1 /*
   2  * Copyright (c) 1994, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.math.BigDecimal;
  29 import java.util.Random;
  30 import jdk.internal.math.FloatConsts;
  31 import jdk.internal.math.DoubleConsts;
  32 import jdk.internal.HotSpotIntrinsicCandidate;
  33 
  34 /**
  35  * The class {@code Math} contains methods for performing basic
  36  * numeric operations such as the elementary exponential, logarithm,
  37  * square root, and trigonometric functions.
  38  *
  39  * <p>Unlike some of the numeric methods of class
  40  * {@code StrictMath}, all implementations of the equivalent
  41  * functions of class {@code Math} are not defined to return the
  42  * bit-for-bit same results.  This relaxation permits
  43  * better-performing implementations where strict reproducibility is
  44  * not required.
  45  *
  46  * <p>By default many of the {@code Math} methods simply call
  47  * the equivalent method in {@code StrictMath} for their
  48  * implementation.  Code generators are encouraged to use
  49  * platform-specific native libraries or microprocessor instructions,
  50  * where available, to provide higher-performance implementations of
  51  * {@code Math} methods.  Such higher-performance
  52  * implementations still must conform to the specification for
  53  * {@code Math}.
  54  *
  55  * <p>The quality of implementation specifications concern two
  56  * properties, accuracy of the returned result and monotonicity of the
  57  * method.  Accuracy of the floating-point {@code Math} methods is
  58  * measured in terms of <i>ulps</i>, units in the last place.  For a
  59  * given floating-point format, an {@linkplain #ulp(double) ulp} of a
  60  * specific real number value is the distance between the two
  61  * floating-point values bracketing that numerical value.  When
  62  * discussing the accuracy of a method as a whole rather than at a
  63  * specific argument, the number of ulps cited is for the worst-case
  64  * error at any argument.  If a method always has an error less than
  65  * 0.5 ulps, the method always returns the floating-point number
  66  * nearest the exact result; such a method is <i>correctly
  67  * rounded</i>.  A correctly rounded method is generally the best a
  68  * floating-point approximation can be; however, it is impractical for
  69  * many floating-point methods to be correctly rounded.  Instead, for
  70  * the {@code Math} class, a larger error bound of 1 or 2 ulps is
  71  * allowed for certain methods.  Informally, with a 1 ulp error bound,
  72  * when the exact result is a representable number, the exact result
  73  * should be returned as the computed result; otherwise, either of the
  74  * two floating-point values which bracket the exact result may be
  75  * returned.  For exact results large in magnitude, one of the
  76  * endpoints of the bracket may be infinite.  Besides accuracy at
  77  * individual arguments, maintaining proper relations between the
  78  * method at different arguments is also important.  Therefore, most
  79  * methods with more than 0.5 ulp errors are required to be
  80  * <i>semi-monotonic</i>: whenever the mathematical function is
  81  * non-decreasing, so is the floating-point approximation, likewise,
  82  * whenever the mathematical function is non-increasing, so is the
  83  * floating-point approximation.  Not all approximations that have 1
  84  * ulp accuracy will automatically meet the monotonicity requirements.
  85  *
  86  * <p>
  87  * The platform uses signed two's complement integer arithmetic with
  88  * int and long primitive types.  The developer should choose
  89  * the primitive type to ensure that arithmetic operations consistently
  90  * produce correct results, which in some cases means the operations
  91  * will not overflow the range of values of the computation.
  92  * The best practice is to choose the primitive type and algorithm to avoid
  93  * overflow. In cases where the size is {@code int} or {@code long} and
  94  * overflow errors need to be detected, the methods {@code addExact},
  95  * {@code subtractExact}, {@code multiplyExact}, {@code toIntExact},
  96  * {@code incrementExact}, {@code decrementExact} and {@code negateExact}
  97  * throw an {@code ArithmeticException} when the results overflow.
  98  * For the arithmetic operations divide and absolute value, overflow
  99  * occurs only with a specific minimum or maximum value and
 100  * should be checked against the minimum or maximum as appropriate.
 101  *
 102  * @author  unascribed
 103  * @author  Joseph D. Darcy
 104  * @since   1.0
 105  */
 106 
 107 public final class Math {
 108 
 109     /**
 110      * Don't let anyone instantiate this class.
 111      */
 112     private Math() {}
 113 
 114     /**
 115      * The {@code double} value that is closer than any other to
 116      * <i>e</i>, the base of the natural logarithms.
 117      */
 118     public static final double E = 2.7182818284590452354;
 119 
 120     /**
 121      * The {@code double} value that is closer than any other to
 122      * <i>pi</i>, the ratio of the circumference of a circle to its
 123      * diameter.
 124      */
 125     public static final double PI = 3.14159265358979323846;
 126 
 127     /**
 128      * Constant by which to multiply an angular value in degrees to obtain an
 129      * angular value in radians.
 130      */
 131     private static final double DEGREES_TO_RADIANS = 0.017453292519943295;
 132 
 133     /**
 134      * Constant by which to multiply an angular value in radians to obtain an
 135      * angular value in degrees.
 136      */
 137     private static final double RADIANS_TO_DEGREES = 57.29577951308232;
 138 
 139     /**
 140      * Returns the trigonometric sine of an angle.  Special cases:
 141      * <ul><li>If the argument is NaN or an infinity, then the
 142      * result is NaN.
 143      * <li>If the argument is zero, then the result is a zero with the
 144      * same sign as the argument.</ul>
 145      *
 146      * <p>The computed result must be within 1 ulp of the exact result.
 147      * Results must be semi-monotonic.
 148      *
 149      * @param   a   an angle, in radians.
 150      * @return  the sine of the argument.
 151      */
 152     @HotSpotIntrinsicCandidate
 153     public static double sin(double a) {
 154         return StrictMath.sin(a); // default impl. delegates to StrictMath
 155     }
 156 
 157     /**
 158      * Returns the trigonometric cosine of an angle. Special cases:
 159      * <ul><li>If the argument is NaN or an infinity, then the
 160      * result is NaN.</ul>
 161      *
 162      * <p>The computed result must be within 1 ulp of the exact result.
 163      * Results must be semi-monotonic.
 164      *
 165      * @param   a   an angle, in radians.
 166      * @return  the cosine of the argument.
 167      */
 168     @HotSpotIntrinsicCandidate
 169     public static double cos(double a) {
 170         return StrictMath.cos(a); // default impl. delegates to StrictMath
 171     }
 172 
 173     /**
 174      * Returns the trigonometric tangent of an angle.  Special cases:
 175      * <ul><li>If the argument is NaN or an infinity, then the result
 176      * is NaN.
 177      * <li>If the argument is zero, then the result is a zero with the
 178      * same sign as the argument.</ul>
 179      *
 180      * <p>The computed result must be within 1 ulp of the exact result.
 181      * Results must be semi-monotonic.
 182      *
 183      * @param   a   an angle, in radians.
 184      * @return  the tangent of the argument.
 185      */
 186     @HotSpotIntrinsicCandidate
 187     public static double tan(double a) {
 188         return StrictMath.tan(a); // default impl. delegates to StrictMath
 189     }
 190 
 191     /**
 192      * Returns the arc sine of a value; the returned angle is in the
 193      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
 194      * <ul><li>If the argument is NaN or its absolute value is greater
 195      * than 1, then the result is NaN.
 196      * <li>If the argument is zero, then the result is a zero with the
 197      * same sign as the argument.</ul>
 198      *
 199      * <p>The computed result must be within 1 ulp of the exact result.
 200      * Results must be semi-monotonic.
 201      *
 202      * @param   a   the value whose arc sine is to be returned.
 203      * @return  the arc sine of the argument.
 204      */
 205     public static double asin(double a) {
 206         return StrictMath.asin(a); // default impl. delegates to StrictMath
 207     }
 208 
 209     /**
 210      * Returns the arc cosine of a value; the returned angle is in the
 211      * range 0.0 through <i>pi</i>.  Special case:
 212      * <ul><li>If the argument is NaN or its absolute value is greater
 213      * than 1, then the result is NaN.</ul>
 214      *
 215      * <p>The computed result must be within 1 ulp of the exact result.
 216      * Results must be semi-monotonic.
 217      *
 218      * @param   a   the value whose arc cosine is to be returned.
 219      * @return  the arc cosine of the argument.
 220      */
 221     public static double acos(double a) {
 222         return StrictMath.acos(a); // default impl. delegates to StrictMath
 223     }
 224 
 225     /**
 226      * Returns the arc tangent of a value; the returned angle is in the
 227      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
 228      * <ul><li>If the argument is NaN, then the result is NaN.
 229      * <li>If the argument is zero, then the result is a zero with the
 230      * same sign as the argument.</ul>
 231      *
 232      * <p>The computed result must be within 1 ulp of the exact result.
 233      * Results must be semi-monotonic.
 234      *
 235      * @param   a   the value whose arc tangent is to be returned.
 236      * @return  the arc tangent of the argument.
 237      */
 238     public static double atan(double a) {
 239         return StrictMath.atan(a); // default impl. delegates to StrictMath
 240     }
 241 
 242     /**
 243      * Converts an angle measured in degrees to an approximately
 244      * equivalent angle measured in radians.  The conversion from
 245      * degrees to radians is generally inexact.
 246      *
 247      * @param   angdeg   an angle, in degrees
 248      * @return  the measurement of the angle {@code angdeg}
 249      *          in radians.
 250      * @since   1.2
 251      */
 252     public static double toRadians(double angdeg) {
 253         return angdeg * DEGREES_TO_RADIANS;
 254     }
 255 
 256     /**
 257      * Converts an angle measured in radians to an approximately
 258      * equivalent angle measured in degrees.  The conversion from
 259      * radians to degrees is generally inexact; users should
 260      * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly
 261      * equal {@code 0.0}.
 262      *
 263      * @param   angrad   an angle, in radians
 264      * @return  the measurement of the angle {@code angrad}
 265      *          in degrees.
 266      * @since   1.2
 267      */
 268     public static double toDegrees(double angrad) {
 269         return angrad * RADIANS_TO_DEGREES;
 270     }
 271 
 272     /**
 273      * Returns Euler's number <i>e</i> raised to the power of a
 274      * {@code double} value.  Special cases:
 275      * <ul><li>If the argument is NaN, the result is NaN.
 276      * <li>If the argument is positive infinity, then the result is
 277      * positive infinity.
 278      * <li>If the argument is negative infinity, then the result is
 279      * positive zero.</ul>
 280      *
 281      * <p>The computed result must be within 1 ulp of the exact result.
 282      * Results must be semi-monotonic.
 283      *
 284      * @param   a   the exponent to raise <i>e</i> to.
 285      * @return  the value <i>e</i><sup>{@code a}</sup>,
 286      *          where <i>e</i> is the base of the natural logarithms.
 287      */
 288     @HotSpotIntrinsicCandidate
 289     public static double exp(double a) {
 290         return StrictMath.exp(a); // default impl. delegates to StrictMath
 291     }
 292 
 293     /**
 294      * Returns the natural logarithm (base <i>e</i>) of a {@code double}
 295      * value.  Special cases:
 296      * <ul><li>If the argument is NaN or less than zero, then the result
 297      * is NaN.
 298      * <li>If the argument is positive infinity, then the result is
 299      * positive infinity.
 300      * <li>If the argument is positive zero or negative zero, then the
 301      * result is negative infinity.</ul>
 302      *
 303      * <p>The computed result must be within 1 ulp of the exact result.
 304      * Results must be semi-monotonic.
 305      *
 306      * @param   a   a value
 307      * @return  the value ln&nbsp;{@code a}, the natural logarithm of
 308      *          {@code a}.
 309      */
 310     @HotSpotIntrinsicCandidate
 311     public static double log(double a) {
 312         return StrictMath.log(a); // default impl. delegates to StrictMath
 313     }
 314 
 315     /**
 316      * Returns the base 10 logarithm of a {@code double} value.
 317      * Special cases:
 318      *
 319      * <ul><li>If the argument is NaN or less than zero, then the result
 320      * is NaN.
 321      * <li>If the argument is positive infinity, then the result is
 322      * positive infinity.
 323      * <li>If the argument is positive zero or negative zero, then the
 324      * result is negative infinity.
 325      * <li> If the argument is equal to 10<sup><i>n</i></sup> for
 326      * integer <i>n</i>, then the result is <i>n</i>.
 327      * </ul>
 328      *
 329      * <p>The computed result must be within 1 ulp of the exact result.
 330      * Results must be semi-monotonic.
 331      *
 332      * @param   a   a value
 333      * @return  the base 10 logarithm of  {@code a}.
 334      * @since 1.5
 335      */
 336     @HotSpotIntrinsicCandidate
 337     public static double log10(double a) {
 338         return StrictMath.log10(a); // default impl. delegates to StrictMath
 339     }
 340 
 341     /**
 342      * Returns the correctly rounded positive square root of a
 343      * {@code double} value.
 344      * Special cases:
 345      * <ul><li>If the argument is NaN or less than zero, then the result
 346      * is NaN.
 347      * <li>If the argument is positive infinity, then the result is positive
 348      * infinity.
 349      * <li>If the argument is positive zero or negative zero, then the
 350      * result is the same as the argument.</ul>
 351      * Otherwise, the result is the {@code double} value closest to
 352      * the true mathematical square root of the argument value.
 353      *
 354      * @param   a   a value.
 355      * @return  the positive square root of {@code a}.
 356      *          If the argument is NaN or less than zero, the result is NaN.
 357      */
 358     @HotSpotIntrinsicCandidate
 359     public static double sqrt(double a) {
 360         return StrictMath.sqrt(a); // default impl. delegates to StrictMath
 361                                    // Note that hardware sqrt instructions
 362                                    // frequently can be directly used by JITs
 363                                    // and should be much faster than doing
 364                                    // Math.sqrt in software.
 365     }
 366 
 367 
 368     /**
 369      * Returns the cube root of a {@code double} value.  For
 370      * positive finite {@code x}, {@code cbrt(-x) ==
 371      * -cbrt(x)}; that is, the cube root of a negative value is
 372      * the negative of the cube root of that value's magnitude.
 373      *
 374      * Special cases:
 375      *
 376      * <ul>
 377      *
 378      * <li>If the argument is NaN, then the result is NaN.
 379      *
 380      * <li>If the argument is infinite, then the result is an infinity
 381      * with the same sign as the argument.
 382      *
 383      * <li>If the argument is zero, then the result is a zero with the
 384      * same sign as the argument.
 385      *
 386      * </ul>
 387      *
 388      * <p>The computed result must be within 1 ulp of the exact result.
 389      *
 390      * @param   a   a value.
 391      * @return  the cube root of {@code a}.
 392      * @since 1.5
 393      */
 394     public static double cbrt(double a) {
 395         return StrictMath.cbrt(a);
 396     }
 397 
 398     /**
 399      * Computes the remainder operation on two arguments as prescribed
 400      * by the IEEE 754 standard.
 401      * The remainder value is mathematically equal to
 402      * <code>f1&nbsp;-&nbsp;f2</code>&nbsp;&times;&nbsp;<i>n</i>,
 403      * where <i>n</i> is the mathematical integer closest to the exact
 404      * mathematical value of the quotient {@code f1/f2}, and if two
 405      * mathematical integers are equally close to {@code f1/f2},
 406      * then <i>n</i> is the integer that is even. If the remainder is
 407      * zero, its sign is the same as the sign of the first argument.
 408      * Special cases:
 409      * <ul><li>If either argument is NaN, or the first argument is infinite,
 410      * or the second argument is positive zero or negative zero, then the
 411      * result is NaN.
 412      * <li>If the first argument is finite and the second argument is
 413      * infinite, then the result is the same as the first argument.</ul>
 414      *
 415      * @param   f1   the dividend.
 416      * @param   f2   the divisor.
 417      * @return  the remainder when {@code f1} is divided by
 418      *          {@code f2}.
 419      */
 420     public static double IEEEremainder(double f1, double f2) {
 421         return StrictMath.IEEEremainder(f1, f2); // delegate to StrictMath
 422     }
 423 
 424     /**
 425      * Returns the smallest (closest to negative infinity)
 426      * {@code double} value that is greater than or equal to the
 427      * argument and is equal to a mathematical integer. Special cases:
 428      * <ul><li>If the argument value is already equal to a
 429      * mathematical integer, then the result is the same as the
 430      * argument.  <li>If the argument is NaN or an infinity or
 431      * positive zero or negative zero, then the result is the same as
 432      * the argument.  <li>If the argument value is less than zero but
 433      * greater than -1.0, then the result is negative zero.</ul> Note
 434      * that the value of {@code Math.ceil(x)} is exactly the
 435      * value of {@code -Math.floor(-x)}.
 436      *
 437      *
 438      * @param   a   a value.
 439      * @return  the smallest (closest to negative infinity)
 440      *          floating-point value that is greater than or equal to
 441      *          the argument and is equal to a mathematical integer.
 442      */
 443     @HotSpotIntrinsicCandidate
 444     public static double ceil(double a) {
 445         return StrictMath.ceil(a); // default impl. delegates to StrictMath
 446     }
 447 
 448     /**
 449      * Returns the largest (closest to positive infinity)
 450      * {@code double} value that is less than or equal to the
 451      * argument and is equal to a mathematical integer. Special cases:
 452      * <ul><li>If the argument value is already equal to a
 453      * mathematical integer, then the result is the same as the
 454      * argument.  <li>If the argument is NaN or an infinity or
 455      * positive zero or negative zero, then the result is the same as
 456      * the argument.</ul>
 457      *
 458      * @param   a   a value.
 459      * @return  the largest (closest to positive infinity)
 460      *          floating-point value that less than or equal to the argument
 461      *          and is equal to a mathematical integer.
 462      */
 463     @HotSpotIntrinsicCandidate
 464     public static double floor(double a) {
 465         return StrictMath.floor(a); // default impl. delegates to StrictMath
 466     }
 467 
 468     /**
 469      * Returns the {@code double} value that is closest in value
 470      * to the argument and is equal to a mathematical integer. If two
 471      * {@code double} values that are mathematical integers are
 472      * equally close, the result is the integer value that is
 473      * even. Special cases:
 474      * <ul><li>If the argument value is already equal to a mathematical
 475      * integer, then the result is the same as the argument.
 476      * <li>If the argument is NaN or an infinity or positive zero or negative
 477      * zero, then the result is the same as the argument.</ul>
 478      *
 479      * @param   a   a {@code double} value.
 480      * @return  the closest floating-point value to {@code a} that is
 481      *          equal to a mathematical integer.
 482      */
 483     @HotSpotIntrinsicCandidate
 484     public static double rint(double a) {
 485         return StrictMath.rint(a); // default impl. delegates to StrictMath
 486     }
 487 
 488     /**
 489      * Returns the angle <i>theta</i> from the conversion of rectangular
 490      * coordinates ({@code x},&nbsp;{@code y}) to polar
 491      * coordinates (r,&nbsp;<i>theta</i>).
 492      * This method computes the phase <i>theta</i> by computing an arc tangent
 493      * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
 494      * cases:
 495      * <ul><li>If either argument is NaN, then the result is NaN.
 496      * <li>If the first argument is positive zero and the second argument
 497      * is positive, or the first argument is positive and finite and the
 498      * second argument is positive infinity, then the result is positive
 499      * zero.
 500      * <li>If the first argument is negative zero and the second argument
 501      * is positive, or the first argument is negative and finite and the
 502      * second argument is positive infinity, then the result is negative zero.
 503      * <li>If the first argument is positive zero and the second argument
 504      * is negative, or the first argument is positive and finite and the
 505      * second argument is negative infinity, then the result is the
 506      * {@code double} value closest to <i>pi</i>.
 507      * <li>If the first argument is negative zero and the second argument
 508      * is negative, or the first argument is negative and finite and the
 509      * second argument is negative infinity, then the result is the
 510      * {@code double} value closest to -<i>pi</i>.
 511      * <li>If the first argument is positive and the second argument is
 512      * positive zero or negative zero, or the first argument is positive
 513      * infinity and the second argument is finite, then the result is the
 514      * {@code double} value closest to <i>pi</i>/2.
 515      * <li>If the first argument is negative and the second argument is
 516      * positive zero or negative zero, or the first argument is negative
 517      * infinity and the second argument is finite, then the result is the
 518      * {@code double} value closest to -<i>pi</i>/2.
 519      * <li>If both arguments are positive infinity, then the result is the
 520      * {@code double} value closest to <i>pi</i>/4.
 521      * <li>If the first argument is positive infinity and the second argument
 522      * is negative infinity, then the result is the {@code double}
 523      * value closest to 3*<i>pi</i>/4.
 524      * <li>If the first argument is negative infinity and the second argument
 525      * is positive infinity, then the result is the {@code double} value
 526      * closest to -<i>pi</i>/4.
 527      * <li>If both arguments are negative infinity, then the result is the
 528      * {@code double} value closest to -3*<i>pi</i>/4.</ul>
 529      *
 530      * <p>The computed result must be within 2 ulps of the exact result.
 531      * Results must be semi-monotonic.
 532      *
 533      * @param   y   the ordinate coordinate
 534      * @param   x   the abscissa coordinate
 535      * @return  the <i>theta</i> component of the point
 536      *          (<i>r</i>,&nbsp;<i>theta</i>)
 537      *          in polar coordinates that corresponds to the point
 538      *          (<i>x</i>,&nbsp;<i>y</i>) in Cartesian coordinates.
 539      */
 540     @HotSpotIntrinsicCandidate
 541     public static double atan2(double y, double x) {
 542         return StrictMath.atan2(y, x); // default impl. delegates to StrictMath
 543     }
 544 
 545     /**
 546      * Returns the value of the first argument raised to the power of the
 547      * second argument. Special cases:
 548      *
 549      * <ul><li>If the second argument is positive or negative zero, then the
 550      * result is 1.0.
 551      * <li>If the second argument is 1.0, then the result is the same as the
 552      * first argument.
 553      * <li>If the second argument is NaN, then the result is NaN.
 554      * <li>If the first argument is NaN and the second argument is nonzero,
 555      * then the result is NaN.
 556      *
 557      * <li>If
 558      * <ul>
 559      * <li>the absolute value of the first argument is greater than 1
 560      * and the second argument is positive infinity, or
 561      * <li>the absolute value of the first argument is less than 1 and
 562      * the second argument is negative infinity,
 563      * </ul>
 564      * then the result is positive infinity.
 565      *
 566      * <li>If
 567      * <ul>
 568      * <li>the absolute value of the first argument is greater than 1 and
 569      * the second argument is negative infinity, or
 570      * <li>the absolute value of the
 571      * first argument is less than 1 and the second argument is positive
 572      * infinity,
 573      * </ul>
 574      * then the result is positive zero.
 575      *
 576      * <li>If the absolute value of the first argument equals 1 and the
 577      * second argument is infinite, then the result is NaN.
 578      *
 579      * <li>If
 580      * <ul>
 581      * <li>the first argument is positive zero and the second argument
 582      * is greater than zero, or
 583      * <li>the first argument is positive infinity and the second
 584      * argument is less than zero,
 585      * </ul>
 586      * then the result is positive zero.
 587      *
 588      * <li>If
 589      * <ul>
 590      * <li>the first argument is positive zero and the second argument
 591      * is less than zero, or
 592      * <li>the first argument is positive infinity and the second
 593      * argument is greater than zero,
 594      * </ul>
 595      * then the result is positive infinity.
 596      *
 597      * <li>If
 598      * <ul>
 599      * <li>the first argument is negative zero and the second argument
 600      * is greater than zero but not a finite odd integer, or
 601      * <li>the first argument is negative infinity and the second
 602      * argument is less than zero but not a finite odd integer,
 603      * </ul>
 604      * then the result is positive zero.
 605      *
 606      * <li>If
 607      * <ul>
 608      * <li>the first argument is negative zero and the second argument
 609      * is a positive finite odd integer, or
 610      * <li>the first argument is negative infinity and the second
 611      * argument is a negative finite odd integer,
 612      * </ul>
 613      * then the result is negative zero.
 614      *
 615      * <li>If
 616      * <ul>
 617      * <li>the first argument is negative zero and the second argument
 618      * is less than zero but not a finite odd integer, or
 619      * <li>the first argument is negative infinity and the second
 620      * argument is greater than zero but not a finite odd integer,
 621      * </ul>
 622      * then the result is positive infinity.
 623      *
 624      * <li>If
 625      * <ul>
 626      * <li>the first argument is negative zero and the second argument
 627      * is a negative finite odd integer, or
 628      * <li>the first argument is negative infinity and the second
 629      * argument is a positive finite odd integer,
 630      * </ul>
 631      * then the result is negative infinity.
 632      *
 633      * <li>If the first argument is finite and less than zero
 634      * <ul>
 635      * <li> if the second argument is a finite even integer, the
 636      * result is equal to the result of raising the absolute value of
 637      * the first argument to the power of the second argument
 638      *
 639      * <li>if the second argument is a finite odd integer, the result
 640      * is equal to the negative of the result of raising the absolute
 641      * value of the first argument to the power of the second
 642      * argument
 643      *
 644      * <li>if the second argument is finite and not an integer, then
 645      * the result is NaN.
 646      * </ul>
 647      *
 648      * <li>If both arguments are integers, then the result is exactly equal
 649      * to the mathematical result of raising the first argument to the power
 650      * of the second argument if that result can in fact be represented
 651      * exactly as a {@code double} value.</ul>
 652      *
 653      * <p>(In the foregoing descriptions, a floating-point value is
 654      * considered to be an integer if and only if it is finite and a
 655      * fixed point of the method {@link #ceil ceil} or,
 656      * equivalently, a fixed point of the method {@link #floor
 657      * floor}. A value is a fixed point of a one-argument
 658      * method if and only if the result of applying the method to the
 659      * value is equal to the value.)
 660      *
 661      * <p>The computed result must be within 1 ulp of the exact result.
 662      * Results must be semi-monotonic.
 663      *
 664      * @param   a   the base.
 665      * @param   b   the exponent.
 666      * @return  the value {@code a}<sup>{@code b}</sup>.
 667      */
 668     @HotSpotIntrinsicCandidate
 669     public static double pow(double a, double b) {
 670         return StrictMath.pow(a, b); // default impl. delegates to StrictMath
 671     }
 672 
 673     /**
 674      * Returns the closest {@code int} to the argument, with ties
 675      * rounding to positive infinity.
 676      *
 677      * <p>
 678      * Special cases:
 679      * <ul><li>If the argument is NaN, the result is 0.
 680      * <li>If the argument is negative infinity or any value less than or
 681      * equal to the value of {@code Integer.MIN_VALUE}, the result is
 682      * equal to the value of {@code Integer.MIN_VALUE}.
 683      * <li>If the argument is positive infinity or any value greater than or
 684      * equal to the value of {@code Integer.MAX_VALUE}, the result is
 685      * equal to the value of {@code Integer.MAX_VALUE}.</ul>
 686      *
 687      * @param   a   a floating-point value to be rounded to an integer.
 688      * @return  the value of the argument rounded to the nearest
 689      *          {@code int} value.
 690      * @see     java.lang.Integer#MAX_VALUE
 691      * @see     java.lang.Integer#MIN_VALUE
 692      */
 693     public static int round(float a) {
 694         int intBits = Float.floatToRawIntBits(a);
 695         int biasedExp = (intBits & FloatConsts.EXP_BIT_MASK)
 696                 >> (FloatConsts.SIGNIFICAND_WIDTH - 1);
 697         int shift = (FloatConsts.SIGNIFICAND_WIDTH - 2
 698                 + FloatConsts.EXP_BIAS) - biasedExp;
 699         if ((shift & -32) == 0) { // shift >= 0 && shift < 32
 700             // a is a finite number such that pow(2,-32) <= ulp(a) < 1
 701             int r = ((intBits & FloatConsts.SIGNIF_BIT_MASK)
 702                     | (FloatConsts.SIGNIF_BIT_MASK + 1));
 703             if (intBits < 0) {
 704                 r = -r;
 705             }
 706             // In the comments below each Java expression evaluates to the value
 707             // the corresponding mathematical expression:
 708             // (r) evaluates to a / ulp(a)
 709             // (r >> shift) evaluates to floor(a * 2)
 710             // ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2)
 711             // (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2)
 712             return ((r >> shift) + 1) >> 1;
 713         } else {
 714             // a is either
 715             // - a finite number with abs(a) < exp(2,FloatConsts.SIGNIFICAND_WIDTH-32) < 1/2
 716             // - a finite number with ulp(a) >= 1 and hence a is a mathematical integer
 717             // - an infinity or NaN
 718             return (int) a;
 719         }
 720     }
 721 
 722     /**
 723      * Returns the closest {@code long} to the argument, with ties
 724      * rounding to positive infinity.
 725      *
 726      * <p>Special cases:
 727      * <ul><li>If the argument is NaN, the result is 0.
 728      * <li>If the argument is negative infinity or any value less than or
 729      * equal to the value of {@code Long.MIN_VALUE}, the result is
 730      * equal to the value of {@code Long.MIN_VALUE}.
 731      * <li>If the argument is positive infinity or any value greater than or
 732      * equal to the value of {@code Long.MAX_VALUE}, the result is
 733      * equal to the value of {@code Long.MAX_VALUE}.</ul>
 734      *
 735      * @param   a   a floating-point value to be rounded to a
 736      *          {@code long}.
 737      * @return  the value of the argument rounded to the nearest
 738      *          {@code long} value.
 739      * @see     java.lang.Long#MAX_VALUE
 740      * @see     java.lang.Long#MIN_VALUE
 741      */
 742     public static long round(double a) {
 743         long longBits = Double.doubleToRawLongBits(a);
 744         long biasedExp = (longBits & DoubleConsts.EXP_BIT_MASK)
 745                 >> (DoubleConsts.SIGNIFICAND_WIDTH - 1);
 746         long shift = (DoubleConsts.SIGNIFICAND_WIDTH - 2
 747                 + DoubleConsts.EXP_BIAS) - biasedExp;
 748         if ((shift & -64) == 0) { // shift >= 0 && shift < 64
 749             // a is a finite number such that pow(2,-64) <= ulp(a) < 1
 750             long r = ((longBits & DoubleConsts.SIGNIF_BIT_MASK)
 751                     | (DoubleConsts.SIGNIF_BIT_MASK + 1));
 752             if (longBits < 0) {
 753                 r = -r;
 754             }
 755             // In the comments below each Java expression evaluates to the value
 756             // the corresponding mathematical expression:
 757             // (r) evaluates to a / ulp(a)
 758             // (r >> shift) evaluates to floor(a * 2)
 759             // ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2)
 760             // (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2)
 761             return ((r >> shift) + 1) >> 1;
 762         } else {
 763             // a is either
 764             // - a finite number with abs(a) < exp(2,DoubleConsts.SIGNIFICAND_WIDTH-64) < 1/2
 765             // - a finite number with ulp(a) >= 1 and hence a is a mathematical integer
 766             // - an infinity or NaN
 767             return (long) a;
 768         }
 769     }
 770 
 771     private static final class RandomNumberGeneratorHolder {
 772         static final Random randomNumberGenerator = new Random();
 773     }
 774 
 775     /**
 776      * Returns a {@code double} value with a positive sign, greater
 777      * than or equal to {@code 0.0} and less than {@code 1.0}.
 778      * Returned values are chosen pseudorandomly with (approximately)
 779      * uniform distribution from that range.
 780      *
 781      * <p>When this method is first called, it creates a single new
 782      * pseudorandom-number generator, exactly as if by the expression
 783      *
 784      * <blockquote>{@code new java.util.Random()}</blockquote>
 785      *
 786      * This new pseudorandom-number generator is used thereafter for
 787      * all calls to this method and is used nowhere else.
 788      *
 789      * <p>This method is properly synchronized to allow correct use by
 790      * more than one thread. However, if many threads need to generate
 791      * pseudorandom numbers at a great rate, it may reduce contention
 792      * for each thread to have its own pseudorandom-number generator.
 793      *
 794      * @apiNote
 795      * As the largest {@code double} value less than {@code 1.0}
 796      * is {@code Math.nextDown(1.0)}, a value {@code x} in the closed range
 797      * {@code [x1,x2]} where {@code x1<=x2} may be defined by the statements
 798      *
 799      * <blockquote><pre>{@code
 800      * double f = Math.random()/Math.nextDown(1.0);
 801      * double x = x1*(1.0 - f) + x2*f;
 802      * }</pre></blockquote>
 803      *
 804      * @return  a pseudorandom {@code double} greater than or equal
 805      * to {@code 0.0} and less than {@code 1.0}.
 806      * @see #nextDown(double)
 807      * @see Random#nextDouble()
 808      */
 809     public static double random() {
 810         return RandomNumberGeneratorHolder.randomNumberGenerator.nextDouble();
 811     }
 812 
 813     /**
 814      * Returns the sum of its arguments,
 815      * throwing an exception if the result overflows an {@code int}.
 816      *
 817      * @param x the first value
 818      * @param y the second value
 819      * @return the result
 820      * @throws ArithmeticException if the result overflows an int
 821      * @since 1.8
 822      */
 823     @HotSpotIntrinsicCandidate
 824     public static int addExact(int x, int y) {
 825         int r = x + y;
 826         // HD 2-12 Overflow iff both arguments have the opposite sign of the result
 827         if (((x ^ r) & (y ^ r)) < 0) {
 828             throw new ArithmeticException("integer overflow");
 829         }
 830         return r;
 831     }
 832 
 833     /**
 834      * Returns the sum of its arguments,
 835      * throwing an exception if the result overflows a {@code long}.
 836      *
 837      * @param x the first value
 838      * @param y the second value
 839      * @return the result
 840      * @throws ArithmeticException if the result overflows a long
 841      * @since 1.8
 842      */
 843     @HotSpotIntrinsicCandidate
 844     public static long addExact(long x, long y) {
 845         long r = x + y;
 846         // HD 2-12 Overflow iff both arguments have the opposite sign of the result
 847         if (((x ^ r) & (y ^ r)) < 0) {
 848             throw new ArithmeticException("long overflow");
 849         }
 850         return r;
 851     }
 852 
 853     /**
 854      * Returns the difference of the arguments,
 855      * throwing an exception if the result overflows an {@code int}.
 856      *
 857      * @param x the first value
 858      * @param y the second value to subtract from the first
 859      * @return the result
 860      * @throws ArithmeticException if the result overflows an int
 861      * @since 1.8
 862      */
 863     @HotSpotIntrinsicCandidate
 864     public static int subtractExact(int x, int y) {
 865         int r = x - y;
 866         // HD 2-12 Overflow iff the arguments have different signs and
 867         // the sign of the result is different from the sign of x
 868         if (((x ^ y) & (x ^ r)) < 0) {
 869             throw new ArithmeticException("integer overflow");
 870         }
 871         return r;
 872     }
 873 
 874     /**
 875      * Returns the difference of the arguments,
 876      * throwing an exception if the result overflows a {@code long}.
 877      *
 878      * @param x the first value
 879      * @param y the second value to subtract from the first
 880      * @return the result
 881      * @throws ArithmeticException if the result overflows a long
 882      * @since 1.8
 883      */
 884     @HotSpotIntrinsicCandidate
 885     public static long subtractExact(long x, long y) {
 886         long r = x - y;
 887         // HD 2-12 Overflow iff the arguments have different signs and
 888         // the sign of the result is different from the sign of x
 889         if (((x ^ y) & (x ^ r)) < 0) {
 890             throw new ArithmeticException("long overflow");
 891         }
 892         return r;
 893     }
 894 
 895     /**
 896      * Returns the product of the arguments,
 897      * throwing an exception if the result overflows an {@code int}.
 898      *
 899      * @param x the first value
 900      * @param y the second value
 901      * @return the result
 902      * @throws ArithmeticException if the result overflows an int
 903      * @since 1.8
 904      */
 905     @HotSpotIntrinsicCandidate
 906     public static int multiplyExact(int x, int y) {
 907         long r = (long)x * (long)y;
 908         if ((int)r != r) {
 909             throw new ArithmeticException("integer overflow");
 910         }
 911         return (int)r;
 912     }
 913 
 914     /**
 915      * Returns the product of the arguments, throwing an exception if the result
 916      * overflows a {@code long}.
 917      *
 918      * @param x the first value
 919      * @param y the second value
 920      * @return the result
 921      * @throws ArithmeticException if the result overflows a long
 922      * @since 9
 923      */
 924     public static long multiplyExact(long x, int y) {
 925         return multiplyExact(x, (long)y);
 926     }
 927 
 928     /**
 929      * Returns the product of the arguments,
 930      * throwing an exception if the result overflows a {@code long}.
 931      *
 932      * @param x the first value
 933      * @param y the second value
 934      * @return the result
 935      * @throws ArithmeticException if the result overflows a long
 936      * @since 1.8
 937      */
 938     @HotSpotIntrinsicCandidate
 939     public static long multiplyExact(long x, long y) {
 940         long r = x * y;
 941         long ax = Math.abs(x);
 942         long ay = Math.abs(y);
 943         if (((ax | ay) >>> 31 != 0)) {
 944             // Some bits greater than 2^31 that might cause overflow
 945             // Check the result using the divide operator
 946             // and check for the special case of Long.MIN_VALUE * -1
 947            if (((y != 0) && (r / y != x)) ||
 948                (x == Long.MIN_VALUE && y == -1)) {
 949                 throw new ArithmeticException("long overflow");
 950             }
 951         }
 952         return r;
 953     }
 954 
 955     /**
 956      * Returns the argument incremented by one, throwing an exception if the
 957      * result overflows an {@code int}.
 958      * The overflow only occurs for {@linkplain Integer#MAX_VALUE the maximum value}.
 959      *
 960      * @param a the value to increment
 961      * @return the result
 962      * @throws ArithmeticException if the result overflows an int
 963      * @since 1.8
 964      */
 965     @HotSpotIntrinsicCandidate
 966     public static int incrementExact(int a) {
 967         if (a == Integer.MAX_VALUE) {
 968             throw new ArithmeticException("integer overflow");
 969         }
 970 
 971         return a + 1;
 972     }
 973 
 974     /**
 975      * Returns the argument incremented by one, throwing an exception if the
 976      * result overflows a {@code long}.
 977      * The overflow only occurs for {@linkplain Long#MAX_VALUE the maximum value}.
 978      *
 979      * @param a the value to increment
 980      * @return the result
 981      * @throws ArithmeticException if the result overflows a long
 982      * @since 1.8
 983      */
 984     @HotSpotIntrinsicCandidate
 985     public static long incrementExact(long a) {
 986         if (a == Long.MAX_VALUE) {
 987             throw new ArithmeticException("long overflow");
 988         }
 989 
 990         return a + 1L;
 991     }
 992 
 993     /**
 994      * Returns the argument decremented by one, throwing an exception if the
 995      * result overflows an {@code int}.
 996      * The overflow only occurs for {@linkplain Integer#MIN_VALUE the minimum value}.
 997      *
 998      * @param a the value to decrement
 999      * @return the result
1000      * @throws ArithmeticException if the result overflows an int
1001      * @since 1.8
1002      */
1003     @HotSpotIntrinsicCandidate
1004     public static int decrementExact(int a) {
1005         if (a == Integer.MIN_VALUE) {
1006             throw new ArithmeticException("integer overflow");
1007         }
1008 
1009         return a - 1;
1010     }
1011 
1012     /**
1013      * Returns the argument decremented by one, throwing an exception if the
1014      * result overflows a {@code long}.
1015      * The overflow only occurs for {@linkplain Long#MIN_VALUE the minimum value}.
1016      *
1017      * @param a the value to decrement
1018      * @return the result
1019      * @throws ArithmeticException if the result overflows a long
1020      * @since 1.8
1021      */
1022     @HotSpotIntrinsicCandidate
1023     public static long decrementExact(long a) {
1024         if (a == Long.MIN_VALUE) {
1025             throw new ArithmeticException("long overflow");
1026         }
1027 
1028         return a - 1L;
1029     }
1030 
1031     /**
1032      * Returns the negation of the argument, throwing an exception if the
1033      * result overflows an {@code int}.
1034      * The overflow only occurs for {@linkplain Integer#MIN_VALUE the minimum value}.
1035      *
1036      * @param a the value to negate
1037      * @return the result
1038      * @throws ArithmeticException if the result overflows an int
1039      * @since 1.8
1040      */
1041     @HotSpotIntrinsicCandidate
1042     public static int negateExact(int a) {
1043         if (a == Integer.MIN_VALUE) {
1044             throw new ArithmeticException("integer overflow");
1045         }
1046 
1047         return -a;
1048     }
1049 
1050     /**
1051      * Returns the negation of the argument, throwing an exception if the
1052      * result overflows a {@code long}.
1053      * The overflow only occurs for {@linkplain Long#MIN_VALUE the minimum value}.
1054      *
1055      * @param a the value to negate
1056      * @return the result
1057      * @throws ArithmeticException if the result overflows a long
1058      * @since 1.8
1059      */
1060     @HotSpotIntrinsicCandidate
1061     public static long negateExact(long a) {
1062         if (a == Long.MIN_VALUE) {
1063             throw new ArithmeticException("long overflow");
1064         }
1065 
1066         return -a;
1067     }
1068 
1069     /**
1070      * Returns the value of the {@code long} argument,
1071      * throwing an exception if the value overflows an {@code int}.
1072      *
1073      * @param value the long value
1074      * @return the argument as an int
1075      * @throws ArithmeticException if the {@code argument} overflows an int
1076      * @since 1.8
1077      */
1078     public static int toIntExact(long value) {
1079         if ((int)value != value) {
1080             throw new ArithmeticException("integer overflow");
1081         }
1082         return (int)value;
1083     }
1084 
1085     /**
1086      * Returns the exact mathematical product of the arguments.
1087      *
1088      * @param x the first value
1089      * @param y the second value
1090      * @return the result
1091      * @since 9
1092      */
1093     public static long multiplyFull(int x, int y) {
1094         return (long)x * (long)y;
1095     }
1096 
1097     /**
1098      * Returns as a {@code long} the most significant 64 bits of the 128-bit
1099      * product of two 64-bit factors.
1100      *
1101      * @param x the first value
1102      * @param y the second value
1103      * @return the result
1104      * @since 9
1105      */
1106     @HotSpotIntrinsicCandidate
1107     public static long multiplyHigh(long x, long y) {
1108         if (x < 0 || y < 0) {
1109             // Use technique from section 8-2 of Henry S. Warren, Jr.,
1110             // Hacker's Delight (2nd ed.) (Addison Wesley, 2013), 173-174.
1111             long x1 = x >> 32;
1112             long x2 = x & 0xFFFFFFFFL;
1113             long y1 = y >> 32;
1114             long y2 = y & 0xFFFFFFFFL;
1115             long z2 = x2 * y2;
1116             long t = x1 * y2 + (z2 >>> 32);
1117             long z1 = t & 0xFFFFFFFFL;
1118             long z0 = t >> 32;
1119             z1 += x2 * y1;
1120             return x1 * y1 + z0 + (z1 >> 32);
1121         } else {
1122             // Use Karatsuba technique with two base 2^32 digits.
1123             long x1 = x >>> 32;
1124             long y1 = y >>> 32;
1125             long x2 = x & 0xFFFFFFFFL;
1126             long y2 = y & 0xFFFFFFFFL;
1127             long A = x1 * y1;
1128             long B = x2 * y2;
1129             long C = (x1 + x2) * (y1 + y2);
1130             long K = C - A - B;
1131             return (((B >>> 32) + K) >>> 32) + A;
1132         }
1133     }
1134 
1135     /**
1136      * Returns the largest (closest to positive infinity)
1137      * {@code int} value that is less than or equal to the algebraic quotient.
1138      * There is one special case, if the dividend is the
1139      * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1},
1140      * then integer overflow occurs and
1141      * the result is equal to {@code Integer.MIN_VALUE}.
1142      * <p>
1143      * Normal integer division operates under the round to zero rounding mode
1144      * (truncation).  This operation instead acts under the round toward
1145      * negative infinity (floor) rounding mode.
1146      * The floor rounding mode gives different results from truncation
1147      * when the exact result is negative.
1148      * <ul>
1149      *   <li>If the signs of the arguments are the same, the results of
1150      *       {@code floorDiv} and the {@code /} operator are the same.  <br>
1151      *       For example, {@code floorDiv(4, 3) == 1} and {@code (4 / 3) == 1}.</li>
1152      *   <li>If the signs of the arguments are different,  the quotient is negative and
1153      *       {@code floorDiv} returns the integer less than or equal to the quotient
1154      *       and the {@code /} operator returns the integer closest to zero.<br>
1155      *       For example, {@code floorDiv(-4, 3) == -2},
1156      *       whereas {@code (-4 / 3) == -1}.
1157      *   </li>
1158      * </ul>
1159      *
1160      * @param x the dividend
1161      * @param y the divisor
1162      * @return the largest (closest to positive infinity)
1163      * {@code int} value that is less than or equal to the algebraic quotient.
1164      * @throws ArithmeticException if the divisor {@code y} is zero
1165      * @see #floorMod(int, int)
1166      * @see #floor(double)
1167      * @since 1.8
1168      */
1169     public static int floorDiv(int x, int y) {
1170         int r = x / y;
1171         // if the signs are different and modulo not zero, round down
1172         if ((x ^ y) < 0 && (r * y != x)) {
1173             r--;
1174         }
1175         return r;
1176     }
1177 
1178     /**
1179      * Returns the largest (closest to positive infinity)
1180      * {@code long} value that is less than or equal to the algebraic quotient.
1181      * There is one special case, if the dividend is the
1182      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
1183      * then integer overflow occurs and
1184      * the result is equal to {@code Long.MIN_VALUE}.
1185      * <p>
1186      * Normal integer division operates under the round to zero rounding mode
1187      * (truncation).  This operation instead acts under the round toward
1188      * negative infinity (floor) rounding mode.
1189      * The floor rounding mode gives different results from truncation
1190      * when the exact result is negative.
1191      * <p>
1192      * For examples, see {@link #floorDiv(int, int)}.
1193      *
1194      * @param x the dividend
1195      * @param y the divisor
1196      * @return the largest (closest to positive infinity)
1197      * {@code int} value that is less than or equal to the algebraic quotient.
1198      * @throws ArithmeticException if the divisor {@code y} is zero
1199      * @see #floorMod(long, int)
1200      * @see #floor(double)
1201      * @since 9
1202      */
1203     public static long floorDiv(long x, int y) {
1204         return floorDiv(x, (long)y);
1205     }
1206 
1207     /**
1208      * Returns the largest (closest to positive infinity)
1209      * {@code long} value that is less than or equal to the algebraic quotient.
1210      * There is one special case, if the dividend is the
1211      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
1212      * then integer overflow occurs and
1213      * the result is equal to {@code Long.MIN_VALUE}.
1214      * <p>
1215      * Normal integer division operates under the round to zero rounding mode
1216      * (truncation).  This operation instead acts under the round toward
1217      * negative infinity (floor) rounding mode.
1218      * The floor rounding mode gives different results from truncation
1219      * when the exact result is negative.
1220      * <p>
1221      * For examples, see {@link #floorDiv(int, int)}.
1222      *
1223      * @param x the dividend
1224      * @param y the divisor
1225      * @return the largest (closest to positive infinity)
1226      * {@code long} value that is less than or equal to the algebraic quotient.
1227      * @throws ArithmeticException if the divisor {@code y} is zero
1228      * @see #floorMod(long, long)
1229      * @see #floor(double)
1230      * @since 1.8
1231      */
1232     public static long floorDiv(long x, long y) {
1233         long r = x / y;
1234         // if the signs are different and modulo not zero, round down
1235         if ((x ^ y) < 0 && (r * y != x)) {
1236             r--;
1237         }
1238         return r;
1239     }
1240 
1241     /**
1242      * Returns the floor modulus of the {@code int} arguments.
1243      * <p>
1244      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
1245      * has the same sign as the divisor {@code y}, and
1246      * is in the range of {@code -abs(y) < r < +abs(y)}.
1247      *
1248      * <p>
1249      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
1250      * <ul>
1251      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
1252      * </ul>
1253      * <p>
1254      * The difference in values between {@code floorMod} and
1255      * the {@code %} operator is due to the difference between
1256      * {@code floorDiv} that returns the integer less than or equal to the quotient
1257      * and the {@code /} operator that returns the integer closest to zero.
1258      * <p>
1259      * Examples:
1260      * <ul>
1261      *   <li>If the signs of the arguments are the same, the results
1262      *       of {@code floorMod} and the {@code %} operator are the same.<br>
1263      *       <ul>
1264      *       <li>{@code floorMod(+4, +3) == +1}; &nbsp; and {@code (+4 % +3) == +1}</li>
1265      *       <li>{@code floorMod(-4, -3) == -1}; &nbsp; and {@code (-4 % -3) == -1}</li>
1266      *       </ul>
1267      *   <li>If the signs of the arguments are different, the results
1268      *       differ from the {@code %} operator.<br>
1269      *       <ul>
1270      *       <li>{@code floorMod(+4, -3) == -2}; &nbsp; and {@code (+4 % -3) == +1}</li>
1271      *       <li>{@code floorMod(-4, +3) == +2}; &nbsp; and {@code (-4 % +3) == -1}</li>
1272      *       </ul>
1273      *   </li>
1274      * </ul>
1275      * <p>
1276      * If the signs of arguments are unknown and a positive modulus
1277      * is needed it can be computed as {@code (floorMod(x, y) + abs(y)) % abs(y)}.
1278      *
1279      * @param x the dividend
1280      * @param y the divisor
1281      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
1282      * @throws ArithmeticException if the divisor {@code y} is zero
1283      * @see #floorDiv(int, int)
1284      * @since 1.8
1285      */
1286     public static int floorMod(int x, int y) {
1287         int mod = x % y;
1288         // if the signs are different and modulo not zero, adjust result
1289         if ((mod ^ y) < 0 && mod != 0) {
1290             mod += y;
1291         }
1292         return mod;
1293     }
1294 
1295     /**
1296      * Returns the floor modulus of the {@code long} and {@code int} arguments.
1297      * <p>
1298      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
1299      * has the same sign as the divisor {@code y}, and
1300      * is in the range of {@code -abs(y) < r < +abs(y)}.
1301      *
1302      * <p>
1303      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
1304      * <ul>
1305      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
1306      * </ul>
1307      * <p>
1308      * For examples, see {@link #floorMod(int, int)}.
1309      *
1310      * @param x the dividend
1311      * @param y the divisor
1312      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
1313      * @throws ArithmeticException if the divisor {@code y} is zero
1314      * @see #floorDiv(long, int)
1315      * @since 9
1316      */
1317     public static int floorMod(long x, int y) {
1318         // Result cannot overflow the range of int.
1319         return (int)floorMod(x, (long)y);
1320     }
1321 
1322     /**
1323      * Returns the floor modulus of the {@code long} arguments.
1324      * <p>
1325      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
1326      * has the same sign as the divisor {@code y}, and
1327      * is in the range of {@code -abs(y) < r < +abs(y)}.
1328      *
1329      * <p>
1330      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
1331      * <ul>
1332      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
1333      * </ul>
1334      * <p>
1335      * For examples, see {@link #floorMod(int, int)}.
1336      *
1337      * @param x the dividend
1338      * @param y the divisor
1339      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
1340      * @throws ArithmeticException if the divisor {@code y} is zero
1341      * @see #floorDiv(long, long)
1342      * @since 1.8
1343      */
1344     public static long floorMod(long x, long y) {
1345         long mod = x % y;
1346         // if the signs are different and modulo not zero, adjust result
1347         if ((x ^ y) < 0 && mod != 0) {
1348             mod += y;
1349         }
1350         return mod;
1351     }
1352 
1353     /**
1354      * Returns the absolute value of an {@code int} value.
1355      * If the argument is not negative, the argument is returned.
1356      * If the argument is negative, the negation of the argument is returned.
1357      *
1358      * <p>Note that if the argument is equal to the value of {@link
1359      * Integer#MIN_VALUE}, the most negative representable {@code int}
1360      * value, the result is that same value, which is negative. In
1361      * contrast, the {@link Math#absExact(int)} method throws an
1362      * {@code ArithmeticException} for this value.
1363      *
1364      * @param   a   the argument whose absolute value is to be determined
1365      * @return  the absolute value of the argument.
1366      * @see Math#absExact(int)
1367      */
1368     @HotSpotIntrinsicCandidate
1369     public static int abs(int a) {
1370         return (a < 0) ? -a : a;
1371     }
1372 
1373     /**
1374      * Returns the mathematical absolute value of an {@code int} value
1375      * if it is exactly representable as an {@code int}, throwing
1376      * {@code ArithmeticException} if the result overflows the
1377      * positive {@code int} range.
1378      *
1379      * <p>Since the range of two's complement integers is asymmetric
1380      * with one additional negative value (JLS {@jls 4.2.1}), the
1381      * mathematical absolute value of {@link Integer#MIN_VALUE}
1382      * overflows the positive {@code int} range, so an exception is
1383      * thrown for that argument.
1384      *
1385      * @param  a  the argument whose absolute value is to be determined
1386      * @return the absolute value of the argument, unless overflow occurs
1387      * @throws ArithmeticException if the argument is {@link Integer#MIN_VALUE}
1388      * @see Math#abs(int)
1389      * @since 15
1390      */
1391     public static int absExact(int a) {
1392         if (a == Integer.MIN_VALUE)
1393             throw new ArithmeticException(
1394                 "Overflow to represent absolute value of Integer.MIN_VALUE");
1395         else
1396             return abs(a);
1397     }
1398 
1399     /**
1400      * Returns the absolute value of a {@code long} value.
1401      * If the argument is not negative, the argument is returned.
1402      * If the argument is negative, the negation of the argument is returned.
1403      *
1404      * <p>Note that if the argument is equal to the value of {@link
1405      * Long#MIN_VALUE}, the most negative representable {@code long}
1406      * value, the result is that same value, which is negative. In
1407      * contrast, the {@link Math#absExact(long)} method throws an
1408      * {@code ArithmeticException} for this value.
1409      *
1410      * @param   a   the argument whose absolute value is to be determined
1411      * @return  the absolute value of the argument.
1412      * @see Math#absExact(long)
1413      */
1414     @HotSpotIntrinsicCandidate
1415     public static long abs(long a) {
1416         return (a < 0) ? -a : a;
1417     }
1418 
1419     /**
1420      * Returns the mathematical absolute value of an {@code long} value
1421      * if it is exactly representable as an {@code long}, throwing
1422      * {@code ArithmeticException} if the result overflows the
1423      * positive {@code long} range.
1424      *
1425      * <p>Since the range of two's complement integers is asymmetric
1426      * with one additional negative value (JLS {@jls 4.2.1}), the
1427      * mathematical absolute value of {@link Long#MIN_VALUE} overflows
1428      * the positive {@code long} range, so an exception is thrown for
1429      * that argument.
1430      *
1431      * @param  a  the argument whose absolute value is to be determined
1432      * @return the absolute value of the argument, unless overflow occurs
1433      * @throws ArithmeticException if the argument is {@link Long#MIN_VALUE}
1434      * @see Math#abs(long)
1435      * @since 15
1436      */
1437     public static long absExact(long a) {
1438         if (a == Long.MIN_VALUE)
1439             throw new ArithmeticException(
1440                 "Overflow to represent absolute value of Long.MIN_VALUE");
1441         else
1442             return abs(a);
1443     }
1444 
1445     /**
1446      * Returns the absolute value of a {@code float} value.
1447      * If the argument is not negative, the argument is returned.
1448      * If the argument is negative, the negation of the argument is returned.
1449      * Special cases:
1450      * <ul><li>If the argument is positive zero or negative zero, the
1451      * result is positive zero.
1452      * <li>If the argument is infinite, the result is positive infinity.
1453      * <li>If the argument is NaN, the result is NaN.</ul>
1454      *
1455      * @apiNote As implied by the above, one valid implementation of
1456      * this method is given by the expression below which computes a
1457      * {@code float} with the same exponent and significand as the
1458      * argument but with a guaranteed zero sign bit indicating a
1459      * positive value:<br>
1460      * {@code Float.intBitsToFloat(0x7fffffff & Float.floatToRawIntBits(a))}
1461      *
1462      * @param   a   the argument whose absolute value is to be determined
1463      * @return  the absolute value of the argument.
1464      */
1465     @HotSpotIntrinsicCandidate
1466     public static float abs(float a) {
1467         return (a <= 0.0F) ? 0.0F - a : a;
1468     }
1469 
1470     /**
1471      * Returns the absolute value of a {@code double} value.
1472      * If the argument is not negative, the argument is returned.
1473      * If the argument is negative, the negation of the argument is returned.
1474      * Special cases:
1475      * <ul><li>If the argument is positive zero or negative zero, the result
1476      * is positive zero.
1477      * <li>If the argument is infinite, the result is positive infinity.
1478      * <li>If the argument is NaN, the result is NaN.</ul>
1479      *
1480      * @apiNote As implied by the above, one valid implementation of
1481      * this method is given by the expression below which computes a
1482      * {@code double} with the same exponent and significand as the
1483      * argument but with a guaranteed zero sign bit indicating a
1484      * positive value:<br>
1485      * {@code Double.longBitsToDouble((Double.doubleToRawLongBits(a)<<1)>>>1)}
1486      *
1487      * @param   a   the argument whose absolute value is to be determined
1488      * @return  the absolute value of the argument.
1489      */
1490     @HotSpotIntrinsicCandidate
1491     public static double abs(double a) {
1492         return (a <= 0.0D) ? 0.0D - a : a;
1493     }
1494 
1495     /**
1496      * Returns the greater of two {@code int} values. That is, the
1497      * result is the argument closer to the value of
1498      * {@link Integer#MAX_VALUE}. If the arguments have the same value,
1499      * the result is that same value.
1500      *
1501      * @param   a   an argument.
1502      * @param   b   another argument.
1503      * @return  the larger of {@code a} and {@code b}.
1504      */
1505     @HotSpotIntrinsicCandidate
1506     public static int max(int a, int b) {
1507         return (a >= b) ? a : b;
1508     }
1509 
1510     /**
1511      * Returns the greater of two {@code long} values. That is, the
1512      * result is the argument closer to the value of
1513      * {@link Long#MAX_VALUE}. If the arguments have the same value,
1514      * the result is that same value.
1515      *
1516      * @param   a   an argument.
1517      * @param   b   another argument.
1518      * @return  the larger of {@code a} and {@code b}.
1519      */
1520     public static long max(long a, long b) {
1521         return (a >= b) ? a : b;
1522     }
1523 
1524     // Use raw bit-wise conversions on guaranteed non-NaN arguments.
1525     private static final long negativeZeroFloatBits  = Float.floatToRawIntBits(-0.0f);
1526     private static final long negativeZeroDoubleBits = Double.doubleToRawLongBits(-0.0d);
1527 
1528     /**
1529      * Returns the greater of two {@code float} values.  That is,
1530      * the result is the argument closer to positive infinity. If the
1531      * arguments have the same value, the result is that same
1532      * value. If either value is NaN, then the result is NaN.  Unlike
1533      * the numerical comparison operators, this method considers
1534      * negative zero to be strictly smaller than positive zero. If one
1535      * argument is positive zero and the other negative zero, the
1536      * result is positive zero.
1537      *
1538      * @param   a   an argument.
1539      * @param   b   another argument.
1540      * @return  the larger of {@code a} and {@code b}.
1541      */
1542     @HotSpotIntrinsicCandidate
1543     public static float max(float a, float b) {
1544         if (a != a)
1545             return a;   // a is NaN
1546         if ((a == 0.0f) &&
1547             (b == 0.0f) &&
1548             (Float.floatToRawIntBits(a) == negativeZeroFloatBits)) {
1549             // Raw conversion ok since NaN can't map to -0.0.
1550             return b;
1551         }
1552         return (a >= b) ? a : b;
1553     }
1554 
1555     /**
1556      * Returns the greater of two {@code double} values.  That
1557      * is, the result is the argument closer to positive infinity. If
1558      * the arguments have the same value, the result is that same
1559      * value. If either value is NaN, then the result is NaN.  Unlike
1560      * the numerical comparison operators, this method considers
1561      * negative zero to be strictly smaller than positive zero. If one
1562      * argument is positive zero and the other negative zero, the
1563      * result is positive zero.
1564      *
1565      * @param   a   an argument.
1566      * @param   b   another argument.
1567      * @return  the larger of {@code a} and {@code b}.
1568      */
1569     @HotSpotIntrinsicCandidate
1570     public static double max(double a, double b) {
1571         if (a != a)
1572             return a;   // a is NaN
1573         if ((a == 0.0d) &&
1574             (b == 0.0d) &&
1575             (Double.doubleToRawLongBits(a) == negativeZeroDoubleBits)) {
1576             // Raw conversion ok since NaN can't map to -0.0.
1577             return b;
1578         }
1579         return (a >= b) ? a : b;
1580     }
1581 
1582     /**
1583      * Returns the smaller of two {@code int} values. That is,
1584      * the result the argument closer to the value of
1585      * {@link Integer#MIN_VALUE}.  If the arguments have the same
1586      * value, the result is that same value.
1587      *
1588      * @param   a   an argument.
1589      * @param   b   another argument.
1590      * @return  the smaller of {@code a} and {@code b}.
1591      */
1592     @HotSpotIntrinsicCandidate
1593     public static int min(int a, int b) {
1594         return (a <= b) ? a : b;
1595     }
1596 
1597     /**
1598      * Returns the smaller of two {@code long} values. That is,
1599      * the result is the argument closer to the value of
1600      * {@link Long#MIN_VALUE}. If the arguments have the same
1601      * value, the result is that same value.
1602      *
1603      * @param   a   an argument.
1604      * @param   b   another argument.
1605      * @return  the smaller of {@code a} and {@code b}.
1606      */
1607     public static long min(long a, long b) {
1608         return (a <= b) ? a : b;
1609     }
1610 
1611     /**
1612      * Returns the smaller of two {@code float} values.  That is,
1613      * the result is the value closer to negative infinity. If the
1614      * arguments have the same value, the result is that same
1615      * value. If either value is NaN, then the result is NaN.  Unlike
1616      * the numerical comparison operators, this method considers
1617      * negative zero to be strictly smaller than positive zero.  If
1618      * one argument is positive zero and the other is negative zero,
1619      * the result is negative zero.
1620      *
1621      * @param   a   an argument.
1622      * @param   b   another argument.
1623      * @return  the smaller of {@code a} and {@code b}.
1624      */
1625     @HotSpotIntrinsicCandidate
1626     public static float min(float a, float b) {
1627         if (a != a)
1628             return a;   // a is NaN
1629         if ((a == 0.0f) &&
1630             (b == 0.0f) &&
1631             (Float.floatToRawIntBits(b) == negativeZeroFloatBits)) {
1632             // Raw conversion ok since NaN can't map to -0.0.
1633             return b;
1634         }
1635         return (a <= b) ? a : b;
1636     }
1637 
1638     /**
1639      * Returns the smaller of two {@code double} values.  That
1640      * is, the result is the value closer to negative infinity. If the
1641      * arguments have the same value, the result is that same
1642      * value. If either value is NaN, then the result is NaN.  Unlike
1643      * the numerical comparison operators, this method considers
1644      * negative zero to be strictly smaller than positive zero. If one
1645      * argument is positive zero and the other is negative zero, the
1646      * result is negative zero.
1647      *
1648      * @param   a   an argument.
1649      * @param   b   another argument.
1650      * @return  the smaller of {@code a} and {@code b}.
1651      */
1652     @HotSpotIntrinsicCandidate
1653     public static double min(double a, double b) {
1654         if (a != a)
1655             return a;   // a is NaN
1656         if ((a == 0.0d) &&
1657             (b == 0.0d) &&
1658             (Double.doubleToRawLongBits(b) == negativeZeroDoubleBits)) {
1659             // Raw conversion ok since NaN can't map to -0.0.
1660             return b;
1661         }
1662         return (a <= b) ? a : b;
1663     }
1664 
1665     /**
1666      * Returns the fused multiply add of the three arguments; that is,
1667      * returns the exact product of the first two arguments summed
1668      * with the third argument and then rounded once to the nearest
1669      * {@code double}.
1670      *
1671      * The rounding is done using the {@linkplain
1672      * java.math.RoundingMode#HALF_EVEN round to nearest even
1673      * rounding mode}.
1674      *
1675      * In contrast, if {@code a * b + c} is evaluated as a regular
1676      * floating-point expression, two rounding errors are involved,
1677      * the first for the multiply operation, the second for the
1678      * addition operation.
1679      *
1680      * <p>Special cases:
1681      * <ul>
1682      * <li> If any argument is NaN, the result is NaN.
1683      *
1684      * <li> If one of the first two arguments is infinite and the
1685      * other is zero, the result is NaN.
1686      *
1687      * <li> If the exact product of the first two arguments is infinite
1688      * (in other words, at least one of the arguments is infinite and
1689      * the other is neither zero nor NaN) and the third argument is an
1690      * infinity of the opposite sign, the result is NaN.
1691      *
1692      * </ul>
1693      *
1694      * <p>Note that {@code fma(a, 1.0, c)} returns the same
1695      * result as ({@code a + c}).  However,
1696      * {@code fma(a, b, +0.0)} does <em>not</em> always return the
1697      * same result as ({@code a * b}) since
1698      * {@code fma(-0.0, +0.0, +0.0)} is {@code +0.0} while
1699      * ({@code -0.0 * +0.0}) is {@code -0.0}; {@code fma(a, b, -0.0)} is
1700      * equivalent to ({@code a * b}) however.
1701      *
1702      * @apiNote This method corresponds to the fusedMultiplyAdd
1703      * operation defined in IEEE 754-2008.
1704      *
1705      * @param a a value
1706      * @param b a value
1707      * @param c a value
1708      *
1709      * @return (<i>a</i>&nbsp;&times;&nbsp;<i>b</i>&nbsp;+&nbsp;<i>c</i>)
1710      * computed, as if with unlimited range and precision, and rounded
1711      * once to the nearest {@code double} value
1712      *
1713      * @since 9
1714      */
1715     @HotSpotIntrinsicCandidate
1716     public static double fma(double a, double b, double c) {
1717         /*
1718          * Infinity and NaN arithmetic is not quite the same with two
1719          * roundings as opposed to just one so the simple expression
1720          * "a * b + c" cannot always be used to compute the correct
1721          * result.  With two roundings, the product can overflow and
1722          * if the addend is infinite, a spurious NaN can be produced
1723          * if the infinity from the overflow and the infinite addend
1724          * have opposite signs.
1725          */
1726 
1727         // First, screen for and handle non-finite input values whose
1728         // arithmetic is not supported by BigDecimal.
1729         if (Double.isNaN(a) || Double.isNaN(b) || Double.isNaN(c)) {
1730             return Double.NaN;
1731         } else { // All inputs non-NaN
1732             boolean infiniteA = Double.isInfinite(a);
1733             boolean infiniteB = Double.isInfinite(b);
1734             boolean infiniteC = Double.isInfinite(c);
1735             double result;
1736 
1737             if (infiniteA || infiniteB || infiniteC) {
1738                 if (infiniteA && b == 0.0 ||
1739                     infiniteB && a == 0.0 ) {
1740                     return Double.NaN;
1741                 }
1742                 // Store product in a double field to cause an
1743                 // overflow even if non-strictfp evaluation is being
1744                 // used.
1745                 double product = a * b;
1746                 if (Double.isInfinite(product) && !infiniteA && !infiniteB) {
1747                     // Intermediate overflow; might cause a
1748                     // spurious NaN if added to infinite c.
1749                     assert Double.isInfinite(c);
1750                     return c;
1751                 } else {
1752                     result = product + c;
1753                     assert !Double.isFinite(result);
1754                     return result;
1755                 }
1756             } else { // All inputs finite
1757                 BigDecimal product = (new BigDecimal(a)).multiply(new BigDecimal(b));
1758                 if (c == 0.0) { // Positive or negative zero
1759                     // If the product is an exact zero, use a
1760                     // floating-point expression to compute the sign
1761                     // of the zero final result. The product is an
1762                     // exact zero if and only if at least one of a and
1763                     // b is zero.
1764                     if (a == 0.0 || b == 0.0) {
1765                         return a * b + c;
1766                     } else {
1767                         // The sign of a zero addend doesn't matter if
1768                         // the product is nonzero. The sign of a zero
1769                         // addend is not factored in the result if the
1770                         // exact product is nonzero but underflows to
1771                         // zero; see IEEE-754 2008 section 6.3 "The
1772                         // sign bit".
1773                         return product.doubleValue();
1774                     }
1775                 } else {
1776                     return product.add(new BigDecimal(c)).doubleValue();
1777                 }
1778             }
1779         }
1780     }
1781 
1782     /**
1783      * Returns the fused multiply add of the three arguments; that is,
1784      * returns the exact product of the first two arguments summed
1785      * with the third argument and then rounded once to the nearest
1786      * {@code float}.
1787      *
1788      * The rounding is done using the {@linkplain
1789      * java.math.RoundingMode#HALF_EVEN round to nearest even
1790      * rounding mode}.
1791      *
1792      * In contrast, if {@code a * b + c} is evaluated as a regular
1793      * floating-point expression, two rounding errors are involved,
1794      * the first for the multiply operation, the second for the
1795      * addition operation.
1796      *
1797      * <p>Special cases:
1798      * <ul>
1799      * <li> If any argument is NaN, the result is NaN.
1800      *
1801      * <li> If one of the first two arguments is infinite and the
1802      * other is zero, the result is NaN.
1803      *
1804      * <li> If the exact product of the first two arguments is infinite
1805      * (in other words, at least one of the arguments is infinite and
1806      * the other is neither zero nor NaN) and the third argument is an
1807      * infinity of the opposite sign, the result is NaN.
1808      *
1809      * </ul>
1810      *
1811      * <p>Note that {@code fma(a, 1.0f, c)} returns the same
1812      * result as ({@code a + c}).  However,
1813      * {@code fma(a, b, +0.0f)} does <em>not</em> always return the
1814      * same result as ({@code a * b}) since
1815      * {@code fma(-0.0f, +0.0f, +0.0f)} is {@code +0.0f} while
1816      * ({@code -0.0f * +0.0f}) is {@code -0.0f}; {@code fma(a, b, -0.0f)} is
1817      * equivalent to ({@code a * b}) however.
1818      *
1819      * @apiNote This method corresponds to the fusedMultiplyAdd
1820      * operation defined in IEEE 754-2008.
1821      *
1822      * @param a a value
1823      * @param b a value
1824      * @param c a value
1825      *
1826      * @return (<i>a</i>&nbsp;&times;&nbsp;<i>b</i>&nbsp;+&nbsp;<i>c</i>)
1827      * computed, as if with unlimited range and precision, and rounded
1828      * once to the nearest {@code float} value
1829      *
1830      * @since 9
1831      */
1832     @HotSpotIntrinsicCandidate
1833     public static float fma(float a, float b, float c) {
1834         /*
1835          *  Since the double format has more than twice the precision
1836          *  of the float format, the multiply of a * b is exact in
1837          *  double. The add of c to the product then incurs one
1838          *  rounding error. Since the double format moreover has more
1839          *  than (2p + 2) precision bits compared to the p bits of the
1840          *  float format, the two roundings of (a * b + c), first to
1841          *  the double format and then secondarily to the float format,
1842          *  are equivalent to rounding the intermediate result directly
1843          *  to the float format.
1844          *
1845          * In terms of strictfp vs default-fp concerns related to
1846          * overflow and underflow, since
1847          *
1848          * (Float.MAX_VALUE * Float.MAX_VALUE) << Double.MAX_VALUE
1849          * (Float.MIN_VALUE * Float.MIN_VALUE) >> Double.MIN_VALUE
1850          *
1851          * neither the multiply nor add will overflow or underflow in
1852          * double. Therefore, it is not necessary for this method to
1853          * be declared strictfp to have reproducible
1854          * behavior. However, it is necessary to explicitly store down
1855          * to a float variable to avoid returning a value in the float
1856          * extended value set.
1857          */
1858         float result = (float)(((double) a * (double) b ) + (double) c);
1859         return result;
1860     }
1861 
1862     /**
1863      * Returns the size of an ulp of the argument.  An ulp, unit in
1864      * the last place, of a {@code double} value is the positive
1865      * distance between this floating-point value and the {@code
1866      * double} value next larger in magnitude.  Note that for non-NaN
1867      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
1868      *
1869      * <p>Special Cases:
1870      * <ul>
1871      * <li> If the argument is NaN, then the result is NaN.
1872      * <li> If the argument is positive or negative infinity, then the
1873      * result is positive infinity.
1874      * <li> If the argument is positive or negative zero, then the result is
1875      * {@code Double.MIN_VALUE}.
1876      * <li> If the argument is &plusmn;{@code Double.MAX_VALUE}, then
1877      * the result is equal to 2<sup>971</sup>.
1878      * </ul>
1879      *
1880      * @param d the floating-point value whose ulp is to be returned
1881      * @return the size of an ulp of the argument
1882      * @author Joseph D. Darcy
1883      * @since 1.5
1884      */
1885     public static double ulp(double d) {
1886         int exp = getExponent(d);
1887 
1888         switch(exp) {
1889         case Double.MAX_EXPONENT + 1:       // NaN or infinity
1890             return Math.abs(d);
1891 
1892         case Double.MIN_EXPONENT - 1:       // zero or subnormal
1893             return Double.MIN_VALUE;
1894 
1895         default:
1896             assert exp <= Double.MAX_EXPONENT && exp >= Double.MIN_EXPONENT;
1897 
1898             // ulp(x) is usually 2^(SIGNIFICAND_WIDTH-1)*(2^ilogb(x))
1899             exp = exp - (DoubleConsts.SIGNIFICAND_WIDTH-1);
1900             if (exp >= Double.MIN_EXPONENT) {
1901                 return powerOfTwoD(exp);
1902             }
1903             else {
1904                 // return a subnormal result; left shift integer
1905                 // representation of Double.MIN_VALUE appropriate
1906                 // number of positions
1907                 return Double.longBitsToDouble(1L <<
1908                 (exp - (Double.MIN_EXPONENT - (DoubleConsts.SIGNIFICAND_WIDTH-1)) ));
1909             }
1910         }
1911     }
1912 
1913     /**
1914      * Returns the size of an ulp of the argument.  An ulp, unit in
1915      * the last place, of a {@code float} value is the positive
1916      * distance between this floating-point value and the {@code
1917      * float} value next larger in magnitude.  Note that for non-NaN
1918      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
1919      *
1920      * <p>Special Cases:
1921      * <ul>
1922      * <li> If the argument is NaN, then the result is NaN.
1923      * <li> If the argument is positive or negative infinity, then the
1924      * result is positive infinity.
1925      * <li> If the argument is positive or negative zero, then the result is
1926      * {@code Float.MIN_VALUE}.
1927      * <li> If the argument is &plusmn;{@code Float.MAX_VALUE}, then
1928      * the result is equal to 2<sup>104</sup>.
1929      * </ul>
1930      *
1931      * @param f the floating-point value whose ulp is to be returned
1932      * @return the size of an ulp of the argument
1933      * @author Joseph D. Darcy
1934      * @since 1.5
1935      */
1936     public static float ulp(float f) {
1937         int exp = getExponent(f);
1938 
1939         switch(exp) {
1940         case Float.MAX_EXPONENT+1:        // NaN or infinity
1941             return Math.abs(f);
1942 
1943         case Float.MIN_EXPONENT-1:        // zero or subnormal
1944             return Float.MIN_VALUE;
1945 
1946         default:
1947             assert exp <= Float.MAX_EXPONENT && exp >= Float.MIN_EXPONENT;
1948 
1949             // ulp(x) is usually 2^(SIGNIFICAND_WIDTH-1)*(2^ilogb(x))
1950             exp = exp - (FloatConsts.SIGNIFICAND_WIDTH-1);
1951             if (exp >= Float.MIN_EXPONENT) {
1952                 return powerOfTwoF(exp);
1953             } else {
1954                 // return a subnormal result; left shift integer
1955                 // representation of FloatConsts.MIN_VALUE appropriate
1956                 // number of positions
1957                 return Float.intBitsToFloat(1 <<
1958                 (exp - (Float.MIN_EXPONENT - (FloatConsts.SIGNIFICAND_WIDTH-1)) ));
1959             }
1960         }
1961     }
1962 
1963     /**
1964      * Returns the signum function of the argument; zero if the argument
1965      * is zero, 1.0 if the argument is greater than zero, -1.0 if the
1966      * argument is less than zero.
1967      *
1968      * <p>Special Cases:
1969      * <ul>
1970      * <li> If the argument is NaN, then the result is NaN.
1971      * <li> If the argument is positive zero or negative zero, then the
1972      *      result is the same as the argument.
1973      * </ul>
1974      *
1975      * @param d the floating-point value whose signum is to be returned
1976      * @return the signum function of the argument
1977      * @author Joseph D. Darcy
1978      * @since 1.5
1979      */
1980     public static double signum(double d) {
1981         return (d == 0.0 || Double.isNaN(d))?d:copySign(1.0, d);
1982     }
1983 
1984     /**
1985      * Returns the signum function of the argument; zero if the argument
1986      * is zero, 1.0f if the argument is greater than zero, -1.0f if the
1987      * argument is less than zero.
1988      *
1989      * <p>Special Cases:
1990      * <ul>
1991      * <li> If the argument is NaN, then the result is NaN.
1992      * <li> If the argument is positive zero or negative zero, then the
1993      *      result is the same as the argument.
1994      * </ul>
1995      *
1996      * @param f the floating-point value whose signum is to be returned
1997      * @return the signum function of the argument
1998      * @author Joseph D. Darcy
1999      * @since 1.5
2000      */
2001     public static float signum(float f) {
2002         return (f == 0.0f || Float.isNaN(f))?f:copySign(1.0f, f);
2003     }
2004 
2005     /**
2006      * Returns the hyperbolic sine of a {@code double} value.
2007      * The hyperbolic sine of <i>x</i> is defined to be
2008      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/2
2009      * where <i>e</i> is {@linkplain Math#E Euler's number}.
2010      *
2011      * <p>Special cases:
2012      * <ul>
2013      *
2014      * <li>If the argument is NaN, then the result is NaN.
2015      *
2016      * <li>If the argument is infinite, then the result is an infinity
2017      * with the same sign as the argument.
2018      *
2019      * <li>If the argument is zero, then the result is a zero with the
2020      * same sign as the argument.
2021      *
2022      * </ul>
2023      *
2024      * <p>The computed result must be within 2.5 ulps of the exact result.
2025      *
2026      * @param   x The number whose hyperbolic sine is to be returned.
2027      * @return  The hyperbolic sine of {@code x}.
2028      * @since 1.5
2029      */
2030     public static double sinh(double x) {
2031         return StrictMath.sinh(x);
2032     }
2033 
2034     /**
2035      * Returns the hyperbolic cosine of a {@code double} value.
2036      * The hyperbolic cosine of <i>x</i> is defined to be
2037      * (<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>)/2
2038      * where <i>e</i> is {@linkplain Math#E Euler's number}.
2039      *
2040      * <p>Special cases:
2041      * <ul>
2042      *
2043      * <li>If the argument is NaN, then the result is NaN.
2044      *
2045      * <li>If the argument is infinite, then the result is positive
2046      * infinity.
2047      *
2048      * <li>If the argument is zero, then the result is {@code 1.0}.
2049      *
2050      * </ul>
2051      *
2052      * <p>The computed result must be within 2.5 ulps of the exact result.
2053      *
2054      * @param   x The number whose hyperbolic cosine is to be returned.
2055      * @return  The hyperbolic cosine of {@code x}.
2056      * @since 1.5
2057      */
2058     public static double cosh(double x) {
2059         return StrictMath.cosh(x);
2060     }
2061 
2062     /**
2063      * Returns the hyperbolic tangent of a {@code double} value.
2064      * The hyperbolic tangent of <i>x</i> is defined to be
2065      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/(<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>),
2066      * in other words, {@linkplain Math#sinh
2067      * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}.  Note
2068      * that the absolute value of the exact tanh is always less than
2069      * 1.
2070      *
2071      * <p>Special cases:
2072      * <ul>
2073      *
2074      * <li>If the argument is NaN, then the result is NaN.
2075      *
2076      * <li>If the argument is zero, then the result is a zero with the
2077      * same sign as the argument.
2078      *
2079      * <li>If the argument is positive infinity, then the result is
2080      * {@code +1.0}.
2081      *
2082      * <li>If the argument is negative infinity, then the result is
2083      * {@code -1.0}.
2084      *
2085      * </ul>
2086      *
2087      * <p>The computed result must be within 2.5 ulps of the exact result.
2088      * The result of {@code tanh} for any finite input must have
2089      * an absolute value less than or equal to 1.  Note that once the
2090      * exact result of tanh is within 1/2 of an ulp of the limit value
2091      * of &plusmn;1, correctly signed &plusmn;{@code 1.0} should
2092      * be returned.
2093      *
2094      * @param   x The number whose hyperbolic tangent is to be returned.
2095      * @return  The hyperbolic tangent of {@code x}.
2096      * @since 1.5
2097      */
2098     public static double tanh(double x) {
2099         return StrictMath.tanh(x);
2100     }
2101 
2102     /**
2103      * Returns sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
2104      * without intermediate overflow or underflow.
2105      *
2106      * <p>Special cases:
2107      * <ul>
2108      *
2109      * <li> If either argument is infinite, then the result
2110      * is positive infinity.
2111      *
2112      * <li> If either argument is NaN and neither argument is infinite,
2113      * then the result is NaN.
2114      *
2115      * </ul>
2116      *
2117      * <p>The computed result must be within 1 ulp of the exact
2118      * result.  If one parameter is held constant, the results must be
2119      * semi-monotonic in the other parameter.
2120      *
2121      * @param x a value
2122      * @param y a value
2123      * @return sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
2124      * without intermediate overflow or underflow
2125      * @since 1.5
2126      */
2127     public static double hypot(double x, double y) {
2128         return StrictMath.hypot(x, y);
2129     }
2130 
2131     /**
2132      * Returns <i>e</i><sup>x</sup>&nbsp;-1.  Note that for values of
2133      * <i>x</i> near 0, the exact sum of
2134      * {@code expm1(x)}&nbsp;+&nbsp;1 is much closer to the true
2135      * result of <i>e</i><sup>x</sup> than {@code exp(x)}.
2136      *
2137      * <p>Special cases:
2138      * <ul>
2139      * <li>If the argument is NaN, the result is NaN.
2140      *
2141      * <li>If the argument is positive infinity, then the result is
2142      * positive infinity.
2143      *
2144      * <li>If the argument is negative infinity, then the result is
2145      * -1.0.
2146      *
2147      * <li>If the argument is zero, then the result is a zero with the
2148      * same sign as the argument.
2149      *
2150      * </ul>
2151      *
2152      * <p>The computed result must be within 1 ulp of the exact result.
2153      * Results must be semi-monotonic.  The result of
2154      * {@code expm1} for any finite input must be greater than or
2155      * equal to {@code -1.0}.  Note that once the exact result of
2156      * <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1 is within 1/2
2157      * ulp of the limit value -1, {@code -1.0} should be
2158      * returned.
2159      *
2160      * @param   x   the exponent to raise <i>e</i> to in the computation of
2161      *              <i>e</i><sup>{@code x}</sup>&nbsp;-1.
2162      * @return  the value <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1.
2163      * @since 1.5
2164      */
2165     public static double expm1(double x) {
2166         return StrictMath.expm1(x);
2167     }
2168 
2169     /**
2170      * Returns the natural logarithm of the sum of the argument and 1.
2171      * Note that for small values {@code x}, the result of
2172      * {@code log1p(x)} is much closer to the true result of ln(1
2173      * + {@code x}) than the floating-point evaluation of
2174      * {@code log(1.0+x)}.
2175      *
2176      * <p>Special cases:
2177      *
2178      * <ul>
2179      *
2180      * <li>If the argument is NaN or less than -1, then the result is
2181      * NaN.
2182      *
2183      * <li>If the argument is positive infinity, then the result is
2184      * positive infinity.
2185      *
2186      * <li>If the argument is negative one, then the result is
2187      * negative infinity.
2188      *
2189      * <li>If the argument is zero, then the result is a zero with the
2190      * same sign as the argument.
2191      *
2192      * </ul>
2193      *
2194      * <p>The computed result must be within 1 ulp of the exact result.
2195      * Results must be semi-monotonic.
2196      *
2197      * @param   x   a value
2198      * @return the value ln({@code x}&nbsp;+&nbsp;1), the natural
2199      * log of {@code x}&nbsp;+&nbsp;1
2200      * @since 1.5
2201      */
2202     public static double log1p(double x) {
2203         return StrictMath.log1p(x);
2204     }
2205 
2206     /**
2207      * Returns the first floating-point argument with the sign of the
2208      * second floating-point argument.  Note that unlike the {@link
2209      * StrictMath#copySign(double, double) StrictMath.copySign}
2210      * method, this method does not require NaN {@code sign}
2211      * arguments to be treated as positive values; implementations are
2212      * permitted to treat some NaN arguments as positive and other NaN
2213      * arguments as negative to allow greater performance.
2214      *
2215      * @param magnitude  the parameter providing the magnitude of the result
2216      * @param sign   the parameter providing the sign of the result
2217      * @return a value with the magnitude of {@code magnitude}
2218      * and the sign of {@code sign}.
2219      * @since 1.6
2220      */
2221     public static double copySign(double magnitude, double sign) {
2222         return Double.longBitsToDouble((Double.doubleToRawLongBits(sign) &
2223                                         (DoubleConsts.SIGN_BIT_MASK)) |
2224                                        (Double.doubleToRawLongBits(magnitude) &
2225                                         (DoubleConsts.EXP_BIT_MASK |
2226                                          DoubleConsts.SIGNIF_BIT_MASK)));
2227     }
2228 
2229     /**
2230      * Returns the first floating-point argument with the sign of the
2231      * second floating-point argument.  Note that unlike the {@link
2232      * StrictMath#copySign(float, float) StrictMath.copySign}
2233      * method, this method does not require NaN {@code sign}
2234      * arguments to be treated as positive values; implementations are
2235      * permitted to treat some NaN arguments as positive and other NaN
2236      * arguments as negative to allow greater performance.
2237      *
2238      * @param magnitude  the parameter providing the magnitude of the result
2239      * @param sign   the parameter providing the sign of the result
2240      * @return a value with the magnitude of {@code magnitude}
2241      * and the sign of {@code sign}.
2242      * @since 1.6
2243      */
2244     public static float copySign(float magnitude, float sign) {
2245         return Float.intBitsToFloat((Float.floatToRawIntBits(sign) &
2246                                      (FloatConsts.SIGN_BIT_MASK)) |
2247                                     (Float.floatToRawIntBits(magnitude) &
2248                                      (FloatConsts.EXP_BIT_MASK |
2249                                       FloatConsts.SIGNIF_BIT_MASK)));
2250     }
2251 
2252     /**
2253      * Returns the unbiased exponent used in the representation of a
2254      * {@code float}.  Special cases:
2255      *
2256      * <ul>
2257      * <li>If the argument is NaN or infinite, then the result is
2258      * {@link Float#MAX_EXPONENT} + 1.
2259      * <li>If the argument is zero or subnormal, then the result is
2260      * {@link Float#MIN_EXPONENT} -1.
2261      * </ul>
2262      * @param f a {@code float} value
2263      * @return the unbiased exponent of the argument
2264      * @since 1.6
2265      */
2266     public static int getExponent(float f) {
2267         /*
2268          * Bitwise convert f to integer, mask out exponent bits, shift
2269          * to the right and then subtract out float's bias adjust to
2270          * get true exponent value
2271          */
2272         return ((Float.floatToRawIntBits(f) & FloatConsts.EXP_BIT_MASK) >>
2273                 (FloatConsts.SIGNIFICAND_WIDTH - 1)) - FloatConsts.EXP_BIAS;
2274     }
2275 
2276     /**
2277      * Returns the unbiased exponent used in the representation of a
2278      * {@code double}.  Special cases:
2279      *
2280      * <ul>
2281      * <li>If the argument is NaN or infinite, then the result is
2282      * {@link Double#MAX_EXPONENT} + 1.
2283      * <li>If the argument is zero or subnormal, then the result is
2284      * {@link Double#MIN_EXPONENT} -1.
2285      * </ul>
2286      * @param d a {@code double} value
2287      * @return the unbiased exponent of the argument
2288      * @since 1.6
2289      */
2290     public static int getExponent(double d) {
2291         /*
2292          * Bitwise convert d to long, mask out exponent bits, shift
2293          * to the right and then subtract out double's bias adjust to
2294          * get true exponent value.
2295          */
2296         return (int)(((Double.doubleToRawLongBits(d) & DoubleConsts.EXP_BIT_MASK) >>
2297                       (DoubleConsts.SIGNIFICAND_WIDTH - 1)) - DoubleConsts.EXP_BIAS);
2298     }
2299 
2300     /**
2301      * Returns the floating-point number adjacent to the first
2302      * argument in the direction of the second argument.  If both
2303      * arguments compare as equal the second argument is returned.
2304      *
2305      * <p>
2306      * Special cases:
2307      * <ul>
2308      * <li> If either argument is a NaN, then NaN is returned.
2309      *
2310      * <li> If both arguments are signed zeros, {@code direction}
2311      * is returned unchanged (as implied by the requirement of
2312      * returning the second argument if the arguments compare as
2313      * equal).
2314      *
2315      * <li> If {@code start} is
2316      * &plusmn;{@link Double#MIN_VALUE} and {@code direction}
2317      * has a value such that the result should have a smaller
2318      * magnitude, then a zero with the same sign as {@code start}
2319      * is returned.
2320      *
2321      * <li> If {@code start} is infinite and
2322      * {@code direction} has a value such that the result should
2323      * have a smaller magnitude, {@link Double#MAX_VALUE} with the
2324      * same sign as {@code start} is returned.
2325      *
2326      * <li> If {@code start} is equal to &plusmn;
2327      * {@link Double#MAX_VALUE} and {@code direction} has a
2328      * value such that the result should have a larger magnitude, an
2329      * infinity with same sign as {@code start} is returned.
2330      * </ul>
2331      *
2332      * @param start  starting floating-point value
2333      * @param direction value indicating which of
2334      * {@code start}'s neighbors or {@code start} should
2335      * be returned
2336      * @return The floating-point number adjacent to {@code start} in the
2337      * direction of {@code direction}.
2338      * @since 1.6
2339      */
2340     public static double nextAfter(double start, double direction) {
2341         /*
2342          * The cases:
2343          *
2344          * nextAfter(+infinity, 0)  == MAX_VALUE
2345          * nextAfter(+infinity, +infinity)  == +infinity
2346          * nextAfter(-infinity, 0)  == -MAX_VALUE
2347          * nextAfter(-infinity, -infinity)  == -infinity
2348          *
2349          * are naturally handled without any additional testing
2350          */
2351 
2352         /*
2353          * IEEE 754 floating-point numbers are lexicographically
2354          * ordered if treated as signed-magnitude integers.
2355          * Since Java's integers are two's complement,
2356          * incrementing the two's complement representation of a
2357          * logically negative floating-point value *decrements*
2358          * the signed-magnitude representation. Therefore, when
2359          * the integer representation of a floating-point value
2360          * is negative, the adjustment to the representation is in
2361          * the opposite direction from what would initially be expected.
2362          */
2363 
2364         // Branch to descending case first as it is more costly than ascending
2365         // case due to start != 0.0d conditional.
2366         if (start > direction) { // descending
2367             if (start != 0.0d) {
2368                 final long transducer = Double.doubleToRawLongBits(start);
2369                 return Double.longBitsToDouble(transducer + ((transducer > 0L) ? -1L : 1L));
2370             } else { // start == 0.0d && direction < 0.0d
2371                 return -Double.MIN_VALUE;
2372             }
2373         } else if (start < direction) { // ascending
2374             // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0)
2375             // then bitwise convert start to integer.
2376             final long transducer = Double.doubleToRawLongBits(start + 0.0d);
2377             return Double.longBitsToDouble(transducer + ((transducer >= 0L) ? 1L : -1L));
2378         } else if (start == direction) {
2379             return direction;
2380         } else { // isNaN(start) || isNaN(direction)
2381             return start + direction;
2382         }
2383     }
2384 
2385     /**
2386      * Returns the floating-point number adjacent to the first
2387      * argument in the direction of the second argument.  If both
2388      * arguments compare as equal a value equivalent to the second argument
2389      * is returned.
2390      *
2391      * <p>
2392      * Special cases:
2393      * <ul>
2394      * <li> If either argument is a NaN, then NaN is returned.
2395      *
2396      * <li> If both arguments are signed zeros, a value equivalent
2397      * to {@code direction} is returned.
2398      *
2399      * <li> If {@code start} is
2400      * &plusmn;{@link Float#MIN_VALUE} and {@code direction}
2401      * has a value such that the result should have a smaller
2402      * magnitude, then a zero with the same sign as {@code start}
2403      * is returned.
2404      *
2405      * <li> If {@code start} is infinite and
2406      * {@code direction} has a value such that the result should
2407      * have a smaller magnitude, {@link Float#MAX_VALUE} with the
2408      * same sign as {@code start} is returned.
2409      *
2410      * <li> If {@code start} is equal to &plusmn;
2411      * {@link Float#MAX_VALUE} and {@code direction} has a
2412      * value such that the result should have a larger magnitude, an
2413      * infinity with same sign as {@code start} is returned.
2414      * </ul>
2415      *
2416      * @param start  starting floating-point value
2417      * @param direction value indicating which of
2418      * {@code start}'s neighbors or {@code start} should
2419      * be returned
2420      * @return The floating-point number adjacent to {@code start} in the
2421      * direction of {@code direction}.
2422      * @since 1.6
2423      */
2424     public static float nextAfter(float start, double direction) {
2425         /*
2426          * The cases:
2427          *
2428          * nextAfter(+infinity, 0)  == MAX_VALUE
2429          * nextAfter(+infinity, +infinity)  == +infinity
2430          * nextAfter(-infinity, 0)  == -MAX_VALUE
2431          * nextAfter(-infinity, -infinity)  == -infinity
2432          *
2433          * are naturally handled without any additional testing
2434          */
2435 
2436         /*
2437          * IEEE 754 floating-point numbers are lexicographically
2438          * ordered if treated as signed-magnitude integers.
2439          * Since Java's integers are two's complement,
2440          * incrementing the two's complement representation of a
2441          * logically negative floating-point value *decrements*
2442          * the signed-magnitude representation. Therefore, when
2443          * the integer representation of a floating-point value
2444          * is negative, the adjustment to the representation is in
2445          * the opposite direction from what would initially be expected.
2446          */
2447 
2448         // Branch to descending case first as it is more costly than ascending
2449         // case due to start != 0.0f conditional.
2450         if (start > direction) { // descending
2451             if (start != 0.0f) {
2452                 final int transducer = Float.floatToRawIntBits(start);
2453                 return Float.intBitsToFloat(transducer + ((transducer > 0) ? -1 : 1));
2454             } else { // start == 0.0f && direction < 0.0f
2455                 return -Float.MIN_VALUE;
2456             }
2457         } else if (start < direction) { // ascending
2458             // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0)
2459             // then bitwise convert start to integer.
2460             final int transducer = Float.floatToRawIntBits(start + 0.0f);
2461             return Float.intBitsToFloat(transducer + ((transducer >= 0) ? 1 : -1));
2462         } else if (start == direction) {
2463             return (float)direction;
2464         } else { // isNaN(start) || isNaN(direction)
2465             return start + (float)direction;
2466         }
2467     }
2468 
2469     /**
2470      * Returns the floating-point value adjacent to {@code d} in
2471      * the direction of positive infinity.  This method is
2472      * semantically equivalent to {@code nextAfter(d,
2473      * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
2474      * implementation may run faster than its equivalent
2475      * {@code nextAfter} call.
2476      *
2477      * <p>Special Cases:
2478      * <ul>
2479      * <li> If the argument is NaN, the result is NaN.
2480      *
2481      * <li> If the argument is positive infinity, the result is
2482      * positive infinity.
2483      *
2484      * <li> If the argument is zero, the result is
2485      * {@link Double#MIN_VALUE}
2486      *
2487      * </ul>
2488      *
2489      * @param d starting floating-point value
2490      * @return The adjacent floating-point value closer to positive
2491      * infinity.
2492      * @since 1.6
2493      */
2494     public static double nextUp(double d) {
2495         // Use a single conditional and handle the likely cases first.
2496         if (d < Double.POSITIVE_INFINITY) {
2497             // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0).
2498             final long transducer = Double.doubleToRawLongBits(d + 0.0D);
2499             return Double.longBitsToDouble(transducer + ((transducer >= 0L) ? 1L : -1L));
2500         } else { // d is NaN or +Infinity
2501             return d;
2502         }
2503     }
2504 
2505     /**
2506      * Returns the floating-point value adjacent to {@code f} in
2507      * the direction of positive infinity.  This method is
2508      * semantically equivalent to {@code nextAfter(f,
2509      * Float.POSITIVE_INFINITY)}; however, a {@code nextUp}
2510      * implementation may run faster than its equivalent
2511      * {@code nextAfter} call.
2512      *
2513      * <p>Special Cases:
2514      * <ul>
2515      * <li> If the argument is NaN, the result is NaN.
2516      *
2517      * <li> If the argument is positive infinity, the result is
2518      * positive infinity.
2519      *
2520      * <li> If the argument is zero, the result is
2521      * {@link Float#MIN_VALUE}
2522      *
2523      * </ul>
2524      *
2525      * @param f starting floating-point value
2526      * @return The adjacent floating-point value closer to positive
2527      * infinity.
2528      * @since 1.6
2529      */
2530     public static float nextUp(float f) {
2531         // Use a single conditional and handle the likely cases first.
2532         if (f < Float.POSITIVE_INFINITY) {
2533             // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0).
2534             final int transducer = Float.floatToRawIntBits(f + 0.0F);
2535             return Float.intBitsToFloat(transducer + ((transducer >= 0) ? 1 : -1));
2536         } else { // f is NaN or +Infinity
2537             return f;
2538         }
2539     }
2540 
2541     /**
2542      * Returns the floating-point value adjacent to {@code d} in
2543      * the direction of negative infinity.  This method is
2544      * semantically equivalent to {@code nextAfter(d,
2545      * Double.NEGATIVE_INFINITY)}; however, a
2546      * {@code nextDown} implementation may run faster than its
2547      * equivalent {@code nextAfter} call.
2548      *
2549      * <p>Special Cases:
2550      * <ul>
2551      * <li> If the argument is NaN, the result is NaN.
2552      *
2553      * <li> If the argument is negative infinity, the result is
2554      * negative infinity.
2555      *
2556      * <li> If the argument is zero, the result is
2557      * {@code -Double.MIN_VALUE}
2558      *
2559      * </ul>
2560      *
2561      * @param d  starting floating-point value
2562      * @return The adjacent floating-point value closer to negative
2563      * infinity.
2564      * @since 1.8
2565      */
2566     public static double nextDown(double d) {
2567         if (Double.isNaN(d) || d == Double.NEGATIVE_INFINITY)
2568             return d;
2569         else {
2570             if (d == 0.0)
2571                 return -Double.MIN_VALUE;
2572             else
2573                 return Double.longBitsToDouble(Double.doubleToRawLongBits(d) +
2574                                                ((d > 0.0d)?-1L:+1L));
2575         }
2576     }
2577 
2578     /**
2579      * Returns the floating-point value adjacent to {@code f} in
2580      * the direction of negative infinity.  This method is
2581      * semantically equivalent to {@code nextAfter(f,
2582      * Float.NEGATIVE_INFINITY)}; however, a
2583      * {@code nextDown} implementation may run faster than its
2584      * equivalent {@code nextAfter} call.
2585      *
2586      * <p>Special Cases:
2587      * <ul>
2588      * <li> If the argument is NaN, the result is NaN.
2589      *
2590      * <li> If the argument is negative infinity, the result is
2591      * negative infinity.
2592      *
2593      * <li> If the argument is zero, the result is
2594      * {@code -Float.MIN_VALUE}
2595      *
2596      * </ul>
2597      *
2598      * @param f  starting floating-point value
2599      * @return The adjacent floating-point value closer to negative
2600      * infinity.
2601      * @since 1.8
2602      */
2603     public static float nextDown(float f) {
2604         if (Float.isNaN(f) || f == Float.NEGATIVE_INFINITY)
2605             return f;
2606         else {
2607             if (f == 0.0f)
2608                 return -Float.MIN_VALUE;
2609             else
2610                 return Float.intBitsToFloat(Float.floatToRawIntBits(f) +
2611                                             ((f > 0.0f)?-1:+1));
2612         }
2613     }
2614 
2615     /**
2616      * Returns {@code d} &times;
2617      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
2618      * by a single correctly rounded floating-point multiply to a
2619      * member of the double value set.  See the Java
2620      * Language Specification for a discussion of floating-point
2621      * value sets.  If the exponent of the result is between {@link
2622      * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the
2623      * answer is calculated exactly.  If the exponent of the result
2624      * would be larger than {@code Double.MAX_EXPONENT}, an
2625      * infinity is returned.  Note that if the result is subnormal,
2626      * precision may be lost; that is, when {@code scalb(x, n)}
2627      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
2628      * <i>x</i>.  When the result is non-NaN, the result has the same
2629      * sign as {@code d}.
2630      *
2631      * <p>Special cases:
2632      * <ul>
2633      * <li> If the first argument is NaN, NaN is returned.
2634      * <li> If the first argument is infinite, then an infinity of the
2635      * same sign is returned.
2636      * <li> If the first argument is zero, then a zero of the same
2637      * sign is returned.
2638      * </ul>
2639      *
2640      * @param d number to be scaled by a power of two.
2641      * @param scaleFactor power of 2 used to scale {@code d}
2642      * @return {@code d} &times; 2<sup>{@code scaleFactor}</sup>
2643      * @since 1.6
2644      */
2645     public static double scalb(double d, int scaleFactor) {
2646         /*
2647          * This method does not need to be declared strictfp to
2648          * compute the same correct result on all platforms.  When
2649          * scaling up, it does not matter what order the
2650          * multiply-store operations are done; the result will be
2651          * finite or overflow regardless of the operation ordering.
2652          * However, to get the correct result when scaling down, a
2653          * particular ordering must be used.
2654          *
2655          * When scaling down, the multiply-store operations are
2656          * sequenced so that it is not possible for two consecutive
2657          * multiply-stores to return subnormal results.  If one
2658          * multiply-store result is subnormal, the next multiply will
2659          * round it away to zero.  This is done by first multiplying
2660          * by 2 ^ (scaleFactor % n) and then multiplying several
2661          * times by 2^n as needed where n is the exponent of number
2662          * that is a convenient power of two.  In this way, at most one
2663          * real rounding error occurs.  If the double value set is
2664          * being used exclusively, the rounding will occur on a
2665          * multiply.  If the double-extended-exponent value set is
2666          * being used, the products will (perhaps) be exact but the
2667          * stores to d are guaranteed to round to the double value
2668          * set.
2669          *
2670          * It is _not_ a valid implementation to first multiply d by
2671          * 2^MIN_EXPONENT and then by 2 ^ (scaleFactor %
2672          * MIN_EXPONENT) since even in a strictfp program double
2673          * rounding on underflow could occur; e.g. if the scaleFactor
2674          * argument was (MIN_EXPONENT - n) and the exponent of d was a
2675          * little less than -(MIN_EXPONENT - n), meaning the final
2676          * result would be subnormal.
2677          *
2678          * Since exact reproducibility of this method can be achieved
2679          * without any undue performance burden, there is no
2680          * compelling reason to allow double rounding on underflow in
2681          * scalb.
2682          */
2683 
2684         // magnitude of a power of two so large that scaling a finite
2685         // nonzero value by it would be guaranteed to over or
2686         // underflow; due to rounding, scaling down takes an
2687         // additional power of two which is reflected here
2688         final int MAX_SCALE = Double.MAX_EXPONENT + -Double.MIN_EXPONENT +
2689                               DoubleConsts.SIGNIFICAND_WIDTH + 1;
2690         int exp_adjust = 0;
2691         int scale_increment = 0;
2692         double exp_delta = Double.NaN;
2693 
2694         // Make sure scaling factor is in a reasonable range
2695 
2696         if(scaleFactor < 0) {
2697             scaleFactor = Math.max(scaleFactor, -MAX_SCALE);
2698             scale_increment = -512;
2699             exp_delta = twoToTheDoubleScaleDown;
2700         }
2701         else {
2702             scaleFactor = Math.min(scaleFactor, MAX_SCALE);
2703             scale_increment = 512;
2704             exp_delta = twoToTheDoubleScaleUp;
2705         }
2706 
2707         // Calculate (scaleFactor % +/-512), 512 = 2^9, using
2708         // technique from "Hacker's Delight" section 10-2.
2709         int t = (scaleFactor >> 9-1) >>> 32 - 9;
2710         exp_adjust = ((scaleFactor + t) & (512 -1)) - t;
2711 
2712         d *= powerOfTwoD(exp_adjust);
2713         scaleFactor -= exp_adjust;
2714 
2715         while(scaleFactor != 0) {
2716             d *= exp_delta;
2717             scaleFactor -= scale_increment;
2718         }
2719         return d;
2720     }
2721 
2722     /**
2723      * Returns {@code f} &times;
2724      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
2725      * by a single correctly rounded floating-point multiply to a
2726      * member of the float value set.  See the Java
2727      * Language Specification for a discussion of floating-point
2728      * value sets.  If the exponent of the result is between {@link
2729      * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the
2730      * answer is calculated exactly.  If the exponent of the result
2731      * would be larger than {@code Float.MAX_EXPONENT}, an
2732      * infinity is returned.  Note that if the result is subnormal,
2733      * precision may be lost; that is, when {@code scalb(x, n)}
2734      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
2735      * <i>x</i>.  When the result is non-NaN, the result has the same
2736      * sign as {@code f}.
2737      *
2738      * <p>Special cases:
2739      * <ul>
2740      * <li> If the first argument is NaN, NaN is returned.
2741      * <li> If the first argument is infinite, then an infinity of the
2742      * same sign is returned.
2743      * <li> If the first argument is zero, then a zero of the same
2744      * sign is returned.
2745      * </ul>
2746      *
2747      * @param f number to be scaled by a power of two.
2748      * @param scaleFactor power of 2 used to scale {@code f}
2749      * @return {@code f} &times; 2<sup>{@code scaleFactor}</sup>
2750      * @since 1.6
2751      */
2752     public static float scalb(float f, int scaleFactor) {
2753         // magnitude of a power of two so large that scaling a finite
2754         // nonzero value by it would be guaranteed to over or
2755         // underflow; due to rounding, scaling down takes an
2756         // additional power of two which is reflected here
2757         final int MAX_SCALE = Float.MAX_EXPONENT + -Float.MIN_EXPONENT +
2758                               FloatConsts.SIGNIFICAND_WIDTH + 1;
2759 
2760         // Make sure scaling factor is in a reasonable range
2761         scaleFactor = Math.max(Math.min(scaleFactor, MAX_SCALE), -MAX_SCALE);
2762 
2763         /*
2764          * Since + MAX_SCALE for float fits well within the double
2765          * exponent range and + float -> double conversion is exact
2766          * the multiplication below will be exact. Therefore, the
2767          * rounding that occurs when the double product is cast to
2768          * float will be the correctly rounded float result.  Since
2769          * all operations other than the final multiply will be exact,
2770          * it is not necessary to declare this method strictfp.
2771          */
2772         return (float)((double)f*powerOfTwoD(scaleFactor));
2773     }
2774 
2775     // Constants used in scalb
2776     static double twoToTheDoubleScaleUp = powerOfTwoD(512);
2777     static double twoToTheDoubleScaleDown = powerOfTwoD(-512);
2778 
2779     /**
2780      * Returns a floating-point power of two in the normal range.
2781      */
2782     static double powerOfTwoD(int n) {
2783         assert(n >= Double.MIN_EXPONENT && n <= Double.MAX_EXPONENT);
2784         return Double.longBitsToDouble((((long)n + (long)DoubleConsts.EXP_BIAS) <<
2785                                         (DoubleConsts.SIGNIFICAND_WIDTH-1))
2786                                        & DoubleConsts.EXP_BIT_MASK);
2787     }
2788 
2789     /**
2790      * Returns a floating-point power of two in the normal range.
2791      */
2792     static float powerOfTwoF(int n) {
2793         assert(n >= Float.MIN_EXPONENT && n <= Float.MAX_EXPONENT);
2794         return Float.intBitsToFloat(((n + FloatConsts.EXP_BIAS) <<
2795                                      (FloatConsts.SIGNIFICAND_WIDTH-1))
2796                                     & FloatConsts.EXP_BIT_MASK);
2797     }
2798 }