1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_linux.hpp"
  40 #include "prims/jniFastGetField.hpp"
  41 #include "prims/jvm.h"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/extendedPC.hpp"
  45 #include "runtime/globals.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/init.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/mutexLocker.hpp"
  51 #include "runtime/objectMonitor.hpp"
  52 #include "runtime/orderAccess.inline.hpp"
  53 #include "runtime/osThread.hpp"
  54 #include "runtime/perfMemory.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #include "runtime/statSampler.hpp"
  57 #include "runtime/stubRoutines.hpp"
  58 #include "runtime/thread.inline.hpp"
  59 #include "runtime/threadCritical.hpp"
  60 #include "runtime/timer.hpp"
  61 #include "services/attachListener.hpp"
  62 #include "services/memTracker.hpp"
  63 #include "services/runtimeService.hpp"
  64 #include "utilities/decoder.hpp"
  65 #include "utilities/defaultStream.hpp"
  66 #include "utilities/events.hpp"
  67 #include "utilities/elfFile.hpp"
  68 #include "utilities/growableArray.hpp"
  69 #include "utilities/vmError.hpp"
  70 
  71 // put OS-includes here
  72 # include <sys/types.h>
  73 # include <sys/mman.h>
  74 # include <sys/stat.h>
  75 # include <sys/select.h>
  76 # include <pthread.h>
  77 # include <signal.h>
  78 # include <errno.h>
  79 # include <dlfcn.h>
  80 # include <stdio.h>
  81 # include <unistd.h>
  82 # include <sys/resource.h>
  83 # include <pthread.h>
  84 # include <sys/stat.h>
  85 # include <sys/time.h>
  86 # include <sys/times.h>
  87 # include <sys/utsname.h>
  88 # include <sys/socket.h>
  89 # include <sys/wait.h>
  90 # include <pwd.h>
  91 # include <poll.h>
  92 # include <semaphore.h>
  93 # include <fcntl.h>
  94 # include <string.h>
  95 # include <syscall.h>
  96 # include <sys/sysinfo.h>
  97 # include <gnu/libc-version.h>
  98 # include <sys/ipc.h>
  99 # include <sys/shm.h>
 100 # include <link.h>
 101 # include <stdint.h>
 102 # include <inttypes.h>
 103 # include <sys/ioctl.h>
 104 
 105 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 106 
 107 #ifndef _GNU_SOURCE
 108   #define _GNU_SOURCE
 109   #include <sched.h>
 110   #undef _GNU_SOURCE
 111 #else
 112   #include <sched.h>
 113 #endif
 114 
 115 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 116 // getrusage() is prepared to handle the associated failure.
 117 #ifndef RUSAGE_THREAD
 118 #define RUSAGE_THREAD   (1)               /* only the calling thread */
 119 #endif
 120 
 121 #define MAX_PATH    (2 * K)
 122 
 123 #define MAX_SECS 100000000
 124 
 125 // for timer info max values which include all bits
 126 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 127 
 128 #define LARGEPAGES_BIT (1 << 6)
 129 ////////////////////////////////////////////////////////////////////////////////
 130 // global variables
 131 julong os::Linux::_physical_memory = 0;
 132 
 133 address   os::Linux::_initial_thread_stack_bottom = NULL;
 134 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 135 
 136 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 137 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 138 Mutex* os::Linux::_createThread_lock = NULL;
 139 pthread_t os::Linux::_main_thread;
 140 int os::Linux::_page_size = -1;
 141 const int os::Linux::_vm_default_page_size = (8 * K);
 142 bool os::Linux::_is_floating_stack = false;
 143 bool os::Linux::_is_NPTL = false;
 144 bool os::Linux::_supports_fast_thread_cpu_time = false;
 145 const char * os::Linux::_glibc_version = NULL;
 146 const char * os::Linux::_libpthread_version = NULL;
 147 pthread_condattr_t os::Linux::_condattr[1];
 148 
 149 static jlong initial_time_count=0;
 150 
 151 static int clock_tics_per_sec = 100;
 152 
 153 // For diagnostics to print a message once. see run_periodic_checks
 154 static sigset_t check_signal_done;
 155 static bool check_signals = true;
 156 
 157 static pid_t _initial_pid = 0;
 158 
 159 /* Signal number used to suspend/resume a thread */
 160 
 161 /* do not use any signal number less than SIGSEGV, see 4355769 */
 162 static int SR_signum = SIGUSR2;
 163 sigset_t SR_sigset;
 164 
 165 /* Used to protect dlsym() calls */
 166 static pthread_mutex_t dl_mutex;
 167 
 168 // Declarations
 169 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 170 
 171 // utility functions
 172 
 173 static int SR_initialize();
 174 
 175 julong os::available_memory() {
 176   return Linux::available_memory();
 177 }
 178 
 179 julong os::Linux::available_memory() {
 180   // values in struct sysinfo are "unsigned long"
 181   struct sysinfo si;
 182   sysinfo(&si);
 183 
 184   return (julong)si.freeram * si.mem_unit;
 185 }
 186 
 187 julong os::physical_memory() {
 188   return Linux::physical_memory();
 189 }
 190 
 191 ////////////////////////////////////////////////////////////////////////////////
 192 // environment support
 193 
 194 bool os::getenv(const char* name, char* buf, int len) {
 195   const char* val = ::getenv(name);
 196   if (val != NULL && strlen(val) < (size_t)len) {
 197     strcpy(buf, val);
 198     return true;
 199   }
 200   if (len > 0) buf[0] = 0;  // return a null string
 201   return false;
 202 }
 203 
 204 
 205 // Return true if user is running as root.
 206 
 207 bool os::have_special_privileges() {
 208   static bool init = false;
 209   static bool privileges = false;
 210   if (!init) {
 211     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 212     init = true;
 213   }
 214   return privileges;
 215 }
 216 
 217 
 218 #ifndef SYS_gettid
 219 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 220   #ifdef __ia64__
 221     #define SYS_gettid 1105
 222   #else
 223     #ifdef __i386__
 224       #define SYS_gettid 224
 225     #else
 226       #ifdef __amd64__
 227         #define SYS_gettid 186
 228       #else
 229         #ifdef __sparc__
 230           #define SYS_gettid 143
 231         #else
 232           #error define gettid for the arch
 233         #endif
 234       #endif
 235     #endif
 236   #endif
 237 #endif
 238 
 239 // Cpu architecture string
 240 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 241 
 242 // pid_t gettid()
 243 //
 244 // Returns the kernel thread id of the currently running thread. Kernel
 245 // thread id is used to access /proc.
 246 //
 247 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 248 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 249 //
 250 pid_t os::Linux::gettid() {
 251   int rslt = syscall(SYS_gettid);
 252   if (rslt == -1) {
 253      // old kernel, no NPTL support
 254      return getpid();
 255   } else {
 256      return (pid_t)rslt;
 257   }
 258 }
 259 
 260 // Most versions of linux have a bug where the number of processors are
 261 // determined by looking at the /proc file system.  In a chroot environment,
 262 // the system call returns 1.  This causes the VM to act as if it is
 263 // a single processor and elide locking (see is_MP() call).
 264 static bool unsafe_chroot_detected = false;
 265 static const char *unstable_chroot_error = "/proc file system not found.\n"
 266                      "Java may be unstable running multithreaded in a chroot "
 267                      "environment on Linux when /proc filesystem is not mounted.";
 268 
 269 void os::Linux::initialize_system_info() {
 270   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 271   if (processor_count() == 1) {
 272     pid_t pid = os::Linux::gettid();
 273     char fname[32];
 274     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 275     FILE *fp = fopen(fname, "r");
 276     if (fp == NULL) {
 277       unsafe_chroot_detected = true;
 278     } else {
 279       fclose(fp);
 280     }
 281   }
 282   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 283   assert(processor_count() > 0, "linux error");
 284 }
 285 
 286 void os::init_system_properties_values() {
 287   // The next steps are taken in the product version:
 288   //
 289   // Obtain the JAVA_HOME value from the location of libjvm.so.
 290   // This library should be located at:
 291   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 292   //
 293   // If "/jre/lib/" appears at the right place in the path, then we
 294   // assume libjvm.so is installed in a JDK and we use this path.
 295   //
 296   // Otherwise exit with message: "Could not create the Java virtual machine."
 297   //
 298   // The following extra steps are taken in the debugging version:
 299   //
 300   // If "/jre/lib/" does NOT appear at the right place in the path
 301   // instead of exit check for $JAVA_HOME environment variable.
 302   //
 303   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 304   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 305   // it looks like libjvm.so is installed there
 306   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 307   //
 308   // Otherwise exit.
 309   //
 310   // Important note: if the location of libjvm.so changes this
 311   // code needs to be changed accordingly.
 312 
 313 // See ld(1):
 314 //      The linker uses the following search paths to locate required
 315 //      shared libraries:
 316 //        1: ...
 317 //        ...
 318 //        7: The default directories, normally /lib and /usr/lib.
 319 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 320 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 321 #else
 322 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 323 #endif
 324 
 325 // Base path of extensions installed on the system.
 326 #define SYS_EXT_DIR     "/usr/java/packages"
 327 #define EXTENSIONS_DIR  "/lib/ext"
 328 #define ENDORSED_DIR    "/lib/endorsed"
 329 
 330   // Buffer that fits several sprintfs.
 331   // Note that the space for the colon and the trailing null are provided
 332   // by the nulls included by the sizeof operator.
 333   const size_t bufsize =
 334     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 335          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
 336          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
 337   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 338 
 339   // sysclasspath, java_home, dll_dir
 340   {
 341     char *pslash;
 342     os::jvm_path(buf, bufsize);
 343 
 344     // Found the full path to libjvm.so.
 345     // Now cut the path to <java_home>/jre if we can.
 346     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 347     pslash = strrchr(buf, '/');
 348     if (pslash != NULL) {
 349       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 350     }
 351     Arguments::set_dll_dir(buf);
 352 
 353     if (pslash != NULL) {
 354       pslash = strrchr(buf, '/');
 355       if (pslash != NULL) {
 356         *pslash = '\0';          // Get rid of /<arch>.
 357         pslash = strrchr(buf, '/');
 358         if (pslash != NULL) {
 359           *pslash = '\0';        // Get rid of /lib.
 360         }
 361       }
 362     }
 363     Arguments::set_java_home(buf);
 364     set_boot_path('/', ':');
 365   }
 366 
 367   // Where to look for native libraries.
 368   //
 369   // Note: Due to a legacy implementation, most of the library path
 370   // is set in the launcher. This was to accomodate linking restrictions
 371   // on legacy Linux implementations (which are no longer supported).
 372   // Eventually, all the library path setting will be done here.
 373   //
 374   // However, to prevent the proliferation of improperly built native
 375   // libraries, the new path component /usr/java/packages is added here.
 376   // Eventually, all the library path setting will be done here.
 377   {
 378     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 379     // should always exist (until the legacy problem cited above is
 380     // addressed).
 381     const char *v = ::getenv("LD_LIBRARY_PATH");
 382     const char *v_colon = ":";
 383     if (v == NULL) { v = ""; v_colon = ""; }
 384     // That's +1 for the colon and +1 for the trailing '\0'.
 385     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 386                                                      strlen(v) + 1 +
 387                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 388                                                      mtInternal);
 389     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 390     Arguments::set_library_path(ld_library_path);
 391     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
 392   }
 393 
 394   // Extensions directories.
 395   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 396   Arguments::set_ext_dirs(buf);
 397 
 398   // Endorsed standards default directory.
 399   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 400   Arguments::set_endorsed_dirs(buf);
 401 
 402   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
 403 
 404 #undef DEFAULT_LIBPATH
 405 #undef SYS_EXT_DIR
 406 #undef EXTENSIONS_DIR
 407 #undef ENDORSED_DIR
 408 }
 409 
 410 ////////////////////////////////////////////////////////////////////////////////
 411 // breakpoint support
 412 
 413 void os::breakpoint() {
 414   BREAKPOINT;
 415 }
 416 
 417 extern "C" void breakpoint() {
 418   // use debugger to set breakpoint here
 419 }
 420 
 421 ////////////////////////////////////////////////////////////////////////////////
 422 // signal support
 423 
 424 debug_only(static bool signal_sets_initialized = false);
 425 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 426 
 427 bool os::Linux::is_sig_ignored(int sig) {
 428       struct sigaction oact;
 429       sigaction(sig, (struct sigaction*)NULL, &oact);
 430       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 431                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 432       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 433            return true;
 434       else
 435            return false;
 436 }
 437 
 438 void os::Linux::signal_sets_init() {
 439   // Should also have an assertion stating we are still single-threaded.
 440   assert(!signal_sets_initialized, "Already initialized");
 441   // Fill in signals that are necessarily unblocked for all threads in
 442   // the VM. Currently, we unblock the following signals:
 443   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 444   //                         by -Xrs (=ReduceSignalUsage));
 445   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 446   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 447   // the dispositions or masks wrt these signals.
 448   // Programs embedding the VM that want to use the above signals for their
 449   // own purposes must, at this time, use the "-Xrs" option to prevent
 450   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 451   // (See bug 4345157, and other related bugs).
 452   // In reality, though, unblocking these signals is really a nop, since
 453   // these signals are not blocked by default.
 454   sigemptyset(&unblocked_sigs);
 455   sigemptyset(&allowdebug_blocked_sigs);
 456   sigaddset(&unblocked_sigs, SIGILL);
 457   sigaddset(&unblocked_sigs, SIGSEGV);
 458   sigaddset(&unblocked_sigs, SIGBUS);
 459   sigaddset(&unblocked_sigs, SIGFPE);
 460 #if defined(PPC64)
 461   sigaddset(&unblocked_sigs, SIGTRAP);
 462 #endif
 463   sigaddset(&unblocked_sigs, SR_signum);
 464 
 465   if (!ReduceSignalUsage) {
 466    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 467       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 468       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 469    }
 470    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 471       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 472       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 473    }
 474    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 475       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 476       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 477    }
 478   }
 479   // Fill in signals that are blocked by all but the VM thread.
 480   sigemptyset(&vm_sigs);
 481   if (!ReduceSignalUsage)
 482     sigaddset(&vm_sigs, BREAK_SIGNAL);
 483   debug_only(signal_sets_initialized = true);
 484 
 485 }
 486 
 487 // These are signals that are unblocked while a thread is running Java.
 488 // (For some reason, they get blocked by default.)
 489 sigset_t* os::Linux::unblocked_signals() {
 490   assert(signal_sets_initialized, "Not initialized");
 491   return &unblocked_sigs;
 492 }
 493 
 494 // These are the signals that are blocked while a (non-VM) thread is
 495 // running Java. Only the VM thread handles these signals.
 496 sigset_t* os::Linux::vm_signals() {
 497   assert(signal_sets_initialized, "Not initialized");
 498   return &vm_sigs;
 499 }
 500 
 501 // These are signals that are blocked during cond_wait to allow debugger in
 502 sigset_t* os::Linux::allowdebug_blocked_signals() {
 503   assert(signal_sets_initialized, "Not initialized");
 504   return &allowdebug_blocked_sigs;
 505 }
 506 
 507 void os::Linux::hotspot_sigmask(Thread* thread) {
 508 
 509   //Save caller's signal mask before setting VM signal mask
 510   sigset_t caller_sigmask;
 511   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 512 
 513   OSThread* osthread = thread->osthread();
 514   osthread->set_caller_sigmask(caller_sigmask);
 515 
 516   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 517 
 518   if (!ReduceSignalUsage) {
 519     if (thread->is_VM_thread()) {
 520       // Only the VM thread handles BREAK_SIGNAL ...
 521       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 522     } else {
 523       // ... all other threads block BREAK_SIGNAL
 524       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 525     }
 526   }
 527 }
 528 
 529 //////////////////////////////////////////////////////////////////////////////
 530 // detecting pthread library
 531 
 532 void os::Linux::libpthread_init() {
 533   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 534   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 535   // generic name for earlier versions.
 536   // Define macros here so we can build HotSpot on old systems.
 537 # ifndef _CS_GNU_LIBC_VERSION
 538 # define _CS_GNU_LIBC_VERSION 2
 539 # endif
 540 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 541 # define _CS_GNU_LIBPTHREAD_VERSION 3
 542 # endif
 543 
 544   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 545   if (n > 0) {
 546      char *str = (char *)malloc(n, mtInternal);
 547      confstr(_CS_GNU_LIBC_VERSION, str, n);
 548      os::Linux::set_glibc_version(str);
 549   } else {
 550      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 551      static char _gnu_libc_version[32];
 552      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 553               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 554      os::Linux::set_glibc_version(_gnu_libc_version);
 555   }
 556 
 557   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 558   if (n > 0) {
 559      char *str = (char *)malloc(n, mtInternal);
 560      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 561      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 562      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 563      // is the case. LinuxThreads has a hard limit on max number of threads.
 564      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 565      // On the other hand, NPTL does not have such a limit, sysconf()
 566      // will return -1 and errno is not changed. Check if it is really NPTL.
 567      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 568          strstr(str, "NPTL") &&
 569          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 570        free(str);
 571        os::Linux::set_libpthread_version("linuxthreads");
 572      } else {
 573        os::Linux::set_libpthread_version(str);
 574      }
 575   } else {
 576     // glibc before 2.3.2 only has LinuxThreads.
 577     os::Linux::set_libpthread_version("linuxthreads");
 578   }
 579 
 580   if (strstr(libpthread_version(), "NPTL")) {
 581      os::Linux::set_is_NPTL();
 582   } else {
 583      os::Linux::set_is_LinuxThreads();
 584   }
 585 
 586   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 587   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 588   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 589      os::Linux::set_is_floating_stack();
 590   }
 591 }
 592 
 593 /////////////////////////////////////////////////////////////////////////////
 594 // thread stack
 595 
 596 // Force Linux kernel to expand current thread stack. If "bottom" is close
 597 // to the stack guard, caller should block all signals.
 598 //
 599 // MAP_GROWSDOWN:
 600 //   A special mmap() flag that is used to implement thread stacks. It tells
 601 //   kernel that the memory region should extend downwards when needed. This
 602 //   allows early versions of LinuxThreads to only mmap the first few pages
 603 //   when creating a new thread. Linux kernel will automatically expand thread
 604 //   stack as needed (on page faults).
 605 //
 606 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 607 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 608 //   region, it's hard to tell if the fault is due to a legitimate stack
 609 //   access or because of reading/writing non-exist memory (e.g. buffer
 610 //   overrun). As a rule, if the fault happens below current stack pointer,
 611 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 612 //   application (see Linux kernel fault.c).
 613 //
 614 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 615 //   stack overflow detection.
 616 //
 617 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 618 //   not use this flag. However, the stack of initial thread is not created
 619 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 620 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 621 //   and then attach the thread to JVM.
 622 //
 623 // To get around the problem and allow stack banging on Linux, we need to
 624 // manually expand thread stack after receiving the SIGSEGV.
 625 //
 626 // There are two ways to expand thread stack to address "bottom", we used
 627 // both of them in JVM before 1.5:
 628 //   1. adjust stack pointer first so that it is below "bottom", and then
 629 //      touch "bottom"
 630 //   2. mmap() the page in question
 631 //
 632 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 633 // if current sp is already near the lower end of page 101, and we need to
 634 // call mmap() to map page 100, it is possible that part of the mmap() frame
 635 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 636 // That will destroy the mmap() frame and cause VM to crash.
 637 //
 638 // The following code works by adjusting sp first, then accessing the "bottom"
 639 // page to force a page fault. Linux kernel will then automatically expand the
 640 // stack mapping.
 641 //
 642 // _expand_stack_to() assumes its frame size is less than page size, which
 643 // should always be true if the function is not inlined.
 644 
 645 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 646 #define NOINLINE
 647 #else
 648 #define NOINLINE __attribute__ ((noinline))
 649 #endif
 650 
 651 static void _expand_stack_to(address bottom) NOINLINE;
 652 
 653 static void _expand_stack_to(address bottom) {
 654   address sp;
 655   size_t size;
 656   volatile char *p;
 657 
 658   // Adjust bottom to point to the largest address within the same page, it
 659   // gives us a one-page buffer if alloca() allocates slightly more memory.
 660   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 661   bottom += os::Linux::page_size() - 1;
 662 
 663   // sp might be slightly above current stack pointer; if that's the case, we
 664   // will alloca() a little more space than necessary, which is OK. Don't use
 665   // os::current_stack_pointer(), as its result can be slightly below current
 666   // stack pointer, causing us to not alloca enough to reach "bottom".
 667   sp = (address)&sp;
 668 
 669   if (sp > bottom) {
 670     size = sp - bottom;
 671     p = (volatile char *)alloca(size);
 672     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 673     p[0] = '\0';
 674   }
 675 }
 676 
 677 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 678   assert(t!=NULL, "just checking");
 679   assert(t->osthread()->expanding_stack(), "expand should be set");
 680   assert(t->stack_base() != NULL, "stack_base was not initialized");
 681 
 682   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 683     sigset_t mask_all, old_sigset;
 684     sigfillset(&mask_all);
 685     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 686     _expand_stack_to(addr);
 687     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 688     return true;
 689   }
 690   return false;
 691 }
 692 
 693 //////////////////////////////////////////////////////////////////////////////
 694 // create new thread
 695 
 696 static address highest_vm_reserved_address();
 697 
 698 // check if it's safe to start a new thread
 699 static bool _thread_safety_check(Thread* thread) {
 700   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 701     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 702     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 703     //   allocated (MAP_FIXED) from high address space. Every thread stack
 704     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 705     //   it to other values if they rebuild LinuxThreads).
 706     //
 707     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 708     // the memory region has already been mmap'ed. That means if we have too
 709     // many threads and/or very large heap, eventually thread stack will
 710     // collide with heap.
 711     //
 712     // Here we try to prevent heap/stack collision by comparing current
 713     // stack bottom with the highest address that has been mmap'ed by JVM
 714     // plus a safety margin for memory maps created by native code.
 715     //
 716     // This feature can be disabled by setting ThreadSafetyMargin to 0
 717     //
 718     if (ThreadSafetyMargin > 0) {
 719       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 720 
 721       // not safe if our stack extends below the safety margin
 722       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 723     } else {
 724       return true;
 725     }
 726   } else {
 727     // Floating stack LinuxThreads or NPTL:
 728     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 729     //   there's not enough space left, pthread_create() will fail. If we come
 730     //   here, that means enough space has been reserved for stack.
 731     return true;
 732   }
 733 }
 734 
 735 // Thread start routine for all newly created threads
 736 static void *java_start(Thread *thread) {
 737   // Try to randomize the cache line index of hot stack frames.
 738   // This helps when threads of the same stack traces evict each other's
 739   // cache lines. The threads can be either from the same JVM instance, or
 740   // from different JVM instances. The benefit is especially true for
 741   // processors with hyperthreading technology.
 742   static int counter = 0;
 743   int pid = os::current_process_id();
 744   alloca(((pid ^ counter++) & 7) * 128);
 745 
 746   ThreadLocalStorage::set_thread(thread);
 747 
 748   OSThread* osthread = thread->osthread();
 749   Monitor* sync = osthread->startThread_lock();
 750 
 751   // non floating stack LinuxThreads needs extra check, see above
 752   if (!_thread_safety_check(thread)) {
 753     // notify parent thread
 754     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 755     osthread->set_state(ZOMBIE);
 756     sync->notify_all();
 757     return NULL;
 758   }
 759 
 760   // thread_id is kernel thread id (similar to Solaris LWP id)
 761   osthread->set_thread_id(os::Linux::gettid());
 762 
 763   if (UseNUMA) {
 764     int lgrp_id = os::numa_get_group_id();
 765     if (lgrp_id != -1) {
 766       thread->set_lgrp_id(lgrp_id);
 767     }
 768   }
 769   // initialize signal mask for this thread
 770   os::Linux::hotspot_sigmask(thread);
 771 
 772   // initialize floating point control register
 773   os::Linux::init_thread_fpu_state();
 774 
 775   // handshaking with parent thread
 776   {
 777     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 778 
 779     // notify parent thread
 780     osthread->set_state(INITIALIZED);
 781     sync->notify_all();
 782 
 783     // wait until os::start_thread()
 784     while (osthread->get_state() == INITIALIZED) {
 785       sync->wait(Mutex::_no_safepoint_check_flag);
 786     }
 787   }
 788 
 789   // call one more level start routine
 790   thread->run();
 791 
 792   return 0;
 793 }
 794 
 795 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 796   assert(thread->osthread() == NULL, "caller responsible");
 797 
 798   // Allocate the OSThread object
 799   OSThread* osthread = new OSThread(NULL, NULL);
 800   if (osthread == NULL) {
 801     return false;
 802   }
 803 
 804   // set the correct thread state
 805   osthread->set_thread_type(thr_type);
 806 
 807   // Initial state is ALLOCATED but not INITIALIZED
 808   osthread->set_state(ALLOCATED);
 809 
 810   thread->set_osthread(osthread);
 811 
 812   // init thread attributes
 813   pthread_attr_t attr;
 814   pthread_attr_init(&attr);
 815   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 816 
 817   // stack size
 818   if (os::Linux::supports_variable_stack_size()) {
 819     // calculate stack size if it's not specified by caller
 820     if (stack_size == 0) {
 821       stack_size = os::Linux::default_stack_size(thr_type);
 822 
 823       switch (thr_type) {
 824       case os::java_thread:
 825         // Java threads use ThreadStackSize which default value can be
 826         // changed with the flag -Xss
 827         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 828         stack_size = JavaThread::stack_size_at_create();
 829         break;
 830       case os::compiler_thread:
 831         if (CompilerThreadStackSize > 0) {
 832           stack_size = (size_t)(CompilerThreadStackSize * K);
 833           break;
 834         } // else fall through:
 835           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 836       case os::vm_thread:
 837       case os::pgc_thread:
 838       case os::cgc_thread:
 839       case os::watcher_thread:
 840         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 841         break;
 842       }
 843     }
 844 
 845     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 846     pthread_attr_setstacksize(&attr, stack_size);
 847   } else {
 848     // let pthread_create() pick the default value.
 849   }
 850 
 851   // glibc guard page
 852   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 853 
 854   ThreadState state;
 855 
 856   {
 857     // Serialize thread creation if we are running with fixed stack LinuxThreads
 858     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 859     if (lock) {
 860       os::Linux::createThread_lock()->lock_without_safepoint_check();
 861     }
 862 
 863     pthread_t tid;
 864     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 865 
 866     pthread_attr_destroy(&attr);
 867 
 868     if (ret != 0) {
 869       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 870         perror("pthread_create()");
 871       }
 872       // Need to clean up stuff we've allocated so far
 873       thread->set_osthread(NULL);
 874       delete osthread;
 875       if (lock) os::Linux::createThread_lock()->unlock();
 876       return false;
 877     }
 878 
 879     // Store pthread info into the OSThread
 880     osthread->set_pthread_id(tid);
 881 
 882     // Wait until child thread is either initialized or aborted
 883     {
 884       Monitor* sync_with_child = osthread->startThread_lock();
 885       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 886       while ((state = osthread->get_state()) == ALLOCATED) {
 887         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 888       }
 889     }
 890 
 891     if (lock) {
 892       os::Linux::createThread_lock()->unlock();
 893     }
 894   }
 895 
 896   // Aborted due to thread limit being reached
 897   if (state == ZOMBIE) {
 898       thread->set_osthread(NULL);
 899       delete osthread;
 900       return false;
 901   }
 902 
 903   // The thread is returned suspended (in state INITIALIZED),
 904   // and is started higher up in the call chain
 905   assert(state == INITIALIZED, "race condition");
 906   return true;
 907 }
 908 
 909 /////////////////////////////////////////////////////////////////////////////
 910 // attach existing thread
 911 
 912 // bootstrap the main thread
 913 bool os::create_main_thread(JavaThread* thread) {
 914   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 915   return create_attached_thread(thread);
 916 }
 917 
 918 bool os::create_attached_thread(JavaThread* thread) {
 919 #ifdef ASSERT
 920     thread->verify_not_published();
 921 #endif
 922 
 923   // Allocate the OSThread object
 924   OSThread* osthread = new OSThread(NULL, NULL);
 925 
 926   if (osthread == NULL) {
 927     return false;
 928   }
 929 
 930   // Store pthread info into the OSThread
 931   osthread->set_thread_id(os::Linux::gettid());
 932   osthread->set_pthread_id(::pthread_self());
 933 
 934   // initialize floating point control register
 935   os::Linux::init_thread_fpu_state();
 936 
 937   // Initial thread state is RUNNABLE
 938   osthread->set_state(RUNNABLE);
 939 
 940   thread->set_osthread(osthread);
 941 
 942   if (UseNUMA) {
 943     int lgrp_id = os::numa_get_group_id();
 944     if (lgrp_id != -1) {
 945       thread->set_lgrp_id(lgrp_id);
 946     }
 947   }
 948 
 949   if (os::Linux::is_initial_thread()) {
 950     // If current thread is initial thread, its stack is mapped on demand,
 951     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 952     // the entire stack region to avoid SEGV in stack banging.
 953     // It is also useful to get around the heap-stack-gap problem on SuSE
 954     // kernel (see 4821821 for details). We first expand stack to the top
 955     // of yellow zone, then enable stack yellow zone (order is significant,
 956     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 957     // is no gap between the last two virtual memory regions.
 958 
 959     JavaThread *jt = (JavaThread *)thread;
 960     address addr = jt->stack_yellow_zone_base();
 961     assert(addr != NULL, "initialization problem?");
 962     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 963 
 964     osthread->set_expanding_stack();
 965     os::Linux::manually_expand_stack(jt, addr);
 966     osthread->clear_expanding_stack();
 967   }
 968 
 969   // initialize signal mask for this thread
 970   // and save the caller's signal mask
 971   os::Linux::hotspot_sigmask(thread);
 972 
 973   return true;
 974 }
 975 
 976 void os::pd_start_thread(Thread* thread) {
 977   OSThread * osthread = thread->osthread();
 978   assert(osthread->get_state() != INITIALIZED, "just checking");
 979   Monitor* sync_with_child = osthread->startThread_lock();
 980   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 981   sync_with_child->notify();
 982 }
 983 
 984 // Free Linux resources related to the OSThread
 985 void os::free_thread(OSThread* osthread) {
 986   assert(osthread != NULL, "osthread not set");
 987 
 988   if (Thread::current()->osthread() == osthread) {
 989     // Restore caller's signal mask
 990     sigset_t sigmask = osthread->caller_sigmask();
 991     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 992    }
 993 
 994   delete osthread;
 995 }
 996 
 997 //////////////////////////////////////////////////////////////////////////////
 998 // thread local storage
 999 
1000 // Restore the thread pointer if the destructor is called. This is in case
1001 // someone from JNI code sets up a destructor with pthread_key_create to run
1002 // detachCurrentThread on thread death. Unless we restore the thread pointer we
1003 // will hang or crash. When detachCurrentThread is called the key will be set
1004 // to null and we will not be called again. If detachCurrentThread is never
1005 // called we could loop forever depending on the pthread implementation.
1006 static void restore_thread_pointer(void* p) {
1007   Thread* thread = (Thread*) p;
1008   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1009 }
1010 
1011 int os::allocate_thread_local_storage() {
1012   pthread_key_t key;
1013   int rslt = pthread_key_create(&key, restore_thread_pointer);
1014   assert(rslt == 0, "cannot allocate thread local storage");
1015   return (int)key;
1016 }
1017 
1018 // Note: This is currently not used by VM, as we don't destroy TLS key
1019 // on VM exit.
1020 void os::free_thread_local_storage(int index) {
1021   int rslt = pthread_key_delete((pthread_key_t)index);
1022   assert(rslt == 0, "invalid index");
1023 }
1024 
1025 void os::thread_local_storage_at_put(int index, void* value) {
1026   int rslt = pthread_setspecific((pthread_key_t)index, value);
1027   assert(rslt == 0, "pthread_setspecific failed");
1028 }
1029 
1030 extern "C" Thread* get_thread() {
1031   return ThreadLocalStorage::thread();
1032 }
1033 
1034 //////////////////////////////////////////////////////////////////////////////
1035 // initial thread
1036 
1037 // Check if current thread is the initial thread, similar to Solaris thr_main.
1038 bool os::Linux::is_initial_thread(void) {
1039   char dummy;
1040   // If called before init complete, thread stack bottom will be null.
1041   // Can be called if fatal error occurs before initialization.
1042   if (initial_thread_stack_bottom() == NULL) return false;
1043   assert(initial_thread_stack_bottom() != NULL &&
1044          initial_thread_stack_size()   != 0,
1045          "os::init did not locate initial thread's stack region");
1046   if ((address)&dummy >= initial_thread_stack_bottom() &&
1047       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1048        return true;
1049   else return false;
1050 }
1051 
1052 // Find the virtual memory area that contains addr
1053 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1054   FILE *fp = fopen("/proc/self/maps", "r");
1055   if (fp) {
1056     address low, high;
1057     while (!feof(fp)) {
1058       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1059         if (low <= addr && addr < high) {
1060            if (vma_low)  *vma_low  = low;
1061            if (vma_high) *vma_high = high;
1062            fclose (fp);
1063            return true;
1064         }
1065       }
1066       for (;;) {
1067         int ch = fgetc(fp);
1068         if (ch == EOF || ch == (int)'\n') break;
1069       }
1070     }
1071     fclose(fp);
1072   }
1073   return false;
1074 }
1075 
1076 // Locate initial thread stack. This special handling of initial thread stack
1077 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1078 // bogus value for the primordial process thread. While the launcher has created
1079 // the VM in a new thread since JDK 6, we still have to allow for the use of the
1080 // JNI invocation API from a primordial thread.
1081 void os::Linux::capture_initial_stack(size_t max_size) {
1082 
1083   // max_size is either 0 (which means accept OS default for thread stacks) or
1084   // a user-specified value known to be at least the minimum needed. If we
1085   // are actually on the primordial thread we can make it appear that we have a
1086   // smaller max_size stack by inserting the guard pages at that location. But we
1087   // cannot do anything to emulate a larger stack than what has been provided by
1088   // the OS or threading library. In fact if we try to use a stack greater than
1089   // what is set by rlimit then we will crash the hosting process.
1090 
1091   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
1092   // If this is "unlimited" then it will be a huge value.
1093   struct rlimit rlim;
1094   getrlimit(RLIMIT_STACK, &rlim);
1095   size_t stack_size = rlim.rlim_cur;
1096 
1097   // 6308388: a bug in ld.so will relocate its own .data section to the
1098   //   lower end of primordial stack; reduce ulimit -s value a little bit
1099   //   so we won't install guard page on ld.so's data section.
1100   stack_size -= 2 * page_size();
1101 
1102   // Try to figure out where the stack base (top) is. This is harder.
1103   //
1104   // When an application is started, glibc saves the initial stack pointer in
1105   // a global variable "__libc_stack_end", which is then used by system
1106   // libraries. __libc_stack_end should be pretty close to stack top. The
1107   // variable is available since the very early days. However, because it is
1108   // a private interface, it could disappear in the future.
1109   //
1110   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1111   // to __libc_stack_end, it is very close to stack top, but isn't the real
1112   // stack top. Note that /proc may not exist if VM is running as a chroot
1113   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1114   // /proc/<pid>/stat could change in the future (though unlikely).
1115   //
1116   // We try __libc_stack_end first. If that doesn't work, look for
1117   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1118   // as a hint, which should work well in most cases.
1119 
1120   uintptr_t stack_start;
1121 
1122   // try __libc_stack_end first
1123   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1124   if (p && *p) {
1125     stack_start = *p;
1126   } else {
1127     // see if we can get the start_stack field from /proc/self/stat
1128     FILE *fp;
1129     int pid;
1130     char state;
1131     int ppid;
1132     int pgrp;
1133     int session;
1134     int nr;
1135     int tpgrp;
1136     unsigned long flags;
1137     unsigned long minflt;
1138     unsigned long cminflt;
1139     unsigned long majflt;
1140     unsigned long cmajflt;
1141     unsigned long utime;
1142     unsigned long stime;
1143     long cutime;
1144     long cstime;
1145     long prio;
1146     long nice;
1147     long junk;
1148     long it_real;
1149     uintptr_t start;
1150     uintptr_t vsize;
1151     intptr_t rss;
1152     uintptr_t rsslim;
1153     uintptr_t scodes;
1154     uintptr_t ecode;
1155     int i;
1156 
1157     // Figure what the primordial thread stack base is. Code is inspired
1158     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1159     // followed by command name surrounded by parentheses, state, etc.
1160     char stat[2048];
1161     int statlen;
1162 
1163     fp = fopen("/proc/self/stat", "r");
1164     if (fp) {
1165       statlen = fread(stat, 1, 2047, fp);
1166       stat[statlen] = '\0';
1167       fclose(fp);
1168 
1169       // Skip pid and the command string. Note that we could be dealing with
1170       // weird command names, e.g. user could decide to rename java launcher
1171       // to "java 1.4.2 :)", then the stat file would look like
1172       //                1234 (java 1.4.2 :)) R ... ...
1173       // We don't really need to know the command string, just find the last
1174       // occurrence of ")" and then start parsing from there. See bug 4726580.
1175       char * s = strrchr(stat, ')');
1176 
1177       i = 0;
1178       if (s) {
1179         // Skip blank chars
1180         do s++; while (isspace(*s));
1181 
1182 #define _UFM UINTX_FORMAT
1183 #define _DFM INTX_FORMAT
1184 
1185         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1186         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1187         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1188              &state,          /* 3  %c  */
1189              &ppid,           /* 4  %d  */
1190              &pgrp,           /* 5  %d  */
1191              &session,        /* 6  %d  */
1192              &nr,             /* 7  %d  */
1193              &tpgrp,          /* 8  %d  */
1194              &flags,          /* 9  %lu  */
1195              &minflt,         /* 10 %lu  */
1196              &cminflt,        /* 11 %lu  */
1197              &majflt,         /* 12 %lu  */
1198              &cmajflt,        /* 13 %lu  */
1199              &utime,          /* 14 %lu  */
1200              &stime,          /* 15 %lu  */
1201              &cutime,         /* 16 %ld  */
1202              &cstime,         /* 17 %ld  */
1203              &prio,           /* 18 %ld  */
1204              &nice,           /* 19 %ld  */
1205              &junk,           /* 20 %ld  */
1206              &it_real,        /* 21 %ld  */
1207              &start,          /* 22 UINTX_FORMAT */
1208              &vsize,          /* 23 UINTX_FORMAT */
1209              &rss,            /* 24 INTX_FORMAT  */
1210              &rsslim,         /* 25 UINTX_FORMAT */
1211              &scodes,         /* 26 UINTX_FORMAT */
1212              &ecode,          /* 27 UINTX_FORMAT */
1213              &stack_start);   /* 28 UINTX_FORMAT */
1214       }
1215 
1216 #undef _UFM
1217 #undef _DFM
1218 
1219       if (i != 28 - 2) {
1220          assert(false, "Bad conversion from /proc/self/stat");
1221          // product mode - assume we are the initial thread, good luck in the
1222          // embedded case.
1223          warning("Can't detect initial thread stack location - bad conversion");
1224          stack_start = (uintptr_t) &rlim;
1225       }
1226     } else {
1227       // For some reason we can't open /proc/self/stat (for example, running on
1228       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1229       // most cases, so don't abort:
1230       warning("Can't detect initial thread stack location - no /proc/self/stat");
1231       stack_start = (uintptr_t) &rlim;
1232     }
1233   }
1234 
1235   // Now we have a pointer (stack_start) very close to the stack top, the
1236   // next thing to do is to figure out the exact location of stack top. We
1237   // can find out the virtual memory area that contains stack_start by
1238   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1239   // and its upper limit is the real stack top. (again, this would fail if
1240   // running inside chroot, because /proc may not exist.)
1241 
1242   uintptr_t stack_top;
1243   address low, high;
1244   if (find_vma((address)stack_start, &low, &high)) {
1245     // success, "high" is the true stack top. (ignore "low", because initial
1246     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1247     stack_top = (uintptr_t)high;
1248   } else {
1249     // failed, likely because /proc/self/maps does not exist
1250     warning("Can't detect initial thread stack location - find_vma failed");
1251     // best effort: stack_start is normally within a few pages below the real
1252     // stack top, use it as stack top, and reduce stack size so we won't put
1253     // guard page outside stack.
1254     stack_top = stack_start;
1255     stack_size -= 16 * page_size();
1256   }
1257 
1258   // stack_top could be partially down the page so align it
1259   stack_top = align_size_up(stack_top, page_size());
1260 
1261   // Allowed stack value is minimum of max_size and what we derived from rlimit
1262   if (max_size > 0) {
1263     _initial_thread_stack_size = MIN2(max_size, stack_size);
1264   } else {
1265     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1266     // clamp it at 8MB as we do on Solaris
1267     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1268   }
1269 
1270   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1271   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1272   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1273 }
1274 
1275 ////////////////////////////////////////////////////////////////////////////////
1276 // time support
1277 
1278 // Time since start-up in seconds to a fine granularity.
1279 // Used by VMSelfDestructTimer and the MemProfiler.
1280 double os::elapsedTime() {
1281 
1282   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1283 }
1284 
1285 jlong os::elapsed_counter() {
1286   return javaTimeNanos() - initial_time_count;
1287 }
1288 
1289 jlong os::elapsed_frequency() {
1290   return NANOSECS_PER_SEC; // nanosecond resolution
1291 }
1292 
1293 bool os::supports_vtime() { return true; }
1294 bool os::enable_vtime()   { return false; }
1295 bool os::vtime_enabled()  { return false; }
1296 
1297 double os::elapsedVTime() {
1298   struct rusage usage;
1299   int retval = getrusage(RUSAGE_THREAD, &usage);
1300   if (retval == 0) {
1301     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1302   } else {
1303     // better than nothing, but not much
1304     return elapsedTime();
1305   }
1306 }
1307 
1308 jlong os::javaTimeMillis() {
1309   timeval time;
1310   int status = gettimeofday(&time, NULL);
1311   assert(status != -1, "linux error");
1312   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1313 }
1314 
1315 #ifndef CLOCK_MONOTONIC
1316 #define CLOCK_MONOTONIC (1)
1317 #endif
1318 
1319 void os::Linux::clock_init() {
1320   // we do dlopen's in this particular order due to bug in linux
1321   // dynamical loader (see 6348968) leading to crash on exit
1322   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1323   if (handle == NULL) {
1324     handle = dlopen("librt.so", RTLD_LAZY);
1325   }
1326 
1327   if (handle) {
1328     int (*clock_getres_func)(clockid_t, struct timespec*) =
1329            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1330     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1331            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1332     if (clock_getres_func && clock_gettime_func) {
1333       // See if monotonic clock is supported by the kernel. Note that some
1334       // early implementations simply return kernel jiffies (updated every
1335       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1336       // for nano time (though the monotonic property is still nice to have).
1337       // It's fixed in newer kernels, however clock_getres() still returns
1338       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1339       // resolution for now. Hopefully as people move to new kernels, this
1340       // won't be a problem.
1341       struct timespec res;
1342       struct timespec tp;
1343       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1344           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1345         // yes, monotonic clock is supported
1346         _clock_gettime = clock_gettime_func;
1347         return;
1348       } else {
1349         // close librt if there is no monotonic clock
1350         dlclose(handle);
1351       }
1352     }
1353   }
1354   warning("No monotonic clock was available - timed services may " \
1355           "be adversely affected if the time-of-day clock changes");
1356 }
1357 
1358 #ifndef SYS_clock_getres
1359 
1360 #if defined(IA32) || defined(AMD64)
1361 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1362 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1363 #else
1364 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1365 #define sys_clock_getres(x,y)  -1
1366 #endif
1367 
1368 #else
1369 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1370 #endif
1371 
1372 void os::Linux::fast_thread_clock_init() {
1373   if (!UseLinuxPosixThreadCPUClocks) {
1374     return;
1375   }
1376   clockid_t clockid;
1377   struct timespec tp;
1378   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1379       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1380 
1381   // Switch to using fast clocks for thread cpu time if
1382   // the sys_clock_getres() returns 0 error code.
1383   // Note, that some kernels may support the current thread
1384   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1385   // returned by the pthread_getcpuclockid().
1386   // If the fast Posix clocks are supported then the sys_clock_getres()
1387   // must return at least tp.tv_sec == 0 which means a resolution
1388   // better than 1 sec. This is extra check for reliability.
1389 
1390   if(pthread_getcpuclockid_func &&
1391      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1392      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1393 
1394     _supports_fast_thread_cpu_time = true;
1395     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1396   }
1397 }
1398 
1399 jlong os::javaTimeNanos() {
1400   if (Linux::supports_monotonic_clock()) {
1401     struct timespec tp;
1402     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1403     assert(status == 0, "gettime error");
1404     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1405     return result;
1406   } else {
1407     timeval time;
1408     int status = gettimeofday(&time, NULL);
1409     assert(status != -1, "linux error");
1410     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1411     return 1000 * usecs;
1412   }
1413 }
1414 
1415 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1416   if (Linux::supports_monotonic_clock()) {
1417     info_ptr->max_value = ALL_64_BITS;
1418 
1419     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1420     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1421     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1422   } else {
1423     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1424     info_ptr->max_value = ALL_64_BITS;
1425 
1426     // gettimeofday is a real time clock so it skips
1427     info_ptr->may_skip_backward = true;
1428     info_ptr->may_skip_forward = true;
1429   }
1430 
1431   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1432 }
1433 
1434 // Return the real, user, and system times in seconds from an
1435 // arbitrary fixed point in the past.
1436 bool os::getTimesSecs(double* process_real_time,
1437                       double* process_user_time,
1438                       double* process_system_time) {
1439   struct tms ticks;
1440   clock_t real_ticks = times(&ticks);
1441 
1442   if (real_ticks == (clock_t) (-1)) {
1443     return false;
1444   } else {
1445     double ticks_per_second = (double) clock_tics_per_sec;
1446     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1447     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1448     *process_real_time = ((double) real_ticks) / ticks_per_second;
1449 
1450     return true;
1451   }
1452 }
1453 
1454 
1455 char * os::local_time_string(char *buf, size_t buflen) {
1456   struct tm t;
1457   time_t long_time;
1458   time(&long_time);
1459   localtime_r(&long_time, &t);
1460   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1461                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1462                t.tm_hour, t.tm_min, t.tm_sec);
1463   return buf;
1464 }
1465 
1466 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1467   return localtime_r(clock, res);
1468 }
1469 
1470 ////////////////////////////////////////////////////////////////////////////////
1471 // runtime exit support
1472 
1473 // Note: os::shutdown() might be called very early during initialization, or
1474 // called from signal handler. Before adding something to os::shutdown(), make
1475 // sure it is async-safe and can handle partially initialized VM.
1476 void os::shutdown() {
1477 
1478   // allow PerfMemory to attempt cleanup of any persistent resources
1479   perfMemory_exit();
1480 
1481   // needs to remove object in file system
1482   AttachListener::abort();
1483 
1484   // flush buffered output, finish log files
1485   ostream_abort();
1486 
1487   // Check for abort hook
1488   abort_hook_t abort_hook = Arguments::abort_hook();
1489   if (abort_hook != NULL) {
1490     abort_hook();
1491   }
1492 
1493 }
1494 
1495 // Note: os::abort() might be called very early during initialization, or
1496 // called from signal handler. Before adding something to os::abort(), make
1497 // sure it is async-safe and can handle partially initialized VM.
1498 void os::abort(bool dump_core) {
1499   os::shutdown();
1500   if (dump_core) {
1501 #ifndef PRODUCT
1502     fdStream out(defaultStream::output_fd());
1503     out.print_raw("Current thread is ");
1504     char buf[16];
1505     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1506     out.print_raw_cr(buf);
1507     out.print_raw_cr("Dumping core ...");
1508 #endif
1509     ::abort(); // dump core
1510   }
1511 
1512   ::exit(1);
1513 }
1514 
1515 // Die immediately, no exit hook, no abort hook, no cleanup.
1516 void os::die() {
1517   // _exit() on LinuxThreads only kills current thread
1518   ::abort();
1519 }
1520 
1521 
1522 // This method is a copy of JDK's sysGetLastErrorString
1523 // from src/solaris/hpi/src/system_md.c
1524 
1525 size_t os::lasterror(char *buf, size_t len) {
1526 
1527   if (errno == 0)  return 0;
1528 
1529   const char *s = ::strerror(errno);
1530   size_t n = ::strlen(s);
1531   if (n >= len) {
1532     n = len - 1;
1533   }
1534   ::strncpy(buf, s, n);
1535   buf[n] = '\0';
1536   return n;
1537 }
1538 
1539 intx os::current_thread_id() { return (intx)pthread_self(); }
1540 int os::current_process_id() {
1541 
1542   // Under the old linux thread library, linux gives each thread
1543   // its own process id. Because of this each thread will return
1544   // a different pid if this method were to return the result
1545   // of getpid(2). Linux provides no api that returns the pid
1546   // of the launcher thread for the vm. This implementation
1547   // returns a unique pid, the pid of the launcher thread
1548   // that starts the vm 'process'.
1549 
1550   // Under the NPTL, getpid() returns the same pid as the
1551   // launcher thread rather than a unique pid per thread.
1552   // Use gettid() if you want the old pre NPTL behaviour.
1553 
1554   // if you are looking for the result of a call to getpid() that
1555   // returns a unique pid for the calling thread, then look at the
1556   // OSThread::thread_id() method in osThread_linux.hpp file
1557 
1558   return (int)(_initial_pid ? _initial_pid : getpid());
1559 }
1560 
1561 // DLL functions
1562 
1563 const char* os::dll_file_extension() { return ".so"; }
1564 
1565 // This must be hard coded because it's the system's temporary
1566 // directory not the java application's temp directory, ala java.io.tmpdir.
1567 const char* os::get_temp_directory() { return "/tmp"; }
1568 
1569 static bool file_exists(const char* filename) {
1570   struct stat statbuf;
1571   if (filename == NULL || strlen(filename) == 0) {
1572     return false;
1573   }
1574   return os::stat(filename, &statbuf) == 0;
1575 }
1576 
1577 bool os::dll_build_name(char* buffer, size_t buflen,
1578                         const char* pname, const char* fname) {
1579   bool retval = false;
1580   // Copied from libhpi
1581   const size_t pnamelen = pname ? strlen(pname) : 0;
1582 
1583   // Return error on buffer overflow.
1584   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1585     return retval;
1586   }
1587 
1588   if (pnamelen == 0) {
1589     snprintf(buffer, buflen, "lib%s.so", fname);
1590     retval = true;
1591   } else if (strchr(pname, *os::path_separator()) != NULL) {
1592     int n;
1593     char** pelements = split_path(pname, &n);
1594     if (pelements == NULL) {
1595       return false;
1596     }
1597     for (int i = 0 ; i < n ; i++) {
1598       // Really shouldn't be NULL, but check can't hurt
1599       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1600         continue; // skip the empty path values
1601       }
1602       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1603       if (file_exists(buffer)) {
1604         retval = true;
1605         break;
1606       }
1607     }
1608     // release the storage
1609     for (int i = 0 ; i < n ; i++) {
1610       if (pelements[i] != NULL) {
1611         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1612       }
1613     }
1614     if (pelements != NULL) {
1615       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1616     }
1617   } else {
1618     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1619     retval = true;
1620   }
1621   return retval;
1622 }
1623 
1624 // check if addr is inside libjvm.so
1625 bool os::address_is_in_vm(address addr) {
1626   static address libjvm_base_addr;
1627   Dl_info dlinfo;
1628 
1629   if (libjvm_base_addr == NULL) {
1630     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1631       libjvm_base_addr = (address)dlinfo.dli_fbase;
1632     }
1633     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1634   }
1635 
1636   if (dladdr((void *)addr, &dlinfo) != 0) {
1637     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1638   }
1639 
1640   return false;
1641 }
1642 
1643 bool os::dll_address_to_function_name(address addr, char *buf,
1644                                       int buflen, int *offset) {
1645   // buf is not optional, but offset is optional
1646   assert(buf != NULL, "sanity check");
1647 
1648   Dl_info dlinfo;
1649 
1650   if (dladdr((void*)addr, &dlinfo) != 0) {
1651     // see if we have a matching symbol
1652     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1653       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1654         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1655       }
1656       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1657       return true;
1658     }
1659     // no matching symbol so try for just file info
1660     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1661       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1662                           buf, buflen, offset, dlinfo.dli_fname)) {
1663         return true;
1664       }
1665     }
1666   }
1667 
1668   buf[0] = '\0';
1669   if (offset != NULL) *offset = -1;
1670   return false;
1671 }
1672 
1673 struct _address_to_library_name {
1674   address addr;          // input : memory address
1675   size_t  buflen;        //         size of fname
1676   char*   fname;         // output: library name
1677   address base;          //         library base addr
1678 };
1679 
1680 static int address_to_library_name_callback(struct dl_phdr_info *info,
1681                                             size_t size, void *data) {
1682   int i;
1683   bool found = false;
1684   address libbase = NULL;
1685   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1686 
1687   // iterate through all loadable segments
1688   for (i = 0; i < info->dlpi_phnum; i++) {
1689     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1690     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1691       // base address of a library is the lowest address of its loaded
1692       // segments.
1693       if (libbase == NULL || libbase > segbase) {
1694         libbase = segbase;
1695       }
1696       // see if 'addr' is within current segment
1697       if (segbase <= d->addr &&
1698           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1699         found = true;
1700       }
1701     }
1702   }
1703 
1704   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1705   // so dll_address_to_library_name() can fall through to use dladdr() which
1706   // can figure out executable name from argv[0].
1707   if (found && info->dlpi_name && info->dlpi_name[0]) {
1708     d->base = libbase;
1709     if (d->fname) {
1710       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1711     }
1712     return 1;
1713   }
1714   return 0;
1715 }
1716 
1717 bool os::dll_address_to_library_name(address addr, char* buf,
1718                                      int buflen, int* offset) {
1719   // buf is not optional, but offset is optional
1720   assert(buf != NULL, "sanity check");
1721 
1722   Dl_info dlinfo;
1723   struct _address_to_library_name data;
1724 
1725   // There is a bug in old glibc dladdr() implementation that it could resolve
1726   // to wrong library name if the .so file has a base address != NULL. Here
1727   // we iterate through the program headers of all loaded libraries to find
1728   // out which library 'addr' really belongs to. This workaround can be
1729   // removed once the minimum requirement for glibc is moved to 2.3.x.
1730   data.addr = addr;
1731   data.fname = buf;
1732   data.buflen = buflen;
1733   data.base = NULL;
1734   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1735 
1736   if (rslt) {
1737      // buf already contains library name
1738      if (offset) *offset = addr - data.base;
1739      return true;
1740   }
1741   if (dladdr((void*)addr, &dlinfo) != 0) {
1742     if (dlinfo.dli_fname != NULL) {
1743       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1744     }
1745     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1746       *offset = addr - (address)dlinfo.dli_fbase;
1747     }
1748     return true;
1749   }
1750 
1751   buf[0] = '\0';
1752   if (offset) *offset = -1;
1753   return false;
1754 }
1755 
1756   // Loads .dll/.so and
1757   // in case of error it checks if .dll/.so was built for the
1758   // same architecture as Hotspot is running on
1759 
1760 
1761 // Remember the stack's state. The Linux dynamic linker will change
1762 // the stack to 'executable' at most once, so we must safepoint only once.
1763 bool os::Linux::_stack_is_executable = false;
1764 
1765 // VM operation that loads a library.  This is necessary if stack protection
1766 // of the Java stacks can be lost during loading the library.  If we
1767 // do not stop the Java threads, they can stack overflow before the stacks
1768 // are protected again.
1769 class VM_LinuxDllLoad: public VM_Operation {
1770  private:
1771   const char *_filename;
1772   char *_ebuf;
1773   int _ebuflen;
1774   void *_lib;
1775  public:
1776   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1777     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1778   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1779   void doit() {
1780     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1781     os::Linux::_stack_is_executable = true;
1782   }
1783   void* loaded_library() { return _lib; }
1784 };
1785 
1786 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1787 {
1788   void * result = NULL;
1789   bool load_attempted = false;
1790 
1791   // Check whether the library to load might change execution rights
1792   // of the stack. If they are changed, the protection of the stack
1793   // guard pages will be lost. We need a safepoint to fix this.
1794   //
1795   // See Linux man page execstack(8) for more info.
1796   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1797     ElfFile ef(filename);
1798     if (!ef.specifies_noexecstack()) {
1799       if (!is_init_completed()) {
1800         os::Linux::_stack_is_executable = true;
1801         // This is OK - No Java threads have been created yet, and hence no
1802         // stack guard pages to fix.
1803         //
1804         // This should happen only when you are building JDK7 using a very
1805         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1806         //
1807         // Dynamic loader will make all stacks executable after
1808         // this function returns, and will not do that again.
1809         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1810       } else {
1811         warning("You have loaded library %s which might have disabled stack guard. "
1812                 "The VM will try to fix the stack guard now.\n"
1813                 "It's highly recommended that you fix the library with "
1814                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1815                 filename);
1816 
1817         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1818         JavaThread *jt = JavaThread::current();
1819         if (jt->thread_state() != _thread_in_native) {
1820           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1821           // that requires ExecStack. Cannot enter safe point. Let's give up.
1822           warning("Unable to fix stack guard. Giving up.");
1823         } else {
1824           if (!LoadExecStackDllInVMThread) {
1825             // This is for the case where the DLL has an static
1826             // constructor function that executes JNI code. We cannot
1827             // load such DLLs in the VMThread.
1828             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1829           }
1830 
1831           ThreadInVMfromNative tiv(jt);
1832           debug_only(VMNativeEntryWrapper vew;)
1833 
1834           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1835           VMThread::execute(&op);
1836           if (LoadExecStackDllInVMThread) {
1837             result = op.loaded_library();
1838           }
1839           load_attempted = true;
1840         }
1841       }
1842     }
1843   }
1844 
1845   if (!load_attempted) {
1846     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1847   }
1848 
1849   if (result != NULL) {
1850     // Successful loading
1851     return result;
1852   }
1853 
1854   Elf32_Ehdr elf_head;
1855   int diag_msg_max_length=ebuflen-strlen(ebuf);
1856   char* diag_msg_buf=ebuf+strlen(ebuf);
1857 
1858   if (diag_msg_max_length==0) {
1859     // No more space in ebuf for additional diagnostics message
1860     return NULL;
1861   }
1862 
1863 
1864   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1865 
1866   if (file_descriptor < 0) {
1867     // Can't open library, report dlerror() message
1868     return NULL;
1869   }
1870 
1871   bool failed_to_read_elf_head=
1872     (sizeof(elf_head)!=
1873         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1874 
1875   ::close(file_descriptor);
1876   if (failed_to_read_elf_head) {
1877     // file i/o error - report dlerror() msg
1878     return NULL;
1879   }
1880 
1881   typedef struct {
1882     Elf32_Half  code;         // Actual value as defined in elf.h
1883     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1884     char        elf_class;    // 32 or 64 bit
1885     char        endianess;    // MSB or LSB
1886     char*       name;         // String representation
1887   } arch_t;
1888 
1889   #ifndef EM_486
1890   #define EM_486          6               /* Intel 80486 */
1891   #endif
1892 
1893   static const arch_t arch_array[]={
1894     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1895     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1896     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1897     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1898     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1899     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1900     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1901     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1902 #if defined(VM_LITTLE_ENDIAN)
1903     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1904 #else
1905     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1906 #endif
1907     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1908     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1909     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1910     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1911     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1912     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1913     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1914   };
1915 
1916   #if  (defined IA32)
1917     static  Elf32_Half running_arch_code=EM_386;
1918   #elif   (defined AMD64)
1919     static  Elf32_Half running_arch_code=EM_X86_64;
1920   #elif  (defined IA64)
1921     static  Elf32_Half running_arch_code=EM_IA_64;
1922   #elif  (defined __sparc) && (defined _LP64)
1923     static  Elf32_Half running_arch_code=EM_SPARCV9;
1924   #elif  (defined __sparc) && (!defined _LP64)
1925     static  Elf32_Half running_arch_code=EM_SPARC;
1926   #elif  (defined __powerpc64__)
1927     static  Elf32_Half running_arch_code=EM_PPC64;
1928   #elif  (defined __powerpc__)
1929     static  Elf32_Half running_arch_code=EM_PPC;
1930   #elif  (defined ARM)
1931     static  Elf32_Half running_arch_code=EM_ARM;
1932   #elif  (defined S390)
1933     static  Elf32_Half running_arch_code=EM_S390;
1934   #elif  (defined ALPHA)
1935     static  Elf32_Half running_arch_code=EM_ALPHA;
1936   #elif  (defined MIPSEL)
1937     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1938   #elif  (defined PARISC)
1939     static  Elf32_Half running_arch_code=EM_PARISC;
1940   #elif  (defined MIPS)
1941     static  Elf32_Half running_arch_code=EM_MIPS;
1942   #elif  (defined M68K)
1943     static  Elf32_Half running_arch_code=EM_68K;
1944   #else
1945     #error Method os::dll_load requires that one of following is defined:\
1946          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1947   #endif
1948 
1949   // Identify compatability class for VM's architecture and library's architecture
1950   // Obtain string descriptions for architectures
1951 
1952   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1953   int running_arch_index=-1;
1954 
1955   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1956     if (running_arch_code == arch_array[i].code) {
1957       running_arch_index    = i;
1958     }
1959     if (lib_arch.code == arch_array[i].code) {
1960       lib_arch.compat_class = arch_array[i].compat_class;
1961       lib_arch.name         = arch_array[i].name;
1962     }
1963   }
1964 
1965   assert(running_arch_index != -1,
1966     "Didn't find running architecture code (running_arch_code) in arch_array");
1967   if (running_arch_index == -1) {
1968     // Even though running architecture detection failed
1969     // we may still continue with reporting dlerror() message
1970     return NULL;
1971   }
1972 
1973   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1974     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1975     return NULL;
1976   }
1977 
1978 #ifndef S390
1979   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1980     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1981     return NULL;
1982   }
1983 #endif // !S390
1984 
1985   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1986     if ( lib_arch.name!=NULL ) {
1987       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1988         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1989         lib_arch.name, arch_array[running_arch_index].name);
1990     } else {
1991       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1992       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1993         lib_arch.code,
1994         arch_array[running_arch_index].name);
1995     }
1996   }
1997 
1998   return NULL;
1999 }
2000 
2001 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2002   void * result = ::dlopen(filename, RTLD_LAZY);
2003   if (result == NULL) {
2004     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2005     ebuf[ebuflen-1] = '\0';
2006   }
2007   return result;
2008 }
2009 
2010 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2011   void * result = NULL;
2012   if (LoadExecStackDllInVMThread) {
2013     result = dlopen_helper(filename, ebuf, ebuflen);
2014   }
2015 
2016   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2017   // library that requires an executable stack, or which does not have this
2018   // stack attribute set, dlopen changes the stack attribute to executable. The
2019   // read protection of the guard pages gets lost.
2020   //
2021   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2022   // may have been queued at the same time.
2023 
2024   if (!_stack_is_executable) {
2025     JavaThread *jt = Threads::first();
2026 
2027     while (jt) {
2028       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2029           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2030         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2031                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2032           warning("Attempt to reguard stack yellow zone failed.");
2033         }
2034       }
2035       jt = jt->next();
2036     }
2037   }
2038 
2039   return result;
2040 }
2041 
2042 /*
2043  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2044  * chances are you might want to run the generated bits against glibc-2.0
2045  * libdl.so, so always use locking for any version of glibc.
2046  */
2047 void* os::dll_lookup(void* handle, const char* name) {
2048   pthread_mutex_lock(&dl_mutex);
2049   void* res = dlsym(handle, name);
2050   pthread_mutex_unlock(&dl_mutex);
2051   return res;
2052 }
2053 
2054 void* os::get_default_process_handle() {
2055   return (void*)::dlopen(NULL, RTLD_LAZY);
2056 }
2057 
2058 static bool _print_ascii_file(const char* filename, outputStream* st) {
2059   int fd = ::open(filename, O_RDONLY);
2060   if (fd == -1) {
2061      return false;
2062   }
2063 
2064   char buf[32];
2065   int bytes;
2066   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2067     st->print_raw(buf, bytes);
2068   }
2069 
2070   ::close(fd);
2071 
2072   return true;
2073 }
2074 
2075 void os::print_dll_info(outputStream *st) {
2076    st->print_cr("Dynamic libraries:");
2077 
2078    char fname[32];
2079    pid_t pid = os::Linux::gettid();
2080 
2081    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2082 
2083    if (!_print_ascii_file(fname, st)) {
2084      st->print("Can not get library information for pid = %d\n", pid);
2085    }
2086 }
2087 
2088 void os::print_os_info_brief(outputStream* st) {
2089   os::Linux::print_distro_info(st);
2090 
2091   os::Posix::print_uname_info(st);
2092 
2093   os::Linux::print_libversion_info(st);
2094 
2095 }
2096 
2097 void os::print_os_info(outputStream* st) {
2098   st->print("OS:");
2099 
2100   os::Linux::print_distro_info(st);
2101 
2102   os::Posix::print_uname_info(st);
2103 
2104   // Print warning if unsafe chroot environment detected
2105   if (unsafe_chroot_detected) {
2106     st->print("WARNING!! ");
2107     st->print_cr("%s", unstable_chroot_error);
2108   }
2109 
2110   os::Linux::print_libversion_info(st);
2111 
2112   os::Posix::print_rlimit_info(st);
2113 
2114   os::Posix::print_load_average(st);
2115 
2116   os::Linux::print_full_memory_info(st);
2117 }
2118 
2119 // Try to identify popular distros.
2120 // Most Linux distributions have a /etc/XXX-release file, which contains
2121 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2122 // file that also contains the OS version string. Some have more than one
2123 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2124 // /etc/redhat-release.), so the order is important.
2125 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2126 // their own specific XXX-release file as well as a redhat-release file.
2127 // Because of this the XXX-release file needs to be searched for before the
2128 // redhat-release file.
2129 // Since Red Hat has a lsb-release file that is not very descriptive the
2130 // search for redhat-release needs to be before lsb-release.
2131 // Since the lsb-release file is the new standard it needs to be searched
2132 // before the older style release files.
2133 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2134 // next to last resort.  The os-release file is a new standard that contains
2135 // distribution information and the system-release file seems to be an old
2136 // standard that has been replaced by the lsb-release and os-release files.
2137 // Searching for the debian_version file is the last resort.  It contains
2138 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2139 // "Debian " is printed before the contents of the debian_version file.
2140 void os::Linux::print_distro_info(outputStream* st) {
2141    if (!_print_ascii_file("/etc/oracle-release", st) &&
2142        !_print_ascii_file("/etc/mandriva-release", st) &&
2143        !_print_ascii_file("/etc/mandrake-release", st) &&
2144        !_print_ascii_file("/etc/sun-release", st) &&
2145        !_print_ascii_file("/etc/redhat-release", st) &&
2146        !_print_ascii_file("/etc/lsb-release", st) &&
2147        !_print_ascii_file("/etc/SuSE-release", st) &&
2148        !_print_ascii_file("/etc/turbolinux-release", st) &&
2149        !_print_ascii_file("/etc/gentoo-release", st) &&
2150        !_print_ascii_file("/etc/ltib-release", st) &&
2151        !_print_ascii_file("/etc/angstrom-version", st) &&
2152        !_print_ascii_file("/etc/system-release", st) &&
2153        !_print_ascii_file("/etc/os-release", st)) {
2154 
2155        if (file_exists("/etc/debian_version")) {
2156          st->print("Debian ");
2157          _print_ascii_file("/etc/debian_version", st);
2158        } else {
2159          st->print("Linux");
2160        }
2161    }
2162    st->cr();
2163 }
2164 
2165 void os::Linux::print_libversion_info(outputStream* st) {
2166   // libc, pthread
2167   st->print("libc:");
2168   st->print("%s ", os::Linux::glibc_version());
2169   st->print("%s ", os::Linux::libpthread_version());
2170   if (os::Linux::is_LinuxThreads()) {
2171      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2172   }
2173   st->cr();
2174 }
2175 
2176 void os::Linux::print_full_memory_info(outputStream* st) {
2177    st->print("\n/proc/meminfo:\n");
2178    _print_ascii_file("/proc/meminfo", st);
2179    st->cr();
2180 }
2181 
2182 void os::print_memory_info(outputStream* st) {
2183 
2184   st->print("Memory:");
2185   st->print(" %dk page", os::vm_page_size()>>10);
2186 
2187   // values in struct sysinfo are "unsigned long"
2188   struct sysinfo si;
2189   sysinfo(&si);
2190 
2191   st->print(", physical " UINT64_FORMAT "k",
2192             os::physical_memory() >> 10);
2193   st->print("(" UINT64_FORMAT "k free)",
2194             os::available_memory() >> 10);
2195   st->print(", swap " UINT64_FORMAT "k",
2196             ((jlong)si.totalswap * si.mem_unit) >> 10);
2197   st->print("(" UINT64_FORMAT "k free)",
2198             ((jlong)si.freeswap * si.mem_unit) >> 10);
2199   st->cr();
2200 }
2201 
2202 void os::pd_print_cpu_info(outputStream* st) {
2203   st->print("\n/proc/cpuinfo:\n");
2204   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2205     st->print("  <Not Available>");
2206   }
2207   st->cr();
2208 }
2209 
2210 void os::print_siginfo(outputStream* st, void* siginfo) {
2211   const siginfo_t* si = (const siginfo_t*)siginfo;
2212 
2213   os::Posix::print_siginfo_brief(st, si);
2214 #if INCLUDE_CDS
2215   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2216       UseSharedSpaces) {
2217     FileMapInfo* mapinfo = FileMapInfo::current_info();
2218     if (mapinfo->is_in_shared_space(si->si_addr)) {
2219       st->print("\n\nError accessing class data sharing archive."   \
2220                 " Mapped file inaccessible during execution, "      \
2221                 " possible disk/network problem.");
2222     }
2223   }
2224 #endif
2225   st->cr();
2226 }
2227 
2228 
2229 static void print_signal_handler(outputStream* st, int sig,
2230                                  char* buf, size_t buflen);
2231 
2232 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2233   st->print_cr("Signal Handlers:");
2234   print_signal_handler(st, SIGSEGV, buf, buflen);
2235   print_signal_handler(st, SIGBUS , buf, buflen);
2236   print_signal_handler(st, SIGFPE , buf, buflen);
2237   print_signal_handler(st, SIGPIPE, buf, buflen);
2238   print_signal_handler(st, SIGXFSZ, buf, buflen);
2239   print_signal_handler(st, SIGILL , buf, buflen);
2240   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2241   print_signal_handler(st, SR_signum, buf, buflen);
2242   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2243   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2244   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2245   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2246 #if defined(PPC64)
2247   print_signal_handler(st, SIGTRAP, buf, buflen);
2248 #endif
2249 }
2250 
2251 static char saved_jvm_path[MAXPATHLEN] = {0};
2252 
2253 // Find the full path to the current module, libjvm.so
2254 void os::jvm_path(char *buf, jint buflen) {
2255   // Error checking.
2256   if (buflen < MAXPATHLEN) {
2257     assert(false, "must use a large-enough buffer");
2258     buf[0] = '\0';
2259     return;
2260   }
2261   // Lazy resolve the path to current module.
2262   if (saved_jvm_path[0] != 0) {
2263     strcpy(buf, saved_jvm_path);
2264     return;
2265   }
2266 
2267   char dli_fname[MAXPATHLEN];
2268   bool ret = dll_address_to_library_name(
2269                 CAST_FROM_FN_PTR(address, os::jvm_path),
2270                 dli_fname, sizeof(dli_fname), NULL);
2271   assert(ret, "cannot locate libjvm");
2272   char *rp = NULL;
2273   if (ret && dli_fname[0] != '\0') {
2274     rp = realpath(dli_fname, buf);
2275   }
2276   if (rp == NULL)
2277     return;
2278 
2279   if (Arguments::created_by_gamma_launcher()) {
2280     // Support for the gamma launcher.  Typical value for buf is
2281     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2282     // the right place in the string, then assume we are installed in a JDK and
2283     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2284     // up the path so it looks like libjvm.so is installed there (append a
2285     // fake suffix hotspot/libjvm.so).
2286     const char *p = buf + strlen(buf) - 1;
2287     for (int count = 0; p > buf && count < 5; ++count) {
2288       for (--p; p > buf && *p != '/'; --p)
2289         /* empty */ ;
2290     }
2291 
2292     if (strncmp(p, "/jre/lib/", 9) != 0) {
2293       // Look for JAVA_HOME in the environment.
2294       char* java_home_var = ::getenv("JAVA_HOME");
2295       if (java_home_var != NULL && java_home_var[0] != 0) {
2296         char* jrelib_p;
2297         int len;
2298 
2299         // Check the current module name "libjvm.so".
2300         p = strrchr(buf, '/');
2301         assert(strstr(p, "/libjvm") == p, "invalid library name");
2302 
2303         rp = realpath(java_home_var, buf);
2304         if (rp == NULL)
2305           return;
2306 
2307         // determine if this is a legacy image or modules image
2308         // modules image doesn't have "jre" subdirectory
2309         len = strlen(buf);
2310         assert(len < buflen, "Ran out of buffer room");
2311         jrelib_p = buf + len;
2312         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2313         if (0 != access(buf, F_OK)) {
2314           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2315         }
2316 
2317         if (0 == access(buf, F_OK)) {
2318           // Use current module name "libjvm.so"
2319           len = strlen(buf);
2320           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2321         } else {
2322           // Go back to path of .so
2323           rp = realpath(dli_fname, buf);
2324           if (rp == NULL)
2325             return;
2326         }
2327       }
2328     }
2329   }
2330 
2331   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2332 }
2333 
2334 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2335   // no prefix required, not even "_"
2336 }
2337 
2338 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2339   // no suffix required
2340 }
2341 
2342 ////////////////////////////////////////////////////////////////////////////////
2343 // sun.misc.Signal support
2344 
2345 static volatile jint sigint_count = 0;
2346 
2347 static void
2348 UserHandler(int sig, void *siginfo, void *context) {
2349   // 4511530 - sem_post is serialized and handled by the manager thread. When
2350   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2351   // don't want to flood the manager thread with sem_post requests.
2352   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2353       return;
2354 
2355   // Ctrl-C is pressed during error reporting, likely because the error
2356   // handler fails to abort. Let VM die immediately.
2357   if (sig == SIGINT && is_error_reported()) {
2358      os::die();
2359   }
2360 
2361   os::signal_notify(sig);
2362 }
2363 
2364 void* os::user_handler() {
2365   return CAST_FROM_FN_PTR(void*, UserHandler);
2366 }
2367 
2368 class Semaphore : public StackObj {
2369   public:
2370     Semaphore();
2371     ~Semaphore();
2372     void signal();
2373     void wait();
2374     bool trywait();
2375     bool timedwait(unsigned int sec, int nsec);
2376   private:
2377     sem_t _semaphore;
2378 };
2379 
2380 Semaphore::Semaphore() {
2381   sem_init(&_semaphore, 0, 0);
2382 }
2383 
2384 Semaphore::~Semaphore() {
2385   sem_destroy(&_semaphore);
2386 }
2387 
2388 void Semaphore::signal() {
2389   sem_post(&_semaphore);
2390 }
2391 
2392 void Semaphore::wait() {
2393   sem_wait(&_semaphore);
2394 }
2395 
2396 bool Semaphore::trywait() {
2397   return sem_trywait(&_semaphore) == 0;
2398 }
2399 
2400 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2401 
2402   struct timespec ts;
2403   // Semaphore's are always associated with CLOCK_REALTIME
2404   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2405   // see unpackTime for discussion on overflow checking
2406   if (sec >= MAX_SECS) {
2407     ts.tv_sec += MAX_SECS;
2408     ts.tv_nsec = 0;
2409   } else {
2410     ts.tv_sec += sec;
2411     ts.tv_nsec += nsec;
2412     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2413       ts.tv_nsec -= NANOSECS_PER_SEC;
2414       ++ts.tv_sec; // note: this must be <= max_secs
2415     }
2416   }
2417 
2418   while (1) {
2419     int result = sem_timedwait(&_semaphore, &ts);
2420     if (result == 0) {
2421       return true;
2422     } else if (errno == EINTR) {
2423       continue;
2424     } else if (errno == ETIMEDOUT) {
2425       return false;
2426     } else {
2427       return false;
2428     }
2429   }
2430 }
2431 
2432 extern "C" {
2433   typedef void (*sa_handler_t)(int);
2434   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2435 }
2436 
2437 void* os::signal(int signal_number, void* handler) {
2438   struct sigaction sigAct, oldSigAct;
2439 
2440   sigfillset(&(sigAct.sa_mask));
2441   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2442   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2443 
2444   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2445     // -1 means registration failed
2446     return (void *)-1;
2447   }
2448 
2449   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2450 }
2451 
2452 void os::signal_raise(int signal_number) {
2453   ::raise(signal_number);
2454 }
2455 
2456 /*
2457  * The following code is moved from os.cpp for making this
2458  * code platform specific, which it is by its very nature.
2459  */
2460 
2461 // Will be modified when max signal is changed to be dynamic
2462 int os::sigexitnum_pd() {
2463   return NSIG;
2464 }
2465 
2466 // a counter for each possible signal value
2467 static volatile jint pending_signals[NSIG+1] = { 0 };
2468 
2469 // Linux(POSIX) specific hand shaking semaphore.
2470 static sem_t sig_sem;
2471 static Semaphore sr_semaphore;
2472 
2473 void os::signal_init_pd() {
2474   // Initialize signal structures
2475   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2476 
2477   // Initialize signal semaphore
2478   ::sem_init(&sig_sem, 0, 0);
2479 }
2480 
2481 void os::signal_notify(int sig) {
2482   Atomic::inc(&pending_signals[sig]);
2483   ::sem_post(&sig_sem);
2484 }
2485 
2486 static int check_pending_signals(bool wait) {
2487   Atomic::store(0, &sigint_count);
2488   for (;;) {
2489     for (int i = 0; i < NSIG + 1; i++) {
2490       jint n = pending_signals[i];
2491       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2492         return i;
2493       }
2494     }
2495     if (!wait) {
2496       return -1;
2497     }
2498     JavaThread *thread = JavaThread::current();
2499     ThreadBlockInVM tbivm(thread);
2500 
2501     bool threadIsSuspended;
2502     do {
2503       thread->set_suspend_equivalent();
2504       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2505       ::sem_wait(&sig_sem);
2506 
2507       // were we externally suspended while we were waiting?
2508       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2509       if (threadIsSuspended) {
2510         //
2511         // The semaphore has been incremented, but while we were waiting
2512         // another thread suspended us. We don't want to continue running
2513         // while suspended because that would surprise the thread that
2514         // suspended us.
2515         //
2516         ::sem_post(&sig_sem);
2517 
2518         thread->java_suspend_self();
2519       }
2520     } while (threadIsSuspended);
2521   }
2522 }
2523 
2524 int os::signal_lookup() {
2525   return check_pending_signals(false);
2526 }
2527 
2528 int os::signal_wait() {
2529   return check_pending_signals(true);
2530 }
2531 
2532 ////////////////////////////////////////////////////////////////////////////////
2533 // Virtual Memory
2534 
2535 int os::vm_page_size() {
2536   // Seems redundant as all get out
2537   assert(os::Linux::page_size() != -1, "must call os::init");
2538   return os::Linux::page_size();
2539 }
2540 
2541 // Solaris allocates memory by pages.
2542 int os::vm_allocation_granularity() {
2543   assert(os::Linux::page_size() != -1, "must call os::init");
2544   return os::Linux::page_size();
2545 }
2546 
2547 // Rationale behind this function:
2548 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2549 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2550 //  samples for JITted code. Here we create private executable mapping over the code cache
2551 //  and then we can use standard (well, almost, as mapping can change) way to provide
2552 //  info for the reporting script by storing timestamp and location of symbol
2553 void linux_wrap_code(char* base, size_t size) {
2554   static volatile jint cnt = 0;
2555 
2556   if (!UseOprofile) {
2557     return;
2558   }
2559 
2560   char buf[PATH_MAX+1];
2561   int num = Atomic::add(1, &cnt);
2562 
2563   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2564            os::get_temp_directory(), os::current_process_id(), num);
2565   unlink(buf);
2566 
2567   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2568 
2569   if (fd != -1) {
2570     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2571     if (rv != (off_t)-1) {
2572       if (::write(fd, "", 1) == 1) {
2573         mmap(base, size,
2574              PROT_READ|PROT_WRITE|PROT_EXEC,
2575              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2576       }
2577     }
2578     ::close(fd);
2579     unlink(buf);
2580   }
2581 }
2582 
2583 static bool recoverable_mmap_error(int err) {
2584   // See if the error is one we can let the caller handle. This
2585   // list of errno values comes from JBS-6843484. I can't find a
2586   // Linux man page that documents this specific set of errno
2587   // values so while this list currently matches Solaris, it may
2588   // change as we gain experience with this failure mode.
2589   switch (err) {
2590   case EBADF:
2591   case EINVAL:
2592   case ENOTSUP:
2593     // let the caller deal with these errors
2594     return true;
2595 
2596   default:
2597     // Any remaining errors on this OS can cause our reserved mapping
2598     // to be lost. That can cause confusion where different data
2599     // structures think they have the same memory mapped. The worst
2600     // scenario is if both the VM and a library think they have the
2601     // same memory mapped.
2602     return false;
2603   }
2604 }
2605 
2606 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2607                                     int err) {
2608   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2609           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2610           strerror(err), err);
2611 }
2612 
2613 static void warn_fail_commit_memory(char* addr, size_t size,
2614                                     size_t alignment_hint, bool exec,
2615                                     int err) {
2616   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2617           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2618           alignment_hint, exec, strerror(err), err);
2619 }
2620 
2621 // NOTE: Linux kernel does not really reserve the pages for us.
2622 //       All it does is to check if there are enough free pages
2623 //       left at the time of mmap(). This could be a potential
2624 //       problem.
2625 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2626   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2627   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2628                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2629   if (res != (uintptr_t) MAP_FAILED) {
2630     if (UseNUMAInterleaving) {
2631       numa_make_global(addr, size);
2632     }
2633     return 0;
2634   }
2635 
2636   int err = errno;  // save errno from mmap() call above
2637 
2638   if (!recoverable_mmap_error(err)) {
2639     warn_fail_commit_memory(addr, size, exec, err);
2640     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2641   }
2642 
2643   return err;
2644 }
2645 
2646 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2647   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2648 }
2649 
2650 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2651                                   const char* mesg) {
2652   assert(mesg != NULL, "mesg must be specified");
2653   int err = os::Linux::commit_memory_impl(addr, size, exec);
2654   if (err != 0) {
2655     // the caller wants all commit errors to exit with the specified mesg:
2656     warn_fail_commit_memory(addr, size, exec, err);
2657     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2658   }
2659 }
2660 
2661 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2662 #ifndef MAP_HUGETLB
2663 #define MAP_HUGETLB 0x40000
2664 #endif
2665 
2666 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2667 #ifndef MADV_HUGEPAGE
2668 #define MADV_HUGEPAGE 14
2669 #endif
2670 
2671 int os::Linux::commit_memory_impl(char* addr, size_t size,
2672                                   size_t alignment_hint, bool exec) {
2673   int err = os::Linux::commit_memory_impl(addr, size, exec);
2674   if (err == 0) {
2675     realign_memory(addr, size, alignment_hint);
2676   }
2677   return err;
2678 }
2679 
2680 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2681                           bool exec) {
2682   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2683 }
2684 
2685 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2686                                   size_t alignment_hint, bool exec,
2687                                   const char* mesg) {
2688   assert(mesg != NULL, "mesg must be specified");
2689   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2690   if (err != 0) {
2691     // the caller wants all commit errors to exit with the specified mesg:
2692     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2693     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2694   }
2695 }
2696 
2697 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2698   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2699     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2700     // be supported or the memory may already be backed by huge pages.
2701     ::madvise(addr, bytes, MADV_HUGEPAGE);
2702   }
2703 }
2704 
2705 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2706   // This method works by doing an mmap over an existing mmaping and effectively discarding
2707   // the existing pages. However it won't work for SHM-based large pages that cannot be
2708   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2709   // small pages on top of the SHM segment. This method always works for small pages, so we
2710   // allow that in any case.
2711   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2712     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2713   }
2714 }
2715 
2716 void os::numa_make_global(char *addr, size_t bytes) {
2717   Linux::numa_interleave_memory(addr, bytes);
2718 }
2719 
2720 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2721 // bind policy to MPOL_PREFERRED for the current thread.
2722 #define USE_MPOL_PREFERRED 0
2723 
2724 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2725   // To make NUMA and large pages more robust when both enabled, we need to ease
2726   // the requirements on where the memory should be allocated. MPOL_BIND is the
2727   // default policy and it will force memory to be allocated on the specified
2728   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2729   // the specified node, but will not force it. Using this policy will prevent
2730   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2731   // free large pages.
2732   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2733   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2734 }
2735 
2736 bool os::numa_topology_changed()   { return false; }
2737 
2738 size_t os::numa_get_groups_num() {
2739   // Return just the number of nodes in which it's possible to allocate memory
2740   // (in numa terminology, configured nodes).
2741   return Linux::numa_num_configured_nodes();
2742 }
2743 
2744 int os::numa_get_group_id() {
2745   int cpu_id = Linux::sched_getcpu();
2746   if (cpu_id != -1) {
2747     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2748     if (lgrp_id != -1) {
2749       return lgrp_id;
2750     }
2751   }
2752   return 0;
2753 }
2754 
2755 int os::Linux::get_existing_num_nodes() {
2756   size_t node;
2757   size_t highest_node_number = Linux::numa_max_node();
2758   int num_nodes = 0;
2759 
2760   // Get the total number of nodes in the system including nodes without memory.
2761   for (node = 0; node <= highest_node_number; node++) {
2762     if (isnode_in_existing_nodes(node)) {
2763       num_nodes++;
2764     }
2765   }
2766   return num_nodes;
2767 }
2768 
2769 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2770   size_t highest_node_number = Linux::numa_max_node();
2771   size_t i = 0;
2772 
2773   // Map all node ids in which is possible to allocate memory. Also nodes are
2774   // not always consecutively available, i.e. available from 0 to the highest
2775   // node number.
2776   for (size_t node = 0; node <= highest_node_number; node++) {
2777     if (Linux::isnode_in_configured_nodes(node)) {
2778       ids[i++] = node;
2779     }
2780   }
2781   return i;
2782 }
2783 
2784 bool os::get_page_info(char *start, page_info* info) {
2785   return false;
2786 }
2787 
2788 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2789   return end;
2790 }
2791 
2792 
2793 int os::Linux::sched_getcpu_syscall(void) {
2794   unsigned int cpu = 0;
2795   int retval = -1;
2796 
2797 #if defined(IA32)
2798 # ifndef SYS_getcpu
2799 # define SYS_getcpu 318
2800 # endif
2801   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2802 #elif defined(AMD64)
2803 // Unfortunately we have to bring all these macros here from vsyscall.h
2804 // to be able to compile on old linuxes.
2805 # define __NR_vgetcpu 2
2806 # define VSYSCALL_START (-10UL << 20)
2807 # define VSYSCALL_SIZE 1024
2808 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2809   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2810   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2811   retval = vgetcpu(&cpu, NULL, NULL);
2812 #endif
2813 
2814   return (retval == -1) ? retval : cpu;
2815 }
2816 
2817 // Something to do with the numa-aware allocator needs these symbols
2818 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2819 extern "C" JNIEXPORT void numa_error(char *where) { }
2820 extern "C" JNIEXPORT int fork1() { return fork(); }
2821 
2822 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2823 // load symbol from base version instead.
2824 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2825   void *f = dlvsym(handle, name, "libnuma_1.1");
2826   if (f == NULL) {
2827     f = dlsym(handle, name);
2828   }
2829   return f;
2830 }
2831 
2832 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2833 // Return NULL if the symbol is not defined in this particular version.
2834 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2835   return dlvsym(handle, name, "libnuma_1.2");
2836 }
2837 
2838 bool os::Linux::libnuma_init() {
2839   // sched_getcpu() should be in libc.
2840   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2841                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2842 
2843   // If it's not, try a direct syscall.
2844   if (sched_getcpu() == -1)
2845     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2846 
2847   if (sched_getcpu() != -1) { // Does it work?
2848     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2849     if (handle != NULL) {
2850       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2851                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2852       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2853                                        libnuma_dlsym(handle, "numa_max_node")));
2854       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2855                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2856       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2857                                         libnuma_dlsym(handle, "numa_available")));
2858       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2859                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2860       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2861                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2862       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2863                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2864       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2865                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2866       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2867                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2868       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2869                                        libnuma_dlsym(handle, "numa_distance")));
2870 
2871       if (numa_available() != -1) {
2872         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2873         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2874         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2875         // Create an index -> node mapping, since nodes are not always consecutive
2876         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2877         rebuild_nindex_to_node_map();
2878         // Create a cpu -> node mapping
2879         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2880         rebuild_cpu_to_node_map();
2881         return true;
2882       }
2883     }
2884   }
2885   return false;
2886 }
2887 
2888 void os::Linux::rebuild_nindex_to_node_map() {
2889   int highest_node_number = Linux::numa_max_node();
2890 
2891   nindex_to_node()->clear();
2892   for (int node = 0; node <= highest_node_number; node++) {
2893     if (Linux::isnode_in_existing_nodes(node)) {
2894       nindex_to_node()->append(node);
2895     }
2896   }
2897 }
2898 
2899 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2900 // The table is later used in get_node_by_cpu().
2901 void os::Linux::rebuild_cpu_to_node_map() {
2902   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2903                               // in libnuma (possible values are starting from 16,
2904                               // and continuing up with every other power of 2, but less
2905                               // than the maximum number of CPUs supported by kernel), and
2906                               // is a subject to change (in libnuma version 2 the requirements
2907                               // are more reasonable) we'll just hardcode the number they use
2908                               // in the library.
2909   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2910 
2911   size_t cpu_num = processor_count();
2912   size_t cpu_map_size = NCPUS / BitsPerCLong;
2913   size_t cpu_map_valid_size =
2914     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2915 
2916   cpu_to_node()->clear();
2917   cpu_to_node()->at_grow(cpu_num - 1);
2918 
2919   size_t node_num = get_existing_num_nodes();
2920 
2921   int distance = 0;
2922   int closest_distance = INT_MAX;
2923   int closest_node = 0;
2924   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2925   for (size_t i = 0; i < node_num; i++) {
2926     // Check if node is configured (not a memory-less node). If it is not, find
2927     // the closest configured node.
2928     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
2929       closest_distance = INT_MAX;
2930       // Check distance from all remaining nodes in the system. Ignore distance
2931       // from itself and from another non-configured node.
2932       for (size_t m = 0; m < node_num; m++) {
2933         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
2934           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
2935           // If a closest node is found, update. There is always at least one
2936           // configured node in the system so there is always at least one node
2937           // close.
2938           if (distance != 0 && distance < closest_distance) {
2939             closest_distance = distance;
2940             closest_node = nindex_to_node()->at(m);
2941           }
2942         }
2943       }
2944      } else {
2945        // Current node is already a configured node.
2946        closest_node = nindex_to_node()->at(i);
2947      }
2948 
2949     // Get cpus from the original node and map them to the closest node. If node
2950     // is a configured node (not a memory-less node), then original node and
2951     // closest node are the same.
2952     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2953       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2954         if (cpu_map[j] != 0) {
2955           for (size_t k = 0; k < BitsPerCLong; k++) {
2956             if (cpu_map[j] & (1UL << k)) {
2957               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
2958             }
2959           }
2960         }
2961       }
2962     }
2963   }
2964   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2965 }
2966 
2967 int os::Linux::get_node_by_cpu(int cpu_id) {
2968   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2969     return cpu_to_node()->at(cpu_id);
2970   }
2971   return -1;
2972 }
2973 
2974 GrowableArray<int>* os::Linux::_cpu_to_node;
2975 GrowableArray<int>* os::Linux::_nindex_to_node;
2976 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2977 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2978 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2979 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
2980 os::Linux::numa_available_func_t os::Linux::_numa_available;
2981 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2982 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2983 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
2984 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2985 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
2986 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
2987 unsigned long* os::Linux::_numa_all_nodes;
2988 struct bitmask* os::Linux::_numa_all_nodes_ptr;
2989 struct bitmask* os::Linux::_numa_nodes_ptr;
2990 
2991 bool os::pd_uncommit_memory(char* addr, size_t size) {
2992   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2993                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2994   return res  != (uintptr_t) MAP_FAILED;
2995 }
2996 
2997 static
2998 address get_stack_commited_bottom(address bottom, size_t size) {
2999   address nbot = bottom;
3000   address ntop = bottom + size;
3001 
3002   size_t page_sz = os::vm_page_size();
3003   unsigned pages = size / page_sz;
3004 
3005   unsigned char vec[1];
3006   unsigned imin = 1, imax = pages + 1, imid;
3007   int mincore_return_value = 0;
3008 
3009   assert(imin <= imax, "Unexpected page size");
3010 
3011   while (imin < imax) {
3012     imid = (imax + imin) / 2;
3013     nbot = ntop - (imid * page_sz);
3014 
3015     // Use a trick with mincore to check whether the page is mapped or not.
3016     // mincore sets vec to 1 if page resides in memory and to 0 if page
3017     // is swapped output but if page we are asking for is unmapped
3018     // it returns -1,ENOMEM
3019     mincore_return_value = mincore(nbot, page_sz, vec);
3020 
3021     if (mincore_return_value == -1) {
3022       // Page is not mapped go up
3023       // to find first mapped page
3024       if (errno != EAGAIN) {
3025         assert(errno == ENOMEM, "Unexpected mincore errno");
3026         imax = imid;
3027       }
3028     } else {
3029       // Page is mapped go down
3030       // to find first not mapped page
3031       imin = imid + 1;
3032     }
3033   }
3034 
3035   nbot = nbot + page_sz;
3036 
3037   // Adjust stack bottom one page up if last checked page is not mapped
3038   if (mincore_return_value == -1) {
3039     nbot = nbot + page_sz;
3040   }
3041 
3042   return nbot;
3043 }
3044 
3045 
3046 // Linux uses a growable mapping for the stack, and if the mapping for
3047 // the stack guard pages is not removed when we detach a thread the
3048 // stack cannot grow beyond the pages where the stack guard was
3049 // mapped.  If at some point later in the process the stack expands to
3050 // that point, the Linux kernel cannot expand the stack any further
3051 // because the guard pages are in the way, and a segfault occurs.
3052 //
3053 // However, it's essential not to split the stack region by unmapping
3054 // a region (leaving a hole) that's already part of the stack mapping,
3055 // so if the stack mapping has already grown beyond the guard pages at
3056 // the time we create them, we have to truncate the stack mapping.
3057 // So, we need to know the extent of the stack mapping when
3058 // create_stack_guard_pages() is called.
3059 
3060 // We only need this for stacks that are growable: at the time of
3061 // writing thread stacks don't use growable mappings (i.e. those
3062 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3063 // only applies to the main thread.
3064 
3065 // If the (growable) stack mapping already extends beyond the point
3066 // where we're going to put our guard pages, truncate the mapping at
3067 // that point by munmap()ping it.  This ensures that when we later
3068 // munmap() the guard pages we don't leave a hole in the stack
3069 // mapping. This only affects the main/initial thread
3070 
3071 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3072 
3073   if (os::Linux::is_initial_thread()) {
3074     // As we manually grow stack up to bottom inside create_attached_thread(),
3075     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3076     // we don't need to do anything special.
3077     // Check it first, before calling heavy function.
3078     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3079     unsigned char vec[1];
3080 
3081     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3082       // Fallback to slow path on all errors, including EAGAIN
3083       stack_extent = (uintptr_t) get_stack_commited_bottom(
3084                                     os::Linux::initial_thread_stack_bottom(),
3085                                     (size_t)addr - stack_extent);
3086     }
3087 
3088     if (stack_extent < (uintptr_t)addr) {
3089       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3090     }
3091   }
3092 
3093   return os::commit_memory(addr, size, !ExecMem);
3094 }
3095 
3096 // If this is a growable mapping, remove the guard pages entirely by
3097 // munmap()ping them.  If not, just call uncommit_memory(). This only
3098 // affects the main/initial thread, but guard against future OS changes
3099 // It's safe to always unmap guard pages for initial thread because we
3100 // always place it right after end of the mapped region
3101 
3102 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3103   uintptr_t stack_extent, stack_base;
3104 
3105   if (os::Linux::is_initial_thread()) {
3106     return ::munmap(addr, size) == 0;
3107   }
3108 
3109   return os::uncommit_memory(addr, size);
3110 }
3111 
3112 static address _highest_vm_reserved_address = NULL;
3113 
3114 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3115 // at 'requested_addr'. If there are existing memory mappings at the same
3116 // location, however, they will be overwritten. If 'fixed' is false,
3117 // 'requested_addr' is only treated as a hint, the return value may or
3118 // may not start from the requested address. Unlike Linux mmap(), this
3119 // function returns NULL to indicate failure.
3120 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3121   char * addr;
3122   int flags;
3123 
3124   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3125   if (fixed) {
3126     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3127     flags |= MAP_FIXED;
3128   }
3129 
3130   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3131   // touch an uncommitted page. Otherwise, the read/write might
3132   // succeed if we have enough swap space to back the physical page.
3133   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3134                        flags, -1, 0);
3135 
3136   if (addr != MAP_FAILED) {
3137     // anon_mmap() should only get called during VM initialization,
3138     // don't need lock (actually we can skip locking even it can be called
3139     // from multiple threads, because _highest_vm_reserved_address is just a
3140     // hint about the upper limit of non-stack memory regions.)
3141     if ((address)addr + bytes > _highest_vm_reserved_address) {
3142       _highest_vm_reserved_address = (address)addr + bytes;
3143     }
3144   }
3145 
3146   return addr == MAP_FAILED ? NULL : addr;
3147 }
3148 
3149 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3150 //   (req_addr != NULL) or with a given alignment.
3151 //  - bytes shall be a multiple of alignment.
3152 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3153 //  - alignment sets the alignment at which memory shall be allocated.
3154 //     It must be a multiple of allocation granularity.
3155 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3156 //  req_addr or NULL.
3157 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3158 
3159   size_t extra_size = bytes;
3160   if (req_addr == NULL && alignment > 0) {
3161     extra_size += alignment;
3162   }
3163 
3164   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3165     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3166     -1, 0);
3167   if (start == MAP_FAILED) {
3168     start = NULL;
3169   } else {
3170     if (req_addr != NULL) {
3171       if (start != req_addr) {
3172         ::munmap(start, extra_size);
3173         start = NULL;
3174       }
3175     } else {
3176       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3177       char* const end_aligned = start_aligned + bytes;
3178       char* const end = start + extra_size;
3179       if (start_aligned > start) {
3180         ::munmap(start, start_aligned - start);
3181       }
3182       if (end_aligned < end) {
3183         ::munmap(end_aligned, end - end_aligned);
3184       }
3185       start = start_aligned;
3186     }
3187   }
3188   return start;
3189 }
3190 
3191 // Don't update _highest_vm_reserved_address, because there might be memory
3192 // regions above addr + size. If so, releasing a memory region only creates
3193 // a hole in the address space, it doesn't help prevent heap-stack collision.
3194 //
3195 static int anon_munmap(char * addr, size_t size) {
3196   return ::munmap(addr, size) == 0;
3197 }
3198 
3199 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3200                          size_t alignment_hint) {
3201   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3202 }
3203 
3204 bool os::pd_release_memory(char* addr, size_t size) {
3205   return anon_munmap(addr, size);
3206 }
3207 
3208 static address highest_vm_reserved_address() {
3209   return _highest_vm_reserved_address;
3210 }
3211 
3212 static bool linux_mprotect(char* addr, size_t size, int prot) {
3213   // Linux wants the mprotect address argument to be page aligned.
3214   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3215 
3216   // According to SUSv3, mprotect() should only be used with mappings
3217   // established by mmap(), and mmap() always maps whole pages. Unaligned
3218   // 'addr' likely indicates problem in the VM (e.g. trying to change
3219   // protection of malloc'ed or statically allocated memory). Check the
3220   // caller if you hit this assert.
3221   assert(addr == bottom, "sanity check");
3222 
3223   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3224   return ::mprotect(bottom, size, prot) == 0;
3225 }
3226 
3227 // Set protections specified
3228 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3229                         bool is_committed) {
3230   unsigned int p = 0;
3231   switch (prot) {
3232   case MEM_PROT_NONE: p = PROT_NONE; break;
3233   case MEM_PROT_READ: p = PROT_READ; break;
3234   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3235   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3236   default:
3237     ShouldNotReachHere();
3238   }
3239   // is_committed is unused.
3240   return linux_mprotect(addr, bytes, p);
3241 }
3242 
3243 bool os::guard_memory(char* addr, size_t size) {
3244   return linux_mprotect(addr, size, PROT_NONE);
3245 }
3246 
3247 bool os::unguard_memory(char* addr, size_t size) {
3248   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3249 }
3250 
3251 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
3252   bool result = false;
3253   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3254                  MAP_ANONYMOUS|MAP_PRIVATE,
3255                  -1, 0);
3256   if (p != MAP_FAILED) {
3257     void *aligned_p = align_ptr_up(p, page_size);
3258 
3259     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3260 
3261     munmap(p, page_size * 2);
3262   }
3263 
3264   if (warn && !result) {
3265     warning("TransparentHugePages is not supported by the operating system.");
3266   }
3267 
3268   return result;
3269 }
3270 
3271 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3272   bool result = false;
3273   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3274                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3275                  -1, 0);
3276 
3277   if (p != MAP_FAILED) {
3278     // We don't know if this really is a huge page or not.
3279     FILE *fp = fopen("/proc/self/maps", "r");
3280     if (fp) {
3281       while (!feof(fp)) {
3282         char chars[257];
3283         long x = 0;
3284         if (fgets(chars, sizeof(chars), fp)) {
3285           if (sscanf(chars, "%lx-%*x", &x) == 1
3286               && x == (long)p) {
3287             if (strstr (chars, "hugepage")) {
3288               result = true;
3289               break;
3290             }
3291           }
3292         }
3293       }
3294       fclose(fp);
3295     }
3296     munmap(p, page_size);
3297   }
3298 
3299   if (warn && !result) {
3300     warning("HugeTLBFS is not supported by the operating system.");
3301   }
3302 
3303   return result;
3304 }
3305 
3306 /*
3307 * Set the coredump_filter bits to include largepages in core dump (bit 6)
3308 *
3309 * From the coredump_filter documentation:
3310 *
3311 * - (bit 0) anonymous private memory
3312 * - (bit 1) anonymous shared memory
3313 * - (bit 2) file-backed private memory
3314 * - (bit 3) file-backed shared memory
3315 * - (bit 4) ELF header pages in file-backed private memory areas (it is
3316 *           effective only if the bit 2 is cleared)
3317 * - (bit 5) hugetlb private memory
3318 * - (bit 6) hugetlb shared memory
3319 */
3320 static void set_coredump_filter(void) {
3321   FILE *f;
3322   long cdm;
3323 
3324   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3325     return;
3326   }
3327 
3328   if (fscanf(f, "%lx", &cdm) != 1) {
3329     fclose(f);
3330     return;
3331   }
3332 
3333   rewind(f);
3334 
3335   if ((cdm & LARGEPAGES_BIT) == 0) {
3336     cdm |= LARGEPAGES_BIT;
3337     fprintf(f, "%#lx", cdm);
3338   }
3339 
3340   fclose(f);
3341 }
3342 
3343 // Large page support
3344 
3345 static size_t _large_page_size = 0;
3346 
3347 size_t os::Linux::find_large_page_size() {
3348   size_t large_page_size = 0;
3349 
3350   // large_page_size on Linux is used to round up heap size. x86 uses either
3351   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3352   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3353   // page as large as 256M.
3354   //
3355   // Here we try to figure out page size by parsing /proc/meminfo and looking
3356   // for a line with the following format:
3357   //    Hugepagesize:     2048 kB
3358   //
3359   // If we can't determine the value (e.g. /proc is not mounted, or the text
3360   // format has been changed), we'll use the largest page size supported by
3361   // the processor.
3362 
3363 #ifndef ZERO
3364   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3365                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3366 #endif // ZERO
3367 
3368   FILE *fp = fopen("/proc/meminfo", "r");
3369   if (fp) {
3370     while (!feof(fp)) {
3371       int x = 0;
3372       char buf[16];
3373       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3374         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3375           large_page_size = x * K;
3376           break;
3377         }
3378       } else {
3379         // skip to next line
3380         for (;;) {
3381           int ch = fgetc(fp);
3382           if (ch == EOF || ch == (int)'\n') break;
3383         }
3384       }
3385     }
3386     fclose(fp);
3387   }
3388 
3389   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3390     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3391         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3392         proper_unit_for_byte_size(large_page_size));
3393   }
3394 
3395   return large_page_size;
3396 }
3397 
3398 size_t os::Linux::setup_large_page_size() {
3399   _large_page_size = Linux::find_large_page_size();
3400   const size_t default_page_size = (size_t)Linux::page_size();
3401   if (_large_page_size > default_page_size) {
3402     _page_sizes[0] = _large_page_size;
3403     _page_sizes[1] = default_page_size;
3404     _page_sizes[2] = 0;
3405   }
3406 
3407   return _large_page_size;
3408 }
3409 
3410 bool os::Linux::setup_large_page_type(size_t page_size) {
3411   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3412       FLAG_IS_DEFAULT(UseSHM) &&
3413       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3414 
3415     // The type of large pages has not been specified by the user.
3416 
3417     // Try UseHugeTLBFS and then UseSHM.
3418     UseHugeTLBFS = UseSHM = true;
3419 
3420     // Don't try UseTransparentHugePages since there are known
3421     // performance issues with it turned on. This might change in the future.
3422     UseTransparentHugePages = false;
3423   }
3424 
3425   if (UseTransparentHugePages) {
3426     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3427     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3428       UseHugeTLBFS = false;
3429       UseSHM = false;
3430       return true;
3431     }
3432     UseTransparentHugePages = false;
3433   }
3434 
3435   if (UseHugeTLBFS) {
3436     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3437     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3438       UseSHM = false;
3439       return true;
3440     }
3441     UseHugeTLBFS = false;
3442   }
3443 
3444   return UseSHM;
3445 }
3446 
3447 void os::large_page_init() {
3448   if (!UseLargePages &&
3449       !UseTransparentHugePages &&
3450       !UseHugeTLBFS &&
3451       !UseSHM) {
3452     // Not using large pages.
3453     return;
3454   }
3455 
3456   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3457     // The user explicitly turned off large pages.
3458     // Ignore the rest of the large pages flags.
3459     UseTransparentHugePages = false;
3460     UseHugeTLBFS = false;
3461     UseSHM = false;
3462     return;
3463   }
3464 
3465   size_t large_page_size = Linux::setup_large_page_size();
3466   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3467 
3468   set_coredump_filter();
3469 }
3470 
3471 #ifndef SHM_HUGETLB
3472 #define SHM_HUGETLB 04000
3473 #endif
3474 
3475 #define shm_warning_format(format, ...)              \
3476   do {                                               \
3477     if (UseLargePages &&                             \
3478         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3479          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3480          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3481       warning(format, __VA_ARGS__);                  \
3482     }                                                \
3483   } while (0)
3484 
3485 #define shm_warning(str) shm_warning_format("%s", str)
3486 
3487 #define shm_warning_with_errno(str)                \
3488   do {                                             \
3489     int err = errno;                               \
3490     shm_warning_format(str " (error = %d)", err);  \
3491   } while (0)
3492 
3493 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3494   assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
3495 
3496   if (!is_size_aligned(alignment, SHMLBA)) {
3497     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3498     return NULL;
3499   }
3500 
3501   // To ensure that we get 'alignment' aligned memory from shmat,
3502   // we pre-reserve aligned virtual memory and then attach to that.
3503 
3504   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3505   if (pre_reserved_addr == NULL) {
3506     // Couldn't pre-reserve aligned memory.
3507     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3508     return NULL;
3509   }
3510 
3511   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3512   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3513 
3514   if ((intptr_t)addr == -1) {
3515     int err = errno;
3516     shm_warning_with_errno("Failed to attach shared memory.");
3517 
3518     assert(err != EACCES, "Unexpected error");
3519     assert(err != EIDRM,  "Unexpected error");
3520     assert(err != EINVAL, "Unexpected error");
3521 
3522     // Since we don't know if the kernel unmapped the pre-reserved memory area
3523     // we can't unmap it, since that would potentially unmap memory that was
3524     // mapped from other threads.
3525     return NULL;
3526   }
3527 
3528   return addr;
3529 }
3530 
3531 static char* shmat_at_address(int shmid, char* req_addr) {
3532   if (!is_ptr_aligned(req_addr, SHMLBA)) {
3533     assert(false, "Requested address needs to be SHMLBA aligned");
3534     return NULL;
3535   }
3536 
3537   char* addr = (char*)shmat(shmid, req_addr, 0);
3538 
3539   if ((intptr_t)addr == -1) {
3540     shm_warning_with_errno("Failed to attach shared memory.");
3541     return NULL;
3542   }
3543 
3544   return addr;
3545 }
3546 
3547 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3548   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3549   if (req_addr != NULL) {
3550     assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3551     assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
3552     return shmat_at_address(shmid, req_addr);
3553   }
3554 
3555   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3556   // return large page size aligned memory addresses when req_addr == NULL.
3557   // However, if the alignment is larger than the large page size, we have
3558   // to manually ensure that the memory returned is 'alignment' aligned.
3559   if (alignment > os::large_page_size()) {
3560     assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3561     return shmat_with_alignment(shmid, bytes, alignment);
3562   } else {
3563     return shmat_at_address(shmid, NULL);
3564   }
3565 }
3566 
3567 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3568   // "exec" is passed in but not used.  Creating the shared image for
3569   // the code cache doesn't have an SHM_X executable permission to check.
3570   assert(UseLargePages && UseSHM, "only for SHM large pages");
3571   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3572   assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
3573 
3574   if (!is_size_aligned(bytes, os::large_page_size())) {
3575     return NULL; // Fallback to small pages.
3576   }
3577 
3578   // Create a large shared memory region to attach to based on size.
3579   // Currently, size is the total size of the heap.
3580   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3581   if (shmid == -1) {
3582     // Possible reasons for shmget failure:
3583     // 1. shmmax is too small for Java heap.
3584     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3585     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3586     // 2. not enough large page memory.
3587     //    > check available large pages: cat /proc/meminfo
3588     //    > increase amount of large pages:
3589     //          echo new_value > /proc/sys/vm/nr_hugepages
3590     //      Note 1: different Linux may use different name for this property,
3591     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3592     //      Note 2: it's possible there's enough physical memory available but
3593     //            they are so fragmented after a long run that they can't
3594     //            coalesce into large pages. Try to reserve large pages when
3595     //            the system is still "fresh".
3596     shm_warning_with_errno("Failed to reserve shared memory.");
3597     return NULL;
3598   }
3599 
3600   // Attach to the region.
3601   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3602 
3603   // Remove shmid. If shmat() is successful, the actual shared memory segment
3604   // will be deleted when it's detached by shmdt() or when the process
3605   // terminates. If shmat() is not successful this will remove the shared
3606   // segment immediately.
3607   shmctl(shmid, IPC_RMID, NULL);
3608 
3609   return addr;
3610 }
3611 
3612 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
3613   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3614 
3615   bool warn_on_failure = UseLargePages &&
3616       (!FLAG_IS_DEFAULT(UseLargePages) ||
3617        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3618        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3619 
3620   if (warn_on_failure) {
3621     char msg[128];
3622     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3623         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3624     warning("%s", msg);
3625   }
3626 }
3627 
3628 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
3629   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3630   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3631   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3632 
3633   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3634   char* addr = (char*)::mmap(req_addr, bytes, prot,
3635                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3636                              -1, 0);
3637 
3638   if (addr == MAP_FAILED) {
3639     warn_on_large_pages_failure(req_addr, bytes, errno);
3640     return NULL;
3641   }
3642 
3643   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3644 
3645   return addr;
3646 }
3647 
3648 // Reserve memory using mmap(MAP_HUGETLB).
3649 //  - bytes shall be a multiple of alignment.
3650 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3651 //  - alignment sets the alignment at which memory shall be allocated.
3652 //     It must be a multiple of allocation granularity.
3653 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3654 //  req_addr or NULL.
3655 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3656   size_t large_page_size = os::large_page_size();
3657   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3658 
3659   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3660   assert(is_size_aligned(bytes, alignment), "Must be");
3661 
3662   // First reserve - but not commit - the address range in small pages.
3663   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3664 
3665   if (start == NULL) {
3666     return NULL;
3667   }
3668 
3669   assert(is_ptr_aligned(start, alignment), "Must be");
3670 
3671   char* end = start + bytes;
3672 
3673   // Find the regions of the allocated chunk that can be promoted to large pages.
3674   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3675   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3676 
3677   size_t lp_bytes = lp_end - lp_start;
3678 
3679   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3680 
3681   if (lp_bytes == 0) {
3682     // The mapped region doesn't even span the start and the end of a large page.
3683     // Fall back to allocate a non-special area.
3684     ::munmap(start, end - start);
3685     return NULL;
3686   }
3687 
3688   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3689 
3690   void* result;
3691 
3692   // Commit small-paged leading area.
3693   if (start != lp_start) {
3694     result = ::mmap(start, lp_start - start, prot,
3695                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3696                     -1, 0);
3697     if (result == MAP_FAILED) {
3698       ::munmap(lp_start, end - lp_start);
3699       return NULL;
3700     }
3701   }
3702 
3703   // Commit large-paged area.
3704   result = ::mmap(lp_start, lp_bytes, prot,
3705                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3706                   -1, 0);
3707   if (result == MAP_FAILED) {
3708     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3709     // If the mmap above fails, the large pages region will be unmapped and we
3710     // have regions before and after with small pages. Release these regions.
3711     //
3712     // |  mapped  |  unmapped  |  mapped  |
3713     // ^          ^            ^          ^
3714     // start      lp_start     lp_end     end
3715     //
3716     ::munmap(start, lp_start - start);
3717     ::munmap(lp_end, end - lp_end);
3718     return NULL;
3719   }
3720 
3721   // Commit small-paged trailing area.
3722   if (lp_end != end) {
3723       result = ::mmap(lp_end, end - lp_end, prot,
3724                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3725                       -1, 0);
3726     if (result == MAP_FAILED) {
3727       ::munmap(start, lp_end - start);
3728       return NULL;
3729     }
3730   }
3731 
3732   return start;
3733 }
3734 
3735 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3736   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3737   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3738   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3739   assert(is_power_of_2(os::large_page_size()), "Must be");
3740   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3741 
3742   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3743     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3744   } else {
3745     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3746   }
3747 }
3748 
3749 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3750   assert(UseLargePages, "only for large pages");
3751 
3752   char* addr;
3753   if (UseSHM) {
3754     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3755   } else {
3756     assert(UseHugeTLBFS, "must be");
3757     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3758   }
3759 
3760   if (addr != NULL) {
3761     if (UseNUMAInterleaving) {
3762       numa_make_global(addr, bytes);
3763     }
3764 
3765     // The memory is committed
3766     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3767   }
3768 
3769   return addr;
3770 }
3771 
3772 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3773   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3774   return shmdt(base) == 0;
3775 }
3776 
3777 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3778   return pd_release_memory(base, bytes);
3779 }
3780 
3781 bool os::release_memory_special(char* base, size_t bytes) {
3782   bool res;
3783   if (MemTracker::tracking_level() > NMT_minimal) {
3784     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3785     res = os::Linux::release_memory_special_impl(base, bytes);
3786     if (res) {
3787       tkr.record((address)base, bytes);
3788     }
3789 
3790   } else {
3791     res = os::Linux::release_memory_special_impl(base, bytes);
3792   }
3793   return res;
3794 }
3795 
3796 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3797   assert(UseLargePages, "only for large pages");
3798   bool res;
3799 
3800   if (UseSHM) {
3801     res = os::Linux::release_memory_special_shm(base, bytes);
3802   } else {
3803     assert(UseHugeTLBFS, "must be");
3804     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3805   }
3806   return res;
3807 }
3808 
3809 size_t os::large_page_size() {
3810   return _large_page_size;
3811 }
3812 
3813 // With SysV SHM the entire memory region must be allocated as shared
3814 // memory.
3815 // HugeTLBFS allows application to commit large page memory on demand.
3816 // However, when committing memory with HugeTLBFS fails, the region
3817 // that was supposed to be committed will lose the old reservation
3818 // and allow other threads to steal that memory region. Because of this
3819 // behavior we can't commit HugeTLBFS memory.
3820 bool os::can_commit_large_page_memory() {
3821   return UseTransparentHugePages;
3822 }
3823 
3824 bool os::can_execute_large_page_memory() {
3825   return UseTransparentHugePages || UseHugeTLBFS;
3826 }
3827 
3828 // Reserve memory at an arbitrary address, only if that area is
3829 // available (and not reserved for something else).
3830 
3831 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3832   const int max_tries = 10;
3833   char* base[max_tries];
3834   size_t size[max_tries];
3835   const size_t gap = 0x000000;
3836 
3837   // Assert only that the size is a multiple of the page size, since
3838   // that's all that mmap requires, and since that's all we really know
3839   // about at this low abstraction level.  If we need higher alignment,
3840   // we can either pass an alignment to this method or verify alignment
3841   // in one of the methods further up the call chain.  See bug 5044738.
3842   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3843 
3844   // Repeatedly allocate blocks until the block is allocated at the
3845   // right spot. Give up after max_tries. Note that reserve_memory() will
3846   // automatically update _highest_vm_reserved_address if the call is
3847   // successful. The variable tracks the highest memory address every reserved
3848   // by JVM. It is used to detect heap-stack collision if running with
3849   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3850   // space than needed, it could confuse the collision detecting code. To
3851   // solve the problem, save current _highest_vm_reserved_address and
3852   // calculate the correct value before return.
3853   address old_highest = _highest_vm_reserved_address;
3854 
3855   // Linux mmap allows caller to pass an address as hint; give it a try first,
3856   // if kernel honors the hint then we can return immediately.
3857   char * addr = anon_mmap(requested_addr, bytes, false);
3858   if (addr == requested_addr) {
3859      return requested_addr;
3860   }
3861 
3862   if (addr != NULL) {
3863      // mmap() is successful but it fails to reserve at the requested address
3864      anon_munmap(addr, bytes);
3865   }
3866 
3867   int i;
3868   for (i = 0; i < max_tries; ++i) {
3869     base[i] = reserve_memory(bytes);
3870 
3871     if (base[i] != NULL) {
3872       // Is this the block we wanted?
3873       if (base[i] == requested_addr) {
3874         size[i] = bytes;
3875         break;
3876       }
3877 
3878       // Does this overlap the block we wanted? Give back the overlapped
3879       // parts and try again.
3880 
3881       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3882       if (top_overlap >= 0 && top_overlap < bytes) {
3883         unmap_memory(base[i], top_overlap);
3884         base[i] += top_overlap;
3885         size[i] = bytes - top_overlap;
3886       } else {
3887         size_t bottom_overlap = base[i] + bytes - requested_addr;
3888         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3889           unmap_memory(requested_addr, bottom_overlap);
3890           size[i] = bytes - bottom_overlap;
3891         } else {
3892           size[i] = bytes;
3893         }
3894       }
3895     }
3896   }
3897 
3898   // Give back the unused reserved pieces.
3899 
3900   for (int j = 0; j < i; ++j) {
3901     if (base[j] != NULL) {
3902       unmap_memory(base[j], size[j]);
3903     }
3904   }
3905 
3906   if (i < max_tries) {
3907     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3908     return requested_addr;
3909   } else {
3910     _highest_vm_reserved_address = old_highest;
3911     return NULL;
3912   }
3913 }
3914 
3915 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3916   return ::read(fd, buf, nBytes);
3917 }
3918 
3919 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3920 // Solaris uses poll(), linux uses park().
3921 // Poll() is likely a better choice, assuming that Thread.interrupt()
3922 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3923 // SIGSEGV, see 4355769.
3924 
3925 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3926   assert(thread == Thread::current(),  "thread consistency check");
3927 
3928   ParkEvent * const slp = thread->_SleepEvent ;
3929   slp->reset() ;
3930   OrderAccess::fence() ;
3931 
3932   if (interruptible) {
3933     jlong prevtime = javaTimeNanos();
3934 
3935     for (;;) {
3936       if (os::is_interrupted(thread, true)) {
3937         return OS_INTRPT;
3938       }
3939 
3940       jlong newtime = javaTimeNanos();
3941 
3942       if (newtime - prevtime < 0) {
3943         // time moving backwards, should only happen if no monotonic clock
3944         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3945         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3946       } else {
3947         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3948       }
3949 
3950       if(millis <= 0) {
3951         return OS_OK;
3952       }
3953 
3954       prevtime = newtime;
3955 
3956       {
3957         assert(thread->is_Java_thread(), "sanity check");
3958         JavaThread *jt = (JavaThread *) thread;
3959         ThreadBlockInVM tbivm(jt);
3960         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3961 
3962         jt->set_suspend_equivalent();
3963         // cleared by handle_special_suspend_equivalent_condition() or
3964         // java_suspend_self() via check_and_wait_while_suspended()
3965 
3966         slp->park(millis);
3967 
3968         // were we externally suspended while we were waiting?
3969         jt->check_and_wait_while_suspended();
3970       }
3971     }
3972   } else {
3973     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3974     jlong prevtime = javaTimeNanos();
3975 
3976     for (;;) {
3977       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3978       // the 1st iteration ...
3979       jlong newtime = javaTimeNanos();
3980 
3981       if (newtime - prevtime < 0) {
3982         // time moving backwards, should only happen if no monotonic clock
3983         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3984         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3985       } else {
3986         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3987       }
3988 
3989       if(millis <= 0) break ;
3990 
3991       prevtime = newtime;
3992       slp->park(millis);
3993     }
3994     return OS_OK ;
3995   }
3996 }
3997 
3998 //
3999 // Short sleep, direct OS call.
4000 //
4001 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
4002 // sched_yield(2) will actually give up the CPU:
4003 //
4004 //   * Alone on this pariticular CPU, keeps running.
4005 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
4006 //     (pre 2.6.39).
4007 //
4008 // So calling this with 0 is an alternative.
4009 //
4010 void os::naked_short_sleep(jlong ms) {
4011   struct timespec req;
4012 
4013   assert(ms < 1000, "Un-interruptable sleep, short time use only");
4014   req.tv_sec = 0;
4015   if (ms > 0) {
4016     req.tv_nsec = (ms % 1000) * 1000000;
4017   }
4018   else {
4019     req.tv_nsec = 1;
4020   }
4021 
4022   nanosleep(&req, NULL);
4023 
4024   return;
4025 }
4026 
4027 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4028 void os::infinite_sleep() {
4029   while (true) {    // sleep forever ...
4030     ::sleep(100);   // ... 100 seconds at a time
4031   }
4032 }
4033 
4034 // Used to convert frequent JVM_Yield() to nops
4035 bool os::dont_yield() {
4036   return DontYieldALot;
4037 }
4038 
4039 void os::yield() {
4040   sched_yield();
4041 }
4042 
4043 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
4044 
4045 void os::yield_all(int attempts) {
4046   // Yields to all threads, including threads with lower priorities
4047   // Threads on Linux are all with same priority. The Solaris style
4048   // os::yield_all() with nanosleep(1ms) is not necessary.
4049   sched_yield();
4050 }
4051 
4052 // Called from the tight loops to possibly influence time-sharing heuristics
4053 void os::loop_breaker(int attempts) {
4054   os::yield_all(attempts);
4055 }
4056 
4057 ////////////////////////////////////////////////////////////////////////////////
4058 // thread priority support
4059 
4060 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4061 // only supports dynamic priority, static priority must be zero. For real-time
4062 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4063 // However, for large multi-threaded applications, SCHED_RR is not only slower
4064 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4065 // of 5 runs - Sep 2005).
4066 //
4067 // The following code actually changes the niceness of kernel-thread/LWP. It
4068 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4069 // not the entire user process, and user level threads are 1:1 mapped to kernel
4070 // threads. It has always been the case, but could change in the future. For
4071 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4072 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
4073 
4074 int os::java_to_os_priority[CriticalPriority + 1] = {
4075   19,              // 0 Entry should never be used
4076 
4077    4,              // 1 MinPriority
4078    3,              // 2
4079    2,              // 3
4080 
4081    1,              // 4
4082    0,              // 5 NormPriority
4083   -1,              // 6
4084 
4085   -2,              // 7
4086   -3,              // 8
4087   -4,              // 9 NearMaxPriority
4088 
4089   -5,              // 10 MaxPriority
4090 
4091   -5               // 11 CriticalPriority
4092 };
4093 
4094 static int prio_init() {
4095   if (ThreadPriorityPolicy == 1) {
4096     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
4097     // if effective uid is not root. Perhaps, a more elegant way of doing
4098     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4099     if (geteuid() != 0) {
4100       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4101         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4102       }
4103       ThreadPriorityPolicy = 0;
4104     }
4105   }
4106   if (UseCriticalJavaThreadPriority) {
4107     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4108   }
4109   return 0;
4110 }
4111 
4112 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4113   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
4114 
4115   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4116   return (ret == 0) ? OS_OK : OS_ERR;
4117 }
4118 
4119 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
4120   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
4121     *priority_ptr = java_to_os_priority[NormPriority];
4122     return OS_OK;
4123   }
4124 
4125   errno = 0;
4126   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4127   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4128 }
4129 
4130 // Hint to the underlying OS that a task switch would not be good.
4131 // Void return because it's a hint and can fail.
4132 void os::hint_no_preempt() {}
4133 
4134 ////////////////////////////////////////////////////////////////////////////////
4135 // suspend/resume support
4136 
4137 //  the low-level signal-based suspend/resume support is a remnant from the
4138 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4139 //  within hotspot. Now there is a single use-case for this:
4140 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
4141 //      that runs in the watcher thread.
4142 //  The remaining code is greatly simplified from the more general suspension
4143 //  code that used to be used.
4144 //
4145 //  The protocol is quite simple:
4146 //  - suspend:
4147 //      - sends a signal to the target thread
4148 //      - polls the suspend state of the osthread using a yield loop
4149 //      - target thread signal handler (SR_handler) sets suspend state
4150 //        and blocks in sigsuspend until continued
4151 //  - resume:
4152 //      - sets target osthread state to continue
4153 //      - sends signal to end the sigsuspend loop in the SR_handler
4154 //
4155 //  Note that the SR_lock plays no role in this suspend/resume protocol.
4156 //
4157 
4158 static void resume_clear_context(OSThread *osthread) {
4159   osthread->set_ucontext(NULL);
4160   osthread->set_siginfo(NULL);
4161 }
4162 
4163 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
4164   osthread->set_ucontext(context);
4165   osthread->set_siginfo(siginfo);
4166 }
4167 
4168 //
4169 // Handler function invoked when a thread's execution is suspended or
4170 // resumed. We have to be careful that only async-safe functions are
4171 // called here (Note: most pthread functions are not async safe and
4172 // should be avoided.)
4173 //
4174 // Note: sigwait() is a more natural fit than sigsuspend() from an
4175 // interface point of view, but sigwait() prevents the signal hander
4176 // from being run. libpthread would get very confused by not having
4177 // its signal handlers run and prevents sigwait()'s use with the
4178 // mutex granting granting signal.
4179 //
4180 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4181 //
4182 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4183   // Save and restore errno to avoid confusing native code with EINTR
4184   // after sigsuspend.
4185   int old_errno = errno;
4186 
4187   Thread* thread = Thread::current();
4188   OSThread* osthread = thread->osthread();
4189   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4190 
4191   os::SuspendResume::State current = osthread->sr.state();
4192   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4193     suspend_save_context(osthread, siginfo, context);
4194 
4195     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4196     os::SuspendResume::State state = osthread->sr.suspended();
4197     if (state == os::SuspendResume::SR_SUSPENDED) {
4198       sigset_t suspend_set;  // signals for sigsuspend()
4199 
4200       // get current set of blocked signals and unblock resume signal
4201       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4202       sigdelset(&suspend_set, SR_signum);
4203 
4204       sr_semaphore.signal();
4205       // wait here until we are resumed
4206       while (1) {
4207         sigsuspend(&suspend_set);
4208 
4209         os::SuspendResume::State result = osthread->sr.running();
4210         if (result == os::SuspendResume::SR_RUNNING) {
4211           sr_semaphore.signal();
4212           break;
4213         }
4214       }
4215 
4216     } else if (state == os::SuspendResume::SR_RUNNING) {
4217       // request was cancelled, continue
4218     } else {
4219       ShouldNotReachHere();
4220     }
4221 
4222     resume_clear_context(osthread);
4223   } else if (current == os::SuspendResume::SR_RUNNING) {
4224     // request was cancelled, continue
4225   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4226     // ignore
4227   } else {
4228     // ignore
4229   }
4230 
4231   errno = old_errno;
4232 }
4233 
4234 
4235 static int SR_initialize() {
4236   struct sigaction act;
4237   char *s;
4238   /* Get signal number to use for suspend/resume */
4239   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4240     int sig = ::strtol(s, 0, 10);
4241     if (sig > 0 || sig < _NSIG) {
4242         SR_signum = sig;
4243     }
4244   }
4245 
4246   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4247         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4248 
4249   sigemptyset(&SR_sigset);
4250   sigaddset(&SR_sigset, SR_signum);
4251 
4252   /* Set up signal handler for suspend/resume */
4253   act.sa_flags = SA_RESTART|SA_SIGINFO;
4254   act.sa_handler = (void (*)(int)) SR_handler;
4255 
4256   // SR_signum is blocked by default.
4257   // 4528190 - We also need to block pthread restart signal (32 on all
4258   // supported Linux platforms). Note that LinuxThreads need to block
4259   // this signal for all threads to work properly. So we don't have
4260   // to use hard-coded signal number when setting up the mask.
4261   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4262 
4263   if (sigaction(SR_signum, &act, 0) == -1) {
4264     return -1;
4265   }
4266 
4267   // Save signal flag
4268   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4269   return 0;
4270 }
4271 
4272 static int sr_notify(OSThread* osthread) {
4273   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4274   assert_status(status == 0, status, "pthread_kill");
4275   return status;
4276 }
4277 
4278 // "Randomly" selected value for how long we want to spin
4279 // before bailing out on suspending a thread, also how often
4280 // we send a signal to a thread we want to resume
4281 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4282 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4283 
4284 // returns true on success and false on error - really an error is fatal
4285 // but this seems the normal response to library errors
4286 static bool do_suspend(OSThread* osthread) {
4287   assert(osthread->sr.is_running(), "thread should be running");
4288   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4289 
4290   // mark as suspended and send signal
4291   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4292     // failed to switch, state wasn't running?
4293     ShouldNotReachHere();
4294     return false;
4295   }
4296 
4297   if (sr_notify(osthread) != 0) {
4298     ShouldNotReachHere();
4299   }
4300 
4301   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4302   while (true) {
4303     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4304       break;
4305     } else {
4306       // timeout
4307       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4308       if (cancelled == os::SuspendResume::SR_RUNNING) {
4309         return false;
4310       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4311         // make sure that we consume the signal on the semaphore as well
4312         sr_semaphore.wait();
4313         break;
4314       } else {
4315         ShouldNotReachHere();
4316         return false;
4317       }
4318     }
4319   }
4320 
4321   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4322   return true;
4323 }
4324 
4325 static void do_resume(OSThread* osthread) {
4326   assert(osthread->sr.is_suspended(), "thread should be suspended");
4327   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4328 
4329   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4330     // failed to switch to WAKEUP_REQUEST
4331     ShouldNotReachHere();
4332     return;
4333   }
4334 
4335   while (true) {
4336     if (sr_notify(osthread) == 0) {
4337       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4338         if (osthread->sr.is_running()) {
4339           return;
4340         }
4341       }
4342     } else {
4343       ShouldNotReachHere();
4344     }
4345   }
4346 
4347   guarantee(osthread->sr.is_running(), "Must be running!");
4348 }
4349 
4350 ////////////////////////////////////////////////////////////////////////////////
4351 // interrupt support
4352 
4353 void os::interrupt(Thread* thread) {
4354   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4355     "possibility of dangling Thread pointer");
4356 
4357   OSThread* osthread = thread->osthread();
4358 
4359   if (!osthread->interrupted()) {
4360     osthread->set_interrupted(true);
4361     // More than one thread can get here with the same value of osthread,
4362     // resulting in multiple notifications.  We do, however, want the store
4363     // to interrupted() to be visible to other threads before we execute unpark().
4364     OrderAccess::fence();
4365     ParkEvent * const slp = thread->_SleepEvent ;
4366     if (slp != NULL) slp->unpark() ;
4367   }
4368 
4369   // For JSR166. Unpark even if interrupt status already was set
4370   if (thread->is_Java_thread())
4371     ((JavaThread*)thread)->parker()->unpark();
4372 
4373   ParkEvent * ev = thread->_ParkEvent ;
4374   if (ev != NULL) ev->unpark() ;
4375 
4376 }
4377 
4378 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
4379   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4380     "possibility of dangling Thread pointer");
4381 
4382   OSThread* osthread = thread->osthread();
4383 
4384   bool interrupted = osthread->interrupted();
4385 
4386   if (interrupted && clear_interrupted) {
4387     osthread->set_interrupted(false);
4388     // consider thread->_SleepEvent->reset() ... optional optimization
4389   }
4390 
4391   return interrupted;
4392 }
4393 
4394 ///////////////////////////////////////////////////////////////////////////////////
4395 // signal handling (except suspend/resume)
4396 
4397 // This routine may be used by user applications as a "hook" to catch signals.
4398 // The user-defined signal handler must pass unrecognized signals to this
4399 // routine, and if it returns true (non-zero), then the signal handler must
4400 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4401 // routine will never retun false (zero), but instead will execute a VM panic
4402 // routine kill the process.
4403 //
4404 // If this routine returns false, it is OK to call it again.  This allows
4405 // the user-defined signal handler to perform checks either before or after
4406 // the VM performs its own checks.  Naturally, the user code would be making
4407 // a serious error if it tried to handle an exception (such as a null check
4408 // or breakpoint) that the VM was generating for its own correct operation.
4409 //
4410 // This routine may recognize any of the following kinds of signals:
4411 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4412 // It should be consulted by handlers for any of those signals.
4413 //
4414 // The caller of this routine must pass in the three arguments supplied
4415 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4416 // field of the structure passed to sigaction().  This routine assumes that
4417 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4418 //
4419 // Note that the VM will print warnings if it detects conflicting signal
4420 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4421 //
4422 extern "C" JNIEXPORT int
4423 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4424                         void* ucontext, int abort_if_unrecognized);
4425 
4426 void signalHandler(int sig, siginfo_t* info, void* uc) {
4427   assert(info != NULL && uc != NULL, "it must be old kernel");
4428   int orig_errno = errno;  // Preserve errno value over signal handler.
4429   JVM_handle_linux_signal(sig, info, uc, true);
4430   errno = orig_errno;
4431 }
4432 
4433 
4434 // This boolean allows users to forward their own non-matching signals
4435 // to JVM_handle_linux_signal, harmlessly.
4436 bool os::Linux::signal_handlers_are_installed = false;
4437 
4438 // For signal-chaining
4439 struct sigaction os::Linux::sigact[MAXSIGNUM];
4440 unsigned int os::Linux::sigs = 0;
4441 bool os::Linux::libjsig_is_loaded = false;
4442 typedef struct sigaction *(*get_signal_t)(int);
4443 get_signal_t os::Linux::get_signal_action = NULL;
4444 
4445 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4446   struct sigaction *actp = NULL;
4447 
4448   if (libjsig_is_loaded) {
4449     // Retrieve the old signal handler from libjsig
4450     actp = (*get_signal_action)(sig);
4451   }
4452   if (actp == NULL) {
4453     // Retrieve the preinstalled signal handler from jvm
4454     actp = get_preinstalled_handler(sig);
4455   }
4456 
4457   return actp;
4458 }
4459 
4460 static bool call_chained_handler(struct sigaction *actp, int sig,
4461                                  siginfo_t *siginfo, void *context) {
4462   // Call the old signal handler
4463   if (actp->sa_handler == SIG_DFL) {
4464     // It's more reasonable to let jvm treat it as an unexpected exception
4465     // instead of taking the default action.
4466     return false;
4467   } else if (actp->sa_handler != SIG_IGN) {
4468     if ((actp->sa_flags & SA_NODEFER) == 0) {
4469       // automaticlly block the signal
4470       sigaddset(&(actp->sa_mask), sig);
4471     }
4472 
4473     sa_handler_t hand = NULL;
4474     sa_sigaction_t sa = NULL;
4475     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4476     // retrieve the chained handler
4477     if (siginfo_flag_set) {
4478       sa = actp->sa_sigaction;
4479     } else {
4480       hand = actp->sa_handler;
4481     }
4482 
4483     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4484       actp->sa_handler = SIG_DFL;
4485     }
4486 
4487     // try to honor the signal mask
4488     sigset_t oset;
4489     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4490 
4491     // call into the chained handler
4492     if (siginfo_flag_set) {
4493       (*sa)(sig, siginfo, context);
4494     } else {
4495       (*hand)(sig);
4496     }
4497 
4498     // restore the signal mask
4499     pthread_sigmask(SIG_SETMASK, &oset, 0);
4500   }
4501   // Tell jvm's signal handler the signal is taken care of.
4502   return true;
4503 }
4504 
4505 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4506   bool chained = false;
4507   // signal-chaining
4508   if (UseSignalChaining) {
4509     struct sigaction *actp = get_chained_signal_action(sig);
4510     if (actp != NULL) {
4511       chained = call_chained_handler(actp, sig, siginfo, context);
4512     }
4513   }
4514   return chained;
4515 }
4516 
4517 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4518   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4519     return &sigact[sig];
4520   }
4521   return NULL;
4522 }
4523 
4524 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4525   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4526   sigact[sig] = oldAct;
4527   sigs |= (unsigned int)1 << sig;
4528 }
4529 
4530 // for diagnostic
4531 int os::Linux::sigflags[MAXSIGNUM];
4532 
4533 int os::Linux::get_our_sigflags(int sig) {
4534   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4535   return sigflags[sig];
4536 }
4537 
4538 void os::Linux::set_our_sigflags(int sig, int flags) {
4539   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4540   sigflags[sig] = flags;
4541 }
4542 
4543 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4544   // Check for overwrite.
4545   struct sigaction oldAct;
4546   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4547 
4548   void* oldhand = oldAct.sa_sigaction
4549                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4550                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4551   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4552       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4553       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4554     if (AllowUserSignalHandlers || !set_installed) {
4555       // Do not overwrite; user takes responsibility to forward to us.
4556       return;
4557     } else if (UseSignalChaining) {
4558       // save the old handler in jvm
4559       save_preinstalled_handler(sig, oldAct);
4560       // libjsig also interposes the sigaction() call below and saves the
4561       // old sigaction on it own.
4562     } else {
4563       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4564                     "%#lx for signal %d.", (long)oldhand, sig));
4565     }
4566   }
4567 
4568   struct sigaction sigAct;
4569   sigfillset(&(sigAct.sa_mask));
4570   sigAct.sa_handler = SIG_DFL;
4571   if (!set_installed) {
4572     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4573   } else {
4574     sigAct.sa_sigaction = signalHandler;
4575     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4576   }
4577   // Save flags, which are set by ours
4578   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4579   sigflags[sig] = sigAct.sa_flags;
4580 
4581   int ret = sigaction(sig, &sigAct, &oldAct);
4582   assert(ret == 0, "check");
4583 
4584   void* oldhand2  = oldAct.sa_sigaction
4585                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4586                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4587   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4588 }
4589 
4590 // install signal handlers for signals that HotSpot needs to
4591 // handle in order to support Java-level exception handling.
4592 
4593 void os::Linux::install_signal_handlers() {
4594   if (!signal_handlers_are_installed) {
4595     signal_handlers_are_installed = true;
4596 
4597     // signal-chaining
4598     typedef void (*signal_setting_t)();
4599     signal_setting_t begin_signal_setting = NULL;
4600     signal_setting_t end_signal_setting = NULL;
4601     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4602                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4603     if (begin_signal_setting != NULL) {
4604       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4605                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4606       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4607                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4608       libjsig_is_loaded = true;
4609       assert(UseSignalChaining, "should enable signal-chaining");
4610     }
4611     if (libjsig_is_loaded) {
4612       // Tell libjsig jvm is setting signal handlers
4613       (*begin_signal_setting)();
4614     }
4615 
4616     set_signal_handler(SIGSEGV, true);
4617     set_signal_handler(SIGPIPE, true);
4618     set_signal_handler(SIGBUS, true);
4619     set_signal_handler(SIGILL, true);
4620     set_signal_handler(SIGFPE, true);
4621 #if defined(PPC64)
4622     set_signal_handler(SIGTRAP, true);
4623 #endif
4624     set_signal_handler(SIGXFSZ, true);
4625 
4626     if (libjsig_is_loaded) {
4627       // Tell libjsig jvm finishes setting signal handlers
4628       (*end_signal_setting)();
4629     }
4630 
4631     // We don't activate signal checker if libjsig is in place, we trust ourselves
4632     // and if UserSignalHandler is installed all bets are off.
4633     // Log that signal checking is off only if -verbose:jni is specified.
4634     if (CheckJNICalls) {
4635       if (libjsig_is_loaded) {
4636         if (PrintJNIResolving) {
4637           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4638         }
4639         check_signals = false;
4640       }
4641       if (AllowUserSignalHandlers) {
4642         if (PrintJNIResolving) {
4643           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4644         }
4645         check_signals = false;
4646       }
4647     }
4648   }
4649 }
4650 
4651 // This is the fastest way to get thread cpu time on Linux.
4652 // Returns cpu time (user+sys) for any thread, not only for current.
4653 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4654 // It might work on 2.6.10+ with a special kernel/glibc patch.
4655 // For reference, please, see IEEE Std 1003.1-2004:
4656 //   http://www.unix.org/single_unix_specification
4657 
4658 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4659   struct timespec tp;
4660   int rc = os::Linux::clock_gettime(clockid, &tp);
4661   assert(rc == 0, "clock_gettime is expected to return 0 code");
4662 
4663   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4664 }
4665 
4666 /////
4667 // glibc on Linux platform uses non-documented flag
4668 // to indicate, that some special sort of signal
4669 // trampoline is used.
4670 // We will never set this flag, and we should
4671 // ignore this flag in our diagnostic
4672 #ifdef SIGNIFICANT_SIGNAL_MASK
4673 #undef SIGNIFICANT_SIGNAL_MASK
4674 #endif
4675 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4676 
4677 static const char* get_signal_handler_name(address handler,
4678                                            char* buf, int buflen) {
4679   int offset = 0;
4680   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4681   if (found) {
4682     // skip directory names
4683     const char *p1, *p2;
4684     p1 = buf;
4685     size_t len = strlen(os::file_separator());
4686     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4687     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4688   } else {
4689     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4690   }
4691   return buf;
4692 }
4693 
4694 static void print_signal_handler(outputStream* st, int sig,
4695                                  char* buf, size_t buflen) {
4696   struct sigaction sa;
4697 
4698   sigaction(sig, NULL, &sa);
4699 
4700   // See comment for SIGNIFICANT_SIGNAL_MASK define
4701   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4702 
4703   st->print("%s: ", os::exception_name(sig, buf, buflen));
4704 
4705   address handler = (sa.sa_flags & SA_SIGINFO)
4706     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4707     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4708 
4709   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4710     st->print("SIG_DFL");
4711   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4712     st->print("SIG_IGN");
4713   } else {
4714     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4715   }
4716 
4717   st->print(", sa_mask[0]=");
4718   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4719 
4720   address rh = VMError::get_resetted_sighandler(sig);
4721   // May be, handler was resetted by VMError?
4722   if(rh != NULL) {
4723     handler = rh;
4724     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4725   }
4726 
4727   st->print(", sa_flags=");
4728   os::Posix::print_sa_flags(st, sa.sa_flags);
4729 
4730   // Check: is it our handler?
4731   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4732      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4733     // It is our signal handler
4734     // check for flags, reset system-used one!
4735     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4736       st->print(
4737                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4738                 os::Linux::get_our_sigflags(sig));
4739     }
4740   }
4741   st->cr();
4742 }
4743 
4744 
4745 #define DO_SIGNAL_CHECK(sig) \
4746   if (!sigismember(&check_signal_done, sig)) \
4747     os::Linux::check_signal_handler(sig)
4748 
4749 // This method is a periodic task to check for misbehaving JNI applications
4750 // under CheckJNI, we can add any periodic checks here
4751 
4752 void os::run_periodic_checks() {
4753 
4754   if (check_signals == false) return;
4755 
4756   // SEGV and BUS if overridden could potentially prevent
4757   // generation of hs*.log in the event of a crash, debugging
4758   // such a case can be very challenging, so we absolutely
4759   // check the following for a good measure:
4760   DO_SIGNAL_CHECK(SIGSEGV);
4761   DO_SIGNAL_CHECK(SIGILL);
4762   DO_SIGNAL_CHECK(SIGFPE);
4763   DO_SIGNAL_CHECK(SIGBUS);
4764   DO_SIGNAL_CHECK(SIGPIPE);
4765   DO_SIGNAL_CHECK(SIGXFSZ);
4766 #if defined(PPC64)
4767   DO_SIGNAL_CHECK(SIGTRAP);
4768 #endif
4769 
4770   // ReduceSignalUsage allows the user to override these handlers
4771   // see comments at the very top and jvm_solaris.h
4772   if (!ReduceSignalUsage) {
4773     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4774     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4775     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4776     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4777   }
4778 
4779   DO_SIGNAL_CHECK(SR_signum);
4780   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4781 }
4782 
4783 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4784 
4785 static os_sigaction_t os_sigaction = NULL;
4786 
4787 void os::Linux::check_signal_handler(int sig) {
4788   char buf[O_BUFLEN];
4789   address jvmHandler = NULL;
4790 
4791 
4792   struct sigaction act;
4793   if (os_sigaction == NULL) {
4794     // only trust the default sigaction, in case it has been interposed
4795     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4796     if (os_sigaction == NULL) return;
4797   }
4798 
4799   os_sigaction(sig, (struct sigaction*)NULL, &act);
4800 
4801 
4802   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4803 
4804   address thisHandler = (act.sa_flags & SA_SIGINFO)
4805     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4806     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4807 
4808 
4809   switch(sig) {
4810   case SIGSEGV:
4811   case SIGBUS:
4812   case SIGFPE:
4813   case SIGPIPE:
4814   case SIGILL:
4815   case SIGXFSZ:
4816     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4817     break;
4818 
4819   case SHUTDOWN1_SIGNAL:
4820   case SHUTDOWN2_SIGNAL:
4821   case SHUTDOWN3_SIGNAL:
4822   case BREAK_SIGNAL:
4823     jvmHandler = (address)user_handler();
4824     break;
4825 
4826   case INTERRUPT_SIGNAL:
4827     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4828     break;
4829 
4830   default:
4831     if (sig == SR_signum) {
4832       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4833     } else {
4834       return;
4835     }
4836     break;
4837   }
4838 
4839   if (thisHandler != jvmHandler) {
4840     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4841     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4842     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4843     // No need to check this sig any longer
4844     sigaddset(&check_signal_done, sig);
4845     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4846     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4847       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4848                     exception_name(sig, buf, O_BUFLEN));
4849     }
4850   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4851     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4852     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4853     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4854     // No need to check this sig any longer
4855     sigaddset(&check_signal_done, sig);
4856   }
4857 
4858   // Dump all the signal
4859   if (sigismember(&check_signal_done, sig)) {
4860     print_signal_handlers(tty, buf, O_BUFLEN);
4861   }
4862 }
4863 
4864 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4865 
4866 extern bool signal_name(int signo, char* buf, size_t len);
4867 
4868 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4869   if (0 < exception_code && exception_code <= SIGRTMAX) {
4870     // signal
4871     if (!signal_name(exception_code, buf, size)) {
4872       jio_snprintf(buf, size, "SIG%d", exception_code);
4873     }
4874     return buf;
4875   } else {
4876     return NULL;
4877   }
4878 }
4879 
4880 // this is called _before_ the most of global arguments have been parsed
4881 void os::init(void) {
4882   char dummy;   /* used to get a guess on initial stack address */
4883 //  first_hrtime = gethrtime();
4884 
4885   // With LinuxThreads the JavaMain thread pid (primordial thread)
4886   // is different than the pid of the java launcher thread.
4887   // So, on Linux, the launcher thread pid is passed to the VM
4888   // via the sun.java.launcher.pid property.
4889   // Use this property instead of getpid() if it was correctly passed.
4890   // See bug 6351349.
4891   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4892 
4893   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4894 
4895   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4896 
4897   init_random(1234567);
4898 
4899   ThreadCritical::initialize();
4900 
4901   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4902   if (Linux::page_size() == -1) {
4903     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4904                   strerror(errno)));
4905   }
4906   init_page_sizes((size_t) Linux::page_size());
4907 
4908   Linux::initialize_system_info();
4909 
4910   // main_thread points to the aboriginal thread
4911   Linux::_main_thread = pthread_self();
4912 
4913   Linux::clock_init();
4914   initial_time_count = javaTimeNanos();
4915 
4916   // pthread_condattr initialization for monotonic clock
4917   int status;
4918   pthread_condattr_t* _condattr = os::Linux::condAttr();
4919   if ((status = pthread_condattr_init(_condattr)) != 0) {
4920     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4921   }
4922   // Only set the clock if CLOCK_MONOTONIC is available
4923   if (Linux::supports_monotonic_clock()) {
4924     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4925       if (status == EINVAL) {
4926         warning("Unable to use monotonic clock with relative timed-waits" \
4927                 " - changes to the time-of-day clock may have adverse affects");
4928       } else {
4929         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4930       }
4931     }
4932   }
4933   // else it defaults to CLOCK_REALTIME
4934 
4935   pthread_mutex_init(&dl_mutex, NULL);
4936 
4937   // If the pagesize of the VM is greater than 8K determine the appropriate
4938   // number of initial guard pages.  The user can change this with the
4939   // command line arguments, if needed.
4940   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4941     StackYellowPages = 1;
4942     StackRedPages = 1;
4943     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4944   }
4945 }
4946 
4947 // To install functions for atexit system call
4948 extern "C" {
4949   static void perfMemory_exit_helper() {
4950     perfMemory_exit();
4951   }
4952 }
4953 
4954 // this is called _after_ the global arguments have been parsed
4955 jint os::init_2(void)
4956 {
4957   Linux::fast_thread_clock_init();
4958 
4959   // Allocate a single page and mark it as readable for safepoint polling
4960   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4961   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4962 
4963   os::set_polling_page( polling_page );
4964 
4965 #ifndef PRODUCT
4966   if(Verbose && PrintMiscellaneous)
4967     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4968 #endif
4969 
4970   if (!UseMembar) {
4971     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4972     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4973     os::set_memory_serialize_page( mem_serialize_page );
4974 
4975 #ifndef PRODUCT
4976     if(Verbose && PrintMiscellaneous)
4977       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4978 #endif
4979   }
4980 
4981   // initialize suspend/resume support - must do this before signal_sets_init()
4982   if (SR_initialize() != 0) {
4983     perror("SR_initialize failed");
4984     return JNI_ERR;
4985   }
4986 
4987   Linux::signal_sets_init();
4988   Linux::install_signal_handlers();
4989 
4990   // Check minimum allowable stack size for thread creation and to initialize
4991   // the java system classes, including StackOverflowError - depends on page
4992   // size.  Add a page for compiler2 recursion in main thread.
4993   // Add in 2*BytesPerWord times page size to account for VM stack during
4994   // class initialization depending on 32 or 64 bit VM.
4995   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4996             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4997                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4998 
4999   size_t threadStackSizeInBytes = ThreadStackSize * K;
5000   if (threadStackSizeInBytes != 0 &&
5001       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
5002         tty->print_cr("\nThe stack size specified is too small, "
5003                       "Specify at least %dk",
5004                       os::Linux::min_stack_allowed/ K);
5005         return JNI_ERR;
5006   }
5007 
5008   // Make the stack size a multiple of the page size so that
5009   // the yellow/red zones can be guarded.
5010   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
5011         vm_page_size()));
5012 
5013   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5014 
5015 #if defined(IA32)
5016   workaround_expand_exec_shield_cs_limit();
5017 #endif
5018 
5019   Linux::libpthread_init();
5020   if (PrintMiscellaneous && (Verbose || WizardMode)) {
5021      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
5022           Linux::glibc_version(), Linux::libpthread_version(),
5023           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
5024   }
5025 
5026   if (UseNUMA) {
5027     if (!Linux::libnuma_init()) {
5028       UseNUMA = false;
5029     } else {
5030       if ((Linux::numa_max_node() < 1)) {
5031         // There's only one node(they start from 0), disable NUMA.
5032         UseNUMA = false;
5033       }
5034     }
5035     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5036     // we can make the adaptive lgrp chunk resizing work. If the user specified
5037     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
5038     // disable adaptive resizing.
5039     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5040       if (FLAG_IS_DEFAULT(UseNUMA)) {
5041         UseNUMA = false;
5042       } else {
5043         if (FLAG_IS_DEFAULT(UseLargePages) &&
5044             FLAG_IS_DEFAULT(UseSHM) &&
5045             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
5046           UseLargePages = false;
5047         } else {
5048           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
5049           UseAdaptiveSizePolicy = false;
5050           UseAdaptiveNUMAChunkSizing = false;
5051         }
5052       }
5053     }
5054     if (!UseNUMA && ForceNUMA) {
5055       UseNUMA = true;
5056     }
5057   }
5058 
5059   if (MaxFDLimit) {
5060     // set the number of file descriptors to max. print out error
5061     // if getrlimit/setrlimit fails but continue regardless.
5062     struct rlimit nbr_files;
5063     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5064     if (status != 0) {
5065       if (PrintMiscellaneous && (Verbose || WizardMode))
5066         perror("os::init_2 getrlimit failed");
5067     } else {
5068       nbr_files.rlim_cur = nbr_files.rlim_max;
5069       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5070       if (status != 0) {
5071         if (PrintMiscellaneous && (Verbose || WizardMode))
5072           perror("os::init_2 setrlimit failed");
5073       }
5074     }
5075   }
5076 
5077   // Initialize lock used to serialize thread creation (see os::create_thread)
5078   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
5079 
5080   // at-exit methods are called in the reverse order of their registration.
5081   // atexit functions are called on return from main or as a result of a
5082   // call to exit(3C). There can be only 32 of these functions registered
5083   // and atexit() does not set errno.
5084 
5085   if (PerfAllowAtExitRegistration) {
5086     // only register atexit functions if PerfAllowAtExitRegistration is set.
5087     // atexit functions can be delayed until process exit time, which
5088     // can be problematic for embedded VM situations. Embedded VMs should
5089     // call DestroyJavaVM() to assure that VM resources are released.
5090 
5091     // note: perfMemory_exit_helper atexit function may be removed in
5092     // the future if the appropriate cleanup code can be added to the
5093     // VM_Exit VMOperation's doit method.
5094     if (atexit(perfMemory_exit_helper) != 0) {
5095       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5096     }
5097   }
5098 
5099   // initialize thread priority policy
5100   prio_init();
5101 
5102   return JNI_OK;
5103 }
5104 
5105 // Mark the polling page as unreadable
5106 void os::make_polling_page_unreadable(void) {
5107   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
5108     fatal("Could not disable polling page");
5109 };
5110 
5111 // Mark the polling page as readable
5112 void os::make_polling_page_readable(void) {
5113   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5114     fatal("Could not enable polling page");
5115   }
5116 };
5117 
5118 static int os_cpu_count(const cpu_set_t* cpus) {
5119   int count = 0;
5120   // only look up to the number of configured processors
5121   for (int i = 0; i < os::processor_count(); i++) {
5122     if (CPU_ISSET(i, cpus)) {
5123       count++;
5124     }
5125   }
5126   return count;
5127 }
5128 
5129 // Get the current number of available processors for this process.
5130 // This value can change at any time during a process's lifetime.
5131 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5132 // If anything goes wrong we fallback to returning the number of online
5133 // processors - which can be greater than the number available to the process.
5134 int os::active_processor_count() {
5135   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5136   int cpus_size = sizeof(cpu_set_t);
5137   int cpu_count = 0;
5138 
5139   // pid 0 means the current thread - which we have to assume represents the process
5140   if (sched_getaffinity(0, cpus_size, &cpus) == 0) {
5141     cpu_count = os_cpu_count(&cpus);
5142     if (PrintActiveCpus) {
5143       tty->print_cr("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5144     }
5145   }
5146   else {
5147     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5148     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5149             "which may exceed available processors", strerror(errno), cpu_count);
5150   }
5151 
5152   assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
5153   return cpu_count;
5154 }
5155 
5156 void os::set_native_thread_name(const char *name) {
5157   // Not yet implemented.
5158   return;
5159 }
5160 
5161 bool os::distribute_processes(uint length, uint* distribution) {
5162   // Not yet implemented.
5163   return false;
5164 }
5165 
5166 bool os::bind_to_processor(uint processor_id) {
5167   // Not yet implemented.
5168   return false;
5169 }
5170 
5171 ///
5172 
5173 void os::SuspendedThreadTask::internal_do_task() {
5174   if (do_suspend(_thread->osthread())) {
5175     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5176     do_task(context);
5177     do_resume(_thread->osthread());
5178   }
5179 }
5180 
5181 class PcFetcher : public os::SuspendedThreadTask {
5182 public:
5183   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
5184   ExtendedPC result();
5185 protected:
5186   void do_task(const os::SuspendedThreadTaskContext& context);
5187 private:
5188   ExtendedPC _epc;
5189 };
5190 
5191 ExtendedPC PcFetcher::result() {
5192   guarantee(is_done(), "task is not done yet.");
5193   return _epc;
5194 }
5195 
5196 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
5197   Thread* thread = context.thread();
5198   OSThread* osthread = thread->osthread();
5199   if (osthread->ucontext() != NULL) {
5200     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
5201   } else {
5202     // NULL context is unexpected, double-check this is the VMThread
5203     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
5204   }
5205 }
5206 
5207 // Suspends the target using the signal mechanism and then grabs the PC before
5208 // resuming the target. Used by the flat-profiler only
5209 ExtendedPC os::get_thread_pc(Thread* thread) {
5210   // Make sure that it is called by the watcher for the VMThread
5211   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
5212   assert(thread->is_VM_thread(), "Can only be called for VMThread");
5213 
5214   PcFetcher fetcher(thread);
5215   fetcher.run();
5216   return fetcher.result();
5217 }
5218 
5219 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
5220 {
5221    if (is_NPTL()) {
5222       return pthread_cond_timedwait(_cond, _mutex, _abstime);
5223    } else {
5224       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
5225       // word back to default 64bit precision if condvar is signaled. Java
5226       // wants 53bit precision.  Save and restore current value.
5227       int fpu = get_fpu_control_word();
5228       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
5229       set_fpu_control_word(fpu);
5230       return status;
5231    }
5232 }
5233 
5234 ////////////////////////////////////////////////////////////////////////////////
5235 // debug support
5236 
5237 bool os::find(address addr, outputStream* st) {
5238   Dl_info dlinfo;
5239   memset(&dlinfo, 0, sizeof(dlinfo));
5240   if (dladdr(addr, &dlinfo) != 0) {
5241     st->print(PTR_FORMAT ": ", addr);
5242     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5243       st->print("%s+%#x", dlinfo.dli_sname,
5244                  addr - (intptr_t)dlinfo.dli_saddr);
5245     } else if (dlinfo.dli_fbase != NULL) {
5246       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
5247     } else {
5248       st->print("<absolute address>");
5249     }
5250     if (dlinfo.dli_fname != NULL) {
5251       st->print(" in %s", dlinfo.dli_fname);
5252     }
5253     if (dlinfo.dli_fbase != NULL) {
5254       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5255     }
5256     st->cr();
5257 
5258     if (Verbose) {
5259       // decode some bytes around the PC
5260       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5261       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5262       address       lowest = (address) dlinfo.dli_sname;
5263       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5264       if (begin < lowest)  begin = lowest;
5265       Dl_info dlinfo2;
5266       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5267           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
5268         end = (address) dlinfo2.dli_saddr;
5269       Disassembler::decode(begin, end, st);
5270     }
5271     return true;
5272   }
5273   return false;
5274 }
5275 
5276 ////////////////////////////////////////////////////////////////////////////////
5277 // misc
5278 
5279 // This does not do anything on Linux. This is basically a hook for being
5280 // able to use structured exception handling (thread-local exception filters)
5281 // on, e.g., Win32.
5282 void
5283 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5284                          JavaCallArguments* args, Thread* thread) {
5285   f(value, method, args, thread);
5286 }
5287 
5288 void os::print_statistics() {
5289 }
5290 
5291 int os::message_box(const char* title, const char* message) {
5292   int i;
5293   fdStream err(defaultStream::error_fd());
5294   for (i = 0; i < 78; i++) err.print_raw("=");
5295   err.cr();
5296   err.print_raw_cr(title);
5297   for (i = 0; i < 78; i++) err.print_raw("-");
5298   err.cr();
5299   err.print_raw_cr(message);
5300   for (i = 0; i < 78; i++) err.print_raw("=");
5301   err.cr();
5302 
5303   char buf[16];
5304   // Prevent process from exiting upon "read error" without consuming all CPU
5305   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5306 
5307   return buf[0] == 'y' || buf[0] == 'Y';
5308 }
5309 
5310 int os::stat(const char *path, struct stat *sbuf) {
5311   char pathbuf[MAX_PATH];
5312   if (strlen(path) > MAX_PATH - 1) {
5313     errno = ENAMETOOLONG;
5314     return -1;
5315   }
5316   os::native_path(strcpy(pathbuf, path));
5317   return ::stat(pathbuf, sbuf);
5318 }
5319 
5320 bool os::check_heap(bool force) {
5321   return true;
5322 }
5323 
5324 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
5325   return ::vsnprintf(buf, count, format, args);
5326 }
5327 
5328 // Is a (classpath) directory empty?
5329 bool os::dir_is_empty(const char* path) {
5330   DIR *dir = NULL;
5331   struct dirent *ptr;
5332 
5333   dir = opendir(path);
5334   if (dir == NULL) return true;
5335 
5336   /* Scan the directory */
5337   bool result = true;
5338   char buf[sizeof(struct dirent) + MAX_PATH];
5339   while (result && (ptr = ::readdir(dir)) != NULL) {
5340     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5341       result = false;
5342     }
5343   }
5344   closedir(dir);
5345   return result;
5346 }
5347 
5348 // This code originates from JDK's sysOpen and open64_w
5349 // from src/solaris/hpi/src/system_md.c
5350 
5351 #ifndef O_DELETE
5352 #define O_DELETE 0x10000
5353 #endif
5354 
5355 // Open a file. Unlink the file immediately after open returns
5356 // if the specified oflag has the O_DELETE flag set.
5357 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5358 
5359 int os::open(const char *path, int oflag, int mode) {
5360 
5361   if (strlen(path) > MAX_PATH - 1) {
5362     errno = ENAMETOOLONG;
5363     return -1;
5364   }
5365   int fd;
5366   int o_delete = (oflag & O_DELETE);
5367   oflag = oflag & ~O_DELETE;
5368 
5369   fd = ::open64(path, oflag, mode);
5370   if (fd == -1) return -1;
5371 
5372   //If the open succeeded, the file might still be a directory
5373   {
5374     struct stat64 buf64;
5375     int ret = ::fstat64(fd, &buf64);
5376     int st_mode = buf64.st_mode;
5377 
5378     if (ret != -1) {
5379       if ((st_mode & S_IFMT) == S_IFDIR) {
5380         errno = EISDIR;
5381         ::close(fd);
5382         return -1;
5383       }
5384     } else {
5385       ::close(fd);
5386       return -1;
5387     }
5388   }
5389 
5390     /*
5391      * All file descriptors that are opened in the JVM and not
5392      * specifically destined for a subprocess should have the
5393      * close-on-exec flag set.  If we don't set it, then careless 3rd
5394      * party native code might fork and exec without closing all
5395      * appropriate file descriptors (e.g. as we do in closeDescriptors in
5396      * UNIXProcess.c), and this in turn might:
5397      *
5398      * - cause end-of-file to fail to be detected on some file
5399      *   descriptors, resulting in mysterious hangs, or
5400      *
5401      * - might cause an fopen in the subprocess to fail on a system
5402      *   suffering from bug 1085341.
5403      *
5404      * (Yes, the default setting of the close-on-exec flag is a Unix
5405      * design flaw)
5406      *
5407      * See:
5408      * 1085341: 32-bit stdio routines should support file descriptors >255
5409      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5410      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5411      */
5412 #ifdef FD_CLOEXEC
5413     {
5414         int flags = ::fcntl(fd, F_GETFD);
5415         if (flags != -1)
5416             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5417     }
5418 #endif
5419 
5420   if (o_delete != 0) {
5421     ::unlink(path);
5422   }
5423   return fd;
5424 }
5425 
5426 
5427 // create binary file, rewriting existing file if required
5428 int os::create_binary_file(const char* path, bool rewrite_existing) {
5429   int oflags = O_WRONLY | O_CREAT;
5430   if (!rewrite_existing) {
5431     oflags |= O_EXCL;
5432   }
5433   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5434 }
5435 
5436 // return current position of file pointer
5437 jlong os::current_file_offset(int fd) {
5438   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5439 }
5440 
5441 // move file pointer to the specified offset
5442 jlong os::seek_to_file_offset(int fd, jlong offset) {
5443   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5444 }
5445 
5446 // This code originates from JDK's sysAvailable
5447 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5448 
5449 int os::available(int fd, jlong *bytes) {
5450   jlong cur, end;
5451   int mode;
5452   struct stat64 buf64;
5453 
5454   if (::fstat64(fd, &buf64) >= 0) {
5455     mode = buf64.st_mode;
5456     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5457       /*
5458       * XXX: is the following call interruptible? If so, this might
5459       * need to go through the INTERRUPT_IO() wrapper as for other
5460       * blocking, interruptible calls in this file.
5461       */
5462       int n;
5463       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5464         *bytes = n;
5465         return 1;
5466       }
5467     }
5468   }
5469   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5470     return 0;
5471   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5472     return 0;
5473   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5474     return 0;
5475   }
5476   *bytes = end - cur;
5477   return 1;
5478 }
5479 
5480 int os::socket_available(int fd, jint *pbytes) {
5481   // Linux doc says EINTR not returned, unlike Solaris
5482   int ret = ::ioctl(fd, FIONREAD, pbytes);
5483 
5484   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5485   // is expected to return 0 on failure and 1 on success to the jdk.
5486   return (ret < 0) ? 0 : 1;
5487 }
5488 
5489 // Map a block of memory.
5490 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5491                      char *addr, size_t bytes, bool read_only,
5492                      bool allow_exec) {
5493   int prot;
5494   int flags = MAP_PRIVATE;
5495 
5496   if (read_only) {
5497     prot = PROT_READ;
5498   } else {
5499     prot = PROT_READ | PROT_WRITE;
5500   }
5501 
5502   if (allow_exec) {
5503     prot |= PROT_EXEC;
5504   }
5505 
5506   if (addr != NULL) {
5507     flags |= MAP_FIXED;
5508   }
5509 
5510   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5511                                      fd, file_offset);
5512   if (mapped_address == MAP_FAILED) {
5513     return NULL;
5514   }
5515   return mapped_address;
5516 }
5517 
5518 
5519 // Remap a block of memory.
5520 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5521                        char *addr, size_t bytes, bool read_only,
5522                        bool allow_exec) {
5523   // same as map_memory() on this OS
5524   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5525                         allow_exec);
5526 }
5527 
5528 
5529 // Unmap a block of memory.
5530 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5531   return munmap(addr, bytes) == 0;
5532 }
5533 
5534 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5535 
5536 static clockid_t thread_cpu_clockid(Thread* thread) {
5537   pthread_t tid = thread->osthread()->pthread_id();
5538   clockid_t clockid;
5539 
5540   // Get thread clockid
5541   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5542   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5543   return clockid;
5544 }
5545 
5546 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5547 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5548 // of a thread.
5549 //
5550 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5551 // the fast estimate available on the platform.
5552 
5553 jlong os::current_thread_cpu_time() {
5554   if (os::Linux::supports_fast_thread_cpu_time()) {
5555     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5556   } else {
5557     // return user + sys since the cost is the same
5558     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5559   }
5560 }
5561 
5562 jlong os::thread_cpu_time(Thread* thread) {
5563   // consistent with what current_thread_cpu_time() returns
5564   if (os::Linux::supports_fast_thread_cpu_time()) {
5565     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5566   } else {
5567     return slow_thread_cpu_time(thread, true /* user + sys */);
5568   }
5569 }
5570 
5571 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5572   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5573     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5574   } else {
5575     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5576   }
5577 }
5578 
5579 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5580   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5581     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5582   } else {
5583     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5584   }
5585 }
5586 
5587 //
5588 //  -1 on error.
5589 //
5590 
5591 PRAGMA_DIAG_PUSH
5592 PRAGMA_FORMAT_NONLITERAL_IGNORED
5593 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5594   static bool proc_task_unchecked = true;
5595   static const char *proc_stat_path = "/proc/%d/stat";
5596   pid_t  tid = thread->osthread()->thread_id();
5597   char *s;
5598   char stat[2048];
5599   int statlen;
5600   char proc_name[64];
5601   int count;
5602   long sys_time, user_time;
5603   char cdummy;
5604   int idummy;
5605   long ldummy;
5606   FILE *fp;
5607 
5608   // The /proc/<tid>/stat aggregates per-process usage on
5609   // new Linux kernels 2.6+ where NPTL is supported.
5610   // The /proc/self/task/<tid>/stat still has the per-thread usage.
5611   // See bug 6328462.
5612   // There possibly can be cases where there is no directory
5613   // /proc/self/task, so we check its availability.
5614   if (proc_task_unchecked && os::Linux::is_NPTL()) {
5615     // This is executed only once
5616     proc_task_unchecked = false;
5617     fp = fopen("/proc/self/task", "r");
5618     if (fp != NULL) {
5619       proc_stat_path = "/proc/self/task/%d/stat";
5620       fclose(fp);
5621     }
5622   }
5623 
5624   sprintf(proc_name, proc_stat_path, tid);
5625   fp = fopen(proc_name, "r");
5626   if ( fp == NULL ) return -1;
5627   statlen = fread(stat, 1, 2047, fp);
5628   stat[statlen] = '\0';
5629   fclose(fp);
5630 
5631   // Skip pid and the command string. Note that we could be dealing with
5632   // weird command names, e.g. user could decide to rename java launcher
5633   // to "java 1.4.2 :)", then the stat file would look like
5634   //                1234 (java 1.4.2 :)) R ... ...
5635   // We don't really need to know the command string, just find the last
5636   // occurrence of ")" and then start parsing from there. See bug 4726580.
5637   s = strrchr(stat, ')');
5638   if (s == NULL ) return -1;
5639 
5640   // Skip blank chars
5641   do s++; while (isspace(*s));
5642 
5643   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5644                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5645                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5646                  &user_time, &sys_time);
5647   if ( count != 13 ) return -1;
5648   if (user_sys_cpu_time) {
5649     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5650   } else {
5651     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5652   }
5653 }
5654 PRAGMA_DIAG_POP
5655 
5656 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5657   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5658   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5659   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5660   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5661 }
5662 
5663 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5664   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5665   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5666   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5667   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5668 }
5669 
5670 bool os::is_thread_cpu_time_supported() {
5671   return true;
5672 }
5673 
5674 // System loadavg support.  Returns -1 if load average cannot be obtained.
5675 // Linux doesn't yet have a (official) notion of processor sets,
5676 // so just return the system wide load average.
5677 int os::loadavg(double loadavg[], int nelem) {
5678   return ::getloadavg(loadavg, nelem);
5679 }
5680 
5681 void os::pause() {
5682   char filename[MAX_PATH];
5683   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5684     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5685   } else {
5686     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5687   }
5688 
5689   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5690   if (fd != -1) {
5691     struct stat buf;
5692     ::close(fd);
5693     while (::stat(filename, &buf) == 0) {
5694       (void)::poll(NULL, 0, 100);
5695     }
5696   } else {
5697     jio_fprintf(stderr,
5698       "Could not open pause file '%s', continuing immediately.\n", filename);
5699   }
5700 }
5701 
5702 
5703 // Refer to the comments in os_solaris.cpp park-unpark.
5704 //
5705 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5706 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5707 // For specifics regarding the bug see GLIBC BUGID 261237 :
5708 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5709 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5710 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5711 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5712 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5713 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5714 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5715 // of libpthread avoids the problem, but isn't practical.
5716 //
5717 // Possible remedies:
5718 //
5719 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5720 //      This is palliative and probabilistic, however.  If the thread is preempted
5721 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5722 //      than the minimum period may have passed, and the abstime may be stale (in the
5723 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5724 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5725 //
5726 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5727 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5728 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5729 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5730 //      thread.
5731 //
5732 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5733 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5734 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5735 //      This also works well.  In fact it avoids kernel-level scalability impediments
5736 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5737 //      timers in a graceful fashion.
5738 //
5739 // 4.   When the abstime value is in the past it appears that control returns
5740 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5741 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5742 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5743 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5744 //      It may be possible to avoid reinitialization by checking the return
5745 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5746 //      condvar we must establish the invariant that cond_signal() is only called
5747 //      within critical sections protected by the adjunct mutex.  This prevents
5748 //      cond_signal() from "seeing" a condvar that's in the midst of being
5749 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5750 //      desirable signal-after-unlock optimization that avoids futile context switching.
5751 //
5752 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5753 //      structure when a condvar is used or initialized.  cond_destroy()  would
5754 //      release the helper structure.  Our reinitialize-after-timedwait fix
5755 //      put excessive stress on malloc/free and locks protecting the c-heap.
5756 //
5757 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5758 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5759 // and only enabling the work-around for vulnerable environments.
5760 
5761 // utility to compute the abstime argument to timedwait:
5762 // millis is the relative timeout time
5763 // abstime will be the absolute timeout time
5764 // TODO: replace compute_abstime() with unpackTime()
5765 
5766 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5767   if (millis < 0)  millis = 0;
5768 
5769   jlong seconds = millis / 1000;
5770   millis %= 1000;
5771   if (seconds > 50000000) { // see man cond_timedwait(3T)
5772     seconds = 50000000;
5773   }
5774 
5775   if (os::Linux::supports_monotonic_clock()) {
5776     struct timespec now;
5777     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5778     assert_status(status == 0, status, "clock_gettime");
5779     abstime->tv_sec = now.tv_sec  + seconds;
5780     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5781     if (nanos >= NANOSECS_PER_SEC) {
5782       abstime->tv_sec += 1;
5783       nanos -= NANOSECS_PER_SEC;
5784     }
5785     abstime->tv_nsec = nanos;
5786   } else {
5787     struct timeval now;
5788     int status = gettimeofday(&now, NULL);
5789     assert(status == 0, "gettimeofday");
5790     abstime->tv_sec = now.tv_sec  + seconds;
5791     long usec = now.tv_usec + millis * 1000;
5792     if (usec >= 1000000) {
5793       abstime->tv_sec += 1;
5794       usec -= 1000000;
5795     }
5796     abstime->tv_nsec = usec * 1000;
5797   }
5798   return abstime;
5799 }
5800 
5801 
5802 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5803 // Conceptually TryPark() should be equivalent to park(0).
5804 
5805 int os::PlatformEvent::TryPark() {
5806   for (;;) {
5807     const int v = _Event ;
5808     guarantee ((v == 0) || (v == 1), "invariant") ;
5809     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5810   }
5811 }
5812 
5813 void os::PlatformEvent::park() {       // AKA "down()"
5814   // Invariant: Only the thread associated with the Event/PlatformEvent
5815   // may call park().
5816   // TODO: assert that _Assoc != NULL or _Assoc == Self
5817   int v ;
5818   for (;;) {
5819       v = _Event ;
5820       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5821   }
5822   guarantee (v >= 0, "invariant") ;
5823   if (v == 0) {
5824      // Do this the hard way by blocking ...
5825      int status = pthread_mutex_lock(_mutex);
5826      assert_status(status == 0, status, "mutex_lock");
5827      guarantee (_nParked == 0, "invariant") ;
5828      ++ _nParked ;
5829      while (_Event < 0) {
5830         status = pthread_cond_wait(_cond, _mutex);
5831         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5832         // Treat this the same as if the wait was interrupted
5833         if (status == ETIME) { status = EINTR; }
5834         assert_status(status == 0 || status == EINTR, status, "cond_wait");
5835      }
5836      -- _nParked ;
5837 
5838     _Event = 0 ;
5839      status = pthread_mutex_unlock(_mutex);
5840      assert_status(status == 0, status, "mutex_unlock");
5841     // Paranoia to ensure our locked and lock-free paths interact
5842     // correctly with each other.
5843     OrderAccess::fence();
5844   }
5845   guarantee (_Event >= 0, "invariant") ;
5846 }
5847 
5848 int os::PlatformEvent::park(jlong millis) {
5849   guarantee (_nParked == 0, "invariant") ;
5850 
5851   int v ;
5852   for (;;) {
5853       v = _Event ;
5854       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5855   }
5856   guarantee (v >= 0, "invariant") ;
5857   if (v != 0) return OS_OK ;
5858 
5859   // We do this the hard way, by blocking the thread.
5860   // Consider enforcing a minimum timeout value.
5861   struct timespec abst;
5862   compute_abstime(&abst, millis);
5863 
5864   int ret = OS_TIMEOUT;
5865   int status = pthread_mutex_lock(_mutex);
5866   assert_status(status == 0, status, "mutex_lock");
5867   guarantee (_nParked == 0, "invariant") ;
5868   ++_nParked ;
5869 
5870   // Object.wait(timo) will return because of
5871   // (a) notification
5872   // (b) timeout
5873   // (c) thread.interrupt
5874   //
5875   // Thread.interrupt and object.notify{All} both call Event::set.
5876   // That is, we treat thread.interrupt as a special case of notification.
5877   // The underlying Solaris implementation, cond_timedwait, admits
5878   // spurious/premature wakeups, but the JLS/JVM spec prevents the
5879   // JVM from making those visible to Java code.  As such, we must
5880   // filter out spurious wakeups.  We assume all ETIME returns are valid.
5881   //
5882   // TODO: properly differentiate simultaneous notify+interrupt.
5883   // In that case, we should propagate the notify to another waiter.
5884 
5885   while (_Event < 0) {
5886     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5887     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5888       pthread_cond_destroy (_cond);
5889       pthread_cond_init (_cond, os::Linux::condAttr()) ;
5890     }
5891     assert_status(status == 0 || status == EINTR ||
5892                   status == ETIME || status == ETIMEDOUT,
5893                   status, "cond_timedwait");
5894     if (!FilterSpuriousWakeups) break ;                 // previous semantics
5895     if (status == ETIME || status == ETIMEDOUT) break ;
5896     // We consume and ignore EINTR and spurious wakeups.
5897   }
5898   --_nParked ;
5899   if (_Event >= 0) {
5900      ret = OS_OK;
5901   }
5902   _Event = 0 ;
5903   status = pthread_mutex_unlock(_mutex);
5904   assert_status(status == 0, status, "mutex_unlock");
5905   assert (_nParked == 0, "invariant") ;
5906   // Paranoia to ensure our locked and lock-free paths interact
5907   // correctly with each other.
5908   OrderAccess::fence();
5909   return ret;
5910 }
5911 
5912 void os::PlatformEvent::unpark() {
5913   // Transitions for _Event:
5914   //    0 :=> 1
5915   //    1 :=> 1
5916   //   -1 :=> either 0 or 1; must signal target thread
5917   //          That is, we can safely transition _Event from -1 to either
5918   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5919   //          unpark() calls.
5920   // See also: "Semaphores in Plan 9" by Mullender & Cox
5921   //
5922   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5923   // that it will take two back-to-back park() calls for the owning
5924   // thread to block. This has the benefit of forcing a spurious return
5925   // from the first park() call after an unpark() call which will help
5926   // shake out uses of park() and unpark() without condition variables.
5927 
5928   if (Atomic::xchg(1, &_Event) >= 0) return;
5929 
5930   // Wait for the thread associated with the event to vacate
5931   int status = pthread_mutex_lock(_mutex);
5932   assert_status(status == 0, status, "mutex_lock");
5933   int AnyWaiters = _nParked;
5934   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5935   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5936     AnyWaiters = 0;
5937     pthread_cond_signal(_cond);
5938   }
5939   status = pthread_mutex_unlock(_mutex);
5940   assert_status(status == 0, status, "mutex_unlock");
5941   if (AnyWaiters != 0) {
5942     status = pthread_cond_signal(_cond);
5943     assert_status(status == 0, status, "cond_signal");
5944   }
5945 
5946   // Note that we signal() _after dropping the lock for "immortal" Events.
5947   // This is safe and avoids a common class of  futile wakeups.  In rare
5948   // circumstances this can cause a thread to return prematurely from
5949   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5950   // simply re-test the condition and re-park itself.
5951 }
5952 
5953 
5954 // JSR166
5955 // -------------------------------------------------------
5956 
5957 /*
5958  * The solaris and linux implementations of park/unpark are fairly
5959  * conservative for now, but can be improved. They currently use a
5960  * mutex/condvar pair, plus a a count.
5961  * Park decrements count if > 0, else does a condvar wait.  Unpark
5962  * sets count to 1 and signals condvar.  Only one thread ever waits
5963  * on the condvar. Contention seen when trying to park implies that someone
5964  * is unparking you, so don't wait. And spurious returns are fine, so there
5965  * is no need to track notifications.
5966  */
5967 
5968 /*
5969  * This code is common to linux and solaris and will be moved to a
5970  * common place in dolphin.
5971  *
5972  * The passed in time value is either a relative time in nanoseconds
5973  * or an absolute time in milliseconds. Either way it has to be unpacked
5974  * into suitable seconds and nanoseconds components and stored in the
5975  * given timespec structure.
5976  * Given time is a 64-bit value and the time_t used in the timespec is only
5977  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5978  * overflow if times way in the future are given. Further on Solaris versions
5979  * prior to 10 there is a restriction (see cond_timedwait) that the specified
5980  * number of seconds, in abstime, is less than current_time  + 100,000,000.
5981  * As it will be 28 years before "now + 100000000" will overflow we can
5982  * ignore overflow and just impose a hard-limit on seconds using the value
5983  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5984  * years from "now".
5985  */
5986 
5987 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5988   assert (time > 0, "convertTime");
5989   time_t max_secs = 0;
5990 
5991   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
5992     struct timeval now;
5993     int status = gettimeofday(&now, NULL);
5994     assert(status == 0, "gettimeofday");
5995 
5996     max_secs = now.tv_sec + MAX_SECS;
5997 
5998     if (isAbsolute) {
5999       jlong secs = time / 1000;
6000       if (secs > max_secs) {
6001         absTime->tv_sec = max_secs;
6002       } else {
6003         absTime->tv_sec = secs;
6004       }
6005       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
6006     } else {
6007       jlong secs = time / NANOSECS_PER_SEC;
6008       if (secs >= MAX_SECS) {
6009         absTime->tv_sec = max_secs;
6010         absTime->tv_nsec = 0;
6011       } else {
6012         absTime->tv_sec = now.tv_sec + secs;
6013         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
6014         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
6015           absTime->tv_nsec -= NANOSECS_PER_SEC;
6016           ++absTime->tv_sec; // note: this must be <= max_secs
6017         }
6018       }
6019     }
6020   } else {
6021     // must be relative using monotonic clock
6022     struct timespec now;
6023     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
6024     assert_status(status == 0, status, "clock_gettime");
6025     max_secs = now.tv_sec + MAX_SECS;
6026     jlong secs = time / NANOSECS_PER_SEC;
6027     if (secs >= MAX_SECS) {
6028       absTime->tv_sec = max_secs;
6029       absTime->tv_nsec = 0;
6030     } else {
6031       absTime->tv_sec = now.tv_sec + secs;
6032       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
6033       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
6034         absTime->tv_nsec -= NANOSECS_PER_SEC;
6035         ++absTime->tv_sec; // note: this must be <= max_secs
6036       }
6037     }
6038   }
6039   assert(absTime->tv_sec >= 0, "tv_sec < 0");
6040   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
6041   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
6042   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
6043 }
6044 
6045 void Parker::park(bool isAbsolute, jlong time) {
6046   // Ideally we'd do something useful while spinning, such
6047   // as calling unpackTime().
6048 
6049   // Optional fast-path check:
6050   // Return immediately if a permit is available.
6051   // We depend on Atomic::xchg() having full barrier semantics
6052   // since we are doing a lock-free update to _counter.
6053   if (Atomic::xchg(0, &_counter) > 0) return;
6054 
6055   Thread* thread = Thread::current();
6056   assert(thread->is_Java_thread(), "Must be JavaThread");
6057   JavaThread *jt = (JavaThread *)thread;
6058 
6059   // Optional optimization -- avoid state transitions if there's an interrupt pending.
6060   // Check interrupt before trying to wait
6061   if (Thread::is_interrupted(thread, false)) {
6062     return;
6063   }
6064 
6065   // Next, demultiplex/decode time arguments
6066   timespec absTime;
6067   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
6068     return;
6069   }
6070   if (time > 0) {
6071     unpackTime(&absTime, isAbsolute, time);
6072   }
6073 
6074 
6075   // Enter safepoint region
6076   // Beware of deadlocks such as 6317397.
6077   // The per-thread Parker:: mutex is a classic leaf-lock.
6078   // In particular a thread must never block on the Threads_lock while
6079   // holding the Parker:: mutex.  If safepoints are pending both the
6080   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
6081   ThreadBlockInVM tbivm(jt);
6082 
6083   // Don't wait if cannot get lock since interference arises from
6084   // unblocking.  Also. check interrupt before trying wait
6085   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
6086     return;
6087   }
6088 
6089   int status ;
6090   if (_counter > 0)  { // no wait needed
6091     _counter = 0;
6092     status = pthread_mutex_unlock(_mutex);
6093     assert (status == 0, "invariant") ;
6094     // Paranoia to ensure our locked and lock-free paths interact
6095     // correctly with each other and Java-level accesses.
6096     OrderAccess::fence();
6097     return;
6098   }
6099 
6100 #ifdef ASSERT
6101   // Don't catch signals while blocked; let the running threads have the signals.
6102   // (This allows a debugger to break into the running thread.)
6103   sigset_t oldsigs;
6104   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
6105   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
6106 #endif
6107 
6108   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
6109   jt->set_suspend_equivalent();
6110   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
6111 
6112   assert(_cur_index == -1, "invariant");
6113   if (time == 0) {
6114     _cur_index = REL_INDEX; // arbitrary choice when not timed
6115     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
6116   } else {
6117     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
6118     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
6119     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
6120       pthread_cond_destroy (&_cond[_cur_index]) ;
6121       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
6122     }
6123   }
6124   _cur_index = -1;
6125   assert_status(status == 0 || status == EINTR ||
6126                 status == ETIME || status == ETIMEDOUT,
6127                 status, "cond_timedwait");
6128 
6129 #ifdef ASSERT
6130   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
6131 #endif
6132 
6133   _counter = 0 ;
6134   status = pthread_mutex_unlock(_mutex) ;
6135   assert_status(status == 0, status, "invariant") ;
6136   // Paranoia to ensure our locked and lock-free paths interact
6137   // correctly with each other and Java-level accesses.
6138   OrderAccess::fence();
6139 
6140   // If externally suspended while waiting, re-suspend
6141   if (jt->handle_special_suspend_equivalent_condition()) {
6142     jt->java_suspend_self();
6143   }
6144 }
6145 
6146 void Parker::unpark() {
6147   int s, status ;
6148   status = pthread_mutex_lock(_mutex);
6149   assert (status == 0, "invariant") ;
6150   s = _counter;
6151   _counter = 1;
6152   if (s < 1) {
6153     // thread might be parked
6154     if (_cur_index != -1) {
6155       // thread is definitely parked
6156       if (WorkAroundNPTLTimedWaitHang) {
6157         status = pthread_cond_signal (&_cond[_cur_index]);
6158         assert (status == 0, "invariant");
6159         status = pthread_mutex_unlock(_mutex);
6160         assert (status == 0, "invariant");
6161       } else {
6162         // must capture correct index before unlocking
6163         int index = _cur_index;
6164         status = pthread_mutex_unlock(_mutex);
6165         assert (status == 0, "invariant");
6166         status = pthread_cond_signal (&_cond[index]);
6167         assert (status == 0, "invariant");
6168       }
6169     } else {
6170       pthread_mutex_unlock(_mutex);
6171       assert (status == 0, "invariant") ;
6172     }
6173   } else {
6174     pthread_mutex_unlock(_mutex);
6175     assert (status == 0, "invariant") ;
6176   }
6177 }
6178 
6179 
6180 extern char** environ;
6181 
6182 // Run the specified command in a separate process. Return its exit value,
6183 // or -1 on failure (e.g. can't fork a new process).
6184 // Unlike system(), this function can be called from signal handler. It
6185 // doesn't block SIGINT et al.
6186 int os::fork_and_exec(char* cmd) {
6187   const char * argv[4] = {"sh", "-c", cmd, NULL};
6188 
6189   pid_t pid = fork();
6190 
6191   if (pid < 0) {
6192     // fork failed
6193     return -1;
6194 
6195   } else if (pid == 0) {
6196     // child process
6197 
6198     execve("/bin/sh", (char* const*)argv, environ);
6199 
6200     // execve failed
6201     _exit(-1);
6202 
6203   } else  {
6204     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
6205     // care about the actual exit code, for now.
6206 
6207     int status;
6208 
6209     // Wait for the child process to exit.  This returns immediately if
6210     // the child has already exited. */
6211     while (waitpid(pid, &status, 0) < 0) {
6212         switch (errno) {
6213         case ECHILD: return 0;
6214         case EINTR: break;
6215         default: return -1;
6216         }
6217     }
6218 
6219     if (WIFEXITED(status)) {
6220        // The child exited normally; get its exit code.
6221        return WEXITSTATUS(status);
6222     } else if (WIFSIGNALED(status)) {
6223        // The child exited because of a signal
6224        // The best value to return is 0x80 + signal number,
6225        // because that is what all Unix shells do, and because
6226        // it allows callers to distinguish between process exit and
6227        // process death by signal.
6228        return 0x80 + WTERMSIG(status);
6229     } else {
6230        // Unknown exit code; pass it through
6231        return status;
6232     }
6233   }
6234 }
6235 
6236 // is_headless_jre()
6237 //
6238 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
6239 // in order to report if we are running in a headless jre
6240 //
6241 // Since JDK8 xawt/libmawt.so was moved into the same directory
6242 // as libawt.so, and renamed libawt_xawt.so
6243 //
6244 bool os::is_headless_jre() {
6245     struct stat statbuf;
6246     char buf[MAXPATHLEN];
6247     char libmawtpath[MAXPATHLEN];
6248     const char *xawtstr  = "/xawt/libmawt.so";
6249     const char *new_xawtstr = "/libawt_xawt.so";
6250     char *p;
6251 
6252     // Get path to libjvm.so
6253     os::jvm_path(buf, sizeof(buf));
6254 
6255     // Get rid of libjvm.so
6256     p = strrchr(buf, '/');
6257     if (p == NULL) return false;
6258     else *p = '\0';
6259 
6260     // Get rid of client or server
6261     p = strrchr(buf, '/');
6262     if (p == NULL) return false;
6263     else *p = '\0';
6264 
6265     // check xawt/libmawt.so
6266     strcpy(libmawtpath, buf);
6267     strcat(libmawtpath, xawtstr);
6268     if (::stat(libmawtpath, &statbuf) == 0) return false;
6269 
6270     // check libawt_xawt.so
6271     strcpy(libmawtpath, buf);
6272     strcat(libmawtpath, new_xawtstr);
6273     if (::stat(libmawtpath, &statbuf) == 0) return false;
6274 
6275     return true;
6276 }
6277 
6278 // Get the default path to the core file
6279 // Returns the length of the string
6280 int os::get_core_path(char* buffer, size_t bufferSize) {
6281   const char* p = get_current_directory(buffer, bufferSize);
6282 
6283   if (p == NULL) {
6284     assert(p != NULL, "failed to get current directory");
6285     return 0;
6286   }
6287 
6288   return strlen(buffer);
6289 }
6290 
6291 /////////////// Unit tests ///////////////
6292 
6293 #ifndef PRODUCT
6294 
6295 #define test_log(...) \
6296   do {\
6297     if (VerboseInternalVMTests) { \
6298       tty->print_cr(__VA_ARGS__); \
6299       tty->flush(); \
6300     }\
6301   } while (false)
6302 
6303 class TestReserveMemorySpecial : AllStatic {
6304  public:
6305   static void small_page_write(void* addr, size_t size) {
6306     size_t page_size = os::vm_page_size();
6307 
6308     char* end = (char*)addr + size;
6309     for (char* p = (char*)addr; p < end; p += page_size) {
6310       *p = 1;
6311     }
6312   }
6313 
6314   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6315     if (!UseHugeTLBFS) {
6316       return;
6317     }
6318 
6319     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6320 
6321     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6322 
6323     if (addr != NULL) {
6324       small_page_write(addr, size);
6325 
6326       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6327     }
6328   }
6329 
6330   static void test_reserve_memory_special_huge_tlbfs_only() {
6331     if (!UseHugeTLBFS) {
6332       return;
6333     }
6334 
6335     size_t lp = os::large_page_size();
6336 
6337     for (size_t size = lp; size <= lp * 10; size += lp) {
6338       test_reserve_memory_special_huge_tlbfs_only(size);
6339     }
6340   }
6341 
6342   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6343     size_t lp = os::large_page_size();
6344     size_t ag = os::vm_allocation_granularity();
6345 
6346     // sizes to test
6347     const size_t sizes[] = {
6348       lp, lp + ag, lp + lp / 2, lp * 2,
6349       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6350       lp * 10, lp * 10 + lp / 2
6351     };
6352     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6353 
6354     // For each size/alignment combination, we test three scenarios:
6355     // 1) with req_addr == NULL
6356     // 2) with a non-null req_addr at which we expect to successfully allocate
6357     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6358     //    expect the allocation to either fail or to ignore req_addr
6359 
6360     // Pre-allocate two areas; they shall be as large as the largest allocation
6361     //  and aligned to the largest alignment we will be testing.
6362     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6363     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6364       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6365       -1, 0);
6366     assert(mapping1 != MAP_FAILED, "should work");
6367 
6368     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6369       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6370       -1, 0);
6371     assert(mapping2 != MAP_FAILED, "should work");
6372 
6373     // Unmap the first mapping, but leave the second mapping intact: the first
6374     // mapping will serve as a value for a "good" req_addr (case 2). The second
6375     // mapping, still intact, as "bad" req_addr (case 3).
6376     ::munmap(mapping1, mapping_size);
6377 
6378     // Case 1
6379     test_log("%s, req_addr NULL:", __FUNCTION__);
6380     test_log("size            align           result");
6381 
6382     for (int i = 0; i < num_sizes; i++) {
6383       const size_t size = sizes[i];
6384       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6385         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6386         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6387             size, alignment, p, (p != NULL ? "" : "(failed)"));
6388         if (p != NULL) {
6389           assert(is_ptr_aligned(p, alignment), "must be");
6390           small_page_write(p, size);
6391           os::Linux::release_memory_special_huge_tlbfs(p, size);
6392         }
6393       }
6394     }
6395 
6396     // Case 2
6397     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6398     test_log("size            align           req_addr         result");
6399 
6400     for (int i = 0; i < num_sizes; i++) {
6401       const size_t size = sizes[i];
6402       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6403         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6404         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6405         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6406             size, alignment, req_addr, p,
6407             ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6408         if (p != NULL) {
6409           assert(p == req_addr, "must be");
6410           small_page_write(p, size);
6411           os::Linux::release_memory_special_huge_tlbfs(p, size);
6412         }
6413       }
6414     }
6415 
6416     // Case 3
6417     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6418     test_log("size            align           req_addr         result");
6419 
6420     for (int i = 0; i < num_sizes; i++) {
6421       const size_t size = sizes[i];
6422       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6423         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6424         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6425         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6426             size, alignment, req_addr, p,
6427             ((p != NULL ? "" : "(failed)")));
6428         // as the area around req_addr contains already existing mappings, the API should always
6429         // return NULL (as per contract, it cannot return another address)
6430         assert(p == NULL, "must be");
6431       }
6432     }
6433 
6434     ::munmap(mapping2, mapping_size);
6435 
6436   }
6437 
6438   static void test_reserve_memory_special_huge_tlbfs() {
6439     if (!UseHugeTLBFS) {
6440       return;
6441     }
6442 
6443     test_reserve_memory_special_huge_tlbfs_only();
6444     test_reserve_memory_special_huge_tlbfs_mixed();
6445   }
6446 
6447   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6448     if (!UseSHM) {
6449       return;
6450     }
6451 
6452     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6453 
6454     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6455 
6456     if (addr != NULL) {
6457       assert(is_ptr_aligned(addr, alignment), "Check");
6458       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6459 
6460       small_page_write(addr, size);
6461 
6462       os::Linux::release_memory_special_shm(addr, size);
6463     }
6464   }
6465 
6466   static void test_reserve_memory_special_shm() {
6467     size_t lp = os::large_page_size();
6468     size_t ag = os::vm_allocation_granularity();
6469 
6470     for (size_t size = ag; size < lp * 3; size += ag) {
6471       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6472         test_reserve_memory_special_shm(size, alignment);
6473       }
6474     }
6475   }
6476 
6477   static void test() {
6478     test_reserve_memory_special_huge_tlbfs();
6479     test_reserve_memory_special_shm();
6480   }
6481 };
6482 
6483 void TestReserveMemorySpecial_test() {
6484   TestReserveMemorySpecial::test();
6485 }
6486 
6487 #endif