< prev index next >

src/share/vm/gc/g1/g1BlockOffsetTable.cpp

Print this page

        

*** 33,71 **** #include "services/memTracker.hpp" ////////////////////////////////////////////////////////////////////// ! // G1BlockOffsetSharedArray ////////////////////////////////////////////////////////////////////// ! G1BlockOffsetSharedArray::G1BlockOffsetSharedArray(MemRegion heap, G1RegionToSpaceMapper* storage) : ! _reserved(), _end(NULL), _listener(), _offset_array(NULL) { ! ! _reserved = heap; ! _end = NULL; MemRegion bot_reserved = storage->reserved(); _offset_array = (u_char*)bot_reserved.start(); - _end = _reserved.end(); - - storage->set_mapping_changed_listener(&_listener); ! log_trace(gc, bot)("G1BlockOffsetSharedArray::G1BlockOffsetSharedArray: "); log_trace(gc, bot)(" rs.base(): " PTR_FORMAT " rs.size(): " SIZE_FORMAT " rs end(): " PTR_FORMAT, p2i(bot_reserved.start()), bot_reserved.byte_size(), p2i(bot_reserved.end())); } ! bool G1BlockOffsetSharedArray::is_card_boundary(HeapWord* p) const { assert(p >= _reserved.start(), "just checking"); size_t delta = pointer_delta(p, _reserved.start()); return (delta & right_n_bits(LogN_words)) == (size_t)NoBits; } #ifdef ASSERT ! void G1BlockOffsetSharedArray::check_index(size_t index, const char* msg) const { assert((index) < (_reserved.word_size() >> LogN_words), "%s - index: " SIZE_FORMAT ", _vs.committed_size: " SIZE_FORMAT, msg, (index), (_reserved.word_size() >> LogN_words)); assert(G1CollectedHeap::heap()->is_in_exact(address_for_index_raw(index)), "Index " SIZE_FORMAT " corresponding to " PTR_FORMAT --- 33,65 ---- #include "services/memTracker.hpp" ////////////////////////////////////////////////////////////////////// ! // G1BlockOffsetTable ////////////////////////////////////////////////////////////////////// ! G1BlockOffsetTable::G1BlockOffsetTable(MemRegion heap, G1RegionToSpaceMapper* storage) : ! _reserved(heap), _offset_array(NULL) { MemRegion bot_reserved = storage->reserved(); _offset_array = (u_char*)bot_reserved.start(); ! log_trace(gc, bot)("G1BlockOffsetTable::G1BlockOffsetTable: "); log_trace(gc, bot)(" rs.base(): " PTR_FORMAT " rs.size(): " SIZE_FORMAT " rs end(): " PTR_FORMAT, p2i(bot_reserved.start()), bot_reserved.byte_size(), p2i(bot_reserved.end())); } ! bool G1BlockOffsetTable::is_card_boundary(HeapWord* p) const { assert(p >= _reserved.start(), "just checking"); size_t delta = pointer_delta(p, _reserved.start()); return (delta & right_n_bits(LogN_words)) == (size_t)NoBits; } #ifdef ASSERT ! void G1BlockOffsetTable::check_index(size_t index, const char* msg) const { assert((index) < (_reserved.word_size() >> LogN_words), "%s - index: " SIZE_FORMAT ", _vs.committed_size: " SIZE_FORMAT, msg, (index), (_reserved.word_size() >> LogN_words)); assert(G1CollectedHeap::heap()->is_in_exact(address_for_index_raw(index)), "Index " SIZE_FORMAT " corresponding to " PTR_FORMAT
*** 75,103 **** G1CollectedHeap::heap()->addr_to_region(address_for_index_raw(index))); } #endif // ASSERT ////////////////////////////////////////////////////////////////////// ! // G1BlockOffsetArray ////////////////////////////////////////////////////////////////////// ! G1BlockOffsetArray::G1BlockOffsetArray(G1BlockOffsetSharedArray* array, ! MemRegion mr) : ! G1BlockOffsetTable(mr.start(), mr.end()), ! _unallocated_block(_bottom), ! _array(array), _gsp(NULL) { ! assert(_bottom <= _end, "arguments out of order"); ! } ! ! void G1BlockOffsetArray::set_space(G1OffsetTableContigSpace* sp) { ! _gsp = sp; ! } // The arguments follow the normal convention of denoting // a right-open interval: [start, end) ! void ! G1BlockOffsetArray:: set_remainder_to_point_to_start(HeapWord* start, HeapWord* end) { if (start >= end) { // The start address is equal to the end address (or to // the right of the end address) so there are not cards // that need to be updated.. --- 69,91 ---- G1CollectedHeap::heap()->addr_to_region(address_for_index_raw(index))); } #endif // ASSERT ////////////////////////////////////////////////////////////////////// ! // G1BlockOffsetTablePart ////////////////////////////////////////////////////////////////////// ! G1BlockOffsetTablePart::G1BlockOffsetTablePart(G1BlockOffsetTable* array, G1ContiguousSpace* gsp) : ! _bot(array), ! _space(gsp), ! _next_offset_threshold(NULL), ! _next_offset_index(0) ! { } // The arguments follow the normal convention of denoting // a right-open interval: [start, end) ! void G1BlockOffsetTablePart:: set_remainder_to_point_to_start(HeapWord* start, HeapWord* end) { if (start >= end) { // The start address is equal to the end address (or to // the right of the end address) so there are not cards // that need to be updated..
*** 135,256 **** // (e.g., with today's, offset = 0x81 => // back slip = 2**(3*(0x81 - N_words)) = 2**3) = 8 // Move back N (e.g., 8) entries and repeat with the // value of the new entry // ! size_t start_card = _array->index_for(start); ! size_t end_card = _array->index_for(end-1); ! assert(start ==_array->address_for_index(start_card), "Precondition"); ! assert(end ==_array->address_for_index(end_card)+N_words, "Precondition"); set_remainder_to_point_to_start_incl(start_card, end_card); // closed interval } // Unlike the normal convention in this code, the argument here denotes // a closed, inclusive interval: [start_card, end_card], cf set_remainder_to_point_to_start() // above. ! void ! G1BlockOffsetArray::set_remainder_to_point_to_start_incl(size_t start_card, size_t end_card) { if (start_card > end_card) { return; } ! assert(start_card > _array->index_for(_bottom), "Cannot be first card"); ! assert(_array->offset_array(start_card-1) <= N_words, "Offset card has an unexpected value"); size_t start_card_for_region = start_card; u_char offset = max_jubyte; for (int i = 0; i < BlockOffsetArray::N_powers; i++) { // -1 so that the the card with the actual offset is counted. Another -1 // so that the reach ends in this region and not at the start // of the next. size_t reach = start_card - 1 + (BlockOffsetArray::power_to_cards_back(i+1) - 1); offset = N_words + i; if (reach >= end_card) { ! _array->set_offset_array(start_card_for_region, end_card, offset); start_card_for_region = reach + 1; break; } ! _array->set_offset_array(start_card_for_region, reach, offset); start_card_for_region = reach + 1; } assert(start_card_for_region > end_card, "Sanity check"); DEBUG_ONLY(check_all_cards(start_card, end_card);) } // The card-interval [start_card, end_card] is a closed interval; this // is an expensive check -- use with care and only under protection of // suitable flag. ! void G1BlockOffsetArray::check_all_cards(size_t start_card, size_t end_card) const { if (end_card < start_card) { return; } ! guarantee(_array->offset_array(start_card) == N_words, "Wrong value in second card"); for (size_t c = start_card + 1; c <= end_card; c++ /* yeah! */) { ! u_char entry = _array->offset_array(c); if (c - start_card > BlockOffsetArray::power_to_cards_back(1)) { guarantee(entry > N_words, "Should be in logarithmic region - " "entry: %u, " "_array->offset_array(c): %u, " "N_words: %u", ! (uint)entry, (uint)_array->offset_array(c), (uint)N_words); } size_t backskip = BlockOffsetArray::entry_to_cards_back(entry); size_t landing_card = c - backskip; guarantee(landing_card >= (start_card - 1), "Inv"); if (landing_card >= start_card) { ! guarantee(_array->offset_array(landing_card) <= entry, "Monotonicity - landing_card offset: %u, " "entry: %u", ! (uint)_array->offset_array(landing_card), (uint)entry); } else { guarantee(landing_card == start_card - 1, "Tautology"); // Note that N_words is the maximum offset value ! guarantee(_array->offset_array(landing_card) <= N_words, "landing card offset: %u, " "N_words: %u", ! (uint)_array->offset_array(landing_card), (uint)N_words); ! } } - } - - HeapWord* G1BlockOffsetArray::block_start_unsafe(const void* addr) { - assert(_bottom <= addr && addr < _end, - "addr must be covered by this Array"); - // Must read this exactly once because it can be modified by parallel - // allocation. - HeapWord* ub = _unallocated_block; - if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) { - assert(ub < _end, "tautology (see above)"); - return ub; } - // Otherwise, find the block start using the table. - HeapWord* q = block_at_or_preceding(addr, false, 0); - return forward_to_block_containing_addr(q, addr); } - // This duplicates a little code from the above: unavoidable. HeapWord* ! G1BlockOffsetArray::block_start_unsafe_const(const void* addr) const { ! assert(_bottom <= addr && addr < _end, ! "addr must be covered by this Array"); ! // Must read this exactly once because it can be modified by parallel ! // allocation. ! HeapWord* ub = _unallocated_block; ! if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) { ! assert(ub < _end, "tautology (see above)"); ! return ub; ! } ! // Otherwise, find the block start using the table. ! HeapWord* q = block_at_or_preceding(addr, false, 0); ! HeapWord* n = q + block_size(q); ! return forward_to_block_containing_addr_const(q, n, addr); ! } ! ! ! HeapWord* ! G1BlockOffsetArray::forward_to_block_containing_addr_slow(HeapWord* q, HeapWord* n, const void* addr) { // We're not in the normal case. We need to handle an important subcase // here: LAB allocation. An allocation previously recorded in the // offset table was actually a lab allocation, and was divided into --- 123,209 ---- // (e.g., with today's, offset = 0x81 => // back slip = 2**(3*(0x81 - N_words)) = 2**3) = 8 // Move back N (e.g., 8) entries and repeat with the // value of the new entry // ! size_t start_card = _bot->index_for(start); ! size_t end_card = _bot->index_for(end-1); ! assert(start ==_bot->address_for_index(start_card), "Precondition"); ! assert(end ==_bot->address_for_index(end_card)+N_words, "Precondition"); set_remainder_to_point_to_start_incl(start_card, end_card); // closed interval } // Unlike the normal convention in this code, the argument here denotes // a closed, inclusive interval: [start_card, end_card], cf set_remainder_to_point_to_start() // above. ! void G1BlockOffsetTablePart::set_remainder_to_point_to_start_incl(size_t start_card, size_t end_card) { if (start_card > end_card) { return; } ! assert(start_card > _bot->index_for(_space->bottom()), "Cannot be first card"); ! assert(_bot->offset_array(start_card-1) <= N_words, "Offset card has an unexpected value"); size_t start_card_for_region = start_card; u_char offset = max_jubyte; for (int i = 0; i < BlockOffsetArray::N_powers; i++) { // -1 so that the the card with the actual offset is counted. Another -1 // so that the reach ends in this region and not at the start // of the next. size_t reach = start_card - 1 + (BlockOffsetArray::power_to_cards_back(i+1) - 1); offset = N_words + i; if (reach >= end_card) { ! _bot->set_offset_array(start_card_for_region, end_card, offset); start_card_for_region = reach + 1; break; } ! _bot->set_offset_array(start_card_for_region, reach, offset); start_card_for_region = reach + 1; } assert(start_card_for_region > end_card, "Sanity check"); DEBUG_ONLY(check_all_cards(start_card, end_card);) } // The card-interval [start_card, end_card] is a closed interval; this // is an expensive check -- use with care and only under protection of // suitable flag. ! void G1BlockOffsetTablePart::check_all_cards(size_t start_card, size_t end_card) const { if (end_card < start_card) { return; } ! guarantee(_bot->offset_array(start_card) == N_words, "Wrong value in second card"); for (size_t c = start_card + 1; c <= end_card; c++ /* yeah! */) { ! u_char entry = _bot->offset_array(c); if (c - start_card > BlockOffsetArray::power_to_cards_back(1)) { guarantee(entry > N_words, "Should be in logarithmic region - " "entry: %u, " "_array->offset_array(c): %u, " "N_words: %u", ! (uint)entry, (uint)_bot->offset_array(c), (uint)N_words); } size_t backskip = BlockOffsetArray::entry_to_cards_back(entry); size_t landing_card = c - backskip; guarantee(landing_card >= (start_card - 1), "Inv"); if (landing_card >= start_card) { ! guarantee(_bot->offset_array(landing_card) <= entry, "Monotonicity - landing_card offset: %u, " "entry: %u", ! (uint)_bot->offset_array(landing_card), (uint)entry); } else { guarantee(landing_card == start_card - 1, "Tautology"); // Note that N_words is the maximum offset value ! guarantee(_bot->offset_array(landing_card) <= N_words, "landing card offset: %u, " "N_words: %u", ! (uint)_bot->offset_array(landing_card), (uint)N_words); } } } HeapWord* ! G1BlockOffsetTablePart::forward_to_block_containing_addr_slow(HeapWord* q, HeapWord* n, const void* addr) { // We're not in the normal case. We need to handle an important subcase // here: LAB allocation. An allocation previously recorded in the // offset table was actually a lab allocation, and was divided into
*** 258,310 **** // query, by updating entries as we cross them. // If the fist object's end q is at the card boundary. Start refining // with the corresponding card (the value of the entry will be basically // set to 0). If the object crosses the boundary -- start from the next card. ! size_t n_index = _array->index_for(n); ! size_t next_index = _array->index_for(n) + !_array->is_card_boundary(n); // Calculate a consistent next boundary. If "n" is not at the boundary // already, step to the boundary. ! HeapWord* next_boundary = _array->address_for_index(n_index) + (n_index == next_index ? 0 : N_words); ! assert(next_boundary <= _array->_end, "next_boundary is beyond the end of the covered region " " next_boundary " PTR_FORMAT " _array->_end " PTR_FORMAT, ! p2i(next_boundary), p2i(_array->_end)); ! if (addr >= gsp()->top()) return gsp()->top(); while (next_boundary < addr) { while (n <= next_boundary) { q = n; oop obj = oop(q); if (obj->klass_or_null() == NULL) return q; n += block_size(q); } assert(q <= next_boundary && n > next_boundary, "Consequence of loop"); // [q, n) is the block that crosses the boundary. ! alloc_block_work2(&next_boundary, &next_index, q, n); } return forward_to_block_containing_addr_const(q, n, addr); } - // Note that the committed size of the covered space may have changed, - // so the table size might also wish to change. - void G1BlockOffsetArray::resize(size_t new_word_size) { - HeapWord* new_end = _bottom + new_word_size; - _end = new_end; // update _end - } - // // threshold_ // | _index_ // v v // +-------+-------+-------+-------+-------+ // | i-1 | i | i+1 | i+2 | i+3 | // +-------+-------+-------+-------+-------+ // ( ^ ] // block-start // ! void G1BlockOffsetArray::alloc_block_work2(HeapWord** threshold_, size_t* index_, HeapWord* blk_start, HeapWord* blk_end) { // For efficiency, do copy-in/copy-out. HeapWord* threshold = *threshold_; size_t index = *index_; --- 211,256 ---- // query, by updating entries as we cross them. // If the fist object's end q is at the card boundary. Start refining // with the corresponding card (the value of the entry will be basically // set to 0). If the object crosses the boundary -- start from the next card. ! size_t n_index = _bot->index_for(n); ! size_t next_index = _bot->index_for(n) + !_bot->is_card_boundary(n); // Calculate a consistent next boundary. If "n" is not at the boundary // already, step to the boundary. ! HeapWord* next_boundary = _bot->address_for_index(n_index) + (n_index == next_index ? 0 : N_words); ! assert(next_boundary <= _bot->_reserved.end(), "next_boundary is beyond the end of the covered region " " next_boundary " PTR_FORMAT " _array->_end " PTR_FORMAT, ! p2i(next_boundary), p2i(_bot->_reserved.end())); ! if (addr >= _space->top()) return _space->top(); while (next_boundary < addr) { while (n <= next_boundary) { q = n; oop obj = oop(q); if (obj->klass_or_null() == NULL) return q; n += block_size(q); } assert(q <= next_boundary && n > next_boundary, "Consequence of loop"); // [q, n) is the block that crosses the boundary. ! alloc_block_work(&next_boundary, &next_index, q, n); } return forward_to_block_containing_addr_const(q, n, addr); } // // threshold_ // | _index_ // v v // +-------+-------+-------+-------+-------+ // | i-1 | i | i+1 | i+2 | i+3 | // +-------+-------+-------+-------+-------+ // ( ^ ] // block-start // ! void G1BlockOffsetTablePart::alloc_block_work(HeapWord** threshold_, size_t* index_, HeapWord* blk_start, HeapWord* blk_end) { // For efficiency, do copy-in/copy-out. HeapWord* threshold = *threshold_; size_t index = *index_;
*** 316,405 **** "offset should be <= BlockOffsetSharedArray::N"); assert(G1CollectedHeap::heap()->is_in_reserved(blk_start), "reference must be into the heap"); assert(G1CollectedHeap::heap()->is_in_reserved(blk_end-1), "limit must be within the heap"); ! assert(threshold == _array->_reserved.start() + index*N_words, "index must agree with threshold"); DEBUG_ONLY(size_t orig_index = index;) // Mark the card that holds the offset into the block. Note // that _next_offset_index and _next_offset_threshold are not // updated until the end of this method. ! _array->set_offset_array(index, threshold, blk_start); // We need to now mark the subsequent cards that this blk spans. // Index of card on which blk ends. ! size_t end_index = _array->index_for(blk_end - 1); // Are there more cards left to be updated? if (index + 1 <= end_index) { ! HeapWord* rem_st = _array->address_for_index(index + 1); // Calculate rem_end this way because end_index // may be the last valid index in the covered region. ! HeapWord* rem_end = _array->address_for_index(end_index) + N_words; set_remainder_to_point_to_start(rem_st, rem_end); } index = end_index + 1; // Calculate threshold_ this way because end_index // may be the last valid index in the covered region. ! threshold = _array->address_for_index(end_index) + N_words; assert(threshold >= blk_end, "Incorrect offset threshold"); // index_ and threshold_ updated here. *threshold_ = threshold; *index_ = index; #ifdef ASSERT // The offset can be 0 if the block starts on a boundary. That // is checked by an assertion above. ! size_t start_index = _array->index_for(blk_start); ! HeapWord* boundary = _array->address_for_index(start_index); ! assert((_array->offset_array(orig_index) == 0 && blk_start == boundary) || ! (_array->offset_array(orig_index) > 0 && _array->offset_array(orig_index) <= N_words), "offset array should have been set - " "orig_index offset: %u, " "blk_start: " PTR_FORMAT ", " "boundary: " PTR_FORMAT, ! (uint)_array->offset_array(orig_index), p2i(blk_start), p2i(boundary)); for (size_t j = orig_index + 1; j <= end_index; j++) { ! assert(_array->offset_array(j) > 0 && ! _array->offset_array(j) <= (u_char) (N_words+BlockOffsetArray::N_powers-1), "offset array should have been set - " "%u not > 0 OR %u not <= %u", ! (uint) _array->offset_array(j), ! (uint) _array->offset_array(j), (uint) (N_words+BlockOffsetArray::N_powers-1)); } #endif } ! void G1BlockOffsetArray::verify() const { ! assert(gsp()->bottom() < gsp()->top(), "Only non-empty regions should be verified."); ! size_t start_card = _array->index_for(gsp()->bottom()); ! size_t end_card = _array->index_for(gsp()->top() - 1); for (size_t current_card = start_card; current_card < end_card; current_card++) { ! u_char entry = _array->offset_array(current_card); if (entry < N_words) { // The entry should point to an object before the current card. Verify that // it is possible to walk from that object in to the current card by just // iterating over the objects following it. ! HeapWord* card_address = _array->address_for_index(current_card); HeapWord* obj_end = card_address - entry; while (obj_end < card_address) { HeapWord* obj = obj_end; size_t obj_size = block_size(obj); obj_end = obj + obj_size; ! guarantee(obj_end > obj && obj_end <= gsp()->top(), "Invalid object end. obj: " PTR_FORMAT " obj_size: " SIZE_FORMAT " obj_end: " PTR_FORMAT " top: " PTR_FORMAT, ! p2i(obj), obj_size, p2i(obj_end), p2i(gsp()->top())); } } else { // Because we refine the BOT based on which cards are dirty there is not much we can verify here. // We need to make sure that we are going backwards and that we don't pass the start of the // corresponding heap region. But that is about all we can verify. --- 262,351 ---- "offset should be <= BlockOffsetSharedArray::N"); assert(G1CollectedHeap::heap()->is_in_reserved(blk_start), "reference must be into the heap"); assert(G1CollectedHeap::heap()->is_in_reserved(blk_end-1), "limit must be within the heap"); ! assert(threshold == _bot->_reserved.start() + index*N_words, "index must agree with threshold"); DEBUG_ONLY(size_t orig_index = index;) // Mark the card that holds the offset into the block. Note // that _next_offset_index and _next_offset_threshold are not // updated until the end of this method. ! _bot->set_offset_array(index, threshold, blk_start); // We need to now mark the subsequent cards that this blk spans. // Index of card on which blk ends. ! size_t end_index = _bot->index_for(blk_end - 1); // Are there more cards left to be updated? if (index + 1 <= end_index) { ! HeapWord* rem_st = _bot->address_for_index(index + 1); // Calculate rem_end this way because end_index // may be the last valid index in the covered region. ! HeapWord* rem_end = _bot->address_for_index(end_index) + N_words; set_remainder_to_point_to_start(rem_st, rem_end); } index = end_index + 1; // Calculate threshold_ this way because end_index // may be the last valid index in the covered region. ! threshold = _bot->address_for_index(end_index) + N_words; assert(threshold >= blk_end, "Incorrect offset threshold"); // index_ and threshold_ updated here. *threshold_ = threshold; *index_ = index; #ifdef ASSERT // The offset can be 0 if the block starts on a boundary. That // is checked by an assertion above. ! size_t start_index = _bot->index_for(blk_start); ! HeapWord* boundary = _bot->address_for_index(start_index); ! assert((_bot->offset_array(orig_index) == 0 && blk_start == boundary) || ! (_bot->offset_array(orig_index) > 0 && _bot->offset_array(orig_index) <= N_words), "offset array should have been set - " "orig_index offset: %u, " "blk_start: " PTR_FORMAT ", " "boundary: " PTR_FORMAT, ! (uint)_bot->offset_array(orig_index), p2i(blk_start), p2i(boundary)); for (size_t j = orig_index + 1; j <= end_index; j++) { ! assert(_bot->offset_array(j) > 0 && ! _bot->offset_array(j) <= (u_char) (N_words+BlockOffsetArray::N_powers-1), "offset array should have been set - " "%u not > 0 OR %u not <= %u", ! (uint) _bot->offset_array(j), ! (uint) _bot->offset_array(j), (uint) (N_words+BlockOffsetArray::N_powers-1)); } #endif } ! void G1BlockOffsetTablePart::verify() const { ! assert(_space->bottom() < _space->top(), "Only non-empty regions should be verified."); ! size_t start_card = _bot->index_for(_space->bottom()); ! size_t end_card = _bot->index_for(_space->top() - 1); for (size_t current_card = start_card; current_card < end_card; current_card++) { ! u_char entry = _bot->offset_array(current_card); if (entry < N_words) { // The entry should point to an object before the current card. Verify that // it is possible to walk from that object in to the current card by just // iterating over the objects following it. ! HeapWord* card_address = _bot->address_for_index(current_card); HeapWord* obj_end = card_address - entry; while (obj_end < card_address) { HeapWord* obj = obj_end; size_t obj_size = block_size(obj); obj_end = obj + obj_size; ! guarantee(obj_end > obj && obj_end <= _space->top(), "Invalid object end. obj: " PTR_FORMAT " obj_size: " SIZE_FORMAT " obj_end: " PTR_FORMAT " top: " PTR_FORMAT, ! p2i(obj), obj_size, p2i(obj_end), p2i(_space->top())); } } else { // Because we refine the BOT based on which cards are dirty there is not much we can verify here. // We need to make sure that we are going backwards and that we don't pass the start of the // corresponding heap region. But that is about all we can verify.
*** 409,513 **** size_t max_backskip = current_card - start_card; guarantee(backskip <= max_backskip, "Going backwards beyond the start_card. start_card: " SIZE_FORMAT " current_card: " SIZE_FORMAT " backskip: " SIZE_FORMAT, start_card, current_card, backskip); ! HeapWord* backskip_address = _array->address_for_index(current_card - backskip); ! guarantee(backskip_address >= gsp()->bottom(), "Going backwards beyond bottom of the region: bottom: " PTR_FORMAT ", backskip_address: " PTR_FORMAT, ! p2i(gsp()->bottom()), p2i(backskip_address)); } } } #ifndef PRODUCT void ! G1BlockOffsetArray::print_on(outputStream* out) { ! size_t from_index = _array->index_for(_bottom); ! size_t to_index = _array->index_for(_end); out->print_cr(">> BOT for area [" PTR_FORMAT "," PTR_FORMAT ") " "cards [" SIZE_FORMAT "," SIZE_FORMAT ")", ! p2i(_bottom), p2i(_end), from_index, to_index); for (size_t i = from_index; i < to_index; ++i) { out->print_cr(" entry " SIZE_FORMAT_W(8) " | " PTR_FORMAT " : %3u", ! i, p2i(_array->address_for_index(i)), ! (uint) _array->offset_array(i)); } } #endif // !PRODUCT ! ////////////////////////////////////////////////////////////////////// ! // G1BlockOffsetArrayContigSpace ! ////////////////////////////////////////////////////////////////////// ! ! HeapWord* ! G1BlockOffsetArrayContigSpace::block_start_unsafe(const void* addr) { ! assert(_bottom <= addr && addr < _end, ! "addr must be covered by this Array"); ! HeapWord* q = block_at_or_preceding(addr, true, _next_offset_index-1); ! return forward_to_block_containing_addr(q, addr); ! } ! ! HeapWord* ! G1BlockOffsetArrayContigSpace:: ! block_start_unsafe_const(const void* addr) const { ! assert(_bottom <= addr && addr < _end, ! "addr must be covered by this Array"); ! HeapWord* q = block_at_or_preceding(addr, true, _next_offset_index-1); ! HeapWord* n = q + block_size(q); ! return forward_to_block_containing_addr_const(q, n, addr); ! } ! ! G1BlockOffsetArrayContigSpace:: ! G1BlockOffsetArrayContigSpace(G1BlockOffsetSharedArray* array, ! MemRegion mr) : ! G1BlockOffsetArray(array, mr) ! { ! _next_offset_threshold = NULL; ! _next_offset_index = 0; ! } ! ! HeapWord* G1BlockOffsetArrayContigSpace::initialize_threshold_raw() { ! assert(!G1CollectedHeap::heap()->is_in_reserved(_array->_offset_array), "just checking"); ! _next_offset_index = _array->index_for_raw(_bottom); _next_offset_index++; _next_offset_threshold = ! _array->address_for_index_raw(_next_offset_index); return _next_offset_threshold; } ! void G1BlockOffsetArrayContigSpace::zero_bottom_entry_raw() { ! assert(!G1CollectedHeap::heap()->is_in_reserved(_array->_offset_array), "just checking"); ! size_t bottom_index = _array->index_for_raw(_bottom); ! assert(_array->address_for_index_raw(bottom_index) == _bottom, "Precondition of call"); ! _array->set_offset_array_raw(bottom_index, 0); } ! HeapWord* G1BlockOffsetArrayContigSpace::initialize_threshold() { ! assert(!G1CollectedHeap::heap()->is_in_reserved(_array->_offset_array), "just checking"); ! _next_offset_index = _array->index_for(_bottom); _next_offset_index++; _next_offset_threshold = ! _array->address_for_index(_next_offset_index); return _next_offset_threshold; } ! void G1BlockOffsetArrayContigSpace::set_for_starts_humongous(HeapWord* obj_top, size_t fill_size) { // The first BOT entry should have offset 0. reset_bot(); ! alloc_block(_bottom, obj_top); if (fill_size > 0) { alloc_block(obj_top, fill_size); } } - - #ifndef PRODUCT - void G1BlockOffsetArrayContigSpace::print_on(outputStream* out) { - G1BlockOffsetArray::print_on(out); - out->print_cr(" next offset threshold: " PTR_FORMAT, p2i(_next_offset_threshold)); - out->print_cr(" next offset index: " SIZE_FORMAT, _next_offset_index); - } - #endif // !PRODUCT --- 355,422 ---- size_t max_backskip = current_card - start_card; guarantee(backskip <= max_backskip, "Going backwards beyond the start_card. start_card: " SIZE_FORMAT " current_card: " SIZE_FORMAT " backskip: " SIZE_FORMAT, start_card, current_card, backskip); ! HeapWord* backskip_address = _bot->address_for_index(current_card - backskip); ! guarantee(backskip_address >= _space->bottom(), "Going backwards beyond bottom of the region: bottom: " PTR_FORMAT ", backskip_address: " PTR_FORMAT, ! p2i(_space->bottom()), p2i(backskip_address)); } } } #ifndef PRODUCT void ! G1BlockOffsetTablePart::print_on(outputStream* out) { ! size_t from_index = _bot->index_for(_space->bottom()); ! size_t to_index = _bot->index_for(_space->end()); out->print_cr(">> BOT for area [" PTR_FORMAT "," PTR_FORMAT ") " "cards [" SIZE_FORMAT "," SIZE_FORMAT ")", ! p2i(_space->bottom()), p2i(_space->end()), from_index, to_index); for (size_t i = from_index; i < to_index; ++i) { out->print_cr(" entry " SIZE_FORMAT_W(8) " | " PTR_FORMAT " : %3u", ! i, p2i(_bot->address_for_index(i)), ! (uint) _bot->offset_array(i)); } + out->print_cr(" next offset threshold: " PTR_FORMAT, p2i(_next_offset_threshold)); + out->print_cr(" next offset index: " SIZE_FORMAT, _next_offset_index); } #endif // !PRODUCT ! HeapWord* G1BlockOffsetTablePart::initialize_threshold_raw() { ! assert(!G1CollectedHeap::heap()->is_in_reserved(_bot->_offset_array), "just checking"); ! _next_offset_index = _bot->index_for_raw(_space->bottom()); _next_offset_index++; _next_offset_threshold = ! _bot->address_for_index_raw(_next_offset_index); return _next_offset_threshold; } ! void G1BlockOffsetTablePart::zero_bottom_entry_raw() { ! assert(!G1CollectedHeap::heap()->is_in_reserved(_bot->_offset_array), "just checking"); ! size_t bottom_index = _bot->index_for_raw(_space->bottom()); ! assert(_bot->address_for_index_raw(bottom_index) == _space->bottom(), "Precondition of call"); ! _bot->set_offset_array_raw(bottom_index, 0); } ! HeapWord* G1BlockOffsetTablePart::initialize_threshold() { ! assert(!G1CollectedHeap::heap()->is_in_reserved(_bot->_offset_array), "just checking"); ! _next_offset_index = _bot->index_for(_space->bottom()); _next_offset_index++; _next_offset_threshold = ! _bot->address_for_index(_next_offset_index); return _next_offset_threshold; } ! void G1BlockOffsetTablePart::set_for_starts_humongous(HeapWord* obj_top, size_t fill_size) { // The first BOT entry should have offset 0. reset_bot(); ! alloc_block(_space->bottom(), obj_top); if (fill_size > 0) { alloc_block(obj_top, fill_size); } }
< prev index next >