1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1Allocator.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ErgoVerbose.hpp"
  39 #include "gc/g1/g1EvacFailure.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1GCPhaseTimes.hpp"
  42 #include "gc/g1/g1Log.hpp"
  43 #include "gc/g1/g1MarkSweep.hpp"
  44 #include "gc/g1/g1OopClosures.inline.hpp"
  45 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  46 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  47 #include "gc/g1/g1RemSet.inline.hpp"
  48 #include "gc/g1/g1RootClosures.hpp"
  49 #include "gc/g1/g1RootProcessor.hpp"
  50 #include "gc/g1/g1StringDedup.hpp"
  51 #include "gc/g1/g1YCTypes.hpp"
  52 #include "gc/g1/heapRegion.inline.hpp"
  53 #include "gc/g1/heapRegionRemSet.hpp"
  54 #include "gc/g1/heapRegionSet.inline.hpp"
  55 #include "gc/g1/suspendibleThreadSet.hpp"
  56 #include "gc/g1/vm_operations_g1.hpp"
  57 #include "gc/shared/gcHeapSummary.hpp"
  58 #include "gc/shared/gcId.hpp"
  59 #include "gc/shared/gcLocker.inline.hpp"
  60 #include "gc/shared/gcTimer.hpp"
  61 #include "gc/shared/gcTrace.hpp"
  62 #include "gc/shared/gcTraceTime.hpp"
  63 #include "gc/shared/generationSpec.hpp"
  64 #include "gc/shared/isGCActiveMark.hpp"
  65 #include "gc/shared/referenceProcessor.hpp"
  66 #include "gc/shared/taskqueue.inline.hpp"
  67 #include "memory/allocation.hpp"
  68 #include "memory/iterator.hpp"
  69 #include "oops/oop.inline.hpp"
  70 #include "runtime/atomic.inline.hpp"
  71 #include "runtime/init.hpp"
  72 #include "runtime/orderAccess.inline.hpp"
  73 #include "runtime/vmThread.hpp"
  74 #include "utilities/globalDefinitions.hpp"
  75 #include "utilities/stack.inline.hpp"
  76 
  77 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  78 
  79 // INVARIANTS/NOTES
  80 //
  81 // All allocation activity covered by the G1CollectedHeap interface is
  82 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  83 // and allocate_new_tlab, which are the "entry" points to the
  84 // allocation code from the rest of the JVM.  (Note that this does not
  85 // apply to TLAB allocation, which is not part of this interface: it
  86 // is done by clients of this interface.)
  87 
  88 // Local to this file.
  89 
  90 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  91   bool _concurrent;
  92 public:
  93   RefineCardTableEntryClosure() : _concurrent(true) { }
  94 
  95   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  96     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  97     // This path is executed by the concurrent refine or mutator threads,
  98     // concurrently, and so we do not care if card_ptr contains references
  99     // that point into the collection set.
 100     assert(!oops_into_cset, "should be");
 101 
 102     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 103       // Caller will actually yield.
 104       return false;
 105     }
 106     // Otherwise, we finished successfully; return true.
 107     return true;
 108   }
 109 
 110   void set_concurrent(bool b) { _concurrent = b; }
 111 };
 112 
 113 
 114 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 115  private:
 116   size_t _num_processed;
 117 
 118  public:
 119   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 120 
 121   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 122     *card_ptr = CardTableModRefBS::dirty_card_val();
 123     _num_processed++;
 124     return true;
 125   }
 126 
 127   size_t num_processed() const { return _num_processed; }
 128 };
 129 
 130 
 131 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 132   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 133 }
 134 
 135 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 136   // The from card cache is not the memory that is actually committed. So we cannot
 137   // take advantage of the zero_filled parameter.
 138   reset_from_card_cache(start_idx, num_regions);
 139 }
 140 
 141 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 142 {
 143   // Claim the right to put the region on the dirty cards region list
 144   // by installing a self pointer.
 145   HeapRegion* next = hr->get_next_dirty_cards_region();
 146   if (next == NULL) {
 147     HeapRegion* res = (HeapRegion*)
 148       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 149                           NULL);
 150     if (res == NULL) {
 151       HeapRegion* head;
 152       do {
 153         // Put the region to the dirty cards region list.
 154         head = _dirty_cards_region_list;
 155         next = (HeapRegion*)
 156           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 157         if (next == head) {
 158           assert(hr->get_next_dirty_cards_region() == hr,
 159                  "hr->get_next_dirty_cards_region() != hr");
 160           if (next == NULL) {
 161             // The last region in the list points to itself.
 162             hr->set_next_dirty_cards_region(hr);
 163           } else {
 164             hr->set_next_dirty_cards_region(next);
 165           }
 166         }
 167       } while (next != head);
 168     }
 169   }
 170 }
 171 
 172 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 173 {
 174   HeapRegion* head;
 175   HeapRegion* hr;
 176   do {
 177     head = _dirty_cards_region_list;
 178     if (head == NULL) {
 179       return NULL;
 180     }
 181     HeapRegion* new_head = head->get_next_dirty_cards_region();
 182     if (head == new_head) {
 183       // The last region.
 184       new_head = NULL;
 185     }
 186     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 187                                           head);
 188   } while (hr != head);
 189   assert(hr != NULL, "invariant");
 190   hr->set_next_dirty_cards_region(NULL);
 191   return hr;
 192 }
 193 
 194 // Returns true if the reference points to an object that
 195 // can move in an incremental collection.
 196 bool G1CollectedHeap::is_scavengable(const void* p) {
 197   HeapRegion* hr = heap_region_containing(p);
 198   return !hr->is_pinned();
 199 }
 200 
 201 // Private methods.
 202 
 203 HeapRegion*
 204 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 205   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 206   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 207     if (!_secondary_free_list.is_empty()) {
 208       if (G1ConcRegionFreeingVerbose) {
 209         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 210                                "secondary_free_list has %u entries",
 211                                _secondary_free_list.length());
 212       }
 213       // It looks as if there are free regions available on the
 214       // secondary_free_list. Let's move them to the free_list and try
 215       // again to allocate from it.
 216       append_secondary_free_list();
 217 
 218       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 219              "empty we should have moved at least one entry to the free_list");
 220       HeapRegion* res = _hrm.allocate_free_region(is_old);
 221       if (G1ConcRegionFreeingVerbose) {
 222         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 223                                "allocated " HR_FORMAT " from secondary_free_list",
 224                                HR_FORMAT_PARAMS(res));
 225       }
 226       return res;
 227     }
 228 
 229     // Wait here until we get notified either when (a) there are no
 230     // more free regions coming or (b) some regions have been moved on
 231     // the secondary_free_list.
 232     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 233   }
 234 
 235   if (G1ConcRegionFreeingVerbose) {
 236     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 237                            "could not allocate from secondary_free_list");
 238   }
 239   return NULL;
 240 }
 241 
 242 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 243   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 244          "the only time we use this to allocate a humongous region is "
 245          "when we are allocating a single humongous region");
 246 
 247   HeapRegion* res;
 248   if (G1StressConcRegionFreeing) {
 249     if (!_secondary_free_list.is_empty()) {
 250       if (G1ConcRegionFreeingVerbose) {
 251         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 252                                "forced to look at the secondary_free_list");
 253       }
 254       res = new_region_try_secondary_free_list(is_old);
 255       if (res != NULL) {
 256         return res;
 257       }
 258     }
 259   }
 260 
 261   res = _hrm.allocate_free_region(is_old);
 262 
 263   if (res == NULL) {
 264     if (G1ConcRegionFreeingVerbose) {
 265       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 266                              "res == NULL, trying the secondary_free_list");
 267     }
 268     res = new_region_try_secondary_free_list(is_old);
 269   }
 270   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 271     // Currently, only attempts to allocate GC alloc regions set
 272     // do_expand to true. So, we should only reach here during a
 273     // safepoint. If this assumption changes we might have to
 274     // reconsider the use of _expand_heap_after_alloc_failure.
 275     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 276 
 277     ergo_verbose1(ErgoHeapSizing,
 278                   "attempt heap expansion",
 279                   ergo_format_reason("region allocation request failed")
 280                   ergo_format_byte("allocation request"),
 281                   word_size * HeapWordSize);
 282     if (expand(word_size * HeapWordSize)) {
 283       // Given that expand() succeeded in expanding the heap, and we
 284       // always expand the heap by an amount aligned to the heap
 285       // region size, the free list should in theory not be empty.
 286       // In either case allocate_free_region() will check for NULL.
 287       res = _hrm.allocate_free_region(is_old);
 288     } else {
 289       _expand_heap_after_alloc_failure = false;
 290     }
 291   }
 292   return res;
 293 }
 294 
 295 HeapWord*
 296 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 297                                                            uint num_regions,
 298                                                            size_t word_size,
 299                                                            AllocationContext_t context) {
 300   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 301   assert(is_humongous(word_size), "word_size should be humongous");
 302   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 303 
 304   // Index of last region in the series.
 305   uint last = first + num_regions - 1;
 306 
 307   // We need to initialize the region(s) we just discovered. This is
 308   // a bit tricky given that it can happen concurrently with
 309   // refinement threads refining cards on these regions and
 310   // potentially wanting to refine the BOT as they are scanning
 311   // those cards (this can happen shortly after a cleanup; see CR
 312   // 6991377). So we have to set up the region(s) carefully and in
 313   // a specific order.
 314 
 315   // The word size sum of all the regions we will allocate.
 316   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 317   assert(word_size <= word_size_sum, "sanity");
 318 
 319   // This will be the "starts humongous" region.
 320   HeapRegion* first_hr = region_at(first);
 321   // The header of the new object will be placed at the bottom of
 322   // the first region.
 323   HeapWord* new_obj = first_hr->bottom();
 324   // This will be the new top of the new object.
 325   HeapWord* obj_top = new_obj + word_size;
 326 
 327   // First, we need to zero the header of the space that we will be
 328   // allocating. When we update top further down, some refinement
 329   // threads might try to scan the region. By zeroing the header we
 330   // ensure that any thread that will try to scan the region will
 331   // come across the zero klass word and bail out.
 332   //
 333   // NOTE: It would not have been correct to have used
 334   // CollectedHeap::fill_with_object() and make the space look like
 335   // an int array. The thread that is doing the allocation will
 336   // later update the object header to a potentially different array
 337   // type and, for a very short period of time, the klass and length
 338   // fields will be inconsistent. This could cause a refinement
 339   // thread to calculate the object size incorrectly.
 340   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 341 
 342   // How many words we use for filler objects.
 343   size_t word_fill_size = word_size_sum - word_size;
 344 
 345   // How many words memory we "waste" which cannot hold a filler object.
 346   size_t words_not_fillable = 0;
 347 
 348   if (word_fill_size >= min_fill_size()) {
 349     fill_with_objects(obj_top, word_fill_size);
 350   } else if (word_fill_size > 0) {
 351     // We have space to fill, but we cannot fit an object there.
 352     words_not_fillable = word_fill_size;
 353     word_fill_size = 0;
 354   }
 355 
 356   // We will set up the first region as "starts humongous". This
 357   // will also update the BOT covering all the regions to reflect
 358   // that there is a single object that starts at the bottom of the
 359   // first region.
 360   first_hr->set_starts_humongous(obj_top, word_fill_size);
 361   first_hr->set_allocation_context(context);
 362   // Then, if there are any, we will set up the "continues
 363   // humongous" regions.
 364   HeapRegion* hr = NULL;
 365   for (uint i = first + 1; i <= last; ++i) {
 366     hr = region_at(i);
 367     hr->set_continues_humongous(first_hr);
 368     hr->set_allocation_context(context);
 369   }
 370 
 371   // Up to this point no concurrent thread would have been able to
 372   // do any scanning on any region in this series. All the top
 373   // fields still point to bottom, so the intersection between
 374   // [bottom,top] and [card_start,card_end] will be empty. Before we
 375   // update the top fields, we'll do a storestore to make sure that
 376   // no thread sees the update to top before the zeroing of the
 377   // object header and the BOT initialization.
 378   OrderAccess::storestore();
 379 
 380   // Now, we will update the top fields of the "continues humongous"
 381   // regions except the last one.
 382   for (uint i = first; i < last; ++i) {
 383     hr = region_at(i);
 384     hr->set_top(hr->end());
 385   }
 386 
 387   hr = region_at(last);
 388   // If we cannot fit a filler object, we must set top to the end
 389   // of the humongous object, otherwise we cannot iterate the heap
 390   // and the BOT will not be complete.
 391   hr->set_top(hr->end() - words_not_fillable);
 392 
 393   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 394          "obj_top should be in last region");
 395 
 396   check_bitmaps("Humongous Region Allocation", first_hr);
 397 
 398   assert(words_not_fillable == 0 ||
 399          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 400          "Miscalculation in humongous allocation");
 401 
 402   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 403 
 404   for (uint i = first; i <= last; ++i) {
 405     hr = region_at(i);
 406     _humongous_set.add(hr);
 407     if (i == first) {
 408       _hr_printer.alloc(G1HRPrinter::StartsHumongous, hr, hr->top());
 409     } else {
 410       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->top());
 411     }
 412   }
 413 
 414   return new_obj;
 415 }
 416 
 417 // If could fit into free regions w/o expansion, try.
 418 // Otherwise, if can expand, do so.
 419 // Otherwise, if using ex regions might help, try with ex given back.
 420 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 421   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 422 
 423   verify_region_sets_optional();
 424 
 425   uint first = G1_NO_HRM_INDEX;
 426   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 427 
 428   if (obj_regions == 1) {
 429     // Only one region to allocate, try to use a fast path by directly allocating
 430     // from the free lists. Do not try to expand here, we will potentially do that
 431     // later.
 432     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 433     if (hr != NULL) {
 434       first = hr->hrm_index();
 435     }
 436   } else {
 437     // We can't allocate humongous regions spanning more than one region while
 438     // cleanupComplete() is running, since some of the regions we find to be
 439     // empty might not yet be added to the free list. It is not straightforward
 440     // to know in which list they are on so that we can remove them. We only
 441     // need to do this if we need to allocate more than one region to satisfy the
 442     // current humongous allocation request. If we are only allocating one region
 443     // we use the one-region region allocation code (see above), that already
 444     // potentially waits for regions from the secondary free list.
 445     wait_while_free_regions_coming();
 446     append_secondary_free_list_if_not_empty_with_lock();
 447 
 448     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 449     // are lucky enough to find some.
 450     first = _hrm.find_contiguous_only_empty(obj_regions);
 451     if (first != G1_NO_HRM_INDEX) {
 452       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 453     }
 454   }
 455 
 456   if (first == G1_NO_HRM_INDEX) {
 457     // Policy: We could not find enough regions for the humongous object in the
 458     // free list. Look through the heap to find a mix of free and uncommitted regions.
 459     // If so, try expansion.
 460     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 461     if (first != G1_NO_HRM_INDEX) {
 462       // We found something. Make sure these regions are committed, i.e. expand
 463       // the heap. Alternatively we could do a defragmentation GC.
 464       ergo_verbose1(ErgoHeapSizing,
 465                     "attempt heap expansion",
 466                     ergo_format_reason("humongous allocation request failed")
 467                     ergo_format_byte("allocation request"),
 468                     word_size * HeapWordSize);
 469 
 470       _hrm.expand_at(first, obj_regions);
 471       g1_policy()->record_new_heap_size(num_regions());
 472 
 473 #ifdef ASSERT
 474       for (uint i = first; i < first + obj_regions; ++i) {
 475         HeapRegion* hr = region_at(i);
 476         assert(hr->is_free(), "sanity");
 477         assert(hr->is_empty(), "sanity");
 478         assert(is_on_master_free_list(hr), "sanity");
 479       }
 480 #endif
 481       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 482     } else {
 483       // Policy: Potentially trigger a defragmentation GC.
 484     }
 485   }
 486 
 487   HeapWord* result = NULL;
 488   if (first != G1_NO_HRM_INDEX) {
 489     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 490                                                        word_size, context);
 491     assert(result != NULL, "it should always return a valid result");
 492 
 493     // A successful humongous object allocation changes the used space
 494     // information of the old generation so we need to recalculate the
 495     // sizes and update the jstat counters here.
 496     g1mm()->update_sizes();
 497   }
 498 
 499   verify_region_sets_optional();
 500 
 501   return result;
 502 }
 503 
 504 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 505   assert_heap_not_locked_and_not_at_safepoint();
 506   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 507 
 508   uint dummy_gc_count_before;
 509   uint dummy_gclocker_retry_count = 0;
 510   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 511 }
 512 
 513 HeapWord*
 514 G1CollectedHeap::mem_allocate(size_t word_size,
 515                               bool*  gc_overhead_limit_was_exceeded) {
 516   assert_heap_not_locked_and_not_at_safepoint();
 517 
 518   // Loop until the allocation is satisfied, or unsatisfied after GC.
 519   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 520     uint gc_count_before;
 521 
 522     HeapWord* result = NULL;
 523     if (!is_humongous(word_size)) {
 524       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 525     } else {
 526       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 527     }
 528     if (result != NULL) {
 529       return result;
 530     }
 531 
 532     // Create the garbage collection operation...
 533     VM_G1CollectForAllocation op(gc_count_before, word_size);
 534     op.set_allocation_context(AllocationContext::current());
 535 
 536     // ...and get the VM thread to execute it.
 537     VMThread::execute(&op);
 538 
 539     if (op.prologue_succeeded() && op.pause_succeeded()) {
 540       // If the operation was successful we'll return the result even
 541       // if it is NULL. If the allocation attempt failed immediately
 542       // after a Full GC, it's unlikely we'll be able to allocate now.
 543       HeapWord* result = op.result();
 544       if (result != NULL && !is_humongous(word_size)) {
 545         // Allocations that take place on VM operations do not do any
 546         // card dirtying and we have to do it here. We only have to do
 547         // this for non-humongous allocations, though.
 548         dirty_young_block(result, word_size);
 549       }
 550       return result;
 551     } else {
 552       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 553         return NULL;
 554       }
 555       assert(op.result() == NULL,
 556              "the result should be NULL if the VM op did not succeed");
 557     }
 558 
 559     // Give a warning if we seem to be looping forever.
 560     if ((QueuedAllocationWarningCount > 0) &&
 561         (try_count % QueuedAllocationWarningCount == 0)) {
 562       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 563     }
 564   }
 565 
 566   ShouldNotReachHere();
 567   return NULL;
 568 }
 569 
 570 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 571                                                    AllocationContext_t context,
 572                                                    uint* gc_count_before_ret,
 573                                                    uint* gclocker_retry_count_ret) {
 574   // Make sure you read the note in attempt_allocation_humongous().
 575 
 576   assert_heap_not_locked_and_not_at_safepoint();
 577   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 578          "be called for humongous allocation requests");
 579 
 580   // We should only get here after the first-level allocation attempt
 581   // (attempt_allocation()) failed to allocate.
 582 
 583   // We will loop until a) we manage to successfully perform the
 584   // allocation or b) we successfully schedule a collection which
 585   // fails to perform the allocation. b) is the only case when we'll
 586   // return NULL.
 587   HeapWord* result = NULL;
 588   for (int try_count = 1; /* we'll return */; try_count += 1) {
 589     bool should_try_gc;
 590     uint gc_count_before;
 591 
 592     {
 593       MutexLockerEx x(Heap_lock);
 594       result = _allocator->attempt_allocation_locked(word_size, context);
 595       if (result != NULL) {
 596         return result;
 597       }
 598 
 599       if (GC_locker::is_active_and_needs_gc()) {
 600         if (g1_policy()->can_expand_young_list()) {
 601           // No need for an ergo verbose message here,
 602           // can_expand_young_list() does this when it returns true.
 603           result = _allocator->attempt_allocation_force(word_size, context);
 604           if (result != NULL) {
 605             return result;
 606           }
 607         }
 608         should_try_gc = false;
 609       } else {
 610         // The GCLocker may not be active but the GCLocker initiated
 611         // GC may not yet have been performed (GCLocker::needs_gc()
 612         // returns true). In this case we do not try this GC and
 613         // wait until the GCLocker initiated GC is performed, and
 614         // then retry the allocation.
 615         if (GC_locker::needs_gc()) {
 616           should_try_gc = false;
 617         } else {
 618           // Read the GC count while still holding the Heap_lock.
 619           gc_count_before = total_collections();
 620           should_try_gc = true;
 621         }
 622       }
 623     }
 624 
 625     if (should_try_gc) {
 626       bool succeeded;
 627       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 628                                    GCCause::_g1_inc_collection_pause);
 629       if (result != NULL) {
 630         assert(succeeded, "only way to get back a non-NULL result");
 631         return result;
 632       }
 633 
 634       if (succeeded) {
 635         // If we get here we successfully scheduled a collection which
 636         // failed to allocate. No point in trying to allocate
 637         // further. We'll just return NULL.
 638         MutexLockerEx x(Heap_lock);
 639         *gc_count_before_ret = total_collections();
 640         return NULL;
 641       }
 642     } else {
 643       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 644         MutexLockerEx x(Heap_lock);
 645         *gc_count_before_ret = total_collections();
 646         return NULL;
 647       }
 648       // The GCLocker is either active or the GCLocker initiated
 649       // GC has not yet been performed. Stall until it is and
 650       // then retry the allocation.
 651       GC_locker::stall_until_clear();
 652       (*gclocker_retry_count_ret) += 1;
 653     }
 654 
 655     // We can reach here if we were unsuccessful in scheduling a
 656     // collection (because another thread beat us to it) or if we were
 657     // stalled due to the GC locker. In either can we should retry the
 658     // allocation attempt in case another thread successfully
 659     // performed a collection and reclaimed enough space. We do the
 660     // first attempt (without holding the Heap_lock) here and the
 661     // follow-on attempt will be at the start of the next loop
 662     // iteration (after taking the Heap_lock).
 663     result = _allocator->attempt_allocation(word_size, context);
 664     if (result != NULL) {
 665       return result;
 666     }
 667 
 668     // Give a warning if we seem to be looping forever.
 669     if ((QueuedAllocationWarningCount > 0) &&
 670         (try_count % QueuedAllocationWarningCount == 0)) {
 671       warning("G1CollectedHeap::attempt_allocation_slow() "
 672               "retries %d times", try_count);
 673     }
 674   }
 675 
 676   ShouldNotReachHere();
 677   return NULL;
 678 }
 679 
 680 void G1CollectedHeap::begin_archive_alloc_range() {
 681   assert_at_safepoint(true /* should_be_vm_thread */);
 682   if (_archive_allocator == NULL) {
 683     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 684   }
 685 }
 686 
 687 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 688   // Allocations in archive regions cannot be of a size that would be considered
 689   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 690   // may be different at archive-restore time.
 691   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 692 }
 693 
 694 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 695   assert_at_safepoint(true /* should_be_vm_thread */);
 696   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 697   if (is_archive_alloc_too_large(word_size)) {
 698     return NULL;
 699   }
 700   return _archive_allocator->archive_mem_allocate(word_size);
 701 }
 702 
 703 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 704                                               size_t end_alignment_in_bytes) {
 705   assert_at_safepoint(true /* should_be_vm_thread */);
 706   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 707 
 708   // Call complete_archive to do the real work, filling in the MemRegion
 709   // array with the archive regions.
 710   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 711   delete _archive_allocator;
 712   _archive_allocator = NULL;
 713 }
 714 
 715 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 716   assert(ranges != NULL, "MemRegion array NULL");
 717   assert(count != 0, "No MemRegions provided");
 718   MemRegion reserved = _hrm.reserved();
 719   for (size_t i = 0; i < count; i++) {
 720     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 721       return false;
 722     }
 723   }
 724   return true;
 725 }
 726 
 727 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 728   assert(!is_init_completed(), "Expect to be called at JVM init time");
 729   assert(ranges != NULL, "MemRegion array NULL");
 730   assert(count != 0, "No MemRegions provided");
 731   MutexLockerEx x(Heap_lock);
 732 
 733   MemRegion reserved = _hrm.reserved();
 734   HeapWord* prev_last_addr = NULL;
 735   HeapRegion* prev_last_region = NULL;
 736 
 737   // Temporarily disable pretouching of heap pages. This interface is used
 738   // when mmap'ing archived heap data in, so pre-touching is wasted.
 739   FlagSetting fs(AlwaysPreTouch, false);
 740 
 741   // Enable archive object checking in G1MarkSweep. We have to let it know
 742   // about each archive range, so that objects in those ranges aren't marked.
 743   G1MarkSweep::enable_archive_object_check();
 744 
 745   // For each specified MemRegion range, allocate the corresponding G1
 746   // regions and mark them as archive regions. We expect the ranges in
 747   // ascending starting address order, without overlap.
 748   for (size_t i = 0; i < count; i++) {
 749     MemRegion curr_range = ranges[i];
 750     HeapWord* start_address = curr_range.start();
 751     size_t word_size = curr_range.word_size();
 752     HeapWord* last_address = curr_range.last();
 753     size_t commits = 0;
 754 
 755     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 756               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 757               p2i(start_address), p2i(last_address));
 758     guarantee(start_address > prev_last_addr,
 759               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 760               p2i(start_address), p2i(prev_last_addr));
 761     prev_last_addr = last_address;
 762 
 763     // Check for ranges that start in the same G1 region in which the previous
 764     // range ended, and adjust the start address so we don't try to allocate
 765     // the same region again. If the current range is entirely within that
 766     // region, skip it, just adjusting the recorded top.
 767     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 768     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 769       start_address = start_region->end();
 770       if (start_address > last_address) {
 771         increase_used(word_size * HeapWordSize);
 772         start_region->set_top(last_address + 1);
 773         continue;
 774       }
 775       start_region->set_top(start_address);
 776       curr_range = MemRegion(start_address, last_address + 1);
 777       start_region = _hrm.addr_to_region(start_address);
 778     }
 779 
 780     // Perform the actual region allocation, exiting if it fails.
 781     // Then note how much new space we have allocated.
 782     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
 783       return false;
 784     }
 785     increase_used(word_size * HeapWordSize);
 786     if (commits != 0) {
 787       ergo_verbose1(ErgoHeapSizing,
 788                     "attempt heap expansion",
 789                     ergo_format_reason("allocate archive regions")
 790                     ergo_format_byte("total size"),
 791                     HeapRegion::GrainWords * HeapWordSize * commits);
 792     }
 793 
 794     // Mark each G1 region touched by the range as archive, add it to the old set,
 795     // and set the allocation context and top.
 796     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 797     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 798     prev_last_region = last_region;
 799 
 800     while (curr_region != NULL) {
 801       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 802              "Region already in use (index %u)", curr_region->hrm_index());
 803       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
 804       curr_region->set_allocation_context(AllocationContext::system());
 805       curr_region->set_archive();
 806       _old_set.add(curr_region);
 807       if (curr_region != last_region) {
 808         curr_region->set_top(curr_region->end());
 809         curr_region = _hrm.next_region_in_heap(curr_region);
 810       } else {
 811         curr_region->set_top(last_address + 1);
 812         curr_region = NULL;
 813       }
 814     }
 815 
 816     // Notify mark-sweep of the archive range.
 817     G1MarkSweep::set_range_archive(curr_range, true);
 818   }
 819   return true;
 820 }
 821 
 822 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 823   assert(!is_init_completed(), "Expect to be called at JVM init time");
 824   assert(ranges != NULL, "MemRegion array NULL");
 825   assert(count != 0, "No MemRegions provided");
 826   MemRegion reserved = _hrm.reserved();
 827   HeapWord *prev_last_addr = NULL;
 828   HeapRegion* prev_last_region = NULL;
 829 
 830   // For each MemRegion, create filler objects, if needed, in the G1 regions
 831   // that contain the address range. The address range actually within the
 832   // MemRegion will not be modified. That is assumed to have been initialized
 833   // elsewhere, probably via an mmap of archived heap data.
 834   MutexLockerEx x(Heap_lock);
 835   for (size_t i = 0; i < count; i++) {
 836     HeapWord* start_address = ranges[i].start();
 837     HeapWord* last_address = ranges[i].last();
 838 
 839     assert(reserved.contains(start_address) && reserved.contains(last_address),
 840            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 841            p2i(start_address), p2i(last_address));
 842     assert(start_address > prev_last_addr,
 843            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 844            p2i(start_address), p2i(prev_last_addr));
 845 
 846     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 847     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 848     HeapWord* bottom_address = start_region->bottom();
 849 
 850     // Check for a range beginning in the same region in which the
 851     // previous one ended.
 852     if (start_region == prev_last_region) {
 853       bottom_address = prev_last_addr + 1;
 854     }
 855 
 856     // Verify that the regions were all marked as archive regions by
 857     // alloc_archive_regions.
 858     HeapRegion* curr_region = start_region;
 859     while (curr_region != NULL) {
 860       guarantee(curr_region->is_archive(),
 861                 "Expected archive region at index %u", curr_region->hrm_index());
 862       if (curr_region != last_region) {
 863         curr_region = _hrm.next_region_in_heap(curr_region);
 864       } else {
 865         curr_region = NULL;
 866       }
 867     }
 868 
 869     prev_last_addr = last_address;
 870     prev_last_region = last_region;
 871 
 872     // Fill the memory below the allocated range with dummy object(s),
 873     // if the region bottom does not match the range start, or if the previous
 874     // range ended within the same G1 region, and there is a gap.
 875     if (start_address != bottom_address) {
 876       size_t fill_size = pointer_delta(start_address, bottom_address);
 877       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 878       increase_used(fill_size * HeapWordSize);
 879     }
 880   }
 881 }
 882 
 883 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 884                                                      uint* gc_count_before_ret,
 885                                                      uint* gclocker_retry_count_ret) {
 886   assert_heap_not_locked_and_not_at_safepoint();
 887   assert(!is_humongous(word_size), "attempt_allocation() should not "
 888          "be called for humongous allocation requests");
 889 
 890   AllocationContext_t context = AllocationContext::current();
 891   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 892 
 893   if (result == NULL) {
 894     result = attempt_allocation_slow(word_size,
 895                                      context,
 896                                      gc_count_before_ret,
 897                                      gclocker_retry_count_ret);
 898   }
 899   assert_heap_not_locked();
 900   if (result != NULL) {
 901     dirty_young_block(result, word_size);
 902   }
 903   return result;
 904 }
 905 
 906 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 907   assert(!is_init_completed(), "Expect to be called at JVM init time");
 908   assert(ranges != NULL, "MemRegion array NULL");
 909   assert(count != 0, "No MemRegions provided");
 910   MemRegion reserved = _hrm.reserved();
 911   HeapWord* prev_last_addr = NULL;
 912   HeapRegion* prev_last_region = NULL;
 913   size_t size_used = 0;
 914   size_t uncommitted_regions = 0;
 915 
 916   // For each Memregion, free the G1 regions that constitute it, and
 917   // notify mark-sweep that the range is no longer to be considered 'archive.'
 918   MutexLockerEx x(Heap_lock);
 919   for (size_t i = 0; i < count; i++) {
 920     HeapWord* start_address = ranges[i].start();
 921     HeapWord* last_address = ranges[i].last();
 922 
 923     assert(reserved.contains(start_address) && reserved.contains(last_address),
 924            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 925            p2i(start_address), p2i(last_address));
 926     assert(start_address > prev_last_addr,
 927            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 928            p2i(start_address), p2i(prev_last_addr));
 929     size_used += ranges[i].byte_size();
 930     prev_last_addr = last_address;
 931 
 932     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 933     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 934 
 935     // Check for ranges that start in the same G1 region in which the previous
 936     // range ended, and adjust the start address so we don't try to free
 937     // the same region again. If the current range is entirely within that
 938     // region, skip it.
 939     if (start_region == prev_last_region) {
 940       start_address = start_region->end();
 941       if (start_address > last_address) {
 942         continue;
 943       }
 944       start_region = _hrm.addr_to_region(start_address);
 945     }
 946     prev_last_region = last_region;
 947 
 948     // After verifying that each region was marked as an archive region by
 949     // alloc_archive_regions, set it free and empty and uncommit it.
 950     HeapRegion* curr_region = start_region;
 951     while (curr_region != NULL) {
 952       guarantee(curr_region->is_archive(),
 953                 "Expected archive region at index %u", curr_region->hrm_index());
 954       uint curr_index = curr_region->hrm_index();
 955       _old_set.remove(curr_region);
 956       curr_region->set_free();
 957       curr_region->set_top(curr_region->bottom());
 958       if (curr_region != last_region) {
 959         curr_region = _hrm.next_region_in_heap(curr_region);
 960       } else {
 961         curr_region = NULL;
 962       }
 963       _hrm.shrink_at(curr_index, 1);
 964       uncommitted_regions++;
 965     }
 966 
 967     // Notify mark-sweep that this is no longer an archive range.
 968     G1MarkSweep::set_range_archive(ranges[i], false);
 969   }
 970 
 971   if (uncommitted_regions != 0) {
 972     ergo_verbose1(ErgoHeapSizing,
 973                   "attempt heap shrinking",
 974                   ergo_format_reason("uncommitted archive regions")
 975                   ergo_format_byte("total size"),
 976                   HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 977   }
 978   decrease_used(size_used);
 979 }
 980 
 981 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 982                                                         uint* gc_count_before_ret,
 983                                                         uint* gclocker_retry_count_ret) {
 984   // The structure of this method has a lot of similarities to
 985   // attempt_allocation_slow(). The reason these two were not merged
 986   // into a single one is that such a method would require several "if
 987   // allocation is not humongous do this, otherwise do that"
 988   // conditional paths which would obscure its flow. In fact, an early
 989   // version of this code did use a unified method which was harder to
 990   // follow and, as a result, it had subtle bugs that were hard to
 991   // track down. So keeping these two methods separate allows each to
 992   // be more readable. It will be good to keep these two in sync as
 993   // much as possible.
 994 
 995   assert_heap_not_locked_and_not_at_safepoint();
 996   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 997          "should only be called for humongous allocations");
 998 
 999   // Humongous objects can exhaust the heap quickly, so we should check if we
1000   // need to start a marking cycle at each humongous object allocation. We do
1001   // the check before we do the actual allocation. The reason for doing it
1002   // before the allocation is that we avoid having to keep track of the newly
1003   // allocated memory while we do a GC.
1004   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1005                                            word_size)) {
1006     collect(GCCause::_g1_humongous_allocation);
1007   }
1008 
1009   // We will loop until a) we manage to successfully perform the
1010   // allocation or b) we successfully schedule a collection which
1011   // fails to perform the allocation. b) is the only case when we'll
1012   // return NULL.
1013   HeapWord* result = NULL;
1014   for (int try_count = 1; /* we'll return */; try_count += 1) {
1015     bool should_try_gc;
1016     uint gc_count_before;
1017 
1018     {
1019       MutexLockerEx x(Heap_lock);
1020 
1021       // Given that humongous objects are not allocated in young
1022       // regions, we'll first try to do the allocation without doing a
1023       // collection hoping that there's enough space in the heap.
1024       result = humongous_obj_allocate(word_size, AllocationContext::current());
1025       if (result != NULL) {
1026         return result;
1027       }
1028 
1029       if (GC_locker::is_active_and_needs_gc()) {
1030         should_try_gc = false;
1031       } else {
1032          // The GCLocker may not be active but the GCLocker initiated
1033         // GC may not yet have been performed (GCLocker::needs_gc()
1034         // returns true). In this case we do not try this GC and
1035         // wait until the GCLocker initiated GC is performed, and
1036         // then retry the allocation.
1037         if (GC_locker::needs_gc()) {
1038           should_try_gc = false;
1039         } else {
1040           // Read the GC count while still holding the Heap_lock.
1041           gc_count_before = total_collections();
1042           should_try_gc = true;
1043         }
1044       }
1045     }
1046 
1047     if (should_try_gc) {
1048       // If we failed to allocate the humongous object, we should try to
1049       // do a collection pause (if we're allowed) in case it reclaims
1050       // enough space for the allocation to succeed after the pause.
1051 
1052       bool succeeded;
1053       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1054                                    GCCause::_g1_humongous_allocation);
1055       if (result != NULL) {
1056         assert(succeeded, "only way to get back a non-NULL result");
1057         return result;
1058       }
1059 
1060       if (succeeded) {
1061         // If we get here we successfully scheduled a collection which
1062         // failed to allocate. No point in trying to allocate
1063         // further. We'll just return NULL.
1064         MutexLockerEx x(Heap_lock);
1065         *gc_count_before_ret = total_collections();
1066         return NULL;
1067       }
1068     } else {
1069       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1070         MutexLockerEx x(Heap_lock);
1071         *gc_count_before_ret = total_collections();
1072         return NULL;
1073       }
1074       // The GCLocker is either active or the GCLocker initiated
1075       // GC has not yet been performed. Stall until it is and
1076       // then retry the allocation.
1077       GC_locker::stall_until_clear();
1078       (*gclocker_retry_count_ret) += 1;
1079     }
1080 
1081     // We can reach here if we were unsuccessful in scheduling a
1082     // collection (because another thread beat us to it) or if we were
1083     // stalled due to the GC locker. In either can we should retry the
1084     // allocation attempt in case another thread successfully
1085     // performed a collection and reclaimed enough space.  Give a
1086     // warning if we seem to be looping forever.
1087 
1088     if ((QueuedAllocationWarningCount > 0) &&
1089         (try_count % QueuedAllocationWarningCount == 0)) {
1090       warning("G1CollectedHeap::attempt_allocation_humongous() "
1091               "retries %d times", try_count);
1092     }
1093   }
1094 
1095   ShouldNotReachHere();
1096   return NULL;
1097 }
1098 
1099 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1100                                                            AllocationContext_t context,
1101                                                            bool expect_null_mutator_alloc_region) {
1102   assert_at_safepoint(true /* should_be_vm_thread */);
1103   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1104          "the current alloc region was unexpectedly found to be non-NULL");
1105 
1106   if (!is_humongous(word_size)) {
1107     return _allocator->attempt_allocation_locked(word_size, context);
1108   } else {
1109     HeapWord* result = humongous_obj_allocate(word_size, context);
1110     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1111       collector_state()->set_initiate_conc_mark_if_possible(true);
1112     }
1113     return result;
1114   }
1115 
1116   ShouldNotReachHere();
1117 }
1118 
1119 class PostMCRemSetClearClosure: public HeapRegionClosure {
1120   G1CollectedHeap* _g1h;
1121   ModRefBarrierSet* _mr_bs;
1122 public:
1123   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1124     _g1h(g1h), _mr_bs(mr_bs) {}
1125 
1126   bool doHeapRegion(HeapRegion* r) {
1127     HeapRegionRemSet* hrrs = r->rem_set();
1128 
1129     _g1h->reset_gc_time_stamps(r);
1130 
1131     if (r->is_continues_humongous()) {
1132       // We'll assert that the strong code root list and RSet is empty
1133       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1134       assert(hrrs->occupied() == 0, "RSet should be empty");
1135     } else {
1136       hrrs->clear();
1137     }
1138     // You might think here that we could clear just the cards
1139     // corresponding to the used region.  But no: if we leave a dirty card
1140     // in a region we might allocate into, then it would prevent that card
1141     // from being enqueued, and cause it to be missed.
1142     // Re: the performance cost: we shouldn't be doing full GC anyway!
1143     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1144 
1145     return false;
1146   }
1147 };
1148 
1149 void G1CollectedHeap::clear_rsets_post_compaction() {
1150   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1151   heap_region_iterate(&rs_clear);
1152 }
1153 
1154 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1155   G1CollectedHeap*   _g1h;
1156   UpdateRSOopClosure _cl;
1157 public:
1158   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1159     _cl(g1->g1_rem_set(), worker_i),
1160     _g1h(g1)
1161   { }
1162 
1163   bool doHeapRegion(HeapRegion* r) {
1164     if (!r->is_continues_humongous()) {
1165       _cl.set_from(r);
1166       r->oop_iterate(&_cl);
1167     }
1168     return false;
1169   }
1170 };
1171 
1172 class ParRebuildRSTask: public AbstractGangTask {
1173   G1CollectedHeap* _g1;
1174   HeapRegionClaimer _hrclaimer;
1175 
1176 public:
1177   ParRebuildRSTask(G1CollectedHeap* g1) :
1178       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1179 
1180   void work(uint worker_id) {
1181     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1182     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1183   }
1184 };
1185 
1186 class PostCompactionPrinterClosure: public HeapRegionClosure {
1187 private:
1188   G1HRPrinter* _hr_printer;
1189 public:
1190   bool doHeapRegion(HeapRegion* hr) {
1191     assert(!hr->is_young(), "not expecting to find young regions");
1192     if (hr->is_free()) {
1193       // We only generate output for non-empty regions.
1194     } else if (hr->is_starts_humongous()) {
1195       _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1196     } else if (hr->is_continues_humongous()) {
1197       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1198     } else if (hr->is_archive()) {
1199       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1200     } else if (hr->is_old()) {
1201       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1202     } else {
1203       ShouldNotReachHere();
1204     }
1205     return false;
1206   }
1207 
1208   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1209     : _hr_printer(hr_printer) { }
1210 };
1211 
1212 void G1CollectedHeap::print_hrm_post_compaction() {
1213   PostCompactionPrinterClosure cl(hr_printer());
1214   heap_region_iterate(&cl);
1215 }
1216 
1217 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1218                                          bool clear_all_soft_refs) {
1219   assert_at_safepoint(true /* should_be_vm_thread */);
1220 
1221   if (GC_locker::check_active_before_gc()) {
1222     return false;
1223   }
1224 
1225   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1226   gc_timer->register_gc_start();
1227 
1228   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1229   GCIdMark gc_id_mark;
1230   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1231 
1232   SvcGCMarker sgcm(SvcGCMarker::FULL);
1233   ResourceMark rm;
1234 
1235   G1Log::update_level();
1236   print_heap_before_gc();
1237   trace_heap_before_gc(gc_tracer);
1238 
1239   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1240 
1241   verify_region_sets_optional();
1242 
1243   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1244                            collector_policy()->should_clear_all_soft_refs();
1245 
1246   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1247 
1248   {
1249     IsGCActiveMark x;
1250 
1251     // Timing
1252     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1253     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1254 
1255     {
1256       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1257       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1258       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1259 
1260       g1_policy()->record_full_collection_start();
1261 
1262       // Note: When we have a more flexible GC logging framework that
1263       // allows us to add optional attributes to a GC log record we
1264       // could consider timing and reporting how long we wait in the
1265       // following two methods.
1266       wait_while_free_regions_coming();
1267       // If we start the compaction before the CM threads finish
1268       // scanning the root regions we might trip them over as we'll
1269       // be moving objects / updating references. So let's wait until
1270       // they are done. By telling them to abort, they should complete
1271       // early.
1272       _cm->root_regions()->abort();
1273       _cm->root_regions()->wait_until_scan_finished();
1274       append_secondary_free_list_if_not_empty_with_lock();
1275 
1276       gc_prologue(true);
1277       increment_total_collections(true /* full gc */);
1278       increment_old_marking_cycles_started();
1279 
1280       assert(used() == recalculate_used(), "Should be equal");
1281 
1282       verify_before_gc();
1283 
1284       check_bitmaps("Full GC Start");
1285       pre_full_gc_dump(gc_timer);
1286 
1287 #if defined(COMPILER2) || INCLUDE_JVMCI
1288       DerivedPointerTable::clear();
1289 #endif
1290 
1291       // Disable discovery and empty the discovered lists
1292       // for the CM ref processor.
1293       ref_processor_cm()->disable_discovery();
1294       ref_processor_cm()->abandon_partial_discovery();
1295       ref_processor_cm()->verify_no_references_recorded();
1296 
1297       // Abandon current iterations of concurrent marking and concurrent
1298       // refinement, if any are in progress. We have to do this before
1299       // wait_until_scan_finished() below.
1300       concurrent_mark()->abort();
1301 
1302       // Make sure we'll choose a new allocation region afterwards.
1303       _allocator->release_mutator_alloc_region();
1304       _allocator->abandon_gc_alloc_regions();
1305       g1_rem_set()->cleanupHRRS();
1306 
1307       // We should call this after we retire any currently active alloc
1308       // regions so that all the ALLOC / RETIRE events are generated
1309       // before the start GC event.
1310       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1311 
1312       // We may have added regions to the current incremental collection
1313       // set between the last GC or pause and now. We need to clear the
1314       // incremental collection set and then start rebuilding it afresh
1315       // after this full GC.
1316       abandon_collection_set(g1_policy()->inc_cset_head());
1317       g1_policy()->clear_incremental_cset();
1318       g1_policy()->stop_incremental_cset_building();
1319 
1320       tear_down_region_sets(false /* free_list_only */);
1321       collector_state()->set_gcs_are_young(true);
1322 
1323       // See the comments in g1CollectedHeap.hpp and
1324       // G1CollectedHeap::ref_processing_init() about
1325       // how reference processing currently works in G1.
1326 
1327       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1328       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1329 
1330       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1331       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1332 
1333       ref_processor_stw()->enable_discovery();
1334       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1335 
1336       // Do collection work
1337       {
1338         HandleMark hm;  // Discard invalid handles created during gc
1339         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1340       }
1341 
1342       assert(num_free_regions() == 0, "we should not have added any free regions");
1343       rebuild_region_sets(false /* free_list_only */);
1344 
1345       // Enqueue any discovered reference objects that have
1346       // not been removed from the discovered lists.
1347       ref_processor_stw()->enqueue_discovered_references();
1348 
1349 #if defined(COMPILER2) || INCLUDE_JVMCI
1350       DerivedPointerTable::update_pointers();
1351 #endif
1352 
1353       MemoryService::track_memory_usage();
1354 
1355       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1356       ref_processor_stw()->verify_no_references_recorded();
1357 
1358       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1359       ClassLoaderDataGraph::purge();
1360       MetaspaceAux::verify_metrics();
1361 
1362       // Note: since we've just done a full GC, concurrent
1363       // marking is no longer active. Therefore we need not
1364       // re-enable reference discovery for the CM ref processor.
1365       // That will be done at the start of the next marking cycle.
1366       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1367       ref_processor_cm()->verify_no_references_recorded();
1368 
1369       reset_gc_time_stamp();
1370       // Since everything potentially moved, we will clear all remembered
1371       // sets, and clear all cards.  Later we will rebuild remembered
1372       // sets. We will also reset the GC time stamps of the regions.
1373       clear_rsets_post_compaction();
1374       check_gc_time_stamps();
1375 
1376       resize_if_necessary_after_full_collection();
1377 
1378       if (_hr_printer.is_active()) {
1379         // We should do this after we potentially resize the heap so
1380         // that all the COMMIT / UNCOMMIT events are generated before
1381         // the end GC event.
1382 
1383         print_hrm_post_compaction();
1384         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1385       }
1386 
1387       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1388       if (hot_card_cache->use_cache()) {
1389         hot_card_cache->reset_card_counts();
1390         hot_card_cache->reset_hot_cache();
1391       }
1392 
1393       // Rebuild remembered sets of all regions.
1394       uint n_workers =
1395         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1396                                                 workers()->active_workers(),
1397                                                 Threads::number_of_non_daemon_threads());
1398       workers()->set_active_workers(n_workers);
1399 
1400       ParRebuildRSTask rebuild_rs_task(this);
1401       workers()->run_task(&rebuild_rs_task);
1402 
1403       // Rebuild the strong code root lists for each region
1404       rebuild_strong_code_roots();
1405 
1406       if (true) { // FIXME
1407         MetaspaceGC::compute_new_size();
1408       }
1409 
1410 #ifdef TRACESPINNING
1411       ParallelTaskTerminator::print_termination_counts();
1412 #endif
1413 
1414       // Discard all rset updates
1415       JavaThread::dirty_card_queue_set().abandon_logs();
1416       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1417 
1418       _young_list->reset_sampled_info();
1419       // At this point there should be no regions in the
1420       // entire heap tagged as young.
1421       assert(check_young_list_empty(true /* check_heap */),
1422              "young list should be empty at this point");
1423 
1424       // Update the number of full collections that have been completed.
1425       increment_old_marking_cycles_completed(false /* concurrent */);
1426 
1427       _hrm.verify_optional();
1428       verify_region_sets_optional();
1429 
1430       verify_after_gc();
1431 
1432       // Clear the previous marking bitmap, if needed for bitmap verification.
1433       // Note we cannot do this when we clear the next marking bitmap in
1434       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1435       // objects marked during a full GC against the previous bitmap.
1436       // But we need to clear it before calling check_bitmaps below since
1437       // the full GC has compacted objects and updated TAMS but not updated
1438       // the prev bitmap.
1439       if (G1VerifyBitmaps) {
1440         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1441       }
1442       check_bitmaps("Full GC End");
1443 
1444       // Start a new incremental collection set for the next pause
1445       assert(g1_policy()->collection_set() == NULL, "must be");
1446       g1_policy()->start_incremental_cset_building();
1447 
1448       clear_cset_fast_test();
1449 
1450       _allocator->init_mutator_alloc_region();
1451 
1452       g1_policy()->record_full_collection_end();
1453 
1454       if (G1Log::fine()) {
1455         g1_policy()->print_heap_transition();
1456       }
1457 
1458       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1459       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1460       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1461       // before any GC notifications are raised.
1462       g1mm()->update_sizes();
1463 
1464       gc_epilogue(true);
1465     }
1466 
1467     if (G1Log::finer()) {
1468       g1_policy()->print_detailed_heap_transition(true /* full */);
1469     }
1470 
1471     print_heap_after_gc();
1472     trace_heap_after_gc(gc_tracer);
1473 
1474     post_full_gc_dump(gc_timer);
1475 
1476     gc_timer->register_gc_end();
1477     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1478   }
1479 
1480   return true;
1481 }
1482 
1483 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1484   // Currently, there is no facility in the do_full_collection(bool) API to notify
1485   // the caller that the collection did not succeed (e.g., because it was locked
1486   // out by the GC locker). So, right now, we'll ignore the return value.
1487   bool dummy = do_full_collection(true,                /* explicit_gc */
1488                                   clear_all_soft_refs);
1489 }
1490 
1491 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1492   // Include bytes that will be pre-allocated to support collections, as "used".
1493   const size_t used_after_gc = used();
1494   const size_t capacity_after_gc = capacity();
1495   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1496 
1497   // This is enforced in arguments.cpp.
1498   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1499          "otherwise the code below doesn't make sense");
1500 
1501   // We don't have floating point command-line arguments
1502   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1503   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1504   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1505   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1506 
1507   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1508   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1509 
1510   // We have to be careful here as these two calculations can overflow
1511   // 32-bit size_t's.
1512   double used_after_gc_d = (double) used_after_gc;
1513   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1514   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1515 
1516   // Let's make sure that they are both under the max heap size, which
1517   // by default will make them fit into a size_t.
1518   double desired_capacity_upper_bound = (double) max_heap_size;
1519   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1520                                     desired_capacity_upper_bound);
1521   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1522                                     desired_capacity_upper_bound);
1523 
1524   // We can now safely turn them into size_t's.
1525   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1526   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1527 
1528   // This assert only makes sense here, before we adjust them
1529   // with respect to the min and max heap size.
1530   assert(minimum_desired_capacity <= maximum_desired_capacity,
1531          "minimum_desired_capacity = " SIZE_FORMAT ", "
1532          "maximum_desired_capacity = " SIZE_FORMAT,
1533          minimum_desired_capacity, maximum_desired_capacity);
1534 
1535   // Should not be greater than the heap max size. No need to adjust
1536   // it with respect to the heap min size as it's a lower bound (i.e.,
1537   // we'll try to make the capacity larger than it, not smaller).
1538   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1539   // Should not be less than the heap min size. No need to adjust it
1540   // with respect to the heap max size as it's an upper bound (i.e.,
1541   // we'll try to make the capacity smaller than it, not greater).
1542   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1543 
1544   if (capacity_after_gc < minimum_desired_capacity) {
1545     // Don't expand unless it's significant
1546     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1547     ergo_verbose4(ErgoHeapSizing,
1548                   "attempt heap expansion",
1549                   ergo_format_reason("capacity lower than "
1550                                      "min desired capacity after Full GC")
1551                   ergo_format_byte("capacity")
1552                   ergo_format_byte("occupancy")
1553                   ergo_format_byte_perc("min desired capacity"),
1554                   capacity_after_gc, used_after_gc,
1555                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1556     expand(expand_bytes);
1557 
1558     // No expansion, now see if we want to shrink
1559   } else if (capacity_after_gc > maximum_desired_capacity) {
1560     // Capacity too large, compute shrinking size
1561     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1562     ergo_verbose4(ErgoHeapSizing,
1563                   "attempt heap shrinking",
1564                   ergo_format_reason("capacity higher than "
1565                                      "max desired capacity after Full GC")
1566                   ergo_format_byte("capacity")
1567                   ergo_format_byte("occupancy")
1568                   ergo_format_byte_perc("max desired capacity"),
1569                   capacity_after_gc, used_after_gc,
1570                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1571     shrink(shrink_bytes);
1572   }
1573 }
1574 
1575 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1576                                                             AllocationContext_t context,
1577                                                             bool do_gc,
1578                                                             bool clear_all_soft_refs,
1579                                                             bool expect_null_mutator_alloc_region,
1580                                                             bool* gc_succeeded) {
1581   *gc_succeeded = true;
1582   // Let's attempt the allocation first.
1583   HeapWord* result =
1584     attempt_allocation_at_safepoint(word_size,
1585                                     context,
1586                                     expect_null_mutator_alloc_region);
1587   if (result != NULL) {
1588     assert(*gc_succeeded, "sanity");
1589     return result;
1590   }
1591 
1592   // In a G1 heap, we're supposed to keep allocation from failing by
1593   // incremental pauses.  Therefore, at least for now, we'll favor
1594   // expansion over collection.  (This might change in the future if we can
1595   // do something smarter than full collection to satisfy a failed alloc.)
1596   result = expand_and_allocate(word_size, context);
1597   if (result != NULL) {
1598     assert(*gc_succeeded, "sanity");
1599     return result;
1600   }
1601 
1602   if (do_gc) {
1603     // Expansion didn't work, we'll try to do a Full GC.
1604     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1605                                        clear_all_soft_refs);
1606   }
1607 
1608   return NULL;
1609 }
1610 
1611 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1612                                                      AllocationContext_t context,
1613                                                      bool* succeeded) {
1614   assert_at_safepoint(true /* should_be_vm_thread */);
1615 
1616   // Attempts to allocate followed by Full GC.
1617   HeapWord* result =
1618     satisfy_failed_allocation_helper(word_size,
1619                                      context,
1620                                      true,  /* do_gc */
1621                                      false, /* clear_all_soft_refs */
1622                                      false, /* expect_null_mutator_alloc_region */
1623                                      succeeded);
1624 
1625   if (result != NULL || !*succeeded) {
1626     return result;
1627   }
1628 
1629   // Attempts to allocate followed by Full GC that will collect all soft references.
1630   result = satisfy_failed_allocation_helper(word_size,
1631                                             context,
1632                                             true, /* do_gc */
1633                                             true, /* clear_all_soft_refs */
1634                                             true, /* expect_null_mutator_alloc_region */
1635                                             succeeded);
1636 
1637   if (result != NULL || !*succeeded) {
1638     return result;
1639   }
1640 
1641   // Attempts to allocate, no GC
1642   result = satisfy_failed_allocation_helper(word_size,
1643                                             context,
1644                                             false, /* do_gc */
1645                                             false, /* clear_all_soft_refs */
1646                                             true,  /* expect_null_mutator_alloc_region */
1647                                             succeeded);
1648 
1649   if (result != NULL) {
1650     assert(*succeeded, "sanity");
1651     return result;
1652   }
1653 
1654   assert(!collector_policy()->should_clear_all_soft_refs(),
1655          "Flag should have been handled and cleared prior to this point");
1656 
1657   // What else?  We might try synchronous finalization later.  If the total
1658   // space available is large enough for the allocation, then a more
1659   // complete compaction phase than we've tried so far might be
1660   // appropriate.
1661   assert(*succeeded, "sanity");
1662   return NULL;
1663 }
1664 
1665 // Attempting to expand the heap sufficiently
1666 // to support an allocation of the given "word_size".  If
1667 // successful, perform the allocation and return the address of the
1668 // allocated block, or else "NULL".
1669 
1670 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1671   assert_at_safepoint(true /* should_be_vm_thread */);
1672 
1673   verify_region_sets_optional();
1674 
1675   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1676   ergo_verbose1(ErgoHeapSizing,
1677                 "attempt heap expansion",
1678                 ergo_format_reason("allocation request failed")
1679                 ergo_format_byte("allocation request"),
1680                 word_size * HeapWordSize);
1681   if (expand(expand_bytes)) {
1682     _hrm.verify_optional();
1683     verify_region_sets_optional();
1684     return attempt_allocation_at_safepoint(word_size,
1685                                            context,
1686                                            false /* expect_null_mutator_alloc_region */);
1687   }
1688   return NULL;
1689 }
1690 
1691 bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) {
1692   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1693   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1694                                        HeapRegion::GrainBytes);
1695   ergo_verbose2(ErgoHeapSizing,
1696                 "expand the heap",
1697                 ergo_format_byte("requested expansion amount")
1698                 ergo_format_byte("attempted expansion amount"),
1699                 expand_bytes, aligned_expand_bytes);
1700 
1701   if (is_maximal_no_gc()) {
1702     ergo_verbose0(ErgoHeapSizing,
1703                       "did not expand the heap",
1704                       ergo_format_reason("heap already fully expanded"));
1705     return false;
1706   }
1707 
1708   double expand_heap_start_time_sec = os::elapsedTime();
1709   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1710   assert(regions_to_expand > 0, "Must expand by at least one region");
1711 
1712   uint expanded_by = _hrm.expand_by(regions_to_expand);
1713   if (expand_time_ms != NULL) {
1714     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1715   }
1716 
1717   if (expanded_by > 0) {
1718     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1719     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1720     g1_policy()->record_new_heap_size(num_regions());
1721   } else {
1722     ergo_verbose0(ErgoHeapSizing,
1723                   "did not expand the heap",
1724                   ergo_format_reason("heap expansion operation failed"));
1725     // The expansion of the virtual storage space was unsuccessful.
1726     // Let's see if it was because we ran out of swap.
1727     if (G1ExitOnExpansionFailure &&
1728         _hrm.available() >= regions_to_expand) {
1729       // We had head room...
1730       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1731     }
1732   }
1733   return regions_to_expand > 0;
1734 }
1735 
1736 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1737   size_t aligned_shrink_bytes =
1738     ReservedSpace::page_align_size_down(shrink_bytes);
1739   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1740                                          HeapRegion::GrainBytes);
1741   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1742 
1743   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1744   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1745 
1746   ergo_verbose3(ErgoHeapSizing,
1747                 "shrink the heap",
1748                 ergo_format_byte("requested shrinking amount")
1749                 ergo_format_byte("aligned shrinking amount")
1750                 ergo_format_byte("attempted shrinking amount"),
1751                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1752   if (num_regions_removed > 0) {
1753     g1_policy()->record_new_heap_size(num_regions());
1754   } else {
1755     ergo_verbose0(ErgoHeapSizing,
1756                   "did not shrink the heap",
1757                   ergo_format_reason("heap shrinking operation failed"));
1758   }
1759 }
1760 
1761 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1762   verify_region_sets_optional();
1763 
1764   // We should only reach here at the end of a Full GC which means we
1765   // should not not be holding to any GC alloc regions. The method
1766   // below will make sure of that and do any remaining clean up.
1767   _allocator->abandon_gc_alloc_regions();
1768 
1769   // Instead of tearing down / rebuilding the free lists here, we
1770   // could instead use the remove_all_pending() method on free_list to
1771   // remove only the ones that we need to remove.
1772   tear_down_region_sets(true /* free_list_only */);
1773   shrink_helper(shrink_bytes);
1774   rebuild_region_sets(true /* free_list_only */);
1775 
1776   _hrm.verify_optional();
1777   verify_region_sets_optional();
1778 }
1779 
1780 // Public methods.
1781 
1782 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1783   CollectedHeap(),
1784   _g1_policy(policy_),
1785   _dirty_card_queue_set(false),
1786   _is_alive_closure_cm(this),
1787   _is_alive_closure_stw(this),
1788   _ref_processor_cm(NULL),
1789   _ref_processor_stw(NULL),
1790   _bot_shared(NULL),
1791   _cg1r(NULL),
1792   _g1mm(NULL),
1793   _refine_cte_cl(NULL),
1794   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1795   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1796   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1797   _humongous_reclaim_candidates(),
1798   _has_humongous_reclaim_candidates(false),
1799   _archive_allocator(NULL),
1800   _free_regions_coming(false),
1801   _young_list(new YoungList(this)),
1802   _gc_time_stamp(0),
1803   _summary_bytes_used(0),
1804   _survivor_evac_stats(YoungPLABSize, PLABWeight),
1805   _old_evac_stats(OldPLABSize, PLABWeight),
1806   _expand_heap_after_alloc_failure(true),
1807   _old_marking_cycles_started(0),
1808   _old_marking_cycles_completed(0),
1809   _heap_summary_sent(false),
1810   _in_cset_fast_test(),
1811   _dirty_cards_region_list(NULL),
1812   _worker_cset_start_region(NULL),
1813   _worker_cset_start_region_time_stamp(NULL),
1814   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1815   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1816   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1817   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1818 
1819   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1820                           /* are_GC_task_threads */true,
1821                           /* are_ConcurrentGC_threads */false);
1822   _workers->initialize_workers();
1823 
1824   _allocator = G1Allocator::create_allocator(this);
1825   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1826 
1827   // Override the default _filler_array_max_size so that no humongous filler
1828   // objects are created.
1829   _filler_array_max_size = _humongous_object_threshold_in_words;
1830 
1831   uint n_queues = ParallelGCThreads;
1832   _task_queues = new RefToScanQueueSet(n_queues);
1833 
1834   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1835   assert(n_rem_sets > 0, "Invariant.");
1836 
1837   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1838   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1839   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1840 
1841   for (uint i = 0; i < n_queues; i++) {
1842     RefToScanQueue* q = new RefToScanQueue();
1843     q->initialize();
1844     _task_queues->register_queue(i, q);
1845     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1846   }
1847   clear_cset_start_regions();
1848 
1849   // Initialize the G1EvacuationFailureALot counters and flags.
1850   NOT_PRODUCT(reset_evacuation_should_fail();)
1851 
1852   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1853 }
1854 
1855 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1856                                                                  size_t size,
1857                                                                  size_t translation_factor) {
1858   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1859   // Allocate a new reserved space, preferring to use large pages.
1860   ReservedSpace rs(size, preferred_page_size);
1861   G1RegionToSpaceMapper* result  =
1862     G1RegionToSpaceMapper::create_mapper(rs,
1863                                          size,
1864                                          rs.alignment(),
1865                                          HeapRegion::GrainBytes,
1866                                          translation_factor,
1867                                          mtGC);
1868   if (TracePageSizes) {
1869     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1870                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1871   }
1872   return result;
1873 }
1874 
1875 jint G1CollectedHeap::initialize() {
1876   CollectedHeap::pre_initialize();
1877   os::enable_vtime();
1878 
1879   G1Log::init();
1880 
1881   // Necessary to satisfy locking discipline assertions.
1882 
1883   MutexLocker x(Heap_lock);
1884 
1885   // We have to initialize the printer before committing the heap, as
1886   // it will be used then.
1887   _hr_printer.set_active(G1PrintHeapRegions);
1888 
1889   // While there are no constraints in the GC code that HeapWordSize
1890   // be any particular value, there are multiple other areas in the
1891   // system which believe this to be true (e.g. oop->object_size in some
1892   // cases incorrectly returns the size in wordSize units rather than
1893   // HeapWordSize).
1894   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1895 
1896   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1897   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1898   size_t heap_alignment = collector_policy()->heap_alignment();
1899 
1900   // Ensure that the sizes are properly aligned.
1901   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1902   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1903   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1904 
1905   _refine_cte_cl = new RefineCardTableEntryClosure();
1906 
1907   jint ecode = JNI_OK;
1908   _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);
1909   if (_cg1r == NULL) {
1910     return ecode;
1911   }
1912 
1913   // Reserve the maximum.
1914 
1915   // When compressed oops are enabled, the preferred heap base
1916   // is calculated by subtracting the requested size from the
1917   // 32Gb boundary and using the result as the base address for
1918   // heap reservation. If the requested size is not aligned to
1919   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1920   // into the ReservedHeapSpace constructor) then the actual
1921   // base of the reserved heap may end up differing from the
1922   // address that was requested (i.e. the preferred heap base).
1923   // If this happens then we could end up using a non-optimal
1924   // compressed oops mode.
1925 
1926   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1927                                                  heap_alignment);
1928 
1929   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1930 
1931   // Create the barrier set for the entire reserved region.
1932   G1SATBCardTableLoggingModRefBS* bs
1933     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1934   bs->initialize();
1935   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1936   set_barrier_set(bs);
1937 
1938   // Also create a G1 rem set.
1939   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1940 
1941   // Carve out the G1 part of the heap.
1942 
1943   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1944   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1945   G1RegionToSpaceMapper* heap_storage =
1946     G1RegionToSpaceMapper::create_mapper(g1_rs,
1947                                          g1_rs.size(),
1948                                          page_size,
1949                                          HeapRegion::GrainBytes,
1950                                          1,
1951                                          mtJavaHeap);
1952   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
1953                        max_byte_size, page_size,
1954                        heap_rs.base(),
1955                        heap_rs.size());
1956   heap_storage->set_mapping_changed_listener(&_listener);
1957 
1958   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1959   G1RegionToSpaceMapper* bot_storage =
1960     create_aux_memory_mapper("Block offset table",
1961                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1962                              G1BlockOffsetSharedArray::heap_map_factor());
1963 
1964   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1965   G1RegionToSpaceMapper* cardtable_storage =
1966     create_aux_memory_mapper("Card table",
1967                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1968                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1969 
1970   G1RegionToSpaceMapper* card_counts_storage =
1971     create_aux_memory_mapper("Card counts table",
1972                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1973                              G1CardCounts::heap_map_factor());
1974 
1975   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1976   G1RegionToSpaceMapper* prev_bitmap_storage =
1977     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1978   G1RegionToSpaceMapper* next_bitmap_storage =
1979     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1980 
1981   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1982   g1_barrier_set()->initialize(cardtable_storage);
1983    // Do later initialization work for concurrent refinement.
1984   _cg1r->init(card_counts_storage);
1985 
1986   // 6843694 - ensure that the maximum region index can fit
1987   // in the remembered set structures.
1988   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1989   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1990 
1991   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1992   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1993   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1994             "too many cards per region");
1995 
1996   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1997 
1998   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
1999 
2000   {
2001     HeapWord* start = _hrm.reserved().start();
2002     HeapWord* end = _hrm.reserved().end();
2003     size_t granularity = HeapRegion::GrainBytes;
2004 
2005     _in_cset_fast_test.initialize(start, end, granularity);
2006     _humongous_reclaim_candidates.initialize(start, end, granularity);
2007   }
2008 
2009   // Create the ConcurrentMark data structure and thread.
2010   // (Must do this late, so that "max_regions" is defined.)
2011   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2012   if (_cm == NULL || !_cm->completed_initialization()) {
2013     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2014     return JNI_ENOMEM;
2015   }
2016   _cmThread = _cm->cmThread();
2017 
2018   // Initialize the from_card cache structure of HeapRegionRemSet.
2019   HeapRegionRemSet::init_heap(max_regions());
2020 
2021   // Now expand into the initial heap size.
2022   if (!expand(init_byte_size)) {
2023     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2024     return JNI_ENOMEM;
2025   }
2026 
2027   // Perform any initialization actions delegated to the policy.
2028   g1_policy()->init();
2029 
2030   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2031                                                SATB_Q_FL_lock,
2032                                                G1SATBProcessCompletedThreshold,
2033                                                Shared_SATB_Q_lock);
2034 
2035   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2036                                                 DirtyCardQ_CBL_mon,
2037                                                 DirtyCardQ_FL_lock,
2038                                                 concurrent_g1_refine()->yellow_zone(),
2039                                                 concurrent_g1_refine()->red_zone(),
2040                                                 Shared_DirtyCardQ_lock);
2041 
2042   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2043                                     DirtyCardQ_CBL_mon,
2044                                     DirtyCardQ_FL_lock,
2045                                     -1, // never trigger processing
2046                                     -1, // no limit on length
2047                                     Shared_DirtyCardQ_lock,
2048                                     &JavaThread::dirty_card_queue_set());
2049 
2050   // Here we allocate the dummy HeapRegion that is required by the
2051   // G1AllocRegion class.
2052   HeapRegion* dummy_region = _hrm.get_dummy_region();
2053 
2054   // We'll re-use the same region whether the alloc region will
2055   // require BOT updates or not and, if it doesn't, then a non-young
2056   // region will complain that it cannot support allocations without
2057   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2058   dummy_region->set_eden();
2059   // Make sure it's full.
2060   dummy_region->set_top(dummy_region->end());
2061   G1AllocRegion::setup(this, dummy_region);
2062 
2063   _allocator->init_mutator_alloc_region();
2064 
2065   // Do create of the monitoring and management support so that
2066   // values in the heap have been properly initialized.
2067   _g1mm = new G1MonitoringSupport(this);
2068 
2069   G1StringDedup::initialize();
2070 
2071   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2072   for (uint i = 0; i < ParallelGCThreads; i++) {
2073     new (&_preserved_objs[i]) OopAndMarkOopStack();
2074   }
2075 
2076   return JNI_OK;
2077 }
2078 
2079 void G1CollectedHeap::stop() {
2080   // Stop all concurrent threads. We do this to make sure these threads
2081   // do not continue to execute and access resources (e.g. gclog_or_tty)
2082   // that are destroyed during shutdown.
2083   _cg1r->stop();
2084   _cmThread->stop();
2085   if (G1StringDedup::is_enabled()) {
2086     G1StringDedup::stop();
2087   }
2088 }
2089 
2090 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2091   return HeapRegion::max_region_size();
2092 }
2093 
2094 void G1CollectedHeap::post_initialize() {
2095   CollectedHeap::post_initialize();
2096   ref_processing_init();
2097 }
2098 
2099 void G1CollectedHeap::ref_processing_init() {
2100   // Reference processing in G1 currently works as follows:
2101   //
2102   // * There are two reference processor instances. One is
2103   //   used to record and process discovered references
2104   //   during concurrent marking; the other is used to
2105   //   record and process references during STW pauses
2106   //   (both full and incremental).
2107   // * Both ref processors need to 'span' the entire heap as
2108   //   the regions in the collection set may be dotted around.
2109   //
2110   // * For the concurrent marking ref processor:
2111   //   * Reference discovery is enabled at initial marking.
2112   //   * Reference discovery is disabled and the discovered
2113   //     references processed etc during remarking.
2114   //   * Reference discovery is MT (see below).
2115   //   * Reference discovery requires a barrier (see below).
2116   //   * Reference processing may or may not be MT
2117   //     (depending on the value of ParallelRefProcEnabled
2118   //     and ParallelGCThreads).
2119   //   * A full GC disables reference discovery by the CM
2120   //     ref processor and abandons any entries on it's
2121   //     discovered lists.
2122   //
2123   // * For the STW processor:
2124   //   * Non MT discovery is enabled at the start of a full GC.
2125   //   * Processing and enqueueing during a full GC is non-MT.
2126   //   * During a full GC, references are processed after marking.
2127   //
2128   //   * Discovery (may or may not be MT) is enabled at the start
2129   //     of an incremental evacuation pause.
2130   //   * References are processed near the end of a STW evacuation pause.
2131   //   * For both types of GC:
2132   //     * Discovery is atomic - i.e. not concurrent.
2133   //     * Reference discovery will not need a barrier.
2134 
2135   MemRegion mr = reserved_region();
2136 
2137   // Concurrent Mark ref processor
2138   _ref_processor_cm =
2139     new ReferenceProcessor(mr,    // span
2140                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2141                                 // mt processing
2142                            ParallelGCThreads,
2143                                 // degree of mt processing
2144                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2145                                 // mt discovery
2146                            MAX2(ParallelGCThreads, ConcGCThreads),
2147                                 // degree of mt discovery
2148                            false,
2149                                 // Reference discovery is not atomic
2150                            &_is_alive_closure_cm);
2151                                 // is alive closure
2152                                 // (for efficiency/performance)
2153 
2154   // STW ref processor
2155   _ref_processor_stw =
2156     new ReferenceProcessor(mr,    // span
2157                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2158                                 // mt processing
2159                            ParallelGCThreads,
2160                                 // degree of mt processing
2161                            (ParallelGCThreads > 1),
2162                                 // mt discovery
2163                            ParallelGCThreads,
2164                                 // degree of mt discovery
2165                            true,
2166                                 // Reference discovery is atomic
2167                            &_is_alive_closure_stw);
2168                                 // is alive closure
2169                                 // (for efficiency/performance)
2170 }
2171 
2172 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2173   return g1_policy();
2174 }
2175 
2176 size_t G1CollectedHeap::capacity() const {
2177   return _hrm.length() * HeapRegion::GrainBytes;
2178 }
2179 
2180 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2181   hr->reset_gc_time_stamp();
2182 }
2183 
2184 #ifndef PRODUCT
2185 
2186 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2187 private:
2188   unsigned _gc_time_stamp;
2189   bool _failures;
2190 
2191 public:
2192   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2193     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2194 
2195   virtual bool doHeapRegion(HeapRegion* hr) {
2196     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2197     if (_gc_time_stamp != region_gc_time_stamp) {
2198       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2199                              "expected %d", HR_FORMAT_PARAMS(hr),
2200                              region_gc_time_stamp, _gc_time_stamp);
2201       _failures = true;
2202     }
2203     return false;
2204   }
2205 
2206   bool failures() { return _failures; }
2207 };
2208 
2209 void G1CollectedHeap::check_gc_time_stamps() {
2210   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2211   heap_region_iterate(&cl);
2212   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2213 }
2214 #endif // PRODUCT
2215 
2216 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2217   _cg1r->hot_card_cache()->drain(cl, worker_i);
2218 }
2219 
2220 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2221   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2222   size_t n_completed_buffers = 0;
2223   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2224     n_completed_buffers++;
2225   }
2226   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2227   dcqs.clear_n_completed_buffers();
2228   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2229 }
2230 
2231 // Computes the sum of the storage used by the various regions.
2232 size_t G1CollectedHeap::used() const {
2233   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2234   if (_archive_allocator != NULL) {
2235     result += _archive_allocator->used();
2236   }
2237   return result;
2238 }
2239 
2240 size_t G1CollectedHeap::used_unlocked() const {
2241   return _summary_bytes_used;
2242 }
2243 
2244 class SumUsedClosure: public HeapRegionClosure {
2245   size_t _used;
2246 public:
2247   SumUsedClosure() : _used(0) {}
2248   bool doHeapRegion(HeapRegion* r) {
2249     _used += r->used();
2250     return false;
2251   }
2252   size_t result() { return _used; }
2253 };
2254 
2255 size_t G1CollectedHeap::recalculate_used() const {
2256   double recalculate_used_start = os::elapsedTime();
2257 
2258   SumUsedClosure blk;
2259   heap_region_iterate(&blk);
2260 
2261   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2262   return blk.result();
2263 }
2264 
2265 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2266   switch (cause) {
2267     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2268     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2269     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;
2270     case GCCause::_g1_humongous_allocation: return true;
2271     case GCCause::_update_allocation_context_stats_inc: return true;
2272     case GCCause::_wb_conc_mark:            return true;
2273     default:                                return false;
2274   }
2275 }
2276 
2277 #ifndef PRODUCT
2278 void G1CollectedHeap::allocate_dummy_regions() {
2279   // Let's fill up most of the region
2280   size_t word_size = HeapRegion::GrainWords - 1024;
2281   // And as a result the region we'll allocate will be humongous.
2282   guarantee(is_humongous(word_size), "sanity");
2283 
2284   // _filler_array_max_size is set to humongous object threshold
2285   // but temporarily change it to use CollectedHeap::fill_with_object().
2286   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2287 
2288   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2289     // Let's use the existing mechanism for the allocation
2290     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2291                                                  AllocationContext::system());
2292     if (dummy_obj != NULL) {
2293       MemRegion mr(dummy_obj, word_size);
2294       CollectedHeap::fill_with_object(mr);
2295     } else {
2296       // If we can't allocate once, we probably cannot allocate
2297       // again. Let's get out of the loop.
2298       break;
2299     }
2300   }
2301 }
2302 #endif // !PRODUCT
2303 
2304 void G1CollectedHeap::increment_old_marking_cycles_started() {
2305   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2306          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2307          "Wrong marking cycle count (started: %d, completed: %d)",
2308          _old_marking_cycles_started, _old_marking_cycles_completed);
2309 
2310   _old_marking_cycles_started++;
2311 }
2312 
2313 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2314   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2315 
2316   // We assume that if concurrent == true, then the caller is a
2317   // concurrent thread that was joined the Suspendible Thread
2318   // Set. If there's ever a cheap way to check this, we should add an
2319   // assert here.
2320 
2321   // Given that this method is called at the end of a Full GC or of a
2322   // concurrent cycle, and those can be nested (i.e., a Full GC can
2323   // interrupt a concurrent cycle), the number of full collections
2324   // completed should be either one (in the case where there was no
2325   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2326   // behind the number of full collections started.
2327 
2328   // This is the case for the inner caller, i.e. a Full GC.
2329   assert(concurrent ||
2330          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2331          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2332          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2333          "is inconsistent with _old_marking_cycles_completed = %u",
2334          _old_marking_cycles_started, _old_marking_cycles_completed);
2335 
2336   // This is the case for the outer caller, i.e. the concurrent cycle.
2337   assert(!concurrent ||
2338          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2339          "for outer caller (concurrent cycle): "
2340          "_old_marking_cycles_started = %u "
2341          "is inconsistent with _old_marking_cycles_completed = %u",
2342          _old_marking_cycles_started, _old_marking_cycles_completed);
2343 
2344   _old_marking_cycles_completed += 1;
2345 
2346   // We need to clear the "in_progress" flag in the CM thread before
2347   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2348   // is set) so that if a waiter requests another System.gc() it doesn't
2349   // incorrectly see that a marking cycle is still in progress.
2350   if (concurrent) {
2351     _cmThread->set_idle();
2352   }
2353 
2354   // This notify_all() will ensure that a thread that called
2355   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2356   // and it's waiting for a full GC to finish will be woken up. It is
2357   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2358   FullGCCount_lock->notify_all();
2359 }
2360 
2361 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2362   GCIdMarkAndRestore conc_gc_id_mark;
2363   collector_state()->set_concurrent_cycle_started(true);
2364   _gc_timer_cm->register_gc_start(start_time);
2365 
2366   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2367   trace_heap_before_gc(_gc_tracer_cm);
2368   _cmThread->set_gc_id(GCId::current());
2369 }
2370 
2371 void G1CollectedHeap::register_concurrent_cycle_end() {
2372   if (collector_state()->concurrent_cycle_started()) {
2373     GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2374     if (_cm->has_aborted()) {
2375       _gc_tracer_cm->report_concurrent_mode_failure();
2376     }
2377 
2378     _gc_timer_cm->register_gc_end();
2379     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2380 
2381     // Clear state variables to prepare for the next concurrent cycle.
2382      collector_state()->set_concurrent_cycle_started(false);
2383     _heap_summary_sent = false;
2384   }
2385 }
2386 
2387 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2388   if (collector_state()->concurrent_cycle_started()) {
2389     // This function can be called when:
2390     //  the cleanup pause is run
2391     //  the concurrent cycle is aborted before the cleanup pause.
2392     //  the concurrent cycle is aborted after the cleanup pause,
2393     //   but before the concurrent cycle end has been registered.
2394     // Make sure that we only send the heap information once.
2395     if (!_heap_summary_sent) {
2396       GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2397       trace_heap_after_gc(_gc_tracer_cm);
2398       _heap_summary_sent = true;
2399     }
2400   }
2401 }
2402 
2403 void G1CollectedHeap::collect(GCCause::Cause cause) {
2404   assert_heap_not_locked();
2405 
2406   uint gc_count_before;
2407   uint old_marking_count_before;
2408   uint full_gc_count_before;
2409   bool retry_gc;
2410 
2411   do {
2412     retry_gc = false;
2413 
2414     {
2415       MutexLocker ml(Heap_lock);
2416 
2417       // Read the GC count while holding the Heap_lock
2418       gc_count_before = total_collections();
2419       full_gc_count_before = total_full_collections();
2420       old_marking_count_before = _old_marking_cycles_started;
2421     }
2422 
2423     if (should_do_concurrent_full_gc(cause)) {
2424       // Schedule an initial-mark evacuation pause that will start a
2425       // concurrent cycle. We're setting word_size to 0 which means that
2426       // we are not requesting a post-GC allocation.
2427       VM_G1IncCollectionPause op(gc_count_before,
2428                                  0,     /* word_size */
2429                                  true,  /* should_initiate_conc_mark */
2430                                  g1_policy()->max_pause_time_ms(),
2431                                  cause);
2432       op.set_allocation_context(AllocationContext::current());
2433 
2434       VMThread::execute(&op);
2435       if (!op.pause_succeeded()) {
2436         if (old_marking_count_before == _old_marking_cycles_started) {
2437           retry_gc = op.should_retry_gc();
2438         } else {
2439           // A Full GC happened while we were trying to schedule the
2440           // initial-mark GC. No point in starting a new cycle given
2441           // that the whole heap was collected anyway.
2442         }
2443 
2444         if (retry_gc) {
2445           if (GC_locker::is_active_and_needs_gc()) {
2446             GC_locker::stall_until_clear();
2447           }
2448         }
2449       }
2450     } else {
2451       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2452           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2453 
2454         // Schedule a standard evacuation pause. We're setting word_size
2455         // to 0 which means that we are not requesting a post-GC allocation.
2456         VM_G1IncCollectionPause op(gc_count_before,
2457                                    0,     /* word_size */
2458                                    false, /* should_initiate_conc_mark */
2459                                    g1_policy()->max_pause_time_ms(),
2460                                    cause);
2461         VMThread::execute(&op);
2462       } else {
2463         // Schedule a Full GC.
2464         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2465         VMThread::execute(&op);
2466       }
2467     }
2468   } while (retry_gc);
2469 }
2470 
2471 bool G1CollectedHeap::is_in(const void* p) const {
2472   if (_hrm.reserved().contains(p)) {
2473     // Given that we know that p is in the reserved space,
2474     // heap_region_containing() should successfully
2475     // return the containing region.
2476     HeapRegion* hr = heap_region_containing(p);
2477     return hr->is_in(p);
2478   } else {
2479     return false;
2480   }
2481 }
2482 
2483 #ifdef ASSERT
2484 bool G1CollectedHeap::is_in_exact(const void* p) const {
2485   bool contains = reserved_region().contains(p);
2486   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2487   if (contains && available) {
2488     return true;
2489   } else {
2490     return false;
2491   }
2492 }
2493 #endif
2494 
2495 bool G1CollectedHeap::obj_in_cs(oop obj) {
2496   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2497   return r != NULL && r->in_collection_set();
2498 }
2499 
2500 // Iteration functions.
2501 
2502 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2503 
2504 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2505   ExtendedOopClosure* _cl;
2506 public:
2507   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2508   bool doHeapRegion(HeapRegion* r) {
2509     if (!r->is_continues_humongous()) {
2510       r->oop_iterate(_cl);
2511     }
2512     return false;
2513   }
2514 };
2515 
2516 // Iterates an ObjectClosure over all objects within a HeapRegion.
2517 
2518 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2519   ObjectClosure* _cl;
2520 public:
2521   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2522   bool doHeapRegion(HeapRegion* r) {
2523     if (!r->is_continues_humongous()) {
2524       r->object_iterate(_cl);
2525     }
2526     return false;
2527   }
2528 };
2529 
2530 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2531   IterateObjectClosureRegionClosure blk(cl);
2532   heap_region_iterate(&blk);
2533 }
2534 
2535 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2536   _hrm.iterate(cl);
2537 }
2538 
2539 void
2540 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2541                                          uint worker_id,
2542                                          HeapRegionClaimer *hrclaimer,
2543                                          bool concurrent) const {
2544   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2545 }
2546 
2547 // Clear the cached CSet starting regions and (more importantly)
2548 // the time stamps. Called when we reset the GC time stamp.
2549 void G1CollectedHeap::clear_cset_start_regions() {
2550   assert(_worker_cset_start_region != NULL, "sanity");
2551   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2552 
2553   for (uint i = 0; i < ParallelGCThreads; i++) {
2554     _worker_cset_start_region[i] = NULL;
2555     _worker_cset_start_region_time_stamp[i] = 0;
2556   }
2557 }
2558 
2559 // Given the id of a worker, obtain or calculate a suitable
2560 // starting region for iterating over the current collection set.
2561 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2562   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2563 
2564   HeapRegion* result = NULL;
2565   unsigned gc_time_stamp = get_gc_time_stamp();
2566 
2567   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2568     // Cached starting region for current worker was set
2569     // during the current pause - so it's valid.
2570     // Note: the cached starting heap region may be NULL
2571     // (when the collection set is empty).
2572     result = _worker_cset_start_region[worker_i];
2573     assert(result == NULL || result->in_collection_set(), "sanity");
2574     return result;
2575   }
2576 
2577   // The cached entry was not valid so let's calculate
2578   // a suitable starting heap region for this worker.
2579 
2580   // We want the parallel threads to start their collection
2581   // set iteration at different collection set regions to
2582   // avoid contention.
2583   // If we have:
2584   //          n collection set regions
2585   //          p threads
2586   // Then thread t will start at region floor ((t * n) / p)
2587 
2588   result = g1_policy()->collection_set();
2589   uint cs_size = g1_policy()->cset_region_length();
2590   uint active_workers = workers()->active_workers();
2591 
2592   uint end_ind   = (cs_size * worker_i) / active_workers;
2593   uint start_ind = 0;
2594 
2595   if (worker_i > 0 &&
2596       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2597     // Previous workers starting region is valid
2598     // so let's iterate from there
2599     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2600     result = _worker_cset_start_region[worker_i - 1];
2601   }
2602 
2603   for (uint i = start_ind; i < end_ind; i++) {
2604     result = result->next_in_collection_set();
2605   }
2606 
2607   // Note: the calculated starting heap region may be NULL
2608   // (when the collection set is empty).
2609   assert(result == NULL || result->in_collection_set(), "sanity");
2610   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2611          "should be updated only once per pause");
2612   _worker_cset_start_region[worker_i] = result;
2613   OrderAccess::storestore();
2614   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2615   return result;
2616 }
2617 
2618 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2619   HeapRegion* r = g1_policy()->collection_set();
2620   while (r != NULL) {
2621     HeapRegion* next = r->next_in_collection_set();
2622     if (cl->doHeapRegion(r)) {
2623       cl->incomplete();
2624       return;
2625     }
2626     r = next;
2627   }
2628 }
2629 
2630 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2631                                                   HeapRegionClosure *cl) {
2632   if (r == NULL) {
2633     // The CSet is empty so there's nothing to do.
2634     return;
2635   }
2636 
2637   assert(r->in_collection_set(),
2638          "Start region must be a member of the collection set.");
2639   HeapRegion* cur = r;
2640   while (cur != NULL) {
2641     HeapRegion* next = cur->next_in_collection_set();
2642     if (cl->doHeapRegion(cur) && false) {
2643       cl->incomplete();
2644       return;
2645     }
2646     cur = next;
2647   }
2648   cur = g1_policy()->collection_set();
2649   while (cur != r) {
2650     HeapRegion* next = cur->next_in_collection_set();
2651     if (cl->doHeapRegion(cur) && false) {
2652       cl->incomplete();
2653       return;
2654     }
2655     cur = next;
2656   }
2657 }
2658 
2659 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2660   HeapRegion* result = _hrm.next_region_in_heap(from);
2661   while (result != NULL && result->is_pinned()) {
2662     result = _hrm.next_region_in_heap(result);
2663   }
2664   return result;
2665 }
2666 
2667 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2668   HeapRegion* hr = heap_region_containing(addr);
2669   return hr->block_start(addr);
2670 }
2671 
2672 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2673   HeapRegion* hr = heap_region_containing(addr);
2674   return hr->block_size(addr);
2675 }
2676 
2677 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2678   HeapRegion* hr = heap_region_containing(addr);
2679   return hr->block_is_obj(addr);
2680 }
2681 
2682 bool G1CollectedHeap::supports_tlab_allocation() const {
2683   return true;
2684 }
2685 
2686 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2687   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2688 }
2689 
2690 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2691   return young_list()->eden_used_bytes();
2692 }
2693 
2694 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2695 // must be equal to the humongous object limit.
2696 size_t G1CollectedHeap::max_tlab_size() const {
2697   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2698 }
2699 
2700 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2701   AllocationContext_t context = AllocationContext::current();
2702   return _allocator->unsafe_max_tlab_alloc(context);
2703 }
2704 
2705 size_t G1CollectedHeap::max_capacity() const {
2706   return _hrm.reserved().byte_size();
2707 }
2708 
2709 jlong G1CollectedHeap::millis_since_last_gc() {
2710   // assert(false, "NYI");
2711   return 0;
2712 }
2713 
2714 void G1CollectedHeap::prepare_for_verify() {
2715   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2716     ensure_parsability(false);
2717   }
2718   g1_rem_set()->prepare_for_verify();
2719 }
2720 
2721 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2722                                               VerifyOption vo) {
2723   switch (vo) {
2724   case VerifyOption_G1UsePrevMarking:
2725     return hr->obj_allocated_since_prev_marking(obj);
2726   case VerifyOption_G1UseNextMarking:
2727     return hr->obj_allocated_since_next_marking(obj);
2728   case VerifyOption_G1UseMarkWord:
2729     return false;
2730   default:
2731     ShouldNotReachHere();
2732   }
2733   return false; // keep some compilers happy
2734 }
2735 
2736 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2737   switch (vo) {
2738   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2739   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2740   case VerifyOption_G1UseMarkWord:    return NULL;
2741   default:                            ShouldNotReachHere();
2742   }
2743   return NULL; // keep some compilers happy
2744 }
2745 
2746 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2747   switch (vo) {
2748   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2749   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2750   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2751   default:                            ShouldNotReachHere();
2752   }
2753   return false; // keep some compilers happy
2754 }
2755 
2756 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2757   switch (vo) {
2758   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2759   case VerifyOption_G1UseNextMarking: return "NTAMS";
2760   case VerifyOption_G1UseMarkWord:    return "NONE";
2761   default:                            ShouldNotReachHere();
2762   }
2763   return NULL; // keep some compilers happy
2764 }
2765 
2766 class VerifyRootsClosure: public OopClosure {
2767 private:
2768   G1CollectedHeap* _g1h;
2769   VerifyOption     _vo;
2770   bool             _failures;
2771 public:
2772   // _vo == UsePrevMarking -> use "prev" marking information,
2773   // _vo == UseNextMarking -> use "next" marking information,
2774   // _vo == UseMarkWord    -> use mark word from object header.
2775   VerifyRootsClosure(VerifyOption vo) :
2776     _g1h(G1CollectedHeap::heap()),
2777     _vo(vo),
2778     _failures(false) { }
2779 
2780   bool failures() { return _failures; }
2781 
2782   template <class T> void do_oop_nv(T* p) {
2783     T heap_oop = oopDesc::load_heap_oop(p);
2784     if (!oopDesc::is_null(heap_oop)) {
2785       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2786       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2787         gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
2788                                "points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
2789         if (_vo == VerifyOption_G1UseMarkWord) {
2790           gclog_or_tty->print_cr("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
2791         }
2792         obj->print_on(gclog_or_tty);
2793         _failures = true;
2794       }
2795     }
2796   }
2797 
2798   void do_oop(oop* p)       { do_oop_nv(p); }
2799   void do_oop(narrowOop* p) { do_oop_nv(p); }
2800 };
2801 
2802 class G1VerifyCodeRootOopClosure: public OopClosure {
2803   G1CollectedHeap* _g1h;
2804   OopClosure* _root_cl;
2805   nmethod* _nm;
2806   VerifyOption _vo;
2807   bool _failures;
2808 
2809   template <class T> void do_oop_work(T* p) {
2810     // First verify that this root is live
2811     _root_cl->do_oop(p);
2812 
2813     if (!G1VerifyHeapRegionCodeRoots) {
2814       // We're not verifying the code roots attached to heap region.
2815       return;
2816     }
2817 
2818     // Don't check the code roots during marking verification in a full GC
2819     if (_vo == VerifyOption_G1UseMarkWord) {
2820       return;
2821     }
2822 
2823     // Now verify that the current nmethod (which contains p) is
2824     // in the code root list of the heap region containing the
2825     // object referenced by p.
2826 
2827     T heap_oop = oopDesc::load_heap_oop(p);
2828     if (!oopDesc::is_null(heap_oop)) {
2829       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2830 
2831       // Now fetch the region containing the object
2832       HeapRegion* hr = _g1h->heap_region_containing(obj);
2833       HeapRegionRemSet* hrrs = hr->rem_set();
2834       // Verify that the strong code root list for this region
2835       // contains the nmethod
2836       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2837         gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
2838                                "from nmethod " PTR_FORMAT " not in strong "
2839                                "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
2840                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2841         _failures = true;
2842       }
2843     }
2844   }
2845 
2846 public:
2847   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2848     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2849 
2850   void do_oop(oop* p) { do_oop_work(p); }
2851   void do_oop(narrowOop* p) { do_oop_work(p); }
2852 
2853   void set_nmethod(nmethod* nm) { _nm = nm; }
2854   bool failures() { return _failures; }
2855 };
2856 
2857 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2858   G1VerifyCodeRootOopClosure* _oop_cl;
2859 
2860 public:
2861   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2862     _oop_cl(oop_cl) {}
2863 
2864   void do_code_blob(CodeBlob* cb) {
2865     nmethod* nm = cb->as_nmethod_or_null();
2866     if (nm != NULL) {
2867       _oop_cl->set_nmethod(nm);
2868       nm->oops_do(_oop_cl);
2869     }
2870   }
2871 };
2872 
2873 class YoungRefCounterClosure : public OopClosure {
2874   G1CollectedHeap* _g1h;
2875   int              _count;
2876  public:
2877   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2878   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2879   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2880 
2881   int count() { return _count; }
2882   void reset_count() { _count = 0; };
2883 };
2884 
2885 class VerifyKlassClosure: public KlassClosure {
2886   YoungRefCounterClosure _young_ref_counter_closure;
2887   OopClosure *_oop_closure;
2888  public:
2889   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2890   void do_klass(Klass* k) {
2891     k->oops_do(_oop_closure);
2892 
2893     _young_ref_counter_closure.reset_count();
2894     k->oops_do(&_young_ref_counter_closure);
2895     if (_young_ref_counter_closure.count() > 0) {
2896       guarantee(k->has_modified_oops(), "Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k));
2897     }
2898   }
2899 };
2900 
2901 class VerifyLivenessOopClosure: public OopClosure {
2902   G1CollectedHeap* _g1h;
2903   VerifyOption _vo;
2904 public:
2905   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2906     _g1h(g1h), _vo(vo)
2907   { }
2908   void do_oop(narrowOop *p) { do_oop_work(p); }
2909   void do_oop(      oop *p) { do_oop_work(p); }
2910 
2911   template <class T> void do_oop_work(T *p) {
2912     oop obj = oopDesc::load_decode_heap_oop(p);
2913     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2914               "Dead object referenced by a not dead object");
2915   }
2916 };
2917 
2918 class VerifyObjsInRegionClosure: public ObjectClosure {
2919 private:
2920   G1CollectedHeap* _g1h;
2921   size_t _live_bytes;
2922   HeapRegion *_hr;
2923   VerifyOption _vo;
2924 public:
2925   // _vo == UsePrevMarking -> use "prev" marking information,
2926   // _vo == UseNextMarking -> use "next" marking information,
2927   // _vo == UseMarkWord    -> use mark word from object header.
2928   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2929     : _live_bytes(0), _hr(hr), _vo(vo) {
2930     _g1h = G1CollectedHeap::heap();
2931   }
2932   void do_object(oop o) {
2933     VerifyLivenessOopClosure isLive(_g1h, _vo);
2934     assert(o != NULL, "Huh?");
2935     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2936       // If the object is alive according to the mark word,
2937       // then verify that the marking information agrees.
2938       // Note we can't verify the contra-positive of the
2939       // above: if the object is dead (according to the mark
2940       // word), it may not be marked, or may have been marked
2941       // but has since became dead, or may have been allocated
2942       // since the last marking.
2943       if (_vo == VerifyOption_G1UseMarkWord) {
2944         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2945       }
2946 
2947       o->oop_iterate_no_header(&isLive);
2948       if (!_hr->obj_allocated_since_prev_marking(o)) {
2949         size_t obj_size = o->size();    // Make sure we don't overflow
2950         _live_bytes += (obj_size * HeapWordSize);
2951       }
2952     }
2953   }
2954   size_t live_bytes() { return _live_bytes; }
2955 };
2956 
2957 class VerifyArchiveOopClosure: public OopClosure {
2958 public:
2959   VerifyArchiveOopClosure(HeapRegion *hr) { }
2960   void do_oop(narrowOop *p) { do_oop_work(p); }
2961   void do_oop(      oop *p) { do_oop_work(p); }
2962 
2963   template <class T> void do_oop_work(T *p) {
2964     oop obj = oopDesc::load_decode_heap_oop(p);
2965     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
2966               "Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
2967               p2i(p), p2i(obj));
2968   }
2969 };
2970 
2971 class VerifyArchiveRegionClosure: public ObjectClosure {
2972 public:
2973   VerifyArchiveRegionClosure(HeapRegion *hr) { }
2974   // Verify that all object pointers are to archive regions.
2975   void do_object(oop o) {
2976     VerifyArchiveOopClosure checkOop(NULL);
2977     assert(o != NULL, "Should not be here for NULL oops");
2978     o->oop_iterate_no_header(&checkOop);
2979   }
2980 };
2981 
2982 class VerifyRegionClosure: public HeapRegionClosure {
2983 private:
2984   bool             _par;
2985   VerifyOption     _vo;
2986   bool             _failures;
2987 public:
2988   // _vo == UsePrevMarking -> use "prev" marking information,
2989   // _vo == UseNextMarking -> use "next" marking information,
2990   // _vo == UseMarkWord    -> use mark word from object header.
2991   VerifyRegionClosure(bool par, VerifyOption vo)
2992     : _par(par),
2993       _vo(vo),
2994       _failures(false) {}
2995 
2996   bool failures() {
2997     return _failures;
2998   }
2999 
3000   bool doHeapRegion(HeapRegion* r) {
3001     // For archive regions, verify there are no heap pointers to
3002     // non-pinned regions. For all others, verify liveness info.
3003     if (r->is_archive()) {
3004       VerifyArchiveRegionClosure verify_oop_pointers(r);
3005       r->object_iterate(&verify_oop_pointers);
3006       return true;
3007     }
3008     if (!r->is_continues_humongous()) {
3009       bool failures = false;
3010       r->verify(_vo, &failures);
3011       if (failures) {
3012         _failures = true;
3013       } else if (!r->is_starts_humongous()) {
3014         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3015         r->object_iterate(&not_dead_yet_cl);
3016         if (_vo != VerifyOption_G1UseNextMarking) {
3017           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3018             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3019                                    "max_live_bytes " SIZE_FORMAT " "
3020                                    "< calculated " SIZE_FORMAT,
3021                                    p2i(r->bottom()), p2i(r->end()),
3022                                    r->max_live_bytes(),
3023                                  not_dead_yet_cl.live_bytes());
3024             _failures = true;
3025           }
3026         } else {
3027           // When vo == UseNextMarking we cannot currently do a sanity
3028           // check on the live bytes as the calculation has not been
3029           // finalized yet.
3030         }
3031       }
3032     }
3033     return false; // stop the region iteration if we hit a failure
3034   }
3035 };
3036 
3037 // This is the task used for parallel verification of the heap regions
3038 
3039 class G1ParVerifyTask: public AbstractGangTask {
3040 private:
3041   G1CollectedHeap*  _g1h;
3042   VerifyOption      _vo;
3043   bool              _failures;
3044   HeapRegionClaimer _hrclaimer;
3045 
3046 public:
3047   // _vo == UsePrevMarking -> use "prev" marking information,
3048   // _vo == UseNextMarking -> use "next" marking information,
3049   // _vo == UseMarkWord    -> use mark word from object header.
3050   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3051       AbstractGangTask("Parallel verify task"),
3052       _g1h(g1h),
3053       _vo(vo),
3054       _failures(false),
3055       _hrclaimer(g1h->workers()->active_workers()) {}
3056 
3057   bool failures() {
3058     return _failures;
3059   }
3060 
3061   void work(uint worker_id) {
3062     HandleMark hm;
3063     VerifyRegionClosure blk(true, _vo);
3064     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3065     if (blk.failures()) {
3066       _failures = true;
3067     }
3068   }
3069 };
3070 
3071 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3072   if (SafepointSynchronize::is_at_safepoint()) {
3073     assert(Thread::current()->is_VM_thread(),
3074            "Expected to be executed serially by the VM thread at this point");
3075 
3076     if (!silent) { gclog_or_tty->print("Roots "); }
3077     VerifyRootsClosure rootsCl(vo);
3078     VerifyKlassClosure klassCl(this, &rootsCl);
3079     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3080 
3081     // We apply the relevant closures to all the oops in the
3082     // system dictionary, class loader data graph, the string table
3083     // and the nmethods in the code cache.
3084     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3085     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3086 
3087     {
3088       G1RootProcessor root_processor(this, 1);
3089       root_processor.process_all_roots(&rootsCl,
3090                                        &cldCl,
3091                                        &blobsCl);
3092     }
3093 
3094     bool failures = rootsCl.failures() || codeRootsCl.failures();
3095 
3096     if (vo != VerifyOption_G1UseMarkWord) {
3097       // If we're verifying during a full GC then the region sets
3098       // will have been torn down at the start of the GC. Therefore
3099       // verifying the region sets will fail. So we only verify
3100       // the region sets when not in a full GC.
3101       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3102       verify_region_sets();
3103     }
3104 
3105     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3106     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3107 
3108       G1ParVerifyTask task(this, vo);
3109       workers()->run_task(&task);
3110       if (task.failures()) {
3111         failures = true;
3112       }
3113 
3114     } else {
3115       VerifyRegionClosure blk(false, vo);
3116       heap_region_iterate(&blk);
3117       if (blk.failures()) {
3118         failures = true;
3119       }
3120     }
3121 
3122     if (G1StringDedup::is_enabled()) {
3123       if (!silent) gclog_or_tty->print("StrDedup ");
3124       G1StringDedup::verify();
3125     }
3126 
3127     if (failures) {
3128       gclog_or_tty->print_cr("Heap:");
3129       // It helps to have the per-region information in the output to
3130       // help us track down what went wrong. This is why we call
3131       // print_extended_on() instead of print_on().
3132       print_extended_on(gclog_or_tty);
3133       gclog_or_tty->cr();
3134       gclog_or_tty->flush();
3135     }
3136     guarantee(!failures, "there should not have been any failures");
3137   } else {
3138     if (!silent) {
3139       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3140       if (G1StringDedup::is_enabled()) {
3141         gclog_or_tty->print(", StrDedup");
3142       }
3143       gclog_or_tty->print(") ");
3144     }
3145   }
3146 }
3147 
3148 void G1CollectedHeap::verify(bool silent) {
3149   verify(silent, VerifyOption_G1UsePrevMarking);
3150 }
3151 
3152 double G1CollectedHeap::verify(bool guard, const char* msg) {
3153   double verify_time_ms = 0.0;
3154 
3155   if (guard && total_collections() >= VerifyGCStartAt) {
3156     double verify_start = os::elapsedTime();
3157     HandleMark hm;  // Discard invalid handles created during verification
3158     prepare_for_verify();
3159     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3160     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3161   }
3162 
3163   return verify_time_ms;
3164 }
3165 
3166 void G1CollectedHeap::verify_before_gc() {
3167   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3168   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3169 }
3170 
3171 void G1CollectedHeap::verify_after_gc() {
3172   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3173   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3174 }
3175 
3176 class PrintRegionClosure: public HeapRegionClosure {
3177   outputStream* _st;
3178 public:
3179   PrintRegionClosure(outputStream* st) : _st(st) {}
3180   bool doHeapRegion(HeapRegion* r) {
3181     r->print_on(_st);
3182     return false;
3183   }
3184 };
3185 
3186 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3187                                        const HeapRegion* hr,
3188                                        const VerifyOption vo) const {
3189   switch (vo) {
3190   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3191   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3192   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3193   default:                            ShouldNotReachHere();
3194   }
3195   return false; // keep some compilers happy
3196 }
3197 
3198 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3199                                        const VerifyOption vo) const {
3200   switch (vo) {
3201   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3202   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3203   case VerifyOption_G1UseMarkWord: {
3204     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3205     return !obj->is_gc_marked() && !hr->is_archive();
3206   }
3207   default:                            ShouldNotReachHere();
3208   }
3209   return false; // keep some compilers happy
3210 }
3211 
3212 void G1CollectedHeap::print_on(outputStream* st) const {
3213   st->print(" %-20s", "garbage-first heap");
3214   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3215             capacity()/K, used_unlocked()/K);
3216   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3217             p2i(_hrm.reserved().start()),
3218             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3219             p2i(_hrm.reserved().end()));
3220   st->cr();
3221   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3222   uint young_regions = _young_list->length();
3223   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3224             (size_t) young_regions * HeapRegion::GrainBytes / K);
3225   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3226   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3227             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3228   st->cr();
3229   MetaspaceAux::print_on(st);
3230 }
3231 
3232 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3233   print_on(st);
3234 
3235   // Print the per-region information.
3236   st->cr();
3237   st->print_cr("Heap Regions: (E=young(eden), S=young(survivor), O=old, "
3238                "HS=humongous(starts), HC=humongous(continues), "
3239                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3240                "PTAMS=previous top-at-mark-start, "
3241                "NTAMS=next top-at-mark-start)");
3242   PrintRegionClosure blk(st);
3243   heap_region_iterate(&blk);
3244 }
3245 
3246 void G1CollectedHeap::print_on_error(outputStream* st) const {
3247   this->CollectedHeap::print_on_error(st);
3248 
3249   if (_cm != NULL) {
3250     st->cr();
3251     _cm->print_on_error(st);
3252   }
3253 }
3254 
3255 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3256   workers()->print_worker_threads_on(st);
3257   _cmThread->print_on(st);
3258   st->cr();
3259   _cm->print_worker_threads_on(st);
3260   _cg1r->print_worker_threads_on(st);
3261   if (G1StringDedup::is_enabled()) {
3262     G1StringDedup::print_worker_threads_on(st);
3263   }
3264 }
3265 
3266 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3267   workers()->threads_do(tc);
3268   tc->do_thread(_cmThread);
3269   _cg1r->threads_do(tc);
3270   if (G1StringDedup::is_enabled()) {
3271     G1StringDedup::threads_do(tc);
3272   }
3273 }
3274 
3275 void G1CollectedHeap::print_tracing_info() const {
3276   // We'll overload this to mean "trace GC pause statistics."
3277   if (TraceYoungGenTime || TraceOldGenTime) {
3278     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3279     // to that.
3280     g1_policy()->print_tracing_info();
3281   }
3282   if (G1SummarizeRSetStats) {
3283     g1_rem_set()->print_summary_info();
3284   }
3285   if (G1SummarizeConcMark) {
3286     concurrent_mark()->print_summary_info();
3287   }
3288   g1_policy()->print_yg_surv_rate_info();
3289 }
3290 
3291 #ifndef PRODUCT
3292 // Helpful for debugging RSet issues.
3293 
3294 class PrintRSetsClosure : public HeapRegionClosure {
3295 private:
3296   const char* _msg;
3297   size_t _occupied_sum;
3298 
3299 public:
3300   bool doHeapRegion(HeapRegion* r) {
3301     HeapRegionRemSet* hrrs = r->rem_set();
3302     size_t occupied = hrrs->occupied();
3303     _occupied_sum += occupied;
3304 
3305     gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
3306                            HR_FORMAT_PARAMS(r));
3307     if (occupied == 0) {
3308       gclog_or_tty->print_cr("  RSet is empty");
3309     } else {
3310       hrrs->print();
3311     }
3312     gclog_or_tty->print_cr("----------");
3313     return false;
3314   }
3315 
3316   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3317     gclog_or_tty->cr();
3318     gclog_or_tty->print_cr("========================================");
3319     gclog_or_tty->print_cr("%s", msg);
3320     gclog_or_tty->cr();
3321   }
3322 
3323   ~PrintRSetsClosure() {
3324     gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3325     gclog_or_tty->print_cr("========================================");
3326     gclog_or_tty->cr();
3327   }
3328 };
3329 
3330 void G1CollectedHeap::print_cset_rsets() {
3331   PrintRSetsClosure cl("Printing CSet RSets");
3332   collection_set_iterate(&cl);
3333 }
3334 
3335 void G1CollectedHeap::print_all_rsets() {
3336   PrintRSetsClosure cl("Printing All RSets");;
3337   heap_region_iterate(&cl);
3338 }
3339 #endif // PRODUCT
3340 
3341 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3342   YoungList* young_list = heap()->young_list();
3343 
3344   size_t eden_used_bytes = young_list->eden_used_bytes();
3345   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3346 
3347   size_t eden_capacity_bytes =
3348     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3349 
3350   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3351   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
3352 }
3353 
3354 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
3355   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
3356                        stats->unused(), stats->used(), stats->region_end_waste(),
3357                        stats->regions_filled(), stats->direct_allocated(),
3358                        stats->failure_used(), stats->failure_waste());
3359 }
3360 
3361 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
3362   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3363   gc_tracer->report_gc_heap_summary(when, heap_summary);
3364 
3365   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3366   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3367 }
3368 
3369 
3370 G1CollectedHeap* G1CollectedHeap::heap() {
3371   CollectedHeap* heap = Universe::heap();
3372   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3373   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3374   return (G1CollectedHeap*)heap;
3375 }
3376 
3377 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3378   // always_do_update_barrier = false;
3379   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3380   // Fill TLAB's and such
3381   accumulate_statistics_all_tlabs();
3382   ensure_parsability(true);
3383 
3384   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3385       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3386     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3387   }
3388 }
3389 
3390 void G1CollectedHeap::gc_epilogue(bool full) {
3391 
3392   if (G1SummarizeRSetStats &&
3393       (G1SummarizeRSetStatsPeriod > 0) &&
3394       // we are at the end of the GC. Total collections has already been increased.
3395       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3396     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3397   }
3398 
3399   // FIXME: what is this about?
3400   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3401   // is set.
3402 #if defined(COMPILER2) || INCLUDE_JVMCI
3403   assert(DerivedPointerTable::is_empty(), "derived pointer present");
3404 #endif
3405   // always_do_update_barrier = true;
3406 
3407   resize_all_tlabs();
3408   allocation_context_stats().update(full);
3409 
3410   // We have just completed a GC. Update the soft reference
3411   // policy with the new heap occupancy
3412   Universe::update_heap_info_at_gc();
3413 }
3414 
3415 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3416                                                uint gc_count_before,
3417                                                bool* succeeded,
3418                                                GCCause::Cause gc_cause) {
3419   assert_heap_not_locked_and_not_at_safepoint();
3420   g1_policy()->record_stop_world_start();
3421   VM_G1IncCollectionPause op(gc_count_before,
3422                              word_size,
3423                              false, /* should_initiate_conc_mark */
3424                              g1_policy()->max_pause_time_ms(),
3425                              gc_cause);
3426 
3427   op.set_allocation_context(AllocationContext::current());
3428   VMThread::execute(&op);
3429 
3430   HeapWord* result = op.result();
3431   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3432   assert(result == NULL || ret_succeeded,
3433          "the result should be NULL if the VM did not succeed");
3434   *succeeded = ret_succeeded;
3435 
3436   assert_heap_not_locked();
3437   return result;
3438 }
3439 
3440 void
3441 G1CollectedHeap::doConcurrentMark() {
3442   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3443   if (!_cmThread->in_progress()) {
3444     _cmThread->set_started();
3445     CGC_lock->notify();
3446   }
3447 }
3448 
3449 size_t G1CollectedHeap::pending_card_num() {
3450   size_t extra_cards = 0;
3451   JavaThread *curr = Threads::first();
3452   while (curr != NULL) {
3453     DirtyCardQueue& dcq = curr->dirty_card_queue();
3454     extra_cards += dcq.size();
3455     curr = curr->next();
3456   }
3457   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3458   size_t buffer_size = dcqs.buffer_size();
3459   size_t buffer_num = dcqs.completed_buffers_num();
3460 
3461   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3462   // in bytes - not the number of 'entries'. We need to convert
3463   // into a number of cards.
3464   return (buffer_size * buffer_num + extra_cards) / oopSize;
3465 }
3466 
3467 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3468  private:
3469   size_t _total_humongous;
3470   size_t _candidate_humongous;
3471 
3472   DirtyCardQueue _dcq;
3473 
3474   // We don't nominate objects with many remembered set entries, on
3475   // the assumption that such objects are likely still live.
3476   bool is_remset_small(HeapRegion* region) const {
3477     HeapRegionRemSet* const rset = region->rem_set();
3478     return G1EagerReclaimHumongousObjectsWithStaleRefs
3479       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3480       : rset->is_empty();
3481   }
3482 
3483   bool is_typeArray_region(HeapRegion* region) const {
3484     return oop(region->bottom())->is_typeArray();
3485   }
3486 
3487   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3488     assert(region->is_starts_humongous(), "Must start a humongous object");
3489 
3490     // Candidate selection must satisfy the following constraints
3491     // while concurrent marking is in progress:
3492     //
3493     // * In order to maintain SATB invariants, an object must not be
3494     // reclaimed if it was allocated before the start of marking and
3495     // has not had its references scanned.  Such an object must have
3496     // its references (including type metadata) scanned to ensure no
3497     // live objects are missed by the marking process.  Objects
3498     // allocated after the start of concurrent marking don't need to
3499     // be scanned.
3500     //
3501     // * An object must not be reclaimed if it is on the concurrent
3502     // mark stack.  Objects allocated after the start of concurrent
3503     // marking are never pushed on the mark stack.
3504     //
3505     // Nominating only objects allocated after the start of concurrent
3506     // marking is sufficient to meet both constraints.  This may miss
3507     // some objects that satisfy the constraints, but the marking data
3508     // structures don't support efficiently performing the needed
3509     // additional tests or scrubbing of the mark stack.
3510     //
3511     // However, we presently only nominate is_typeArray() objects.
3512     // A humongous object containing references induces remembered
3513     // set entries on other regions.  In order to reclaim such an
3514     // object, those remembered sets would need to be cleaned up.
3515     //
3516     // We also treat is_typeArray() objects specially, allowing them
3517     // to be reclaimed even if allocated before the start of
3518     // concurrent mark.  For this we rely on mark stack insertion to
3519     // exclude is_typeArray() objects, preventing reclaiming an object
3520     // that is in the mark stack.  We also rely on the metadata for
3521     // such objects to be built-in and so ensured to be kept live.
3522     // Frequent allocation and drop of large binary blobs is an
3523     // important use case for eager reclaim, and this special handling
3524     // may reduce needed headroom.
3525 
3526     return is_typeArray_region(region) && is_remset_small(region);
3527   }
3528 
3529  public:
3530   RegisterHumongousWithInCSetFastTestClosure()
3531   : _total_humongous(0),
3532     _candidate_humongous(0),
3533     _dcq(&JavaThread::dirty_card_queue_set()) {
3534   }
3535 
3536   virtual bool doHeapRegion(HeapRegion* r) {
3537     if (!r->is_starts_humongous()) {
3538       return false;
3539     }
3540     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3541 
3542     bool is_candidate = humongous_region_is_candidate(g1h, r);
3543     uint rindex = r->hrm_index();
3544     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3545     if (is_candidate) {
3546       _candidate_humongous++;
3547       g1h->register_humongous_region_with_cset(rindex);
3548       // Is_candidate already filters out humongous object with large remembered sets.
3549       // If we have a humongous object with a few remembered sets, we simply flush these
3550       // remembered set entries into the DCQS. That will result in automatic
3551       // re-evaluation of their remembered set entries during the following evacuation
3552       // phase.
3553       if (!r->rem_set()->is_empty()) {
3554         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3555                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3556         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3557         HeapRegionRemSetIterator hrrs(r->rem_set());
3558         size_t card_index;
3559         while (hrrs.has_next(card_index)) {
3560           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3561           // The remembered set might contain references to already freed
3562           // regions. Filter out such entries to avoid failing card table
3563           // verification.
3564           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
3565             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3566               *card_ptr = CardTableModRefBS::dirty_card_val();
3567               _dcq.enqueue(card_ptr);
3568             }
3569           }
3570         }
3571         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
3572                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
3573                hrrs.n_yielded(), r->rem_set()->occupied());
3574         r->rem_set()->clear_locked();
3575       }
3576       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3577     }
3578     _total_humongous++;
3579 
3580     return false;
3581   }
3582 
3583   size_t total_humongous() const { return _total_humongous; }
3584   size_t candidate_humongous() const { return _candidate_humongous; }
3585 
3586   void flush_rem_set_entries() { _dcq.flush(); }
3587 };
3588 
3589 void G1CollectedHeap::register_humongous_regions_with_cset() {
3590   if (!G1EagerReclaimHumongousObjects) {
3591     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3592     return;
3593   }
3594   double time = os::elapsed_counter();
3595 
3596   // Collect reclaim candidate information and register candidates with cset.
3597   RegisterHumongousWithInCSetFastTestClosure cl;
3598   heap_region_iterate(&cl);
3599 
3600   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3601   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3602                                                                   cl.total_humongous(),
3603                                                                   cl.candidate_humongous());
3604   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3605 
3606   // Finally flush all remembered set entries to re-check into the global DCQS.
3607   cl.flush_rem_set_entries();
3608 }
3609 
3610 #ifdef ASSERT
3611 class VerifyCSetClosure: public HeapRegionClosure {
3612 public:
3613   bool doHeapRegion(HeapRegion* hr) {
3614     // Here we check that the CSet region's RSet is ready for parallel
3615     // iteration. The fields that we'll verify are only manipulated
3616     // when the region is part of a CSet and is collected. Afterwards,
3617     // we reset these fields when we clear the region's RSet (when the
3618     // region is freed) so they are ready when the region is
3619     // re-allocated. The only exception to this is if there's an
3620     // evacuation failure and instead of freeing the region we leave
3621     // it in the heap. In that case, we reset these fields during
3622     // evacuation failure handling.
3623     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3624 
3625     // Here's a good place to add any other checks we'd like to
3626     // perform on CSet regions.
3627     return false;
3628   }
3629 };
3630 #endif // ASSERT
3631 
3632 uint G1CollectedHeap::num_task_queues() const {
3633   return _task_queues->size();
3634 }
3635 
3636 #if TASKQUEUE_STATS
3637 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3638   st->print_raw_cr("GC Task Stats");
3639   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3640   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3641 }
3642 
3643 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3644   print_taskqueue_stats_hdr(st);
3645 
3646   TaskQueueStats totals;
3647   const uint n = num_task_queues();
3648   for (uint i = 0; i < n; ++i) {
3649     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3650     totals += task_queue(i)->stats;
3651   }
3652   st->print_raw("tot "); totals.print(st); st->cr();
3653 
3654   DEBUG_ONLY(totals.verify());
3655 }
3656 
3657 void G1CollectedHeap::reset_taskqueue_stats() {
3658   const uint n = num_task_queues();
3659   for (uint i = 0; i < n; ++i) {
3660     task_queue(i)->stats.reset();
3661   }
3662 }
3663 #endif // TASKQUEUE_STATS
3664 
3665 void G1CollectedHeap::log_gc_header() {
3666   if (!G1Log::fine()) {
3667     return;
3668   }
3669 
3670   gclog_or_tty->gclog_stamp();
3671 
3672   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3673     .append(collector_state()->gcs_are_young() ? "(young)" : "(mixed)")
3674     .append(collector_state()->during_initial_mark_pause() ? " (initial-mark)" : "");
3675 
3676   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3677 }
3678 
3679 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3680   if (!G1Log::fine()) {
3681     return;
3682   }
3683 
3684   if (G1Log::finer()) {
3685     if (evacuation_failed()) {
3686       gclog_or_tty->print(" (to-space exhausted)");
3687     }
3688     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3689     g1_policy()->print_phases(pause_time_sec);
3690     g1_policy()->print_detailed_heap_transition();
3691   } else {
3692     if (evacuation_failed()) {
3693       gclog_or_tty->print("--");
3694     }
3695     g1_policy()->print_heap_transition();
3696     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3697   }
3698   gclog_or_tty->flush();
3699 }
3700 
3701 void G1CollectedHeap::wait_for_root_region_scanning() {
3702   double scan_wait_start = os::elapsedTime();
3703   // We have to wait until the CM threads finish scanning the
3704   // root regions as it's the only way to ensure that all the
3705   // objects on them have been correctly scanned before we start
3706   // moving them during the GC.
3707   bool waited = _cm->root_regions()->wait_until_scan_finished();
3708   double wait_time_ms = 0.0;
3709   if (waited) {
3710     double scan_wait_end = os::elapsedTime();
3711     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3712   }
3713   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3714 }
3715 
3716 bool
3717 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3718   assert_at_safepoint(true /* should_be_vm_thread */);
3719   guarantee(!is_gc_active(), "collection is not reentrant");
3720 
3721   if (GC_locker::check_active_before_gc()) {
3722     return false;
3723   }
3724 
3725   _gc_timer_stw->register_gc_start();
3726 
3727   GCIdMark gc_id_mark;
3728   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3729 
3730   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3731   ResourceMark rm;
3732 
3733   wait_for_root_region_scanning();
3734 
3735   G1Log::update_level();
3736   print_heap_before_gc();
3737   trace_heap_before_gc(_gc_tracer_stw);
3738 
3739   verify_region_sets_optional();
3740   verify_dirty_young_regions();
3741 
3742   // This call will decide whether this pause is an initial-mark
3743   // pause. If it is, during_initial_mark_pause() will return true
3744   // for the duration of this pause.
3745   g1_policy()->decide_on_conc_mark_initiation();
3746 
3747   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3748   assert(!collector_state()->during_initial_mark_pause() ||
3749           collector_state()->gcs_are_young(), "sanity");
3750 
3751   // We also do not allow mixed GCs during marking.
3752   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3753 
3754   // Record whether this pause is an initial mark. When the current
3755   // thread has completed its logging output and it's safe to signal
3756   // the CM thread, the flag's value in the policy has been reset.
3757   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3758 
3759   // Inner scope for scope based logging, timers, and stats collection
3760   {
3761     EvacuationInfo evacuation_info;
3762 
3763     if (collector_state()->during_initial_mark_pause()) {
3764       // We are about to start a marking cycle, so we increment the
3765       // full collection counter.
3766       increment_old_marking_cycles_started();
3767       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3768     }
3769 
3770     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3771 
3772     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3773 
3774     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3775                                                                   workers()->active_workers(),
3776                                                                   Threads::number_of_non_daemon_threads());
3777     workers()->set_active_workers(active_workers);
3778 
3779     double pause_start_sec = os::elapsedTime();
3780     g1_policy()->note_gc_start(active_workers);
3781     log_gc_header();
3782 
3783     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3784     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3785 
3786     // If the secondary_free_list is not empty, append it to the
3787     // free_list. No need to wait for the cleanup operation to finish;
3788     // the region allocation code will check the secondary_free_list
3789     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3790     // set, skip this step so that the region allocation code has to
3791     // get entries from the secondary_free_list.
3792     if (!G1StressConcRegionFreeing) {
3793       append_secondary_free_list_if_not_empty_with_lock();
3794     }
3795 
3796     assert(check_young_list_well_formed(), "young list should be well formed");
3797 
3798     // Don't dynamically change the number of GC threads this early.  A value of
3799     // 0 is used to indicate serial work.  When parallel work is done,
3800     // it will be set.
3801 
3802     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3803       IsGCActiveMark x;
3804 
3805       gc_prologue(false);
3806       increment_total_collections(false /* full gc */);
3807       increment_gc_time_stamp();
3808 
3809       verify_before_gc();
3810 
3811       check_bitmaps("GC Start");
3812 
3813 #if defined(COMPILER2) || INCLUDE_JVMCI
3814       DerivedPointerTable::clear();
3815 #endif
3816 
3817       // Please see comment in g1CollectedHeap.hpp and
3818       // G1CollectedHeap::ref_processing_init() to see how
3819       // reference processing currently works in G1.
3820 
3821       // Enable discovery in the STW reference processor
3822       ref_processor_stw()->enable_discovery();
3823 
3824       {
3825         // We want to temporarily turn off discovery by the
3826         // CM ref processor, if necessary, and turn it back on
3827         // on again later if we do. Using a scoped
3828         // NoRefDiscovery object will do this.
3829         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3830 
3831         // Forget the current alloc region (we might even choose it to be part
3832         // of the collection set!).
3833         _allocator->release_mutator_alloc_region();
3834 
3835         // We should call this after we retire the mutator alloc
3836         // region(s) so that all the ALLOC / RETIRE events are generated
3837         // before the start GC event.
3838         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3839 
3840         // This timing is only used by the ergonomics to handle our pause target.
3841         // It is unclear why this should not include the full pause. We will
3842         // investigate this in CR 7178365.
3843         //
3844         // Preserving the old comment here if that helps the investigation:
3845         //
3846         // The elapsed time induced by the start time below deliberately elides
3847         // the possible verification above.
3848         double sample_start_time_sec = os::elapsedTime();
3849 
3850         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3851 
3852         if (collector_state()->during_initial_mark_pause()) {
3853           concurrent_mark()->checkpointRootsInitialPre();
3854         }
3855 
3856         double time_remaining_ms = g1_policy()->finalize_young_cset_part(target_pause_time_ms);
3857         g1_policy()->finalize_old_cset_part(time_remaining_ms);
3858 
3859         evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length());
3860 
3861         // Make sure the remembered sets are up to date. This needs to be
3862         // done before register_humongous_regions_with_cset(), because the
3863         // remembered sets are used there to choose eager reclaim candidates.
3864         // If the remembered sets are not up to date we might miss some
3865         // entries that need to be handled.
3866         g1_rem_set()->cleanupHRRS();
3867 
3868         register_humongous_regions_with_cset();
3869 
3870         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3871 
3872         _cm->note_start_of_gc();
3873         // We call this after finalize_cset() to
3874         // ensure that the CSet has been finalized.
3875         _cm->verify_no_cset_oops();
3876 
3877         if (_hr_printer.is_active()) {
3878           HeapRegion* hr = g1_policy()->collection_set();
3879           while (hr != NULL) {
3880             _hr_printer.cset(hr);
3881             hr = hr->next_in_collection_set();
3882           }
3883         }
3884 
3885 #ifdef ASSERT
3886         VerifyCSetClosure cl;
3887         collection_set_iterate(&cl);
3888 #endif // ASSERT
3889 
3890         // Initialize the GC alloc regions.
3891         _allocator->init_gc_alloc_regions(evacuation_info);
3892 
3893         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), g1_policy()->young_cset_region_length());
3894         pre_evacuate_collection_set();
3895 
3896         // Actually do the work...
3897         evacuate_collection_set(evacuation_info, &per_thread_states);
3898 
3899         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3900 
3901         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3902         free_collection_set(g1_policy()->collection_set(), evacuation_info, surviving_young_words);
3903 
3904         eagerly_reclaim_humongous_regions();
3905 
3906         g1_policy()->clear_collection_set();
3907 
3908         // Start a new incremental collection set for the next pause.
3909         g1_policy()->start_incremental_cset_building();
3910 
3911         clear_cset_fast_test();
3912 
3913         _young_list->reset_sampled_info();
3914 
3915         // Don't check the whole heap at this point as the
3916         // GC alloc regions from this pause have been tagged
3917         // as survivors and moved on to the survivor list.
3918         // Survivor regions will fail the !is_young() check.
3919         assert(check_young_list_empty(false /* check_heap */),
3920           "young list should be empty");
3921 
3922         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3923                                              _young_list->first_survivor_region(),
3924                                              _young_list->last_survivor_region());
3925 
3926         _young_list->reset_auxilary_lists();
3927 
3928         if (evacuation_failed()) {
3929           set_used(recalculate_used());
3930           if (_archive_allocator != NULL) {
3931             _archive_allocator->clear_used();
3932           }
3933           for (uint i = 0; i < ParallelGCThreads; i++) {
3934             if (_evacuation_failed_info_array[i].has_failed()) {
3935               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3936             }
3937           }
3938         } else {
3939           // The "used" of the the collection set have already been subtracted
3940           // when they were freed.  Add in the bytes evacuated.
3941           increase_used(g1_policy()->bytes_copied_during_gc());
3942         }
3943 
3944         if (collector_state()->during_initial_mark_pause()) {
3945           // We have to do this before we notify the CM threads that
3946           // they can start working to make sure that all the
3947           // appropriate initialization is done on the CM object.
3948           concurrent_mark()->checkpointRootsInitialPost();
3949           collector_state()->set_mark_in_progress(true);
3950           // Note that we don't actually trigger the CM thread at
3951           // this point. We do that later when we're sure that
3952           // the current thread has completed its logging output.
3953         }
3954 
3955         allocate_dummy_regions();
3956 
3957         _allocator->init_mutator_alloc_region();
3958 
3959         {
3960           size_t expand_bytes = g1_policy()->expansion_amount();
3961           if (expand_bytes > 0) {
3962             size_t bytes_before = capacity();
3963             // No need for an ergo verbose message here,
3964             // expansion_amount() does this when it returns a value > 0.
3965             double expand_ms;
3966             if (!expand(expand_bytes, &expand_ms)) {
3967               // We failed to expand the heap. Cannot do anything about it.
3968             }
3969             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3970           }
3971         }
3972 
3973         // We redo the verification but now wrt to the new CSet which
3974         // has just got initialized after the previous CSet was freed.
3975         _cm->verify_no_cset_oops();
3976         _cm->note_end_of_gc();
3977 
3978         // This timing is only used by the ergonomics to handle our pause target.
3979         // It is unclear why this should not include the full pause. We will
3980         // investigate this in CR 7178365.
3981         double sample_end_time_sec = os::elapsedTime();
3982         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3983         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3984         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned);
3985 
3986         evacuation_info.set_collectionset_used_before(g1_policy()->collection_set_bytes_used_before());
3987         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3988 
3989         MemoryService::track_memory_usage();
3990 
3991         // In prepare_for_verify() below we'll need to scan the deferred
3992         // update buffers to bring the RSets up-to-date if
3993         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3994         // the update buffers we'll probably need to scan cards on the
3995         // regions we just allocated to (i.e., the GC alloc
3996         // regions). However, during the last GC we called
3997         // set_saved_mark() on all the GC alloc regions, so card
3998         // scanning might skip the [saved_mark_word()...top()] area of
3999         // those regions (i.e., the area we allocated objects into
4000         // during the last GC). But it shouldn't. Given that
4001         // saved_mark_word() is conditional on whether the GC time stamp
4002         // on the region is current or not, by incrementing the GC time
4003         // stamp here we invalidate all the GC time stamps on all the
4004         // regions and saved_mark_word() will simply return top() for
4005         // all the regions. This is a nicer way of ensuring this rather
4006         // than iterating over the regions and fixing them. In fact, the
4007         // GC time stamp increment here also ensures that
4008         // saved_mark_word() will return top() between pauses, i.e.,
4009         // during concurrent refinement. So we don't need the
4010         // is_gc_active() check to decided which top to use when
4011         // scanning cards (see CR 7039627).
4012         increment_gc_time_stamp();
4013 
4014         verify_after_gc();
4015         check_bitmaps("GC End");
4016 
4017         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4018         ref_processor_stw()->verify_no_references_recorded();
4019 
4020         // CM reference discovery will be re-enabled if necessary.
4021       }
4022 
4023       // We should do this after we potentially expand the heap so
4024       // that all the COMMIT events are generated before the end GC
4025       // event, and after we retire the GC alloc regions so that all
4026       // RETIRE events are generated before the end GC event.
4027       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4028 
4029 #ifdef TRACESPINNING
4030       ParallelTaskTerminator::print_termination_counts();
4031 #endif
4032 
4033       gc_epilogue(false);
4034     }
4035 
4036     // Print the remainder of the GC log output.
4037     log_gc_footer(os::elapsedTime() - pause_start_sec);
4038 
4039     // It is not yet to safe to tell the concurrent mark to
4040     // start as we have some optional output below. We don't want the
4041     // output from the concurrent mark thread interfering with this
4042     // logging output either.
4043 
4044     _hrm.verify_optional();
4045     verify_region_sets_optional();
4046 
4047     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4048     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4049 
4050     print_heap_after_gc();
4051     trace_heap_after_gc(_gc_tracer_stw);
4052 
4053     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4054     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4055     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4056     // before any GC notifications are raised.
4057     g1mm()->update_sizes();
4058 
4059     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4060     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4061     _gc_timer_stw->register_gc_end();
4062     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4063   }
4064   // It should now be safe to tell the concurrent mark thread to start
4065   // without its logging output interfering with the logging output
4066   // that came from the pause.
4067 
4068   if (should_start_conc_mark) {
4069     // CAUTION: after the doConcurrentMark() call below,
4070     // the concurrent marking thread(s) could be running
4071     // concurrently with us. Make sure that anything after
4072     // this point does not assume that we are the only GC thread
4073     // running. Note: of course, the actual marking work will
4074     // not start until the safepoint itself is released in
4075     // SuspendibleThreadSet::desynchronize().
4076     doConcurrentMark();
4077   }
4078 
4079   return true;
4080 }
4081 
4082 void G1CollectedHeap::remove_self_forwarding_pointers() {
4083   double remove_self_forwards_start = os::elapsedTime();
4084 
4085   G1ParRemoveSelfForwardPtrsTask rsfp_task;
4086   workers()->run_task(&rsfp_task);
4087 
4088   // Now restore saved marks, if any.
4089   for (uint i = 0; i < ParallelGCThreads; i++) {
4090     OopAndMarkOopStack& cur = _preserved_objs[i];
4091     while (!cur.is_empty()) {
4092       OopAndMarkOop elem = cur.pop();
4093       elem.set_mark();
4094     }
4095     cur.clear(true);
4096   }
4097 
4098   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4099 }
4100 
4101 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
4102   if (!_evacuation_failed) {
4103     _evacuation_failed = true;
4104   }
4105 
4106   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
4107 
4108   // We want to call the "for_promotion_failure" version only in the
4109   // case of a promotion failure.
4110   if (m->must_be_preserved_for_promotion_failure(obj)) {
4111     OopAndMarkOop elem(obj, m);
4112     _preserved_objs[worker_id].push(elem);
4113   }
4114 }
4115 
4116 class G1ParEvacuateFollowersClosure : public VoidClosure {
4117 private:
4118   double _start_term;
4119   double _term_time;
4120   size_t _term_attempts;
4121 
4122   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
4123   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
4124 protected:
4125   G1CollectedHeap*              _g1h;
4126   G1ParScanThreadState*         _par_scan_state;
4127   RefToScanQueueSet*            _queues;
4128   ParallelTaskTerminator*       _terminator;
4129 
4130   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4131   RefToScanQueueSet*      queues()         { return _queues; }
4132   ParallelTaskTerminator* terminator()     { return _terminator; }
4133 
4134 public:
4135   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4136                                 G1ParScanThreadState* par_scan_state,
4137                                 RefToScanQueueSet* queues,
4138                                 ParallelTaskTerminator* terminator)
4139     : _g1h(g1h), _par_scan_state(par_scan_state),
4140       _queues(queues), _terminator(terminator),
4141       _start_term(0.0), _term_time(0.0), _term_attempts(0) {}
4142 
4143   void do_void();
4144 
4145   double term_time() const { return _term_time; }
4146   size_t term_attempts() const { return _term_attempts; }
4147 
4148 private:
4149   inline bool offer_termination();
4150 };
4151 
4152 bool G1ParEvacuateFollowersClosure::offer_termination() {
4153   G1ParScanThreadState* const pss = par_scan_state();
4154   start_term_time();
4155   const bool res = terminator()->offer_termination();
4156   end_term_time();
4157   return res;
4158 }
4159 
4160 void G1ParEvacuateFollowersClosure::do_void() {
4161   G1ParScanThreadState* const pss = par_scan_state();
4162   pss->trim_queue();
4163   do {
4164     pss->steal_and_trim_queue(queues());
4165   } while (!offer_termination());
4166 }
4167 
4168 class G1ParTask : public AbstractGangTask {
4169 protected:
4170   G1CollectedHeap*         _g1h;
4171   G1ParScanThreadStateSet* _pss;
4172   RefToScanQueueSet*       _queues;
4173   G1RootProcessor*         _root_processor;
4174   ParallelTaskTerminator   _terminator;
4175   uint                     _n_workers;
4176 
4177 public:
4178   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4179     : AbstractGangTask("G1 collection"),
4180       _g1h(g1h),
4181       _pss(per_thread_states),
4182       _queues(task_queues),
4183       _root_processor(root_processor),
4184       _terminator(n_workers, _queues),
4185       _n_workers(n_workers)
4186   {}
4187 
4188   void work(uint worker_id) {
4189     if (worker_id >= _n_workers) return;  // no work needed this round
4190 
4191     double start_sec = os::elapsedTime();
4192     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
4193 
4194     {
4195       ResourceMark rm;
4196       HandleMark   hm;
4197 
4198       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4199 
4200       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
4201       pss->set_ref_processor(rp);
4202 
4203       double start_strong_roots_sec = os::elapsedTime();
4204 
4205       _root_processor->evacuate_roots(pss->closures(), worker_id);
4206 
4207       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
4208 
4209       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
4210       // treating the nmethods visited to act as roots for concurrent marking.
4211       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
4212       // objects copied by the current evacuation.
4213       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
4214                                                                              pss->closures()->weak_codeblobs(),
4215                                                                              worker_id);
4216 
4217       _pss->add_cards_scanned(worker_id, cards_scanned);
4218 
4219       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
4220 
4221       double term_sec = 0.0;
4222       size_t evac_term_attempts = 0;
4223       {
4224         double start = os::elapsedTime();
4225         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
4226         evac.do_void();
4227 
4228         evac_term_attempts = evac.term_attempts();
4229         term_sec = evac.term_time();
4230         double elapsed_sec = os::elapsedTime() - start;
4231         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4232         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4233         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
4234       }
4235 
4236       assert(pss->queue_is_empty(), "should be empty");
4237 
4238       if (PrintTerminationStats) {
4239         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4240         size_t lab_waste;
4241         size_t lab_undo_waste;
4242         pss->waste(lab_waste, lab_undo_waste);
4243         _g1h->print_termination_stats(gclog_or_tty,
4244                                       worker_id,
4245                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
4246                                       strong_roots_sec * 1000.0,                  /* strong roots time */
4247                                       term_sec * 1000.0,                          /* evac term time */
4248                                       evac_term_attempts,                         /* evac term attempts */
4249                                       lab_waste,                                  /* alloc buffer waste */
4250                                       lab_undo_waste                              /* undo waste */
4251                                       );
4252       }
4253 
4254       // Close the inner scope so that the ResourceMark and HandleMark
4255       // destructors are executed here and are included as part of the
4256       // "GC Worker Time".
4257     }
4258     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4259   }
4260 };
4261 
4262 void G1CollectedHeap::print_termination_stats_hdr(outputStream* const st) {
4263   st->print_raw_cr("GC Termination Stats");
4264   st->print_raw_cr("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
4265   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts  total   alloc    undo");
4266   st->print_raw_cr("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
4267 }
4268 
4269 void G1CollectedHeap::print_termination_stats(outputStream* const st,
4270                                               uint worker_id,
4271                                               double elapsed_ms,
4272                                               double strong_roots_ms,
4273                                               double term_ms,
4274                                               size_t term_attempts,
4275                                               size_t alloc_buffer_waste,
4276                                               size_t undo_waste) const {
4277   st->print_cr("%3d %9.2f %9.2f %6.2f "
4278                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4279                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4280                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
4281                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
4282                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
4283                alloc_buffer_waste * HeapWordSize / K,
4284                undo_waste * HeapWordSize / K);
4285 }
4286 
4287 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4288 private:
4289   BoolObjectClosure* _is_alive;
4290   int _initial_string_table_size;
4291   int _initial_symbol_table_size;
4292 
4293   bool  _process_strings;
4294   int _strings_processed;
4295   int _strings_removed;
4296 
4297   bool  _process_symbols;
4298   int _symbols_processed;
4299   int _symbols_removed;
4300 
4301 public:
4302   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4303     AbstractGangTask("String/Symbol Unlinking"),
4304     _is_alive(is_alive),
4305     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4306     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4307 
4308     _initial_string_table_size = StringTable::the_table()->table_size();
4309     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4310     if (process_strings) {
4311       StringTable::clear_parallel_claimed_index();
4312     }
4313     if (process_symbols) {
4314       SymbolTable::clear_parallel_claimed_index();
4315     }
4316   }
4317 
4318   ~G1StringSymbolTableUnlinkTask() {
4319     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4320               "claim value %d after unlink less than initial string table size %d",
4321               StringTable::parallel_claimed_index(), _initial_string_table_size);
4322     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4323               "claim value %d after unlink less than initial symbol table size %d",
4324               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
4325 
4326     if (G1TraceStringSymbolTableScrubbing) {
4327       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4328                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4329                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4330                              strings_processed(), strings_removed(),
4331                              symbols_processed(), symbols_removed());
4332     }
4333   }
4334 
4335   void work(uint worker_id) {
4336     int strings_processed = 0;
4337     int strings_removed = 0;
4338     int symbols_processed = 0;
4339     int symbols_removed = 0;
4340     if (_process_strings) {
4341       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4342       Atomic::add(strings_processed, &_strings_processed);
4343       Atomic::add(strings_removed, &_strings_removed);
4344     }
4345     if (_process_symbols) {
4346       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4347       Atomic::add(symbols_processed, &_symbols_processed);
4348       Atomic::add(symbols_removed, &_symbols_removed);
4349     }
4350   }
4351 
4352   size_t strings_processed() const { return (size_t)_strings_processed; }
4353   size_t strings_removed()   const { return (size_t)_strings_removed; }
4354 
4355   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4356   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4357 };
4358 
4359 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4360 private:
4361   static Monitor* _lock;
4362 
4363   BoolObjectClosure* const _is_alive;
4364   const bool               _unloading_occurred;
4365   const uint               _num_workers;
4366 
4367   // Variables used to claim nmethods.
4368   nmethod* _first_nmethod;
4369   volatile nmethod* _claimed_nmethod;
4370 
4371   // The list of nmethods that need to be processed by the second pass.
4372   volatile nmethod* _postponed_list;
4373   volatile uint     _num_entered_barrier;
4374 
4375  public:
4376   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4377       _is_alive(is_alive),
4378       _unloading_occurred(unloading_occurred),
4379       _num_workers(num_workers),
4380       _first_nmethod(NULL),
4381       _claimed_nmethod(NULL),
4382       _postponed_list(NULL),
4383       _num_entered_barrier(0)
4384   {
4385     nmethod::increase_unloading_clock();
4386     // Get first alive nmethod
4387     NMethodIterator iter = NMethodIterator();
4388     if(iter.next_alive()) {
4389       _first_nmethod = iter.method();
4390     }
4391     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4392   }
4393 
4394   ~G1CodeCacheUnloadingTask() {
4395     CodeCache::verify_clean_inline_caches();
4396 
4397     CodeCache::set_needs_cache_clean(false);
4398     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4399 
4400     CodeCache::verify_icholder_relocations();
4401   }
4402 
4403  private:
4404   void add_to_postponed_list(nmethod* nm) {
4405       nmethod* old;
4406       do {
4407         old = (nmethod*)_postponed_list;
4408         nm->set_unloading_next(old);
4409       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4410   }
4411 
4412   void clean_nmethod(nmethod* nm) {
4413     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4414 
4415     if (postponed) {
4416       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4417       add_to_postponed_list(nm);
4418     }
4419 
4420     // Mark that this thread has been cleaned/unloaded.
4421     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4422     nm->set_unloading_clock(nmethod::global_unloading_clock());
4423   }
4424 
4425   void clean_nmethod_postponed(nmethod* nm) {
4426     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4427   }
4428 
4429   static const int MaxClaimNmethods = 16;
4430 
4431   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4432     nmethod* first;
4433     NMethodIterator last;
4434 
4435     do {
4436       *num_claimed_nmethods = 0;
4437 
4438       first = (nmethod*)_claimed_nmethod;
4439       last = NMethodIterator(first);
4440 
4441       if (first != NULL) {
4442 
4443         for (int i = 0; i < MaxClaimNmethods; i++) {
4444           if (!last.next_alive()) {
4445             break;
4446           }
4447           claimed_nmethods[i] = last.method();
4448           (*num_claimed_nmethods)++;
4449         }
4450       }
4451 
4452     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4453   }
4454 
4455   nmethod* claim_postponed_nmethod() {
4456     nmethod* claim;
4457     nmethod* next;
4458 
4459     do {
4460       claim = (nmethod*)_postponed_list;
4461       if (claim == NULL) {
4462         return NULL;
4463       }
4464 
4465       next = claim->unloading_next();
4466 
4467     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4468 
4469     return claim;
4470   }
4471 
4472  public:
4473   // Mark that we're done with the first pass of nmethod cleaning.
4474   void barrier_mark(uint worker_id) {
4475     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4476     _num_entered_barrier++;
4477     if (_num_entered_barrier == _num_workers) {
4478       ml.notify_all();
4479     }
4480   }
4481 
4482   // See if we have to wait for the other workers to
4483   // finish their first-pass nmethod cleaning work.
4484   void barrier_wait(uint worker_id) {
4485     if (_num_entered_barrier < _num_workers) {
4486       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4487       while (_num_entered_barrier < _num_workers) {
4488           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4489       }
4490     }
4491   }
4492 
4493   // Cleaning and unloading of nmethods. Some work has to be postponed
4494   // to the second pass, when we know which nmethods survive.
4495   void work_first_pass(uint worker_id) {
4496     // The first nmethods is claimed by the first worker.
4497     if (worker_id == 0 && _first_nmethod != NULL) {
4498       clean_nmethod(_first_nmethod);
4499       _first_nmethod = NULL;
4500     }
4501 
4502     int num_claimed_nmethods;
4503     nmethod* claimed_nmethods[MaxClaimNmethods];
4504 
4505     while (true) {
4506       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4507 
4508       if (num_claimed_nmethods == 0) {
4509         break;
4510       }
4511 
4512       for (int i = 0; i < num_claimed_nmethods; i++) {
4513         clean_nmethod(claimed_nmethods[i]);
4514       }
4515     }
4516   }
4517 
4518   void work_second_pass(uint worker_id) {
4519     nmethod* nm;
4520     // Take care of postponed nmethods.
4521     while ((nm = claim_postponed_nmethod()) != NULL) {
4522       clean_nmethod_postponed(nm);
4523     }
4524   }
4525 };
4526 
4527 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4528 
4529 class G1KlassCleaningTask : public StackObj {
4530   BoolObjectClosure*                      _is_alive;
4531   volatile jint                           _clean_klass_tree_claimed;
4532   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4533 
4534  public:
4535   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4536       _is_alive(is_alive),
4537       _clean_klass_tree_claimed(0),
4538       _klass_iterator() {
4539   }
4540 
4541  private:
4542   bool claim_clean_klass_tree_task() {
4543     if (_clean_klass_tree_claimed) {
4544       return false;
4545     }
4546 
4547     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4548   }
4549 
4550   InstanceKlass* claim_next_klass() {
4551     Klass* klass;
4552     do {
4553       klass =_klass_iterator.next_klass();
4554     } while (klass != NULL && !klass->is_instance_klass());
4555 
4556     // this can be null so don't call InstanceKlass::cast
4557     return static_cast<InstanceKlass*>(klass);
4558   }
4559 
4560 public:
4561 
4562   void clean_klass(InstanceKlass* ik) {
4563     ik->clean_weak_instanceklass_links(_is_alive);
4564   }
4565 
4566   void work() {
4567     ResourceMark rm;
4568 
4569     // One worker will clean the subklass/sibling klass tree.
4570     if (claim_clean_klass_tree_task()) {
4571       Klass::clean_subklass_tree(_is_alive);
4572     }
4573 
4574     // All workers will help cleaning the classes,
4575     InstanceKlass* klass;
4576     while ((klass = claim_next_klass()) != NULL) {
4577       clean_klass(klass);
4578     }
4579   }
4580 };
4581 
4582 // To minimize the remark pause times, the tasks below are done in parallel.
4583 class G1ParallelCleaningTask : public AbstractGangTask {
4584 private:
4585   G1StringSymbolTableUnlinkTask _string_symbol_task;
4586   G1CodeCacheUnloadingTask      _code_cache_task;
4587   G1KlassCleaningTask           _klass_cleaning_task;
4588 
4589 public:
4590   // The constructor is run in the VMThread.
4591   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4592       AbstractGangTask("Parallel Cleaning"),
4593       _string_symbol_task(is_alive, process_strings, process_symbols),
4594       _code_cache_task(num_workers, is_alive, unloading_occurred),
4595       _klass_cleaning_task(is_alive) {
4596   }
4597 
4598   // The parallel work done by all worker threads.
4599   void work(uint worker_id) {
4600     // Do first pass of code cache cleaning.
4601     _code_cache_task.work_first_pass(worker_id);
4602 
4603     // Let the threads mark that the first pass is done.
4604     _code_cache_task.barrier_mark(worker_id);
4605 
4606     // Clean the Strings and Symbols.
4607     _string_symbol_task.work(worker_id);
4608 
4609     // Wait for all workers to finish the first code cache cleaning pass.
4610     _code_cache_task.barrier_wait(worker_id);
4611 
4612     // Do the second code cache cleaning work, which realize on
4613     // the liveness information gathered during the first pass.
4614     _code_cache_task.work_second_pass(worker_id);
4615 
4616     // Clean all klasses that were not unloaded.
4617     _klass_cleaning_task.work();
4618   }
4619 };
4620 
4621 
4622 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4623                                         bool process_strings,
4624                                         bool process_symbols,
4625                                         bool class_unloading_occurred) {
4626   uint n_workers = workers()->active_workers();
4627 
4628   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4629                                         n_workers, class_unloading_occurred);
4630   workers()->run_task(&g1_unlink_task);
4631 }
4632 
4633 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4634                                                      bool process_strings, bool process_symbols) {
4635   {
4636     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4637     workers()->run_task(&g1_unlink_task);
4638   }
4639 
4640   if (G1StringDedup::is_enabled()) {
4641     G1StringDedup::unlink(is_alive);
4642   }
4643 }
4644 
4645 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4646  private:
4647   DirtyCardQueueSet* _queue;
4648  public:
4649   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4650 
4651   virtual void work(uint worker_id) {
4652     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4653     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4654 
4655     RedirtyLoggedCardTableEntryClosure cl;
4656     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4657 
4658     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4659   }
4660 };
4661 
4662 void G1CollectedHeap::redirty_logged_cards() {
4663   double redirty_logged_cards_start = os::elapsedTime();
4664 
4665   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4666   dirty_card_queue_set().reset_for_par_iteration();
4667   workers()->run_task(&redirty_task);
4668 
4669   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4670   dcq.merge_bufferlists(&dirty_card_queue_set());
4671   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4672 
4673   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4674 }
4675 
4676 // Weak Reference Processing support
4677 
4678 // An always "is_alive" closure that is used to preserve referents.
4679 // If the object is non-null then it's alive.  Used in the preservation
4680 // of referent objects that are pointed to by reference objects
4681 // discovered by the CM ref processor.
4682 class G1AlwaysAliveClosure: public BoolObjectClosure {
4683   G1CollectedHeap* _g1;
4684 public:
4685   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4686   bool do_object_b(oop p) {
4687     if (p != NULL) {
4688       return true;
4689     }
4690     return false;
4691   }
4692 };
4693 
4694 bool G1STWIsAliveClosure::do_object_b(oop p) {
4695   // An object is reachable if it is outside the collection set,
4696   // or is inside and copied.
4697   return !_g1->is_in_cset(p) || p->is_forwarded();
4698 }
4699 
4700 // Non Copying Keep Alive closure
4701 class G1KeepAliveClosure: public OopClosure {
4702   G1CollectedHeap* _g1;
4703 public:
4704   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4705   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4706   void do_oop(oop* p) {
4707     oop obj = *p;
4708     assert(obj != NULL, "the caller should have filtered out NULL values");
4709 
4710     const InCSetState cset_state = _g1->in_cset_state(obj);
4711     if (!cset_state.is_in_cset_or_humongous()) {
4712       return;
4713     }
4714     if (cset_state.is_in_cset()) {
4715       assert( obj->is_forwarded(), "invariant" );
4716       *p = obj->forwardee();
4717     } else {
4718       assert(!obj->is_forwarded(), "invariant" );
4719       assert(cset_state.is_humongous(),
4720              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
4721       _g1->set_humongous_is_live(obj);
4722     }
4723   }
4724 };
4725 
4726 // Copying Keep Alive closure - can be called from both
4727 // serial and parallel code as long as different worker
4728 // threads utilize different G1ParScanThreadState instances
4729 // and different queues.
4730 
4731 class G1CopyingKeepAliveClosure: public OopClosure {
4732   G1CollectedHeap*         _g1h;
4733   OopClosure*              _copy_non_heap_obj_cl;
4734   G1ParScanThreadState*    _par_scan_state;
4735 
4736 public:
4737   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4738                             OopClosure* non_heap_obj_cl,
4739                             G1ParScanThreadState* pss):
4740     _g1h(g1h),
4741     _copy_non_heap_obj_cl(non_heap_obj_cl),
4742     _par_scan_state(pss)
4743   {}
4744 
4745   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4746   virtual void do_oop(      oop* p) { do_oop_work(p); }
4747 
4748   template <class T> void do_oop_work(T* p) {
4749     oop obj = oopDesc::load_decode_heap_oop(p);
4750 
4751     if (_g1h->is_in_cset_or_humongous(obj)) {
4752       // If the referent object has been forwarded (either copied
4753       // to a new location or to itself in the event of an
4754       // evacuation failure) then we need to update the reference
4755       // field and, if both reference and referent are in the G1
4756       // heap, update the RSet for the referent.
4757       //
4758       // If the referent has not been forwarded then we have to keep
4759       // it alive by policy. Therefore we have copy the referent.
4760       //
4761       // If the reference field is in the G1 heap then we can push
4762       // on the PSS queue. When the queue is drained (after each
4763       // phase of reference processing) the object and it's followers
4764       // will be copied, the reference field set to point to the
4765       // new location, and the RSet updated. Otherwise we need to
4766       // use the the non-heap or metadata closures directly to copy
4767       // the referent object and update the pointer, while avoiding
4768       // updating the RSet.
4769 
4770       if (_g1h->is_in_g1_reserved(p)) {
4771         _par_scan_state->push_on_queue(p);
4772       } else {
4773         assert(!Metaspace::contains((const void*)p),
4774                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4775         _copy_non_heap_obj_cl->do_oop(p);
4776       }
4777     }
4778   }
4779 };
4780 
4781 // Serial drain queue closure. Called as the 'complete_gc'
4782 // closure for each discovered list in some of the
4783 // reference processing phases.
4784 
4785 class G1STWDrainQueueClosure: public VoidClosure {
4786 protected:
4787   G1CollectedHeap* _g1h;
4788   G1ParScanThreadState* _par_scan_state;
4789 
4790   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4791 
4792 public:
4793   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4794     _g1h(g1h),
4795     _par_scan_state(pss)
4796   { }
4797 
4798   void do_void() {
4799     G1ParScanThreadState* const pss = par_scan_state();
4800     pss->trim_queue();
4801   }
4802 };
4803 
4804 // Parallel Reference Processing closures
4805 
4806 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4807 // processing during G1 evacuation pauses.
4808 
4809 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4810 private:
4811   G1CollectedHeap*          _g1h;
4812   G1ParScanThreadStateSet*  _pss;
4813   RefToScanQueueSet*        _queues;
4814   WorkGang*                 _workers;
4815   uint                      _active_workers;
4816 
4817 public:
4818   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4819                            G1ParScanThreadStateSet* per_thread_states,
4820                            WorkGang* workers,
4821                            RefToScanQueueSet *task_queues,
4822                            uint n_workers) :
4823     _g1h(g1h),
4824     _pss(per_thread_states),
4825     _queues(task_queues),
4826     _workers(workers),
4827     _active_workers(n_workers)
4828   {
4829     assert(n_workers > 0, "shouldn't call this otherwise");
4830   }
4831 
4832   // Executes the given task using concurrent marking worker threads.
4833   virtual void execute(ProcessTask& task);
4834   virtual void execute(EnqueueTask& task);
4835 };
4836 
4837 // Gang task for possibly parallel reference processing
4838 
4839 class G1STWRefProcTaskProxy: public AbstractGangTask {
4840   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4841   ProcessTask&     _proc_task;
4842   G1CollectedHeap* _g1h;
4843   G1ParScanThreadStateSet* _pss;
4844   RefToScanQueueSet* _task_queues;
4845   ParallelTaskTerminator* _terminator;
4846 
4847 public:
4848   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4849                         G1CollectedHeap* g1h,
4850                         G1ParScanThreadStateSet* per_thread_states,
4851                         RefToScanQueueSet *task_queues,
4852                         ParallelTaskTerminator* terminator) :
4853     AbstractGangTask("Process reference objects in parallel"),
4854     _proc_task(proc_task),
4855     _g1h(g1h),
4856     _pss(per_thread_states),
4857     _task_queues(task_queues),
4858     _terminator(terminator)
4859   {}
4860 
4861   virtual void work(uint worker_id) {
4862     // The reference processing task executed by a single worker.
4863     ResourceMark rm;
4864     HandleMark   hm;
4865 
4866     G1STWIsAliveClosure is_alive(_g1h);
4867 
4868     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4869     pss->set_ref_processor(NULL);
4870 
4871     // Keep alive closure.
4872     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4873 
4874     // Complete GC closure
4875     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4876 
4877     // Call the reference processing task's work routine.
4878     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4879 
4880     // Note we cannot assert that the refs array is empty here as not all
4881     // of the processing tasks (specifically phase2 - pp2_work) execute
4882     // the complete_gc closure (which ordinarily would drain the queue) so
4883     // the queue may not be empty.
4884   }
4885 };
4886 
4887 // Driver routine for parallel reference processing.
4888 // Creates an instance of the ref processing gang
4889 // task and has the worker threads execute it.
4890 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4891   assert(_workers != NULL, "Need parallel worker threads.");
4892 
4893   ParallelTaskTerminator terminator(_active_workers, _queues);
4894   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4895 
4896   _workers->run_task(&proc_task_proxy);
4897 }
4898 
4899 // Gang task for parallel reference enqueueing.
4900 
4901 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4902   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4903   EnqueueTask& _enq_task;
4904 
4905 public:
4906   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4907     AbstractGangTask("Enqueue reference objects in parallel"),
4908     _enq_task(enq_task)
4909   { }
4910 
4911   virtual void work(uint worker_id) {
4912     _enq_task.work(worker_id);
4913   }
4914 };
4915 
4916 // Driver routine for parallel reference enqueueing.
4917 // Creates an instance of the ref enqueueing gang
4918 // task and has the worker threads execute it.
4919 
4920 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4921   assert(_workers != NULL, "Need parallel worker threads.");
4922 
4923   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4924 
4925   _workers->run_task(&enq_task_proxy);
4926 }
4927 
4928 // End of weak reference support closures
4929 
4930 // Abstract task used to preserve (i.e. copy) any referent objects
4931 // that are in the collection set and are pointed to by reference
4932 // objects discovered by the CM ref processor.
4933 
4934 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4935 protected:
4936   G1CollectedHeap*         _g1h;
4937   G1ParScanThreadStateSet* _pss;
4938   RefToScanQueueSet*       _queues;
4939   ParallelTaskTerminator   _terminator;
4940   uint                     _n_workers;
4941 
4942 public:
4943   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4944     AbstractGangTask("ParPreserveCMReferents"),
4945     _g1h(g1h),
4946     _pss(per_thread_states),
4947     _queues(task_queues),
4948     _terminator(workers, _queues),
4949     _n_workers(workers)
4950   { }
4951 
4952   void work(uint worker_id) {
4953     ResourceMark rm;
4954     HandleMark   hm;
4955 
4956     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4957     pss->set_ref_processor(NULL);
4958     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4959 
4960     // Is alive closure
4961     G1AlwaysAliveClosure always_alive(_g1h);
4962 
4963     // Copying keep alive closure. Applied to referent objects that need
4964     // to be copied.
4965     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4966 
4967     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4968 
4969     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4970     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4971 
4972     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4973     // So this must be true - but assert just in case someone decides to
4974     // change the worker ids.
4975     assert(worker_id < limit, "sanity");
4976     assert(!rp->discovery_is_atomic(), "check this code");
4977 
4978     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4979     for (uint idx = worker_id; idx < limit; idx += stride) {
4980       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4981 
4982       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4983       while (iter.has_next()) {
4984         // Since discovery is not atomic for the CM ref processor, we
4985         // can see some null referent objects.
4986         iter.load_ptrs(DEBUG_ONLY(true));
4987         oop ref = iter.obj();
4988 
4989         // This will filter nulls.
4990         if (iter.is_referent_alive()) {
4991           iter.make_referent_alive();
4992         }
4993         iter.move_to_next();
4994       }
4995     }
4996 
4997     // Drain the queue - which may cause stealing
4998     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4999     drain_queue.do_void();
5000     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5001     assert(pss->queue_is_empty(), "should be");
5002   }
5003 };
5004 
5005 // Weak Reference processing during an evacuation pause (part 1).
5006 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5007   double ref_proc_start = os::elapsedTime();
5008 
5009   ReferenceProcessor* rp = _ref_processor_stw;
5010   assert(rp->discovery_enabled(), "should have been enabled");
5011 
5012   // Any reference objects, in the collection set, that were 'discovered'
5013   // by the CM ref processor should have already been copied (either by
5014   // applying the external root copy closure to the discovered lists, or
5015   // by following an RSet entry).
5016   //
5017   // But some of the referents, that are in the collection set, that these
5018   // reference objects point to may not have been copied: the STW ref
5019   // processor would have seen that the reference object had already
5020   // been 'discovered' and would have skipped discovering the reference,
5021   // but would not have treated the reference object as a regular oop.
5022   // As a result the copy closure would not have been applied to the
5023   // referent object.
5024   //
5025   // We need to explicitly copy these referent objects - the references
5026   // will be processed at the end of remarking.
5027   //
5028   // We also need to do this copying before we process the reference
5029   // objects discovered by the STW ref processor in case one of these
5030   // referents points to another object which is also referenced by an
5031   // object discovered by the STW ref processor.
5032 
5033   uint no_of_gc_workers = workers()->active_workers();
5034 
5035   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5036                                                  per_thread_states,
5037                                                  no_of_gc_workers,
5038                                                  _task_queues);
5039 
5040   workers()->run_task(&keep_cm_referents);
5041 
5042   // Closure to test whether a referent is alive.
5043   G1STWIsAliveClosure is_alive(this);
5044 
5045   // Even when parallel reference processing is enabled, the processing
5046   // of JNI refs is serial and performed serially by the current thread
5047   // rather than by a worker. The following PSS will be used for processing
5048   // JNI refs.
5049 
5050   // Use only a single queue for this PSS.
5051   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
5052   pss->set_ref_processor(NULL);
5053   assert(pss->queue_is_empty(), "pre-condition");
5054 
5055   // Keep alive closure.
5056   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
5057 
5058   // Serial Complete GC closure
5059   G1STWDrainQueueClosure drain_queue(this, pss);
5060 
5061   // Setup the soft refs policy...
5062   rp->setup_policy(false);
5063 
5064   ReferenceProcessorStats stats;
5065   if (!rp->processing_is_mt()) {
5066     // Serial reference processing...
5067     stats = rp->process_discovered_references(&is_alive,
5068                                               &keep_alive,
5069                                               &drain_queue,
5070                                               NULL,
5071                                               _gc_timer_stw);
5072   } else {
5073     // Parallel reference processing
5074     assert(rp->num_q() == no_of_gc_workers, "sanity");
5075     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5076 
5077     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
5078     stats = rp->process_discovered_references(&is_alive,
5079                                               &keep_alive,
5080                                               &drain_queue,
5081                                               &par_task_executor,
5082                                               _gc_timer_stw);
5083   }
5084 
5085   _gc_tracer_stw->report_gc_reference_stats(stats);
5086 
5087   // We have completed copying any necessary live referent objects.
5088   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
5089 
5090   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5091   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5092 }
5093 
5094 // Weak Reference processing during an evacuation pause (part 2).
5095 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5096   double ref_enq_start = os::elapsedTime();
5097 
5098   ReferenceProcessor* rp = _ref_processor_stw;
5099   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5100 
5101   // Now enqueue any remaining on the discovered lists on to
5102   // the pending list.
5103   if (!rp->processing_is_mt()) {
5104     // Serial reference processing...
5105     rp->enqueue_discovered_references();
5106   } else {
5107     // Parallel reference enqueueing
5108 
5109     uint n_workers = workers()->active_workers();
5110 
5111     assert(rp->num_q() == n_workers, "sanity");
5112     assert(n_workers <= rp->max_num_q(), "sanity");
5113 
5114     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
5115     rp->enqueue_discovered_references(&par_task_executor);
5116   }
5117 
5118   rp->verify_no_references_recorded();
5119   assert(!rp->discovery_enabled(), "should have been disabled");
5120 
5121   // FIXME
5122   // CM's reference processing also cleans up the string and symbol tables.
5123   // Should we do that here also? We could, but it is a serial operation
5124   // and could significantly increase the pause time.
5125 
5126   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5127   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5128 }
5129 
5130 void G1CollectedHeap::pre_evacuate_collection_set() {
5131   _expand_heap_after_alloc_failure = true;
5132   _evacuation_failed = false;
5133 
5134   // Disable the hot card cache.
5135   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5136   hot_card_cache->reset_hot_cache_claimed_index();
5137   hot_card_cache->set_use_cache(false);
5138 
5139 }
5140 
5141 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5142   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5143 
5144   // Should G1EvacuationFailureALot be in effect for this GC?
5145   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5146 
5147   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5148   double start_par_time_sec = os::elapsedTime();
5149   double end_par_time_sec;
5150 
5151   {
5152     const uint n_workers = workers()->active_workers();
5153     G1RootProcessor root_processor(this, n_workers);
5154     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
5155     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5156     if (collector_state()->during_initial_mark_pause()) {
5157       ClassLoaderDataGraph::clear_claimed_marks();
5158     }
5159 
5160     // The individual threads will set their evac-failure closures.
5161     if (PrintTerminationStats) {
5162       print_termination_stats_hdr(gclog_or_tty);
5163     }
5164 
5165     workers()->run_task(&g1_par_task);
5166     end_par_time_sec = os::elapsedTime();
5167 
5168     // Closing the inner scope will execute the destructor
5169     // for the G1RootProcessor object. We record the current
5170     // elapsed time before closing the scope so that time
5171     // taken for the destructor is NOT included in the
5172     // reported parallel time.
5173   }
5174 
5175   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5176 
5177   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5178   phase_times->record_par_time(par_time_ms);
5179 
5180   double code_root_fixup_time_ms =
5181         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5182   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5183 
5184   // Process any discovered reference objects - we have
5185   // to do this _before_ we retire the GC alloc regions
5186   // as we may have to copy some 'reachable' referent
5187   // objects (and their reachable sub-graphs) that were
5188   // not copied during the pause.
5189   process_discovered_references(per_thread_states);
5190 
5191   if (G1StringDedup::is_enabled()) {
5192     double fixup_start = os::elapsedTime();
5193 
5194     G1STWIsAliveClosure is_alive(this);
5195     G1KeepAliveClosure keep_alive(this);
5196     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5197 
5198     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5199     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5200   }
5201 
5202   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5203 
5204   if (evacuation_failed()) {
5205     remove_self_forwarding_pointers();
5206 
5207     // Reset the G1EvacuationFailureALot counters and flags
5208     // Note: the values are reset only when an actual
5209     // evacuation failure occurs.
5210     NOT_PRODUCT(reset_evacuation_should_fail();)
5211   }
5212 
5213   // Enqueue any remaining references remaining on the STW
5214   // reference processor's discovered lists. We need to do
5215   // this after the card table is cleaned (and verified) as
5216   // the act of enqueueing entries on to the pending list
5217   // will log these updates (and dirty their associated
5218   // cards). We need these updates logged to update any
5219   // RSets.
5220   enqueue_discovered_references(per_thread_states);
5221 }
5222 
5223 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5224   _allocator->release_gc_alloc_regions(evacuation_info);
5225 
5226   per_thread_states->flush();
5227 
5228   record_obj_copy_mem_stats();
5229 
5230   _survivor_evac_stats.adjust_desired_plab_sz();
5231   _old_evac_stats.adjust_desired_plab_sz();
5232 
5233   // Reset and re-enable the hot card cache.
5234   // Note the counts for the cards in the regions in the
5235   // collection set are reset when the collection set is freed.
5236   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5237   hot_card_cache->reset_hot_cache();
5238   hot_card_cache->set_use_cache(true);
5239 
5240   purge_code_root_memory();
5241 
5242   redirty_logged_cards();
5243 #if defined(COMPILER2) || INCLUDE_JVMCI
5244   DerivedPointerTable::update_pointers();
5245 #endif
5246 }
5247 
5248 void G1CollectedHeap::record_obj_copy_mem_stats() {
5249   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
5250                                                create_g1_evac_summary(&_old_evac_stats));
5251 }
5252 
5253 void G1CollectedHeap::free_region(HeapRegion* hr,
5254                                   FreeRegionList* free_list,
5255                                   bool par,
5256                                   bool locked) {
5257   assert(!hr->is_free(), "the region should not be free");
5258   assert(!hr->is_empty(), "the region should not be empty");
5259   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5260   assert(free_list != NULL, "pre-condition");
5261 
5262   if (G1VerifyBitmaps) {
5263     MemRegion mr(hr->bottom(), hr->end());
5264     concurrent_mark()->clearRangePrevBitmap(mr);
5265   }
5266 
5267   // Clear the card counts for this region.
5268   // Note: we only need to do this if the region is not young
5269   // (since we don't refine cards in young regions).
5270   if (!hr->is_young()) {
5271     _cg1r->hot_card_cache()->reset_card_counts(hr);
5272   }
5273   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5274   free_list->add_ordered(hr);
5275 }
5276 
5277 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5278                                             FreeRegionList* free_list,
5279                                             bool par) {
5280   assert(hr->is_humongous(), "this is only for humongous regions");
5281   assert(free_list != NULL, "pre-condition");
5282   hr->clear_humongous();
5283   free_region(hr, free_list, par);
5284 }
5285 
5286 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5287                                            const HeapRegionSetCount& humongous_regions_removed) {
5288   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5289     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5290     _old_set.bulk_remove(old_regions_removed);
5291     _humongous_set.bulk_remove(humongous_regions_removed);
5292   }
5293 
5294 }
5295 
5296 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5297   assert(list != NULL, "list can't be null");
5298   if (!list->is_empty()) {
5299     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5300     _hrm.insert_list_into_free_list(list);
5301   }
5302 }
5303 
5304 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5305   decrease_used(bytes);
5306 }
5307 
5308 class G1ParCleanupCTTask : public AbstractGangTask {
5309   G1SATBCardTableModRefBS* _ct_bs;
5310   G1CollectedHeap* _g1h;
5311   HeapRegion* volatile _su_head;
5312 public:
5313   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5314                      G1CollectedHeap* g1h) :
5315     AbstractGangTask("G1 Par Cleanup CT Task"),
5316     _ct_bs(ct_bs), _g1h(g1h) { }
5317 
5318   void work(uint worker_id) {
5319     HeapRegion* r;
5320     while (r = _g1h->pop_dirty_cards_region()) {
5321       clear_cards(r);
5322     }
5323   }
5324 
5325   void clear_cards(HeapRegion* r) {
5326     // Cards of the survivors should have already been dirtied.
5327     if (!r->is_survivor()) {
5328       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5329     }
5330   }
5331 };
5332 
5333 #ifndef PRODUCT
5334 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5335   G1CollectedHeap* _g1h;
5336   G1SATBCardTableModRefBS* _ct_bs;
5337 public:
5338   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5339     : _g1h(g1h), _ct_bs(ct_bs) { }
5340   virtual bool doHeapRegion(HeapRegion* r) {
5341     if (r->is_survivor()) {
5342       _g1h->verify_dirty_region(r);
5343     } else {
5344       _g1h->verify_not_dirty_region(r);
5345     }
5346     return false;
5347   }
5348 };
5349 
5350 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5351   // All of the region should be clean.
5352   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5353   MemRegion mr(hr->bottom(), hr->end());
5354   ct_bs->verify_not_dirty_region(mr);
5355 }
5356 
5357 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5358   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5359   // dirty allocated blocks as they allocate them. The thread that
5360   // retires each region and replaces it with a new one will do a
5361   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5362   // not dirty that area (one less thing to have to do while holding
5363   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5364   // is dirty.
5365   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5366   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5367   if (hr->is_young()) {
5368     ct_bs->verify_g1_young_region(mr);
5369   } else {
5370     ct_bs->verify_dirty_region(mr);
5371   }
5372 }
5373 
5374 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5375   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5376   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5377     verify_dirty_region(hr);
5378   }
5379 }
5380 
5381 void G1CollectedHeap::verify_dirty_young_regions() {
5382   verify_dirty_young_list(_young_list->first_region());
5383 }
5384 
5385 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5386                                                HeapWord* tams, HeapWord* end) {
5387   guarantee(tams <= end,
5388             "tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end));
5389   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5390   if (result < end) {
5391     gclog_or_tty->cr();
5392     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
5393                            bitmap_name, p2i(result));
5394     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
5395                            bitmap_name, p2i(tams), p2i(end));
5396     return false;
5397   }
5398   return true;
5399 }
5400 
5401 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5402   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5403   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5404 
5405   HeapWord* bottom = hr->bottom();
5406   HeapWord* ptams  = hr->prev_top_at_mark_start();
5407   HeapWord* ntams  = hr->next_top_at_mark_start();
5408   HeapWord* end    = hr->end();
5409 
5410   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5411 
5412   bool res_n = true;
5413   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5414   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5415   // if we happen to be in that state.
5416   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5417     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5418   }
5419   if (!res_p || !res_n) {
5420     gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
5421                            HR_FORMAT_PARAMS(hr));
5422     gclog_or_tty->print_cr("#### Caller: %s", caller);
5423     return false;
5424   }
5425   return true;
5426 }
5427 
5428 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5429   if (!G1VerifyBitmaps) return;
5430 
5431   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5432 }
5433 
5434 class G1VerifyBitmapClosure : public HeapRegionClosure {
5435 private:
5436   const char* _caller;
5437   G1CollectedHeap* _g1h;
5438   bool _failures;
5439 
5440 public:
5441   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5442     _caller(caller), _g1h(g1h), _failures(false) { }
5443 
5444   bool failures() { return _failures; }
5445 
5446   virtual bool doHeapRegion(HeapRegion* hr) {
5447     bool result = _g1h->verify_bitmaps(_caller, hr);
5448     if (!result) {
5449       _failures = true;
5450     }
5451     return false;
5452   }
5453 };
5454 
5455 void G1CollectedHeap::check_bitmaps(const char* caller) {
5456   if (!G1VerifyBitmaps) return;
5457 
5458   G1VerifyBitmapClosure cl(caller, this);
5459   heap_region_iterate(&cl);
5460   guarantee(!cl.failures(), "bitmap verification");
5461 }
5462 
5463 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5464  private:
5465   bool _failures;
5466  public:
5467   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5468 
5469   virtual bool doHeapRegion(HeapRegion* hr) {
5470     uint i = hr->hrm_index();
5471     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5472     if (hr->is_humongous()) {
5473       if (hr->in_collection_set()) {
5474         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5475         _failures = true;
5476         return true;
5477       }
5478       if (cset_state.is_in_cset()) {
5479         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5480         _failures = true;
5481         return true;
5482       }
5483       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5484         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5485         _failures = true;
5486         return true;
5487       }
5488     } else {
5489       if (cset_state.is_humongous()) {
5490         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5491         _failures = true;
5492         return true;
5493       }
5494       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5495         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5496                                hr->in_collection_set(), cset_state.value(), i);
5497         _failures = true;
5498         return true;
5499       }
5500       if (cset_state.is_in_cset()) {
5501         if (hr->is_young() != (cset_state.is_young())) {
5502           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5503                                  hr->is_young(), cset_state.value(), i);
5504           _failures = true;
5505           return true;
5506         }
5507         if (hr->is_old() != (cset_state.is_old())) {
5508           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5509                                  hr->is_old(), cset_state.value(), i);
5510           _failures = true;
5511           return true;
5512         }
5513       }
5514     }
5515     return false;
5516   }
5517 
5518   bool failures() const { return _failures; }
5519 };
5520 
5521 bool G1CollectedHeap::check_cset_fast_test() {
5522   G1CheckCSetFastTableClosure cl;
5523   _hrm.iterate(&cl);
5524   return !cl.failures();
5525 }
5526 #endif // PRODUCT
5527 
5528 void G1CollectedHeap::cleanUpCardTable() {
5529   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5530   double start = os::elapsedTime();
5531 
5532   {
5533     // Iterate over the dirty cards region list.
5534     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5535 
5536     workers()->run_task(&cleanup_task);
5537 #ifndef PRODUCT
5538     if (G1VerifyCTCleanup || VerifyAfterGC) {
5539       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5540       heap_region_iterate(&cleanup_verifier);
5541     }
5542 #endif
5543   }
5544 
5545   double elapsed = os::elapsedTime() - start;
5546   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5547 }
5548 
5549 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
5550   size_t pre_used = 0;
5551   FreeRegionList local_free_list("Local List for CSet Freeing");
5552 
5553   double young_time_ms     = 0.0;
5554   double non_young_time_ms = 0.0;
5555 
5556   // Since the collection set is a superset of the the young list,
5557   // all we need to do to clear the young list is clear its
5558   // head and length, and unlink any young regions in the code below
5559   _young_list->clear();
5560 
5561   G1CollectorPolicy* policy = g1_policy();
5562 
5563   double start_sec = os::elapsedTime();
5564   bool non_young = true;
5565 
5566   HeapRegion* cur = cs_head;
5567   int age_bound = -1;
5568   size_t rs_lengths = 0;
5569 
5570   while (cur != NULL) {
5571     assert(!is_on_master_free_list(cur), "sanity");
5572     if (non_young) {
5573       if (cur->is_young()) {
5574         double end_sec = os::elapsedTime();
5575         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5576         non_young_time_ms += elapsed_ms;
5577 
5578         start_sec = os::elapsedTime();
5579         non_young = false;
5580       }
5581     } else {
5582       if (!cur->is_young()) {
5583         double end_sec = os::elapsedTime();
5584         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5585         young_time_ms += elapsed_ms;
5586 
5587         start_sec = os::elapsedTime();
5588         non_young = true;
5589       }
5590     }
5591 
5592     rs_lengths += cur->rem_set()->occupied_locked();
5593 
5594     HeapRegion* next = cur->next_in_collection_set();
5595     assert(cur->in_collection_set(), "bad CS");
5596     cur->set_next_in_collection_set(NULL);
5597     clear_in_cset(cur);
5598 
5599     if (cur->is_young()) {
5600       int index = cur->young_index_in_cset();
5601       assert(index != -1, "invariant");
5602       assert((uint) index < policy->young_cset_region_length(), "invariant");
5603       size_t words_survived = surviving_young_words[index];
5604       cur->record_surv_words_in_group(words_survived);
5605 
5606       // At this point the we have 'popped' cur from the collection set
5607       // (linked via next_in_collection_set()) but it is still in the
5608       // young list (linked via next_young_region()). Clear the
5609       // _next_young_region field.
5610       cur->set_next_young_region(NULL);
5611     } else {
5612       int index = cur->young_index_in_cset();
5613       assert(index == -1, "invariant");
5614     }
5615 
5616     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5617             (!cur->is_young() && cur->young_index_in_cset() == -1),
5618             "invariant" );
5619 
5620     if (!cur->evacuation_failed()) {
5621       MemRegion used_mr = cur->used_region();
5622 
5623       // And the region is empty.
5624       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5625       pre_used += cur->used();
5626       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5627     } else {
5628       cur->uninstall_surv_rate_group();
5629       if (cur->is_young()) {
5630         cur->set_young_index_in_cset(-1);
5631       }
5632       cur->set_evacuation_failed(false);
5633       // The region is now considered to be old.
5634       cur->set_old();
5635       // Do some allocation statistics accounting. Regions that failed evacuation
5636       // are always made old, so there is no need to update anything in the young
5637       // gen statistics, but we need to update old gen statistics.
5638       size_t used_words = cur->marked_bytes() / HeapWordSize;
5639       _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words);
5640       _old_set.add(cur);
5641       evacuation_info.increment_collectionset_used_after(cur->used());
5642     }
5643     cur = next;
5644   }
5645 
5646   evacuation_info.set_regions_freed(local_free_list.length());
5647   policy->record_max_rs_lengths(rs_lengths);
5648   policy->cset_regions_freed();
5649 
5650   double end_sec = os::elapsedTime();
5651   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5652 
5653   if (non_young) {
5654     non_young_time_ms += elapsed_ms;
5655   } else {
5656     young_time_ms += elapsed_ms;
5657   }
5658 
5659   prepend_to_freelist(&local_free_list);
5660   decrement_summary_bytes(pre_used);
5661   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5662   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5663 }
5664 
5665 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5666  private:
5667   FreeRegionList* _free_region_list;
5668   HeapRegionSet* _proxy_set;
5669   HeapRegionSetCount _humongous_regions_removed;
5670   size_t _freed_bytes;
5671  public:
5672 
5673   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5674     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5675   }
5676 
5677   virtual bool doHeapRegion(HeapRegion* r) {
5678     if (!r->is_starts_humongous()) {
5679       return false;
5680     }
5681 
5682     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5683 
5684     oop obj = (oop)r->bottom();
5685     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5686 
5687     // The following checks whether the humongous object is live are sufficient.
5688     // The main additional check (in addition to having a reference from the roots
5689     // or the young gen) is whether the humongous object has a remembered set entry.
5690     //
5691     // A humongous object cannot be live if there is no remembered set for it
5692     // because:
5693     // - there can be no references from within humongous starts regions referencing
5694     // the object because we never allocate other objects into them.
5695     // (I.e. there are no intra-region references that may be missed by the
5696     // remembered set)
5697     // - as soon there is a remembered set entry to the humongous starts region
5698     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5699     // until the end of a concurrent mark.
5700     //
5701     // It is not required to check whether the object has been found dead by marking
5702     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5703     // all objects allocated during that time are considered live.
5704     // SATB marking is even more conservative than the remembered set.
5705     // So if at this point in the collection there is no remembered set entry,
5706     // nobody has a reference to it.
5707     // At the start of collection we flush all refinement logs, and remembered sets
5708     // are completely up-to-date wrt to references to the humongous object.
5709     //
5710     // Other implementation considerations:
5711     // - never consider object arrays at this time because they would pose
5712     // considerable effort for cleaning up the the remembered sets. This is
5713     // required because stale remembered sets might reference locations that
5714     // are currently allocated into.
5715     uint region_idx = r->hrm_index();
5716     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5717         !r->rem_set()->is_empty()) {
5718 
5719       if (G1TraceEagerReclaimHumongousObjects) {
5720         gclog_or_tty->print_cr("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5721                                region_idx,
5722                                (size_t)obj->size() * HeapWordSize,
5723                                p2i(r->bottom()),
5724                                r->rem_set()->occupied(),
5725                                r->rem_set()->strong_code_roots_list_length(),
5726                                next_bitmap->isMarked(r->bottom()),
5727                                g1h->is_humongous_reclaim_candidate(region_idx),
5728                                obj->is_typeArray()
5729                               );
5730       }
5731 
5732       return false;
5733     }
5734 
5735     guarantee(obj->is_typeArray(),
5736               "Only eagerly reclaiming type arrays is supported, but the object "
5737               PTR_FORMAT " is not.", p2i(r->bottom()));
5738 
5739     if (G1TraceEagerReclaimHumongousObjects) {
5740       gclog_or_tty->print_cr("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5741                              region_idx,
5742                              (size_t)obj->size() * HeapWordSize,
5743                              p2i(r->bottom()),
5744                              r->rem_set()->occupied(),
5745                              r->rem_set()->strong_code_roots_list_length(),
5746                              next_bitmap->isMarked(r->bottom()),
5747                              g1h->is_humongous_reclaim_candidate(region_idx),
5748                              obj->is_typeArray()
5749                             );
5750     }
5751     // Need to clear mark bit of the humongous object if already set.
5752     if (next_bitmap->isMarked(r->bottom())) {
5753       next_bitmap->clear(r->bottom());
5754     }
5755     do {
5756       HeapRegion* next = g1h->next_region_in_humongous(r);
5757       _freed_bytes += r->used();
5758       r->set_containing_set(NULL);
5759       _humongous_regions_removed.increment(1u, r->capacity());
5760       g1h->free_humongous_region(r, _free_region_list, false);
5761       r = next;
5762     } while (r != NULL);
5763 
5764     return false;
5765   }
5766 
5767   HeapRegionSetCount& humongous_free_count() {
5768     return _humongous_regions_removed;
5769   }
5770 
5771   size_t bytes_freed() const {
5772     return _freed_bytes;
5773   }
5774 
5775   size_t humongous_reclaimed() const {
5776     return _humongous_regions_removed.length();
5777   }
5778 };
5779 
5780 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5781   assert_at_safepoint(true);
5782 
5783   if (!G1EagerReclaimHumongousObjects ||
5784       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
5785     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5786     return;
5787   }
5788 
5789   double start_time = os::elapsedTime();
5790 
5791   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5792 
5793   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5794   heap_region_iterate(&cl);
5795 
5796   HeapRegionSetCount empty_set;
5797   remove_from_old_sets(empty_set, cl.humongous_free_count());
5798 
5799   G1HRPrinter* hrp = hr_printer();
5800   if (hrp->is_active()) {
5801     FreeRegionListIterator iter(&local_cleanup_list);
5802     while (iter.more_available()) {
5803       HeapRegion* hr = iter.get_next();
5804       hrp->cleanup(hr);
5805     }
5806   }
5807 
5808   prepend_to_freelist(&local_cleanup_list);
5809   decrement_summary_bytes(cl.bytes_freed());
5810 
5811   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5812                                                                     cl.humongous_reclaimed());
5813 }
5814 
5815 // This routine is similar to the above but does not record
5816 // any policy statistics or update free lists; we are abandoning
5817 // the current incremental collection set in preparation of a
5818 // full collection. After the full GC we will start to build up
5819 // the incremental collection set again.
5820 // This is only called when we're doing a full collection
5821 // and is immediately followed by the tearing down of the young list.
5822 
5823 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5824   HeapRegion* cur = cs_head;
5825 
5826   while (cur != NULL) {
5827     HeapRegion* next = cur->next_in_collection_set();
5828     assert(cur->in_collection_set(), "bad CS");
5829     cur->set_next_in_collection_set(NULL);
5830     clear_in_cset(cur);
5831     cur->set_young_index_in_cset(-1);
5832     cur = next;
5833   }
5834 }
5835 
5836 void G1CollectedHeap::set_free_regions_coming() {
5837   if (G1ConcRegionFreeingVerbose) {
5838     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5839                            "setting free regions coming");
5840   }
5841 
5842   assert(!free_regions_coming(), "pre-condition");
5843   _free_regions_coming = true;
5844 }
5845 
5846 void G1CollectedHeap::reset_free_regions_coming() {
5847   assert(free_regions_coming(), "pre-condition");
5848 
5849   {
5850     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5851     _free_regions_coming = false;
5852     SecondaryFreeList_lock->notify_all();
5853   }
5854 
5855   if (G1ConcRegionFreeingVerbose) {
5856     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5857                            "reset free regions coming");
5858   }
5859 }
5860 
5861 void G1CollectedHeap::wait_while_free_regions_coming() {
5862   // Most of the time we won't have to wait, so let's do a quick test
5863   // first before we take the lock.
5864   if (!free_regions_coming()) {
5865     return;
5866   }
5867 
5868   if (G1ConcRegionFreeingVerbose) {
5869     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5870                            "waiting for free regions");
5871   }
5872 
5873   {
5874     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5875     while (free_regions_coming()) {
5876       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5877     }
5878   }
5879 
5880   if (G1ConcRegionFreeingVerbose) {
5881     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5882                            "done waiting for free regions");
5883   }
5884 }
5885 
5886 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5887   return _allocator->is_retained_old_region(hr);
5888 }
5889 
5890 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5891   _young_list->push_region(hr);
5892 }
5893 
5894 class NoYoungRegionsClosure: public HeapRegionClosure {
5895 private:
5896   bool _success;
5897 public:
5898   NoYoungRegionsClosure() : _success(true) { }
5899   bool doHeapRegion(HeapRegion* r) {
5900     if (r->is_young()) {
5901       gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5902                              p2i(r->bottom()), p2i(r->end()));
5903       _success = false;
5904     }
5905     return false;
5906   }
5907   bool success() { return _success; }
5908 };
5909 
5910 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5911   bool ret = _young_list->check_list_empty(check_sample);
5912 
5913   if (check_heap) {
5914     NoYoungRegionsClosure closure;
5915     heap_region_iterate(&closure);
5916     ret = ret && closure.success();
5917   }
5918 
5919   return ret;
5920 }
5921 
5922 class TearDownRegionSetsClosure : public HeapRegionClosure {
5923 private:
5924   HeapRegionSet *_old_set;
5925 
5926 public:
5927   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5928 
5929   bool doHeapRegion(HeapRegion* r) {
5930     if (r->is_old()) {
5931       _old_set->remove(r);
5932     } else {
5933       // We ignore free regions, we'll empty the free list afterwards.
5934       // We ignore young regions, we'll empty the young list afterwards.
5935       // We ignore humongous regions, we're not tearing down the
5936       // humongous regions set.
5937       assert(r->is_free() || r->is_young() || r->is_humongous(),
5938              "it cannot be another type");
5939     }
5940     return false;
5941   }
5942 
5943   ~TearDownRegionSetsClosure() {
5944     assert(_old_set->is_empty(), "post-condition");
5945   }
5946 };
5947 
5948 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5949   assert_at_safepoint(true /* should_be_vm_thread */);
5950 
5951   if (!free_list_only) {
5952     TearDownRegionSetsClosure cl(&_old_set);
5953     heap_region_iterate(&cl);
5954 
5955     // Note that emptying the _young_list is postponed and instead done as
5956     // the first step when rebuilding the regions sets again. The reason for
5957     // this is that during a full GC string deduplication needs to know if
5958     // a collected region was young or old when the full GC was initiated.
5959   }
5960   _hrm.remove_all_free_regions();
5961 }
5962 
5963 void G1CollectedHeap::increase_used(size_t bytes) {
5964   _summary_bytes_used += bytes;
5965 }
5966 
5967 void G1CollectedHeap::decrease_used(size_t bytes) {
5968   assert(_summary_bytes_used >= bytes,
5969          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5970          _summary_bytes_used, bytes);
5971   _summary_bytes_used -= bytes;
5972 }
5973 
5974 void G1CollectedHeap::set_used(size_t bytes) {
5975   _summary_bytes_used = bytes;
5976 }
5977 
5978 class RebuildRegionSetsClosure : public HeapRegionClosure {
5979 private:
5980   bool            _free_list_only;
5981   HeapRegionSet*   _old_set;
5982   HeapRegionManager*   _hrm;
5983   size_t          _total_used;
5984 
5985 public:
5986   RebuildRegionSetsClosure(bool free_list_only,
5987                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5988     _free_list_only(free_list_only),
5989     _old_set(old_set), _hrm(hrm), _total_used(0) {
5990     assert(_hrm->num_free_regions() == 0, "pre-condition");
5991     if (!free_list_only) {
5992       assert(_old_set->is_empty(), "pre-condition");
5993     }
5994   }
5995 
5996   bool doHeapRegion(HeapRegion* r) {
5997     if (r->is_empty()) {
5998       // Add free regions to the free list
5999       r->set_free();
6000       r->set_allocation_context(AllocationContext::system());
6001       _hrm->insert_into_free_list(r);
6002     } else if (!_free_list_only) {
6003       assert(!r->is_young(), "we should not come across young regions");
6004 
6005       if (r->is_humongous()) {
6006         // We ignore humongous regions. We left the humongous set unchanged.
6007       } else {
6008         // Objects that were compacted would have ended up on regions
6009         // that were previously old or free.  Archive regions (which are
6010         // old) will not have been touched.
6011         assert(r->is_free() || r->is_old(), "invariant");
6012         // We now consider them old, so register as such. Leave
6013         // archive regions set that way, however, while still adding
6014         // them to the old set.
6015         if (!r->is_archive()) {
6016           r->set_old();
6017         }
6018         _old_set->add(r);
6019       }
6020       _total_used += r->used();
6021     }
6022 
6023     return false;
6024   }
6025 
6026   size_t total_used() {
6027     return _total_used;
6028   }
6029 };
6030 
6031 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6032   assert_at_safepoint(true /* should_be_vm_thread */);
6033 
6034   if (!free_list_only) {
6035     _young_list->empty_list();
6036   }
6037 
6038   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6039   heap_region_iterate(&cl);
6040 
6041   if (!free_list_only) {
6042     set_used(cl.total_used());
6043     if (_archive_allocator != NULL) {
6044       _archive_allocator->clear_used();
6045     }
6046   }
6047   assert(used_unlocked() == recalculate_used(),
6048          "inconsistent used_unlocked(), "
6049          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
6050          used_unlocked(), recalculate_used());
6051 }
6052 
6053 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6054   _refine_cte_cl->set_concurrent(concurrent);
6055 }
6056 
6057 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6058   HeapRegion* hr = heap_region_containing(p);
6059   return hr->is_in(p);
6060 }
6061 
6062 // Methods for the mutator alloc region
6063 
6064 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6065                                                       bool force) {
6066   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6067   assert(!force || g1_policy()->can_expand_young_list(),
6068          "if force is true we should be able to expand the young list");
6069   bool young_list_full = g1_policy()->is_young_list_full();
6070   if (force || !young_list_full) {
6071     HeapRegion* new_alloc_region = new_region(word_size,
6072                                               false /* is_old */,
6073                                               false /* do_expand */);
6074     if (new_alloc_region != NULL) {
6075       set_region_short_lived_locked(new_alloc_region);
6076       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6077       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6078       return new_alloc_region;
6079     }
6080   }
6081   return NULL;
6082 }
6083 
6084 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6085                                                   size_t allocated_bytes) {
6086   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6087   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6088 
6089   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6090   increase_used(allocated_bytes);
6091   _hr_printer.retire(alloc_region);
6092   // We update the eden sizes here, when the region is retired,
6093   // instead of when it's allocated, since this is the point that its
6094   // used space has been recored in _summary_bytes_used.
6095   g1mm()->update_eden_size();
6096 }
6097 
6098 // Methods for the GC alloc regions
6099 
6100 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6101                                                  uint count,
6102                                                  InCSetState dest) {
6103   assert(FreeList_lock->owned_by_self(), "pre-condition");
6104 
6105   if (count < g1_policy()->max_regions(dest)) {
6106     const bool is_survivor = (dest.is_young());
6107     HeapRegion* new_alloc_region = new_region(word_size,
6108                                               !is_survivor,
6109                                               true /* do_expand */);
6110     if (new_alloc_region != NULL) {
6111       // We really only need to do this for old regions given that we
6112       // should never scan survivors. But it doesn't hurt to do it
6113       // for survivors too.
6114       new_alloc_region->record_timestamp();
6115       if (is_survivor) {
6116         new_alloc_region->set_survivor();
6117         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6118         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6119       } else {
6120         new_alloc_region->set_old();
6121         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6122         check_bitmaps("Old Region Allocation", new_alloc_region);
6123       }
6124       bool during_im = collector_state()->during_initial_mark_pause();
6125       new_alloc_region->note_start_of_copying(during_im);
6126       return new_alloc_region;
6127     }
6128   }
6129   return NULL;
6130 }
6131 
6132 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6133                                              size_t allocated_bytes,
6134                                              InCSetState dest) {
6135   bool during_im = collector_state()->during_initial_mark_pause();
6136   alloc_region->note_end_of_copying(during_im);
6137   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6138   if (dest.is_young()) {
6139     young_list()->add_survivor_region(alloc_region);
6140   } else {
6141     _old_set.add(alloc_region);
6142   }
6143   _hr_printer.retire(alloc_region);
6144 }
6145 
6146 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6147   bool expanded = false;
6148   uint index = _hrm.find_highest_free(&expanded);
6149 
6150   if (index != G1_NO_HRM_INDEX) {
6151     if (expanded) {
6152       ergo_verbose1(ErgoHeapSizing,
6153                     "attempt heap expansion",
6154                     ergo_format_reason("requested address range outside heap bounds")
6155                     ergo_format_byte("region size"),
6156                     HeapRegion::GrainWords * HeapWordSize);
6157     }
6158     _hrm.allocate_free_regions_starting_at(index, 1);
6159     return region_at(index);
6160   }
6161   return NULL;
6162 }
6163 
6164 // Heap region set verification
6165 
6166 class VerifyRegionListsClosure : public HeapRegionClosure {
6167 private:
6168   HeapRegionSet*   _old_set;
6169   HeapRegionSet*   _humongous_set;
6170   HeapRegionManager*   _hrm;
6171 
6172 public:
6173   HeapRegionSetCount _old_count;
6174   HeapRegionSetCount _humongous_count;
6175   HeapRegionSetCount _free_count;
6176 
6177   VerifyRegionListsClosure(HeapRegionSet* old_set,
6178                            HeapRegionSet* humongous_set,
6179                            HeapRegionManager* hrm) :
6180     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6181     _old_count(), _humongous_count(), _free_count(){ }
6182 
6183   bool doHeapRegion(HeapRegion* hr) {
6184     if (hr->is_young()) {
6185       // TODO
6186     } else if (hr->is_humongous()) {
6187       assert(hr->containing_set() == _humongous_set, "Heap region %u is humongous but not in humongous set.", hr->hrm_index());
6188       _humongous_count.increment(1u, hr->capacity());
6189     } else if (hr->is_empty()) {
6190       assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index());
6191       _free_count.increment(1u, hr->capacity());
6192     } else if (hr->is_old()) {
6193       assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index());
6194       _old_count.increment(1u, hr->capacity());
6195     } else {
6196       // There are no other valid region types. Check for one invalid
6197       // one we can identify: pinned without old or humongous set.
6198       assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index());
6199       ShouldNotReachHere();
6200     }
6201     return false;
6202   }
6203 
6204   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6205     guarantee(old_set->length() == _old_count.length(), "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length());
6206     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), "Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6207               old_set->total_capacity_bytes(), _old_count.capacity());
6208 
6209     guarantee(humongous_set->length() == _humongous_count.length(), "Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length());
6210     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), "Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6211               humongous_set->total_capacity_bytes(), _humongous_count.capacity());
6212 
6213     guarantee(free_list->num_free_regions() == _free_count.length(), "Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length());
6214     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), "Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6215               free_list->total_capacity_bytes(), _free_count.capacity());
6216   }
6217 };
6218 
6219 void G1CollectedHeap::verify_region_sets() {
6220   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6221 
6222   // First, check the explicit lists.
6223   _hrm.verify();
6224   {
6225     // Given that a concurrent operation might be adding regions to
6226     // the secondary free list we have to take the lock before
6227     // verifying it.
6228     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6229     _secondary_free_list.verify_list();
6230   }
6231 
6232   // If a concurrent region freeing operation is in progress it will
6233   // be difficult to correctly attributed any free regions we come
6234   // across to the correct free list given that they might belong to
6235   // one of several (free_list, secondary_free_list, any local lists,
6236   // etc.). So, if that's the case we will skip the rest of the
6237   // verification operation. Alternatively, waiting for the concurrent
6238   // operation to complete will have a non-trivial effect on the GC's
6239   // operation (no concurrent operation will last longer than the
6240   // interval between two calls to verification) and it might hide
6241   // any issues that we would like to catch during testing.
6242   if (free_regions_coming()) {
6243     return;
6244   }
6245 
6246   // Make sure we append the secondary_free_list on the free_list so
6247   // that all free regions we will come across can be safely
6248   // attributed to the free_list.
6249   append_secondary_free_list_if_not_empty_with_lock();
6250 
6251   // Finally, make sure that the region accounting in the lists is
6252   // consistent with what we see in the heap.
6253 
6254   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6255   heap_region_iterate(&cl);
6256   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6257 }
6258 
6259 // Optimized nmethod scanning
6260 
6261 class RegisterNMethodOopClosure: public OopClosure {
6262   G1CollectedHeap* _g1h;
6263   nmethod* _nm;
6264 
6265   template <class T> void do_oop_work(T* p) {
6266     T heap_oop = oopDesc::load_heap_oop(p);
6267     if (!oopDesc::is_null(heap_oop)) {
6268       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6269       HeapRegion* hr = _g1h->heap_region_containing(obj);
6270       assert(!hr->is_continues_humongous(),
6271              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6272              " starting at " HR_FORMAT,
6273              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6274 
6275       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6276       hr->add_strong_code_root_locked(_nm);
6277     }
6278   }
6279 
6280 public:
6281   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6282     _g1h(g1h), _nm(nm) {}
6283 
6284   void do_oop(oop* p)       { do_oop_work(p); }
6285   void do_oop(narrowOop* p) { do_oop_work(p); }
6286 };
6287 
6288 class UnregisterNMethodOopClosure: public OopClosure {
6289   G1CollectedHeap* _g1h;
6290   nmethod* _nm;
6291 
6292   template <class T> void do_oop_work(T* p) {
6293     T heap_oop = oopDesc::load_heap_oop(p);
6294     if (!oopDesc::is_null(heap_oop)) {
6295       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6296       HeapRegion* hr = _g1h->heap_region_containing(obj);
6297       assert(!hr->is_continues_humongous(),
6298              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6299              " starting at " HR_FORMAT,
6300              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6301 
6302       hr->remove_strong_code_root(_nm);
6303     }
6304   }
6305 
6306 public:
6307   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6308     _g1h(g1h), _nm(nm) {}
6309 
6310   void do_oop(oop* p)       { do_oop_work(p); }
6311   void do_oop(narrowOop* p) { do_oop_work(p); }
6312 };
6313 
6314 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6315   CollectedHeap::register_nmethod(nm);
6316 
6317   guarantee(nm != NULL, "sanity");
6318   RegisterNMethodOopClosure reg_cl(this, nm);
6319   nm->oops_do(&reg_cl);
6320 }
6321 
6322 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6323   CollectedHeap::unregister_nmethod(nm);
6324 
6325   guarantee(nm != NULL, "sanity");
6326   UnregisterNMethodOopClosure reg_cl(this, nm);
6327   nm->oops_do(&reg_cl, true);
6328 }
6329 
6330 void G1CollectedHeap::purge_code_root_memory() {
6331   double purge_start = os::elapsedTime();
6332   G1CodeRootSet::purge();
6333   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6334   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6335 }
6336 
6337 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6338   G1CollectedHeap* _g1h;
6339 
6340 public:
6341   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6342     _g1h(g1h) {}
6343 
6344   void do_code_blob(CodeBlob* cb) {
6345     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6346     if (nm == NULL) {
6347       return;
6348     }
6349 
6350     if (ScavengeRootsInCode) {
6351       _g1h->register_nmethod(nm);
6352     }
6353   }
6354 };
6355 
6356 void G1CollectedHeap::rebuild_strong_code_roots() {
6357   RebuildStrongCodeRootClosure blob_cl(this);
6358   CodeCache::blobs_do(&blob_cl);
6359 }