1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentG1Refine.hpp"
  33 #include "gc/g1/concurrentG1RefineThread.hpp"
  34 #include "gc/g1/concurrentMarkThread.inline.hpp"
  35 #include "gc/g1/g1Allocator.inline.hpp"
  36 #include "gc/g1/g1CollectedHeap.inline.hpp"
  37 #include "gc/g1/g1CollectorPolicy.hpp"
  38 #include "gc/g1/g1CollectorState.hpp"
  39 #include "gc/g1/g1ErgoVerbose.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1GCPhaseTimes.hpp"
  42 #include "gc/g1/g1Log.hpp"
  43 #include "gc/g1/g1MarkSweep.hpp"
  44 #include "gc/g1/g1OopClosures.inline.hpp"
  45 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  46 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  47 #include "gc/g1/g1RemSet.inline.hpp"
  48 #include "gc/g1/g1RootClosures.hpp"
  49 #include "gc/g1/g1RootProcessor.hpp"
  50 #include "gc/g1/g1StringDedup.hpp"
  51 #include "gc/g1/g1YCTypes.hpp"
  52 #include "gc/g1/heapRegion.inline.hpp"
  53 #include "gc/g1/heapRegionRemSet.hpp"
  54 #include "gc/g1/heapRegionSet.inline.hpp"
  55 #include "gc/g1/suspendibleThreadSet.hpp"
  56 #include "gc/g1/vm_operations_g1.hpp"
  57 #include "gc/shared/gcHeapSummary.hpp"
  58 #include "gc/shared/gcId.hpp"
  59 #include "gc/shared/gcLocker.inline.hpp"
  60 #include "gc/shared/gcTimer.hpp"
  61 #include "gc/shared/gcTrace.hpp"
  62 #include "gc/shared/gcTraceTime.hpp"
  63 #include "gc/shared/generationSpec.hpp"
  64 #include "gc/shared/isGCActiveMark.hpp"
  65 #include "gc/shared/referenceProcessor.hpp"
  66 #include "gc/shared/taskqueue.inline.hpp"
  67 #include "memory/allocation.hpp"
  68 #include "memory/iterator.hpp"
  69 #include "oops/oop.inline.hpp"
  70 #include "runtime/atomic.inline.hpp"
  71 #include "runtime/init.hpp"
  72 #include "runtime/orderAccess.inline.hpp"
  73 #include "runtime/vmThread.hpp"
  74 #include "utilities/globalDefinitions.hpp"
  75 #include "utilities/stack.inline.hpp"
  76 
  77 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  78 
  79 // INVARIANTS/NOTES
  80 //
  81 // All allocation activity covered by the G1CollectedHeap interface is
  82 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  83 // and allocate_new_tlab, which are the "entry" points to the
  84 // allocation code from the rest of the JVM.  (Note that this does not
  85 // apply to TLAB allocation, which is not part of this interface: it
  86 // is done by clients of this interface.)
  87 
  88 // Local to this file.
  89 
  90 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  91   bool _concurrent;
  92 public:
  93   RefineCardTableEntryClosure() : _concurrent(true) { }
  94 
  95   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  96     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  97     // This path is executed by the concurrent refine or mutator threads,
  98     // concurrently, and so we do not care if card_ptr contains references
  99     // that point into the collection set.
 100     assert(!oops_into_cset, "should be");
 101 
 102     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 103       // Caller will actually yield.
 104       return false;
 105     }
 106     // Otherwise, we finished successfully; return true.
 107     return true;
 108   }
 109 
 110   void set_concurrent(bool b) { _concurrent = b; }
 111 };
 112 
 113 
 114 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 115  private:
 116   size_t _num_dirtied;
 117   G1CollectedHeap* _g1h;
 118   G1SATBCardTableLoggingModRefBS* _g1_bs;
 119 
 120   HeapRegion* region_for_card(jbyte* card_ptr) const {
 121     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 122   }
 123 
 124   bool will_become_free(HeapRegion* hr) const {
 125     // A region will be freed by free_collection_set if the region is in the
 126     // collection set and has not had an evacuation failure.
 127     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 128   }
 129 
 130  public:
 131   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 132     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 133 
 134   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 135     HeapRegion* hr = region_for_card(card_ptr);
 136 
 137     // Should only dirty cards in regions that won't be freed.
 138     if (!will_become_free(hr)) {
 139       *card_ptr = CardTableModRefBS::dirty_card_val();
 140       _num_dirtied++;
 141     }
 142 
 143     return true;
 144   }
 145 
 146   size_t num_dirtied()   const { return _num_dirtied; }
 147 };
 148 
 149 
 150 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 151   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 152 }
 153 
 154 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 155   // The from card cache is not the memory that is actually committed. So we cannot
 156   // take advantage of the zero_filled parameter.
 157   reset_from_card_cache(start_idx, num_regions);
 158 }
 159 
 160 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 161 {
 162   // Claim the right to put the region on the dirty cards region list
 163   // by installing a self pointer.
 164   HeapRegion* next = hr->get_next_dirty_cards_region();
 165   if (next == NULL) {
 166     HeapRegion* res = (HeapRegion*)
 167       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 168                           NULL);
 169     if (res == NULL) {
 170       HeapRegion* head;
 171       do {
 172         // Put the region to the dirty cards region list.
 173         head = _dirty_cards_region_list;
 174         next = (HeapRegion*)
 175           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 176         if (next == head) {
 177           assert(hr->get_next_dirty_cards_region() == hr,
 178                  "hr->get_next_dirty_cards_region() != hr");
 179           if (next == NULL) {
 180             // The last region in the list points to itself.
 181             hr->set_next_dirty_cards_region(hr);
 182           } else {
 183             hr->set_next_dirty_cards_region(next);
 184           }
 185         }
 186       } while (next != head);
 187     }
 188   }
 189 }
 190 
 191 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 192 {
 193   HeapRegion* head;
 194   HeapRegion* hr;
 195   do {
 196     head = _dirty_cards_region_list;
 197     if (head == NULL) {
 198       return NULL;
 199     }
 200     HeapRegion* new_head = head->get_next_dirty_cards_region();
 201     if (head == new_head) {
 202       // The last region.
 203       new_head = NULL;
 204     }
 205     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 206                                           head);
 207   } while (hr != head);
 208   assert(hr != NULL, "invariant");
 209   hr->set_next_dirty_cards_region(NULL);
 210   return hr;
 211 }
 212 
 213 // Returns true if the reference points to an object that
 214 // can move in an incremental collection.
 215 bool G1CollectedHeap::is_scavengable(const void* p) {
 216   HeapRegion* hr = heap_region_containing(p);
 217   return !hr->is_pinned();
 218 }
 219 
 220 // Private methods.
 221 
 222 HeapRegion*
 223 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 224   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 225   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 226     if (!_secondary_free_list.is_empty()) {
 227       if (G1ConcRegionFreeingVerbose) {
 228         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 229                                "secondary_free_list has %u entries",
 230                                _secondary_free_list.length());
 231       }
 232       // It looks as if there are free regions available on the
 233       // secondary_free_list. Let's move them to the free_list and try
 234       // again to allocate from it.
 235       append_secondary_free_list();
 236 
 237       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 238              "empty we should have moved at least one entry to the free_list");
 239       HeapRegion* res = _hrm.allocate_free_region(is_old);
 240       if (G1ConcRegionFreeingVerbose) {
 241         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 242                                "allocated " HR_FORMAT " from secondary_free_list",
 243                                HR_FORMAT_PARAMS(res));
 244       }
 245       return res;
 246     }
 247 
 248     // Wait here until we get notified either when (a) there are no
 249     // more free regions coming or (b) some regions have been moved on
 250     // the secondary_free_list.
 251     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 252   }
 253 
 254   if (G1ConcRegionFreeingVerbose) {
 255     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 256                            "could not allocate from secondary_free_list");
 257   }
 258   return NULL;
 259 }
 260 
 261 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 262   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 263          "the only time we use this to allocate a humongous region is "
 264          "when we are allocating a single humongous region");
 265 
 266   HeapRegion* res;
 267   if (G1StressConcRegionFreeing) {
 268     if (!_secondary_free_list.is_empty()) {
 269       if (G1ConcRegionFreeingVerbose) {
 270         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 271                                "forced to look at the secondary_free_list");
 272       }
 273       res = new_region_try_secondary_free_list(is_old);
 274       if (res != NULL) {
 275         return res;
 276       }
 277     }
 278   }
 279 
 280   res = _hrm.allocate_free_region(is_old);
 281 
 282   if (res == NULL) {
 283     if (G1ConcRegionFreeingVerbose) {
 284       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 285                              "res == NULL, trying the secondary_free_list");
 286     }
 287     res = new_region_try_secondary_free_list(is_old);
 288   }
 289   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 290     // Currently, only attempts to allocate GC alloc regions set
 291     // do_expand to true. So, we should only reach here during a
 292     // safepoint. If this assumption changes we might have to
 293     // reconsider the use of _expand_heap_after_alloc_failure.
 294     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 295 
 296     ergo_verbose1(ErgoHeapSizing,
 297                   "attempt heap expansion",
 298                   ergo_format_reason("region allocation request failed")
 299                   ergo_format_byte("allocation request"),
 300                   word_size * HeapWordSize);
 301     if (expand(word_size * HeapWordSize)) {
 302       // Given that expand() succeeded in expanding the heap, and we
 303       // always expand the heap by an amount aligned to the heap
 304       // region size, the free list should in theory not be empty.
 305       // In either case allocate_free_region() will check for NULL.
 306       res = _hrm.allocate_free_region(is_old);
 307     } else {
 308       _expand_heap_after_alloc_failure = false;
 309     }
 310   }
 311   return res;
 312 }
 313 
 314 HeapWord*
 315 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 316                                                            uint num_regions,
 317                                                            size_t word_size,
 318                                                            AllocationContext_t context) {
 319   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 320   assert(is_humongous(word_size), "word_size should be humongous");
 321   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 322 
 323   // Index of last region in the series.
 324   uint last = first + num_regions - 1;
 325 
 326   // We need to initialize the region(s) we just discovered. This is
 327   // a bit tricky given that it can happen concurrently with
 328   // refinement threads refining cards on these regions and
 329   // potentially wanting to refine the BOT as they are scanning
 330   // those cards (this can happen shortly after a cleanup; see CR
 331   // 6991377). So we have to set up the region(s) carefully and in
 332   // a specific order.
 333 
 334   // The word size sum of all the regions we will allocate.
 335   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 336   assert(word_size <= word_size_sum, "sanity");
 337 
 338   // This will be the "starts humongous" region.
 339   HeapRegion* first_hr = region_at(first);
 340   // The header of the new object will be placed at the bottom of
 341   // the first region.
 342   HeapWord* new_obj = first_hr->bottom();
 343   // This will be the new top of the new object.
 344   HeapWord* obj_top = new_obj + word_size;
 345 
 346   // First, we need to zero the header of the space that we will be
 347   // allocating. When we update top further down, some refinement
 348   // threads might try to scan the region. By zeroing the header we
 349   // ensure that any thread that will try to scan the region will
 350   // come across the zero klass word and bail out.
 351   //
 352   // NOTE: It would not have been correct to have used
 353   // CollectedHeap::fill_with_object() and make the space look like
 354   // an int array. The thread that is doing the allocation will
 355   // later update the object header to a potentially different array
 356   // type and, for a very short period of time, the klass and length
 357   // fields will be inconsistent. This could cause a refinement
 358   // thread to calculate the object size incorrectly.
 359   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 360 
 361   // How many words we use for filler objects.
 362   size_t word_fill_size = word_size_sum - word_size;
 363 
 364   // How many words memory we "waste" which cannot hold a filler object.
 365   size_t words_not_fillable = 0;
 366 
 367   if (word_fill_size >= min_fill_size()) {
 368     fill_with_objects(obj_top, word_fill_size);
 369   } else if (word_fill_size > 0) {
 370     // We have space to fill, but we cannot fit an object there.
 371     words_not_fillable = word_fill_size;
 372     word_fill_size = 0;
 373   }
 374 
 375   // We will set up the first region as "starts humongous". This
 376   // will also update the BOT covering all the regions to reflect
 377   // that there is a single object that starts at the bottom of the
 378   // first region.
 379   first_hr->set_starts_humongous(obj_top, word_fill_size);
 380   first_hr->set_allocation_context(context);
 381   // Then, if there are any, we will set up the "continues
 382   // humongous" regions.
 383   HeapRegion* hr = NULL;
 384   for (uint i = first + 1; i <= last; ++i) {
 385     hr = region_at(i);
 386     hr->set_continues_humongous(first_hr);
 387     hr->set_allocation_context(context);
 388   }
 389 
 390   // Up to this point no concurrent thread would have been able to
 391   // do any scanning on any region in this series. All the top
 392   // fields still point to bottom, so the intersection between
 393   // [bottom,top] and [card_start,card_end] will be empty. Before we
 394   // update the top fields, we'll do a storestore to make sure that
 395   // no thread sees the update to top before the zeroing of the
 396   // object header and the BOT initialization.
 397   OrderAccess::storestore();
 398 
 399   // Now, we will update the top fields of the "continues humongous"
 400   // regions except the last one.
 401   for (uint i = first; i < last; ++i) {
 402     hr = region_at(i);
 403     hr->set_top(hr->end());
 404   }
 405 
 406   hr = region_at(last);
 407   // If we cannot fit a filler object, we must set top to the end
 408   // of the humongous object, otherwise we cannot iterate the heap
 409   // and the BOT will not be complete.
 410   hr->set_top(hr->end() - words_not_fillable);
 411 
 412   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 413          "obj_top should be in last region");
 414 
 415   check_bitmaps("Humongous Region Allocation", first_hr);
 416 
 417   assert(words_not_fillable == 0 ||
 418          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 419          "Miscalculation in humongous allocation");
 420 
 421   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 422 
 423   for (uint i = first; i <= last; ++i) {
 424     hr = region_at(i);
 425     _humongous_set.add(hr);
 426     if (i == first) {
 427       _hr_printer.alloc(G1HRPrinter::StartsHumongous, hr, hr->top());
 428     } else {
 429       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->top());
 430     }
 431   }
 432 
 433   return new_obj;
 434 }
 435 
 436 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 437   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 438   return align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 439 }
 440 
 441 // If could fit into free regions w/o expansion, try.
 442 // Otherwise, if can expand, do so.
 443 // Otherwise, if using ex regions might help, try with ex given back.
 444 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 445   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 446 
 447   verify_region_sets_optional();
 448 
 449   uint first = G1_NO_HRM_INDEX;
 450   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 451 
 452   if (obj_regions == 1) {
 453     // Only one region to allocate, try to use a fast path by directly allocating
 454     // from the free lists. Do not try to expand here, we will potentially do that
 455     // later.
 456     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 457     if (hr != NULL) {
 458       first = hr->hrm_index();
 459     }
 460   } else {
 461     // We can't allocate humongous regions spanning more than one region while
 462     // cleanupComplete() is running, since some of the regions we find to be
 463     // empty might not yet be added to the free list. It is not straightforward
 464     // to know in which list they are on so that we can remove them. We only
 465     // need to do this if we need to allocate more than one region to satisfy the
 466     // current humongous allocation request. If we are only allocating one region
 467     // we use the one-region region allocation code (see above), that already
 468     // potentially waits for regions from the secondary free list.
 469     wait_while_free_regions_coming();
 470     append_secondary_free_list_if_not_empty_with_lock();
 471 
 472     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 473     // are lucky enough to find some.
 474     first = _hrm.find_contiguous_only_empty(obj_regions);
 475     if (first != G1_NO_HRM_INDEX) {
 476       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 477     }
 478   }
 479 
 480   if (first == G1_NO_HRM_INDEX) {
 481     // Policy: We could not find enough regions for the humongous object in the
 482     // free list. Look through the heap to find a mix of free and uncommitted regions.
 483     // If so, try expansion.
 484     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 485     if (first != G1_NO_HRM_INDEX) {
 486       // We found something. Make sure these regions are committed, i.e. expand
 487       // the heap. Alternatively we could do a defragmentation GC.
 488       ergo_verbose1(ErgoHeapSizing,
 489                     "attempt heap expansion",
 490                     ergo_format_reason("humongous allocation request failed")
 491                     ergo_format_byte("allocation request"),
 492                     word_size * HeapWordSize);
 493 
 494       _hrm.expand_at(first, obj_regions);
 495       g1_policy()->record_new_heap_size(num_regions());
 496 
 497 #ifdef ASSERT
 498       for (uint i = first; i < first + obj_regions; ++i) {
 499         HeapRegion* hr = region_at(i);
 500         assert(hr->is_free(), "sanity");
 501         assert(hr->is_empty(), "sanity");
 502         assert(is_on_master_free_list(hr), "sanity");
 503       }
 504 #endif
 505       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 506     } else {
 507       // Policy: Potentially trigger a defragmentation GC.
 508     }
 509   }
 510 
 511   HeapWord* result = NULL;
 512   if (first != G1_NO_HRM_INDEX) {
 513     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 514                                                        word_size, context);
 515     assert(result != NULL, "it should always return a valid result");
 516 
 517     // A successful humongous object allocation changes the used space
 518     // information of the old generation so we need to recalculate the
 519     // sizes and update the jstat counters here.
 520     g1mm()->update_sizes();
 521   }
 522 
 523   verify_region_sets_optional();
 524 
 525   return result;
 526 }
 527 
 528 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 529   assert_heap_not_locked_and_not_at_safepoint();
 530   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 531 
 532   uint dummy_gc_count_before;
 533   uint dummy_gclocker_retry_count = 0;
 534   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 535 }
 536 
 537 HeapWord*
 538 G1CollectedHeap::mem_allocate(size_t word_size,
 539                               bool*  gc_overhead_limit_was_exceeded) {
 540   assert_heap_not_locked_and_not_at_safepoint();
 541 
 542   // Loop until the allocation is satisfied, or unsatisfied after GC.
 543   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 544     uint gc_count_before;
 545 
 546     HeapWord* result = NULL;
 547     if (!is_humongous(word_size)) {
 548       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 549     } else {
 550       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 551     }
 552     if (result != NULL) {
 553       return result;
 554     }
 555 
 556     // Create the garbage collection operation...
 557     VM_G1CollectForAllocation op(gc_count_before, word_size);
 558     op.set_allocation_context(AllocationContext::current());
 559 
 560     // ...and get the VM thread to execute it.
 561     VMThread::execute(&op);
 562 
 563     if (op.prologue_succeeded() && op.pause_succeeded()) {
 564       // If the operation was successful we'll return the result even
 565       // if it is NULL. If the allocation attempt failed immediately
 566       // after a Full GC, it's unlikely we'll be able to allocate now.
 567       HeapWord* result = op.result();
 568       if (result != NULL && !is_humongous(word_size)) {
 569         // Allocations that take place on VM operations do not do any
 570         // card dirtying and we have to do it here. We only have to do
 571         // this for non-humongous allocations, though.
 572         dirty_young_block(result, word_size);
 573       }
 574       return result;
 575     } else {
 576       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 577         return NULL;
 578       }
 579       assert(op.result() == NULL,
 580              "the result should be NULL if the VM op did not succeed");
 581     }
 582 
 583     // Give a warning if we seem to be looping forever.
 584     if ((QueuedAllocationWarningCount > 0) &&
 585         (try_count % QueuedAllocationWarningCount == 0)) {
 586       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 587     }
 588   }
 589 
 590   ShouldNotReachHere();
 591   return NULL;
 592 }
 593 
 594 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 595                                                    AllocationContext_t context,
 596                                                    uint* gc_count_before_ret,
 597                                                    uint* gclocker_retry_count_ret) {
 598   // Make sure you read the note in attempt_allocation_humongous().
 599 
 600   assert_heap_not_locked_and_not_at_safepoint();
 601   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 602          "be called for humongous allocation requests");
 603 
 604   // We should only get here after the first-level allocation attempt
 605   // (attempt_allocation()) failed to allocate.
 606 
 607   // We will loop until a) we manage to successfully perform the
 608   // allocation or b) we successfully schedule a collection which
 609   // fails to perform the allocation. b) is the only case when we'll
 610   // return NULL.
 611   HeapWord* result = NULL;
 612   for (int try_count = 1; /* we'll return */; try_count += 1) {
 613     bool should_try_gc;
 614     uint gc_count_before;
 615 
 616     {
 617       MutexLockerEx x(Heap_lock);
 618       result = _allocator->attempt_allocation_locked(word_size, context);
 619       if (result != NULL) {
 620         return result;
 621       }
 622 
 623       if (GC_locker::is_active_and_needs_gc()) {
 624         if (g1_policy()->can_expand_young_list()) {
 625           // No need for an ergo verbose message here,
 626           // can_expand_young_list() does this when it returns true.
 627           result = _allocator->attempt_allocation_force(word_size, context);
 628           if (result != NULL) {
 629             return result;
 630           }
 631         }
 632         should_try_gc = false;
 633       } else {
 634         // The GCLocker may not be active but the GCLocker initiated
 635         // GC may not yet have been performed (GCLocker::needs_gc()
 636         // returns true). In this case we do not try this GC and
 637         // wait until the GCLocker initiated GC is performed, and
 638         // then retry the allocation.
 639         if (GC_locker::needs_gc()) {
 640           should_try_gc = false;
 641         } else {
 642           // Read the GC count while still holding the Heap_lock.
 643           gc_count_before = total_collections();
 644           should_try_gc = true;
 645         }
 646       }
 647     }
 648 
 649     if (should_try_gc) {
 650       bool succeeded;
 651       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 652                                    GCCause::_g1_inc_collection_pause);
 653       if (result != NULL) {
 654         assert(succeeded, "only way to get back a non-NULL result");
 655         return result;
 656       }
 657 
 658       if (succeeded) {
 659         // If we get here we successfully scheduled a collection which
 660         // failed to allocate. No point in trying to allocate
 661         // further. We'll just return NULL.
 662         MutexLockerEx x(Heap_lock);
 663         *gc_count_before_ret = total_collections();
 664         return NULL;
 665       }
 666     } else {
 667       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 668         MutexLockerEx x(Heap_lock);
 669         *gc_count_before_ret = total_collections();
 670         return NULL;
 671       }
 672       // The GCLocker is either active or the GCLocker initiated
 673       // GC has not yet been performed. Stall until it is and
 674       // then retry the allocation.
 675       GC_locker::stall_until_clear();
 676       (*gclocker_retry_count_ret) += 1;
 677     }
 678 
 679     // We can reach here if we were unsuccessful in scheduling a
 680     // collection (because another thread beat us to it) or if we were
 681     // stalled due to the GC locker. In either can we should retry the
 682     // allocation attempt in case another thread successfully
 683     // performed a collection and reclaimed enough space. We do the
 684     // first attempt (without holding the Heap_lock) here and the
 685     // follow-on attempt will be at the start of the next loop
 686     // iteration (after taking the Heap_lock).
 687     result = _allocator->attempt_allocation(word_size, context);
 688     if (result != NULL) {
 689       return result;
 690     }
 691 
 692     // Give a warning if we seem to be looping forever.
 693     if ((QueuedAllocationWarningCount > 0) &&
 694         (try_count % QueuedAllocationWarningCount == 0)) {
 695       warning("G1CollectedHeap::attempt_allocation_slow() "
 696               "retries %d times", try_count);
 697     }
 698   }
 699 
 700   ShouldNotReachHere();
 701   return NULL;
 702 }
 703 
 704 void G1CollectedHeap::begin_archive_alloc_range() {
 705   assert_at_safepoint(true /* should_be_vm_thread */);
 706   if (_archive_allocator == NULL) {
 707     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 708   }
 709 }
 710 
 711 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 712   // Allocations in archive regions cannot be of a size that would be considered
 713   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 714   // may be different at archive-restore time.
 715   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 716 }
 717 
 718 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 719   assert_at_safepoint(true /* should_be_vm_thread */);
 720   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 721   if (is_archive_alloc_too_large(word_size)) {
 722     return NULL;
 723   }
 724   return _archive_allocator->archive_mem_allocate(word_size);
 725 }
 726 
 727 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 728                                               size_t end_alignment_in_bytes) {
 729   assert_at_safepoint(true /* should_be_vm_thread */);
 730   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 731 
 732   // Call complete_archive to do the real work, filling in the MemRegion
 733   // array with the archive regions.
 734   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 735   delete _archive_allocator;
 736   _archive_allocator = NULL;
 737 }
 738 
 739 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 740   assert(ranges != NULL, "MemRegion array NULL");
 741   assert(count != 0, "No MemRegions provided");
 742   MemRegion reserved = _hrm.reserved();
 743   for (size_t i = 0; i < count; i++) {
 744     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 745       return false;
 746     }
 747   }
 748   return true;
 749 }
 750 
 751 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 752   assert(!is_init_completed(), "Expect to be called at JVM init time");
 753   assert(ranges != NULL, "MemRegion array NULL");
 754   assert(count != 0, "No MemRegions provided");
 755   MutexLockerEx x(Heap_lock);
 756 
 757   MemRegion reserved = _hrm.reserved();
 758   HeapWord* prev_last_addr = NULL;
 759   HeapRegion* prev_last_region = NULL;
 760 
 761   // Temporarily disable pretouching of heap pages. This interface is used
 762   // when mmap'ing archived heap data in, so pre-touching is wasted.
 763   FlagSetting fs(AlwaysPreTouch, false);
 764 
 765   // Enable archive object checking in G1MarkSweep. We have to let it know
 766   // about each archive range, so that objects in those ranges aren't marked.
 767   G1MarkSweep::enable_archive_object_check();
 768 
 769   // For each specified MemRegion range, allocate the corresponding G1
 770   // regions and mark them as archive regions. We expect the ranges in
 771   // ascending starting address order, without overlap.
 772   for (size_t i = 0; i < count; i++) {
 773     MemRegion curr_range = ranges[i];
 774     HeapWord* start_address = curr_range.start();
 775     size_t word_size = curr_range.word_size();
 776     HeapWord* last_address = curr_range.last();
 777     size_t commits = 0;
 778 
 779     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 780               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 781               p2i(start_address), p2i(last_address));
 782     guarantee(start_address > prev_last_addr,
 783               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 784               p2i(start_address), p2i(prev_last_addr));
 785     prev_last_addr = last_address;
 786 
 787     // Check for ranges that start in the same G1 region in which the previous
 788     // range ended, and adjust the start address so we don't try to allocate
 789     // the same region again. If the current range is entirely within that
 790     // region, skip it, just adjusting the recorded top.
 791     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 792     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 793       start_address = start_region->end();
 794       if (start_address > last_address) {
 795         increase_used(word_size * HeapWordSize);
 796         start_region->set_top(last_address + 1);
 797         continue;
 798       }
 799       start_region->set_top(start_address);
 800       curr_range = MemRegion(start_address, last_address + 1);
 801       start_region = _hrm.addr_to_region(start_address);
 802     }
 803 
 804     // Perform the actual region allocation, exiting if it fails.
 805     // Then note how much new space we have allocated.
 806     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
 807       return false;
 808     }
 809     increase_used(word_size * HeapWordSize);
 810     if (commits != 0) {
 811       ergo_verbose1(ErgoHeapSizing,
 812                     "attempt heap expansion",
 813                     ergo_format_reason("allocate archive regions")
 814                     ergo_format_byte("total size"),
 815                     HeapRegion::GrainWords * HeapWordSize * commits);
 816     }
 817 
 818     // Mark each G1 region touched by the range as archive, add it to the old set,
 819     // and set the allocation context and top.
 820     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 821     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 822     prev_last_region = last_region;
 823 
 824     while (curr_region != NULL) {
 825       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 826              "Region already in use (index %u)", curr_region->hrm_index());
 827       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
 828       curr_region->set_allocation_context(AllocationContext::system());
 829       curr_region->set_archive();
 830       _old_set.add(curr_region);
 831       if (curr_region != last_region) {
 832         curr_region->set_top(curr_region->end());
 833         curr_region = _hrm.next_region_in_heap(curr_region);
 834       } else {
 835         curr_region->set_top(last_address + 1);
 836         curr_region = NULL;
 837       }
 838     }
 839 
 840     // Notify mark-sweep of the archive range.
 841     G1MarkSweep::set_range_archive(curr_range, true);
 842   }
 843   return true;
 844 }
 845 
 846 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 847   assert(!is_init_completed(), "Expect to be called at JVM init time");
 848   assert(ranges != NULL, "MemRegion array NULL");
 849   assert(count != 0, "No MemRegions provided");
 850   MemRegion reserved = _hrm.reserved();
 851   HeapWord *prev_last_addr = NULL;
 852   HeapRegion* prev_last_region = NULL;
 853 
 854   // For each MemRegion, create filler objects, if needed, in the G1 regions
 855   // that contain the address range. The address range actually within the
 856   // MemRegion will not be modified. That is assumed to have been initialized
 857   // elsewhere, probably via an mmap of archived heap data.
 858   MutexLockerEx x(Heap_lock);
 859   for (size_t i = 0; i < count; i++) {
 860     HeapWord* start_address = ranges[i].start();
 861     HeapWord* last_address = ranges[i].last();
 862 
 863     assert(reserved.contains(start_address) && reserved.contains(last_address),
 864            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 865            p2i(start_address), p2i(last_address));
 866     assert(start_address > prev_last_addr,
 867            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 868            p2i(start_address), p2i(prev_last_addr));
 869 
 870     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 871     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 872     HeapWord* bottom_address = start_region->bottom();
 873 
 874     // Check for a range beginning in the same region in which the
 875     // previous one ended.
 876     if (start_region == prev_last_region) {
 877       bottom_address = prev_last_addr + 1;
 878     }
 879 
 880     // Verify that the regions were all marked as archive regions by
 881     // alloc_archive_regions.
 882     HeapRegion* curr_region = start_region;
 883     while (curr_region != NULL) {
 884       guarantee(curr_region->is_archive(),
 885                 "Expected archive region at index %u", curr_region->hrm_index());
 886       if (curr_region != last_region) {
 887         curr_region = _hrm.next_region_in_heap(curr_region);
 888       } else {
 889         curr_region = NULL;
 890       }
 891     }
 892 
 893     prev_last_addr = last_address;
 894     prev_last_region = last_region;
 895 
 896     // Fill the memory below the allocated range with dummy object(s),
 897     // if the region bottom does not match the range start, or if the previous
 898     // range ended within the same G1 region, and there is a gap.
 899     if (start_address != bottom_address) {
 900       size_t fill_size = pointer_delta(start_address, bottom_address);
 901       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 902       increase_used(fill_size * HeapWordSize);
 903     }
 904   }
 905 }
 906 
 907 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 908                                                      uint* gc_count_before_ret,
 909                                                      uint* gclocker_retry_count_ret) {
 910   assert_heap_not_locked_and_not_at_safepoint();
 911   assert(!is_humongous(word_size), "attempt_allocation() should not "
 912          "be called for humongous allocation requests");
 913 
 914   AllocationContext_t context = AllocationContext::current();
 915   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 916 
 917   if (result == NULL) {
 918     result = attempt_allocation_slow(word_size,
 919                                      context,
 920                                      gc_count_before_ret,
 921                                      gclocker_retry_count_ret);
 922   }
 923   assert_heap_not_locked();
 924   if (result != NULL) {
 925     dirty_young_block(result, word_size);
 926   }
 927   return result;
 928 }
 929 
 930 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 931   assert(!is_init_completed(), "Expect to be called at JVM init time");
 932   assert(ranges != NULL, "MemRegion array NULL");
 933   assert(count != 0, "No MemRegions provided");
 934   MemRegion reserved = _hrm.reserved();
 935   HeapWord* prev_last_addr = NULL;
 936   HeapRegion* prev_last_region = NULL;
 937   size_t size_used = 0;
 938   size_t uncommitted_regions = 0;
 939 
 940   // For each Memregion, free the G1 regions that constitute it, and
 941   // notify mark-sweep that the range is no longer to be considered 'archive.'
 942   MutexLockerEx x(Heap_lock);
 943   for (size_t i = 0; i < count; i++) {
 944     HeapWord* start_address = ranges[i].start();
 945     HeapWord* last_address = ranges[i].last();
 946 
 947     assert(reserved.contains(start_address) && reserved.contains(last_address),
 948            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 949            p2i(start_address), p2i(last_address));
 950     assert(start_address > prev_last_addr,
 951            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 952            p2i(start_address), p2i(prev_last_addr));
 953     size_used += ranges[i].byte_size();
 954     prev_last_addr = last_address;
 955 
 956     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 957     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 958 
 959     // Check for ranges that start in the same G1 region in which the previous
 960     // range ended, and adjust the start address so we don't try to free
 961     // the same region again. If the current range is entirely within that
 962     // region, skip it.
 963     if (start_region == prev_last_region) {
 964       start_address = start_region->end();
 965       if (start_address > last_address) {
 966         continue;
 967       }
 968       start_region = _hrm.addr_to_region(start_address);
 969     }
 970     prev_last_region = last_region;
 971 
 972     // After verifying that each region was marked as an archive region by
 973     // alloc_archive_regions, set it free and empty and uncommit it.
 974     HeapRegion* curr_region = start_region;
 975     while (curr_region != NULL) {
 976       guarantee(curr_region->is_archive(),
 977                 "Expected archive region at index %u", curr_region->hrm_index());
 978       uint curr_index = curr_region->hrm_index();
 979       _old_set.remove(curr_region);
 980       curr_region->set_free();
 981       curr_region->set_top(curr_region->bottom());
 982       if (curr_region != last_region) {
 983         curr_region = _hrm.next_region_in_heap(curr_region);
 984       } else {
 985         curr_region = NULL;
 986       }
 987       _hrm.shrink_at(curr_index, 1);
 988       uncommitted_regions++;
 989     }
 990 
 991     // Notify mark-sweep that this is no longer an archive range.
 992     G1MarkSweep::set_range_archive(ranges[i], false);
 993   }
 994 
 995   if (uncommitted_regions != 0) {
 996     ergo_verbose1(ErgoHeapSizing,
 997                   "attempt heap shrinking",
 998                   ergo_format_reason("uncommitted archive regions")
 999                   ergo_format_byte("total size"),
1000                   HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
1001   }
1002   decrease_used(size_used);
1003 }
1004 
1005 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1006                                                         uint* gc_count_before_ret,
1007                                                         uint* gclocker_retry_count_ret) {
1008   // The structure of this method has a lot of similarities to
1009   // attempt_allocation_slow(). The reason these two were not merged
1010   // into a single one is that such a method would require several "if
1011   // allocation is not humongous do this, otherwise do that"
1012   // conditional paths which would obscure its flow. In fact, an early
1013   // version of this code did use a unified method which was harder to
1014   // follow and, as a result, it had subtle bugs that were hard to
1015   // track down. So keeping these two methods separate allows each to
1016   // be more readable. It will be good to keep these two in sync as
1017   // much as possible.
1018 
1019   assert_heap_not_locked_and_not_at_safepoint();
1020   assert(is_humongous(word_size), "attempt_allocation_humongous() "
1021          "should only be called for humongous allocations");
1022 
1023   // Humongous objects can exhaust the heap quickly, so we should check if we
1024   // need to start a marking cycle at each humongous object allocation. We do
1025   // the check before we do the actual allocation. The reason for doing it
1026   // before the allocation is that we avoid having to keep track of the newly
1027   // allocated memory while we do a GC.
1028   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1029                                            word_size)) {
1030     collect(GCCause::_g1_humongous_allocation);
1031   }
1032 
1033   // We will loop until a) we manage to successfully perform the
1034   // allocation or b) we successfully schedule a collection which
1035   // fails to perform the allocation. b) is the only case when we'll
1036   // return NULL.
1037   HeapWord* result = NULL;
1038   for (int try_count = 1; /* we'll return */; try_count += 1) {
1039     bool should_try_gc;
1040     uint gc_count_before;
1041 
1042     {
1043       MutexLockerEx x(Heap_lock);
1044 
1045       // Given that humongous objects are not allocated in young
1046       // regions, we'll first try to do the allocation without doing a
1047       // collection hoping that there's enough space in the heap.
1048       result = humongous_obj_allocate(word_size, AllocationContext::current());
1049       if (result != NULL) {
1050         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
1051         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
1052         return result;
1053       }
1054 
1055       if (GC_locker::is_active_and_needs_gc()) {
1056         should_try_gc = false;
1057       } else {
1058          // The GCLocker may not be active but the GCLocker initiated
1059         // GC may not yet have been performed (GCLocker::needs_gc()
1060         // returns true). In this case we do not try this GC and
1061         // wait until the GCLocker initiated GC is performed, and
1062         // then retry the allocation.
1063         if (GC_locker::needs_gc()) {
1064           should_try_gc = false;
1065         } else {
1066           // Read the GC count while still holding the Heap_lock.
1067           gc_count_before = total_collections();
1068           should_try_gc = true;
1069         }
1070       }
1071     }
1072 
1073     if (should_try_gc) {
1074       // If we failed to allocate the humongous object, we should try to
1075       // do a collection pause (if we're allowed) in case it reclaims
1076       // enough space for the allocation to succeed after the pause.
1077 
1078       bool succeeded;
1079       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1080                                    GCCause::_g1_humongous_allocation);
1081       if (result != NULL) {
1082         assert(succeeded, "only way to get back a non-NULL result");
1083         return result;
1084       }
1085 
1086       if (succeeded) {
1087         // If we get here we successfully scheduled a collection which
1088         // failed to allocate. No point in trying to allocate
1089         // further. We'll just return NULL.
1090         MutexLockerEx x(Heap_lock);
1091         *gc_count_before_ret = total_collections();
1092         return NULL;
1093       }
1094     } else {
1095       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1096         MutexLockerEx x(Heap_lock);
1097         *gc_count_before_ret = total_collections();
1098         return NULL;
1099       }
1100       // The GCLocker is either active or the GCLocker initiated
1101       // GC has not yet been performed. Stall until it is and
1102       // then retry the allocation.
1103       GC_locker::stall_until_clear();
1104       (*gclocker_retry_count_ret) += 1;
1105     }
1106 
1107     // We can reach here if we were unsuccessful in scheduling a
1108     // collection (because another thread beat us to it) or if we were
1109     // stalled due to the GC locker. In either can we should retry the
1110     // allocation attempt in case another thread successfully
1111     // performed a collection and reclaimed enough space.  Give a
1112     // warning if we seem to be looping forever.
1113 
1114     if ((QueuedAllocationWarningCount > 0) &&
1115         (try_count % QueuedAllocationWarningCount == 0)) {
1116       warning("G1CollectedHeap::attempt_allocation_humongous() "
1117               "retries %d times", try_count);
1118     }
1119   }
1120 
1121   ShouldNotReachHere();
1122   return NULL;
1123 }
1124 
1125 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1126                                                            AllocationContext_t context,
1127                                                            bool expect_null_mutator_alloc_region) {
1128   assert_at_safepoint(true /* should_be_vm_thread */);
1129   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1130          "the current alloc region was unexpectedly found to be non-NULL");
1131 
1132   if (!is_humongous(word_size)) {
1133     return _allocator->attempt_allocation_locked(word_size, context);
1134   } else {
1135     HeapWord* result = humongous_obj_allocate(word_size, context);
1136     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1137       collector_state()->set_initiate_conc_mark_if_possible(true);
1138     }
1139     return result;
1140   }
1141 
1142   ShouldNotReachHere();
1143 }
1144 
1145 class PostMCRemSetClearClosure: public HeapRegionClosure {
1146   G1CollectedHeap* _g1h;
1147   ModRefBarrierSet* _mr_bs;
1148 public:
1149   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1150     _g1h(g1h), _mr_bs(mr_bs) {}
1151 
1152   bool doHeapRegion(HeapRegion* r) {
1153     HeapRegionRemSet* hrrs = r->rem_set();
1154 
1155     _g1h->reset_gc_time_stamps(r);
1156 
1157     if (r->is_continues_humongous()) {
1158       // We'll assert that the strong code root list and RSet is empty
1159       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1160       assert(hrrs->occupied() == 0, "RSet should be empty");
1161     } else {
1162       hrrs->clear();
1163     }
1164     // You might think here that we could clear just the cards
1165     // corresponding to the used region.  But no: if we leave a dirty card
1166     // in a region we might allocate into, then it would prevent that card
1167     // from being enqueued, and cause it to be missed.
1168     // Re: the performance cost: we shouldn't be doing full GC anyway!
1169     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1170 
1171     return false;
1172   }
1173 };
1174 
1175 void G1CollectedHeap::clear_rsets_post_compaction() {
1176   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1177   heap_region_iterate(&rs_clear);
1178 }
1179 
1180 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1181   G1CollectedHeap*   _g1h;
1182   UpdateRSOopClosure _cl;
1183 public:
1184   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1185     _cl(g1->g1_rem_set(), worker_i),
1186     _g1h(g1)
1187   { }
1188 
1189   bool doHeapRegion(HeapRegion* r) {
1190     if (!r->is_continues_humongous()) {
1191       _cl.set_from(r);
1192       r->oop_iterate(&_cl);
1193     }
1194     return false;
1195   }
1196 };
1197 
1198 class ParRebuildRSTask: public AbstractGangTask {
1199   G1CollectedHeap* _g1;
1200   HeapRegionClaimer _hrclaimer;
1201 
1202 public:
1203   ParRebuildRSTask(G1CollectedHeap* g1) :
1204       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1205 
1206   void work(uint worker_id) {
1207     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1208     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1209   }
1210 };
1211 
1212 class PostCompactionPrinterClosure: public HeapRegionClosure {
1213 private:
1214   G1HRPrinter* _hr_printer;
1215 public:
1216   bool doHeapRegion(HeapRegion* hr) {
1217     assert(!hr->is_young(), "not expecting to find young regions");
1218     if (hr->is_free()) {
1219       // We only generate output for non-empty regions.
1220     } else if (hr->is_starts_humongous()) {
1221       _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1222     } else if (hr->is_continues_humongous()) {
1223       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1224     } else if (hr->is_archive()) {
1225       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1226     } else if (hr->is_old()) {
1227       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1228     } else {
1229       ShouldNotReachHere();
1230     }
1231     return false;
1232   }
1233 
1234   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1235     : _hr_printer(hr_printer) { }
1236 };
1237 
1238 void G1CollectedHeap::print_hrm_post_compaction() {
1239   PostCompactionPrinterClosure cl(hr_printer());
1240   heap_region_iterate(&cl);
1241 }
1242 
1243 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1244                                          bool clear_all_soft_refs) {
1245   assert_at_safepoint(true /* should_be_vm_thread */);
1246 
1247   if (GC_locker::check_active_before_gc()) {
1248     return false;
1249   }
1250 
1251   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1252   gc_timer->register_gc_start();
1253 
1254   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1255   GCIdMark gc_id_mark;
1256   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1257 
1258   SvcGCMarker sgcm(SvcGCMarker::FULL);
1259   ResourceMark rm;
1260 
1261   G1Log::update_level();
1262   print_heap_before_gc();
1263   trace_heap_before_gc(gc_tracer);
1264 
1265   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1266 
1267   verify_region_sets_optional();
1268 
1269   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1270                            collector_policy()->should_clear_all_soft_refs();
1271 
1272   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1273 
1274   {
1275     IsGCActiveMark x;
1276 
1277     // Timing
1278     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1279     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1280 
1281     {
1282       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1283       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1284       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1285 
1286       g1_policy()->record_full_collection_start();
1287 
1288       // Note: When we have a more flexible GC logging framework that
1289       // allows us to add optional attributes to a GC log record we
1290       // could consider timing and reporting how long we wait in the
1291       // following two methods.
1292       wait_while_free_regions_coming();
1293       // If we start the compaction before the CM threads finish
1294       // scanning the root regions we might trip them over as we'll
1295       // be moving objects / updating references. So let's wait until
1296       // they are done. By telling them to abort, they should complete
1297       // early.
1298       _cm->root_regions()->abort();
1299       _cm->root_regions()->wait_until_scan_finished();
1300       append_secondary_free_list_if_not_empty_with_lock();
1301 
1302       gc_prologue(true);
1303       increment_total_collections(true /* full gc */);
1304       increment_old_marking_cycles_started();
1305 
1306       assert(used() == recalculate_used(), "Should be equal");
1307 
1308       verify_before_gc();
1309 
1310       check_bitmaps("Full GC Start");
1311       pre_full_gc_dump(gc_timer);
1312 
1313 #if defined(COMPILER2) || INCLUDE_JVMCI
1314       DerivedPointerTable::clear();
1315 #endif
1316 
1317       // Disable discovery and empty the discovered lists
1318       // for the CM ref processor.
1319       ref_processor_cm()->disable_discovery();
1320       ref_processor_cm()->abandon_partial_discovery();
1321       ref_processor_cm()->verify_no_references_recorded();
1322 
1323       // Abandon current iterations of concurrent marking and concurrent
1324       // refinement, if any are in progress. We have to do this before
1325       // wait_until_scan_finished() below.
1326       concurrent_mark()->abort();
1327 
1328       // Make sure we'll choose a new allocation region afterwards.
1329       _allocator->release_mutator_alloc_region();
1330       _allocator->abandon_gc_alloc_regions();
1331       g1_rem_set()->cleanupHRRS();
1332 
1333       // We should call this after we retire any currently active alloc
1334       // regions so that all the ALLOC / RETIRE events are generated
1335       // before the start GC event.
1336       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1337 
1338       // We may have added regions to the current incremental collection
1339       // set between the last GC or pause and now. We need to clear the
1340       // incremental collection set and then start rebuilding it afresh
1341       // after this full GC.
1342       abandon_collection_set(g1_policy()->inc_cset_head());
1343       g1_policy()->clear_incremental_cset();
1344       g1_policy()->stop_incremental_cset_building();
1345 
1346       tear_down_region_sets(false /* free_list_only */);
1347       collector_state()->set_gcs_are_young(true);
1348 
1349       // See the comments in g1CollectedHeap.hpp and
1350       // G1CollectedHeap::ref_processing_init() about
1351       // how reference processing currently works in G1.
1352 
1353       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1354       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1355 
1356       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1357       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1358 
1359       ref_processor_stw()->enable_discovery();
1360       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1361 
1362       // Do collection work
1363       {
1364         HandleMark hm;  // Discard invalid handles created during gc
1365         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1366       }
1367 
1368       assert(num_free_regions() == 0, "we should not have added any free regions");
1369       rebuild_region_sets(false /* free_list_only */);
1370 
1371       // Enqueue any discovered reference objects that have
1372       // not been removed from the discovered lists.
1373       ref_processor_stw()->enqueue_discovered_references();
1374 
1375 #if defined(COMPILER2) || INCLUDE_JVMCI
1376       DerivedPointerTable::update_pointers();
1377 #endif
1378 
1379       MemoryService::track_memory_usage();
1380 
1381       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1382       ref_processor_stw()->verify_no_references_recorded();
1383 
1384       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1385       ClassLoaderDataGraph::purge();
1386       MetaspaceAux::verify_metrics();
1387 
1388       // Note: since we've just done a full GC, concurrent
1389       // marking is no longer active. Therefore we need not
1390       // re-enable reference discovery for the CM ref processor.
1391       // That will be done at the start of the next marking cycle.
1392       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1393       ref_processor_cm()->verify_no_references_recorded();
1394 
1395       reset_gc_time_stamp();
1396       // Since everything potentially moved, we will clear all remembered
1397       // sets, and clear all cards.  Later we will rebuild remembered
1398       // sets. We will also reset the GC time stamps of the regions.
1399       clear_rsets_post_compaction();
1400       check_gc_time_stamps();
1401 
1402       resize_if_necessary_after_full_collection();
1403 
1404       if (_hr_printer.is_active()) {
1405         // We should do this after we potentially resize the heap so
1406         // that all the COMMIT / UNCOMMIT events are generated before
1407         // the end GC event.
1408 
1409         print_hrm_post_compaction();
1410         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1411       }
1412 
1413       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1414       if (hot_card_cache->use_cache()) {
1415         hot_card_cache->reset_card_counts();
1416         hot_card_cache->reset_hot_cache();
1417       }
1418 
1419       // Rebuild remembered sets of all regions.
1420       uint n_workers =
1421         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1422                                                 workers()->active_workers(),
1423                                                 Threads::number_of_non_daemon_threads());
1424       workers()->set_active_workers(n_workers);
1425 
1426       ParRebuildRSTask rebuild_rs_task(this);
1427       workers()->run_task(&rebuild_rs_task);
1428 
1429       // Rebuild the strong code root lists for each region
1430       rebuild_strong_code_roots();
1431 
1432       if (true) { // FIXME
1433         MetaspaceGC::compute_new_size();
1434       }
1435 
1436 #ifdef TRACESPINNING
1437       ParallelTaskTerminator::print_termination_counts();
1438 #endif
1439 
1440       // Discard all rset updates
1441       JavaThread::dirty_card_queue_set().abandon_logs();
1442       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1443 
1444       _young_list->reset_sampled_info();
1445       // At this point there should be no regions in the
1446       // entire heap tagged as young.
1447       assert(check_young_list_empty(true /* check_heap */),
1448              "young list should be empty at this point");
1449 
1450       // Update the number of full collections that have been completed.
1451       increment_old_marking_cycles_completed(false /* concurrent */);
1452 
1453       _hrm.verify_optional();
1454       verify_region_sets_optional();
1455 
1456       verify_after_gc();
1457 
1458       // Clear the previous marking bitmap, if needed for bitmap verification.
1459       // Note we cannot do this when we clear the next marking bitmap in
1460       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1461       // objects marked during a full GC against the previous bitmap.
1462       // But we need to clear it before calling check_bitmaps below since
1463       // the full GC has compacted objects and updated TAMS but not updated
1464       // the prev bitmap.
1465       if (G1VerifyBitmaps) {
1466         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1467       }
1468       check_bitmaps("Full GC End");
1469 
1470       // Start a new incremental collection set for the next pause
1471       assert(g1_policy()->collection_set() == NULL, "must be");
1472       g1_policy()->start_incremental_cset_building();
1473 
1474       clear_cset_fast_test();
1475 
1476       _allocator->init_mutator_alloc_region();
1477 
1478       g1_policy()->record_full_collection_end();
1479 
1480       if (G1Log::fine()) {
1481         g1_policy()->print_heap_transition();
1482       }
1483 
1484       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1485       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1486       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1487       // before any GC notifications are raised.
1488       g1mm()->update_sizes();
1489 
1490       gc_epilogue(true);
1491     }
1492 
1493     if (G1Log::finer()) {
1494       g1_policy()->print_detailed_heap_transition(true /* full */);
1495     }
1496 
1497     print_heap_after_gc();
1498     trace_heap_after_gc(gc_tracer);
1499 
1500     post_full_gc_dump(gc_timer);
1501 
1502     gc_timer->register_gc_end();
1503     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1504   }
1505 
1506   return true;
1507 }
1508 
1509 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1510   // Currently, there is no facility in the do_full_collection(bool) API to notify
1511   // the caller that the collection did not succeed (e.g., because it was locked
1512   // out by the GC locker). So, right now, we'll ignore the return value.
1513   bool dummy = do_full_collection(true,                /* explicit_gc */
1514                                   clear_all_soft_refs);
1515 }
1516 
1517 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1518   // Include bytes that will be pre-allocated to support collections, as "used".
1519   const size_t used_after_gc = used();
1520   const size_t capacity_after_gc = capacity();
1521   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1522 
1523   // This is enforced in arguments.cpp.
1524   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1525          "otherwise the code below doesn't make sense");
1526 
1527   // We don't have floating point command-line arguments
1528   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1529   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1530   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1531   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1532 
1533   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1534   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1535 
1536   // We have to be careful here as these two calculations can overflow
1537   // 32-bit size_t's.
1538   double used_after_gc_d = (double) used_after_gc;
1539   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1540   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1541 
1542   // Let's make sure that they are both under the max heap size, which
1543   // by default will make them fit into a size_t.
1544   double desired_capacity_upper_bound = (double) max_heap_size;
1545   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1546                                     desired_capacity_upper_bound);
1547   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1548                                     desired_capacity_upper_bound);
1549 
1550   // We can now safely turn them into size_t's.
1551   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1552   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1553 
1554   // This assert only makes sense here, before we adjust them
1555   // with respect to the min and max heap size.
1556   assert(minimum_desired_capacity <= maximum_desired_capacity,
1557          "minimum_desired_capacity = " SIZE_FORMAT ", "
1558          "maximum_desired_capacity = " SIZE_FORMAT,
1559          minimum_desired_capacity, maximum_desired_capacity);
1560 
1561   // Should not be greater than the heap max size. No need to adjust
1562   // it with respect to the heap min size as it's a lower bound (i.e.,
1563   // we'll try to make the capacity larger than it, not smaller).
1564   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1565   // Should not be less than the heap min size. No need to adjust it
1566   // with respect to the heap max size as it's an upper bound (i.e.,
1567   // we'll try to make the capacity smaller than it, not greater).
1568   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1569 
1570   if (capacity_after_gc < minimum_desired_capacity) {
1571     // Don't expand unless it's significant
1572     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1573     ergo_verbose4(ErgoHeapSizing,
1574                   "attempt heap expansion",
1575                   ergo_format_reason("capacity lower than "
1576                                      "min desired capacity after Full GC")
1577                   ergo_format_byte("capacity")
1578                   ergo_format_byte("occupancy")
1579                   ergo_format_byte_perc("min desired capacity"),
1580                   capacity_after_gc, used_after_gc,
1581                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1582     expand(expand_bytes);
1583 
1584     // No expansion, now see if we want to shrink
1585   } else if (capacity_after_gc > maximum_desired_capacity) {
1586     // Capacity too large, compute shrinking size
1587     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1588     ergo_verbose4(ErgoHeapSizing,
1589                   "attempt heap shrinking",
1590                   ergo_format_reason("capacity higher than "
1591                                      "max desired capacity after Full GC")
1592                   ergo_format_byte("capacity")
1593                   ergo_format_byte("occupancy")
1594                   ergo_format_byte_perc("max desired capacity"),
1595                   capacity_after_gc, used_after_gc,
1596                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1597     shrink(shrink_bytes);
1598   }
1599 }
1600 
1601 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1602                                                             AllocationContext_t context,
1603                                                             bool do_gc,
1604                                                             bool clear_all_soft_refs,
1605                                                             bool expect_null_mutator_alloc_region,
1606                                                             bool* gc_succeeded) {
1607   *gc_succeeded = true;
1608   // Let's attempt the allocation first.
1609   HeapWord* result =
1610     attempt_allocation_at_safepoint(word_size,
1611                                     context,
1612                                     expect_null_mutator_alloc_region);
1613   if (result != NULL) {
1614     assert(*gc_succeeded, "sanity");
1615     return result;
1616   }
1617 
1618   // In a G1 heap, we're supposed to keep allocation from failing by
1619   // incremental pauses.  Therefore, at least for now, we'll favor
1620   // expansion over collection.  (This might change in the future if we can
1621   // do something smarter than full collection to satisfy a failed alloc.)
1622   result = expand_and_allocate(word_size, context);
1623   if (result != NULL) {
1624     assert(*gc_succeeded, "sanity");
1625     return result;
1626   }
1627 
1628   if (do_gc) {
1629     // Expansion didn't work, we'll try to do a Full GC.
1630     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1631                                        clear_all_soft_refs);
1632   }
1633 
1634   return NULL;
1635 }
1636 
1637 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1638                                                      AllocationContext_t context,
1639                                                      bool* succeeded) {
1640   assert_at_safepoint(true /* should_be_vm_thread */);
1641 
1642   // Attempts to allocate followed by Full GC.
1643   HeapWord* result =
1644     satisfy_failed_allocation_helper(word_size,
1645                                      context,
1646                                      true,  /* do_gc */
1647                                      false, /* clear_all_soft_refs */
1648                                      false, /* expect_null_mutator_alloc_region */
1649                                      succeeded);
1650 
1651   if (result != NULL || !*succeeded) {
1652     return result;
1653   }
1654 
1655   // Attempts to allocate followed by Full GC that will collect all soft references.
1656   result = satisfy_failed_allocation_helper(word_size,
1657                                             context,
1658                                             true, /* do_gc */
1659                                             true, /* clear_all_soft_refs */
1660                                             true, /* expect_null_mutator_alloc_region */
1661                                             succeeded);
1662 
1663   if (result != NULL || !*succeeded) {
1664     return result;
1665   }
1666 
1667   // Attempts to allocate, no GC
1668   result = satisfy_failed_allocation_helper(word_size,
1669                                             context,
1670                                             false, /* do_gc */
1671                                             false, /* clear_all_soft_refs */
1672                                             true,  /* expect_null_mutator_alloc_region */
1673                                             succeeded);
1674 
1675   if (result != NULL) {
1676     assert(*succeeded, "sanity");
1677     return result;
1678   }
1679 
1680   assert(!collector_policy()->should_clear_all_soft_refs(),
1681          "Flag should have been handled and cleared prior to this point");
1682 
1683   // What else?  We might try synchronous finalization later.  If the total
1684   // space available is large enough for the allocation, then a more
1685   // complete compaction phase than we've tried so far might be
1686   // appropriate.
1687   assert(*succeeded, "sanity");
1688   return NULL;
1689 }
1690 
1691 // Attempting to expand the heap sufficiently
1692 // to support an allocation of the given "word_size".  If
1693 // successful, perform the allocation and return the address of the
1694 // allocated block, or else "NULL".
1695 
1696 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1697   assert_at_safepoint(true /* should_be_vm_thread */);
1698 
1699   verify_region_sets_optional();
1700 
1701   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1702   ergo_verbose1(ErgoHeapSizing,
1703                 "attempt heap expansion",
1704                 ergo_format_reason("allocation request failed")
1705                 ergo_format_byte("allocation request"),
1706                 word_size * HeapWordSize);
1707   if (expand(expand_bytes)) {
1708     _hrm.verify_optional();
1709     verify_region_sets_optional();
1710     return attempt_allocation_at_safepoint(word_size,
1711                                            context,
1712                                            false /* expect_null_mutator_alloc_region */);
1713   }
1714   return NULL;
1715 }
1716 
1717 bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) {
1718   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1719   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1720                                        HeapRegion::GrainBytes);
1721   ergo_verbose2(ErgoHeapSizing,
1722                 "expand the heap",
1723                 ergo_format_byte("requested expansion amount")
1724                 ergo_format_byte("attempted expansion amount"),
1725                 expand_bytes, aligned_expand_bytes);
1726 
1727   if (is_maximal_no_gc()) {
1728     ergo_verbose0(ErgoHeapSizing,
1729                       "did not expand the heap",
1730                       ergo_format_reason("heap already fully expanded"));
1731     return false;
1732   }
1733 
1734   double expand_heap_start_time_sec = os::elapsedTime();
1735   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1736   assert(regions_to_expand > 0, "Must expand by at least one region");
1737 
1738   uint expanded_by = _hrm.expand_by(regions_to_expand);
1739   if (expand_time_ms != NULL) {
1740     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1741   }
1742 
1743   if (expanded_by > 0) {
1744     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1745     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1746     g1_policy()->record_new_heap_size(num_regions());
1747   } else {
1748     ergo_verbose0(ErgoHeapSizing,
1749                   "did not expand the heap",
1750                   ergo_format_reason("heap expansion operation failed"));
1751     // The expansion of the virtual storage space was unsuccessful.
1752     // Let's see if it was because we ran out of swap.
1753     if (G1ExitOnExpansionFailure &&
1754         _hrm.available() >= regions_to_expand) {
1755       // We had head room...
1756       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1757     }
1758   }
1759   return regions_to_expand > 0;
1760 }
1761 
1762 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1763   size_t aligned_shrink_bytes =
1764     ReservedSpace::page_align_size_down(shrink_bytes);
1765   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1766                                          HeapRegion::GrainBytes);
1767   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1768 
1769   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1770   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1771 
1772   ergo_verbose3(ErgoHeapSizing,
1773                 "shrink the heap",
1774                 ergo_format_byte("requested shrinking amount")
1775                 ergo_format_byte("aligned shrinking amount")
1776                 ergo_format_byte("attempted shrinking amount"),
1777                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1778   if (num_regions_removed > 0) {
1779     g1_policy()->record_new_heap_size(num_regions());
1780   } else {
1781     ergo_verbose0(ErgoHeapSizing,
1782                   "did not shrink the heap",
1783                   ergo_format_reason("heap shrinking operation failed"));
1784   }
1785 }
1786 
1787 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1788   verify_region_sets_optional();
1789 
1790   // We should only reach here at the end of a Full GC which means we
1791   // should not not be holding to any GC alloc regions. The method
1792   // below will make sure of that and do any remaining clean up.
1793   _allocator->abandon_gc_alloc_regions();
1794 
1795   // Instead of tearing down / rebuilding the free lists here, we
1796   // could instead use the remove_all_pending() method on free_list to
1797   // remove only the ones that we need to remove.
1798   tear_down_region_sets(true /* free_list_only */);
1799   shrink_helper(shrink_bytes);
1800   rebuild_region_sets(true /* free_list_only */);
1801 
1802   _hrm.verify_optional();
1803   verify_region_sets_optional();
1804 }
1805 
1806 // Public methods.
1807 
1808 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1809   CollectedHeap(),
1810   _g1_policy(policy_),
1811   _dirty_card_queue_set(false),
1812   _is_alive_closure_cm(this),
1813   _is_alive_closure_stw(this),
1814   _ref_processor_cm(NULL),
1815   _ref_processor_stw(NULL),
1816   _bot_shared(NULL),
1817   _cg1r(NULL),
1818   _g1mm(NULL),
1819   _refine_cte_cl(NULL),
1820   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1821   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1822   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1823   _humongous_reclaim_candidates(),
1824   _has_humongous_reclaim_candidates(false),
1825   _archive_allocator(NULL),
1826   _free_regions_coming(false),
1827   _young_list(new YoungList(this)),
1828   _gc_time_stamp(0),
1829   _summary_bytes_used(0),
1830   _survivor_evac_stats(YoungPLABSize, PLABWeight),
1831   _old_evac_stats(OldPLABSize, PLABWeight),
1832   _expand_heap_after_alloc_failure(true),
1833   _old_marking_cycles_started(0),
1834   _old_marking_cycles_completed(0),
1835   _heap_summary_sent(false),
1836   _in_cset_fast_test(),
1837   _dirty_cards_region_list(NULL),
1838   _worker_cset_start_region(NULL),
1839   _worker_cset_start_region_time_stamp(NULL),
1840   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1841   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1842   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1843   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1844 
1845   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1846                           /* are_GC_task_threads */true,
1847                           /* are_ConcurrentGC_threads */false);
1848   _workers->initialize_workers();
1849 
1850   _allocator = G1Allocator::create_allocator(this);
1851   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1852 
1853   // Override the default _filler_array_max_size so that no humongous filler
1854   // objects are created.
1855   _filler_array_max_size = _humongous_object_threshold_in_words;
1856 
1857   uint n_queues = ParallelGCThreads;
1858   _task_queues = new RefToScanQueueSet(n_queues);
1859 
1860   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1861   assert(n_rem_sets > 0, "Invariant.");
1862 
1863   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1864   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1865   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1866 
1867   for (uint i = 0; i < n_queues; i++) {
1868     RefToScanQueue* q = new RefToScanQueue();
1869     q->initialize();
1870     _task_queues->register_queue(i, q);
1871     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1872   }
1873   clear_cset_start_regions();
1874 
1875   // Initialize the G1EvacuationFailureALot counters and flags.
1876   NOT_PRODUCT(reset_evacuation_should_fail();)
1877 
1878   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1879 }
1880 
1881 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1882                                                                  size_t size,
1883                                                                  size_t translation_factor) {
1884   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1885   // Allocate a new reserved space, preferring to use large pages.
1886   ReservedSpace rs(size, preferred_page_size);
1887   G1RegionToSpaceMapper* result  =
1888     G1RegionToSpaceMapper::create_mapper(rs,
1889                                          size,
1890                                          rs.alignment(),
1891                                          HeapRegion::GrainBytes,
1892                                          translation_factor,
1893                                          mtGC);
1894   if (TracePageSizes) {
1895     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1896                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1897   }
1898   return result;
1899 }
1900 
1901 jint G1CollectedHeap::initialize() {
1902   CollectedHeap::pre_initialize();
1903   os::enable_vtime();
1904 
1905   G1Log::init();
1906 
1907   // Necessary to satisfy locking discipline assertions.
1908 
1909   MutexLocker x(Heap_lock);
1910 
1911   // We have to initialize the printer before committing the heap, as
1912   // it will be used then.
1913   _hr_printer.set_active(G1PrintHeapRegions);
1914 
1915   // While there are no constraints in the GC code that HeapWordSize
1916   // be any particular value, there are multiple other areas in the
1917   // system which believe this to be true (e.g. oop->object_size in some
1918   // cases incorrectly returns the size in wordSize units rather than
1919   // HeapWordSize).
1920   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1921 
1922   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1923   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1924   size_t heap_alignment = collector_policy()->heap_alignment();
1925 
1926   // Ensure that the sizes are properly aligned.
1927   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1928   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1929   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1930 
1931   _refine_cte_cl = new RefineCardTableEntryClosure();
1932 
1933   jint ecode = JNI_OK;
1934   _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);
1935   if (_cg1r == NULL) {
1936     return ecode;
1937   }
1938 
1939   // Reserve the maximum.
1940 
1941   // When compressed oops are enabled, the preferred heap base
1942   // is calculated by subtracting the requested size from the
1943   // 32Gb boundary and using the result as the base address for
1944   // heap reservation. If the requested size is not aligned to
1945   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1946   // into the ReservedHeapSpace constructor) then the actual
1947   // base of the reserved heap may end up differing from the
1948   // address that was requested (i.e. the preferred heap base).
1949   // If this happens then we could end up using a non-optimal
1950   // compressed oops mode.
1951 
1952   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1953                                                  heap_alignment);
1954 
1955   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1956 
1957   // Create the barrier set for the entire reserved region.
1958   G1SATBCardTableLoggingModRefBS* bs
1959     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1960   bs->initialize();
1961   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1962   set_barrier_set(bs);
1963 
1964   // Also create a G1 rem set.
1965   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1966 
1967   // Carve out the G1 part of the heap.
1968 
1969   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1970   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1971   G1RegionToSpaceMapper* heap_storage =
1972     G1RegionToSpaceMapper::create_mapper(g1_rs,
1973                                          g1_rs.size(),
1974                                          page_size,
1975                                          HeapRegion::GrainBytes,
1976                                          1,
1977                                          mtJavaHeap);
1978   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
1979                        max_byte_size, page_size,
1980                        heap_rs.base(),
1981                        heap_rs.size());
1982   heap_storage->set_mapping_changed_listener(&_listener);
1983 
1984   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1985   G1RegionToSpaceMapper* bot_storage =
1986     create_aux_memory_mapper("Block offset table",
1987                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1988                              G1BlockOffsetSharedArray::heap_map_factor());
1989 
1990   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1991   G1RegionToSpaceMapper* cardtable_storage =
1992     create_aux_memory_mapper("Card table",
1993                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1994                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1995 
1996   G1RegionToSpaceMapper* card_counts_storage =
1997     create_aux_memory_mapper("Card counts table",
1998                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1999                              G1CardCounts::heap_map_factor());
2000 
2001   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
2002   G1RegionToSpaceMapper* prev_bitmap_storage =
2003     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2004   G1RegionToSpaceMapper* next_bitmap_storage =
2005     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2006 
2007   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2008   g1_barrier_set()->initialize(cardtable_storage);
2009    // Do later initialization work for concurrent refinement.
2010   _cg1r->init(card_counts_storage);
2011 
2012   // 6843694 - ensure that the maximum region index can fit
2013   // in the remembered set structures.
2014   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2015   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2016 
2017   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2018   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2019   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2020             "too many cards per region");
2021 
2022   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2023 
2024   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
2025 
2026   {
2027     HeapWord* start = _hrm.reserved().start();
2028     HeapWord* end = _hrm.reserved().end();
2029     size_t granularity = HeapRegion::GrainBytes;
2030 
2031     _in_cset_fast_test.initialize(start, end, granularity);
2032     _humongous_reclaim_candidates.initialize(start, end, granularity);
2033   }
2034 
2035   // Create the ConcurrentMark data structure and thread.
2036   // (Must do this late, so that "max_regions" is defined.)
2037   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2038   if (_cm == NULL || !_cm->completed_initialization()) {
2039     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2040     return JNI_ENOMEM;
2041   }
2042   _cmThread = _cm->cmThread();
2043 
2044   // Initialize the from_card cache structure of HeapRegionRemSet.
2045   HeapRegionRemSet::init_heap(max_regions());
2046 
2047   // Now expand into the initial heap size.
2048   if (!expand(init_byte_size)) {
2049     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2050     return JNI_ENOMEM;
2051   }
2052 
2053   // Perform any initialization actions delegated to the policy.
2054   g1_policy()->init();
2055 
2056   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2057                                                SATB_Q_FL_lock,
2058                                                G1SATBProcessCompletedThreshold,
2059                                                Shared_SATB_Q_lock);
2060 
2061   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2062                                                 DirtyCardQ_CBL_mon,
2063                                                 DirtyCardQ_FL_lock,
2064                                                 concurrent_g1_refine()->yellow_zone(),
2065                                                 concurrent_g1_refine()->red_zone(),
2066                                                 Shared_DirtyCardQ_lock);
2067 
2068   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2069                                     DirtyCardQ_CBL_mon,
2070                                     DirtyCardQ_FL_lock,
2071                                     -1, // never trigger processing
2072                                     -1, // no limit on length
2073                                     Shared_DirtyCardQ_lock,
2074                                     &JavaThread::dirty_card_queue_set());
2075 
2076   // Here we allocate the dummy HeapRegion that is required by the
2077   // G1AllocRegion class.
2078   HeapRegion* dummy_region = _hrm.get_dummy_region();
2079 
2080   // We'll re-use the same region whether the alloc region will
2081   // require BOT updates or not and, if it doesn't, then a non-young
2082   // region will complain that it cannot support allocations without
2083   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2084   dummy_region->set_eden();
2085   // Make sure it's full.
2086   dummy_region->set_top(dummy_region->end());
2087   G1AllocRegion::setup(this, dummy_region);
2088 
2089   _allocator->init_mutator_alloc_region();
2090 
2091   // Do create of the monitoring and management support so that
2092   // values in the heap have been properly initialized.
2093   _g1mm = new G1MonitoringSupport(this);
2094 
2095   G1StringDedup::initialize();
2096 
2097   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2098   for (uint i = 0; i < ParallelGCThreads; i++) {
2099     new (&_preserved_objs[i]) OopAndMarkOopStack();
2100   }
2101 
2102   return JNI_OK;
2103 }
2104 
2105 void G1CollectedHeap::stop() {
2106   // Stop all concurrent threads. We do this to make sure these threads
2107   // do not continue to execute and access resources (e.g. gclog_or_tty)
2108   // that are destroyed during shutdown.
2109   _cg1r->stop();
2110   _cmThread->stop();
2111   if (G1StringDedup::is_enabled()) {
2112     G1StringDedup::stop();
2113   }
2114 }
2115 
2116 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2117   return HeapRegion::max_region_size();
2118 }
2119 
2120 void G1CollectedHeap::post_initialize() {
2121   CollectedHeap::post_initialize();
2122   ref_processing_init();
2123 }
2124 
2125 void G1CollectedHeap::ref_processing_init() {
2126   // Reference processing in G1 currently works as follows:
2127   //
2128   // * There are two reference processor instances. One is
2129   //   used to record and process discovered references
2130   //   during concurrent marking; the other is used to
2131   //   record and process references during STW pauses
2132   //   (both full and incremental).
2133   // * Both ref processors need to 'span' the entire heap as
2134   //   the regions in the collection set may be dotted around.
2135   //
2136   // * For the concurrent marking ref processor:
2137   //   * Reference discovery is enabled at initial marking.
2138   //   * Reference discovery is disabled and the discovered
2139   //     references processed etc during remarking.
2140   //   * Reference discovery is MT (see below).
2141   //   * Reference discovery requires a barrier (see below).
2142   //   * Reference processing may or may not be MT
2143   //     (depending on the value of ParallelRefProcEnabled
2144   //     and ParallelGCThreads).
2145   //   * A full GC disables reference discovery by the CM
2146   //     ref processor and abandons any entries on it's
2147   //     discovered lists.
2148   //
2149   // * For the STW processor:
2150   //   * Non MT discovery is enabled at the start of a full GC.
2151   //   * Processing and enqueueing during a full GC is non-MT.
2152   //   * During a full GC, references are processed after marking.
2153   //
2154   //   * Discovery (may or may not be MT) is enabled at the start
2155   //     of an incremental evacuation pause.
2156   //   * References are processed near the end of a STW evacuation pause.
2157   //   * For both types of GC:
2158   //     * Discovery is atomic - i.e. not concurrent.
2159   //     * Reference discovery will not need a barrier.
2160 
2161   MemRegion mr = reserved_region();
2162 
2163   // Concurrent Mark ref processor
2164   _ref_processor_cm =
2165     new ReferenceProcessor(mr,    // span
2166                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2167                                 // mt processing
2168                            ParallelGCThreads,
2169                                 // degree of mt processing
2170                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2171                                 // mt discovery
2172                            MAX2(ParallelGCThreads, ConcGCThreads),
2173                                 // degree of mt discovery
2174                            false,
2175                                 // Reference discovery is not atomic
2176                            &_is_alive_closure_cm);
2177                                 // is alive closure
2178                                 // (for efficiency/performance)
2179 
2180   // STW ref processor
2181   _ref_processor_stw =
2182     new ReferenceProcessor(mr,    // span
2183                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2184                                 // mt processing
2185                            ParallelGCThreads,
2186                                 // degree of mt processing
2187                            (ParallelGCThreads > 1),
2188                                 // mt discovery
2189                            ParallelGCThreads,
2190                                 // degree of mt discovery
2191                            true,
2192                                 // Reference discovery is atomic
2193                            &_is_alive_closure_stw);
2194                                 // is alive closure
2195                                 // (for efficiency/performance)
2196 }
2197 
2198 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2199   return g1_policy();
2200 }
2201 
2202 size_t G1CollectedHeap::capacity() const {
2203   return _hrm.length() * HeapRegion::GrainBytes;
2204 }
2205 
2206 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2207   hr->reset_gc_time_stamp();
2208 }
2209 
2210 #ifndef PRODUCT
2211 
2212 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2213 private:
2214   unsigned _gc_time_stamp;
2215   bool _failures;
2216 
2217 public:
2218   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2219     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2220 
2221   virtual bool doHeapRegion(HeapRegion* hr) {
2222     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2223     if (_gc_time_stamp != region_gc_time_stamp) {
2224       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2225                              "expected %d", HR_FORMAT_PARAMS(hr),
2226                              region_gc_time_stamp, _gc_time_stamp);
2227       _failures = true;
2228     }
2229     return false;
2230   }
2231 
2232   bool failures() { return _failures; }
2233 };
2234 
2235 void G1CollectedHeap::check_gc_time_stamps() {
2236   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2237   heap_region_iterate(&cl);
2238   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2239 }
2240 #endif // PRODUCT
2241 
2242 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2243   _cg1r->hot_card_cache()->drain(cl, worker_i);
2244 }
2245 
2246 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2247   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2248   size_t n_completed_buffers = 0;
2249   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2250     n_completed_buffers++;
2251   }
2252   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2253   dcqs.clear_n_completed_buffers();
2254   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2255 }
2256 
2257 // Computes the sum of the storage used by the various regions.
2258 size_t G1CollectedHeap::used() const {
2259   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2260   if (_archive_allocator != NULL) {
2261     result += _archive_allocator->used();
2262   }
2263   return result;
2264 }
2265 
2266 size_t G1CollectedHeap::used_unlocked() const {
2267   return _summary_bytes_used;
2268 }
2269 
2270 class SumUsedClosure: public HeapRegionClosure {
2271   size_t _used;
2272 public:
2273   SumUsedClosure() : _used(0) {}
2274   bool doHeapRegion(HeapRegion* r) {
2275     _used += r->used();
2276     return false;
2277   }
2278   size_t result() { return _used; }
2279 };
2280 
2281 size_t G1CollectedHeap::recalculate_used() const {
2282   double recalculate_used_start = os::elapsedTime();
2283 
2284   SumUsedClosure blk;
2285   heap_region_iterate(&blk);
2286 
2287   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2288   return blk.result();
2289 }
2290 
2291 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2292   switch (cause) {
2293     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2294     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2295     case GCCause::_update_allocation_context_stats_inc: return true;
2296     case GCCause::_wb_conc_mark:                        return true;
2297     default :                                           return false;
2298   }
2299 }
2300 
2301 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2302   switch (cause) {
2303     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2304     case GCCause::_g1_humongous_allocation: return true;
2305     default:                                return is_user_requested_concurrent_full_gc(cause);
2306   }
2307 }
2308 
2309 #ifndef PRODUCT
2310 void G1CollectedHeap::allocate_dummy_regions() {
2311   // Let's fill up most of the region
2312   size_t word_size = HeapRegion::GrainWords - 1024;
2313   // And as a result the region we'll allocate will be humongous.
2314   guarantee(is_humongous(word_size), "sanity");
2315 
2316   // _filler_array_max_size is set to humongous object threshold
2317   // but temporarily change it to use CollectedHeap::fill_with_object().
2318   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2319 
2320   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2321     // Let's use the existing mechanism for the allocation
2322     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2323                                                  AllocationContext::system());
2324     if (dummy_obj != NULL) {
2325       MemRegion mr(dummy_obj, word_size);
2326       CollectedHeap::fill_with_object(mr);
2327     } else {
2328       // If we can't allocate once, we probably cannot allocate
2329       // again. Let's get out of the loop.
2330       break;
2331     }
2332   }
2333 }
2334 #endif // !PRODUCT
2335 
2336 void G1CollectedHeap::increment_old_marking_cycles_started() {
2337   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2338          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2339          "Wrong marking cycle count (started: %d, completed: %d)",
2340          _old_marking_cycles_started, _old_marking_cycles_completed);
2341 
2342   _old_marking_cycles_started++;
2343 }
2344 
2345 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2346   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2347 
2348   // We assume that if concurrent == true, then the caller is a
2349   // concurrent thread that was joined the Suspendible Thread
2350   // Set. If there's ever a cheap way to check this, we should add an
2351   // assert here.
2352 
2353   // Given that this method is called at the end of a Full GC or of a
2354   // concurrent cycle, and those can be nested (i.e., a Full GC can
2355   // interrupt a concurrent cycle), the number of full collections
2356   // completed should be either one (in the case where there was no
2357   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2358   // behind the number of full collections started.
2359 
2360   // This is the case for the inner caller, i.e. a Full GC.
2361   assert(concurrent ||
2362          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2363          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2364          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2365          "is inconsistent with _old_marking_cycles_completed = %u",
2366          _old_marking_cycles_started, _old_marking_cycles_completed);
2367 
2368   // This is the case for the outer caller, i.e. the concurrent cycle.
2369   assert(!concurrent ||
2370          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2371          "for outer caller (concurrent cycle): "
2372          "_old_marking_cycles_started = %u "
2373          "is inconsistent with _old_marking_cycles_completed = %u",
2374          _old_marking_cycles_started, _old_marking_cycles_completed);
2375 
2376   _old_marking_cycles_completed += 1;
2377 
2378   // We need to clear the "in_progress" flag in the CM thread before
2379   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2380   // is set) so that if a waiter requests another System.gc() it doesn't
2381   // incorrectly see that a marking cycle is still in progress.
2382   if (concurrent) {
2383     _cmThread->set_idle();
2384   }
2385 
2386   // This notify_all() will ensure that a thread that called
2387   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2388   // and it's waiting for a full GC to finish will be woken up. It is
2389   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2390   FullGCCount_lock->notify_all();
2391 }
2392 
2393 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2394   GCIdMarkAndRestore conc_gc_id_mark;
2395   collector_state()->set_concurrent_cycle_started(true);
2396   _gc_timer_cm->register_gc_start(start_time);
2397 
2398   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2399   trace_heap_before_gc(_gc_tracer_cm);
2400   _cmThread->set_gc_id(GCId::current());
2401 }
2402 
2403 void G1CollectedHeap::register_concurrent_cycle_end() {
2404   if (collector_state()->concurrent_cycle_started()) {
2405     GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2406     if (_cm->has_aborted()) {
2407       _gc_tracer_cm->report_concurrent_mode_failure();
2408     }
2409 
2410     _gc_timer_cm->register_gc_end();
2411     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2412 
2413     // Clear state variables to prepare for the next concurrent cycle.
2414      collector_state()->set_concurrent_cycle_started(false);
2415     _heap_summary_sent = false;
2416   }
2417 }
2418 
2419 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2420   if (collector_state()->concurrent_cycle_started()) {
2421     // This function can be called when:
2422     //  the cleanup pause is run
2423     //  the concurrent cycle is aborted before the cleanup pause.
2424     //  the concurrent cycle is aborted after the cleanup pause,
2425     //   but before the concurrent cycle end has been registered.
2426     // Make sure that we only send the heap information once.
2427     if (!_heap_summary_sent) {
2428       GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2429       trace_heap_after_gc(_gc_tracer_cm);
2430       _heap_summary_sent = true;
2431     }
2432   }
2433 }
2434 
2435 void G1CollectedHeap::collect(GCCause::Cause cause) {
2436   assert_heap_not_locked();
2437 
2438   uint gc_count_before;
2439   uint old_marking_count_before;
2440   uint full_gc_count_before;
2441   bool retry_gc;
2442 
2443   do {
2444     retry_gc = false;
2445 
2446     {
2447       MutexLocker ml(Heap_lock);
2448 
2449       // Read the GC count while holding the Heap_lock
2450       gc_count_before = total_collections();
2451       full_gc_count_before = total_full_collections();
2452       old_marking_count_before = _old_marking_cycles_started;
2453     }
2454 
2455     if (should_do_concurrent_full_gc(cause)) {
2456       // Schedule an initial-mark evacuation pause that will start a
2457       // concurrent cycle. We're setting word_size to 0 which means that
2458       // we are not requesting a post-GC allocation.
2459       VM_G1IncCollectionPause op(gc_count_before,
2460                                  0,     /* word_size */
2461                                  true,  /* should_initiate_conc_mark */
2462                                  g1_policy()->max_pause_time_ms(),
2463                                  cause);
2464       op.set_allocation_context(AllocationContext::current());
2465 
2466       VMThread::execute(&op);
2467       if (!op.pause_succeeded()) {
2468         if (old_marking_count_before == _old_marking_cycles_started) {
2469           retry_gc = op.should_retry_gc();
2470         } else {
2471           // A Full GC happened while we were trying to schedule the
2472           // initial-mark GC. No point in starting a new cycle given
2473           // that the whole heap was collected anyway.
2474         }
2475 
2476         if (retry_gc) {
2477           if (GC_locker::is_active_and_needs_gc()) {
2478             GC_locker::stall_until_clear();
2479           }
2480         }
2481       }
2482     } else {
2483       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2484           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2485 
2486         // Schedule a standard evacuation pause. We're setting word_size
2487         // to 0 which means that we are not requesting a post-GC allocation.
2488         VM_G1IncCollectionPause op(gc_count_before,
2489                                    0,     /* word_size */
2490                                    false, /* should_initiate_conc_mark */
2491                                    g1_policy()->max_pause_time_ms(),
2492                                    cause);
2493         VMThread::execute(&op);
2494       } else {
2495         // Schedule a Full GC.
2496         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2497         VMThread::execute(&op);
2498       }
2499     }
2500   } while (retry_gc);
2501 }
2502 
2503 bool G1CollectedHeap::is_in(const void* p) const {
2504   if (_hrm.reserved().contains(p)) {
2505     // Given that we know that p is in the reserved space,
2506     // heap_region_containing() should successfully
2507     // return the containing region.
2508     HeapRegion* hr = heap_region_containing(p);
2509     return hr->is_in(p);
2510   } else {
2511     return false;
2512   }
2513 }
2514 
2515 #ifdef ASSERT
2516 bool G1CollectedHeap::is_in_exact(const void* p) const {
2517   bool contains = reserved_region().contains(p);
2518   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2519   if (contains && available) {
2520     return true;
2521   } else {
2522     return false;
2523   }
2524 }
2525 #endif
2526 
2527 bool G1CollectedHeap::obj_in_cs(oop obj) {
2528   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2529   return r != NULL && r->in_collection_set();
2530 }
2531 
2532 // Iteration functions.
2533 
2534 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2535 
2536 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2537   ExtendedOopClosure* _cl;
2538 public:
2539   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2540   bool doHeapRegion(HeapRegion* r) {
2541     if (!r->is_continues_humongous()) {
2542       r->oop_iterate(_cl);
2543     }
2544     return false;
2545   }
2546 };
2547 
2548 // Iterates an ObjectClosure over all objects within a HeapRegion.
2549 
2550 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2551   ObjectClosure* _cl;
2552 public:
2553   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2554   bool doHeapRegion(HeapRegion* r) {
2555     if (!r->is_continues_humongous()) {
2556       r->object_iterate(_cl);
2557     }
2558     return false;
2559   }
2560 };
2561 
2562 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2563   IterateObjectClosureRegionClosure blk(cl);
2564   heap_region_iterate(&blk);
2565 }
2566 
2567 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2568   _hrm.iterate(cl);
2569 }
2570 
2571 void
2572 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2573                                          uint worker_id,
2574                                          HeapRegionClaimer *hrclaimer,
2575                                          bool concurrent) const {
2576   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2577 }
2578 
2579 // Clear the cached CSet starting regions and (more importantly)
2580 // the time stamps. Called when we reset the GC time stamp.
2581 void G1CollectedHeap::clear_cset_start_regions() {
2582   assert(_worker_cset_start_region != NULL, "sanity");
2583   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2584 
2585   for (uint i = 0; i < ParallelGCThreads; i++) {
2586     _worker_cset_start_region[i] = NULL;
2587     _worker_cset_start_region_time_stamp[i] = 0;
2588   }
2589 }
2590 
2591 // Given the id of a worker, obtain or calculate a suitable
2592 // starting region for iterating over the current collection set.
2593 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2594   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2595 
2596   HeapRegion* result = NULL;
2597   unsigned gc_time_stamp = get_gc_time_stamp();
2598 
2599   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2600     // Cached starting region for current worker was set
2601     // during the current pause - so it's valid.
2602     // Note: the cached starting heap region may be NULL
2603     // (when the collection set is empty).
2604     result = _worker_cset_start_region[worker_i];
2605     assert(result == NULL || result->in_collection_set(), "sanity");
2606     return result;
2607   }
2608 
2609   // The cached entry was not valid so let's calculate
2610   // a suitable starting heap region for this worker.
2611 
2612   // We want the parallel threads to start their collection
2613   // set iteration at different collection set regions to
2614   // avoid contention.
2615   // If we have:
2616   //          n collection set regions
2617   //          p threads
2618   // Then thread t will start at region floor ((t * n) / p)
2619 
2620   result = g1_policy()->collection_set();
2621   uint cs_size = g1_policy()->cset_region_length();
2622   uint active_workers = workers()->active_workers();
2623 
2624   uint end_ind   = (cs_size * worker_i) / active_workers;
2625   uint start_ind = 0;
2626 
2627   if (worker_i > 0 &&
2628       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2629     // Previous workers starting region is valid
2630     // so let's iterate from there
2631     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2632     result = _worker_cset_start_region[worker_i - 1];
2633   }
2634 
2635   for (uint i = start_ind; i < end_ind; i++) {
2636     result = result->next_in_collection_set();
2637   }
2638 
2639   // Note: the calculated starting heap region may be NULL
2640   // (when the collection set is empty).
2641   assert(result == NULL || result->in_collection_set(), "sanity");
2642   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2643          "should be updated only once per pause");
2644   _worker_cset_start_region[worker_i] = result;
2645   OrderAccess::storestore();
2646   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2647   return result;
2648 }
2649 
2650 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2651   HeapRegion* r = g1_policy()->collection_set();
2652   while (r != NULL) {
2653     HeapRegion* next = r->next_in_collection_set();
2654     if (cl->doHeapRegion(r)) {
2655       cl->incomplete();
2656       return;
2657     }
2658     r = next;
2659   }
2660 }
2661 
2662 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2663                                                   HeapRegionClosure *cl) {
2664   if (r == NULL) {
2665     // The CSet is empty so there's nothing to do.
2666     return;
2667   }
2668 
2669   assert(r->in_collection_set(),
2670          "Start region must be a member of the collection set.");
2671   HeapRegion* cur = r;
2672   while (cur != NULL) {
2673     HeapRegion* next = cur->next_in_collection_set();
2674     if (cl->doHeapRegion(cur) && false) {
2675       cl->incomplete();
2676       return;
2677     }
2678     cur = next;
2679   }
2680   cur = g1_policy()->collection_set();
2681   while (cur != r) {
2682     HeapRegion* next = cur->next_in_collection_set();
2683     if (cl->doHeapRegion(cur) && false) {
2684       cl->incomplete();
2685       return;
2686     }
2687     cur = next;
2688   }
2689 }
2690 
2691 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2692   HeapRegion* result = _hrm.next_region_in_heap(from);
2693   while (result != NULL && result->is_pinned()) {
2694     result = _hrm.next_region_in_heap(result);
2695   }
2696   return result;
2697 }
2698 
2699 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2700   HeapRegion* hr = heap_region_containing(addr);
2701   return hr->block_start(addr);
2702 }
2703 
2704 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2705   HeapRegion* hr = heap_region_containing(addr);
2706   return hr->block_size(addr);
2707 }
2708 
2709 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2710   HeapRegion* hr = heap_region_containing(addr);
2711   return hr->block_is_obj(addr);
2712 }
2713 
2714 bool G1CollectedHeap::supports_tlab_allocation() const {
2715   return true;
2716 }
2717 
2718 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2719   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2720 }
2721 
2722 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2723   return young_list()->eden_used_bytes();
2724 }
2725 
2726 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2727 // must be equal to the humongous object limit.
2728 size_t G1CollectedHeap::max_tlab_size() const {
2729   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2730 }
2731 
2732 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2733   AllocationContext_t context = AllocationContext::current();
2734   return _allocator->unsafe_max_tlab_alloc(context);
2735 }
2736 
2737 size_t G1CollectedHeap::max_capacity() const {
2738   return _hrm.reserved().byte_size();
2739 }
2740 
2741 jlong G1CollectedHeap::millis_since_last_gc() {
2742   // assert(false, "NYI");
2743   return 0;
2744 }
2745 
2746 void G1CollectedHeap::prepare_for_verify() {
2747   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2748     ensure_parsability(false);
2749   }
2750   g1_rem_set()->prepare_for_verify();
2751 }
2752 
2753 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2754                                               VerifyOption vo) {
2755   switch (vo) {
2756   case VerifyOption_G1UsePrevMarking:
2757     return hr->obj_allocated_since_prev_marking(obj);
2758   case VerifyOption_G1UseNextMarking:
2759     return hr->obj_allocated_since_next_marking(obj);
2760   case VerifyOption_G1UseMarkWord:
2761     return false;
2762   default:
2763     ShouldNotReachHere();
2764   }
2765   return false; // keep some compilers happy
2766 }
2767 
2768 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2769   switch (vo) {
2770   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2771   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2772   case VerifyOption_G1UseMarkWord:    return NULL;
2773   default:                            ShouldNotReachHere();
2774   }
2775   return NULL; // keep some compilers happy
2776 }
2777 
2778 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2779   switch (vo) {
2780   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2781   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2782   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2783   default:                            ShouldNotReachHere();
2784   }
2785   return false; // keep some compilers happy
2786 }
2787 
2788 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2789   switch (vo) {
2790   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2791   case VerifyOption_G1UseNextMarking: return "NTAMS";
2792   case VerifyOption_G1UseMarkWord:    return "NONE";
2793   default:                            ShouldNotReachHere();
2794   }
2795   return NULL; // keep some compilers happy
2796 }
2797 
2798 class VerifyRootsClosure: public OopClosure {
2799 private:
2800   G1CollectedHeap* _g1h;
2801   VerifyOption     _vo;
2802   bool             _failures;
2803 public:
2804   // _vo == UsePrevMarking -> use "prev" marking information,
2805   // _vo == UseNextMarking -> use "next" marking information,
2806   // _vo == UseMarkWord    -> use mark word from object header.
2807   VerifyRootsClosure(VerifyOption vo) :
2808     _g1h(G1CollectedHeap::heap()),
2809     _vo(vo),
2810     _failures(false) { }
2811 
2812   bool failures() { return _failures; }
2813 
2814   template <class T> void do_oop_nv(T* p) {
2815     T heap_oop = oopDesc::load_heap_oop(p);
2816     if (!oopDesc::is_null(heap_oop)) {
2817       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2818       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2819         gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
2820                                "points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
2821         if (_vo == VerifyOption_G1UseMarkWord) {
2822           gclog_or_tty->print_cr("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
2823         }
2824         obj->print_on(gclog_or_tty);
2825         _failures = true;
2826       }
2827     }
2828   }
2829 
2830   void do_oop(oop* p)       { do_oop_nv(p); }
2831   void do_oop(narrowOop* p) { do_oop_nv(p); }
2832 };
2833 
2834 class G1VerifyCodeRootOopClosure: public OopClosure {
2835   G1CollectedHeap* _g1h;
2836   OopClosure* _root_cl;
2837   nmethod* _nm;
2838   VerifyOption _vo;
2839   bool _failures;
2840 
2841   template <class T> void do_oop_work(T* p) {
2842     // First verify that this root is live
2843     _root_cl->do_oop(p);
2844 
2845     if (!G1VerifyHeapRegionCodeRoots) {
2846       // We're not verifying the code roots attached to heap region.
2847       return;
2848     }
2849 
2850     // Don't check the code roots during marking verification in a full GC
2851     if (_vo == VerifyOption_G1UseMarkWord) {
2852       return;
2853     }
2854 
2855     // Now verify that the current nmethod (which contains p) is
2856     // in the code root list of the heap region containing the
2857     // object referenced by p.
2858 
2859     T heap_oop = oopDesc::load_heap_oop(p);
2860     if (!oopDesc::is_null(heap_oop)) {
2861       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2862 
2863       // Now fetch the region containing the object
2864       HeapRegion* hr = _g1h->heap_region_containing(obj);
2865       HeapRegionRemSet* hrrs = hr->rem_set();
2866       // Verify that the strong code root list for this region
2867       // contains the nmethod
2868       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2869         gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
2870                                "from nmethod " PTR_FORMAT " not in strong "
2871                                "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
2872                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2873         _failures = true;
2874       }
2875     }
2876   }
2877 
2878 public:
2879   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2880     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2881 
2882   void do_oop(oop* p) { do_oop_work(p); }
2883   void do_oop(narrowOop* p) { do_oop_work(p); }
2884 
2885   void set_nmethod(nmethod* nm) { _nm = nm; }
2886   bool failures() { return _failures; }
2887 };
2888 
2889 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2890   G1VerifyCodeRootOopClosure* _oop_cl;
2891 
2892 public:
2893   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2894     _oop_cl(oop_cl) {}
2895 
2896   void do_code_blob(CodeBlob* cb) {
2897     nmethod* nm = cb->as_nmethod_or_null();
2898     if (nm != NULL) {
2899       _oop_cl->set_nmethod(nm);
2900       nm->oops_do(_oop_cl);
2901     }
2902   }
2903 };
2904 
2905 class YoungRefCounterClosure : public OopClosure {
2906   G1CollectedHeap* _g1h;
2907   int              _count;
2908  public:
2909   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2910   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2911   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2912 
2913   int count() { return _count; }
2914   void reset_count() { _count = 0; };
2915 };
2916 
2917 class VerifyKlassClosure: public KlassClosure {
2918   YoungRefCounterClosure _young_ref_counter_closure;
2919   OopClosure *_oop_closure;
2920  public:
2921   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2922   void do_klass(Klass* k) {
2923     k->oops_do(_oop_closure);
2924 
2925     _young_ref_counter_closure.reset_count();
2926     k->oops_do(&_young_ref_counter_closure);
2927     if (_young_ref_counter_closure.count() > 0) {
2928       guarantee(k->has_modified_oops(), "Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k));
2929     }
2930   }
2931 };
2932 
2933 class VerifyLivenessOopClosure: public OopClosure {
2934   G1CollectedHeap* _g1h;
2935   VerifyOption _vo;
2936 public:
2937   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2938     _g1h(g1h), _vo(vo)
2939   { }
2940   void do_oop(narrowOop *p) { do_oop_work(p); }
2941   void do_oop(      oop *p) { do_oop_work(p); }
2942 
2943   template <class T> void do_oop_work(T *p) {
2944     oop obj = oopDesc::load_decode_heap_oop(p);
2945     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2946               "Dead object referenced by a not dead object");
2947   }
2948 };
2949 
2950 class VerifyObjsInRegionClosure: public ObjectClosure {
2951 private:
2952   G1CollectedHeap* _g1h;
2953   size_t _live_bytes;
2954   HeapRegion *_hr;
2955   VerifyOption _vo;
2956 public:
2957   // _vo == UsePrevMarking -> use "prev" marking information,
2958   // _vo == UseNextMarking -> use "next" marking information,
2959   // _vo == UseMarkWord    -> use mark word from object header.
2960   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2961     : _live_bytes(0), _hr(hr), _vo(vo) {
2962     _g1h = G1CollectedHeap::heap();
2963   }
2964   void do_object(oop o) {
2965     VerifyLivenessOopClosure isLive(_g1h, _vo);
2966     assert(o != NULL, "Huh?");
2967     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2968       // If the object is alive according to the mark word,
2969       // then verify that the marking information agrees.
2970       // Note we can't verify the contra-positive of the
2971       // above: if the object is dead (according to the mark
2972       // word), it may not be marked, or may have been marked
2973       // but has since became dead, or may have been allocated
2974       // since the last marking.
2975       if (_vo == VerifyOption_G1UseMarkWord) {
2976         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2977       }
2978 
2979       o->oop_iterate_no_header(&isLive);
2980       if (!_hr->obj_allocated_since_prev_marking(o)) {
2981         size_t obj_size = o->size();    // Make sure we don't overflow
2982         _live_bytes += (obj_size * HeapWordSize);
2983       }
2984     }
2985   }
2986   size_t live_bytes() { return _live_bytes; }
2987 };
2988 
2989 class VerifyArchiveOopClosure: public OopClosure {
2990 public:
2991   VerifyArchiveOopClosure(HeapRegion *hr) { }
2992   void do_oop(narrowOop *p) { do_oop_work(p); }
2993   void do_oop(      oop *p) { do_oop_work(p); }
2994 
2995   template <class T> void do_oop_work(T *p) {
2996     oop obj = oopDesc::load_decode_heap_oop(p);
2997     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
2998               "Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
2999               p2i(p), p2i(obj));
3000   }
3001 };
3002 
3003 class VerifyArchiveRegionClosure: public ObjectClosure {
3004 public:
3005   VerifyArchiveRegionClosure(HeapRegion *hr) { }
3006   // Verify that all object pointers are to archive regions.
3007   void do_object(oop o) {
3008     VerifyArchiveOopClosure checkOop(NULL);
3009     assert(o != NULL, "Should not be here for NULL oops");
3010     o->oop_iterate_no_header(&checkOop);
3011   }
3012 };
3013 
3014 class VerifyRegionClosure: public HeapRegionClosure {
3015 private:
3016   bool             _par;
3017   VerifyOption     _vo;
3018   bool             _failures;
3019 public:
3020   // _vo == UsePrevMarking -> use "prev" marking information,
3021   // _vo == UseNextMarking -> use "next" marking information,
3022   // _vo == UseMarkWord    -> use mark word from object header.
3023   VerifyRegionClosure(bool par, VerifyOption vo)
3024     : _par(par),
3025       _vo(vo),
3026       _failures(false) {}
3027 
3028   bool failures() {
3029     return _failures;
3030   }
3031 
3032   bool doHeapRegion(HeapRegion* r) {
3033     // For archive regions, verify there are no heap pointers to
3034     // non-pinned regions. For all others, verify liveness info.
3035     if (r->is_archive()) {
3036       VerifyArchiveRegionClosure verify_oop_pointers(r);
3037       r->object_iterate(&verify_oop_pointers);
3038       return true;
3039     }
3040     if (!r->is_continues_humongous()) {
3041       bool failures = false;
3042       r->verify(_vo, &failures);
3043       if (failures) {
3044         _failures = true;
3045       } else if (!r->is_starts_humongous()) {
3046         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3047         r->object_iterate(&not_dead_yet_cl);
3048         if (_vo != VerifyOption_G1UseNextMarking) {
3049           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3050             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3051                                    "max_live_bytes " SIZE_FORMAT " "
3052                                    "< calculated " SIZE_FORMAT,
3053                                    p2i(r->bottom()), p2i(r->end()),
3054                                    r->max_live_bytes(),
3055                                  not_dead_yet_cl.live_bytes());
3056             _failures = true;
3057           }
3058         } else {
3059           // When vo == UseNextMarking we cannot currently do a sanity
3060           // check on the live bytes as the calculation has not been
3061           // finalized yet.
3062         }
3063       }
3064     }
3065     return false; // stop the region iteration if we hit a failure
3066   }
3067 };
3068 
3069 // This is the task used for parallel verification of the heap regions
3070 
3071 class G1ParVerifyTask: public AbstractGangTask {
3072 private:
3073   G1CollectedHeap*  _g1h;
3074   VerifyOption      _vo;
3075   bool              _failures;
3076   HeapRegionClaimer _hrclaimer;
3077 
3078 public:
3079   // _vo == UsePrevMarking -> use "prev" marking information,
3080   // _vo == UseNextMarking -> use "next" marking information,
3081   // _vo == UseMarkWord    -> use mark word from object header.
3082   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3083       AbstractGangTask("Parallel verify task"),
3084       _g1h(g1h),
3085       _vo(vo),
3086       _failures(false),
3087       _hrclaimer(g1h->workers()->active_workers()) {}
3088 
3089   bool failures() {
3090     return _failures;
3091   }
3092 
3093   void work(uint worker_id) {
3094     HandleMark hm;
3095     VerifyRegionClosure blk(true, _vo);
3096     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3097     if (blk.failures()) {
3098       _failures = true;
3099     }
3100   }
3101 };
3102 
3103 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3104   if (SafepointSynchronize::is_at_safepoint()) {
3105     assert(Thread::current()->is_VM_thread(),
3106            "Expected to be executed serially by the VM thread at this point");
3107 
3108     if (!silent) { gclog_or_tty->print("Roots "); }
3109     VerifyRootsClosure rootsCl(vo);
3110     VerifyKlassClosure klassCl(this, &rootsCl);
3111     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3112 
3113     // We apply the relevant closures to all the oops in the
3114     // system dictionary, class loader data graph, the string table
3115     // and the nmethods in the code cache.
3116     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3117     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3118 
3119     {
3120       G1RootProcessor root_processor(this, 1);
3121       root_processor.process_all_roots(&rootsCl,
3122                                        &cldCl,
3123                                        &blobsCl);
3124     }
3125 
3126     bool failures = rootsCl.failures() || codeRootsCl.failures();
3127 
3128     if (vo != VerifyOption_G1UseMarkWord) {
3129       // If we're verifying during a full GC then the region sets
3130       // will have been torn down at the start of the GC. Therefore
3131       // verifying the region sets will fail. So we only verify
3132       // the region sets when not in a full GC.
3133       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3134       verify_region_sets();
3135     }
3136 
3137     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3138     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3139 
3140       G1ParVerifyTask task(this, vo);
3141       workers()->run_task(&task);
3142       if (task.failures()) {
3143         failures = true;
3144       }
3145 
3146     } else {
3147       VerifyRegionClosure blk(false, vo);
3148       heap_region_iterate(&blk);
3149       if (blk.failures()) {
3150         failures = true;
3151       }
3152     }
3153 
3154     if (G1StringDedup::is_enabled()) {
3155       if (!silent) gclog_or_tty->print("StrDedup ");
3156       G1StringDedup::verify();
3157     }
3158 
3159     if (failures) {
3160       gclog_or_tty->print_cr("Heap:");
3161       // It helps to have the per-region information in the output to
3162       // help us track down what went wrong. This is why we call
3163       // print_extended_on() instead of print_on().
3164       print_extended_on(gclog_or_tty);
3165       gclog_or_tty->cr();
3166       gclog_or_tty->flush();
3167     }
3168     guarantee(!failures, "there should not have been any failures");
3169   } else {
3170     if (!silent) {
3171       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3172       if (G1StringDedup::is_enabled()) {
3173         gclog_or_tty->print(", StrDedup");
3174       }
3175       gclog_or_tty->print(") ");
3176     }
3177   }
3178 }
3179 
3180 void G1CollectedHeap::verify(bool silent) {
3181   verify(silent, VerifyOption_G1UsePrevMarking);
3182 }
3183 
3184 double G1CollectedHeap::verify(bool guard, const char* msg) {
3185   double verify_time_ms = 0.0;
3186 
3187   if (guard && total_collections() >= VerifyGCStartAt) {
3188     double verify_start = os::elapsedTime();
3189     HandleMark hm;  // Discard invalid handles created during verification
3190     prepare_for_verify();
3191     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3192     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3193   }
3194 
3195   return verify_time_ms;
3196 }
3197 
3198 void G1CollectedHeap::verify_before_gc() {
3199   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3200   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3201 }
3202 
3203 void G1CollectedHeap::verify_after_gc() {
3204   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3205   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3206 }
3207 
3208 class PrintRegionClosure: public HeapRegionClosure {
3209   outputStream* _st;
3210 public:
3211   PrintRegionClosure(outputStream* st) : _st(st) {}
3212   bool doHeapRegion(HeapRegion* r) {
3213     r->print_on(_st);
3214     return false;
3215   }
3216 };
3217 
3218 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3219                                        const HeapRegion* hr,
3220                                        const VerifyOption vo) const {
3221   switch (vo) {
3222   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3223   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3224   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3225   default:                            ShouldNotReachHere();
3226   }
3227   return false; // keep some compilers happy
3228 }
3229 
3230 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3231                                        const VerifyOption vo) const {
3232   switch (vo) {
3233   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3234   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3235   case VerifyOption_G1UseMarkWord: {
3236     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3237     return !obj->is_gc_marked() && !hr->is_archive();
3238   }
3239   default:                            ShouldNotReachHere();
3240   }
3241   return false; // keep some compilers happy
3242 }
3243 
3244 void G1CollectedHeap::print_on(outputStream* st) const {
3245   st->print(" %-20s", "garbage-first heap");
3246   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3247             capacity()/K, used_unlocked()/K);
3248   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3249             p2i(_hrm.reserved().start()),
3250             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3251             p2i(_hrm.reserved().end()));
3252   st->cr();
3253   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3254   uint young_regions = _young_list->length();
3255   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3256             (size_t) young_regions * HeapRegion::GrainBytes / K);
3257   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3258   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3259             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3260   st->cr();
3261   MetaspaceAux::print_on(st);
3262 }
3263 
3264 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3265   print_on(st);
3266 
3267   // Print the per-region information.
3268   st->cr();
3269   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
3270                "HS=humongous(starts), HC=humongous(continues), "
3271                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3272                "AC=allocation context, "
3273                "TAMS=top-at-mark-start (previous, next)");
3274   PrintRegionClosure blk(st);
3275   heap_region_iterate(&blk);
3276 }
3277 
3278 void G1CollectedHeap::print_on_error(outputStream* st) const {
3279   this->CollectedHeap::print_on_error(st);
3280 
3281   if (_cm != NULL) {
3282     st->cr();
3283     _cm->print_on_error(st);
3284   }
3285 }
3286 
3287 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3288   workers()->print_worker_threads_on(st);
3289   _cmThread->print_on(st);
3290   st->cr();
3291   _cm->print_worker_threads_on(st);
3292   _cg1r->print_worker_threads_on(st);
3293   if (G1StringDedup::is_enabled()) {
3294     G1StringDedup::print_worker_threads_on(st);
3295   }
3296 }
3297 
3298 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3299   workers()->threads_do(tc);
3300   tc->do_thread(_cmThread);
3301   _cg1r->threads_do(tc);
3302   if (G1StringDedup::is_enabled()) {
3303     G1StringDedup::threads_do(tc);
3304   }
3305 }
3306 
3307 void G1CollectedHeap::print_tracing_info() const {
3308   // We'll overload this to mean "trace GC pause statistics."
3309   if (TraceYoungGenTime || TraceOldGenTime) {
3310     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3311     // to that.
3312     g1_policy()->print_tracing_info();
3313   }
3314   if (G1SummarizeRSetStats) {
3315     g1_rem_set()->print_summary_info();
3316   }
3317   if (G1SummarizeConcMark) {
3318     concurrent_mark()->print_summary_info();
3319   }
3320   g1_policy()->print_yg_surv_rate_info();
3321 }
3322 
3323 #ifndef PRODUCT
3324 // Helpful for debugging RSet issues.
3325 
3326 class PrintRSetsClosure : public HeapRegionClosure {
3327 private:
3328   const char* _msg;
3329   size_t _occupied_sum;
3330 
3331 public:
3332   bool doHeapRegion(HeapRegion* r) {
3333     HeapRegionRemSet* hrrs = r->rem_set();
3334     size_t occupied = hrrs->occupied();
3335     _occupied_sum += occupied;
3336 
3337     gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
3338                            HR_FORMAT_PARAMS(r));
3339     if (occupied == 0) {
3340       gclog_or_tty->print_cr("  RSet is empty");
3341     } else {
3342       hrrs->print();
3343     }
3344     gclog_or_tty->print_cr("----------");
3345     return false;
3346   }
3347 
3348   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3349     gclog_or_tty->cr();
3350     gclog_or_tty->print_cr("========================================");
3351     gclog_or_tty->print_cr("%s", msg);
3352     gclog_or_tty->cr();
3353   }
3354 
3355   ~PrintRSetsClosure() {
3356     gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3357     gclog_or_tty->print_cr("========================================");
3358     gclog_or_tty->cr();
3359   }
3360 };
3361 
3362 void G1CollectedHeap::print_cset_rsets() {
3363   PrintRSetsClosure cl("Printing CSet RSets");
3364   collection_set_iterate(&cl);
3365 }
3366 
3367 void G1CollectedHeap::print_all_rsets() {
3368   PrintRSetsClosure cl("Printing All RSets");;
3369   heap_region_iterate(&cl);
3370 }
3371 #endif // PRODUCT
3372 
3373 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3374   YoungList* young_list = heap()->young_list();
3375 
3376   size_t eden_used_bytes = young_list->eden_used_bytes();
3377   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3378 
3379   size_t eden_capacity_bytes =
3380     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3381 
3382   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3383   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
3384 }
3385 
3386 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
3387   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
3388                        stats->unused(), stats->used(), stats->region_end_waste(),
3389                        stats->regions_filled(), stats->direct_allocated(),
3390                        stats->failure_used(), stats->failure_waste());
3391 }
3392 
3393 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
3394   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3395   gc_tracer->report_gc_heap_summary(when, heap_summary);
3396 
3397   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3398   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3399 }
3400 
3401 
3402 G1CollectedHeap* G1CollectedHeap::heap() {
3403   CollectedHeap* heap = Universe::heap();
3404   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3405   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3406   return (G1CollectedHeap*)heap;
3407 }
3408 
3409 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3410   // always_do_update_barrier = false;
3411   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3412   // Fill TLAB's and such
3413   accumulate_statistics_all_tlabs();
3414   ensure_parsability(true);
3415 
3416   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3417       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3418     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3419   }
3420 }
3421 
3422 void G1CollectedHeap::gc_epilogue(bool full) {
3423 
3424   if (G1SummarizeRSetStats &&
3425       (G1SummarizeRSetStatsPeriod > 0) &&
3426       // we are at the end of the GC. Total collections has already been increased.
3427       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3428     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3429   }
3430 
3431   // FIXME: what is this about?
3432   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3433   // is set.
3434 #if defined(COMPILER2) || INCLUDE_JVMCI
3435   assert(DerivedPointerTable::is_empty(), "derived pointer present");
3436 #endif
3437   // always_do_update_barrier = true;
3438 
3439   resize_all_tlabs();
3440   allocation_context_stats().update(full);
3441 
3442   // We have just completed a GC. Update the soft reference
3443   // policy with the new heap occupancy
3444   Universe::update_heap_info_at_gc();
3445 }
3446 
3447 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3448                                                uint gc_count_before,
3449                                                bool* succeeded,
3450                                                GCCause::Cause gc_cause) {
3451   assert_heap_not_locked_and_not_at_safepoint();
3452   g1_policy()->record_stop_world_start();
3453   VM_G1IncCollectionPause op(gc_count_before,
3454                              word_size,
3455                              false, /* should_initiate_conc_mark */
3456                              g1_policy()->max_pause_time_ms(),
3457                              gc_cause);
3458 
3459   op.set_allocation_context(AllocationContext::current());
3460   VMThread::execute(&op);
3461 
3462   HeapWord* result = op.result();
3463   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3464   assert(result == NULL || ret_succeeded,
3465          "the result should be NULL if the VM did not succeed");
3466   *succeeded = ret_succeeded;
3467 
3468   assert_heap_not_locked();
3469   return result;
3470 }
3471 
3472 void
3473 G1CollectedHeap::doConcurrentMark() {
3474   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3475   if (!_cmThread->in_progress()) {
3476     _cmThread->set_started();
3477     CGC_lock->notify();
3478   }
3479 }
3480 
3481 size_t G1CollectedHeap::pending_card_num() {
3482   size_t extra_cards = 0;
3483   JavaThread *curr = Threads::first();
3484   while (curr != NULL) {
3485     DirtyCardQueue& dcq = curr->dirty_card_queue();
3486     extra_cards += dcq.size();
3487     curr = curr->next();
3488   }
3489   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3490   size_t buffer_size = dcqs.buffer_size();
3491   size_t buffer_num = dcqs.completed_buffers_num();
3492 
3493   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3494   // in bytes - not the number of 'entries'. We need to convert
3495   // into a number of cards.
3496   return (buffer_size * buffer_num + extra_cards) / oopSize;
3497 }
3498 
3499 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3500  private:
3501   size_t _total_humongous;
3502   size_t _candidate_humongous;
3503 
3504   DirtyCardQueue _dcq;
3505 
3506   // We don't nominate objects with many remembered set entries, on
3507   // the assumption that such objects are likely still live.
3508   bool is_remset_small(HeapRegion* region) const {
3509     HeapRegionRemSet* const rset = region->rem_set();
3510     return G1EagerReclaimHumongousObjectsWithStaleRefs
3511       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3512       : rset->is_empty();
3513   }
3514 
3515   bool is_typeArray_region(HeapRegion* region) const {
3516     return oop(region->bottom())->is_typeArray();
3517   }
3518 
3519   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3520     assert(region->is_starts_humongous(), "Must start a humongous object");
3521 
3522     // Candidate selection must satisfy the following constraints
3523     // while concurrent marking is in progress:
3524     //
3525     // * In order to maintain SATB invariants, an object must not be
3526     // reclaimed if it was allocated before the start of marking and
3527     // has not had its references scanned.  Such an object must have
3528     // its references (including type metadata) scanned to ensure no
3529     // live objects are missed by the marking process.  Objects
3530     // allocated after the start of concurrent marking don't need to
3531     // be scanned.
3532     //
3533     // * An object must not be reclaimed if it is on the concurrent
3534     // mark stack.  Objects allocated after the start of concurrent
3535     // marking are never pushed on the mark stack.
3536     //
3537     // Nominating only objects allocated after the start of concurrent
3538     // marking is sufficient to meet both constraints.  This may miss
3539     // some objects that satisfy the constraints, but the marking data
3540     // structures don't support efficiently performing the needed
3541     // additional tests or scrubbing of the mark stack.
3542     //
3543     // However, we presently only nominate is_typeArray() objects.
3544     // A humongous object containing references induces remembered
3545     // set entries on other regions.  In order to reclaim such an
3546     // object, those remembered sets would need to be cleaned up.
3547     //
3548     // We also treat is_typeArray() objects specially, allowing them
3549     // to be reclaimed even if allocated before the start of
3550     // concurrent mark.  For this we rely on mark stack insertion to
3551     // exclude is_typeArray() objects, preventing reclaiming an object
3552     // that is in the mark stack.  We also rely on the metadata for
3553     // such objects to be built-in and so ensured to be kept live.
3554     // Frequent allocation and drop of large binary blobs is an
3555     // important use case for eager reclaim, and this special handling
3556     // may reduce needed headroom.
3557 
3558     return is_typeArray_region(region) && is_remset_small(region);
3559   }
3560 
3561  public:
3562   RegisterHumongousWithInCSetFastTestClosure()
3563   : _total_humongous(0),
3564     _candidate_humongous(0),
3565     _dcq(&JavaThread::dirty_card_queue_set()) {
3566   }
3567 
3568   virtual bool doHeapRegion(HeapRegion* r) {
3569     if (!r->is_starts_humongous()) {
3570       return false;
3571     }
3572     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3573 
3574     bool is_candidate = humongous_region_is_candidate(g1h, r);
3575     uint rindex = r->hrm_index();
3576     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3577     if (is_candidate) {
3578       _candidate_humongous++;
3579       g1h->register_humongous_region_with_cset(rindex);
3580       // Is_candidate already filters out humongous object with large remembered sets.
3581       // If we have a humongous object with a few remembered sets, we simply flush these
3582       // remembered set entries into the DCQS. That will result in automatic
3583       // re-evaluation of their remembered set entries during the following evacuation
3584       // phase.
3585       if (!r->rem_set()->is_empty()) {
3586         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3587                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3588         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3589         HeapRegionRemSetIterator hrrs(r->rem_set());
3590         size_t card_index;
3591         while (hrrs.has_next(card_index)) {
3592           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3593           // The remembered set might contain references to already freed
3594           // regions. Filter out such entries to avoid failing card table
3595           // verification.
3596           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
3597             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3598               *card_ptr = CardTableModRefBS::dirty_card_val();
3599               _dcq.enqueue(card_ptr);
3600             }
3601           }
3602         }
3603         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
3604                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
3605                hrrs.n_yielded(), r->rem_set()->occupied());
3606         r->rem_set()->clear_locked();
3607       }
3608       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3609     }
3610     _total_humongous++;
3611 
3612     return false;
3613   }
3614 
3615   size_t total_humongous() const { return _total_humongous; }
3616   size_t candidate_humongous() const { return _candidate_humongous; }
3617 
3618   void flush_rem_set_entries() { _dcq.flush(); }
3619 };
3620 
3621 void G1CollectedHeap::register_humongous_regions_with_cset() {
3622   if (!G1EagerReclaimHumongousObjects) {
3623     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3624     return;
3625   }
3626   double time = os::elapsed_counter();
3627 
3628   // Collect reclaim candidate information and register candidates with cset.
3629   RegisterHumongousWithInCSetFastTestClosure cl;
3630   heap_region_iterate(&cl);
3631 
3632   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3633   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3634                                                                   cl.total_humongous(),
3635                                                                   cl.candidate_humongous());
3636   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3637 
3638   // Finally flush all remembered set entries to re-check into the global DCQS.
3639   cl.flush_rem_set_entries();
3640 }
3641 
3642 #ifdef ASSERT
3643 class VerifyCSetClosure: public HeapRegionClosure {
3644 public:
3645   bool doHeapRegion(HeapRegion* hr) {
3646     // Here we check that the CSet region's RSet is ready for parallel
3647     // iteration. The fields that we'll verify are only manipulated
3648     // when the region is part of a CSet and is collected. Afterwards,
3649     // we reset these fields when we clear the region's RSet (when the
3650     // region is freed) so they are ready when the region is
3651     // re-allocated. The only exception to this is if there's an
3652     // evacuation failure and instead of freeing the region we leave
3653     // it in the heap. In that case, we reset these fields during
3654     // evacuation failure handling.
3655     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3656 
3657     // Here's a good place to add any other checks we'd like to
3658     // perform on CSet regions.
3659     return false;
3660   }
3661 };
3662 #endif // ASSERT
3663 
3664 uint G1CollectedHeap::num_task_queues() const {
3665   return _task_queues->size();
3666 }
3667 
3668 #if TASKQUEUE_STATS
3669 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3670   st->print_raw_cr("GC Task Stats");
3671   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3672   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3673 }
3674 
3675 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3676   print_taskqueue_stats_hdr(st);
3677 
3678   TaskQueueStats totals;
3679   const uint n = num_task_queues();
3680   for (uint i = 0; i < n; ++i) {
3681     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3682     totals += task_queue(i)->stats;
3683   }
3684   st->print_raw("tot "); totals.print(st); st->cr();
3685 
3686   DEBUG_ONLY(totals.verify());
3687 }
3688 
3689 void G1CollectedHeap::reset_taskqueue_stats() {
3690   const uint n = num_task_queues();
3691   for (uint i = 0; i < n; ++i) {
3692     task_queue(i)->stats.reset();
3693   }
3694 }
3695 #endif // TASKQUEUE_STATS
3696 
3697 void G1CollectedHeap::log_gc_header() {
3698   if (!G1Log::fine()) {
3699     return;
3700   }
3701 
3702   gclog_or_tty->gclog_stamp();
3703 
3704   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3705     .append(collector_state()->gcs_are_young() ? "(young)" : "(mixed)")
3706     .append(collector_state()->during_initial_mark_pause() ? " (initial-mark)" : "");
3707 
3708   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3709 }
3710 
3711 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3712   if (!G1Log::fine()) {
3713     return;
3714   }
3715 
3716   if (G1Log::finer()) {
3717     if (evacuation_failed()) {
3718       gclog_or_tty->print(" (to-space exhausted)");
3719     }
3720     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3721     g1_policy()->print_phases(pause_time_sec);
3722     g1_policy()->print_detailed_heap_transition();
3723   } else {
3724     if (evacuation_failed()) {
3725       gclog_or_tty->print("--");
3726     }
3727     g1_policy()->print_heap_transition();
3728     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3729   }
3730   gclog_or_tty->flush();
3731 }
3732 
3733 void G1CollectedHeap::wait_for_root_region_scanning() {
3734   double scan_wait_start = os::elapsedTime();
3735   // We have to wait until the CM threads finish scanning the
3736   // root regions as it's the only way to ensure that all the
3737   // objects on them have been correctly scanned before we start
3738   // moving them during the GC.
3739   bool waited = _cm->root_regions()->wait_until_scan_finished();
3740   double wait_time_ms = 0.0;
3741   if (waited) {
3742     double scan_wait_end = os::elapsedTime();
3743     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3744   }
3745   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3746 }
3747 
3748 bool
3749 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3750   assert_at_safepoint(true /* should_be_vm_thread */);
3751   guarantee(!is_gc_active(), "collection is not reentrant");
3752 
3753   if (GC_locker::check_active_before_gc()) {
3754     return false;
3755   }
3756 
3757   _gc_timer_stw->register_gc_start();
3758 
3759   GCIdMark gc_id_mark;
3760   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3761 
3762   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3763   ResourceMark rm;
3764 
3765   wait_for_root_region_scanning();
3766 
3767   G1Log::update_level();
3768   print_heap_before_gc();
3769   trace_heap_before_gc(_gc_tracer_stw);
3770 
3771   verify_region_sets_optional();
3772   verify_dirty_young_regions();
3773 
3774   // This call will decide whether this pause is an initial-mark
3775   // pause. If it is, during_initial_mark_pause() will return true
3776   // for the duration of this pause.
3777   g1_policy()->decide_on_conc_mark_initiation();
3778 
3779   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3780   assert(!collector_state()->during_initial_mark_pause() ||
3781           collector_state()->gcs_are_young(), "sanity");
3782 
3783   // We also do not allow mixed GCs during marking.
3784   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3785 
3786   // Record whether this pause is an initial mark. When the current
3787   // thread has completed its logging output and it's safe to signal
3788   // the CM thread, the flag's value in the policy has been reset.
3789   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3790 
3791   // Inner scope for scope based logging, timers, and stats collection
3792   {
3793     EvacuationInfo evacuation_info;
3794 
3795     if (collector_state()->during_initial_mark_pause()) {
3796       // We are about to start a marking cycle, so we increment the
3797       // full collection counter.
3798       increment_old_marking_cycles_started();
3799       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3800     }
3801 
3802     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3803 
3804     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3805 
3806     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3807                                                                   workers()->active_workers(),
3808                                                                   Threads::number_of_non_daemon_threads());
3809     workers()->set_active_workers(active_workers);
3810 
3811     double pause_start_sec = os::elapsedTime();
3812     g1_policy()->note_gc_start(active_workers);
3813     log_gc_header();
3814 
3815     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3816     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3817 
3818     // If the secondary_free_list is not empty, append it to the
3819     // free_list. No need to wait for the cleanup operation to finish;
3820     // the region allocation code will check the secondary_free_list
3821     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3822     // set, skip this step so that the region allocation code has to
3823     // get entries from the secondary_free_list.
3824     if (!G1StressConcRegionFreeing) {
3825       append_secondary_free_list_if_not_empty_with_lock();
3826     }
3827 
3828     assert(check_young_list_well_formed(), "young list should be well formed");
3829 
3830     // Don't dynamically change the number of GC threads this early.  A value of
3831     // 0 is used to indicate serial work.  When parallel work is done,
3832     // it will be set.
3833 
3834     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3835       IsGCActiveMark x;
3836 
3837       gc_prologue(false);
3838       increment_total_collections(false /* full gc */);
3839       increment_gc_time_stamp();
3840 
3841       verify_before_gc();
3842 
3843       check_bitmaps("GC Start");
3844 
3845 #if defined(COMPILER2) || INCLUDE_JVMCI
3846       DerivedPointerTable::clear();
3847 #endif
3848 
3849       // Please see comment in g1CollectedHeap.hpp and
3850       // G1CollectedHeap::ref_processing_init() to see how
3851       // reference processing currently works in G1.
3852 
3853       // Enable discovery in the STW reference processor
3854       if (g1_policy()->should_process_references()) {
3855         ref_processor_stw()->enable_discovery();
3856       } else {
3857         ref_processor_stw()->disable_discovery();
3858       }
3859 
3860       {
3861         // We want to temporarily turn off discovery by the
3862         // CM ref processor, if necessary, and turn it back on
3863         // on again later if we do. Using a scoped
3864         // NoRefDiscovery object will do this.
3865         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3866 
3867         // Forget the current alloc region (we might even choose it to be part
3868         // of the collection set!).
3869         _allocator->release_mutator_alloc_region();
3870 
3871         // We should call this after we retire the mutator alloc
3872         // region(s) so that all the ALLOC / RETIRE events are generated
3873         // before the start GC event.
3874         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3875 
3876         // This timing is only used by the ergonomics to handle our pause target.
3877         // It is unclear why this should not include the full pause. We will
3878         // investigate this in CR 7178365.
3879         //
3880         // Preserving the old comment here if that helps the investigation:
3881         //
3882         // The elapsed time induced by the start time below deliberately elides
3883         // the possible verification above.
3884         double sample_start_time_sec = os::elapsedTime();
3885 
3886         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3887 
3888         if (collector_state()->during_initial_mark_pause()) {
3889           concurrent_mark()->checkpointRootsInitialPre();
3890         }
3891 
3892         double time_remaining_ms = g1_policy()->finalize_young_cset_part(target_pause_time_ms);
3893         g1_policy()->finalize_old_cset_part(time_remaining_ms);
3894 
3895         evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length());
3896 
3897         // Make sure the remembered sets are up to date. This needs to be
3898         // done before register_humongous_regions_with_cset(), because the
3899         // remembered sets are used there to choose eager reclaim candidates.
3900         // If the remembered sets are not up to date we might miss some
3901         // entries that need to be handled.
3902         g1_rem_set()->cleanupHRRS();
3903 
3904         register_humongous_regions_with_cset();
3905 
3906         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3907 
3908         _cm->note_start_of_gc();
3909         // We call this after finalize_cset() to
3910         // ensure that the CSet has been finalized.
3911         _cm->verify_no_cset_oops();
3912 
3913         if (_hr_printer.is_active()) {
3914           HeapRegion* hr = g1_policy()->collection_set();
3915           while (hr != NULL) {
3916             _hr_printer.cset(hr);
3917             hr = hr->next_in_collection_set();
3918           }
3919         }
3920 
3921 #ifdef ASSERT
3922         VerifyCSetClosure cl;
3923         collection_set_iterate(&cl);
3924 #endif // ASSERT
3925 
3926         // Initialize the GC alloc regions.
3927         _allocator->init_gc_alloc_regions(evacuation_info);
3928 
3929         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), g1_policy()->young_cset_region_length());
3930         pre_evacuate_collection_set();
3931 
3932         // Actually do the work...
3933         evacuate_collection_set(evacuation_info, &per_thread_states);
3934 
3935         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3936 
3937         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3938         free_collection_set(g1_policy()->collection_set(), evacuation_info, surviving_young_words);
3939 
3940         eagerly_reclaim_humongous_regions();
3941 
3942         g1_policy()->clear_collection_set();
3943 
3944         // Start a new incremental collection set for the next pause.
3945         g1_policy()->start_incremental_cset_building();
3946 
3947         clear_cset_fast_test();
3948 
3949         _young_list->reset_sampled_info();
3950 
3951         // Don't check the whole heap at this point as the
3952         // GC alloc regions from this pause have been tagged
3953         // as survivors and moved on to the survivor list.
3954         // Survivor regions will fail the !is_young() check.
3955         assert(check_young_list_empty(false /* check_heap */),
3956           "young list should be empty");
3957 
3958         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3959                                              _young_list->first_survivor_region(),
3960                                              _young_list->last_survivor_region());
3961 
3962         _young_list->reset_auxilary_lists();
3963 
3964         if (evacuation_failed()) {
3965           set_used(recalculate_used());
3966           if (_archive_allocator != NULL) {
3967             _archive_allocator->clear_used();
3968           }
3969           for (uint i = 0; i < ParallelGCThreads; i++) {
3970             if (_evacuation_failed_info_array[i].has_failed()) {
3971               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3972             }
3973           }
3974         } else {
3975           // The "used" of the the collection set have already been subtracted
3976           // when they were freed.  Add in the bytes evacuated.
3977           increase_used(g1_policy()->bytes_copied_during_gc());
3978         }
3979 
3980         if (collector_state()->during_initial_mark_pause()) {
3981           // We have to do this before we notify the CM threads that
3982           // they can start working to make sure that all the
3983           // appropriate initialization is done on the CM object.
3984           concurrent_mark()->checkpointRootsInitialPost();
3985           collector_state()->set_mark_in_progress(true);
3986           // Note that we don't actually trigger the CM thread at
3987           // this point. We do that later when we're sure that
3988           // the current thread has completed its logging output.
3989         }
3990 
3991         allocate_dummy_regions();
3992 
3993         _allocator->init_mutator_alloc_region();
3994 
3995         {
3996           size_t expand_bytes = g1_policy()->expansion_amount();
3997           if (expand_bytes > 0) {
3998             size_t bytes_before = capacity();
3999             // No need for an ergo verbose message here,
4000             // expansion_amount() does this when it returns a value > 0.
4001             double expand_ms;
4002             if (!expand(expand_bytes, &expand_ms)) {
4003               // We failed to expand the heap. Cannot do anything about it.
4004             }
4005             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
4006           }
4007         }
4008 
4009         // We redo the verification but now wrt to the new CSet which
4010         // has just got initialized after the previous CSet was freed.
4011         _cm->verify_no_cset_oops();
4012         _cm->note_end_of_gc();
4013 
4014         // This timing is only used by the ergonomics to handle our pause target.
4015         // It is unclear why this should not include the full pause. We will
4016         // investigate this in CR 7178365.
4017         double sample_end_time_sec = os::elapsedTime();
4018         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4019         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
4020         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned);
4021 
4022         evacuation_info.set_collectionset_used_before(g1_policy()->collection_set_bytes_used_before());
4023         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
4024 
4025         MemoryService::track_memory_usage();
4026 
4027         // In prepare_for_verify() below we'll need to scan the deferred
4028         // update buffers to bring the RSets up-to-date if
4029         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4030         // the update buffers we'll probably need to scan cards on the
4031         // regions we just allocated to (i.e., the GC alloc
4032         // regions). However, during the last GC we called
4033         // set_saved_mark() on all the GC alloc regions, so card
4034         // scanning might skip the [saved_mark_word()...top()] area of
4035         // those regions (i.e., the area we allocated objects into
4036         // during the last GC). But it shouldn't. Given that
4037         // saved_mark_word() is conditional on whether the GC time stamp
4038         // on the region is current or not, by incrementing the GC time
4039         // stamp here we invalidate all the GC time stamps on all the
4040         // regions and saved_mark_word() will simply return top() for
4041         // all the regions. This is a nicer way of ensuring this rather
4042         // than iterating over the regions and fixing them. In fact, the
4043         // GC time stamp increment here also ensures that
4044         // saved_mark_word() will return top() between pauses, i.e.,
4045         // during concurrent refinement. So we don't need the
4046         // is_gc_active() check to decided which top to use when
4047         // scanning cards (see CR 7039627).
4048         increment_gc_time_stamp();
4049 
4050         verify_after_gc();
4051         check_bitmaps("GC End");
4052 
4053         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4054         ref_processor_stw()->verify_no_references_recorded();
4055 
4056         // CM reference discovery will be re-enabled if necessary.
4057       }
4058 
4059       // We should do this after we potentially expand the heap so
4060       // that all the COMMIT events are generated before the end GC
4061       // event, and after we retire the GC alloc regions so that all
4062       // RETIRE events are generated before the end GC event.
4063       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4064 
4065 #ifdef TRACESPINNING
4066       ParallelTaskTerminator::print_termination_counts();
4067 #endif
4068 
4069       gc_epilogue(false);
4070     }
4071 
4072     // Print the remainder of the GC log output.
4073     log_gc_footer(os::elapsedTime() - pause_start_sec);
4074 
4075     // It is not yet to safe to tell the concurrent mark to
4076     // start as we have some optional output below. We don't want the
4077     // output from the concurrent mark thread interfering with this
4078     // logging output either.
4079 
4080     _hrm.verify_optional();
4081     verify_region_sets_optional();
4082 
4083     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4084     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4085 
4086     print_heap_after_gc();
4087     trace_heap_after_gc(_gc_tracer_stw);
4088 
4089     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4090     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4091     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4092     // before any GC notifications are raised.
4093     g1mm()->update_sizes();
4094 
4095     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4096     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4097     _gc_timer_stw->register_gc_end();
4098     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4099   }
4100   // It should now be safe to tell the concurrent mark thread to start
4101   // without its logging output interfering with the logging output
4102   // that came from the pause.
4103 
4104   if (should_start_conc_mark) {
4105     // CAUTION: after the doConcurrentMark() call below,
4106     // the concurrent marking thread(s) could be running
4107     // concurrently with us. Make sure that anything after
4108     // this point does not assume that we are the only GC thread
4109     // running. Note: of course, the actual marking work will
4110     // not start until the safepoint itself is released in
4111     // SuspendibleThreadSet::desynchronize().
4112     doConcurrentMark();
4113   }
4114 
4115   return true;
4116 }
4117 
4118 void G1CollectedHeap::restore_preserved_marks() {
4119   G1RestorePreservedMarksTask rpm_task(_preserved_objs);
4120   workers()->run_task(&rpm_task);
4121 }
4122 
4123 void G1CollectedHeap::remove_self_forwarding_pointers() {
4124   G1ParRemoveSelfForwardPtrsTask rsfp_task;
4125   workers()->run_task(&rsfp_task);
4126 }
4127 
4128 void G1CollectedHeap::restore_after_evac_failure() {
4129   double remove_self_forwards_start = os::elapsedTime();
4130 
4131   remove_self_forwarding_pointers();
4132   restore_preserved_marks();
4133 
4134   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4135 }
4136 
4137 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
4138   if (!_evacuation_failed) {
4139     _evacuation_failed = true;
4140   }
4141 
4142   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
4143 
4144   // We want to call the "for_promotion_failure" version only in the
4145   // case of a promotion failure.
4146   if (m->must_be_preserved_for_promotion_failure(obj)) {
4147     OopAndMarkOop elem(obj, m);
4148     _preserved_objs[worker_id].push(elem);
4149   }
4150 }
4151 
4152 bool G1ParEvacuateFollowersClosure::offer_termination() {
4153   G1ParScanThreadState* const pss = par_scan_state();
4154   start_term_time();
4155   const bool res = terminator()->offer_termination();
4156   end_term_time();
4157   return res;
4158 }
4159 
4160 void G1ParEvacuateFollowersClosure::do_void() {
4161   G1ParScanThreadState* const pss = par_scan_state();
4162   pss->trim_queue();
4163   do {
4164     pss->steal_and_trim_queue(queues());
4165   } while (!offer_termination());
4166 }
4167 
4168 class G1ParTask : public AbstractGangTask {
4169 protected:
4170   G1CollectedHeap*         _g1h;
4171   G1ParScanThreadStateSet* _pss;
4172   RefToScanQueueSet*       _queues;
4173   G1RootProcessor*         _root_processor;
4174   ParallelTaskTerminator   _terminator;
4175   uint                     _n_workers;
4176 
4177 public:
4178   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4179     : AbstractGangTask("G1 collection"),
4180       _g1h(g1h),
4181       _pss(per_thread_states),
4182       _queues(task_queues),
4183       _root_processor(root_processor),
4184       _terminator(n_workers, _queues),
4185       _n_workers(n_workers)
4186   {}
4187 
4188   void work(uint worker_id) {
4189     if (worker_id >= _n_workers) return;  // no work needed this round
4190 
4191     double start_sec = os::elapsedTime();
4192     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
4193 
4194     {
4195       ResourceMark rm;
4196       HandleMark   hm;
4197 
4198       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4199 
4200       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
4201       pss->set_ref_processor(rp);
4202 
4203       double start_strong_roots_sec = os::elapsedTime();
4204 
4205       _root_processor->evacuate_roots(pss->closures(), worker_id);
4206 
4207       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
4208 
4209       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
4210       // treating the nmethods visited to act as roots for concurrent marking.
4211       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
4212       // objects copied by the current evacuation.
4213       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
4214                                                                              pss->closures()->weak_codeblobs(),
4215                                                                              worker_id);
4216 
4217       _pss->add_cards_scanned(worker_id, cards_scanned);
4218 
4219       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
4220 
4221       double term_sec = 0.0;
4222       size_t evac_term_attempts = 0;
4223       {
4224         double start = os::elapsedTime();
4225         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
4226         evac.do_void();
4227 
4228         evac_term_attempts = evac.term_attempts();
4229         term_sec = evac.term_time();
4230         double elapsed_sec = os::elapsedTime() - start;
4231         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4232         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4233         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
4234       }
4235 
4236       assert(pss->queue_is_empty(), "should be empty");
4237 
4238       if (PrintTerminationStats) {
4239         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4240         size_t lab_waste;
4241         size_t lab_undo_waste;
4242         pss->waste(lab_waste, lab_undo_waste);
4243         _g1h->print_termination_stats(gclog_or_tty,
4244                                       worker_id,
4245                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
4246                                       strong_roots_sec * 1000.0,                  /* strong roots time */
4247                                       term_sec * 1000.0,                          /* evac term time */
4248                                       evac_term_attempts,                         /* evac term attempts */
4249                                       lab_waste,                                  /* alloc buffer waste */
4250                                       lab_undo_waste                              /* undo waste */
4251                                       );
4252       }
4253 
4254       // Close the inner scope so that the ResourceMark and HandleMark
4255       // destructors are executed here and are included as part of the
4256       // "GC Worker Time".
4257     }
4258     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4259   }
4260 };
4261 
4262 void G1CollectedHeap::print_termination_stats_hdr(outputStream* const st) {
4263   st->print_raw_cr("GC Termination Stats");
4264   st->print_raw_cr("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
4265   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts  total   alloc    undo");
4266   st->print_raw_cr("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
4267 }
4268 
4269 void G1CollectedHeap::print_termination_stats(outputStream* const st,
4270                                               uint worker_id,
4271                                               double elapsed_ms,
4272                                               double strong_roots_ms,
4273                                               double term_ms,
4274                                               size_t term_attempts,
4275                                               size_t alloc_buffer_waste,
4276                                               size_t undo_waste) const {
4277   st->print_cr("%3d %9.2f %9.2f %6.2f "
4278                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4279                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4280                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
4281                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
4282                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
4283                alloc_buffer_waste * HeapWordSize / K,
4284                undo_waste * HeapWordSize / K);
4285 }
4286 
4287 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4288 private:
4289   BoolObjectClosure* _is_alive;
4290   int _initial_string_table_size;
4291   int _initial_symbol_table_size;
4292 
4293   bool  _process_strings;
4294   int _strings_processed;
4295   int _strings_removed;
4296 
4297   bool  _process_symbols;
4298   int _symbols_processed;
4299   int _symbols_removed;
4300 
4301 public:
4302   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4303     AbstractGangTask("String/Symbol Unlinking"),
4304     _is_alive(is_alive),
4305     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4306     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4307 
4308     _initial_string_table_size = StringTable::the_table()->table_size();
4309     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4310     if (process_strings) {
4311       StringTable::clear_parallel_claimed_index();
4312     }
4313     if (process_symbols) {
4314       SymbolTable::clear_parallel_claimed_index();
4315     }
4316   }
4317 
4318   ~G1StringSymbolTableUnlinkTask() {
4319     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4320               "claim value %d after unlink less than initial string table size %d",
4321               StringTable::parallel_claimed_index(), _initial_string_table_size);
4322     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4323               "claim value %d after unlink less than initial symbol table size %d",
4324               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
4325 
4326     if (G1TraceStringSymbolTableScrubbing) {
4327       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4328                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4329                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4330                              strings_processed(), strings_removed(),
4331                              symbols_processed(), symbols_removed());
4332     }
4333   }
4334 
4335   void work(uint worker_id) {
4336     int strings_processed = 0;
4337     int strings_removed = 0;
4338     int symbols_processed = 0;
4339     int symbols_removed = 0;
4340     if (_process_strings) {
4341       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4342       Atomic::add(strings_processed, &_strings_processed);
4343       Atomic::add(strings_removed, &_strings_removed);
4344     }
4345     if (_process_symbols) {
4346       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4347       Atomic::add(symbols_processed, &_symbols_processed);
4348       Atomic::add(symbols_removed, &_symbols_removed);
4349     }
4350   }
4351 
4352   size_t strings_processed() const { return (size_t)_strings_processed; }
4353   size_t strings_removed()   const { return (size_t)_strings_removed; }
4354 
4355   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4356   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4357 };
4358 
4359 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4360 private:
4361   static Monitor* _lock;
4362 
4363   BoolObjectClosure* const _is_alive;
4364   const bool               _unloading_occurred;
4365   const uint               _num_workers;
4366 
4367   // Variables used to claim nmethods.
4368   nmethod* _first_nmethod;
4369   volatile nmethod* _claimed_nmethod;
4370 
4371   // The list of nmethods that need to be processed by the second pass.
4372   volatile nmethod* _postponed_list;
4373   volatile uint     _num_entered_barrier;
4374 
4375  public:
4376   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4377       _is_alive(is_alive),
4378       _unloading_occurred(unloading_occurred),
4379       _num_workers(num_workers),
4380       _first_nmethod(NULL),
4381       _claimed_nmethod(NULL),
4382       _postponed_list(NULL),
4383       _num_entered_barrier(0)
4384   {
4385     nmethod::increase_unloading_clock();
4386     // Get first alive nmethod
4387     NMethodIterator iter = NMethodIterator();
4388     if(iter.next_alive()) {
4389       _first_nmethod = iter.method();
4390     }
4391     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4392   }
4393 
4394   ~G1CodeCacheUnloadingTask() {
4395     CodeCache::verify_clean_inline_caches();
4396 
4397     CodeCache::set_needs_cache_clean(false);
4398     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4399 
4400     CodeCache::verify_icholder_relocations();
4401   }
4402 
4403  private:
4404   void add_to_postponed_list(nmethod* nm) {
4405       nmethod* old;
4406       do {
4407         old = (nmethod*)_postponed_list;
4408         nm->set_unloading_next(old);
4409       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4410   }
4411 
4412   void clean_nmethod(nmethod* nm) {
4413     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4414 
4415     if (postponed) {
4416       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4417       add_to_postponed_list(nm);
4418     }
4419 
4420     // Mark that this thread has been cleaned/unloaded.
4421     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4422     nm->set_unloading_clock(nmethod::global_unloading_clock());
4423   }
4424 
4425   void clean_nmethod_postponed(nmethod* nm) {
4426     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4427   }
4428 
4429   static const int MaxClaimNmethods = 16;
4430 
4431   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4432     nmethod* first;
4433     NMethodIterator last;
4434 
4435     do {
4436       *num_claimed_nmethods = 0;
4437 
4438       first = (nmethod*)_claimed_nmethod;
4439       last = NMethodIterator(first);
4440 
4441       if (first != NULL) {
4442 
4443         for (int i = 0; i < MaxClaimNmethods; i++) {
4444           if (!last.next_alive()) {
4445             break;
4446           }
4447           claimed_nmethods[i] = last.method();
4448           (*num_claimed_nmethods)++;
4449         }
4450       }
4451 
4452     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4453   }
4454 
4455   nmethod* claim_postponed_nmethod() {
4456     nmethod* claim;
4457     nmethod* next;
4458 
4459     do {
4460       claim = (nmethod*)_postponed_list;
4461       if (claim == NULL) {
4462         return NULL;
4463       }
4464 
4465       next = claim->unloading_next();
4466 
4467     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4468 
4469     return claim;
4470   }
4471 
4472  public:
4473   // Mark that we're done with the first pass of nmethod cleaning.
4474   void barrier_mark(uint worker_id) {
4475     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4476     _num_entered_barrier++;
4477     if (_num_entered_barrier == _num_workers) {
4478       ml.notify_all();
4479     }
4480   }
4481 
4482   // See if we have to wait for the other workers to
4483   // finish their first-pass nmethod cleaning work.
4484   void barrier_wait(uint worker_id) {
4485     if (_num_entered_barrier < _num_workers) {
4486       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4487       while (_num_entered_barrier < _num_workers) {
4488           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4489       }
4490     }
4491   }
4492 
4493   // Cleaning and unloading of nmethods. Some work has to be postponed
4494   // to the second pass, when we know which nmethods survive.
4495   void work_first_pass(uint worker_id) {
4496     // The first nmethods is claimed by the first worker.
4497     if (worker_id == 0 && _first_nmethod != NULL) {
4498       clean_nmethod(_first_nmethod);
4499       _first_nmethod = NULL;
4500     }
4501 
4502     int num_claimed_nmethods;
4503     nmethod* claimed_nmethods[MaxClaimNmethods];
4504 
4505     while (true) {
4506       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4507 
4508       if (num_claimed_nmethods == 0) {
4509         break;
4510       }
4511 
4512       for (int i = 0; i < num_claimed_nmethods; i++) {
4513         clean_nmethod(claimed_nmethods[i]);
4514       }
4515     }
4516   }
4517 
4518   void work_second_pass(uint worker_id) {
4519     nmethod* nm;
4520     // Take care of postponed nmethods.
4521     while ((nm = claim_postponed_nmethod()) != NULL) {
4522       clean_nmethod_postponed(nm);
4523     }
4524   }
4525 };
4526 
4527 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4528 
4529 class G1KlassCleaningTask : public StackObj {
4530   BoolObjectClosure*                      _is_alive;
4531   volatile jint                           _clean_klass_tree_claimed;
4532   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4533 
4534  public:
4535   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4536       _is_alive(is_alive),
4537       _clean_klass_tree_claimed(0),
4538       _klass_iterator() {
4539   }
4540 
4541  private:
4542   bool claim_clean_klass_tree_task() {
4543     if (_clean_klass_tree_claimed) {
4544       return false;
4545     }
4546 
4547     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4548   }
4549 
4550   InstanceKlass* claim_next_klass() {
4551     Klass* klass;
4552     do {
4553       klass =_klass_iterator.next_klass();
4554     } while (klass != NULL && !klass->is_instance_klass());
4555 
4556     // this can be null so don't call InstanceKlass::cast
4557     return static_cast<InstanceKlass*>(klass);
4558   }
4559 
4560 public:
4561 
4562   void clean_klass(InstanceKlass* ik) {
4563     ik->clean_weak_instanceklass_links(_is_alive);
4564   }
4565 
4566   void work() {
4567     ResourceMark rm;
4568 
4569     // One worker will clean the subklass/sibling klass tree.
4570     if (claim_clean_klass_tree_task()) {
4571       Klass::clean_subklass_tree(_is_alive);
4572     }
4573 
4574     // All workers will help cleaning the classes,
4575     InstanceKlass* klass;
4576     while ((klass = claim_next_klass()) != NULL) {
4577       clean_klass(klass);
4578     }
4579   }
4580 };
4581 
4582 // To minimize the remark pause times, the tasks below are done in parallel.
4583 class G1ParallelCleaningTask : public AbstractGangTask {
4584 private:
4585   G1StringSymbolTableUnlinkTask _string_symbol_task;
4586   G1CodeCacheUnloadingTask      _code_cache_task;
4587   G1KlassCleaningTask           _klass_cleaning_task;
4588 
4589 public:
4590   // The constructor is run in the VMThread.
4591   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4592       AbstractGangTask("Parallel Cleaning"),
4593       _string_symbol_task(is_alive, process_strings, process_symbols),
4594       _code_cache_task(num_workers, is_alive, unloading_occurred),
4595       _klass_cleaning_task(is_alive) {
4596   }
4597 
4598   // The parallel work done by all worker threads.
4599   void work(uint worker_id) {
4600     // Do first pass of code cache cleaning.
4601     _code_cache_task.work_first_pass(worker_id);
4602 
4603     // Let the threads mark that the first pass is done.
4604     _code_cache_task.barrier_mark(worker_id);
4605 
4606     // Clean the Strings and Symbols.
4607     _string_symbol_task.work(worker_id);
4608 
4609     // Wait for all workers to finish the first code cache cleaning pass.
4610     _code_cache_task.barrier_wait(worker_id);
4611 
4612     // Do the second code cache cleaning work, which realize on
4613     // the liveness information gathered during the first pass.
4614     _code_cache_task.work_second_pass(worker_id);
4615 
4616     // Clean all klasses that were not unloaded.
4617     _klass_cleaning_task.work();
4618   }
4619 };
4620 
4621 
4622 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4623                                         bool process_strings,
4624                                         bool process_symbols,
4625                                         bool class_unloading_occurred) {
4626   uint n_workers = workers()->active_workers();
4627 
4628   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4629                                         n_workers, class_unloading_occurred);
4630   workers()->run_task(&g1_unlink_task);
4631 }
4632 
4633 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4634                                                      bool process_strings, bool process_symbols) {
4635   {
4636     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4637     workers()->run_task(&g1_unlink_task);
4638   }
4639 
4640   if (G1StringDedup::is_enabled()) {
4641     G1StringDedup::unlink(is_alive);
4642   }
4643 }
4644 
4645 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4646  private:
4647   DirtyCardQueueSet* _queue;
4648   G1CollectedHeap* _g1h;
4649  public:
4650   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
4651     _queue(queue), _g1h(g1h) { }
4652 
4653   virtual void work(uint worker_id) {
4654     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
4655     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4656 
4657     RedirtyLoggedCardTableEntryClosure cl(_g1h);
4658     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4659 
4660     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
4661   }
4662 };
4663 
4664 void G1CollectedHeap::redirty_logged_cards() {
4665   double redirty_logged_cards_start = os::elapsedTime();
4666 
4667   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
4668   dirty_card_queue_set().reset_for_par_iteration();
4669   workers()->run_task(&redirty_task);
4670 
4671   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4672   dcq.merge_bufferlists(&dirty_card_queue_set());
4673   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4674 
4675   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4676 }
4677 
4678 // Weak Reference Processing support
4679 
4680 // An always "is_alive" closure that is used to preserve referents.
4681 // If the object is non-null then it's alive.  Used in the preservation
4682 // of referent objects that are pointed to by reference objects
4683 // discovered by the CM ref processor.
4684 class G1AlwaysAliveClosure: public BoolObjectClosure {
4685   G1CollectedHeap* _g1;
4686 public:
4687   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4688   bool do_object_b(oop p) {
4689     if (p != NULL) {
4690       return true;
4691     }
4692     return false;
4693   }
4694 };
4695 
4696 bool G1STWIsAliveClosure::do_object_b(oop p) {
4697   // An object is reachable if it is outside the collection set,
4698   // or is inside and copied.
4699   return !_g1->is_in_cset(p) || p->is_forwarded();
4700 }
4701 
4702 // Non Copying Keep Alive closure
4703 class G1KeepAliveClosure: public OopClosure {
4704   G1CollectedHeap* _g1;
4705 public:
4706   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4707   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4708   void do_oop(oop* p) {
4709     oop obj = *p;
4710     assert(obj != NULL, "the caller should have filtered out NULL values");
4711 
4712     const InCSetState cset_state = _g1->in_cset_state(obj);
4713     if (!cset_state.is_in_cset_or_humongous()) {
4714       return;
4715     }
4716     if (cset_state.is_in_cset()) {
4717       assert( obj->is_forwarded(), "invariant" );
4718       *p = obj->forwardee();
4719     } else {
4720       assert(!obj->is_forwarded(), "invariant" );
4721       assert(cset_state.is_humongous(),
4722              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
4723       _g1->set_humongous_is_live(obj);
4724     }
4725   }
4726 };
4727 
4728 // Copying Keep Alive closure - can be called from both
4729 // serial and parallel code as long as different worker
4730 // threads utilize different G1ParScanThreadState instances
4731 // and different queues.
4732 
4733 class G1CopyingKeepAliveClosure: public OopClosure {
4734   G1CollectedHeap*         _g1h;
4735   OopClosure*              _copy_non_heap_obj_cl;
4736   G1ParScanThreadState*    _par_scan_state;
4737 
4738 public:
4739   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4740                             OopClosure* non_heap_obj_cl,
4741                             G1ParScanThreadState* pss):
4742     _g1h(g1h),
4743     _copy_non_heap_obj_cl(non_heap_obj_cl),
4744     _par_scan_state(pss)
4745   {}
4746 
4747   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4748   virtual void do_oop(      oop* p) { do_oop_work(p); }
4749 
4750   template <class T> void do_oop_work(T* p) {
4751     oop obj = oopDesc::load_decode_heap_oop(p);
4752 
4753     if (_g1h->is_in_cset_or_humongous(obj)) {
4754       // If the referent object has been forwarded (either copied
4755       // to a new location or to itself in the event of an
4756       // evacuation failure) then we need to update the reference
4757       // field and, if both reference and referent are in the G1
4758       // heap, update the RSet for the referent.
4759       //
4760       // If the referent has not been forwarded then we have to keep
4761       // it alive by policy. Therefore we have copy the referent.
4762       //
4763       // If the reference field is in the G1 heap then we can push
4764       // on the PSS queue. When the queue is drained (after each
4765       // phase of reference processing) the object and it's followers
4766       // will be copied, the reference field set to point to the
4767       // new location, and the RSet updated. Otherwise we need to
4768       // use the the non-heap or metadata closures directly to copy
4769       // the referent object and update the pointer, while avoiding
4770       // updating the RSet.
4771 
4772       if (_g1h->is_in_g1_reserved(p)) {
4773         _par_scan_state->push_on_queue(p);
4774       } else {
4775         assert(!Metaspace::contains((const void*)p),
4776                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4777         _copy_non_heap_obj_cl->do_oop(p);
4778       }
4779     }
4780   }
4781 };
4782 
4783 // Serial drain queue closure. Called as the 'complete_gc'
4784 // closure for each discovered list in some of the
4785 // reference processing phases.
4786 
4787 class G1STWDrainQueueClosure: public VoidClosure {
4788 protected:
4789   G1CollectedHeap* _g1h;
4790   G1ParScanThreadState* _par_scan_state;
4791 
4792   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4793 
4794 public:
4795   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4796     _g1h(g1h),
4797     _par_scan_state(pss)
4798   { }
4799 
4800   void do_void() {
4801     G1ParScanThreadState* const pss = par_scan_state();
4802     pss->trim_queue();
4803   }
4804 };
4805 
4806 // Parallel Reference Processing closures
4807 
4808 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4809 // processing during G1 evacuation pauses.
4810 
4811 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4812 private:
4813   G1CollectedHeap*          _g1h;
4814   G1ParScanThreadStateSet*  _pss;
4815   RefToScanQueueSet*        _queues;
4816   WorkGang*                 _workers;
4817   uint                      _active_workers;
4818 
4819 public:
4820   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4821                            G1ParScanThreadStateSet* per_thread_states,
4822                            WorkGang* workers,
4823                            RefToScanQueueSet *task_queues,
4824                            uint n_workers) :
4825     _g1h(g1h),
4826     _pss(per_thread_states),
4827     _queues(task_queues),
4828     _workers(workers),
4829     _active_workers(n_workers)
4830   {
4831     assert(n_workers > 0, "shouldn't call this otherwise");
4832   }
4833 
4834   // Executes the given task using concurrent marking worker threads.
4835   virtual void execute(ProcessTask& task);
4836   virtual void execute(EnqueueTask& task);
4837 };
4838 
4839 // Gang task for possibly parallel reference processing
4840 
4841 class G1STWRefProcTaskProxy: public AbstractGangTask {
4842   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4843   ProcessTask&     _proc_task;
4844   G1CollectedHeap* _g1h;
4845   G1ParScanThreadStateSet* _pss;
4846   RefToScanQueueSet* _task_queues;
4847   ParallelTaskTerminator* _terminator;
4848 
4849 public:
4850   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4851                         G1CollectedHeap* g1h,
4852                         G1ParScanThreadStateSet* per_thread_states,
4853                         RefToScanQueueSet *task_queues,
4854                         ParallelTaskTerminator* terminator) :
4855     AbstractGangTask("Process reference objects in parallel"),
4856     _proc_task(proc_task),
4857     _g1h(g1h),
4858     _pss(per_thread_states),
4859     _task_queues(task_queues),
4860     _terminator(terminator)
4861   {}
4862 
4863   virtual void work(uint worker_id) {
4864     // The reference processing task executed by a single worker.
4865     ResourceMark rm;
4866     HandleMark   hm;
4867 
4868     G1STWIsAliveClosure is_alive(_g1h);
4869 
4870     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4871     pss->set_ref_processor(NULL);
4872 
4873     // Keep alive closure.
4874     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4875 
4876     // Complete GC closure
4877     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4878 
4879     // Call the reference processing task's work routine.
4880     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4881 
4882     // Note we cannot assert that the refs array is empty here as not all
4883     // of the processing tasks (specifically phase2 - pp2_work) execute
4884     // the complete_gc closure (which ordinarily would drain the queue) so
4885     // the queue may not be empty.
4886   }
4887 };
4888 
4889 // Driver routine for parallel reference processing.
4890 // Creates an instance of the ref processing gang
4891 // task and has the worker threads execute it.
4892 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4893   assert(_workers != NULL, "Need parallel worker threads.");
4894 
4895   ParallelTaskTerminator terminator(_active_workers, _queues);
4896   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4897 
4898   _workers->run_task(&proc_task_proxy);
4899 }
4900 
4901 // Gang task for parallel reference enqueueing.
4902 
4903 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4904   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4905   EnqueueTask& _enq_task;
4906 
4907 public:
4908   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4909     AbstractGangTask("Enqueue reference objects in parallel"),
4910     _enq_task(enq_task)
4911   { }
4912 
4913   virtual void work(uint worker_id) {
4914     _enq_task.work(worker_id);
4915   }
4916 };
4917 
4918 // Driver routine for parallel reference enqueueing.
4919 // Creates an instance of the ref enqueueing gang
4920 // task and has the worker threads execute it.
4921 
4922 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4923   assert(_workers != NULL, "Need parallel worker threads.");
4924 
4925   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4926 
4927   _workers->run_task(&enq_task_proxy);
4928 }
4929 
4930 // End of weak reference support closures
4931 
4932 // Abstract task used to preserve (i.e. copy) any referent objects
4933 // that are in the collection set and are pointed to by reference
4934 // objects discovered by the CM ref processor.
4935 
4936 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4937 protected:
4938   G1CollectedHeap*         _g1h;
4939   G1ParScanThreadStateSet* _pss;
4940   RefToScanQueueSet*       _queues;
4941   ParallelTaskTerminator   _terminator;
4942   uint                     _n_workers;
4943 
4944 public:
4945   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4946     AbstractGangTask("ParPreserveCMReferents"),
4947     _g1h(g1h),
4948     _pss(per_thread_states),
4949     _queues(task_queues),
4950     _terminator(workers, _queues),
4951     _n_workers(workers)
4952   { }
4953 
4954   void work(uint worker_id) {
4955     ResourceMark rm;
4956     HandleMark   hm;
4957 
4958     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4959     pss->set_ref_processor(NULL);
4960     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4961 
4962     // Is alive closure
4963     G1AlwaysAliveClosure always_alive(_g1h);
4964 
4965     // Copying keep alive closure. Applied to referent objects that need
4966     // to be copied.
4967     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4968 
4969     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4970 
4971     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4972     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4973 
4974     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4975     // So this must be true - but assert just in case someone decides to
4976     // change the worker ids.
4977     assert(worker_id < limit, "sanity");
4978     assert(!rp->discovery_is_atomic(), "check this code");
4979 
4980     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4981     for (uint idx = worker_id; idx < limit; idx += stride) {
4982       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4983 
4984       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4985       while (iter.has_next()) {
4986         // Since discovery is not atomic for the CM ref processor, we
4987         // can see some null referent objects.
4988         iter.load_ptrs(DEBUG_ONLY(true));
4989         oop ref = iter.obj();
4990 
4991         // This will filter nulls.
4992         if (iter.is_referent_alive()) {
4993           iter.make_referent_alive();
4994         }
4995         iter.move_to_next();
4996       }
4997     }
4998 
4999     // Drain the queue - which may cause stealing
5000     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
5001     drain_queue.do_void();
5002     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5003     assert(pss->queue_is_empty(), "should be");
5004   }
5005 };
5006 
5007 void G1CollectedHeap::process_weak_jni_handles() {
5008   double ref_proc_start = os::elapsedTime();
5009 
5010   G1STWIsAliveClosure is_alive(this);
5011   G1KeepAliveClosure keep_alive(this);
5012   JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5013 
5014   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5015   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5016 }
5017 
5018 // Weak Reference processing during an evacuation pause (part 1).
5019 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5020   double ref_proc_start = os::elapsedTime();
5021 
5022   ReferenceProcessor* rp = _ref_processor_stw;
5023   assert(rp->discovery_enabled(), "should have been enabled");
5024 
5025   // Any reference objects, in the collection set, that were 'discovered'
5026   // by the CM ref processor should have already been copied (either by
5027   // applying the external root copy closure to the discovered lists, or
5028   // by following an RSet entry).
5029   //
5030   // But some of the referents, that are in the collection set, that these
5031   // reference objects point to may not have been copied: the STW ref
5032   // processor would have seen that the reference object had already
5033   // been 'discovered' and would have skipped discovering the reference,
5034   // but would not have treated the reference object as a regular oop.
5035   // As a result the copy closure would not have been applied to the
5036   // referent object.
5037   //
5038   // We need to explicitly copy these referent objects - the references
5039   // will be processed at the end of remarking.
5040   //
5041   // We also need to do this copying before we process the reference
5042   // objects discovered by the STW ref processor in case one of these
5043   // referents points to another object which is also referenced by an
5044   // object discovered by the STW ref processor.
5045 
5046   uint no_of_gc_workers = workers()->active_workers();
5047 
5048   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5049                                                  per_thread_states,
5050                                                  no_of_gc_workers,
5051                                                  _task_queues);
5052 
5053   workers()->run_task(&keep_cm_referents);
5054 
5055   // Closure to test whether a referent is alive.
5056   G1STWIsAliveClosure is_alive(this);
5057 
5058   // Even when parallel reference processing is enabled, the processing
5059   // of JNI refs is serial and performed serially by the current thread
5060   // rather than by a worker. The following PSS will be used for processing
5061   // JNI refs.
5062 
5063   // Use only a single queue for this PSS.
5064   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
5065   pss->set_ref_processor(NULL);
5066   assert(pss->queue_is_empty(), "pre-condition");
5067 
5068   // Keep alive closure.
5069   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
5070 
5071   // Serial Complete GC closure
5072   G1STWDrainQueueClosure drain_queue(this, pss);
5073 
5074   // Setup the soft refs policy...
5075   rp->setup_policy(false);
5076 
5077   ReferenceProcessorStats stats;
5078   if (!rp->processing_is_mt()) {
5079     // Serial reference processing...
5080     stats = rp->process_discovered_references(&is_alive,
5081                                               &keep_alive,
5082                                               &drain_queue,
5083                                               NULL,
5084                                               _gc_timer_stw);
5085   } else {
5086     // Parallel reference processing
5087     assert(rp->num_q() == no_of_gc_workers, "sanity");
5088     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5089 
5090     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
5091     stats = rp->process_discovered_references(&is_alive,
5092                                               &keep_alive,
5093                                               &drain_queue,
5094                                               &par_task_executor,
5095                                               _gc_timer_stw);
5096   }
5097 
5098   _gc_tracer_stw->report_gc_reference_stats(stats);
5099 
5100   // We have completed copying any necessary live referent objects.
5101   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
5102 
5103   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5104   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5105 }
5106 
5107 // Weak Reference processing during an evacuation pause (part 2).
5108 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5109   double ref_enq_start = os::elapsedTime();
5110 
5111   ReferenceProcessor* rp = _ref_processor_stw;
5112   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5113 
5114   // Now enqueue any remaining on the discovered lists on to
5115   // the pending list.
5116   if (!rp->processing_is_mt()) {
5117     // Serial reference processing...
5118     rp->enqueue_discovered_references();
5119   } else {
5120     // Parallel reference enqueueing
5121 
5122     uint n_workers = workers()->active_workers();
5123 
5124     assert(rp->num_q() == n_workers, "sanity");
5125     assert(n_workers <= rp->max_num_q(), "sanity");
5126 
5127     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
5128     rp->enqueue_discovered_references(&par_task_executor);
5129   }
5130 
5131   rp->verify_no_references_recorded();
5132   assert(!rp->discovery_enabled(), "should have been disabled");
5133 
5134   // FIXME
5135   // CM's reference processing also cleans up the string and symbol tables.
5136   // Should we do that here also? We could, but it is a serial operation
5137   // and could significantly increase the pause time.
5138 
5139   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5140   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5141 }
5142 
5143 void G1CollectedHeap::pre_evacuate_collection_set() {
5144   _expand_heap_after_alloc_failure = true;
5145   _evacuation_failed = false;
5146 
5147   // Disable the hot card cache.
5148   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5149   hot_card_cache->reset_hot_cache_claimed_index();
5150   hot_card_cache->set_use_cache(false);
5151 
5152   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5153 }
5154 
5155 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5156   // Should G1EvacuationFailureALot be in effect for this GC?
5157   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5158 
5159   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5160   double start_par_time_sec = os::elapsedTime();
5161   double end_par_time_sec;
5162 
5163   {
5164     const uint n_workers = workers()->active_workers();
5165     G1RootProcessor root_processor(this, n_workers);
5166     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
5167     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5168     if (collector_state()->during_initial_mark_pause()) {
5169       ClassLoaderDataGraph::clear_claimed_marks();
5170     }
5171 
5172     // The individual threads will set their evac-failure closures.
5173     if (PrintTerminationStats) {
5174       print_termination_stats_hdr(gclog_or_tty);
5175     }
5176 
5177     workers()->run_task(&g1_par_task);
5178     end_par_time_sec = os::elapsedTime();
5179 
5180     // Closing the inner scope will execute the destructor
5181     // for the G1RootProcessor object. We record the current
5182     // elapsed time before closing the scope so that time
5183     // taken for the destructor is NOT included in the
5184     // reported parallel time.
5185   }
5186 
5187   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5188 
5189   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5190   phase_times->record_par_time(par_time_ms);
5191 
5192   double code_root_fixup_time_ms =
5193         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5194   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5195 }
5196 
5197 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5198   // Process any discovered reference objects - we have
5199   // to do this _before_ we retire the GC alloc regions
5200   // as we may have to copy some 'reachable' referent
5201   // objects (and their reachable sub-graphs) that were
5202   // not copied during the pause.
5203   if (g1_policy()->should_process_references()) {
5204     process_discovered_references(per_thread_states);
5205   } else {
5206     ref_processor_stw()->verify_no_references_recorded();
5207     process_weak_jni_handles();
5208   }
5209 
5210   if (G1StringDedup::is_enabled()) {
5211     double fixup_start = os::elapsedTime();
5212 
5213     G1STWIsAliveClosure is_alive(this);
5214     G1KeepAliveClosure keep_alive(this);
5215     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
5216 
5217     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5218     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
5219   }
5220 
5221   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5222 
5223   if (evacuation_failed()) {
5224     restore_after_evac_failure();
5225 
5226     // Reset the G1EvacuationFailureALot counters and flags
5227     // Note: the values are reset only when an actual
5228     // evacuation failure occurs.
5229     NOT_PRODUCT(reset_evacuation_should_fail();)
5230   }
5231 
5232   // Enqueue any remaining references remaining on the STW
5233   // reference processor's discovered lists. We need to do
5234   // this after the card table is cleaned (and verified) as
5235   // the act of enqueueing entries on to the pending list
5236   // will log these updates (and dirty their associated
5237   // cards). We need these updates logged to update any
5238   // RSets.
5239   if (g1_policy()->should_process_references()) {
5240     enqueue_discovered_references(per_thread_states);
5241   } else {
5242     g1_policy()->phase_times()->record_ref_enq_time(0);
5243   }
5244 
5245   _allocator->release_gc_alloc_regions(evacuation_info);
5246 
5247   per_thread_states->flush();
5248 
5249   record_obj_copy_mem_stats();
5250 
5251   _survivor_evac_stats.adjust_desired_plab_sz();
5252   _old_evac_stats.adjust_desired_plab_sz();
5253 
5254   // Reset and re-enable the hot card cache.
5255   // Note the counts for the cards in the regions in the
5256   // collection set are reset when the collection set is freed.
5257   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5258   hot_card_cache->reset_hot_cache();
5259   hot_card_cache->set_use_cache(true);
5260 
5261   purge_code_root_memory();
5262 
5263   redirty_logged_cards();
5264 #if defined(COMPILER2) || INCLUDE_JVMCI
5265   DerivedPointerTable::update_pointers();
5266 #endif
5267 }
5268 
5269 void G1CollectedHeap::record_obj_copy_mem_stats() {
5270   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
5271 
5272   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
5273                                                create_g1_evac_summary(&_old_evac_stats));
5274 }
5275 
5276 void G1CollectedHeap::free_region(HeapRegion* hr,
5277                                   FreeRegionList* free_list,
5278                                   bool par,
5279                                   bool locked) {
5280   assert(!hr->is_free(), "the region should not be free");
5281   assert(!hr->is_empty(), "the region should not be empty");
5282   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5283   assert(free_list != NULL, "pre-condition");
5284 
5285   if (G1VerifyBitmaps) {
5286     MemRegion mr(hr->bottom(), hr->end());
5287     concurrent_mark()->clearRangePrevBitmap(mr);
5288   }
5289 
5290   // Clear the card counts for this region.
5291   // Note: we only need to do this if the region is not young
5292   // (since we don't refine cards in young regions).
5293   if (!hr->is_young()) {
5294     _cg1r->hot_card_cache()->reset_card_counts(hr);
5295   }
5296   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5297   free_list->add_ordered(hr);
5298 }
5299 
5300 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5301                                             FreeRegionList* free_list,
5302                                             bool par) {
5303   assert(hr->is_humongous(), "this is only for humongous regions");
5304   assert(free_list != NULL, "pre-condition");
5305   hr->clear_humongous();
5306   free_region(hr, free_list, par);
5307 }
5308 
5309 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
5310                                            const uint humongous_regions_removed) {
5311   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
5312     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5313     _old_set.bulk_remove(old_regions_removed);
5314     _humongous_set.bulk_remove(humongous_regions_removed);
5315   }
5316 
5317 }
5318 
5319 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5320   assert(list != NULL, "list can't be null");
5321   if (!list->is_empty()) {
5322     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5323     _hrm.insert_list_into_free_list(list);
5324   }
5325 }
5326 
5327 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5328   decrease_used(bytes);
5329 }
5330 
5331 class G1ParCleanupCTTask : public AbstractGangTask {
5332   G1SATBCardTableModRefBS* _ct_bs;
5333   G1CollectedHeap* _g1h;
5334   HeapRegion* volatile _su_head;
5335 public:
5336   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5337                      G1CollectedHeap* g1h) :
5338     AbstractGangTask("G1 Par Cleanup CT Task"),
5339     _ct_bs(ct_bs), _g1h(g1h) { }
5340 
5341   void work(uint worker_id) {
5342     HeapRegion* r;
5343     while (r = _g1h->pop_dirty_cards_region()) {
5344       clear_cards(r);
5345     }
5346   }
5347 
5348   void clear_cards(HeapRegion* r) {
5349     // Cards of the survivors should have already been dirtied.
5350     if (!r->is_survivor()) {
5351       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5352     }
5353   }
5354 };
5355 
5356 #ifndef PRODUCT
5357 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5358   G1CollectedHeap* _g1h;
5359   G1SATBCardTableModRefBS* _ct_bs;
5360 public:
5361   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5362     : _g1h(g1h), _ct_bs(ct_bs) { }
5363   virtual bool doHeapRegion(HeapRegion* r) {
5364     if (r->is_survivor()) {
5365       _g1h->verify_dirty_region(r);
5366     } else {
5367       _g1h->verify_not_dirty_region(r);
5368     }
5369     return false;
5370   }
5371 };
5372 
5373 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5374   // All of the region should be clean.
5375   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5376   MemRegion mr(hr->bottom(), hr->end());
5377   ct_bs->verify_not_dirty_region(mr);
5378 }
5379 
5380 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5381   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5382   // dirty allocated blocks as they allocate them. The thread that
5383   // retires each region and replaces it with a new one will do a
5384   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5385   // not dirty that area (one less thing to have to do while holding
5386   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5387   // is dirty.
5388   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5389   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5390   if (hr->is_young()) {
5391     ct_bs->verify_g1_young_region(mr);
5392   } else {
5393     ct_bs->verify_dirty_region(mr);
5394   }
5395 }
5396 
5397 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5398   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5399   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5400     verify_dirty_region(hr);
5401   }
5402 }
5403 
5404 void G1CollectedHeap::verify_dirty_young_regions() {
5405   verify_dirty_young_list(_young_list->first_region());
5406 }
5407 
5408 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5409                                                HeapWord* tams, HeapWord* end) {
5410   guarantee(tams <= end,
5411             "tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end));
5412   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5413   if (result < end) {
5414     gclog_or_tty->cr();
5415     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
5416                            bitmap_name, p2i(result));
5417     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
5418                            bitmap_name, p2i(tams), p2i(end));
5419     return false;
5420   }
5421   return true;
5422 }
5423 
5424 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5425   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5426   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5427 
5428   HeapWord* bottom = hr->bottom();
5429   HeapWord* ptams  = hr->prev_top_at_mark_start();
5430   HeapWord* ntams  = hr->next_top_at_mark_start();
5431   HeapWord* end    = hr->end();
5432 
5433   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5434 
5435   bool res_n = true;
5436   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5437   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5438   // if we happen to be in that state.
5439   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5440     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5441   }
5442   if (!res_p || !res_n) {
5443     gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
5444                            HR_FORMAT_PARAMS(hr));
5445     gclog_or_tty->print_cr("#### Caller: %s", caller);
5446     return false;
5447   }
5448   return true;
5449 }
5450 
5451 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5452   if (!G1VerifyBitmaps) return;
5453 
5454   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5455 }
5456 
5457 class G1VerifyBitmapClosure : public HeapRegionClosure {
5458 private:
5459   const char* _caller;
5460   G1CollectedHeap* _g1h;
5461   bool _failures;
5462 
5463 public:
5464   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5465     _caller(caller), _g1h(g1h), _failures(false) { }
5466 
5467   bool failures() { return _failures; }
5468 
5469   virtual bool doHeapRegion(HeapRegion* hr) {
5470     bool result = _g1h->verify_bitmaps(_caller, hr);
5471     if (!result) {
5472       _failures = true;
5473     }
5474     return false;
5475   }
5476 };
5477 
5478 void G1CollectedHeap::check_bitmaps(const char* caller) {
5479   if (!G1VerifyBitmaps) return;
5480 
5481   G1VerifyBitmapClosure cl(caller, this);
5482   heap_region_iterate(&cl);
5483   guarantee(!cl.failures(), "bitmap verification");
5484 }
5485 
5486 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5487  private:
5488   bool _failures;
5489  public:
5490   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5491 
5492   virtual bool doHeapRegion(HeapRegion* hr) {
5493     uint i = hr->hrm_index();
5494     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5495     if (hr->is_humongous()) {
5496       if (hr->in_collection_set()) {
5497         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5498         _failures = true;
5499         return true;
5500       }
5501       if (cset_state.is_in_cset()) {
5502         gclog_or_tty->print_cr("\n## inconsistent cset state " CSETSTATE_FORMAT " for humongous region %u", cset_state.value(), i);
5503         _failures = true;
5504         return true;
5505       }
5506       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5507         gclog_or_tty->print_cr("\n## inconsistent cset state " CSETSTATE_FORMAT " for continues humongous region %u", cset_state.value(), i);
5508         _failures = true;
5509         return true;
5510       }
5511     } else {
5512       if (cset_state.is_humongous()) {
5513         gclog_or_tty->print_cr("\n## inconsistent cset state " CSETSTATE_FORMAT " for non-humongous region %u", cset_state.value(), i);
5514         _failures = true;
5515         return true;
5516       }
5517       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5518         gclog_or_tty->print_cr("\n## in CSet %d / cset state " CSETSTATE_FORMAT " inconsistency for region %u",
5519                                hr->in_collection_set(), cset_state.value(), i);
5520         _failures = true;
5521         return true;
5522       }
5523       if (cset_state.is_in_cset()) {
5524         if (hr->is_young() != (cset_state.is_young())) {
5525           gclog_or_tty->print_cr("\n## is_young %d / cset state " CSETSTATE_FORMAT " inconsistency for region %u",
5526                                  hr->is_young(), cset_state.value(), i);
5527           _failures = true;
5528           return true;
5529         }
5530         if (hr->is_old() != (cset_state.is_old())) {
5531           gclog_or_tty->print_cr("\n## is_old %d / cset state " CSETSTATE_FORMAT " inconsistency for region %u",
5532                                  hr->is_old(), cset_state.value(), i);
5533           _failures = true;
5534           return true;
5535         }
5536       }
5537     }
5538     return false;
5539   }
5540 
5541   bool failures() const { return _failures; }
5542 };
5543 
5544 bool G1CollectedHeap::check_cset_fast_test() {
5545   G1CheckCSetFastTableClosure cl;
5546   _hrm.iterate(&cl);
5547   return !cl.failures();
5548 }
5549 #endif // PRODUCT
5550 
5551 void G1CollectedHeap::cleanUpCardTable() {
5552   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5553   double start = os::elapsedTime();
5554 
5555   {
5556     // Iterate over the dirty cards region list.
5557     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5558 
5559     workers()->run_task(&cleanup_task);
5560 #ifndef PRODUCT
5561     if (G1VerifyCTCleanup || VerifyAfterGC) {
5562       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5563       heap_region_iterate(&cleanup_verifier);
5564     }
5565 #endif
5566   }
5567 
5568   double elapsed = os::elapsedTime() - start;
5569   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5570 }
5571 
5572 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
5573   size_t pre_used = 0;
5574   FreeRegionList local_free_list("Local List for CSet Freeing");
5575 
5576   double young_time_ms     = 0.0;
5577   double non_young_time_ms = 0.0;
5578 
5579   // Since the collection set is a superset of the the young list,
5580   // all we need to do to clear the young list is clear its
5581   // head and length, and unlink any young regions in the code below
5582   _young_list->clear();
5583 
5584   G1CollectorPolicy* policy = g1_policy();
5585 
5586   double start_sec = os::elapsedTime();
5587   bool non_young = true;
5588 
5589   HeapRegion* cur = cs_head;
5590   int age_bound = -1;
5591   size_t rs_lengths = 0;
5592 
5593   while (cur != NULL) {
5594     assert(!is_on_master_free_list(cur), "sanity");
5595     if (non_young) {
5596       if (cur->is_young()) {
5597         double end_sec = os::elapsedTime();
5598         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5599         non_young_time_ms += elapsed_ms;
5600 
5601         start_sec = os::elapsedTime();
5602         non_young = false;
5603       }
5604     } else {
5605       if (!cur->is_young()) {
5606         double end_sec = os::elapsedTime();
5607         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5608         young_time_ms += elapsed_ms;
5609 
5610         start_sec = os::elapsedTime();
5611         non_young = true;
5612       }
5613     }
5614 
5615     rs_lengths += cur->rem_set()->occupied_locked();
5616 
5617     HeapRegion* next = cur->next_in_collection_set();
5618     assert(cur->in_collection_set(), "bad CS");
5619     cur->set_next_in_collection_set(NULL);
5620     clear_in_cset(cur);
5621 
5622     if (cur->is_young()) {
5623       int index = cur->young_index_in_cset();
5624       assert(index != -1, "invariant");
5625       assert((uint) index < policy->young_cset_region_length(), "invariant");
5626       size_t words_survived = surviving_young_words[index];
5627       cur->record_surv_words_in_group(words_survived);
5628 
5629       // At this point the we have 'popped' cur from the collection set
5630       // (linked via next_in_collection_set()) but it is still in the
5631       // young list (linked via next_young_region()). Clear the
5632       // _next_young_region field.
5633       cur->set_next_young_region(NULL);
5634     } else {
5635       int index = cur->young_index_in_cset();
5636       assert(index == -1, "invariant");
5637     }
5638 
5639     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5640             (!cur->is_young() && cur->young_index_in_cset() == -1),
5641             "invariant" );
5642 
5643     if (!cur->evacuation_failed()) {
5644       MemRegion used_mr = cur->used_region();
5645 
5646       // And the region is empty.
5647       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5648       pre_used += cur->used();
5649       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5650     } else {
5651       cur->uninstall_surv_rate_group();
5652       if (cur->is_young()) {
5653         cur->set_young_index_in_cset(-1);
5654       }
5655       cur->set_evacuation_failed(false);
5656       // When moving a young gen region to old gen, we "allocate" that whole region
5657       // there. This is in addition to any already evacuated objects. Notify the
5658       // policy about that.
5659       // Old gen regions do not cause an additional allocation: both the objects
5660       // still in the region and the ones already moved are accounted for elsewhere.
5661       if (cur->is_young()) {
5662         policy->add_bytes_allocated_in_old_since_last_gc(HeapRegion::GrainBytes);
5663       }
5664       // The region is now considered to be old.
5665       cur->set_old();
5666       // Do some allocation statistics accounting. Regions that failed evacuation
5667       // are always made old, so there is no need to update anything in the young
5668       // gen statistics, but we need to update old gen statistics.
5669       size_t used_words = cur->marked_bytes() / HeapWordSize;
5670       _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words);
5671       _old_set.add(cur);
5672       evacuation_info.increment_collectionset_used_after(cur->used());
5673     }
5674     cur = next;
5675   }
5676 
5677   evacuation_info.set_regions_freed(local_free_list.length());
5678   policy->record_max_rs_lengths(rs_lengths);
5679   policy->cset_regions_freed();
5680 
5681   double end_sec = os::elapsedTime();
5682   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5683 
5684   if (non_young) {
5685     non_young_time_ms += elapsed_ms;
5686   } else {
5687     young_time_ms += elapsed_ms;
5688   }
5689 
5690   prepend_to_freelist(&local_free_list);
5691   decrement_summary_bytes(pre_used);
5692   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5693   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5694 }
5695 
5696 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5697  private:
5698   FreeRegionList* _free_region_list;
5699   HeapRegionSet* _proxy_set;
5700   uint _humongous_regions_removed;
5701   size_t _freed_bytes;
5702  public:
5703 
5704   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5705     _free_region_list(free_region_list), _humongous_regions_removed(0), _freed_bytes(0) {
5706   }
5707 
5708   virtual bool doHeapRegion(HeapRegion* r) {
5709     if (!r->is_starts_humongous()) {
5710       return false;
5711     }
5712 
5713     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5714 
5715     oop obj = (oop)r->bottom();
5716     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5717 
5718     // The following checks whether the humongous object is live are sufficient.
5719     // The main additional check (in addition to having a reference from the roots
5720     // or the young gen) is whether the humongous object has a remembered set entry.
5721     //
5722     // A humongous object cannot be live if there is no remembered set for it
5723     // because:
5724     // - there can be no references from within humongous starts regions referencing
5725     // the object because we never allocate other objects into them.
5726     // (I.e. there are no intra-region references that may be missed by the
5727     // remembered set)
5728     // - as soon there is a remembered set entry to the humongous starts region
5729     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5730     // until the end of a concurrent mark.
5731     //
5732     // It is not required to check whether the object has been found dead by marking
5733     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5734     // all objects allocated during that time are considered live.
5735     // SATB marking is even more conservative than the remembered set.
5736     // So if at this point in the collection there is no remembered set entry,
5737     // nobody has a reference to it.
5738     // At the start of collection we flush all refinement logs, and remembered sets
5739     // are completely up-to-date wrt to references to the humongous object.
5740     //
5741     // Other implementation considerations:
5742     // - never consider object arrays at this time because they would pose
5743     // considerable effort for cleaning up the the remembered sets. This is
5744     // required because stale remembered sets might reference locations that
5745     // are currently allocated into.
5746     uint region_idx = r->hrm_index();
5747     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5748         !r->rem_set()->is_empty()) {
5749 
5750       if (G1TraceEagerReclaimHumongousObjects) {
5751         gclog_or_tty->print_cr("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5752                                region_idx,
5753                                (size_t)obj->size() * HeapWordSize,
5754                                p2i(r->bottom()),
5755                                r->rem_set()->occupied(),
5756                                r->rem_set()->strong_code_roots_list_length(),
5757                                next_bitmap->isMarked(r->bottom()),
5758                                g1h->is_humongous_reclaim_candidate(region_idx),
5759                                obj->is_typeArray()
5760                               );
5761       }
5762 
5763       return false;
5764     }
5765 
5766     guarantee(obj->is_typeArray(),
5767               "Only eagerly reclaiming type arrays is supported, but the object "
5768               PTR_FORMAT " is not.", p2i(r->bottom()));
5769 
5770     if (G1TraceEagerReclaimHumongousObjects) {
5771       gclog_or_tty->print_cr("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5772                              region_idx,
5773                              (size_t)obj->size() * HeapWordSize,
5774                              p2i(r->bottom()),
5775                              r->rem_set()->occupied(),
5776                              r->rem_set()->strong_code_roots_list_length(),
5777                              next_bitmap->isMarked(r->bottom()),
5778                              g1h->is_humongous_reclaim_candidate(region_idx),
5779                              obj->is_typeArray()
5780                             );
5781     }
5782     // Need to clear mark bit of the humongous object if already set.
5783     if (next_bitmap->isMarked(r->bottom())) {
5784       next_bitmap->clear(r->bottom());
5785     }
5786     do {
5787       HeapRegion* next = g1h->next_region_in_humongous(r);
5788       _freed_bytes += r->used();
5789       r->set_containing_set(NULL);
5790       _humongous_regions_removed++;
5791       g1h->free_humongous_region(r, _free_region_list, false);
5792       r = next;
5793     } while (r != NULL);
5794 
5795     return false;
5796   }
5797 
5798   uint humongous_free_count() {
5799     return _humongous_regions_removed;
5800   }
5801 
5802   size_t bytes_freed() const {
5803     return _freed_bytes;
5804   }
5805 };
5806 
5807 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5808   assert_at_safepoint(true);
5809 
5810   if (!G1EagerReclaimHumongousObjects ||
5811       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
5812     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5813     return;
5814   }
5815 
5816   double start_time = os::elapsedTime();
5817 
5818   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5819 
5820   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5821   heap_region_iterate(&cl);
5822 
5823   remove_from_old_sets(0, cl.humongous_free_count());
5824 
5825   G1HRPrinter* hrp = hr_printer();
5826   if (hrp->is_active()) {
5827     FreeRegionListIterator iter(&local_cleanup_list);
5828     while (iter.more_available()) {
5829       HeapRegion* hr = iter.get_next();
5830       hrp->cleanup(hr);
5831     }
5832   }
5833 
5834   prepend_to_freelist(&local_cleanup_list);
5835   decrement_summary_bytes(cl.bytes_freed());
5836 
5837   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5838                                                                     cl.humongous_free_count());
5839 }
5840 
5841 // This routine is similar to the above but does not record
5842 // any policy statistics or update free lists; we are abandoning
5843 // the current incremental collection set in preparation of a
5844 // full collection. After the full GC we will start to build up
5845 // the incremental collection set again.
5846 // This is only called when we're doing a full collection
5847 // and is immediately followed by the tearing down of the young list.
5848 
5849 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5850   HeapRegion* cur = cs_head;
5851 
5852   while (cur != NULL) {
5853     HeapRegion* next = cur->next_in_collection_set();
5854     assert(cur->in_collection_set(), "bad CS");
5855     cur->set_next_in_collection_set(NULL);
5856     clear_in_cset(cur);
5857     cur->set_young_index_in_cset(-1);
5858     cur = next;
5859   }
5860 }
5861 
5862 void G1CollectedHeap::set_free_regions_coming() {
5863   if (G1ConcRegionFreeingVerbose) {
5864     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5865                            "setting free regions coming");
5866   }
5867 
5868   assert(!free_regions_coming(), "pre-condition");
5869   _free_regions_coming = true;
5870 }
5871 
5872 void G1CollectedHeap::reset_free_regions_coming() {
5873   assert(free_regions_coming(), "pre-condition");
5874 
5875   {
5876     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5877     _free_regions_coming = false;
5878     SecondaryFreeList_lock->notify_all();
5879   }
5880 
5881   if (G1ConcRegionFreeingVerbose) {
5882     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5883                            "reset free regions coming");
5884   }
5885 }
5886 
5887 void G1CollectedHeap::wait_while_free_regions_coming() {
5888   // Most of the time we won't have to wait, so let's do a quick test
5889   // first before we take the lock.
5890   if (!free_regions_coming()) {
5891     return;
5892   }
5893 
5894   if (G1ConcRegionFreeingVerbose) {
5895     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5896                            "waiting for free regions");
5897   }
5898 
5899   {
5900     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5901     while (free_regions_coming()) {
5902       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5903     }
5904   }
5905 
5906   if (G1ConcRegionFreeingVerbose) {
5907     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5908                            "done waiting for free regions");
5909   }
5910 }
5911 
5912 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5913   return _allocator->is_retained_old_region(hr);
5914 }
5915 
5916 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5917   _young_list->push_region(hr);
5918 }
5919 
5920 class NoYoungRegionsClosure: public HeapRegionClosure {
5921 private:
5922   bool _success;
5923 public:
5924   NoYoungRegionsClosure() : _success(true) { }
5925   bool doHeapRegion(HeapRegion* r) {
5926     if (r->is_young()) {
5927       gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5928                              p2i(r->bottom()), p2i(r->end()));
5929       _success = false;
5930     }
5931     return false;
5932   }
5933   bool success() { return _success; }
5934 };
5935 
5936 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5937   bool ret = _young_list->check_list_empty(check_sample);
5938 
5939   if (check_heap) {
5940     NoYoungRegionsClosure closure;
5941     heap_region_iterate(&closure);
5942     ret = ret && closure.success();
5943   }
5944 
5945   return ret;
5946 }
5947 
5948 class TearDownRegionSetsClosure : public HeapRegionClosure {
5949 private:
5950   HeapRegionSet *_old_set;
5951 
5952 public:
5953   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5954 
5955   bool doHeapRegion(HeapRegion* r) {
5956     if (r->is_old()) {
5957       _old_set->remove(r);
5958     } else {
5959       // We ignore free regions, we'll empty the free list afterwards.
5960       // We ignore young regions, we'll empty the young list afterwards.
5961       // We ignore humongous regions, we're not tearing down the
5962       // humongous regions set.
5963       assert(r->is_free() || r->is_young() || r->is_humongous(),
5964              "it cannot be another type");
5965     }
5966     return false;
5967   }
5968 
5969   ~TearDownRegionSetsClosure() {
5970     assert(_old_set->is_empty(), "post-condition");
5971   }
5972 };
5973 
5974 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5975   assert_at_safepoint(true /* should_be_vm_thread */);
5976 
5977   if (!free_list_only) {
5978     TearDownRegionSetsClosure cl(&_old_set);
5979     heap_region_iterate(&cl);
5980 
5981     // Note that emptying the _young_list is postponed and instead done as
5982     // the first step when rebuilding the regions sets again. The reason for
5983     // this is that during a full GC string deduplication needs to know if
5984     // a collected region was young or old when the full GC was initiated.
5985   }
5986   _hrm.remove_all_free_regions();
5987 }
5988 
5989 void G1CollectedHeap::increase_used(size_t bytes) {
5990   _summary_bytes_used += bytes;
5991 }
5992 
5993 void G1CollectedHeap::decrease_used(size_t bytes) {
5994   assert(_summary_bytes_used >= bytes,
5995          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5996          _summary_bytes_used, bytes);
5997   _summary_bytes_used -= bytes;
5998 }
5999 
6000 void G1CollectedHeap::set_used(size_t bytes) {
6001   _summary_bytes_used = bytes;
6002 }
6003 
6004 class RebuildRegionSetsClosure : public HeapRegionClosure {
6005 private:
6006   bool            _free_list_only;
6007   HeapRegionSet*   _old_set;
6008   HeapRegionManager*   _hrm;
6009   size_t          _total_used;
6010 
6011 public:
6012   RebuildRegionSetsClosure(bool free_list_only,
6013                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6014     _free_list_only(free_list_only),
6015     _old_set(old_set), _hrm(hrm), _total_used(0) {
6016     assert(_hrm->num_free_regions() == 0, "pre-condition");
6017     if (!free_list_only) {
6018       assert(_old_set->is_empty(), "pre-condition");
6019     }
6020   }
6021 
6022   bool doHeapRegion(HeapRegion* r) {
6023     if (r->is_empty()) {
6024       // Add free regions to the free list
6025       r->set_free();
6026       r->set_allocation_context(AllocationContext::system());
6027       _hrm->insert_into_free_list(r);
6028     } else if (!_free_list_only) {
6029       assert(!r->is_young(), "we should not come across young regions");
6030 
6031       if (r->is_humongous()) {
6032         // We ignore humongous regions. We left the humongous set unchanged.
6033       } else {
6034         // Objects that were compacted would have ended up on regions
6035         // that were previously old or free.  Archive regions (which are
6036         // old) will not have been touched.
6037         assert(r->is_free() || r->is_old(), "invariant");
6038         // We now consider them old, so register as such. Leave
6039         // archive regions set that way, however, while still adding
6040         // them to the old set.
6041         if (!r->is_archive()) {
6042           r->set_old();
6043         }
6044         _old_set->add(r);
6045       }
6046       _total_used += r->used();
6047     }
6048 
6049     return false;
6050   }
6051 
6052   size_t total_used() {
6053     return _total_used;
6054   }
6055 };
6056 
6057 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6058   assert_at_safepoint(true /* should_be_vm_thread */);
6059 
6060   if (!free_list_only) {
6061     _young_list->empty_list();
6062   }
6063 
6064   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6065   heap_region_iterate(&cl);
6066 
6067   if (!free_list_only) {
6068     set_used(cl.total_used());
6069     if (_archive_allocator != NULL) {
6070       _archive_allocator->clear_used();
6071     }
6072   }
6073   assert(used_unlocked() == recalculate_used(),
6074          "inconsistent used_unlocked(), "
6075          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
6076          used_unlocked(), recalculate_used());
6077 }
6078 
6079 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6080   _refine_cte_cl->set_concurrent(concurrent);
6081 }
6082 
6083 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6084   HeapRegion* hr = heap_region_containing(p);
6085   return hr->is_in(p);
6086 }
6087 
6088 // Methods for the mutator alloc region
6089 
6090 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6091                                                       bool force) {
6092   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6093   assert(!force || g1_policy()->can_expand_young_list(),
6094          "if force is true we should be able to expand the young list");
6095   bool young_list_full = g1_policy()->is_young_list_full();
6096   if (force || !young_list_full) {
6097     HeapRegion* new_alloc_region = new_region(word_size,
6098                                               false /* is_old */,
6099                                               false /* do_expand */);
6100     if (new_alloc_region != NULL) {
6101       set_region_short_lived_locked(new_alloc_region);
6102       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6103       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6104       return new_alloc_region;
6105     }
6106   }
6107   return NULL;
6108 }
6109 
6110 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6111                                                   size_t allocated_bytes) {
6112   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6113   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6114 
6115   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6116   increase_used(allocated_bytes);
6117   _hr_printer.retire(alloc_region);
6118   // We update the eden sizes here, when the region is retired,
6119   // instead of when it's allocated, since this is the point that its
6120   // used space has been recored in _summary_bytes_used.
6121   g1mm()->update_eden_size();
6122 }
6123 
6124 // Methods for the GC alloc regions
6125 
6126 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6127                                                  uint count,
6128                                                  InCSetState dest) {
6129   assert(FreeList_lock->owned_by_self(), "pre-condition");
6130 
6131   if (count < g1_policy()->max_regions(dest)) {
6132     const bool is_survivor = (dest.is_young());
6133     HeapRegion* new_alloc_region = new_region(word_size,
6134                                               !is_survivor,
6135                                               true /* do_expand */);
6136     if (new_alloc_region != NULL) {
6137       // We really only need to do this for old regions given that we
6138       // should never scan survivors. But it doesn't hurt to do it
6139       // for survivors too.
6140       new_alloc_region->record_timestamp();
6141       if (is_survivor) {
6142         new_alloc_region->set_survivor();
6143         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6144         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6145       } else {
6146         new_alloc_region->set_old();
6147         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6148         check_bitmaps("Old Region Allocation", new_alloc_region);
6149       }
6150       bool during_im = collector_state()->during_initial_mark_pause();
6151       new_alloc_region->note_start_of_copying(during_im);
6152       return new_alloc_region;
6153     }
6154   }
6155   return NULL;
6156 }
6157 
6158 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6159                                              size_t allocated_bytes,
6160                                              InCSetState dest) {
6161   bool during_im = collector_state()->during_initial_mark_pause();
6162   alloc_region->note_end_of_copying(during_im);
6163   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6164   if (dest.is_young()) {
6165     young_list()->add_survivor_region(alloc_region);
6166   } else {
6167     _old_set.add(alloc_region);
6168   }
6169   _hr_printer.retire(alloc_region);
6170 }
6171 
6172 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6173   bool expanded = false;
6174   uint index = _hrm.find_highest_free(&expanded);
6175 
6176   if (index != G1_NO_HRM_INDEX) {
6177     if (expanded) {
6178       ergo_verbose1(ErgoHeapSizing,
6179                     "attempt heap expansion",
6180                     ergo_format_reason("requested address range outside heap bounds")
6181                     ergo_format_byte("region size"),
6182                     HeapRegion::GrainWords * HeapWordSize);
6183     }
6184     _hrm.allocate_free_regions_starting_at(index, 1);
6185     return region_at(index);
6186   }
6187   return NULL;
6188 }
6189 
6190 // Heap region set verification
6191 
6192 class VerifyRegionListsClosure : public HeapRegionClosure {
6193 private:
6194   HeapRegionSet*   _old_set;
6195   HeapRegionSet*   _humongous_set;
6196   HeapRegionManager*   _hrm;
6197 
6198 public:
6199   uint _old_count;
6200   uint _humongous_count;
6201   uint _free_count;
6202 
6203   VerifyRegionListsClosure(HeapRegionSet* old_set,
6204                            HeapRegionSet* humongous_set,
6205                            HeapRegionManager* hrm) :
6206     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6207     _old_count(), _humongous_count(), _free_count(){ }
6208 
6209   bool doHeapRegion(HeapRegion* hr) {
6210     if (hr->is_young()) {
6211       // TODO
6212     } else if (hr->is_humongous()) {
6213       assert(hr->containing_set() == _humongous_set, "Heap region %u is humongous but not in humongous set.", hr->hrm_index());
6214       _humongous_count++;
6215     } else if (hr->is_empty()) {
6216       assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index());
6217       _free_count++;
6218     } else if (hr->is_old()) {
6219       assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index());
6220       _old_count++;
6221     } else {
6222       // There are no other valid region types. Check for one invalid
6223       // one we can identify: pinned without old or humongous set.
6224       assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index());
6225       ShouldNotReachHere();
6226     }
6227     return false;
6228   }
6229 
6230   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6231     guarantee(old_set->length() == _old_count, "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count);
6232     guarantee(humongous_set->length() == _humongous_count, "Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count);
6233     guarantee(free_list->num_free_regions() == _free_count, "Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count);
6234   }
6235 };
6236 
6237 void G1CollectedHeap::verify_region_sets() {
6238   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6239 
6240   // First, check the explicit lists.
6241   _hrm.verify();
6242   {
6243     // Given that a concurrent operation might be adding regions to
6244     // the secondary free list we have to take the lock before
6245     // verifying it.
6246     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6247     _secondary_free_list.verify_list();
6248   }
6249 
6250   // If a concurrent region freeing operation is in progress it will
6251   // be difficult to correctly attributed any free regions we come
6252   // across to the correct free list given that they might belong to
6253   // one of several (free_list, secondary_free_list, any local lists,
6254   // etc.). So, if that's the case we will skip the rest of the
6255   // verification operation. Alternatively, waiting for the concurrent
6256   // operation to complete will have a non-trivial effect on the GC's
6257   // operation (no concurrent operation will last longer than the
6258   // interval between two calls to verification) and it might hide
6259   // any issues that we would like to catch during testing.
6260   if (free_regions_coming()) {
6261     return;
6262   }
6263 
6264   // Make sure we append the secondary_free_list on the free_list so
6265   // that all free regions we will come across can be safely
6266   // attributed to the free_list.
6267   append_secondary_free_list_if_not_empty_with_lock();
6268 
6269   // Finally, make sure that the region accounting in the lists is
6270   // consistent with what we see in the heap.
6271 
6272   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6273   heap_region_iterate(&cl);
6274   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6275 }
6276 
6277 // Optimized nmethod scanning
6278 
6279 class RegisterNMethodOopClosure: public OopClosure {
6280   G1CollectedHeap* _g1h;
6281   nmethod* _nm;
6282 
6283   template <class T> void do_oop_work(T* p) {
6284     T heap_oop = oopDesc::load_heap_oop(p);
6285     if (!oopDesc::is_null(heap_oop)) {
6286       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6287       HeapRegion* hr = _g1h->heap_region_containing(obj);
6288       assert(!hr->is_continues_humongous(),
6289              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6290              " starting at " HR_FORMAT,
6291              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6292 
6293       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6294       hr->add_strong_code_root_locked(_nm);
6295     }
6296   }
6297 
6298 public:
6299   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6300     _g1h(g1h), _nm(nm) {}
6301 
6302   void do_oop(oop* p)       { do_oop_work(p); }
6303   void do_oop(narrowOop* p) { do_oop_work(p); }
6304 };
6305 
6306 class UnregisterNMethodOopClosure: public OopClosure {
6307   G1CollectedHeap* _g1h;
6308   nmethod* _nm;
6309 
6310   template <class T> void do_oop_work(T* p) {
6311     T heap_oop = oopDesc::load_heap_oop(p);
6312     if (!oopDesc::is_null(heap_oop)) {
6313       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6314       HeapRegion* hr = _g1h->heap_region_containing(obj);
6315       assert(!hr->is_continues_humongous(),
6316              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6317              " starting at " HR_FORMAT,
6318              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6319 
6320       hr->remove_strong_code_root(_nm);
6321     }
6322   }
6323 
6324 public:
6325   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6326     _g1h(g1h), _nm(nm) {}
6327 
6328   void do_oop(oop* p)       { do_oop_work(p); }
6329   void do_oop(narrowOop* p) { do_oop_work(p); }
6330 };
6331 
6332 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6333   CollectedHeap::register_nmethod(nm);
6334 
6335   guarantee(nm != NULL, "sanity");
6336   RegisterNMethodOopClosure reg_cl(this, nm);
6337   nm->oops_do(&reg_cl);
6338 }
6339 
6340 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6341   CollectedHeap::unregister_nmethod(nm);
6342 
6343   guarantee(nm != NULL, "sanity");
6344   UnregisterNMethodOopClosure reg_cl(this, nm);
6345   nm->oops_do(&reg_cl, true);
6346 }
6347 
6348 void G1CollectedHeap::purge_code_root_memory() {
6349   double purge_start = os::elapsedTime();
6350   G1CodeRootSet::purge();
6351   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6352   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6353 }
6354 
6355 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6356   G1CollectedHeap* _g1h;
6357 
6358 public:
6359   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6360     _g1h(g1h) {}
6361 
6362   void do_code_blob(CodeBlob* cb) {
6363     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6364     if (nm == NULL) {
6365       return;
6366     }
6367 
6368     if (ScavengeRootsInCode) {
6369       _g1h->register_nmethod(nm);
6370     }
6371   }
6372 };
6373 
6374 void G1CollectedHeap::rebuild_strong_code_roots() {
6375   RebuildStrongCodeRootClosure blob_cl(this);
6376   CodeCache::blobs_do(&blob_cl);
6377 }