1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_HEAPREGION_HPP
  26 #define SHARE_VM_GC_G1_HEAPREGION_HPP
  27 
  28 #include "gc/g1/g1AllocationContext.hpp"
  29 #include "gc/g1/g1BlockOffsetTable.hpp"
  30 #include "gc/g1/heapRegionType.hpp"
  31 #include "gc/g1/survRateGroup.hpp"
  32 #include "gc/shared/ageTable.hpp"
  33 #include "gc/shared/spaceDecorator.hpp"
  34 #include "utilities/macros.hpp"
  35 
  36 // A HeapRegion is the smallest piece of a G1CollectedHeap that
  37 // can be collected independently.
  38 
  39 // NOTE: Although a HeapRegion is a Space, its
  40 // Space::initDirtyCardClosure method must not be called.
  41 // The problem is that the existence of this method breaks
  42 // the independence of barrier sets from remembered sets.
  43 // The solution is to remove this method from the definition
  44 // of a Space.
  45 
  46 // Each heap region is self contained. top() and end() can never
  47 // be set beyond the end of the region. For humongous objects,
  48 // the first region is a StartsHumongous region. If the humongous
  49 // object is larger than a heap region, the following regions will
  50 // be of type ContinuesHumongous. In this case the top() of the
  51 // StartHumongous region and all ContinuesHumongous regions except
  52 // the last will point to their own end. For the last ContinuesHumongous
  53 // region, top() will equal the object's top.
  54 
  55 class G1CollectedHeap;
  56 class HeapRegionRemSet;
  57 class HeapRegionRemSetIterator;
  58 class HeapRegion;
  59 class HeapRegionSetBase;
  60 class nmethod;
  61 
  62 #define HR_FORMAT "%u:(%s)[" PTR_FORMAT "," PTR_FORMAT "," PTR_FORMAT "]"
  63 #define HR_FORMAT_PARAMS(_hr_) \
  64                 (_hr_)->hrm_index(), \
  65                 (_hr_)->get_short_type_str(), \
  66                 p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end())
  67 
  68 // sentinel value for hrm_index
  69 #define G1_NO_HRM_INDEX ((uint) -1)
  70 
  71 // A dirty card to oop closure for heap regions. It
  72 // knows how to get the G1 heap and how to use the bitmap
  73 // in the concurrent marker used by G1 to filter remembered
  74 // sets.
  75 
  76 class HeapRegionDCTOC : public DirtyCardToOopClosure {
  77 private:
  78   HeapRegion* _hr;
  79   G1ParPushHeapRSClosure* _rs_scan;
  80   G1CollectedHeap* _g1;
  81 
  82   // Walk the given memory region from bottom to (actual) top
  83   // looking for objects and applying the oop closure (_cl) to
  84   // them. The base implementation of this treats the area as
  85   // blocks, where a block may or may not be an object. Sub-
  86   // classes should override this to provide more accurate
  87   // or possibly more efficient walking.
  88   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
  89 
  90 public:
  91   HeapRegionDCTOC(G1CollectedHeap* g1,
  92                   HeapRegion* hr,
  93                   G1ParPushHeapRSClosure* cl,
  94                   CardTableModRefBS::PrecisionStyle precision);
  95 };
  96 
  97 // The complicating factor is that BlockOffsetTable diverged
  98 // significantly, and we need functionality that is only in the G1 version.
  99 // So I copied that code, which led to an alternate G1 version of
 100 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
 101 // be reconciled, then G1OffsetTableContigSpace could go away.
 102 
 103 // The idea behind time stamps is the following. We want to keep track of
 104 // the highest address where it's safe to scan objects for each region.
 105 // This is only relevant for current GC alloc regions so we keep a time stamp
 106 // per region to determine if the region has been allocated during the current
 107 // GC or not. If the time stamp is current we report a scan_top value which
 108 // was saved at the end of the previous GC for retained alloc regions and which is
 109 // equal to the bottom for all other regions.
 110 // There is a race between card scanners and allocating gc workers where we must ensure
 111 // that card scanners do not read the memory allocated by the gc workers.
 112 // In order to enforce that, we must not return a value of _top which is more recent than the
 113 // time stamp. This is due to the fact that a region may become a gc alloc region at
 114 // some point after we've read the timestamp value as being < the current time stamp.
 115 // The time stamps are re-initialized to zero at cleanup and at Full GCs.
 116 // The current scheme that uses sequential unsigned ints will fail only if we have 4b
 117 // evacuation pauses between two cleanups, which is _highly_ unlikely.
 118 class G1OffsetTableContigSpace: public CompactibleSpace {
 119   friend class VMStructs;
 120   HeapWord* volatile _top;
 121   HeapWord* volatile _scan_top;
 122  protected:
 123   G1BlockOffsetArrayContigSpace _offsets;
 124   Mutex _par_alloc_lock;
 125   volatile unsigned _gc_time_stamp;
 126   // When we need to retire an allocation region, while other threads
 127   // are also concurrently trying to allocate into it, we typically
 128   // allocate a dummy object at the end of the region to ensure that
 129   // no more allocations can take place in it. However, sometimes we
 130   // want to know where the end of the last "real" object we allocated
 131   // into the region was and this is what this keeps track.
 132   HeapWord* _pre_dummy_top;
 133 
 134  public:
 135   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
 136                            MemRegion mr);
 137 
 138   void set_top(HeapWord* value) { _top = value; }
 139   HeapWord* top() const { return _top; }
 140 
 141  protected:
 142   // Reset the G1OffsetTableContigSpace.
 143   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 144 
 145   HeapWord* volatile* top_addr() { return &_top; }
 146   // Try to allocate at least min_word_size and up to desired_size from this Space.
 147   // Returns NULL if not possible, otherwise sets actual_word_size to the amount of
 148   // space allocated.
 149   // This version assumes that all allocation requests to this Space are properly
 150   // synchronized.
 151   inline HeapWord* allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
 152   // Try to allocate at least min_word_size and up to desired_size from this Space.
 153   // Returns NULL if not possible, otherwise sets actual_word_size to the amount of
 154   // space allocated.
 155   // This version synchronizes with other calls to par_allocate_impl().
 156   inline HeapWord* par_allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
 157 
 158  public:
 159   void reset_after_compaction() { set_top(compaction_top()); }
 160 
 161   size_t used() const { return byte_size(bottom(), top()); }
 162   size_t free() const { return byte_size(top(), end()); }
 163   bool is_free_block(const HeapWord* p) const { return p >= top(); }
 164 
 165   MemRegion used_region() const { return MemRegion(bottom(), top()); }
 166 
 167   void object_iterate(ObjectClosure* blk);
 168   void safe_object_iterate(ObjectClosure* blk);
 169 
 170   void set_bottom(HeapWord* value);
 171   void set_end(HeapWord* value);
 172 
 173   void mangle_unused_area() PRODUCT_RETURN;
 174   void mangle_unused_area_complete() PRODUCT_RETURN;
 175 
 176   HeapWord* scan_top() const;
 177   void record_timestamp();
 178   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
 179   unsigned get_gc_time_stamp() { return _gc_time_stamp; }
 180   void record_retained_region();
 181 
 182   // See the comment above in the declaration of _pre_dummy_top for an
 183   // explanation of what it is.
 184   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
 185     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
 186     _pre_dummy_top = pre_dummy_top;
 187   }
 188   HeapWord* pre_dummy_top() {
 189     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
 190   }
 191   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
 192 
 193   virtual void clear(bool mangle_space);
 194 
 195   HeapWord* block_start(const void* p);
 196   HeapWord* block_start_const(const void* p) const;
 197 
 198   // Allocation (return NULL if full).  Assumes the caller has established
 199   // mutually exclusive access to the space.
 200   HeapWord* allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
 201   // Allocation (return NULL if full).  Enforces mutual exclusion internally.
 202   HeapWord* par_allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
 203 
 204   virtual HeapWord* allocate(size_t word_size);
 205   virtual HeapWord* par_allocate(size_t word_size);
 206 
 207   HeapWord* saved_mark_word() const { ShouldNotReachHere(); return NULL; }
 208 
 209   // MarkSweep support phase3
 210   virtual HeapWord* initialize_threshold();
 211   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
 212 
 213   virtual void print() const;
 214 
 215   void reset_bot() {
 216     _offsets.reset_bot();
 217   }
 218 
 219   void print_bot_on(outputStream* out) {
 220     _offsets.print_on(out);
 221   }
 222 };
 223 
 224 class HeapRegion: public G1OffsetTableContigSpace {
 225   friend class VMStructs;
 226   // Allow scan_and_forward to call (private) overrides for auxiliary functions on this class
 227   template <typename SpaceType>
 228   friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
 229  private:
 230 
 231   // The remembered set for this region.
 232   // (Might want to make this "inline" later, to avoid some alloc failure
 233   // issues.)
 234   HeapRegionRemSet* _rem_set;
 235 
 236   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
 237 
 238   // Auxiliary functions for scan_and_forward support.
 239   // See comments for CompactibleSpace for more information.
 240   inline HeapWord* scan_limit() const {
 241     return top();
 242   }
 243 
 244   inline bool scanned_block_is_obj(const HeapWord* addr) const {
 245     return true; // Always true, since scan_limit is top
 246   }
 247 
 248   inline size_t scanned_block_size(const HeapWord* addr) const {
 249     return HeapRegion::block_size(addr); // Avoid virtual call
 250   }
 251 
 252  protected:
 253   // The index of this region in the heap region sequence.
 254   uint  _hrm_index;
 255 
 256   AllocationContext_t _allocation_context;
 257 
 258   HeapRegionType _type;
 259 
 260   // For a humongous region, region in which it starts.
 261   HeapRegion* _humongous_start_region;
 262 
 263   // True iff an attempt to evacuate an object in the region failed.
 264   bool _evacuation_failed;
 265 
 266   // A heap region may be a member one of a number of special subsets, each
 267   // represented as linked lists through the field below.  Currently, there
 268   // is only one set:
 269   //   The collection set.
 270   HeapRegion* _next_in_special_set;
 271 
 272   // next region in the young "generation" region set
 273   HeapRegion* _next_young_region;
 274 
 275   // Next region whose cards need cleaning
 276   HeapRegion* _next_dirty_cards_region;
 277 
 278   // Fields used by the HeapRegionSetBase class and subclasses.
 279   HeapRegion* _next;
 280   HeapRegion* _prev;
 281 #ifdef ASSERT
 282   HeapRegionSetBase* _containing_set;
 283 #endif // ASSERT
 284 
 285   // We use concurrent marking to determine the amount of live data
 286   // in each heap region.
 287   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
 288   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
 289 
 290   // The calculated GC efficiency of the region.
 291   double _gc_efficiency;
 292 
 293   int  _young_index_in_cset;
 294   SurvRateGroup* _surv_rate_group;
 295   int  _age_index;
 296 
 297   // The start of the unmarked area. The unmarked area extends from this
 298   // word until the top and/or end of the region, and is the part
 299   // of the region for which no marking was done, i.e. objects may
 300   // have been allocated in this part since the last mark phase.
 301   // "prev" is the top at the start of the last completed marking.
 302   // "next" is the top at the start of the in-progress marking (if any.)
 303   HeapWord* _prev_top_at_mark_start;
 304   HeapWord* _next_top_at_mark_start;
 305   // If a collection pause is in progress, this is the top at the start
 306   // of that pause.
 307 
 308   void init_top_at_mark_start() {
 309     assert(_prev_marked_bytes == 0 &&
 310            _next_marked_bytes == 0,
 311            "Must be called after zero_marked_bytes.");
 312     HeapWord* bot = bottom();
 313     _prev_top_at_mark_start = bot;
 314     _next_top_at_mark_start = bot;
 315   }
 316 
 317   // Cached attributes used in the collection set policy information
 318 
 319   // The RSet length that was added to the total value
 320   // for the collection set.
 321   size_t _recorded_rs_length;
 322 
 323   // The predicted elapsed time that was added to total value
 324   // for the collection set.
 325   double _predicted_elapsed_time_ms;
 326 
 327   // The predicted number of bytes to copy that was added to
 328   // the total value for the collection set.
 329   size_t _predicted_bytes_to_copy;
 330 
 331  public:
 332   HeapRegion(uint hrm_index,
 333              G1BlockOffsetSharedArray* sharedOffsetArray,
 334              MemRegion mr);
 335 
 336   // Initializing the HeapRegion not only resets the data structure, but also
 337   // resets the BOT for that heap region.
 338   // The default values for clear_space means that we will do the clearing if
 339   // there's clearing to be done ourselves. We also always mangle the space.
 340   virtual void initialize(MemRegion mr, bool clear_space = false, bool mangle_space = SpaceDecorator::Mangle);
 341 
 342   static int    LogOfHRGrainBytes;
 343   static int    LogOfHRGrainWords;
 344 
 345   static size_t GrainBytes;
 346   static size_t GrainWords;
 347   static size_t CardsPerRegion;
 348 
 349   static size_t align_up_to_region_byte_size(size_t sz) {
 350     return (sz + (size_t) GrainBytes - 1) &
 351                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
 352   }
 353 
 354 
 355   // Returns whether a field is in the same region as the obj it points to.
 356   template <typename T>
 357   static bool is_in_same_region(T* p, oop obj) {
 358     assert(p != NULL, "p can't be NULL");
 359     assert(obj != NULL, "obj can't be NULL");
 360     return (((uintptr_t) p ^ cast_from_oop<uintptr_t>(obj)) >> LogOfHRGrainBytes) == 0;
 361   }
 362 
 363   static size_t max_region_size();
 364   static size_t min_region_size_in_words();
 365 
 366   // It sets up the heap region size (GrainBytes / GrainWords), as
 367   // well as other related fields that are based on the heap region
 368   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
 369   // CardsPerRegion). All those fields are considered constant
 370   // throughout the JVM's execution, therefore they should only be set
 371   // up once during initialization time.
 372   static void setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size);
 373 
 374   // All allocated blocks are occupied by objects in a HeapRegion
 375   bool block_is_obj(const HeapWord* p) const;
 376 
 377   // Returns the object size for all valid block starts
 378   // and the amount of unallocated words if called on top()
 379   size_t block_size(const HeapWord* p) const;
 380 
 381   // Override for scan_and_forward support.
 382   void prepare_for_compaction(CompactPoint* cp);
 383 
 384   inline HeapWord* par_allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* word_size);
 385   inline HeapWord* allocate_no_bot_updates(size_t word_size);
 386   inline HeapWord* allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* actual_size);
 387 
 388   // If this region is a member of a HeapRegionManager, the index in that
 389   // sequence, otherwise -1.
 390   uint hrm_index() const { return _hrm_index; }
 391 
 392   // The number of bytes marked live in the region in the last marking phase.
 393   size_t marked_bytes()    { return _prev_marked_bytes; }
 394   size_t live_bytes() {
 395     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
 396   }
 397 
 398   // The number of bytes counted in the next marking.
 399   size_t next_marked_bytes() { return _next_marked_bytes; }
 400   // The number of bytes live wrt the next marking.
 401   size_t next_live_bytes() {
 402     return
 403       (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
 404   }
 405 
 406   // A lower bound on the amount of garbage bytes in the region.
 407   size_t garbage_bytes() {
 408     size_t used_at_mark_start_bytes =
 409       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
 410     return used_at_mark_start_bytes - marked_bytes();
 411   }
 412 
 413   // Return the amount of bytes we'll reclaim if we collect this
 414   // region. This includes not only the known garbage bytes in the
 415   // region but also any unallocated space in it, i.e., [top, end),
 416   // since it will also be reclaimed if we collect the region.
 417   size_t reclaimable_bytes() {
 418     size_t known_live_bytes = live_bytes();
 419     assert(known_live_bytes <= capacity(), "sanity");
 420     return capacity() - known_live_bytes;
 421   }
 422 
 423   // An upper bound on the number of live bytes in the region.
 424   size_t max_live_bytes() { return used() - garbage_bytes(); }
 425 
 426   void add_to_marked_bytes(size_t incr_bytes) {
 427     _next_marked_bytes = _next_marked_bytes + incr_bytes;
 428   }
 429 
 430   void zero_marked_bytes()      {
 431     _prev_marked_bytes = _next_marked_bytes = 0;
 432   }
 433 
 434   const char* get_type_str() const { return _type.get_str(); }
 435   const char* get_short_type_str() const { return _type.get_short_str(); }
 436 
 437   bool is_free() const { return _type.is_free(); }
 438 
 439   bool is_young()    const { return _type.is_young();    }
 440   bool is_eden()     const { return _type.is_eden();     }
 441   bool is_survivor() const { return _type.is_survivor(); }
 442 
 443   bool is_humongous() const { return _type.is_humongous(); }
 444   bool is_starts_humongous() const { return _type.is_starts_humongous(); }
 445   bool is_continues_humongous() const { return _type.is_continues_humongous();   }
 446 
 447   bool is_old() const { return _type.is_old(); }
 448 
 449   // A pinned region contains objects which are not moved by garbage collections.
 450   // Humongous regions and archive regions are pinned.
 451   bool is_pinned() const { return _type.is_pinned(); }
 452 
 453   // An archive region is a pinned region, also tagged as old, which
 454   // should not be marked during mark/sweep. This allows the address
 455   // space to be shared by JVM instances.
 456   bool is_archive() const { return _type.is_archive(); }
 457 
 458   // For a humongous region, region in which it starts.
 459   HeapRegion* humongous_start_region() const {
 460     return _humongous_start_region;
 461   }
 462 
 463   // Makes the current region be a "starts humongous" region, i.e.,
 464   // the first region in a series of one or more contiguous regions
 465   // that will contain a single "humongous" object.
 466   //
 467   // obj_top : points to the top of the humongous object.
 468   // fill_size : size of the filler object at the end of the region series.
 469   void set_starts_humongous(HeapWord* obj_top, size_t fill_size);
 470 
 471   // Makes the current region be a "continues humongous'
 472   // region. first_hr is the "start humongous" region of the series
 473   // which this region will be part of.
 474   void set_continues_humongous(HeapRegion* first_hr);
 475 
 476   // Unsets the humongous-related fields on the region.
 477   void clear_humongous();
 478 
 479   // If the region has a remembered set, return a pointer to it.
 480   HeapRegionRemSet* rem_set() const {
 481     return _rem_set;
 482   }
 483 
 484   inline bool in_collection_set() const;
 485 
 486   inline HeapRegion* next_in_collection_set() const;
 487   inline void set_next_in_collection_set(HeapRegion* r);
 488 
 489   void set_allocation_context(AllocationContext_t context) {
 490     _allocation_context = context;
 491   }
 492 
 493   AllocationContext_t  allocation_context() const {
 494     return _allocation_context;
 495   }
 496 
 497   // Methods used by the HeapRegionSetBase class and subclasses.
 498 
 499   // Getter and setter for the next and prev fields used to link regions into
 500   // linked lists.
 501   HeapRegion* next()              { return _next; }
 502   HeapRegion* prev()              { return _prev; }
 503 
 504   void set_next(HeapRegion* next) { _next = next; }
 505   void set_prev(HeapRegion* prev) { _prev = prev; }
 506 
 507   // Every region added to a set is tagged with a reference to that
 508   // set. This is used for doing consistency checking to make sure that
 509   // the contents of a set are as they should be and it's only
 510   // available in non-product builds.
 511 #ifdef ASSERT
 512   void set_containing_set(HeapRegionSetBase* containing_set) {
 513     assert((containing_set == NULL && _containing_set != NULL) ||
 514            (containing_set != NULL && _containing_set == NULL),
 515            "containing_set: " PTR_FORMAT " "
 516            "_containing_set: " PTR_FORMAT,
 517            p2i(containing_set), p2i(_containing_set));
 518 
 519     _containing_set = containing_set;
 520   }
 521 
 522   HeapRegionSetBase* containing_set() { return _containing_set; }
 523 #else // ASSERT
 524   void set_containing_set(HeapRegionSetBase* containing_set) { }
 525 
 526   // containing_set() is only used in asserts so there's no reason
 527   // to provide a dummy version of it.
 528 #endif // ASSERT
 529 
 530   HeapRegion* get_next_young_region() { return _next_young_region; }
 531   void set_next_young_region(HeapRegion* hr) {
 532     _next_young_region = hr;
 533   }
 534 
 535   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
 536   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
 537   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
 538   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
 539 
 540   // Reset HR stuff to default values.
 541   void hr_clear(bool par, bool clear_space, bool locked = false);
 542   void par_clear();
 543 
 544   // Get the start of the unmarked area in this region.
 545   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
 546   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
 547 
 548   // Note the start or end of marking. This tells the heap region
 549   // that the collector is about to start or has finished (concurrently)
 550   // marking the heap.
 551 
 552   // Notify the region that concurrent marking is starting. Initialize
 553   // all fields related to the next marking info.
 554   inline void note_start_of_marking();
 555 
 556   // Notify the region that concurrent marking has finished. Copy the
 557   // (now finalized) next marking info fields into the prev marking
 558   // info fields.
 559   inline void note_end_of_marking();
 560 
 561   // Notify the region that it will be used as to-space during a GC
 562   // and we are about to start copying objects into it.
 563   inline void note_start_of_copying(bool during_initial_mark);
 564 
 565   // Notify the region that it ceases being to-space during a GC and
 566   // we will not copy objects into it any more.
 567   inline void note_end_of_copying(bool during_initial_mark);
 568 
 569   // Notify the region that we are about to start processing
 570   // self-forwarded objects during evac failure handling.
 571   void note_self_forwarding_removal_start(bool during_initial_mark,
 572                                           bool during_conc_mark);
 573 
 574   // Notify the region that we have finished processing self-forwarded
 575   // objects during evac failure handling.
 576   void note_self_forwarding_removal_end(bool during_initial_mark,
 577                                         bool during_conc_mark,
 578                                         size_t marked_bytes);
 579 
 580   // Returns "false" iff no object in the region was allocated when the
 581   // last mark phase ended.
 582   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
 583 
 584   void reset_during_compaction() {
 585     assert(is_humongous(),
 586            "should only be called for humongous regions");
 587 
 588     zero_marked_bytes();
 589     init_top_at_mark_start();
 590   }
 591 
 592   void calc_gc_efficiency(void);
 593   double gc_efficiency() { return _gc_efficiency;}
 594 
 595   int  young_index_in_cset() const { return _young_index_in_cset; }
 596   void set_young_index_in_cset(int index) {
 597     assert( (index == -1) || is_young(), "pre-condition" );
 598     _young_index_in_cset = index;
 599   }
 600 
 601   int age_in_surv_rate_group() {
 602     assert( _surv_rate_group != NULL, "pre-condition" );
 603     assert( _age_index > -1, "pre-condition" );
 604     return _surv_rate_group->age_in_group(_age_index);
 605   }
 606 
 607   void record_surv_words_in_group(size_t words_survived) {
 608     assert( _surv_rate_group != NULL, "pre-condition" );
 609     assert( _age_index > -1, "pre-condition" );
 610     int age_in_group = age_in_surv_rate_group();
 611     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
 612   }
 613 
 614   int age_in_surv_rate_group_cond() {
 615     if (_surv_rate_group != NULL)
 616       return age_in_surv_rate_group();
 617     else
 618       return -1;
 619   }
 620 
 621   SurvRateGroup* surv_rate_group() {
 622     return _surv_rate_group;
 623   }
 624 
 625   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
 626     assert( surv_rate_group != NULL, "pre-condition" );
 627     assert( _surv_rate_group == NULL, "pre-condition" );
 628     assert( is_young(), "pre-condition" );
 629 
 630     _surv_rate_group = surv_rate_group;
 631     _age_index = surv_rate_group->next_age_index();
 632   }
 633 
 634   void uninstall_surv_rate_group() {
 635     if (_surv_rate_group != NULL) {
 636       assert( _age_index > -1, "pre-condition" );
 637       assert( is_young(), "pre-condition" );
 638 
 639       _surv_rate_group = NULL;
 640       _age_index = -1;
 641     } else {
 642       assert( _age_index == -1, "pre-condition" );
 643     }
 644   }
 645 
 646   void set_free() { _type.set_free(); }
 647 
 648   void set_eden()        { _type.set_eden();        }
 649   void set_eden_pre_gc() { _type.set_eden_pre_gc(); }
 650   void set_survivor()    { _type.set_survivor();    }
 651 
 652   void set_old() { _type.set_old(); }
 653 
 654   void set_archive() { _type.set_archive(); }
 655 
 656   // Determine if an object has been allocated since the last
 657   // mark performed by the collector. This returns true iff the object
 658   // is within the unmarked area of the region.
 659   bool obj_allocated_since_prev_marking(oop obj) const {
 660     return (HeapWord *) obj >= prev_top_at_mark_start();
 661   }
 662   bool obj_allocated_since_next_marking(oop obj) const {
 663     return (HeapWord *) obj >= next_top_at_mark_start();
 664   }
 665 
 666   // Returns the "evacuation_failed" property of the region.
 667   bool evacuation_failed() { return _evacuation_failed; }
 668 
 669   // Sets the "evacuation_failed" property of the region.
 670   void set_evacuation_failed(bool b) {
 671     _evacuation_failed = b;
 672 
 673     if (b) {
 674       _next_marked_bytes = 0;
 675     }
 676   }
 677 
 678   // Requires that "mr" be entirely within the region.
 679   // Apply "cl->do_object" to all objects that intersect with "mr".
 680   // If the iteration encounters an unparseable portion of the region,
 681   // or if "cl->abort()" is true after a closure application,
 682   // terminate the iteration and return the address of the start of the
 683   // subregion that isn't done.  (The two can be distinguished by querying
 684   // "cl->abort()".)  Return of "NULL" indicates that the iteration
 685   // completed.
 686   HeapWord*
 687   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
 688 
 689   // filter_young: if true and the region is a young region then we
 690   // skip the iteration.
 691   // card_ptr: if not NULL, and we decide that the card is not young
 692   // and we iterate over it, we'll clean the card before we start the
 693   // iteration.
 694   HeapWord*
 695   oops_on_card_seq_iterate_careful(MemRegion mr,
 696                                    FilterOutOfRegionClosure* cl,
 697                                    bool filter_young,
 698                                    jbyte* card_ptr);
 699 
 700   size_t recorded_rs_length() const        { return _recorded_rs_length; }
 701   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
 702   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
 703 
 704   void set_recorded_rs_length(size_t rs_length) {
 705     _recorded_rs_length = rs_length;
 706   }
 707 
 708   void set_predicted_elapsed_time_ms(double ms) {
 709     _predicted_elapsed_time_ms = ms;
 710   }
 711 
 712   void set_predicted_bytes_to_copy(size_t bytes) {
 713     _predicted_bytes_to_copy = bytes;
 714   }
 715 
 716   virtual CompactibleSpace* next_compaction_space() const;
 717 
 718   virtual void reset_after_compaction();
 719 
 720   // Routines for managing a list of code roots (attached to the
 721   // this region's RSet) that point into this heap region.
 722   void add_strong_code_root(nmethod* nm);
 723   void add_strong_code_root_locked(nmethod* nm);
 724   void remove_strong_code_root(nmethod* nm);
 725 
 726   // Applies blk->do_code_blob() to each of the entries in
 727   // the strong code roots list for this region
 728   void strong_code_roots_do(CodeBlobClosure* blk) const;
 729 
 730   // Verify that the entries on the strong code root list for this
 731   // region are live and include at least one pointer into this region.
 732   void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
 733 
 734   void print() const;
 735   void print_on(outputStream* st) const;
 736 
 737   // vo == UsePrevMarking  -> use "prev" marking information,
 738   // vo == UseNextMarking -> use "next" marking information
 739   // vo == UseMarkWord    -> use the mark word in the object header
 740   //
 741   // NOTE: Only the "prev" marking information is guaranteed to be
 742   // consistent most of the time, so most calls to this should use
 743   // vo == UsePrevMarking.
 744   // Currently, there is only one case where this is called with
 745   // vo == UseNextMarking, which is to verify the "next" marking
 746   // information at the end of remark.
 747   // Currently there is only one place where this is called with
 748   // vo == UseMarkWord, which is to verify the marking during a
 749   // full GC.
 750   void verify(VerifyOption vo, bool *failures) const;
 751 
 752   // Override; it uses the "prev" marking information
 753   virtual void verify() const;
 754 };
 755 
 756 // HeapRegionClosure is used for iterating over regions.
 757 // Terminates the iteration when the "doHeapRegion" method returns "true".
 758 class HeapRegionClosure : public StackObj {
 759   friend class HeapRegionManager;
 760   friend class G1CollectedHeap;
 761 
 762   bool _complete;
 763   void incomplete() { _complete = false; }
 764 
 765  public:
 766   HeapRegionClosure(): _complete(true) {}
 767 
 768   // Typically called on each region until it returns true.
 769   virtual bool doHeapRegion(HeapRegion* r) = 0;
 770 
 771   // True after iteration if the closure was applied to all heap regions
 772   // and returned "false" in all cases.
 773   bool complete() { return _complete; }
 774 };
 775 
 776 #endif // SHARE_VM_GC_G1_HEAPREGION_HPP