1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_HEAPREGIONREMSET_HPP
  26 #define SHARE_VM_GC_G1_HEAPREGIONREMSET_HPP
  27 
  28 #include "gc/g1/g1CodeCacheRemSet.hpp"
  29 #include "gc/g1/g1FromCardCache.hpp"
  30 #include "gc/g1/sparsePRT.hpp"
  31 
  32 // Remembered set for a heap region.  Represent a set of "cards" that
  33 // contain pointers into the owner heap region.  Cards are defined somewhat
  34 // abstractly, in terms of what the "BlockOffsetTable" in use can parse.
  35 
  36 class G1CollectedHeap;
  37 class G1BlockOffsetTable;
  38 class HeapRegion;
  39 class HeapRegionRemSetIterator;
  40 class PerRegionTable;
  41 class SparsePRT;
  42 class nmethod;
  43 
  44 // Essentially a wrapper around SparsePRTCleanupTask. See
  45 // sparsePRT.hpp for more details.
  46 class HRRSCleanupTask : public SparsePRTCleanupTask {
  47 };
  48 
  49 // The "_coarse_map" is a bitmap with one bit for each region, where set
  50 // bits indicate that the corresponding region may contain some pointer
  51 // into the owning region.
  52 
  53 // The "_fine_grain_entries" array is an open hash table of PerRegionTables
  54 // (PRTs), indicating regions for which we're keeping the RS as a set of
  55 // cards.  The strategy is to cap the size of the fine-grain table,
  56 // deleting an entry and setting the corresponding coarse-grained bit when
  57 // we would overflow this cap.
  58 
  59 // We use a mixture of locking and lock-free techniques here.  We allow
  60 // threads to locate PRTs without locking, but threads attempting to alter
  61 // a bucket list obtain a lock.  This means that any failing attempt to
  62 // find a PRT must be retried with the lock.  It might seem dangerous that
  63 // a read can find a PRT that is concurrently deleted.  This is all right,
  64 // because:
  65 //
  66 //   1) We only actually free PRT's at safe points (though we reuse them at
  67 //      other times).
  68 //   2) We find PRT's in an attempt to add entries.  If a PRT is deleted,
  69 //      it's _coarse_map bit is set, so the that we were attempting to add
  70 //      is represented.  If a deleted PRT is re-used, a thread adding a bit,
  71 //      thinking the PRT is for a different region, does no harm.
  72 
  73 class OtherRegionsTable VALUE_OBJ_CLASS_SPEC {
  74   friend class HeapRegionRemSetIterator;
  75 
  76   G1CollectedHeap* _g1h;
  77   Mutex*           _m;
  78   HeapRegion*      _hr;
  79 
  80   // These are protected by "_m".
  81   BitMap      _coarse_map;
  82   size_t      _n_coarse_entries;
  83   static jint _n_coarsenings;
  84 
  85   PerRegionTable** _fine_grain_regions;
  86   size_t           _n_fine_entries;
  87 
  88   // The fine grain remembered sets are doubly linked together using
  89   // their 'next' and 'prev' fields.
  90   // This allows fast bulk freeing of all the fine grain remembered
  91   // set entries, and fast finding of all of them without iterating
  92   // over the _fine_grain_regions table.
  93   PerRegionTable * _first_all_fine_prts;
  94   PerRegionTable * _last_all_fine_prts;
  95 
  96   // Used to sample a subset of the fine grain PRTs to determine which
  97   // PRT to evict and coarsen.
  98   size_t        _fine_eviction_start;
  99   static size_t _fine_eviction_stride;
 100   static size_t _fine_eviction_sample_size;
 101 
 102   SparsePRT   _sparse_table;
 103 
 104   // These are static after init.
 105   static size_t _max_fine_entries;
 106   static size_t _mod_max_fine_entries_mask;
 107 
 108   // Requires "prt" to be the first element of the bucket list appropriate
 109   // for "hr".  If this list contains an entry for "hr", return it,
 110   // otherwise return "NULL".
 111   PerRegionTable* find_region_table(size_t ind, HeapRegion* hr) const;
 112 
 113   // Find, delete, and return a candidate PerRegionTable, if any exists,
 114   // adding the deleted region to the coarse bitmap.  Requires the caller
 115   // to hold _m, and the fine-grain table to be full.
 116   PerRegionTable* delete_region_table();
 117 
 118   // link/add the given fine grain remembered set into the "all" list
 119   void link_to_all(PerRegionTable * prt);
 120   // unlink/remove the given fine grain remembered set into the "all" list
 121   void unlink_from_all(PerRegionTable * prt);
 122 
 123   bool contains_reference_locked(OopOrNarrowOopStar from) const;
 124 
 125   // Clear the from_card_cache entries for this region.
 126   void clear_fcc();
 127 public:
 128   // Create a new remembered set for the given heap region. The given mutex should
 129   // be used to ensure consistency.
 130   OtherRegionsTable(HeapRegion* hr, Mutex* m);
 131 
 132   // For now.  Could "expand" some tables in the future, so that this made
 133   // sense.
 134   void add_reference(OopOrNarrowOopStar from, uint tid);
 135 
 136   // Returns whether the remembered set contains the given reference.
 137   bool contains_reference(OopOrNarrowOopStar from) const;
 138 
 139   // Returns whether this remembered set (and all sub-sets) have an occupancy
 140   // that is less or equal than the given occupancy.
 141   bool occupancy_less_or_equal_than(size_t limit) const;
 142 
 143   // Removes any entries shown by the given bitmaps to contain only dead
 144   // objects. Not thread safe.
 145   // Set bits in the bitmaps indicate that the given region or card is live.
 146   void scrub(CardTableModRefBS* ctbs, BitMap* region_bm, BitMap* card_bm);
 147 
 148   // Returns whether this remembered set (and all sub-sets) does not contain any entry.
 149   bool is_empty() const;
 150 
 151   // Returns the number of cards contained in this remembered set.
 152   size_t occupied() const;
 153   size_t occ_fine() const;
 154   size_t occ_coarse() const;
 155   size_t occ_sparse() const;
 156 
 157   static jint n_coarsenings() { return _n_coarsenings; }
 158 
 159   // Returns size of the actual remembered set containers in bytes.
 160   size_t mem_size() const;
 161   // Returns the size of static data in bytes.
 162   static size_t static_mem_size();
 163   // Returns the size of the free list content in bytes.
 164   static size_t fl_mem_size();
 165 
 166   // Clear the entire contents of this remembered set.
 167   void clear();
 168 
 169   void do_cleanup_work(HRRSCleanupTask* hrrs_cleanup_task);
 170 };
 171 
 172 class HeapRegionRemSet : public CHeapObj<mtGC> {
 173   friend class VMStructs;
 174   friend class HeapRegionRemSetIterator;
 175 
 176 private:
 177   G1BlockOffsetTable* _bot;
 178 
 179   // A set of code blobs (nmethods) whose code contains pointers into
 180   // the region that owns this RSet.
 181   G1CodeRootSet _code_roots;
 182 
 183   Mutex _m;
 184 
 185   OtherRegionsTable _other_regions;
 186 
 187   enum ParIterState { Unclaimed, Claimed, Complete };
 188   volatile ParIterState _iter_state;
 189   volatile size_t _iter_claimed;
 190 
 191 public:
 192   HeapRegionRemSet(G1BlockOffsetTable* bot, HeapRegion* hr);
 193 
 194   static void setup_remset_size();
 195 
 196   bool is_empty() const {
 197     return (strong_code_roots_list_length() == 0) && _other_regions.is_empty();
 198   }
 199 
 200   bool occupancy_less_or_equal_than(size_t occ) const {
 201     return (strong_code_roots_list_length() == 0) && _other_regions.occupancy_less_or_equal_than(occ);
 202   }
 203 
 204   size_t occupied() {
 205     MutexLockerEx x(&_m, Mutex::_no_safepoint_check_flag);
 206     return occupied_locked();
 207   }
 208   size_t occupied_locked() {
 209     return _other_regions.occupied();
 210   }
 211   size_t occ_fine() const {
 212     return _other_regions.occ_fine();
 213   }
 214   size_t occ_coarse() const {
 215     return _other_regions.occ_coarse();
 216   }
 217   size_t occ_sparse() const {
 218     return _other_regions.occ_sparse();
 219   }
 220 
 221   static jint n_coarsenings() { return OtherRegionsTable::n_coarsenings(); }
 222 
 223   // Used in the sequential case.
 224   void add_reference(OopOrNarrowOopStar from) {
 225     _other_regions.add_reference(from, 0);
 226   }
 227 
 228   // Used in the parallel case.
 229   void add_reference(OopOrNarrowOopStar from, uint tid) {
 230     _other_regions.add_reference(from, tid);
 231   }
 232 
 233   // Removes any entries in the remembered set shown by the given bitmaps to
 234   // contain only dead objects. Not thread safe.
 235   // One bits in the bitmaps indicate that the given region or card is live.
 236   void scrub(CardTableModRefBS* ctbs, BitMap* region_bm, BitMap* card_bm);
 237 
 238   // The region is being reclaimed; clear its remset, and any mention of
 239   // entries for this region in other remsets.
 240   void clear();
 241   void clear_locked();
 242 
 243   // Attempt to claim the region.  Returns true iff this call caused an
 244   // atomic transition from Unclaimed to Claimed.
 245   bool claim_iter();
 246   // Sets the iteration state to "complete".
 247   void set_iter_complete();
 248   // Returns "true" iff the region's iteration is complete.
 249   bool iter_is_complete();
 250 
 251   // Support for claiming blocks of cards during iteration
 252   size_t iter_claimed() const { return _iter_claimed; }
 253   // Claim the next block of cards
 254   size_t iter_claimed_next(size_t step) {
 255     return Atomic::add(step, &_iter_claimed) - step;
 256   }
 257 
 258   void reset_for_par_iteration();
 259 
 260   bool verify_ready_for_par_iteration() {
 261     return (_iter_state == Unclaimed) && (_iter_claimed == 0);
 262   }
 263 
 264   // The actual # of bytes this hr_remset takes up.
 265   // Note also includes the strong code root set.
 266   size_t mem_size() {
 267     MutexLockerEx x(&_m, Mutex::_no_safepoint_check_flag);
 268     return _other_regions.mem_size()
 269       // This correction is necessary because the above includes the second
 270       // part.
 271       + (sizeof(HeapRegionRemSet) - sizeof(OtherRegionsTable))
 272       + strong_code_roots_mem_size();
 273   }
 274 
 275   // Returns the memory occupancy of all static data structures associated
 276   // with remembered sets.
 277   static size_t static_mem_size() {
 278     return OtherRegionsTable::static_mem_size() + G1CodeRootSet::static_mem_size();
 279   }
 280 
 281   // Returns the memory occupancy of all free_list data structures associated
 282   // with remembered sets.
 283   static size_t fl_mem_size() {
 284     return OtherRegionsTable::fl_mem_size();
 285   }
 286 
 287   bool contains_reference(OopOrNarrowOopStar from) const {
 288     return _other_regions.contains_reference(from);
 289   }
 290 
 291   // Routines for managing the list of code roots that point into
 292   // the heap region that owns this RSet.
 293   void add_strong_code_root(nmethod* nm);
 294   void add_strong_code_root_locked(nmethod* nm);
 295   void remove_strong_code_root(nmethod* nm);
 296 
 297   // Applies blk->do_code_blob() to each of the entries in
 298   // the strong code roots list
 299   void strong_code_roots_do(CodeBlobClosure* blk) const;
 300 
 301   void clean_strong_code_roots(HeapRegion* hr);
 302 
 303   // Returns the number of elements in the strong code roots list
 304   size_t strong_code_roots_list_length() const {
 305     return _code_roots.length();
 306   }
 307 
 308   // Returns true if the strong code roots contains the given
 309   // nmethod.
 310   bool strong_code_roots_list_contains(nmethod* nm) {
 311     return _code_roots.contains(nm);
 312   }
 313 
 314   // Returns the amount of memory, in bytes, currently
 315   // consumed by the strong code roots.
 316   size_t strong_code_roots_mem_size();
 317 
 318   void print() PRODUCT_RETURN;
 319 
 320   // Called during a stop-world phase to perform any deferred cleanups.
 321   static void cleanup();
 322 
 323   static void invalidate_from_card_cache(uint start_idx, size_t num_regions) {
 324     G1FromCardCache::invalidate(start_idx, num_regions);
 325   }
 326 
 327 #ifndef PRODUCT
 328   static void print_from_card_cache() {
 329     G1FromCardCache::print();
 330   }
 331 #endif
 332 
 333   // These are wrappers for the similarly-named methods on
 334   // SparsePRT. Look at sparsePRT.hpp for more details.
 335   static void reset_for_cleanup_tasks();
 336   void do_cleanup_work(HRRSCleanupTask* hrrs_cleanup_task);
 337   static void finish_cleanup_task(HRRSCleanupTask* hrrs_cleanup_task);
 338 
 339   // Run unit tests.
 340 #ifndef PRODUCT
 341   static void test();
 342 #endif
 343 };
 344 
 345 class HeapRegionRemSetIterator : public StackObj {
 346  private:
 347   // The region RSet over which we are iterating.
 348   HeapRegionRemSet* _hrrs;
 349 
 350   // Local caching of HRRS fields.
 351   const BitMap*             _coarse_map;
 352 
 353   G1BlockOffsetTable*       _bot;
 354   G1CollectedHeap*          _g1h;
 355 
 356   // The number of cards yielded since initialization.
 357   size_t _n_yielded_fine;
 358   size_t _n_yielded_coarse;
 359   size_t _n_yielded_sparse;
 360 
 361   // Indicates what granularity of table that we are currently iterating over.
 362   // We start iterating over the sparse table, progress to the fine grain
 363   // table, and then finish with the coarse table.
 364   enum IterState {
 365     Sparse,
 366     Fine,
 367     Coarse
 368   };
 369   IterState _is;
 370 
 371   // For both Coarse and Fine remembered set iteration this contains the
 372   // first card number of the heap region we currently iterate over.
 373   size_t _cur_region_card_offset;
 374 
 375   // Current region index for the Coarse remembered set iteration.
 376   int    _coarse_cur_region_index;
 377   size_t _coarse_cur_region_cur_card;
 378 
 379   bool coarse_has_next(size_t& card_index);
 380 
 381   // The PRT we are currently iterating over.
 382   PerRegionTable* _fine_cur_prt;
 383   // Card offset within the current PRT.
 384   size_t _cur_card_in_prt;
 385 
 386   // Update internal variables when switching to the given PRT.
 387   void switch_to_prt(PerRegionTable* prt);
 388   bool fine_has_next();
 389   bool fine_has_next(size_t& card_index);
 390 
 391   // The Sparse remembered set iterator.
 392   SparsePRTIter _sparse_iter;
 393 
 394  public:
 395   HeapRegionRemSetIterator(HeapRegionRemSet* hrrs);
 396 
 397   // If there remains one or more cards to be yielded, returns true and
 398   // sets "card_index" to one of those cards (which is then considered
 399   // yielded.)   Otherwise, returns false (and leaves "card_index"
 400   // undefined.)
 401   bool has_next(size_t& card_index);
 402 
 403   size_t n_yielded_fine() { return _n_yielded_fine; }
 404   size_t n_yielded_coarse() { return _n_yielded_coarse; }
 405   size_t n_yielded_sparse() { return _n_yielded_sparse; }
 406   size_t n_yielded() {
 407     return n_yielded_fine() + n_yielded_coarse() + n_yielded_sparse();
 408   }
 409 };
 410 
 411 #endif // SHARE_VM_GC_G1_HEAPREGIONREMSET_HPP