_top));


 368   if (_hr_printer.is_active()) {


 369     if ((first + 1) == last) {
 370       // the series has a single humongous region
 371       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, obj_top);
 372     } else {
 373       // the series has more than one humongous regions
 374       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, first_hr->end());
 375     }
 376   }
 377 
 378   // Now, we will update the top fields of the "continues humongous"
 379   // regions. The reason we need to do this is that, otherwise,
 380   // these regions would look empty and this will confuse parts of
 381   // G1. For example, the code that looks for a consecutive number
 382   // of empty regions will consider them empty and try to
 383   // re-allocate them. We can extend is_empty() to also include
 384   // !is_continues_humongous(), but it is easier to just update the top
 385   // fields here. The way we set top for all regions (i.e., top ==
 386   // end for all regions but the last one, top == new_top for the
 387   // last one) is actually used when we will free up the humongous
 388   // region in free_humongous_region().
 389   hr = NULL;
 390   for (uint i = first + 1; i < last; ++i) {
 391     hr = region_at(i);
 392     if ((i + 1) == last) {
 393       // last continues humongous region
 394       assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 395              "new_top should fall on this region");
 396       hr->set_top(obj_top);
 397       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, obj_top);
 398     } else {
 399       // not last one
 400       assert(obj_top > hr->end(), "obj_top should be above this region");
 401       hr->set_top(hr->end());
 402       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 403     }
 404   }
 405   // If we have continues humongous regions (hr != NULL), its top should
 406   // match obj_top.
 407   assert(hr == NULL || (hr->top() == obj_top), "sanity");


 408   check_bitmaps("Humongous Region Allocation", first_hr);
 409 
 410   increase_used(word_size * HeapWordSize);
 411 
 412   for (uint i = first; i < last; ++i) {
 413     _humongous_set.add(region_at(i));
 414   }
 415 
 416   return new_obj;
 417 }
 418 
 419 // If could fit into free regions w/o expansion, try.
 420 // Otherwise, if can expand, do so.
 421 // Otherwise, if using ex regions might help, try with ex given back.
 422 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 423   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 424 
 425   verify_region_sets_optional();
 426 
 427   uint first = G1_NO_HRM_INDEX;
 428   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 429 
 430   if (obj_regions == 1) {
 431     // Only one region to allocate, try to use a fast path by directly allocating
 432     // from the free lists. Do not try to expand here, we will potentially do that
 433     // later.
 434     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);


1111     HeapWord* result = humongous_obj_allocate(word_size, context);
1112     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1113       collector_state()->set_initiate_conc_mark_if_possible(true);
1114     }
1115     return result;
1116   }
1117 
1118   ShouldNotReachHere();
1119 }
1120 
1121 class PostMCRemSetClearClosure: public HeapRegionClosure {
1122   G1CollectedHeap* _g1h;
1123   ModRefBarrierSet* _mr_bs;
1124 public:
1125   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1126     _g1h(g1h), _mr_bs(mr_bs) {}
1127 
1128   bool doHeapRegion(HeapRegion* r) {
1129     HeapRegionRemSet* hrrs = r->rem_set();
1130 







1131     _g1h->reset_gc_time_stamps(r);
1132     hrrs->clear();
1133     // You might think here that we could clear just the cards
1134     // corresponding to the used region.  But no: if we leave a dirty card
1135     // in a region we might allocate into, then it would prevent that card
1136     // from being enqueued, and cause it to be missed.
1137     // Re: the performance cost: we shouldn't be doing full GC anyway!
1138     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1139 
1140     return false;
1141   }
1142 };
1143 
1144 void G1CollectedHeap::clear_rsets_post_compaction() {
1145   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1146   heap_region_iterate(&rs_clear);
1147 }
1148 
1149 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1150   G1CollectedHeap*   _g1h;


1170 
1171 public:
1172   ParRebuildRSTask(G1CollectedHeap* g1) :
1173       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1174 
1175   void work(uint worker_id) {
1176     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1177     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1178   }
1179 };
1180 
1181 class PostCompactionPrinterClosure: public HeapRegionClosure {
1182 private:
1183   G1HRPrinter* _hr_printer;
1184 public:
1185   bool doHeapRegion(HeapRegion* hr) {
1186     assert(!hr->is_young(), "not expecting to find young regions");
1187     if (hr->is_free()) {
1188       // We only generate output for non-empty regions.
1189     } else if (hr->is_starts_humongous()) {




1190       _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);

1191     } else if (hr->is_continues_humongous()) {
1192       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1193     } else if (hr->is_archive()) {
1194       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1195     } else if (hr->is_old()) {
1196       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1197     } else {
1198       ShouldNotReachHere();
1199     }
1200     return false;
1201   }
1202 
1203   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1204     : _hr_printer(hr_printer) { }
1205 };
1206 
1207 void G1CollectedHeap::print_hrm_post_compaction() {
1208   PostCompactionPrinterClosure cl(hr_printer());
1209   heap_region_iterate(&cl);
1210 }


2182                            (ParallelGCThreads > 1),
2183                                 // mt discovery
2184                            ParallelGCThreads,
2185                                 // degree of mt discovery
2186                            true,
2187                                 // Reference discovery is atomic
2188                            &_is_alive_closure_stw);
2189                                 // is alive closure
2190                                 // (for efficiency/performance)
2191 }
2192 
2193 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2194   return g1_policy();
2195 }
2196 
2197 size_t G1CollectedHeap::capacity() const {
2198   return _hrm.length() * HeapRegion::GrainBytes;
2199 }
2200 
2201 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {

2202   hr->reset_gc_time_stamp();









2203 }
2204 
2205 #ifndef PRODUCT
2206 
2207 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2208 private:
2209   unsigned _gc_time_stamp;
2210   bool _failures;
2211 
2212 public:
2213   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2214     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2215 
2216   virtual bool doHeapRegion(HeapRegion* hr) {
2217     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2218     if (_gc_time_stamp != region_gc_time_stamp) {
2219       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2220                              "expected %d", HR_FORMAT_PARAMS(hr),
2221                              region_gc_time_stamp, _gc_time_stamp);
2222       _failures = true;


2250 }
2251 
2252 // Computes the sum of the storage used by the various regions.
2253 size_t G1CollectedHeap::used() const {
2254   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2255   if (_archive_allocator != NULL) {
2256     result += _archive_allocator->used();
2257   }
2258   return result;
2259 }
2260 
2261 size_t G1CollectedHeap::used_unlocked() const {
2262   return _summary_bytes_used;
2263 }
2264 
2265 class SumUsedClosure: public HeapRegionClosure {
2266   size_t _used;
2267 public:
2268   SumUsedClosure() : _used(0) {}
2269   bool doHeapRegion(HeapRegion* r) {

2270     _used += r->used();

2271     return false;
2272   }
2273   size_t result() { return _used; }
2274 };
2275 
2276 size_t G1CollectedHeap::recalculate_used() const {
2277   double recalculate_used_start = os::elapsedTime();
2278 
2279   SumUsedClosure blk;
2280   heap_region_iterate(&blk);
2281 
2282   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2283   return blk.result();
2284 }
2285 
2286 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2287   switch (cause) {
2288     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2289     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2290     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;


2471         // Schedule a standard evacuation pause. We're setting word_size
2472         // to 0 which means that we are not requesting a post-GC allocation.
2473         VM_G1IncCollectionPause op(gc_count_before,
2474                                    0,     /* word_size */
2475                                    false, /* should_initiate_conc_mark */
2476                                    g1_policy()->max_pause_time_ms(),
2477                                    cause);
2478         VMThread::execute(&op);
2479       } else {
2480         // Schedule a Full GC.
2481         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2482         VMThread::execute(&op);
2483       }
2484     }
2485   } while (retry_gc);
2486 }
2487 
2488 bool G1CollectedHeap::is_in(const void* p) const {
2489   if (_hrm.reserved().contains(p)) {
2490     // Given that we know that p is in the reserved space,
2491     // heap_region_containing() should successfully
2492     // return the containing region.
2493     HeapRegion* hr = heap_region_containing(p);
2494     return hr->is_in(p);
2495   } else {
2496     return false;
2497   }
2498 }
2499 
2500 #ifdef ASSERT
2501 bool G1CollectedHeap::is_in_exact(const void* p) const {
2502   bool contains = reserved_region().contains(p);
2503   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2504   if (contains && available) {
2505     return true;
2506   } else {
2507     return false;
2508   }
2509 }
2510 #endif
2511 
2512 bool G1CollectedHeap::obj_in_cs(oop obj) {
2513   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);


3010       _vo(vo),
3011       _failures(false) {}
3012 
3013   bool failures() {
3014     return _failures;
3015   }
3016 
3017   bool doHeapRegion(HeapRegion* r) {
3018     // For archive regions, verify there are no heap pointers to
3019     // non-pinned regions. For all others, verify liveness info.
3020     if (r->is_archive()) {
3021       VerifyArchiveRegionClosure verify_oop_pointers(r);
3022       r->object_iterate(&verify_oop_pointers);
3023       return true;
3024     }
3025     if (!r->is_continues_humongous()) {
3026       bool failures = false;
3027       r->verify(_vo, &failures);
3028       if (failures) {
3029         _failures = true;
3030       } else if (!r->is_starts_humongous()) {
3031         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3032         r->object_iterate(&not_dead_yet_cl);
3033         if (_vo != VerifyOption_G1UseNextMarking) {
3034           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3035             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3036                                    "max_live_bytes " SIZE_FORMAT " "
3037                                    "< calculated " SIZE_FORMAT,
3038                                    p2i(r->bottom()), p2i(r->end()),
3039                                    r->max_live_bytes(),
3040                                  not_dead_yet_cl.live_bytes());
3041             _failures = true;
3042           }
3043         } else {
3044           // When vo == UseNextMarking we cannot currently do a sanity
3045           // check on the live bytes as the calculation has not been
3046           // finalized yet.
3047         }
3048       }
3049     }
3050     return false; // stop the region iteration if we hit a failure


5264   assert(free_list != NULL, "pre-condition");
5265 
5266   if (G1VerifyBitmaps) {
5267     MemRegion mr(hr->bottom(), hr->end());
5268     concurrent_mark()->clearRangePrevBitmap(mr);
5269   }
5270 
5271   // Clear the card counts for this region.
5272   // Note: we only need to do this if the region is not young
5273   // (since we don't refine cards in young regions).
5274   if (!hr->is_young()) {
5275     _cg1r->hot_card_cache()->reset_card_counts(hr);
5276   }
5277   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5278   free_list->add_ordered(hr);
5279 }
5280 
5281 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5282                                      FreeRegionList* free_list,
5283                                      bool par) {

5284   assert(free_list != NULL, "pre-condition");





5285   hr->clear_humongous();
5286   free_region(hr, free_list, par);









5287 }
5288 
5289 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5290                                        const HeapRegionSetCount& humongous_regions_removed) {
5291   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5292     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5293     _old_set.bulk_remove(old_regions_removed);
5294     _humongous_set.bulk_remove(humongous_regions_removed);
5295   }
5296 
5297 }
5298 
5299 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5300   assert(list != NULL, "list can't be null");
5301   if (!list->is_empty()) {
5302     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5303     _hrm.insert_list_into_free_list(list);
5304   }
5305 }
5306 


5430 
5431 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5432   if (!G1VerifyBitmaps) return;
5433 
5434   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5435 }
5436 
5437 class G1VerifyBitmapClosure : public HeapRegionClosure {
5438 private:
5439   const char* _caller;
5440   G1CollectedHeap* _g1h;
5441   bool _failures;
5442 
5443 public:
5444   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5445     _caller(caller), _g1h(g1h), _failures(false) { }
5446 
5447   bool failures() { return _failures; }
5448 
5449   virtual bool doHeapRegion(HeapRegion* hr) {


5450     bool result = _g1h->verify_bitmaps(_caller, hr);
5451     if (!result) {
5452       _failures = true;
5453     }
5454     return false;
5455   }
5456 };
5457 
5458 void G1CollectedHeap::check_bitmaps(const char* caller) {
5459   if (!G1VerifyBitmaps) return;
5460 
5461   G1VerifyBitmapClosure cl(caller, this);
5462   heap_region_iterate(&cl);
5463   guarantee(!cl.failures(), "bitmap verification");
5464 }
5465 
5466 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5467  private:
5468   bool _failures;
5469  public:


5703     //
5704     // It is not required to check whether the object has been found dead by marking
5705     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5706     // all objects allocated during that time are considered live.
5707     // SATB marking is even more conservative than the remembered set.
5708     // So if at this point in the collection there is no remembered set entry,
5709     // nobody has a reference to it.
5710     // At the start of collection we flush all refinement logs, and remembered sets
5711     // are completely up-to-date wrt to references to the humongous object.
5712     //
5713     // Other implementation considerations:
5714     // - never consider object arrays at this time because they would pose
5715     // considerable effort for cleaning up the the remembered sets. This is
5716     // required because stale remembered sets might reference locations that
5717     // are currently allocated into.
5718     uint region_idx = r->hrm_index();
5719     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5720         !r->rem_set()->is_empty()) {
5721 
5722       if (G1TraceEagerReclaimHumongousObjects) {
5723         gclog_or_tty->print_cr("Live humongous region %u objectsize " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5724                                region_idx,
5725                                (size_t)obj->size() * HeapWordSize,
5726                                p2i(r->bottom()),

5727                                r->rem_set()->occupied(),
5728                                r->rem_set()->strong_code_roots_list_length(),
5729                                next_bitmap->isMarked(r->bottom()),
5730                                g1h->is_humongous_reclaim_candidate(region_idx),
5731                                obj->is_typeArray()
5732                               );
5733       }
5734 
5735       return false;
5736     }
5737 
5738     guarantee(obj->is_typeArray(),
5739               "Only eagerly reclaiming type arrays is supported, but the object "
5740               PTR_FORMAT " is not.", p2i(r->bottom()));
5741 
5742     if (G1TraceEagerReclaimHumongousObjects) {
5743       gclog_or_tty->print_cr("Dead humongous region %u objectsize " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5744                              region_idx,
5745                              (size_t)obj->size() * HeapWordSize,
5746                              p2i(r->bottom()),

5747                              r->rem_set()->occupied(),
5748                              r->rem_set()->strong_code_roots_list_length(),
5749                              next_bitmap->isMarked(r->bottom()),
5750                              g1h->is_humongous_reclaim_candidate(region_idx),
5751                              obj->is_typeArray()
5752                             );
5753     }
5754     // Need to clear mark bit of the humongous object if already set.
5755     if (next_bitmap->isMarked(r->bottom())) {
5756       next_bitmap->clear(r->bottom());
5757     }
5758     do {
5759       HeapRegion* next = g1h->next_region_by_index(r);
5760       _freed_bytes += r->used();
5761       r->set_containing_set(NULL);
5762       _humongous_regions_removed.increment(1u, r->capacity());
5763       g1h->free_humongous_region(r, _free_region_list, false);
5764       r = next;
5765     } while (r != NULL && r->is_continues_humongous());
5766 
5767     return false;
5768   }
5769 
5770   HeapRegionSetCount& humongous_free_count() {
5771     return _humongous_regions_removed;
5772   }
5773 
5774   size_t bytes_freed() const {
5775     return _freed_bytes;
5776   }
5777 
5778   size_t humongous_reclaimed() const {
5779     return _humongous_regions_removed.length();
5780   }
5781 };
5782 
5783 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5784   assert_at_safepoint(true);
5785 


5980 
5981 class RebuildRegionSetsClosure : public HeapRegionClosure {
5982 private:
5983   bool            _free_list_only;
5984   HeapRegionSet*   _old_set;
5985   HeapRegionManager*   _hrm;
5986   size_t          _total_used;
5987 
5988 public:
5989   RebuildRegionSetsClosure(bool free_list_only,
5990                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5991     _free_list_only(free_list_only),
5992     _old_set(old_set), _hrm(hrm), _total_used(0) {
5993     assert(_hrm->num_free_regions() == 0, "pre-condition");
5994     if (!free_list_only) {
5995       assert(_old_set->is_empty(), "pre-condition");
5996     }
5997   }
5998 
5999   bool doHeapRegion(HeapRegion* r) {




6000     if (r->is_empty()) {
6001       // Add free regions to the free list
6002       r->set_free();
6003       r->set_allocation_context(AllocationContext::system());
6004       _hrm->insert_into_free_list(r);
6005     } else if (!_free_list_only) {
6006       assert(!r->is_young(), "we should not come across young regions");
6007 
6008       if (r->is_humongous()) {
6009         // We ignore humongous regions. We left the humongous set unchanged.
6010       } else {
6011         // Objects that were compacted would have ended up on regions
6012         // that were previously old or free.  Archive regions (which are
6013         // old) will not have been touched.
6014         assert(r->is_free() || r->is_old(), "invariant");
6015         // We now consider them old, so register as such. Leave
6016         // archive regions set that way, however, while still adding
6017         // them to the old set.
6018         if (!r->is_archive()) {
6019           r->set_old();


6167 // Heap region set verification
6168 
6169 class VerifyRegionListsClosure : public HeapRegionClosure {
6170 private:
6171   HeapRegionSet*   _old_set;
6172   HeapRegionSet*   _humongous_set;
6173   HeapRegionManager*   _hrm;
6174 
6175 public:
6176   HeapRegionSetCount _old_count;
6177   HeapRegionSetCount _humongous_count;
6178   HeapRegionSetCount _free_count;
6179 
6180   VerifyRegionListsClosure(HeapRegionSet* old_set,
6181                            HeapRegionSet* humongous_set,
6182                            HeapRegionManager* hrm) :
6183     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6184     _old_count(), _humongous_count(), _free_count(){ }
6185 
6186   bool doHeapRegion(HeapRegion* hr) {




6187     if (hr->is_young()) {
6188       // TODO
6189     } else if (hr->is_humongous()) {
6190       assert(hr->containing_set() == _humongous_set, "Heap region %u is humongous but not in humongous set.", hr->hrm_index());
6191       _humongous_count.increment(1u, hr->capacity());
6192     } else if (hr->is_empty()) {
6193       assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index());
6194       _free_count.increment(1u, hr->capacity());
6195     } else if (hr->is_old()) {
6196       assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index());
6197       _old_count.increment(1u, hr->capacity());
6198     } else {
6199       // There are no other valid region types. Check for one invalid
6200       // one we can identify: pinned without old or humongous set.
6201       assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index());
6202       ShouldNotReachHere();
6203     }
6204     return false;
6205   }
6206 
6207   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6208     guarantee(old_set->length() == _old_count.length(), "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length());
6209     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), "Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6210               old_set->total_capacity_bytes(), _old_count.capacity());


< prev index next >