< prev index next >

src/share/vm/gc/g1/g1BlockOffsetTable.cpp

Print this page

        

@@ -33,39 +33,33 @@
 #include "services/memTracker.hpp"
 
 
 
 //////////////////////////////////////////////////////////////////////
-// G1BlockOffsetSharedArray
+// G1BlockOffsetTable
 //////////////////////////////////////////////////////////////////////
 
-G1BlockOffsetSharedArray::G1BlockOffsetSharedArray(MemRegion heap, G1RegionToSpaceMapper* storage) :
-  _reserved(), _end(NULL), _listener(), _offset_array(NULL) {
-
-  _reserved = heap;
-  _end = NULL;
+G1BlockOffsetTable::G1BlockOffsetTable(MemRegion heap, G1RegionToSpaceMapper* storage) :
+  _reserved(heap), _offset_array(NULL) {
 
   MemRegion bot_reserved = storage->reserved();
 
   _offset_array = (u_char*)bot_reserved.start();
-  _end = _reserved.end();
-
-  storage->set_mapping_changed_listener(&_listener);
 
-  log_trace(gc, bot)("G1BlockOffsetSharedArray::G1BlockOffsetSharedArray: ");
+  log_trace(gc, bot)("G1BlockOffsetTable::G1BlockOffsetTable: ");
   log_trace(gc, bot)("    rs.base(): " PTR_FORMAT "  rs.size(): " SIZE_FORMAT "  rs end(): " PTR_FORMAT,
                      p2i(bot_reserved.start()), bot_reserved.byte_size(), p2i(bot_reserved.end()));
 }
 
-bool G1BlockOffsetSharedArray::is_card_boundary(HeapWord* p) const {
+bool G1BlockOffsetTable::is_card_boundary(HeapWord* p) const {
   assert(p >= _reserved.start(), "just checking");
   size_t delta = pointer_delta(p, _reserved.start());
   return (delta & right_n_bits(LogN_words)) == (size_t)NoBits;
 }
 
 #ifdef ASSERT
-void G1BlockOffsetSharedArray::check_index(size_t index, const char* msg) const {
+void G1BlockOffsetTable::check_index(size_t index, const char* msg) const {
   assert((index) < (_reserved.word_size() >> LogN_words),
          "%s - index: " SIZE_FORMAT ", _vs.committed_size: " SIZE_FORMAT,
          msg, (index), (_reserved.word_size() >> LogN_words));
   assert(G1CollectedHeap::heap()->is_in_exact(address_for_index_raw(index)),
          "Index " SIZE_FORMAT " corresponding to " PTR_FORMAT

@@ -75,29 +69,23 @@
          G1CollectedHeap::heap()->addr_to_region(address_for_index_raw(index)));
 }
 #endif // ASSERT
 
 //////////////////////////////////////////////////////////////////////
-// G1BlockOffsetArray
+// G1BlockOffsetTablePart
 //////////////////////////////////////////////////////////////////////
 
-G1BlockOffsetArray::G1BlockOffsetArray(G1BlockOffsetSharedArray* array,
-                                       MemRegion mr) :
-  G1BlockOffsetTable(mr.start(), mr.end()),
-  _unallocated_block(_bottom),
-  _array(array), _gsp(NULL) {
-  assert(_bottom <= _end, "arguments out of order");
-}
-
-void G1BlockOffsetArray::set_space(G1OffsetTableContigSpace* sp) {
-  _gsp = sp;
-}
+G1BlockOffsetTablePart::G1BlockOffsetTablePart(G1BlockOffsetTable* array, G1ContiguousSpace* gsp) :
+  _bot(array),
+  _space(gsp),
+  _next_offset_threshold(NULL),
+  _next_offset_index(0)
+{ }
 
 // The arguments follow the normal convention of denoting
 // a right-open interval: [start, end)
-void
-G1BlockOffsetArray:: set_remainder_to_point_to_start(HeapWord* start, HeapWord* end) {
+void G1BlockOffsetTablePart:: set_remainder_to_point_to_start(HeapWord* start, HeapWord* end) {
 
   if (start >= end) {
     // The start address is equal to the end address (or to
     // the right of the end address) so there are not cards
     // that need to be updated..

@@ -135,122 +123,86 @@
   //        (e.g., with today's, offset = 0x81 =>
   //          back slip = 2**(3*(0x81 - N_words)) = 2**3) = 8
   //      Move back N (e.g., 8) entries and repeat with the
   //        value of the new entry
   //
-  size_t start_card = _array->index_for(start);
-  size_t end_card = _array->index_for(end-1);
-  assert(start ==_array->address_for_index(start_card), "Precondition");
-  assert(end ==_array->address_for_index(end_card)+N_words, "Precondition");
+  size_t start_card = _bot->index_for(start);
+  size_t end_card = _bot->index_for(end-1);
+  assert(start ==_bot->address_for_index(start_card), "Precondition");
+  assert(end ==_bot->address_for_index(end_card)+N_words, "Precondition");
   set_remainder_to_point_to_start_incl(start_card, end_card); // closed interval
 }
 
 // Unlike the normal convention in this code, the argument here denotes
 // a closed, inclusive interval: [start_card, end_card], cf set_remainder_to_point_to_start()
 // above.
-void
-G1BlockOffsetArray::set_remainder_to_point_to_start_incl(size_t start_card, size_t end_card) {
+void G1BlockOffsetTablePart::set_remainder_to_point_to_start_incl(size_t start_card, size_t end_card) {
   if (start_card > end_card) {
     return;
   }
-  assert(start_card > _array->index_for(_bottom), "Cannot be first card");
-  assert(_array->offset_array(start_card-1) <= N_words,
+  assert(start_card > _bot->index_for(_space->bottom()), "Cannot be first card");
+  assert(_bot->offset_array(start_card-1) <= N_words,
          "Offset card has an unexpected value");
   size_t start_card_for_region = start_card;
   u_char offset = max_jubyte;
   for (int i = 0; i < BlockOffsetArray::N_powers; i++) {
     // -1 so that the the card with the actual offset is counted.  Another -1
     // so that the reach ends in this region and not at the start
     // of the next.
     size_t reach = start_card - 1 + (BlockOffsetArray::power_to_cards_back(i+1) - 1);
     offset = N_words + i;
     if (reach >= end_card) {
-      _array->set_offset_array(start_card_for_region, end_card, offset);
+      _bot->set_offset_array(start_card_for_region, end_card, offset);
       start_card_for_region = reach + 1;
       break;
     }
-    _array->set_offset_array(start_card_for_region, reach, offset);
+    _bot->set_offset_array(start_card_for_region, reach, offset);
     start_card_for_region = reach + 1;
   }
   assert(start_card_for_region > end_card, "Sanity check");
   DEBUG_ONLY(check_all_cards(start_card, end_card);)
 }
 
 // The card-interval [start_card, end_card] is a closed interval; this
 // is an expensive check -- use with care and only under protection of
 // suitable flag.
-void G1BlockOffsetArray::check_all_cards(size_t start_card, size_t end_card) const {
+void G1BlockOffsetTablePart::check_all_cards(size_t start_card, size_t end_card) const {
 
   if (end_card < start_card) {
     return;
   }
-  guarantee(_array->offset_array(start_card) == N_words, "Wrong value in second card");
+  guarantee(_bot->offset_array(start_card) == N_words, "Wrong value in second card");
   for (size_t c = start_card + 1; c <= end_card; c++ /* yeah! */) {
-    u_char entry = _array->offset_array(c);
+    u_char entry = _bot->offset_array(c);
     if (c - start_card > BlockOffsetArray::power_to_cards_back(1)) {
       guarantee(entry > N_words,
                 "Should be in logarithmic region - "
                 "entry: %u, "
                 "_array->offset_array(c): %u, "
                 "N_words: %u",
-                (uint)entry, (uint)_array->offset_array(c), (uint)N_words);
+                (uint)entry, (uint)_bot->offset_array(c), (uint)N_words);
     }
     size_t backskip = BlockOffsetArray::entry_to_cards_back(entry);
     size_t landing_card = c - backskip;
     guarantee(landing_card >= (start_card - 1), "Inv");
     if (landing_card >= start_card) {
-      guarantee(_array->offset_array(landing_card) <= entry,
+      guarantee(_bot->offset_array(landing_card) <= entry,
                 "Monotonicity - landing_card offset: %u, "
                 "entry: %u",
-                (uint)_array->offset_array(landing_card), (uint)entry);
+                (uint)_bot->offset_array(landing_card), (uint)entry);
     } else {
       guarantee(landing_card == start_card - 1, "Tautology");
       // Note that N_words is the maximum offset value
-      guarantee(_array->offset_array(landing_card) <= N_words,
+      guarantee(_bot->offset_array(landing_card) <= N_words,
                 "landing card offset: %u, "
                 "N_words: %u",
-                (uint)_array->offset_array(landing_card), (uint)N_words);
+                (uint)_bot->offset_array(landing_card), (uint)N_words);
     }
   }
 }
 
-HeapWord* G1BlockOffsetArray::block_start_unsafe(const void* addr) {
-  assert(_bottom <= addr && addr < _end,
-         "addr must be covered by this Array");
-  // Must read this exactly once because it can be modified by parallel
-  // allocation.
-  HeapWord* ub = _unallocated_block;
-  if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
-    assert(ub < _end, "tautology (see above)");
-    return ub;
-  }
-  // Otherwise, find the block start using the table.
-  HeapWord* q = block_at_or_preceding(addr, false, 0);
-  return forward_to_block_containing_addr(q, addr);
-}
-
-// This duplicates a little code from the above: unavoidable.
-HeapWord*
-G1BlockOffsetArray::block_start_unsafe_const(const void* addr) const {
-  assert(_bottom <= addr && addr < _end,
-         "addr must be covered by this Array");
-  // Must read this exactly once because it can be modified by parallel
-  // allocation.
-  HeapWord* ub = _unallocated_block;
-  if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
-    assert(ub < _end, "tautology (see above)");
-    return ub;
-  }
-  // Otherwise, find the block start using the table.
-  HeapWord* q = block_at_or_preceding(addr, false, 0);
-  HeapWord* n = q + block_size(q);
-  return forward_to_block_containing_addr_const(q, n, addr);
-}
-
-
-HeapWord*
-G1BlockOffsetArray::forward_to_block_containing_addr_slow(HeapWord* q,
+HeapWord* G1BlockOffsetTablePart::forward_to_block_containing_addr_slow(HeapWord* q,
                                                           HeapWord* n,
                                                           const void* addr) {
   // We're not in the normal case.  We need to handle an important subcase
   // here: LAB allocation.  An allocation previously recorded in the
   // offset table was actually a lab allocation, and was divided into

@@ -258,53 +210,46 @@
   // query, by updating entries as we cross them.
 
   // If the fist object's end q is at the card boundary. Start refining
   // with the corresponding card (the value of the entry will be basically
   // set to 0). If the object crosses the boundary -- start from the next card.
-  size_t n_index = _array->index_for(n);
-  size_t next_index = _array->index_for(n) + !_array->is_card_boundary(n);
+  size_t n_index = _bot->index_for(n);
+  size_t next_index = _bot->index_for(n) + !_bot->is_card_boundary(n);
   // Calculate a consistent next boundary.  If "n" is not at the boundary
   // already, step to the boundary.
-  HeapWord* next_boundary = _array->address_for_index(n_index) +
+  HeapWord* next_boundary = _bot->address_for_index(n_index) +
                             (n_index == next_index ? 0 : N_words);
-  assert(next_boundary <= _array->_end,
+  assert(next_boundary <= _bot->_reserved.end(),
          "next_boundary is beyond the end of the covered region "
          " next_boundary " PTR_FORMAT " _array->_end " PTR_FORMAT,
-         p2i(next_boundary), p2i(_array->_end));
-  if (addr >= gsp()->top()) return gsp()->top();
+         p2i(next_boundary), p2i(_bot->_reserved.end()));
+  if (addr >= _space->top()) return _space->top();
   while (next_boundary < addr) {
     while (n <= next_boundary) {
       q = n;
       oop obj = oop(q);
       if (obj->klass_or_null() == NULL) return q;
       n += block_size(q);
     }
     assert(q <= next_boundary && n > next_boundary, "Consequence of loop");
     // [q, n) is the block that crosses the boundary.
-    alloc_block_work2(&next_boundary, &next_index, q, n);
+    alloc_block_work(&next_boundary, &next_index, q, n);
   }
   return forward_to_block_containing_addr_const(q, n, addr);
 }
 
-// Note that the committed size of the covered space may have changed,
-// so the table size might also wish to change.
-void G1BlockOffsetArray::resize(size_t new_word_size) {
-  HeapWord* new_end = _bottom + new_word_size;
-  _end = new_end;  // update _end
-}
-
 //
 //              threshold_
 //              |   _index_
 //              v   v
 //      +-------+-------+-------+-------+-------+
 //      | i-1   |   i   | i+1   | i+2   | i+3   |
 //      +-------+-------+-------+-------+-------+
 //       ( ^    ]
 //         block-start
 //
-void G1BlockOffsetArray::alloc_block_work2(HeapWord** threshold_, size_t* index_,
+void G1BlockOffsetTablePart::alloc_block_work(HeapWord** threshold_, size_t* index_,
                                            HeapWord* blk_start, HeapWord* blk_end) {
   // For efficiency, do copy-in/copy-out.
   HeapWord* threshold = *threshold_;
   size_t    index = *index_;
 

@@ -316,90 +261,90 @@
          "offset should be <= BlockOffsetSharedArray::N");
   assert(G1CollectedHeap::heap()->is_in_reserved(blk_start),
          "reference must be into the heap");
   assert(G1CollectedHeap::heap()->is_in_reserved(blk_end-1),
          "limit must be within the heap");
-  assert(threshold == _array->_reserved.start() + index*N_words,
+  assert(threshold == _bot->_reserved.start() + index*N_words,
          "index must agree with threshold");
 
   DEBUG_ONLY(size_t orig_index = index;)
 
   // Mark the card that holds the offset into the block.  Note
   // that _next_offset_index and _next_offset_threshold are not
   // updated until the end of this method.
-  _array->set_offset_array(index, threshold, blk_start);
+  _bot->set_offset_array(index, threshold, blk_start);
 
   // We need to now mark the subsequent cards that this blk spans.
 
   // Index of card on which blk ends.
-  size_t end_index   = _array->index_for(blk_end - 1);
+  size_t end_index   = _bot->index_for(blk_end - 1);
 
   // Are there more cards left to be updated?
   if (index + 1 <= end_index) {
-    HeapWord* rem_st  = _array->address_for_index(index + 1);
+    HeapWord* rem_st  = _bot->address_for_index(index + 1);
     // Calculate rem_end this way because end_index
     // may be the last valid index in the covered region.
-    HeapWord* rem_end = _array->address_for_index(end_index) +  N_words;
+    HeapWord* rem_end = _bot->address_for_index(end_index) +  N_words;
     set_remainder_to_point_to_start(rem_st, rem_end);
   }
 
   index = end_index + 1;
   // Calculate threshold_ this way because end_index
   // may be the last valid index in the covered region.
-  threshold = _array->address_for_index(end_index) + N_words;
+  threshold = _bot->address_for_index(end_index) + N_words;
   assert(threshold >= blk_end, "Incorrect offset threshold");
 
   // index_ and threshold_ updated here.
   *threshold_ = threshold;
   *index_ = index;
 
 #ifdef ASSERT
   // The offset can be 0 if the block starts on a boundary.  That
   // is checked by an assertion above.
-  size_t start_index = _array->index_for(blk_start);
-  HeapWord* boundary = _array->address_for_index(start_index);
-  assert((_array->offset_array(orig_index) == 0 && blk_start == boundary) ||
-         (_array->offset_array(orig_index) > 0 && _array->offset_array(orig_index) <= N_words),
+  size_t start_index = _bot->index_for(blk_start);
+  HeapWord* boundary = _bot->address_for_index(start_index);
+  assert((_bot->offset_array(orig_index) == 0 && blk_start == boundary) ||
+         (_bot->offset_array(orig_index) > 0 && _bot->offset_array(orig_index) <= N_words),
          "offset array should have been set - "
          "orig_index offset: %u, "
          "blk_start: " PTR_FORMAT ", "
          "boundary: " PTR_FORMAT,
-         (uint)_array->offset_array(orig_index),
+         (uint)_bot->offset_array(orig_index),
          p2i(blk_start), p2i(boundary));
   for (size_t j = orig_index + 1; j <= end_index; j++) {
-    assert(_array->offset_array(j) > 0 &&
-           _array->offset_array(j) <=
+    assert(_bot->offset_array(j) > 0 &&
+           _bot->offset_array(j) <=
              (u_char) (N_words+BlockOffsetArray::N_powers-1),
            "offset array should have been set - "
            "%u not > 0 OR %u not <= %u",
-           (uint) _array->offset_array(j),
-           (uint) _array->offset_array(j),
+           (uint) _bot->offset_array(j),
+           (uint) _bot->offset_array(j),
            (uint) (N_words+BlockOffsetArray::N_powers-1));
   }
 #endif
 }
 
-void G1BlockOffsetArray::verify() const {
-  assert(gsp()->bottom() < gsp()->top(), "Only non-empty regions should be verified.");
-  size_t start_card = _array->index_for(gsp()->bottom());
-  size_t end_card = _array->index_for(gsp()->top() - 1);
+void G1BlockOffsetTablePart::verify() const {
+  assert(_space->bottom() < _space->top(), "Only non-empty regions should be verified.");
+  size_t start_card = _bot->index_for(_space->bottom());
+  size_t end_card = _bot->index_for(_space->top() - 1);
 
   for (size_t current_card = start_card; current_card < end_card; current_card++) {
-    u_char entry = _array->offset_array(current_card);
+    u_char entry = _bot->offset_array(current_card);
     if (entry < N_words) {
       // The entry should point to an object before the current card. Verify that
       // it is possible to walk from that object in to the current card by just
       // iterating over the objects following it.
-      HeapWord* card_address = _array->address_for_index(current_card);
+      HeapWord* card_address = _bot->address_for_index(current_card);
       HeapWord* obj_end = card_address - entry;
       while (obj_end < card_address) {
         HeapWord* obj = obj_end;
         size_t obj_size = block_size(obj);
         obj_end = obj + obj_size;
-        guarantee(obj_end > obj && obj_end <= gsp()->top(),
+        guarantee(obj_end > obj && obj_end <= _space->top(),
                   "Invalid object end. obj: " PTR_FORMAT " obj_size: " SIZE_FORMAT " obj_end: " PTR_FORMAT " top: " PTR_FORMAT,
-                  p2i(obj), obj_size, p2i(obj_end), p2i(gsp()->top()));
+                  p2i(obj), obj_size, p2i(obj_end), p2i(_space->top()));
       }
     } else {
       // Because we refine the BOT based on which cards are dirty there is not much we can verify here.
       // We need to make sure that we are going backwards and that we don't pass the start of the
       // corresponding heap region. But that is about all we can verify.

@@ -409,105 +354,68 @@
       size_t max_backskip = current_card - start_card;
       guarantee(backskip <= max_backskip,
                 "Going backwards beyond the start_card. start_card: " SIZE_FORMAT " current_card: " SIZE_FORMAT " backskip: " SIZE_FORMAT,
                 start_card, current_card, backskip);
 
-      HeapWord* backskip_address = _array->address_for_index(current_card - backskip);
-      guarantee(backskip_address >= gsp()->bottom(),
+      HeapWord* backskip_address = _bot->address_for_index(current_card - backskip);
+      guarantee(backskip_address >= _space->bottom(),
                 "Going backwards beyond bottom of the region: bottom: " PTR_FORMAT ", backskip_address: " PTR_FORMAT,
-                p2i(gsp()->bottom()), p2i(backskip_address));
+                p2i(_space->bottom()), p2i(backskip_address));
     }
   }
 }
 
 #ifndef PRODUCT
 void
-G1BlockOffsetArray::print_on(outputStream* out) {
-  size_t from_index = _array->index_for(_bottom);
-  size_t to_index = _array->index_for(_end);
+G1BlockOffsetTablePart::print_on(outputStream* out) {
+  size_t from_index = _bot->index_for(_space->bottom());
+  size_t to_index = _bot->index_for(_space->end());
   out->print_cr(">> BOT for area [" PTR_FORMAT "," PTR_FORMAT ") "
                 "cards [" SIZE_FORMAT "," SIZE_FORMAT ")",
-                p2i(_bottom), p2i(_end), from_index, to_index);
+                p2i(_space->bottom()), p2i(_space->end()), from_index, to_index);
   for (size_t i = from_index; i < to_index; ++i) {
     out->print_cr("  entry " SIZE_FORMAT_W(8) " | " PTR_FORMAT " : %3u",
-                  i, p2i(_array->address_for_index(i)),
-                  (uint) _array->offset_array(i));
+                  i, p2i(_bot->address_for_index(i)),
+                  (uint) _bot->offset_array(i));
   }
+  out->print_cr("  next offset threshold: " PTR_FORMAT, p2i(_next_offset_threshold));
+  out->print_cr("  next offset index:     " SIZE_FORMAT, _next_offset_index);
 }
 #endif // !PRODUCT
 
-//////////////////////////////////////////////////////////////////////
-// G1BlockOffsetArrayContigSpace
-//////////////////////////////////////////////////////////////////////
-
-HeapWord*
-G1BlockOffsetArrayContigSpace::block_start_unsafe(const void* addr) {
-  assert(_bottom <= addr && addr < _end,
-         "addr must be covered by this Array");
-  HeapWord* q = block_at_or_preceding(addr, true, _next_offset_index-1);
-  return forward_to_block_containing_addr(q, addr);
-}
-
-HeapWord*
-G1BlockOffsetArrayContigSpace::
-block_start_unsafe_const(const void* addr) const {
-  assert(_bottom <= addr && addr < _end,
-         "addr must be covered by this Array");
-  HeapWord* q = block_at_or_preceding(addr, true, _next_offset_index-1);
-  HeapWord* n = q + block_size(q);
-  return forward_to_block_containing_addr_const(q, n, addr);
-}
-
-G1BlockOffsetArrayContigSpace::
-G1BlockOffsetArrayContigSpace(G1BlockOffsetSharedArray* array,
-                              MemRegion mr) :
-  G1BlockOffsetArray(array, mr)
-{
-  _next_offset_threshold = NULL;
-  _next_offset_index = 0;
-}
-
-HeapWord* G1BlockOffsetArrayContigSpace::initialize_threshold_raw() {
-  assert(!G1CollectedHeap::heap()->is_in_reserved(_array->_offset_array),
+HeapWord* G1BlockOffsetTablePart::initialize_threshold_raw() {
+  assert(!G1CollectedHeap::heap()->is_in_reserved(_bot->_offset_array),
          "just checking");
-  _next_offset_index = _array->index_for_raw(_bottom);
+  _next_offset_index = _bot->index_for_raw(_space->bottom());
   _next_offset_index++;
   _next_offset_threshold =
-    _array->address_for_index_raw(_next_offset_index);
+    _bot->address_for_index_raw(_next_offset_index);
   return _next_offset_threshold;
 }
 
-void G1BlockOffsetArrayContigSpace::zero_bottom_entry_raw() {
-  assert(!G1CollectedHeap::heap()->is_in_reserved(_array->_offset_array),
+void G1BlockOffsetTablePart::zero_bottom_entry_raw() {
+  assert(!G1CollectedHeap::heap()->is_in_reserved(_bot->_offset_array),
          "just checking");
-  size_t bottom_index = _array->index_for_raw(_bottom);
-  assert(_array->address_for_index_raw(bottom_index) == _bottom,
+  size_t bottom_index = _bot->index_for_raw(_space->bottom());
+  assert(_bot->address_for_index_raw(bottom_index) == _space->bottom(),
          "Precondition of call");
-  _array->set_offset_array_raw(bottom_index, 0);
+  _bot->set_offset_array_raw(bottom_index, 0);
 }
 
-HeapWord* G1BlockOffsetArrayContigSpace::initialize_threshold() {
-  assert(!G1CollectedHeap::heap()->is_in_reserved(_array->_offset_array),
+HeapWord* G1BlockOffsetTablePart::initialize_threshold() {
+  assert(!G1CollectedHeap::heap()->is_in_reserved(_bot->_offset_array),
          "just checking");
-  _next_offset_index = _array->index_for(_bottom);
+  _next_offset_index = _bot->index_for(_space->bottom());
   _next_offset_index++;
   _next_offset_threshold =
-    _array->address_for_index(_next_offset_index);
+    _bot->address_for_index(_next_offset_index);
   return _next_offset_threshold;
 }
 
-void G1BlockOffsetArrayContigSpace::set_for_starts_humongous(HeapWord* obj_top, size_t fill_size) {
+void G1BlockOffsetTablePart::set_for_starts_humongous(HeapWord* obj_top, size_t fill_size) {
   // The first BOT entry should have offset 0.
   reset_bot();
-  alloc_block(_bottom, obj_top);
+  alloc_block(_space->bottom(), obj_top);
   if (fill_size > 0) {
     alloc_block(obj_top, fill_size);
   }
 }
-
-#ifndef PRODUCT
-void G1BlockOffsetArrayContigSpace::print_on(outputStream* out) {
-  G1BlockOffsetArray::print_on(out);
-  out->print_cr("  next offset threshold: " PTR_FORMAT, p2i(_next_offset_threshold));
-  out->print_cr("  next offset index:     " SIZE_FORMAT, _next_offset_index);
-}
-#endif // !PRODUCT
< prev index next >