< prev index next >

src/share/vm/gc/g1/g1BlockOffsetTable.cpp

Print this page

        

*** 51,68 **** } bool G1BlockOffsetTable::is_card_boundary(HeapWord* p) const { assert(p >= _reserved.start(), "just checking"); size_t delta = pointer_delta(p, _reserved.start()); ! return (delta & right_n_bits(LogN_words)) == (size_t)NoBits; } #ifdef ASSERT void G1BlockOffsetTable::check_index(size_t index, const char* msg) const { ! assert((index) < (_reserved.word_size() >> LogN_words), "%s - index: " SIZE_FORMAT ", _vs.committed_size: " SIZE_FORMAT, ! msg, (index), (_reserved.word_size() >> LogN_words)); assert(G1CollectedHeap::heap()->is_in_exact(address_for_index_raw(index)), "Index " SIZE_FORMAT " corresponding to " PTR_FORMAT " (%u) is not in committed area.", (index), p2i(address_for_index_raw(index)), --- 51,68 ---- } bool G1BlockOffsetTable::is_card_boundary(HeapWord* p) const { assert(p >= _reserved.start(), "just checking"); size_t delta = pointer_delta(p, _reserved.start()); ! return (delta & right_n_bits((int)BOTConstants::LogN_words)) == (size_t)NoBits; } #ifdef ASSERT void G1BlockOffsetTable::check_index(size_t index, const char* msg) const { ! assert((index) < (_reserved.word_size() >> BOTConstants::LogN_words), "%s - index: " SIZE_FORMAT ", _vs.committed_size: " SIZE_FORMAT, ! msg, (index), (_reserved.word_size() >> BOTConstants::LogN_words)); assert(G1CollectedHeap::heap()->is_in_exact(address_for_index_raw(index)), "Index " SIZE_FORMAT " corresponding to " PTR_FORMAT " (%u) is not in committed area.", (index), p2i(address_for_index_raw(index)),
*** 126,136 **** // value of the new entry // size_t start_card = _bot->index_for(start); size_t end_card = _bot->index_for(end-1); assert(start ==_bot->address_for_index(start_card), "Precondition"); ! assert(end ==_bot->address_for_index(end_card)+N_words, "Precondition"); set_remainder_to_point_to_start_incl(start_card, end_card); // closed interval } // Unlike the normal convention in this code, the argument here denotes // a closed, inclusive interval: [start_card, end_card], cf set_remainder_to_point_to_start() --- 126,136 ---- // value of the new entry // size_t start_card = _bot->index_for(start); size_t end_card = _bot->index_for(end-1); assert(start ==_bot->address_for_index(start_card), "Precondition"); ! assert(end ==_bot->address_for_index(end_card)+BOTConstants::N_words, "Precondition"); set_remainder_to_point_to_start_incl(start_card, end_card); // closed interval } // Unlike the normal convention in this code, the argument here denotes // a closed, inclusive interval: [start_card, end_card], cf set_remainder_to_point_to_start()
*** 138,157 **** void G1BlockOffsetTablePart::set_remainder_to_point_to_start_incl(size_t start_card, size_t end_card) { if (start_card > end_card) { return; } assert(start_card > _bot->index_for(_space->bottom()), "Cannot be first card"); ! assert(_bot->offset_array(start_card-1) <= N_words, "Offset card has an unexpected value"); size_t start_card_for_region = start_card; u_char offset = max_jubyte; ! for (int i = 0; i < BlockOffsetArray::N_powers; i++) { // -1 so that the the card with the actual offset is counted. Another -1 // so that the reach ends in this region and not at the start // of the next. ! size_t reach = start_card - 1 + (BlockOffsetArray::power_to_cards_back(i+1) - 1); ! offset = N_words + i; if (reach >= end_card) { _bot->set_offset_array(start_card_for_region, end_card, offset); start_card_for_region = reach + 1; break; } --- 138,157 ---- void G1BlockOffsetTablePart::set_remainder_to_point_to_start_incl(size_t start_card, size_t end_card) { if (start_card > end_card) { return; } assert(start_card > _bot->index_for(_space->bottom()), "Cannot be first card"); ! assert(_bot->offset_array(start_card-1) <= BOTConstants::N_words, "Offset card has an unexpected value"); size_t start_card_for_region = start_card; u_char offset = max_jubyte; ! for (uint i = 0; i < BOTConstants::N_powers; i++) { // -1 so that the the card with the actual offset is counted. Another -1 // so that the reach ends in this region and not at the start // of the next. ! size_t reach = start_card - 1 + (BOTConstants::power_to_cards_back(i+1) - 1); ! offset = BOTConstants::N_words + i; if (reach >= end_card) { _bot->set_offset_array(start_card_for_region, end_card, offset); start_card_for_region = reach + 1; break; }
*** 168,203 **** void G1BlockOffsetTablePart::check_all_cards(size_t start_card, size_t end_card) const { if (end_card < start_card) { return; } ! guarantee(_bot->offset_array(start_card) == N_words, "Wrong value in second card"); for (size_t c = start_card + 1; c <= end_card; c++ /* yeah! */) { u_char entry = _bot->offset_array(c); ! if (c - start_card > BlockOffsetArray::power_to_cards_back(1)) { ! guarantee(entry > N_words, "Should be in logarithmic region - " "entry: %u, " "_array->offset_array(c): %u, " "N_words: %u", ! (uint)entry, (uint)_bot->offset_array(c), (uint)N_words); } ! size_t backskip = BlockOffsetArray::entry_to_cards_back(entry); size_t landing_card = c - backskip; guarantee(landing_card >= (start_card - 1), "Inv"); if (landing_card >= start_card) { guarantee(_bot->offset_array(landing_card) <= entry, "Monotonicity - landing_card offset: %u, " "entry: %u", (uint)_bot->offset_array(landing_card), (uint)entry); } else { guarantee(landing_card == start_card - 1, "Tautology"); // Note that N_words is the maximum offset value ! guarantee(_bot->offset_array(landing_card) <= N_words, "landing card offset: %u, " "N_words: %u", ! (uint)_bot->offset_array(landing_card), (uint)N_words); } } } HeapWord* G1BlockOffsetTablePart::forward_to_block_containing_addr_slow(HeapWord* q, --- 168,203 ---- void G1BlockOffsetTablePart::check_all_cards(size_t start_card, size_t end_card) const { if (end_card < start_card) { return; } ! guarantee(_bot->offset_array(start_card) == BOTConstants::N_words, "Wrong value in second card"); for (size_t c = start_card + 1; c <= end_card; c++ /* yeah! */) { u_char entry = _bot->offset_array(c); ! if (c - start_card > BOTConstants::power_to_cards_back(1)) { ! guarantee(entry > BOTConstants::N_words, "Should be in logarithmic region - " "entry: %u, " "_array->offset_array(c): %u, " "N_words: %u", ! (uint)entry, (uint)_bot->offset_array(c), BOTConstants::N_words); } ! size_t backskip = BOTConstants::entry_to_cards_back(entry); size_t landing_card = c - backskip; guarantee(landing_card >= (start_card - 1), "Inv"); if (landing_card >= start_card) { guarantee(_bot->offset_array(landing_card) <= entry, "Monotonicity - landing_card offset: %u, " "entry: %u", (uint)_bot->offset_array(landing_card), (uint)entry); } else { guarantee(landing_card == start_card - 1, "Tautology"); // Note that N_words is the maximum offset value ! guarantee(_bot->offset_array(landing_card) <= BOTConstants::N_words, "landing card offset: %u, " "N_words: %u", ! (uint)_bot->offset_array(landing_card), (uint)BOTConstants::N_words); } } } HeapWord* G1BlockOffsetTablePart::forward_to_block_containing_addr_slow(HeapWord* q,
*** 215,225 **** size_t n_index = _bot->index_for(n); size_t next_index = _bot->index_for(n) + !_bot->is_card_boundary(n); // Calculate a consistent next boundary. If "n" is not at the boundary // already, step to the boundary. HeapWord* next_boundary = _bot->address_for_index(n_index) + ! (n_index == next_index ? 0 : N_words); assert(next_boundary <= _bot->_reserved.end(), "next_boundary is beyond the end of the covered region " " next_boundary " PTR_FORMAT " _array->_end " PTR_FORMAT, p2i(next_boundary), p2i(_bot->_reserved.end())); if (addr >= _space->top()) return _space->top(); --- 215,225 ---- size_t n_index = _bot->index_for(n); size_t next_index = _bot->index_for(n) + !_bot->is_card_boundary(n); // Calculate a consistent next boundary. If "n" is not at the boundary // already, step to the boundary. HeapWord* next_boundary = _bot->address_for_index(n_index) + ! (n_index == next_index ? 0 : BOTConstants::N_words); assert(next_boundary <= _bot->_reserved.end(), "next_boundary is beyond the end of the covered region " " next_boundary " PTR_FORMAT " _array->_end " PTR_FORMAT, p2i(next_boundary), p2i(_bot->_reserved.end())); if (addr >= _space->top()) return _space->top();
*** 255,271 **** assert(blk_start != NULL && blk_end > blk_start, "phantom block"); assert(blk_end > threshold, "should be past threshold"); assert(blk_start <= threshold, "blk_start should be at or before threshold"); ! assert(pointer_delta(threshold, blk_start) <= N_words, "offset should be <= BlockOffsetSharedArray::N"); assert(G1CollectedHeap::heap()->is_in_reserved(blk_start), "reference must be into the heap"); assert(G1CollectedHeap::heap()->is_in_reserved(blk_end-1), "limit must be within the heap"); ! assert(threshold == _bot->_reserved.start() + index*N_words, "index must agree with threshold"); DEBUG_ONLY(size_t orig_index = index;) // Mark the card that holds the offset into the block. Note --- 255,271 ---- assert(blk_start != NULL && blk_end > blk_start, "phantom block"); assert(blk_end > threshold, "should be past threshold"); assert(blk_start <= threshold, "blk_start should be at or before threshold"); ! assert(pointer_delta(threshold, blk_start) <= BOTConstants::N_words, "offset should be <= BlockOffsetSharedArray::N"); assert(G1CollectedHeap::heap()->is_in_reserved(blk_start), "reference must be into the heap"); assert(G1CollectedHeap::heap()->is_in_reserved(blk_end-1), "limit must be within the heap"); ! assert(threshold == _bot->_reserved.start() + index*BOTConstants::N_words, "index must agree with threshold"); DEBUG_ONLY(size_t orig_index = index;) // Mark the card that holds the offset into the block. Note
*** 281,298 **** // Are there more cards left to be updated? if (index + 1 <= end_index) { HeapWord* rem_st = _bot->address_for_index(index + 1); // Calculate rem_end this way because end_index // may be the last valid index in the covered region. ! HeapWord* rem_end = _bot->address_for_index(end_index) + N_words; set_remainder_to_point_to_start(rem_st, rem_end); } index = end_index + 1; // Calculate threshold_ this way because end_index // may be the last valid index in the covered region. ! threshold = _bot->address_for_index(end_index) + N_words; assert(threshold >= blk_end, "Incorrect offset threshold"); // index_ and threshold_ updated here. *threshold_ = threshold; *index_ = index; --- 281,298 ---- // Are there more cards left to be updated? if (index + 1 <= end_index) { HeapWord* rem_st = _bot->address_for_index(index + 1); // Calculate rem_end this way because end_index // may be the last valid index in the covered region. ! HeapWord* rem_end = _bot->address_for_index(end_index) + BOTConstants::N_words; set_remainder_to_point_to_start(rem_st, rem_end); } index = end_index + 1; // Calculate threshold_ this way because end_index // may be the last valid index in the covered region. ! threshold = _bot->address_for_index(end_index) + BOTConstants::N_words; assert(threshold >= blk_end, "Incorrect offset threshold"); // index_ and threshold_ updated here. *threshold_ = threshold; *index_ = index;
*** 301,326 **** // The offset can be 0 if the block starts on a boundary. That // is checked by an assertion above. size_t start_index = _bot->index_for(blk_start); HeapWord* boundary = _bot->address_for_index(start_index); assert((_bot->offset_array(orig_index) == 0 && blk_start == boundary) || ! (_bot->offset_array(orig_index) > 0 && _bot->offset_array(orig_index) <= N_words), "offset array should have been set - " "orig_index offset: %u, " "blk_start: " PTR_FORMAT ", " "boundary: " PTR_FORMAT, (uint)_bot->offset_array(orig_index), p2i(blk_start), p2i(boundary)); for (size_t j = orig_index + 1; j <= end_index; j++) { assert(_bot->offset_array(j) > 0 && _bot->offset_array(j) <= ! (u_char) (N_words+BlockOffsetArray::N_powers-1), "offset array should have been set - " "%u not > 0 OR %u not <= %u", (uint) _bot->offset_array(j), (uint) _bot->offset_array(j), ! (uint) (N_words+BlockOffsetArray::N_powers-1)); } #endif } void G1BlockOffsetTablePart::verify() const { --- 301,326 ---- // The offset can be 0 if the block starts on a boundary. That // is checked by an assertion above. size_t start_index = _bot->index_for(blk_start); HeapWord* boundary = _bot->address_for_index(start_index); assert((_bot->offset_array(orig_index) == 0 && blk_start == boundary) || ! (_bot->offset_array(orig_index) > 0 && _bot->offset_array(orig_index) <= BOTConstants::N_words), "offset array should have been set - " "orig_index offset: %u, " "blk_start: " PTR_FORMAT ", " "boundary: " PTR_FORMAT, (uint)_bot->offset_array(orig_index), p2i(blk_start), p2i(boundary)); for (size_t j = orig_index + 1; j <= end_index; j++) { assert(_bot->offset_array(j) > 0 && _bot->offset_array(j) <= ! (u_char) (BOTConstants::N_words+BOTConstants::N_powers-1), "offset array should have been set - " "%u not > 0 OR %u not <= %u", (uint) _bot->offset_array(j), (uint) _bot->offset_array(j), ! (uint) (BOTConstants::N_words+BOTConstants::N_powers-1)); } #endif } void G1BlockOffsetTablePart::verify() const {
*** 328,338 **** size_t start_card = _bot->index_for(_space->bottom()); size_t end_card = _bot->index_for(_space->top() - 1); for (size_t current_card = start_card; current_card < end_card; current_card++) { u_char entry = _bot->offset_array(current_card); ! if (entry < N_words) { // The entry should point to an object before the current card. Verify that // it is possible to walk from that object in to the current card by just // iterating over the objects following it. HeapWord* card_address = _bot->address_for_index(current_card); HeapWord* obj_end = card_address - entry; --- 328,338 ---- size_t start_card = _bot->index_for(_space->bottom()); size_t end_card = _bot->index_for(_space->top() - 1); for (size_t current_card = start_card; current_card < end_card; current_card++) { u_char entry = _bot->offset_array(current_card); ! if (entry < BOTConstants::N_words) { // The entry should point to an object before the current card. Verify that // it is possible to walk from that object in to the current card by just // iterating over the objects following it. HeapWord* card_address = _bot->address_for_index(current_card); HeapWord* obj_end = card_address - entry;
*** 346,356 **** } } else { // Because we refine the BOT based on which cards are dirty there is not much we can verify here. // We need to make sure that we are going backwards and that we don't pass the start of the // corresponding heap region. But that is about all we can verify. ! size_t backskip = BlockOffsetArray::entry_to_cards_back(entry); guarantee(backskip >= 1, "Must be going back at least one card."); size_t max_backskip = current_card - start_card; guarantee(backskip <= max_backskip, "Going backwards beyond the start_card. start_card: " SIZE_FORMAT " current_card: " SIZE_FORMAT " backskip: " SIZE_FORMAT, --- 346,356 ---- } } else { // Because we refine the BOT based on which cards are dirty there is not much we can verify here. // We need to make sure that we are going backwards and that we don't pass the start of the // corresponding heap region. But that is about all we can verify. ! size_t backskip = BOTConstants::entry_to_cards_back(entry); guarantee(backskip >= 1, "Must be going back at least one card."); size_t max_backskip = current_card - start_card; guarantee(backskip <= max_backskip, "Going backwards beyond the start_card. start_card: " SIZE_FORMAT " current_card: " SIZE_FORMAT " backskip: " SIZE_FORMAT,
< prev index next >