1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2019, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/register.hpp"
  30 
  31 // definitions of various symbolic names for machine registers
  32 
  33 // First intercalls between C and Java which use 8 general registers
  34 // and 8 floating registers
  35 
  36 // we also have to copy between x86 and ARM registers but that's a
  37 // secondary complication -- not all code employing C call convention
  38 // executes as x86 code though -- we generate some of it
  39 
  40 class Argument {
  41  public:
  42   enum {
  43     n_int_register_parameters_c   = 8,  // r0, r1, ... r7 (c_rarg0, c_rarg1, ...)
  44     n_float_register_parameters_c = 8,  // v0, v1, ... v7 (c_farg0, c_farg1, ... )
  45 
  46     n_int_register_parameters_j   = 8, // r1, ... r7, r0 (rj_rarg0, j_rarg1, ...
  47     n_float_register_parameters_j = 8  // v0, v1, ... v7 (j_farg0, j_farg1, ...
  48   };
  49 };
  50 
  51 REGISTER_DECLARATION(Register, c_rarg0, r0);
  52 REGISTER_DECLARATION(Register, c_rarg1, r1);
  53 REGISTER_DECLARATION(Register, c_rarg2, r2);
  54 REGISTER_DECLARATION(Register, c_rarg3, r3);
  55 REGISTER_DECLARATION(Register, c_rarg4, r4);
  56 REGISTER_DECLARATION(Register, c_rarg5, r5);
  57 REGISTER_DECLARATION(Register, c_rarg6, r6);
  58 REGISTER_DECLARATION(Register, c_rarg7, r7);
  59 
  60 REGISTER_DECLARATION(FloatRegister, c_farg0, v0);
  61 REGISTER_DECLARATION(FloatRegister, c_farg1, v1);
  62 REGISTER_DECLARATION(FloatRegister, c_farg2, v2);
  63 REGISTER_DECLARATION(FloatRegister, c_farg3, v3);
  64 REGISTER_DECLARATION(FloatRegister, c_farg4, v4);
  65 REGISTER_DECLARATION(FloatRegister, c_farg5, v5);
  66 REGISTER_DECLARATION(FloatRegister, c_farg6, v6);
  67 REGISTER_DECLARATION(FloatRegister, c_farg7, v7);
  68 
  69 // Symbolically name the register arguments used by the Java calling convention.
  70 // We have control over the convention for java so we can do what we please.
  71 // What pleases us is to offset the java calling convention so that when
  72 // we call a suitable jni method the arguments are lined up and we don't
  73 // have to do much shuffling. A suitable jni method is non-static and a
  74 // small number of arguments
  75 //
  76 //  |--------------------------------------------------------------------|
  77 //  | c_rarg0  c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5 c_rarg6 c_rarg7  |
  78 //  |--------------------------------------------------------------------|
  79 //  | r0       r1       r2      r3      r4      r5      r6      r7       |
  80 //  |--------------------------------------------------------------------|
  81 //  | j_rarg7  j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4 j_rarg5 j_rarg6  |
  82 //  |--------------------------------------------------------------------|
  83 
  84 
  85 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
  86 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
  87 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
  88 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
  89 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
  90 REGISTER_DECLARATION(Register, j_rarg5, c_rarg6);
  91 REGISTER_DECLARATION(Register, j_rarg6, c_rarg7);
  92 REGISTER_DECLARATION(Register, j_rarg7, c_rarg0);
  93 
  94 // Java floating args are passed as per C
  95 
  96 REGISTER_DECLARATION(FloatRegister, j_farg0, v0);
  97 REGISTER_DECLARATION(FloatRegister, j_farg1, v1);
  98 REGISTER_DECLARATION(FloatRegister, j_farg2, v2);
  99 REGISTER_DECLARATION(FloatRegister, j_farg3, v3);
 100 REGISTER_DECLARATION(FloatRegister, j_farg4, v4);
 101 REGISTER_DECLARATION(FloatRegister, j_farg5, v5);
 102 REGISTER_DECLARATION(FloatRegister, j_farg6, v6);
 103 REGISTER_DECLARATION(FloatRegister, j_farg7, v7);
 104 
 105 // registers used to hold VM data either temporarily within a method
 106 // or across method calls
 107 
 108 // volatile (caller-save) registers
 109 
 110 // r8 is used for indirect result location return
 111 // we use it and r9 as scratch registers
 112 REGISTER_DECLARATION(Register, rscratch1, r8);
 113 REGISTER_DECLARATION(Register, rscratch2, r9);
 114 
 115 // current method -- must be in a call-clobbered register
 116 REGISTER_DECLARATION(Register, rmethod,   r12);
 117 
 118 // non-volatile (callee-save) registers are r16-29
 119 // of which the following are dedicated global state
 120 
 121 // link register
 122 REGISTER_DECLARATION(Register, lr,        r30);
 123 // frame pointer
 124 REGISTER_DECLARATION(Register, rfp,       r29);
 125 // current thread
 126 REGISTER_DECLARATION(Register, rthread,   r28);
 127 // base of heap
 128 REGISTER_DECLARATION(Register, rheapbase, r27);
 129 // constant pool cache
 130 REGISTER_DECLARATION(Register, rcpool,    r26);
 131 // monitors allocated on stack
 132 REGISTER_DECLARATION(Register, rmonitors, r25);
 133 // locals on stack
 134 REGISTER_DECLARATION(Register, rlocals,   r24);
 135 // bytecode pointer
 136 REGISTER_DECLARATION(Register, rbcp,      r22);
 137 // Dispatch table base
 138 REGISTER_DECLARATION(Register, rdispatch, r21);
 139 // Java stack pointer
 140 REGISTER_DECLARATION(Register, esp,      r20);
 141 
 142 #define assert_cond(ARG1) assert(ARG1, #ARG1)
 143 
 144 namespace asm_util {
 145   uint32_t encode_logical_immediate(bool is32, uint64_t imm);
 146 };
 147 
 148 using namespace asm_util;
 149 
 150 
 151 class Assembler;
 152 
 153 class Instruction_aarch64 {
 154   unsigned insn;
 155 #ifdef ASSERT
 156   unsigned bits;
 157 #endif
 158   Assembler *assem;
 159 
 160 public:
 161 
 162   Instruction_aarch64(class Assembler *as) {
 163 #ifdef ASSERT
 164     bits = 0;
 165 #endif
 166     insn = 0;
 167     assem = as;
 168   }
 169 
 170   inline ~Instruction_aarch64();
 171 
 172   unsigned &get_insn() { return insn; }
 173 #ifdef ASSERT
 174   unsigned &get_bits() { return bits; }
 175 #endif
 176 
 177   static inline int32_t extend(unsigned val, int hi = 31, int lo = 0) {
 178     union {
 179       unsigned u;
 180       int n;
 181     };
 182 
 183     u = val << (31 - hi);
 184     n = n >> (31 - hi + lo);
 185     return n;
 186   }
 187 
 188   static inline uint32_t extract(uint32_t val, int msb, int lsb) {
 189     int nbits = msb - lsb + 1;
 190     assert_cond(msb >= lsb);
 191     uint32_t mask = checked_cast<uint32_t>(right_n_bits(nbits));
 192     uint32_t result = val >> lsb;
 193     result &= mask;
 194     return result;
 195   }
 196 
 197   static inline int32_t sextract(uint32_t val, int msb, int lsb) {
 198     uint32_t uval = extract(val, msb, lsb);
 199     return extend(uval, msb - lsb);
 200   }
 201 
 202   static void patch(address a, int msb, int lsb, unsigned long val) {
 203     int nbits = msb - lsb + 1;
 204     guarantee(val < (1U << nbits), "Field too big for insn");
 205     assert_cond(msb >= lsb);
 206     unsigned mask = checked_cast<unsigned>(right_n_bits(nbits));
 207     val <<= lsb;
 208     mask <<= lsb;
 209     unsigned target = *(unsigned *)a;
 210     target &= ~mask;
 211     target |= val;
 212     *(unsigned *)a = target;
 213   }
 214 
 215   static void spatch(address a, int msb, int lsb, long val) {
 216     int nbits = msb - lsb + 1;
 217     long chk = val >> (nbits - 1);
 218     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 219     unsigned uval = val;
 220     unsigned mask = checked_cast<unsigned>(right_n_bits(nbits));
 221     uval &= mask;
 222     uval <<= lsb;
 223     mask <<= lsb;
 224     unsigned target = *(unsigned *)a;
 225     target &= ~mask;
 226     target |= uval;
 227     *(unsigned *)a = target;
 228   }
 229 
 230   void f(unsigned val, int msb, int lsb) {
 231     int nbits = msb - lsb + 1;
 232     guarantee(val < (1ULL << nbits), "Field too big for insn");
 233     assert_cond(msb >= lsb);
 234     unsigned mask = checked_cast<unsigned>(right_n_bits(nbits));
 235     val <<= lsb;
 236     mask <<= lsb;
 237     insn |= val;
 238     assert_cond((bits & mask) == 0);
 239 #ifdef ASSERT
 240     bits |= mask;
 241 #endif
 242   }
 243 
 244   void f(unsigned val, int bit) {
 245     f(val, bit, bit);
 246   }
 247 
 248   void sf(long val, int msb, int lsb) {
 249     int nbits = msb - lsb + 1;
 250     long chk = val >> (nbits - 1);
 251     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 252     unsigned uval = val;
 253     unsigned mask = checked_cast<unsigned>(right_n_bits(nbits));
 254     uval &= mask;
 255     f(uval, lsb + nbits - 1, lsb);
 256   }
 257 
 258   void rf(Register r, int lsb) {
 259     f(r->encoding_nocheck(), lsb + 4, lsb);
 260   }
 261 
 262   // reg|ZR
 263   void zrf(Register r, int lsb) {
 264     f(r->encoding_nocheck() - (r == zr), lsb + 4, lsb);
 265   }
 266 
 267   // reg|SP
 268   void srf(Register r, int lsb) {
 269     f(r == sp ? 31 : r->encoding_nocheck(), lsb + 4, lsb);
 270   }
 271 
 272   void rf(FloatRegister r, int lsb) {
 273     f(r->encoding_nocheck(), lsb + 4, lsb);
 274   }
 275 
 276   unsigned get(int msb = 31, int lsb = 0) {
 277     int nbits = msb - lsb + 1;
 278     unsigned mask = checked_cast<unsigned>(right_n_bits(nbits)) << lsb;
 279     assert_cond((bits & mask) == mask);
 280     return (insn & mask) >> lsb;
 281   }
 282 
 283   void fixed(unsigned value, unsigned mask) {
 284     assert_cond ((mask & bits) == 0);
 285 #ifdef ASSERT
 286     bits |= mask;
 287 #endif
 288     insn |= value;
 289   }
 290 };
 291 
 292 #define starti Instruction_aarch64 do_not_use(this); set_current(&do_not_use)
 293 
 294 class PrePost {
 295   int _offset;
 296   Register _r;
 297 public:
 298   PrePost(Register reg, int o) : _offset(o), _r(reg) { }
 299   int offset() { return _offset; }
 300   Register reg() { return _r; }
 301 };
 302 
 303 class Pre : public PrePost {
 304 public:
 305   Pre(Register reg, int o) : PrePost(reg, o) { }
 306 };
 307 class Post : public PrePost {
 308   Register _idx;
 309   bool _is_postreg;
 310 public:
 311   Post(Register reg, int o) : PrePost(reg, o) { _idx = NULL; _is_postreg = false; }
 312   Post(Register reg, Register idx) : PrePost(reg, 0) { _idx = idx; _is_postreg = true; }
 313   Register idx_reg() { return _idx; }
 314   bool is_postreg() {return _is_postreg; }
 315 };
 316 
 317 namespace ext
 318 {
 319   enum operation { uxtb, uxth, uxtw, uxtx, sxtb, sxth, sxtw, sxtx };
 320 };
 321 
 322 // Addressing modes
 323 class Address {
 324  public:
 325 
 326   enum mode { no_mode, base_plus_offset, pre, post, post_reg, pcrel,
 327               base_plus_offset_reg, literal };
 328 
 329   // Shift and extend for base reg + reg offset addressing
 330   class extend {
 331     int _option, _shift;
 332     ext::operation _op;
 333   public:
 334     extend() { }
 335     extend(int s, int o, ext::operation op) : _option(o), _shift(s), _op(op) { }
 336     int option() const{ return _option; }
 337     int shift() const { return _shift; }
 338     ext::operation op() const { return _op; }
 339   };
 340   class uxtw : public extend {
 341   public:
 342     uxtw(int shift = -1): extend(shift, 0b010, ext::uxtw) { }
 343   };
 344   class lsl : public extend {
 345   public:
 346     lsl(int shift = -1): extend(shift, 0b011, ext::uxtx) { }
 347   };
 348   class sxtw : public extend {
 349   public:
 350     sxtw(int shift = -1): extend(shift, 0b110, ext::sxtw) { }
 351   };
 352   class sxtx : public extend {
 353   public:
 354     sxtx(int shift = -1): extend(shift, 0b111, ext::sxtx) { }
 355   };
 356 
 357  private:
 358   Register _base;
 359   Register _index;
 360   long _offset;
 361   enum mode _mode;
 362   extend _ext;
 363 
 364   RelocationHolder _rspec;
 365 
 366   // Typically we use AddressLiterals we want to use their rval
 367   // However in some situations we want the lval (effect address) of
 368   // the item.  We provide a special factory for making those lvals.
 369   bool _is_lval;
 370 
 371   // If the target is far we'll need to load the ea of this to a
 372   // register to reach it. Otherwise if near we can do PC-relative
 373   // addressing.
 374   address          _target;
 375 
 376  public:
 377   Address()
 378     : _mode(no_mode) { }
 379   Address(Register r)
 380     : _base(r), _index(noreg), _offset(0), _mode(base_plus_offset), _target(0) { }
 381   Address(Register r, int o)
 382     : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
 383   Address(Register r, long o)
 384     : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
 385   Address(Register r, unsigned long o)
 386     : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
 387 #ifdef ASSERT
 388   Address(Register r, ByteSize disp)
 389     : _base(r), _index(noreg), _offset(in_bytes(disp)), _mode(base_plus_offset), _target(0) { }
 390 #endif
 391   Address(Register r, Register r1, extend ext = lsl())
 392     : _base(r), _index(r1), _offset(0), _mode(base_plus_offset_reg),
 393       _ext(ext), _target(0) { }
 394   Address(Pre p)
 395     : _base(p.reg()), _offset(p.offset()), _mode(pre) { }
 396   Address(Post p)
 397     : _base(p.reg()),  _index(p.idx_reg()), _offset(p.offset()),
 398       _mode(p.is_postreg() ? post_reg : post), _target(0) { }
 399   Address(address target, RelocationHolder const& rspec)
 400     : _mode(literal),
 401       _rspec(rspec),
 402       _is_lval(false),
 403       _target(target)  { }
 404   Address(address target, relocInfo::relocType rtype = relocInfo::external_word_type);
 405   Address(Register base, RegisterOrConstant index, extend ext = lsl())
 406     : _base (base),
 407       _offset(0), _ext(ext), _target(0) {
 408     if (index.is_register()) {
 409       _mode = base_plus_offset_reg;
 410       _index = index.as_register();
 411     } else {
 412       guarantee(ext.option() == ext::uxtx, "should be");
 413       assert(index.is_constant(), "should be");
 414       _mode = base_plus_offset;
 415       _offset = index.as_constant() << ext.shift();
 416     }
 417   }
 418 
 419   Register base() const {
 420     guarantee((_mode == base_plus_offset | _mode == base_plus_offset_reg
 421                | _mode == post | _mode == post_reg),
 422               "wrong mode");
 423     return _base;
 424   }
 425   long offset() const {
 426     return _offset;
 427   }
 428   Register index() const {
 429     return _index;
 430   }
 431   mode getMode() const {
 432     return _mode;
 433   }
 434   bool uses(Register reg) const { return _base == reg || _index == reg; }
 435   address target() const { return _target; }
 436   const RelocationHolder& rspec() const { return _rspec; }
 437 
 438   void encode(Instruction_aarch64 *i) const {
 439     i->f(0b111, 29, 27);
 440     i->srf(_base, 5);
 441 
 442     switch(_mode) {
 443     case base_plus_offset:
 444       {
 445         unsigned size = i->get(31, 30);
 446         if (i->get(26, 26) && i->get(23, 23)) {
 447           // SIMD Q Type - Size = 128 bits
 448           assert(size == 0, "bad size");
 449           size = 0b100;
 450         }
 451         unsigned mask = (1 << size) - 1;
 452         if (_offset < 0 || _offset & mask)
 453           {
 454             i->f(0b00, 25, 24);
 455             i->f(0, 21), i->f(0b00, 11, 10);
 456             i->sf(_offset, 20, 12);
 457           } else {
 458             i->f(0b01, 25, 24);
 459             i->f(_offset >> size, 21, 10);
 460           }
 461       }
 462       break;
 463 
 464     case base_plus_offset_reg:
 465       {
 466         i->f(0b00, 25, 24);
 467         i->f(1, 21);
 468         i->rf(_index, 16);
 469         i->f(_ext.option(), 15, 13);
 470         unsigned size = i->get(31, 30);
 471         if (i->get(26, 26) && i->get(23, 23)) {
 472           // SIMD Q Type - Size = 128 bits
 473           assert(size == 0, "bad size");
 474           size = 0b100;
 475         }
 476         if (size == 0) // It's a byte
 477           i->f(_ext.shift() >= 0, 12);
 478         else {
 479           assert(_ext.shift() <= 0 || _ext.shift() == (int)size, "bad shift");
 480           i->f(_ext.shift() > 0, 12);
 481         }
 482         i->f(0b10, 11, 10);
 483       }
 484       break;
 485 
 486     case pre:
 487       i->f(0b00, 25, 24);
 488       i->f(0, 21), i->f(0b11, 11, 10);
 489       i->sf(_offset, 20, 12);
 490       break;
 491 
 492     case post:
 493       i->f(0b00, 25, 24);
 494       i->f(0, 21), i->f(0b01, 11, 10);
 495       i->sf(_offset, 20, 12);
 496       break;
 497 
 498     default:
 499       ShouldNotReachHere();
 500     }
 501   }
 502 
 503   void encode_pair(Instruction_aarch64 *i) const {
 504     switch(_mode) {
 505     case base_plus_offset:
 506       i->f(0b010, 25, 23);
 507       break;
 508     case pre:
 509       i->f(0b011, 25, 23);
 510       break;
 511     case post:
 512       i->f(0b001, 25, 23);
 513       break;
 514     default:
 515       ShouldNotReachHere();
 516     }
 517 
 518     unsigned size; // Operand shift in 32-bit words
 519 
 520     if (i->get(26, 26)) { // float
 521       switch(i->get(31, 30)) {
 522       case 0b10:
 523         size = 2; break;
 524       case 0b01:
 525         size = 1; break;
 526       case 0b00:
 527         size = 0; break;
 528       default:
 529         ShouldNotReachHere();
 530         size = 0;  // unreachable
 531       }
 532     } else {
 533       size = i->get(31, 31);
 534     }
 535 
 536     size = 4 << size;
 537     guarantee(_offset % size == 0, "bad offset");
 538     i->sf(_offset / size, 21, 15);
 539     i->srf(_base, 5);
 540   }
 541 
 542   void encode_nontemporal_pair(Instruction_aarch64 *i) const {
 543     // Only base + offset is allowed
 544     i->f(0b000, 25, 23);
 545     unsigned size = i->get(31, 31);
 546     size = 4 << size;
 547     guarantee(_offset % size == 0, "bad offset");
 548     i->sf(_offset / size, 21, 15);
 549     i->srf(_base, 5);
 550     guarantee(_mode == Address::base_plus_offset,
 551               "Bad addressing mode for non-temporal op");
 552   }
 553 
 554   void lea(MacroAssembler *, Register) const;
 555 
 556   static bool offset_ok_for_immed(int64_t offset, uint shift = 0);
 557 };
 558 
 559 // Convience classes
 560 class RuntimeAddress: public Address {
 561 
 562   public:
 563 
 564   RuntimeAddress(address target) : Address(target, relocInfo::runtime_call_type) {}
 565 
 566 };
 567 
 568 class OopAddress: public Address {
 569 
 570   public:
 571 
 572   OopAddress(address target) : Address(target, relocInfo::oop_type){}
 573 
 574 };
 575 
 576 class ExternalAddress: public Address {
 577  private:
 578   static relocInfo::relocType reloc_for_target(address target) {
 579     // Sometimes ExternalAddress is used for values which aren't
 580     // exactly addresses, like the card table base.
 581     // external_word_type can't be used for values in the first page
 582     // so just skip the reloc in that case.
 583     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 584   }
 585 
 586  public:
 587 
 588   ExternalAddress(address target) : Address(target, reloc_for_target(target)) {}
 589 
 590 };
 591 
 592 class InternalAddress: public Address {
 593 
 594   public:
 595 
 596   InternalAddress(address target) : Address(target, relocInfo::internal_word_type) {}
 597 };
 598 
 599 const int FPUStateSizeInWords = FloatRegisterImpl::number_of_registers *
 600                                 FloatRegisterImpl::save_slots_per_register;
 601 
 602 typedef enum {
 603   PLDL1KEEP = 0b00000, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM,
 604   PSTL1KEEP = 0b10000, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM,
 605   PLIL1KEEP = 0b01000, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM
 606 } prfop;
 607 
 608 class Assembler : public AbstractAssembler {
 609 
 610 #ifndef PRODUCT
 611   static const unsigned long asm_bp;
 612 
 613   void emit_long(jint x) {
 614     if ((unsigned long)pc() == asm_bp)
 615       asm volatile ("nop");
 616     AbstractAssembler::emit_int32(x);
 617   }
 618 #else
 619   void emit_long(jint x) {
 620     AbstractAssembler::emit_int32(x);
 621   }
 622 #endif
 623 
 624 public:
 625 
 626   enum { instruction_size = 4 };
 627 
 628   Address adjust(Register base, int offset, bool preIncrement) {
 629     if (preIncrement)
 630       return Address(Pre(base, offset));
 631     else
 632       return Address(Post(base, offset));
 633   }
 634 
 635   Address pre(Register base, int offset) {
 636     return adjust(base, offset, true);
 637   }
 638 
 639   Address post(Register base, int offset) {
 640     return adjust(base, offset, false);
 641   }
 642 
 643   Address post(Register base, Register idx) {
 644     return Address(Post(base, idx));
 645   }
 646 
 647   Instruction_aarch64* current;
 648 
 649   void set_current(Instruction_aarch64* i) { current = i; }
 650 
 651   void f(unsigned val, int msb, int lsb) {
 652     current->f(val, msb, lsb);
 653   }
 654   void f(unsigned val, int msb) {
 655     current->f(val, msb, msb);
 656   }
 657   void sf(long val, int msb, int lsb) {
 658     current->sf(val, msb, lsb);
 659   }
 660   void rf(Register reg, int lsb) {
 661     current->rf(reg, lsb);
 662   }
 663   void srf(Register reg, int lsb) {
 664     current->srf(reg, lsb);
 665   }
 666   void zrf(Register reg, int lsb) {
 667     current->zrf(reg, lsb);
 668   }
 669   void rf(FloatRegister reg, int lsb) {
 670     current->rf(reg, lsb);
 671   }
 672   void fixed(unsigned value, unsigned mask) {
 673     current->fixed(value, mask);
 674   }
 675 
 676   void emit() {
 677     emit_long(current->get_insn());
 678     assert_cond(current->get_bits() == 0xffffffff);
 679     current = NULL;
 680   }
 681 
 682   typedef void (Assembler::* uncond_branch_insn)(address dest);
 683   typedef void (Assembler::* compare_and_branch_insn)(Register Rt, address dest);
 684   typedef void (Assembler::* test_and_branch_insn)(Register Rt, int bitpos, address dest);
 685   typedef void (Assembler::* prefetch_insn)(address target, prfop);
 686 
 687   void wrap_label(Label &L, uncond_branch_insn insn);
 688   void wrap_label(Register r, Label &L, compare_and_branch_insn insn);
 689   void wrap_label(Register r, int bitpos, Label &L, test_and_branch_insn insn);
 690   void wrap_label(Label &L, prfop, prefetch_insn insn);
 691 
 692   // PC-rel. addressing
 693 
 694   void adr(Register Rd, address dest);
 695   void _adrp(Register Rd, address dest);
 696 
 697   void adr(Register Rd, const Address &dest);
 698   void _adrp(Register Rd, const Address &dest);
 699 
 700   void adr(Register Rd, Label &L) {
 701     wrap_label(Rd, L, &Assembler::Assembler::adr);
 702   }
 703   void _adrp(Register Rd, Label &L) {
 704     wrap_label(Rd, L, &Assembler::_adrp);
 705   }
 706 
 707   void adrp(Register Rd, const Address &dest, unsigned long &offset);
 708 
 709 #undef INSN
 710 
 711   void add_sub_immediate(Register Rd, Register Rn, unsigned uimm, int op,
 712                          int negated_op);
 713 
 714   // Add/subtract (immediate)
 715 #define INSN(NAME, decode, negated)                                     \
 716   void NAME(Register Rd, Register Rn, unsigned imm, unsigned shift) {   \
 717     starti;                                                             \
 718     f(decode, 31, 29), f(0b10001, 28, 24), f(shift, 23, 22), f(imm, 21, 10); \
 719     zrf(Rd, 0), srf(Rn, 5);                                             \
 720   }                                                                     \
 721                                                                         \
 722   void NAME(Register Rd, Register Rn, unsigned imm) {                   \
 723     starti;                                                             \
 724     add_sub_immediate(Rd, Rn, imm, decode, negated);                    \
 725   }
 726 
 727   INSN(addsw, 0b001, 0b011);
 728   INSN(subsw, 0b011, 0b001);
 729   INSN(adds,  0b101, 0b111);
 730   INSN(subs,  0b111, 0b101);
 731 
 732 #undef INSN
 733 
 734 #define INSN(NAME, decode, negated)                     \
 735   void NAME(Register Rd, Register Rn, unsigned imm) {   \
 736     starti;                                             \
 737     add_sub_immediate(Rd, Rn, imm, decode, negated);    \
 738   }
 739 
 740   INSN(addw, 0b000, 0b010);
 741   INSN(subw, 0b010, 0b000);
 742   INSN(add,  0b100, 0b110);
 743   INSN(sub,  0b110, 0b100);
 744 
 745 #undef INSN
 746 
 747  // Logical (immediate)
 748 #define INSN(NAME, decode, is32)                                \
 749   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 750     starti;                                                     \
 751     uint32_t val = encode_logical_immediate(is32, imm);         \
 752     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 753     srf(Rd, 0), zrf(Rn, 5);                                     \
 754   }
 755 
 756   INSN(andw, 0b000, true);
 757   INSN(orrw, 0b001, true);
 758   INSN(eorw, 0b010, true);
 759   INSN(andr,  0b100, false);
 760   INSN(orr,  0b101, false);
 761   INSN(eor,  0b110, false);
 762 
 763 #undef INSN
 764 
 765 #define INSN(NAME, decode, is32)                                \
 766   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 767     starti;                                                     \
 768     uint32_t val = encode_logical_immediate(is32, imm);         \
 769     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 770     zrf(Rd, 0), zrf(Rn, 5);                                     \
 771   }
 772 
 773   INSN(ands, 0b111, false);
 774   INSN(andsw, 0b011, true);
 775 
 776 #undef INSN
 777 
 778   // Move wide (immediate)
 779 #define INSN(NAME, opcode)                                              \
 780   void NAME(Register Rd, unsigned imm, unsigned shift = 0) {            \
 781     assert_cond((shift/16)*16 == shift);                                \
 782     starti;                                                             \
 783     f(opcode, 31, 29), f(0b100101, 28, 23), f(shift/16, 22, 21),        \
 784       f(imm, 20, 5);                                                    \
 785     rf(Rd, 0);                                                          \
 786   }
 787 
 788   INSN(movnw, 0b000);
 789   INSN(movzw, 0b010);
 790   INSN(movkw, 0b011);
 791   INSN(movn, 0b100);
 792   INSN(movz, 0b110);
 793   INSN(movk, 0b111);
 794 
 795 #undef INSN
 796 
 797   // Bitfield
 798 #define INSN(NAME, opcode, size)                                        \
 799   void NAME(Register Rd, Register Rn, unsigned immr, unsigned imms) {   \
 800     starti;                                                             \
 801     guarantee(size == 1 || (immr < 32 && imms < 32), "incorrect immr/imms");\
 802     f(opcode, 31, 22), f(immr, 21, 16), f(imms, 15, 10);                \
 803     zrf(Rn, 5), rf(Rd, 0);                                              \
 804   }
 805 
 806   INSN(sbfmw, 0b0001001100, 0);
 807   INSN(bfmw,  0b0011001100, 0);
 808   INSN(ubfmw, 0b0101001100, 0);
 809   INSN(sbfm,  0b1001001101, 1);
 810   INSN(bfm,   0b1011001101, 1);
 811   INSN(ubfm,  0b1101001101, 1);
 812 
 813 #undef INSN
 814 
 815   // Extract
 816 #define INSN(NAME, opcode, size)                                        \
 817   void NAME(Register Rd, Register Rn, Register Rm, unsigned imms) {     \
 818     starti;                                                             \
 819     guarantee(size == 1 || imms < 32, "incorrect imms");                \
 820     f(opcode, 31, 21), f(imms, 15, 10);                                 \
 821     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                                \
 822   }
 823 
 824   INSN(extrw, 0b00010011100, 0);
 825   INSN(extr,  0b10010011110, 1);
 826 
 827 #undef INSN
 828 
 829   // The maximum range of a branch is fixed for the AArch64
 830   // architecture.  In debug mode we shrink it in order to test
 831   // trampolines, but not so small that branches in the interpreter
 832   // are out of range.
 833   static const unsigned long branch_range = NOT_DEBUG(128 * M) DEBUG_ONLY(2 * M);
 834 
 835   static bool reachable_from_branch_at(address branch, address target) {
 836     return uabs(target - branch) < branch_range;
 837   }
 838 
 839   // Unconditional branch (immediate)
 840 #define INSN(NAME, opcode)                                              \
 841   void NAME(address dest) {                                             \
 842     starti;                                                             \
 843     long offset = (dest - pc()) >> 2;                                   \
 844     DEBUG_ONLY(assert(reachable_from_branch_at(pc(), dest), "debug only")); \
 845     f(opcode, 31), f(0b00101, 30, 26), sf(offset, 25, 0);               \
 846   }                                                                     \
 847   void NAME(Label &L) {                                                 \
 848     wrap_label(L, &Assembler::NAME);                                    \
 849   }                                                                     \
 850   void NAME(const Address &dest);
 851 
 852   INSN(b, 0);
 853   INSN(bl, 1);
 854 
 855 #undef INSN
 856 
 857   // Compare & branch (immediate)
 858 #define INSN(NAME, opcode)                              \
 859   void NAME(Register Rt, address dest) {                \
 860     long offset = (dest - pc()) >> 2;                   \
 861     starti;                                             \
 862     f(opcode, 31, 24), sf(offset, 23, 5), rf(Rt, 0);    \
 863   }                                                     \
 864   void NAME(Register Rt, Label &L) {                    \
 865     wrap_label(Rt, L, &Assembler::NAME);                \
 866   }
 867 
 868   INSN(cbzw,  0b00110100);
 869   INSN(cbnzw, 0b00110101);
 870   INSN(cbz,   0b10110100);
 871   INSN(cbnz,  0b10110101);
 872 
 873 #undef INSN
 874 
 875   // Test & branch (immediate)
 876 #define INSN(NAME, opcode)                                              \
 877   void NAME(Register Rt, int bitpos, address dest) {                    \
 878     long offset = (dest - pc()) >> 2;                                   \
 879     int b5 = bitpos >> 5;                                               \
 880     bitpos &= 0x1f;                                                     \
 881     starti;                                                             \
 882     f(b5, 31), f(opcode, 30, 24), f(bitpos, 23, 19), sf(offset, 18, 5); \
 883     rf(Rt, 0);                                                          \
 884   }                                                                     \
 885   void NAME(Register Rt, int bitpos, Label &L) {                        \
 886     wrap_label(Rt, bitpos, L, &Assembler::NAME);                        \
 887   }
 888 
 889   INSN(tbz,  0b0110110);
 890   INSN(tbnz, 0b0110111);
 891 
 892 #undef INSN
 893 
 894   // Conditional branch (immediate)
 895   enum Condition
 896     {EQ, NE, HS, CS=HS, LO, CC=LO, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL, NV};
 897 
 898   void br(Condition  cond, address dest) {
 899     long offset = (dest - pc()) >> 2;
 900     starti;
 901     f(0b0101010, 31, 25), f(0, 24), sf(offset, 23, 5), f(0, 4), f(cond, 3, 0);
 902   }
 903 
 904 #define INSN(NAME, cond)                        \
 905   void NAME(address dest) {                     \
 906     br(cond, dest);                             \
 907   }
 908 
 909   INSN(beq, EQ);
 910   INSN(bne, NE);
 911   INSN(bhs, HS);
 912   INSN(bcs, CS);
 913   INSN(blo, LO);
 914   INSN(bcc, CC);
 915   INSN(bmi, MI);
 916   INSN(bpl, PL);
 917   INSN(bvs, VS);
 918   INSN(bvc, VC);
 919   INSN(bhi, HI);
 920   INSN(bls, LS);
 921   INSN(bge, GE);
 922   INSN(blt, LT);
 923   INSN(bgt, GT);
 924   INSN(ble, LE);
 925   INSN(bal, AL);
 926   INSN(bnv, NV);
 927 
 928   void br(Condition cc, Label &L);
 929 
 930 #undef INSN
 931 
 932   // Exception generation
 933   void generate_exception(int opc, int op2, int LL, unsigned imm) {
 934     starti;
 935     f(0b11010100, 31, 24);
 936     f(opc, 23, 21), f(imm, 20, 5), f(op2, 4, 2), f(LL, 1, 0);
 937   }
 938 
 939 #define INSN(NAME, opc, op2, LL)                \
 940   void NAME(unsigned imm) {                     \
 941     generate_exception(opc, op2, LL, imm);      \
 942   }
 943 
 944   INSN(svc, 0b000, 0, 0b01);
 945   INSN(hvc, 0b000, 0, 0b10);
 946   INSN(smc, 0b000, 0, 0b11);
 947   INSN(brk, 0b001, 0, 0b00);
 948   INSN(hlt, 0b010, 0, 0b00);
 949   INSN(dpcs1, 0b101, 0, 0b01);
 950   INSN(dpcs2, 0b101, 0, 0b10);
 951   INSN(dpcs3, 0b101, 0, 0b11);
 952 
 953 #undef INSN
 954 
 955   // System
 956   void system(int op0, int op1, int CRn, int CRm, int op2,
 957               Register rt = dummy_reg)
 958   {
 959     starti;
 960     f(0b11010101000, 31, 21);
 961     f(op0, 20, 19);
 962     f(op1, 18, 16);
 963     f(CRn, 15, 12);
 964     f(CRm, 11, 8);
 965     f(op2, 7, 5);
 966     rf(rt, 0);
 967   }
 968 
 969   void hint(int imm) {
 970     system(0b00, 0b011, 0b0010, 0b0000, imm);
 971   }
 972 
 973   void nop() {
 974     hint(0);
 975   }
 976 
 977   void yield() {
 978     hint(1);
 979   }
 980 
 981   void wfe() {
 982     hint(2);
 983   }
 984 
 985   void wfi() {
 986     hint(3);
 987   }
 988 
 989   void sev() {
 990     hint(4);
 991   }
 992 
 993   void sevl() {
 994     hint(5);
 995   }
 996 
 997   // we only provide mrs and msr for the special purpose system
 998   // registers where op1 (instr[20:19]) == 11 and, (currently) only
 999   // use it for FPSR n.b msr has L (instr[21]) == 0 mrs has L == 1
1000 
1001   void msr(int op1, int CRn, int CRm, int op2, Register rt) {
1002     starti;
1003     f(0b1101010100011, 31, 19);
1004     f(op1, 18, 16);
1005     f(CRn, 15, 12);
1006     f(CRm, 11, 8);
1007     f(op2, 7, 5);
1008     // writing zr is ok
1009     zrf(rt, 0);
1010   }
1011 
1012   void mrs(int op1, int CRn, int CRm, int op2, Register rt) {
1013     starti;
1014     f(0b1101010100111, 31, 19);
1015     f(op1, 18, 16);
1016     f(CRn, 15, 12);
1017     f(CRm, 11, 8);
1018     f(op2, 7, 5);
1019     // reading to zr is a mistake
1020     rf(rt, 0);
1021   }
1022 
1023   enum barrier {OSHLD = 0b0001, OSHST, OSH, NSHLD=0b0101, NSHST, NSH,
1024                 ISHLD = 0b1001, ISHST, ISH, LD=0b1101, ST, SY};
1025 
1026   void dsb(barrier imm) {
1027     system(0b00, 0b011, 0b00011, imm, 0b100);
1028   }
1029 
1030   void dmb(barrier imm) {
1031     system(0b00, 0b011, 0b00011, imm, 0b101);
1032   }
1033 
1034   void isb() {
1035     system(0b00, 0b011, 0b00011, SY, 0b110);
1036   }
1037 
1038   void sys(int op1, int CRn, int CRm, int op2,
1039            Register rt = (Register)0b11111) {
1040     system(0b01, op1, CRn, CRm, op2, rt);
1041   }
1042 
1043   // Only implement operations accessible from EL0 or higher, i.e.,
1044   //            op1    CRn    CRm    op2
1045   // IC IVAU     3      7      5      1
1046   // DC CVAC     3      7      10     1
1047   // DC CVAU     3      7      11     1
1048   // DC CIVAC    3      7      14     1
1049   // DC ZVA      3      7      4      1
1050   // So only deal with the CRm field.
1051   enum icache_maintenance {IVAU = 0b0101};
1052   enum dcache_maintenance {CVAC = 0b1010, CVAU = 0b1011, CIVAC = 0b1110, ZVA = 0b100};
1053 
1054   void dc(dcache_maintenance cm, Register Rt) {
1055     sys(0b011, 0b0111, cm, 0b001, Rt);
1056   }
1057 
1058   void ic(icache_maintenance cm, Register Rt) {
1059     sys(0b011, 0b0111, cm, 0b001, Rt);
1060   }
1061 
1062   // A more convenient access to dmb for our purposes
1063   enum Membar_mask_bits {
1064     // We can use ISH for a barrier because the ARM ARM says "This
1065     // architecture assumes that all Processing Elements that use the
1066     // same operating system or hypervisor are in the same Inner
1067     // Shareable shareability domain."
1068     StoreStore = ISHST,
1069     LoadStore  = ISHLD,
1070     LoadLoad   = ISHLD,
1071     StoreLoad  = ISH,
1072     AnyAny     = ISH
1073   };
1074 
1075   void membar(Membar_mask_bits order_constraint) {
1076     dmb(Assembler::barrier(order_constraint));
1077   }
1078 
1079   // Unconditional branch (register)
1080   void branch_reg(Register R, int opc) {
1081     starti;
1082     f(0b1101011, 31, 25);
1083     f(opc, 24, 21);
1084     f(0b11111000000, 20, 10);
1085     rf(R, 5);
1086     f(0b00000, 4, 0);
1087   }
1088 
1089 #define INSN(NAME, opc)                         \
1090   void NAME(Register R) {                       \
1091     branch_reg(R, opc);                         \
1092   }
1093 
1094   INSN(br, 0b0000);
1095   INSN(blr, 0b0001);
1096   INSN(ret, 0b0010);
1097 
1098   void ret(void *p); // This forces a compile-time error for ret(0)
1099 
1100 #undef INSN
1101 
1102 #define INSN(NAME, opc)                         \
1103   void NAME() {                 \
1104     branch_reg(dummy_reg, opc);         \
1105   }
1106 
1107   INSN(eret, 0b0100);
1108   INSN(drps, 0b0101);
1109 
1110 #undef INSN
1111 
1112   // Load/store exclusive
1113   enum operand_size { byte, halfword, word, xword };
1114 
1115   void load_store_exclusive(Register Rs, Register Rt1, Register Rt2,
1116     Register Rn, enum operand_size sz, int op, bool ordered) {
1117     starti;
1118     f(sz, 31, 30), f(0b001000, 29, 24), f(op, 23, 21);
1119     rf(Rs, 16), f(ordered, 15), zrf(Rt2, 10), srf(Rn, 5), zrf(Rt1, 0);
1120   }
1121 
1122   void load_exclusive(Register dst, Register addr,
1123                       enum operand_size sz, bool ordered) {
1124     load_store_exclusive(dummy_reg, dst, dummy_reg, addr,
1125                          sz, 0b010, ordered);
1126   }
1127 
1128   void store_exclusive(Register status, Register new_val, Register addr,
1129                        enum operand_size sz, bool ordered) {
1130     load_store_exclusive(status, new_val, dummy_reg, addr,
1131                          sz, 0b000, ordered);
1132   }
1133 
1134 #define INSN4(NAME, sz, op, o0) /* Four registers */                    \
1135   void NAME(Register Rs, Register Rt1, Register Rt2, Register Rn) {     \
1136     guarantee(Rs != Rn && Rs != Rt1 && Rs != Rt2, "unpredictable instruction"); \
1137     load_store_exclusive(Rs, Rt1, Rt2, Rn, sz, op, o0);                 \
1138   }
1139 
1140 #define INSN3(NAME, sz, op, o0) /* Three registers */                   \
1141   void NAME(Register Rs, Register Rt, Register Rn) {                    \
1142     guarantee(Rs != Rn && Rs != Rt, "unpredictable instruction");       \
1143     load_store_exclusive(Rs, Rt, dummy_reg, Rn, sz, op, o0); \
1144   }
1145 
1146 #define INSN2(NAME, sz, op, o0) /* Two registers */                     \
1147   void NAME(Register Rt, Register Rn) {                                 \
1148     load_store_exclusive(dummy_reg, Rt, dummy_reg, \
1149                          Rn, sz, op, o0);                               \
1150   }
1151 
1152 #define INSN_FOO(NAME, sz, op, o0) /* Three registers, encoded differently */ \
1153   void NAME(Register Rt1, Register Rt2, Register Rn) {                  \
1154     guarantee(Rt1 != Rt2, "unpredictable instruction");                 \
1155     load_store_exclusive(dummy_reg, Rt1, Rt2, Rn, sz, op, o0);          \
1156   }
1157 
1158   // bytes
1159   INSN3(stxrb, byte, 0b000, 0);
1160   INSN3(stlxrb, byte, 0b000, 1);
1161   INSN2(ldxrb, byte, 0b010, 0);
1162   INSN2(ldaxrb, byte, 0b010, 1);
1163   INSN2(stlrb, byte, 0b100, 1);
1164   INSN2(ldarb, byte, 0b110, 1);
1165 
1166   // halfwords
1167   INSN3(stxrh, halfword, 0b000, 0);
1168   INSN3(stlxrh, halfword, 0b000, 1);
1169   INSN2(ldxrh, halfword, 0b010, 0);
1170   INSN2(ldaxrh, halfword, 0b010, 1);
1171   INSN2(stlrh, halfword, 0b100, 1);
1172   INSN2(ldarh, halfword, 0b110, 1);
1173 
1174   // words
1175   INSN3(stxrw, word, 0b000, 0);
1176   INSN3(stlxrw, word, 0b000, 1);
1177   INSN4(stxpw, word, 0b001, 0);
1178   INSN4(stlxpw, word, 0b001, 1);
1179   INSN2(ldxrw, word, 0b010, 0);
1180   INSN2(ldaxrw, word, 0b010, 1);
1181   INSN_FOO(ldxpw, word, 0b011, 0);
1182   INSN_FOO(ldaxpw, word, 0b011, 1);
1183   INSN2(stlrw, word, 0b100, 1);
1184   INSN2(ldarw, word, 0b110, 1);
1185 
1186   // xwords
1187   INSN3(stxr, xword, 0b000, 0);
1188   INSN3(stlxr, xword, 0b000, 1);
1189   INSN4(stxp, xword, 0b001, 0);
1190   INSN4(stlxp, xword, 0b001, 1);
1191   INSN2(ldxr, xword, 0b010, 0);
1192   INSN2(ldaxr, xword, 0b010, 1);
1193   INSN_FOO(ldxp, xword, 0b011, 0);
1194   INSN_FOO(ldaxp, xword, 0b011, 1);
1195   INSN2(stlr, xword, 0b100, 1);
1196   INSN2(ldar, xword, 0b110, 1);
1197 
1198 #undef INSN2
1199 #undef INSN3
1200 #undef INSN4
1201 #undef INSN_FOO
1202 
1203   // 8.1 Compare and swap extensions
1204   void lse_cas(Register Rs, Register Rt, Register Rn,
1205                         enum operand_size sz, bool a, bool r, bool not_pair) {
1206     starti;
1207     if (! not_pair) { // Pair
1208       assert(sz == word || sz == xword, "invalid size");
1209       /* The size bit is in bit 30, not 31 */
1210       sz = (operand_size)(sz == word ? 0b00:0b01);
1211     }
1212     f(sz, 31, 30), f(0b001000, 29, 24), f(not_pair ? 1 : 0, 23), f(a, 22), f(1, 21);
1213     zrf(Rs, 16), f(r, 15), f(0b11111, 14, 10), srf(Rn, 5), zrf(Rt, 0);
1214   }
1215 
1216   // CAS
1217 #define INSN(NAME, a, r)                                                \
1218   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1219     assert(Rs != Rn && Rs != Rt, "unpredictable instruction");          \
1220     lse_cas(Rs, Rt, Rn, sz, a, r, true);                                \
1221   }
1222   INSN(cas,    false, false)
1223   INSN(casa,   true,  false)
1224   INSN(casl,   false, true)
1225   INSN(casal,  true,  true)
1226 #undef INSN
1227 
1228   // CASP
1229 #define INSN(NAME, a, r)                                                \
1230   void NAME(operand_size sz, Register Rs, Register Rs1,                 \
1231             Register Rt, Register Rt1, Register Rn) {                   \
1232     assert((Rs->encoding() & 1) == 0 && (Rt->encoding() & 1) == 0 &&    \
1233            Rs->successor() == Rs1 && Rt->successor() == Rt1 &&          \
1234            Rs != Rn && Rs1 != Rn && Rs != Rt, "invalid registers");     \
1235     lse_cas(Rs, Rt, Rn, sz, a, r, false);                               \
1236   }
1237   INSN(casp,    false, false)
1238   INSN(caspa,   true,  false)
1239   INSN(caspl,   false, true)
1240   INSN(caspal,  true,  true)
1241 #undef INSN
1242 
1243   // 8.1 Atomic operations
1244   void lse_atomic(Register Rs, Register Rt, Register Rn,
1245                   enum operand_size sz, int op1, int op2, bool a, bool r) {
1246     starti;
1247     f(sz, 31, 30), f(0b111000, 29, 24), f(a, 23), f(r, 22), f(1, 21);
1248     zrf(Rs, 16), f(op1, 15), f(op2, 14, 12), f(0, 11, 10), srf(Rn, 5), zrf(Rt, 0);
1249   }
1250 
1251 #define INSN(NAME, NAME_A, NAME_L, NAME_AL, op1, op2)                   \
1252   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1253     lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, false);                 \
1254   }                                                                     \
1255   void NAME_A(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1256     lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, false);                  \
1257   }                                                                     \
1258   void NAME_L(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1259     lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, true);                  \
1260   }                                                                     \
1261   void NAME_AL(operand_size sz, Register Rs, Register Rt, Register Rn) {\
1262     lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, true);                   \
1263   }
1264   INSN(ldadd,  ldadda,  ldaddl,  ldaddal,  0, 0b000);
1265   INSN(ldbic,  ldbica,  ldbicl,  ldbical,  0, 0b001);
1266   INSN(ldeor,  ldeora,  ldeorl,  ldeoral,  0, 0b010);
1267   INSN(ldorr,  ldorra,  ldorrl,  ldorral,  0, 0b011);
1268   INSN(ldsmax, ldsmaxa, ldsmaxl, ldsmaxal, 0, 0b100);
1269   INSN(ldsmin, ldsmina, ldsminl, ldsminal, 0, 0b101);
1270   INSN(ldumax, ldumaxa, ldumaxl, ldumaxal, 0, 0b110);
1271   INSN(ldumin, ldumina, lduminl, lduminal, 0, 0b111);
1272   INSN(swp,    swpa,    swpl,    swpal,    1, 0b000);
1273 #undef INSN
1274 
1275   // Load register (literal)
1276 #define INSN(NAME, opc, V)                                              \
1277   void NAME(Register Rt, address dest) {                                \
1278     long offset = (dest - pc()) >> 2;                                   \
1279     starti;                                                             \
1280     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1281       sf(offset, 23, 5);                                                \
1282     rf(Rt, 0);                                                          \
1283   }                                                                     \
1284   void NAME(Register Rt, address dest, relocInfo::relocType rtype) {    \
1285     InstructionMark im(this);                                           \
1286     guarantee(rtype == relocInfo::internal_word_type,                   \
1287               "only internal_word_type relocs make sense here");        \
1288     code_section()->relocate(inst_mark(), InternalAddress(dest).rspec()); \
1289     NAME(Rt, dest);                                                     \
1290   }                                                                     \
1291   void NAME(Register Rt, Label &L) {                                    \
1292     wrap_label(Rt, L, &Assembler::NAME);                                \
1293   }
1294 
1295   INSN(ldrw, 0b00, 0);
1296   INSN(ldr, 0b01, 0);
1297   INSN(ldrsw, 0b10, 0);
1298 
1299 #undef INSN
1300 
1301 #define INSN(NAME, opc, V)                                              \
1302   void NAME(FloatRegister Rt, address dest) {                           \
1303     long offset = (dest - pc()) >> 2;                                   \
1304     starti;                                                             \
1305     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1306       sf(offset, 23, 5);                                                \
1307     rf((Register)Rt, 0);                                                \
1308   }
1309 
1310   INSN(ldrs, 0b00, 1);
1311   INSN(ldrd, 0b01, 1);
1312   INSN(ldrq, 0b10, 1);
1313 
1314 #undef INSN
1315 
1316 #define INSN(NAME, opc, V)                                              \
1317   void NAME(address dest, prfop op = PLDL1KEEP) {                       \
1318     long offset = (dest - pc()) >> 2;                                   \
1319     starti;                                                             \
1320     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1321       sf(offset, 23, 5);                                                \
1322     f(op, 4, 0);                                                        \
1323   }                                                                     \
1324   void NAME(Label &L, prfop op = PLDL1KEEP) {                           \
1325     wrap_label(L, op, &Assembler::NAME);                                \
1326   }
1327 
1328   INSN(prfm, 0b11, 0);
1329 
1330 #undef INSN
1331 
1332   // Load/store
1333   void ld_st1(int opc, int p1, int V, int L,
1334               Register Rt1, Register Rt2, Address adr, bool no_allocate) {
1335     starti;
1336     f(opc, 31, 30), f(p1, 29, 27), f(V, 26), f(L, 22);
1337     zrf(Rt2, 10), zrf(Rt1, 0);
1338     if (no_allocate) {
1339       adr.encode_nontemporal_pair(current);
1340     } else {
1341       adr.encode_pair(current);
1342     }
1343   }
1344 
1345   // Load/store register pair (offset)
1346 #define INSN(NAME, size, p1, V, L, no_allocate)         \
1347   void NAME(Register Rt1, Register Rt2, Address adr) {  \
1348     ld_st1(size, p1, V, L, Rt1, Rt2, adr, no_allocate); \
1349    }
1350 
1351   INSN(stpw, 0b00, 0b101, 0, 0, false);
1352   INSN(ldpw, 0b00, 0b101, 0, 1, false);
1353   INSN(ldpsw, 0b01, 0b101, 0, 1, false);
1354   INSN(stp, 0b10, 0b101, 0, 0, false);
1355   INSN(ldp, 0b10, 0b101, 0, 1, false);
1356 
1357   // Load/store no-allocate pair (offset)
1358   INSN(stnpw, 0b00, 0b101, 0, 0, true);
1359   INSN(ldnpw, 0b00, 0b101, 0, 1, true);
1360   INSN(stnp, 0b10, 0b101, 0, 0, true);
1361   INSN(ldnp, 0b10, 0b101, 0, 1, true);
1362 
1363 #undef INSN
1364 
1365 #define INSN(NAME, size, p1, V, L, no_allocate)                         \
1366   void NAME(FloatRegister Rt1, FloatRegister Rt2, Address adr) {        \
1367     ld_st1(size, p1, V, L, (Register)Rt1, (Register)Rt2, adr, no_allocate); \
1368    }
1369 
1370   INSN(stps, 0b00, 0b101, 1, 0, false);
1371   INSN(ldps, 0b00, 0b101, 1, 1, false);
1372   INSN(stpd, 0b01, 0b101, 1, 0, false);
1373   INSN(ldpd, 0b01, 0b101, 1, 1, false);
1374   INSN(stpq, 0b10, 0b101, 1, 0, false);
1375   INSN(ldpq, 0b10, 0b101, 1, 1, false);
1376 
1377 #undef INSN
1378 
1379   // Load/store register (all modes)
1380   void ld_st2(Register Rt, const Address &adr, int size, int op, int V = 0) {
1381     starti;
1382 
1383     f(V, 26); // general reg?
1384     zrf(Rt, 0);
1385 
1386     // Encoding for literal loads is done here (rather than pushed
1387     // down into Address::encode) because the encoding of this
1388     // instruction is too different from all of the other forms to
1389     // make it worth sharing.
1390     if (adr.getMode() == Address::literal) {
1391       assert(size == 0b10 || size == 0b11, "bad operand size in ldr");
1392       assert(op == 0b01, "literal form can only be used with loads");
1393       f(size & 0b01, 31, 30), f(0b011, 29, 27), f(0b00, 25, 24);
1394       long offset = (adr.target() - pc()) >> 2;
1395       sf(offset, 23, 5);
1396       code_section()->relocate(pc(), adr.rspec());
1397       return;
1398     }
1399 
1400     f(size, 31, 30);
1401     f(op, 23, 22); // str
1402     adr.encode(current);
1403   }
1404 
1405 #define INSN(NAME, size, op)                            \
1406   void NAME(Register Rt, const Address &adr) {          \
1407     ld_st2(Rt, adr, size, op);                          \
1408   }                                                     \
1409 
1410   INSN(str, 0b11, 0b00);
1411   INSN(strw, 0b10, 0b00);
1412   INSN(strb, 0b00, 0b00);
1413   INSN(strh, 0b01, 0b00);
1414 
1415   INSN(ldr, 0b11, 0b01);
1416   INSN(ldrw, 0b10, 0b01);
1417   INSN(ldrb, 0b00, 0b01);
1418   INSN(ldrh, 0b01, 0b01);
1419 
1420   INSN(ldrsb, 0b00, 0b10);
1421   INSN(ldrsbw, 0b00, 0b11);
1422   INSN(ldrsh, 0b01, 0b10);
1423   INSN(ldrshw, 0b01, 0b11);
1424   INSN(ldrsw, 0b10, 0b10);
1425 
1426 #undef INSN
1427 
1428 #define INSN(NAME, size, op)                                    \
1429   void NAME(const Address &adr, prfop pfop = PLDL1KEEP) {       \
1430     ld_st2((Register)pfop, adr, size, op);                      \
1431   }
1432 
1433   INSN(prfm, 0b11, 0b10); // FIXME: PRFM should not be used with
1434                           // writeback modes, but the assembler
1435                           // doesn't enfore that.
1436 
1437 #undef INSN
1438 
1439 #define INSN(NAME, size, op)                            \
1440   void NAME(FloatRegister Rt, const Address &adr) {     \
1441     ld_st2((Register)Rt, adr, size, op, 1);             \
1442   }
1443 
1444   INSN(strd, 0b11, 0b00);
1445   INSN(strs, 0b10, 0b00);
1446   INSN(ldrd, 0b11, 0b01);
1447   INSN(ldrs, 0b10, 0b01);
1448   INSN(strq, 0b00, 0b10);
1449   INSN(ldrq, 0x00, 0b11);
1450 
1451 #undef INSN
1452 
1453   enum shift_kind { LSL, LSR, ASR, ROR };
1454 
1455   void op_shifted_reg(unsigned decode,
1456                       enum shift_kind kind, unsigned shift,
1457                       unsigned size, unsigned op) {
1458     f(size, 31);
1459     f(op, 30, 29);
1460     f(decode, 28, 24);
1461     f(shift, 15, 10);
1462     f(kind, 23, 22);
1463   }
1464 
1465   // Logical (shifted register)
1466 #define INSN(NAME, size, op, N)                                 \
1467   void NAME(Register Rd, Register Rn, Register Rm,              \
1468             enum shift_kind kind = LSL, unsigned shift = 0) {   \
1469     starti;                                                     \
1470     guarantee(size == 1 || shift < 32, "incorrect shift");      \
1471     f(N, 21);                                                   \
1472     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                        \
1473     op_shifted_reg(0b01010, kind, shift, size, op);             \
1474   }
1475 
1476   INSN(andr, 1, 0b00, 0);
1477   INSN(orr, 1, 0b01, 0);
1478   INSN(eor, 1, 0b10, 0);
1479   INSN(ands, 1, 0b11, 0);
1480   INSN(andw, 0, 0b00, 0);
1481   INSN(orrw, 0, 0b01, 0);
1482   INSN(eorw, 0, 0b10, 0);
1483   INSN(andsw, 0, 0b11, 0);
1484 
1485 #undef INSN
1486 
1487 #define INSN(NAME, size, op, N)                                         \
1488   void NAME(Register Rd, Register Rn, Register Rm,                      \
1489             enum shift_kind kind = LSL, unsigned shift = 0) {           \
1490     starti;                                                             \
1491     f(N, 21);                                                           \
1492     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                                \
1493     op_shifted_reg(0b01010, kind, shift, size, op);                     \
1494   }                                                                     \
1495                                                                         \
1496   /* These instructions have no immediate form. Provide an overload so  \
1497      that if anyone does try to use an immediate operand -- this has    \
1498      happened! -- we'll get a compile-time error. */                    \
1499   void NAME(Register Rd, Register Rn, unsigned imm,                     \
1500             enum shift_kind kind = LSL, unsigned shift = 0) {           \
1501     assert(false, " can't be used with immediate operand");             \
1502   }
1503 
1504   INSN(bic, 1, 0b00, 1);
1505   INSN(orn, 1, 0b01, 1);
1506   INSN(eon, 1, 0b10, 1);
1507   INSN(bics, 1, 0b11, 1);
1508   INSN(bicw, 0, 0b00, 1);
1509   INSN(ornw, 0, 0b01, 1);
1510   INSN(eonw, 0, 0b10, 1);
1511   INSN(bicsw, 0, 0b11, 1);
1512 
1513 #undef INSN
1514 
1515   // Aliases for short forms of orn
1516 void mvn(Register Rd, Register Rm,
1517             enum shift_kind kind = LSL, unsigned shift = 0) {
1518   orn(Rd, zr, Rm, kind, shift);
1519 }
1520 
1521 void mvnw(Register Rd, Register Rm,
1522             enum shift_kind kind = LSL, unsigned shift = 0) {
1523   ornw(Rd, zr, Rm, kind, shift);
1524 }
1525 
1526   // Add/subtract (shifted register)
1527 #define INSN(NAME, size, op)                            \
1528   void NAME(Register Rd, Register Rn, Register Rm,      \
1529             enum shift_kind kind, unsigned shift = 0) { \
1530     starti;                                             \
1531     f(0, 21);                                           \
1532     assert_cond(kind != ROR);                           \
1533     guarantee(size == 1 || shift < 32, "incorrect shift");\
1534     zrf(Rd, 0), zrf(Rn, 5), zrf(Rm, 16);                \
1535     op_shifted_reg(0b01011, kind, shift, size, op);     \
1536   }
1537 
1538   INSN(add, 1, 0b000);
1539   INSN(sub, 1, 0b10);
1540   INSN(addw, 0, 0b000);
1541   INSN(subw, 0, 0b10);
1542 
1543   INSN(adds, 1, 0b001);
1544   INSN(subs, 1, 0b11);
1545   INSN(addsw, 0, 0b001);
1546   INSN(subsw, 0, 0b11);
1547 
1548 #undef INSN
1549 
1550   // Add/subtract (extended register)
1551 #define INSN(NAME, op)                                                  \
1552   void NAME(Register Rd, Register Rn, Register Rm,                      \
1553            ext::operation option, int amount = 0) {                     \
1554     starti;                                                             \
1555     zrf(Rm, 16), srf(Rn, 5), srf(Rd, 0);                                \
1556     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1557   }
1558 
1559   void add_sub_extended_reg(unsigned op, unsigned decode,
1560     Register Rd, Register Rn, Register Rm,
1561     unsigned opt, ext::operation option, unsigned imm) {
1562     guarantee(imm <= 4, "shift amount must be <= 4");
1563     f(op, 31, 29), f(decode, 28, 24), f(opt, 23, 22), f(1, 21);
1564     f(option, 15, 13), f(imm, 12, 10);
1565   }
1566 
1567   INSN(addw, 0b000);
1568   INSN(subw, 0b010);
1569   INSN(add, 0b100);
1570   INSN(sub, 0b110);
1571 
1572 #undef INSN
1573 
1574 #define INSN(NAME, op)                                                  \
1575   void NAME(Register Rd, Register Rn, Register Rm,                      \
1576            ext::operation option, int amount = 0) {                     \
1577     starti;                                                             \
1578     zrf(Rm, 16), srf(Rn, 5), zrf(Rd, 0);                                \
1579     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1580   }
1581 
1582   INSN(addsw, 0b001);
1583   INSN(subsw, 0b011);
1584   INSN(adds, 0b101);
1585   INSN(subs, 0b111);
1586 
1587 #undef INSN
1588 
1589   // Aliases for short forms of add and sub
1590 #define INSN(NAME)                                      \
1591   void NAME(Register Rd, Register Rn, Register Rm) {    \
1592     if (Rd == sp || Rn == sp)                           \
1593       NAME(Rd, Rn, Rm, ext::uxtx);                      \
1594     else                                                \
1595       NAME(Rd, Rn, Rm, LSL);                            \
1596   }
1597 
1598   INSN(addw);
1599   INSN(subw);
1600   INSN(add);
1601   INSN(sub);
1602 
1603   INSN(addsw);
1604   INSN(subsw);
1605   INSN(adds);
1606   INSN(subs);
1607 
1608 #undef INSN
1609 
1610   // Add/subtract (with carry)
1611   void add_sub_carry(unsigned op, Register Rd, Register Rn, Register Rm) {
1612     starti;
1613     f(op, 31, 29);
1614     f(0b11010000, 28, 21);
1615     f(0b000000, 15, 10);
1616     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);
1617   }
1618 
1619   #define INSN(NAME, op)                                \
1620     void NAME(Register Rd, Register Rn, Register Rm) {  \
1621       add_sub_carry(op, Rd, Rn, Rm);                    \
1622     }
1623 
1624   INSN(adcw, 0b000);
1625   INSN(adcsw, 0b001);
1626   INSN(sbcw, 0b010);
1627   INSN(sbcsw, 0b011);
1628   INSN(adc, 0b100);
1629   INSN(adcs, 0b101);
1630   INSN(sbc,0b110);
1631   INSN(sbcs, 0b111);
1632 
1633 #undef INSN
1634 
1635   // Conditional compare (both kinds)
1636   void conditional_compare(unsigned op, int o1, int o2, int o3,
1637                            Register Rn, unsigned imm5, unsigned nzcv,
1638                            unsigned cond) {
1639     starti;
1640     f(op, 31, 29);
1641     f(0b11010010, 28, 21);
1642     f(cond, 15, 12);
1643     f(o1, 11);
1644     f(o2, 10);
1645     f(o3, 4);
1646     f(nzcv, 3, 0);
1647     f(imm5, 20, 16), zrf(Rn, 5);
1648   }
1649 
1650 #define INSN(NAME, op)                                                  \
1651   void NAME(Register Rn, Register Rm, int imm, Condition cond) {        \
1652     int regNumber = (Rm == zr ? 31 : (uintptr_t)Rm);                    \
1653     conditional_compare(op, 0, 0, 0, Rn, regNumber, imm, cond);         \
1654   }                                                                     \
1655                                                                         \
1656   void NAME(Register Rn, int imm5, int imm, Condition cond) {           \
1657     conditional_compare(op, 1, 0, 0, Rn, imm5, imm, cond);              \
1658   }
1659 
1660   INSN(ccmnw, 0b001);
1661   INSN(ccmpw, 0b011);
1662   INSN(ccmn, 0b101);
1663   INSN(ccmp, 0b111);
1664 
1665 #undef INSN
1666 
1667   // Conditional select
1668   void conditional_select(unsigned op, unsigned op2,
1669                           Register Rd, Register Rn, Register Rm,
1670                           unsigned cond) {
1671     starti;
1672     f(op, 31, 29);
1673     f(0b11010100, 28, 21);
1674     f(cond, 15, 12);
1675     f(op2, 11, 10);
1676     zrf(Rm, 16), zrf(Rn, 5), rf(Rd, 0);
1677   }
1678 
1679 #define INSN(NAME, op, op2)                                             \
1680   void NAME(Register Rd, Register Rn, Register Rm, Condition cond) { \
1681     conditional_select(op, op2, Rd, Rn, Rm, cond);                      \
1682   }
1683 
1684   INSN(cselw, 0b000, 0b00);
1685   INSN(csincw, 0b000, 0b01);
1686   INSN(csinvw, 0b010, 0b00);
1687   INSN(csnegw, 0b010, 0b01);
1688   INSN(csel, 0b100, 0b00);
1689   INSN(csinc, 0b100, 0b01);
1690   INSN(csinv, 0b110, 0b00);
1691   INSN(csneg, 0b110, 0b01);
1692 
1693 #undef INSN
1694 
1695   // Data processing
1696   void data_processing(unsigned op29, unsigned opcode,
1697                        Register Rd, Register Rn) {
1698     f(op29, 31, 29), f(0b11010110, 28, 21);
1699     f(opcode, 15, 10);
1700     rf(Rn, 5), rf(Rd, 0);
1701   }
1702 
1703   // (1 source)
1704 #define INSN(NAME, op29, opcode2, opcode)       \
1705   void NAME(Register Rd, Register Rn) {         \
1706     starti;                                     \
1707     f(opcode2, 20, 16);                         \
1708     data_processing(op29, opcode, Rd, Rn);      \
1709   }
1710 
1711   INSN(rbitw,  0b010, 0b00000, 0b00000);
1712   INSN(rev16w, 0b010, 0b00000, 0b00001);
1713   INSN(revw,   0b010, 0b00000, 0b00010);
1714   INSN(clzw,   0b010, 0b00000, 0b00100);
1715   INSN(clsw,   0b010, 0b00000, 0b00101);
1716 
1717   INSN(rbit,   0b110, 0b00000, 0b00000);
1718   INSN(rev16,  0b110, 0b00000, 0b00001);
1719   INSN(rev32,  0b110, 0b00000, 0b00010);
1720   INSN(rev,    0b110, 0b00000, 0b00011);
1721   INSN(clz,    0b110, 0b00000, 0b00100);
1722   INSN(cls,    0b110, 0b00000, 0b00101);
1723 
1724 #undef INSN
1725 
1726   // (2 sources)
1727 #define INSN(NAME, op29, opcode)                        \
1728   void NAME(Register Rd, Register Rn, Register Rm) {    \
1729     starti;                                             \
1730     rf(Rm, 16);                                         \
1731     data_processing(op29, opcode, Rd, Rn);              \
1732   }
1733 
1734   INSN(udivw, 0b000, 0b000010);
1735   INSN(sdivw, 0b000, 0b000011);
1736   INSN(lslvw, 0b000, 0b001000);
1737   INSN(lsrvw, 0b000, 0b001001);
1738   INSN(asrvw, 0b000, 0b001010);
1739   INSN(rorvw, 0b000, 0b001011);
1740 
1741   INSN(udiv, 0b100, 0b000010);
1742   INSN(sdiv, 0b100, 0b000011);
1743   INSN(lslv, 0b100, 0b001000);
1744   INSN(lsrv, 0b100, 0b001001);
1745   INSN(asrv, 0b100, 0b001010);
1746   INSN(rorv, 0b100, 0b001011);
1747 
1748 #undef INSN
1749 
1750   // (3 sources)
1751   void data_processing(unsigned op54, unsigned op31, unsigned o0,
1752                        Register Rd, Register Rn, Register Rm,
1753                        Register Ra) {
1754     starti;
1755     f(op54, 31, 29), f(0b11011, 28, 24);
1756     f(op31, 23, 21), f(o0, 15);
1757     zrf(Rm, 16), zrf(Ra, 10), zrf(Rn, 5), zrf(Rd, 0);
1758   }
1759 
1760 #define INSN(NAME, op54, op31, o0)                                      \
1761   void NAME(Register Rd, Register Rn, Register Rm, Register Ra) {       \
1762     data_processing(op54, op31, o0, Rd, Rn, Rm, Ra);                    \
1763   }
1764 
1765   INSN(maddw, 0b000, 0b000, 0);
1766   INSN(msubw, 0b000, 0b000, 1);
1767   INSN(madd, 0b100, 0b000, 0);
1768   INSN(msub, 0b100, 0b000, 1);
1769   INSN(smaddl, 0b100, 0b001, 0);
1770   INSN(smsubl, 0b100, 0b001, 1);
1771   INSN(umaddl, 0b100, 0b101, 0);
1772   INSN(umsubl, 0b100, 0b101, 1);
1773 
1774 #undef INSN
1775 
1776 #define INSN(NAME, op54, op31, o0)                      \
1777   void NAME(Register Rd, Register Rn, Register Rm) {    \
1778     data_processing(op54, op31, o0, Rd, Rn, Rm, (Register)31);  \
1779   }
1780 
1781   INSN(smulh, 0b100, 0b010, 0);
1782   INSN(umulh, 0b100, 0b110, 0);
1783 
1784 #undef INSN
1785 
1786   // Floating-point data-processing (1 source)
1787   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1788                        FloatRegister Vd, FloatRegister Vn) {
1789     starti;
1790     f(op31, 31, 29);
1791     f(0b11110, 28, 24);
1792     f(type, 23, 22), f(1, 21), f(opcode, 20, 15), f(0b10000, 14, 10);
1793     rf(Vn, 5), rf(Vd, 0);
1794   }
1795 
1796 #define INSN(NAME, op31, type, opcode)                  \
1797   void NAME(FloatRegister Vd, FloatRegister Vn) {       \
1798     data_processing(op31, type, opcode, Vd, Vn);        \
1799   }
1800 
1801 private:
1802   INSN(i_fmovs, 0b000, 0b00, 0b000000);
1803 public:
1804   INSN(fabss, 0b000, 0b00, 0b000001);
1805   INSN(fnegs, 0b000, 0b00, 0b000010);
1806   INSN(fsqrts, 0b000, 0b00, 0b000011);
1807   INSN(fcvts, 0b000, 0b00, 0b000101);   // Single-precision to double-precision
1808 
1809 private:
1810   INSN(i_fmovd, 0b000, 0b01, 0b000000);
1811 public:
1812   INSN(fabsd, 0b000, 0b01, 0b000001);
1813   INSN(fnegd, 0b000, 0b01, 0b000010);
1814   INSN(fsqrtd, 0b000, 0b01, 0b000011);
1815   INSN(fcvtd, 0b000, 0b01, 0b000100);   // Double-precision to single-precision
1816 
1817   void fmovd(FloatRegister Vd, FloatRegister Vn) {
1818     assert(Vd != Vn, "should be");
1819     i_fmovd(Vd, Vn);
1820   }
1821 
1822   void fmovs(FloatRegister Vd, FloatRegister Vn) {
1823     assert(Vd != Vn, "should be");
1824     i_fmovs(Vd, Vn);
1825   }
1826 
1827 #undef INSN
1828 
1829   // Floating-point data-processing (2 source)
1830   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1831                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {
1832     starti;
1833     f(op31, 31, 29);
1834     f(0b11110, 28, 24);
1835     f(type, 23, 22), f(1, 21), f(opcode, 15, 12), f(0b10, 11, 10);
1836     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1837   }
1838 
1839 #define INSN(NAME, op31, type, opcode)                  \
1840   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {     \
1841     data_processing(op31, type, opcode, Vd, Vn, Vm);    \
1842   }
1843 
1844   INSN(fmuls, 0b000, 0b00, 0b0000);
1845   INSN(fdivs, 0b000, 0b00, 0b0001);
1846   INSN(fadds, 0b000, 0b00, 0b0010);
1847   INSN(fsubs, 0b000, 0b00, 0b0011);
1848   INSN(fmaxs, 0b000, 0b00, 0b0100);
1849   INSN(fmins, 0b000, 0b00, 0b0101);
1850   INSN(fnmuls, 0b000, 0b00, 0b1000);
1851 
1852   INSN(fmuld, 0b000, 0b01, 0b0000);
1853   INSN(fdivd, 0b000, 0b01, 0b0001);
1854   INSN(faddd, 0b000, 0b01, 0b0010);
1855   INSN(fsubd, 0b000, 0b01, 0b0011);
1856   INSN(fmaxd, 0b000, 0b01, 0b0100);
1857   INSN(fmind, 0b000, 0b01, 0b0101);
1858   INSN(fnmuld, 0b000, 0b01, 0b1000);
1859 
1860 #undef INSN
1861 
1862    // Floating-point data-processing (3 source)
1863   void data_processing(unsigned op31, unsigned type, unsigned o1, unsigned o0,
1864                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,
1865                        FloatRegister Va) {
1866     starti;
1867     f(op31, 31, 29);
1868     f(0b11111, 28, 24);
1869     f(type, 23, 22), f(o1, 21), f(o0, 15);
1870     rf(Vm, 16), rf(Va, 10), rf(Vn, 5), rf(Vd, 0);
1871   }
1872 
1873 #define INSN(NAME, op31, type, o1, o0)                                  \
1874   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,       \
1875             FloatRegister Va) {                                         \
1876     data_processing(op31, type, o1, o0, Vd, Vn, Vm, Va);                \
1877   }
1878 
1879   INSN(fmadds, 0b000, 0b00, 0, 0);
1880   INSN(fmsubs, 0b000, 0b00, 0, 1);
1881   INSN(fnmadds, 0b000, 0b00, 1, 0);
1882   INSN(fnmsubs, 0b000, 0b00, 1, 1);
1883 
1884   INSN(fmaddd, 0b000, 0b01, 0, 0);
1885   INSN(fmsubd, 0b000, 0b01, 0, 1);
1886   INSN(fnmaddd, 0b000, 0b01, 1, 0);
1887   INSN(fnmsub, 0b000, 0b01, 1, 1);
1888 
1889 #undef INSN
1890 
1891    // Floating-point conditional select
1892   void fp_conditional_select(unsigned op31, unsigned type,
1893                              unsigned op1, unsigned op2,
1894                              Condition cond, FloatRegister Vd,
1895                              FloatRegister Vn, FloatRegister Vm) {
1896     starti;
1897     f(op31, 31, 29);
1898     f(0b11110, 28, 24);
1899     f(type, 23, 22);
1900     f(op1, 21, 21);
1901     f(op2, 11, 10);
1902     f(cond, 15, 12);
1903     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1904   }
1905 
1906 #define INSN(NAME, op31, type, op1, op2)                                \
1907   void NAME(FloatRegister Vd, FloatRegister Vn,                         \
1908             FloatRegister Vm, Condition cond) {                         \
1909     fp_conditional_select(op31, type, op1, op2, cond, Vd, Vn, Vm);      \
1910   }
1911 
1912   INSN(fcsels, 0b000, 0b00, 0b1, 0b11);
1913   INSN(fcseld, 0b000, 0b01, 0b1, 0b11);
1914 
1915 #undef INSN
1916 
1917    // Floating-point<->integer conversions
1918   void float_int_convert(unsigned op31, unsigned type,
1919                          unsigned rmode, unsigned opcode,
1920                          Register Rd, Register Rn) {
1921     starti;
1922     f(op31, 31, 29);
1923     f(0b11110, 28, 24);
1924     f(type, 23, 22), f(1, 21), f(rmode, 20, 19);
1925     f(opcode, 18, 16), f(0b000000, 15, 10);
1926     zrf(Rn, 5), zrf(Rd, 0);
1927   }
1928 
1929 #define INSN(NAME, op31, type, rmode, opcode)                           \
1930   void NAME(Register Rd, FloatRegister Vn) {                            \
1931     float_int_convert(op31, type, rmode, opcode, Rd, (Register)Vn);     \
1932   }
1933 
1934   INSN(fcvtzsw, 0b000, 0b00, 0b11, 0b000);
1935   INSN(fcvtzs,  0b100, 0b00, 0b11, 0b000);
1936   INSN(fcvtzdw, 0b000, 0b01, 0b11, 0b000);
1937   INSN(fcvtzd,  0b100, 0b01, 0b11, 0b000);
1938 
1939   INSN(fmovs, 0b000, 0b00, 0b00, 0b110);
1940   INSN(fmovd, 0b100, 0b01, 0b00, 0b110);
1941 
1942   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b110);
1943 
1944 #undef INSN
1945 
1946 #define INSN(NAME, op31, type, rmode, opcode)                           \
1947   void NAME(FloatRegister Vd, Register Rn) {                            \
1948     float_int_convert(op31, type, rmode, opcode, (Register)Vd, Rn);     \
1949   }
1950 
1951   INSN(fmovs, 0b000, 0b00, 0b00, 0b111);
1952   INSN(fmovd, 0b100, 0b01, 0b00, 0b111);
1953 
1954   INSN(scvtfws, 0b000, 0b00, 0b00, 0b010);
1955   INSN(scvtfs,  0b100, 0b00, 0b00, 0b010);
1956   INSN(scvtfwd, 0b000, 0b01, 0b00, 0b010);
1957   INSN(scvtfd,  0b100, 0b01, 0b00, 0b010);
1958 
1959   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b111);
1960 
1961 #undef INSN
1962 
1963   // Floating-point compare
1964   void float_compare(unsigned op31, unsigned type,
1965                      unsigned op, unsigned op2,
1966                      FloatRegister Vn, FloatRegister Vm = (FloatRegister)0) {
1967     starti;
1968     f(op31, 31, 29);
1969     f(0b11110, 28, 24);
1970     f(type, 23, 22), f(1, 21);
1971     f(op, 15, 14), f(0b1000, 13, 10), f(op2, 4, 0);
1972     rf(Vn, 5), rf(Vm, 16);
1973   }
1974 
1975 
1976 #define INSN(NAME, op31, type, op, op2)                 \
1977   void NAME(FloatRegister Vn, FloatRegister Vm) {       \
1978     float_compare(op31, type, op, op2, Vn, Vm);         \
1979   }
1980 
1981 #define INSN1(NAME, op31, type, op, op2)        \
1982   void NAME(FloatRegister Vn, double d) {       \
1983     assert_cond(d == 0.0);                      \
1984     float_compare(op31, type, op, op2, Vn);     \
1985   }
1986 
1987   INSN(fcmps, 0b000, 0b00, 0b00, 0b00000);
1988   INSN1(fcmps, 0b000, 0b00, 0b00, 0b01000);
1989   // INSN(fcmpes, 0b000, 0b00, 0b00, 0b10000);
1990   // INSN1(fcmpes, 0b000, 0b00, 0b00, 0b11000);
1991 
1992   INSN(fcmpd, 0b000,   0b01, 0b00, 0b00000);
1993   INSN1(fcmpd, 0b000,  0b01, 0b00, 0b01000);
1994   // INSN(fcmped, 0b000,  0b01, 0b00, 0b10000);
1995   // INSN1(fcmped, 0b000, 0b01, 0b00, 0b11000);
1996 
1997 #undef INSN
1998 #undef INSN1
1999 
2000 // Floating-point compare. 3-registers versions (scalar).
2001 #define INSN(NAME, sz, e)                                             \
2002   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {   \
2003     starti;                                                           \
2004     f(0b01111110, 31, 24), f(e, 23), f(sz, 22), f(1, 21), rf(Vm, 16); \
2005     f(0b111011, 15, 10), rf(Vn, 5), rf(Vd, 0);                        \
2006   }                                                                   \
2007 
2008   INSN(facged, 1, 0); // facge-double
2009   INSN(facges, 0, 0); // facge-single
2010   INSN(facgtd, 1, 1); // facgt-double
2011   INSN(facgts, 0, 1); // facgt-single
2012 
2013 #undef INSN
2014 
2015   // Floating-point Move (immediate)
2016 private:
2017   unsigned pack(double value);
2018 
2019   void fmov_imm(FloatRegister Vn, double value, unsigned size) {
2020     starti;
2021     f(0b00011110, 31, 24), f(size, 23, 22), f(1, 21);
2022     f(pack(value), 20, 13), f(0b10000000, 12, 5);
2023     rf(Vn, 0);
2024   }
2025 
2026 public:
2027 
2028   void fmovs(FloatRegister Vn, double value) {
2029     if (value)
2030       fmov_imm(Vn, value, 0b00);
2031     else
2032       fmovs(Vn, zr);
2033   }
2034   void fmovd(FloatRegister Vn, double value) {
2035     if (value)
2036       fmov_imm(Vn, value, 0b01);
2037     else
2038       fmovd(Vn, zr);
2039   }
2040 
2041    // Floating-point rounding
2042    // type: half-precision = 11
2043    //       single         = 00
2044    //       double         = 01
2045    // rmode: A = Away     = 100
2046    //        I = current  = 111
2047    //        M = MinusInf = 010
2048    //        N = eveN     = 000
2049    //        P = PlusInf  = 001
2050    //        X = eXact    = 110
2051    //        Z = Zero     = 011
2052   void float_round(unsigned type, unsigned rmode, FloatRegister Rd, FloatRegister Rn) {
2053     starti;
2054     f(0b00011110, 31, 24);
2055     f(type, 23, 22);
2056     f(0b1001, 21, 18);
2057     f(rmode, 17, 15);
2058     f(0b10000, 14, 10);
2059     rf(Rn, 5), rf(Rd, 0);
2060   }
2061 #define INSN(NAME, type, rmode)                   \
2062   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2063     float_round(type, rmode, Vd, Vn);             \
2064   }
2065 
2066 public:
2067   INSN(frintah, 0b11, 0b100);
2068   INSN(frintih, 0b11, 0b111);
2069   INSN(frintmh, 0b11, 0b010);
2070   INSN(frintnh, 0b11, 0b000);
2071   INSN(frintph, 0b11, 0b001);
2072   INSN(frintxh, 0b11, 0b110);
2073   INSN(frintzh, 0b11, 0b011);
2074 
2075   INSN(frintas, 0b00, 0b100);
2076   INSN(frintis, 0b00, 0b111);
2077   INSN(frintms, 0b00, 0b010);
2078   INSN(frintns, 0b00, 0b000);
2079   INSN(frintps, 0b00, 0b001);
2080   INSN(frintxs, 0b00, 0b110);
2081   INSN(frintzs, 0b00, 0b011);
2082 
2083   INSN(frintad, 0b01, 0b100);
2084   INSN(frintid, 0b01, 0b111);
2085   INSN(frintmd, 0b01, 0b010);
2086   INSN(frintnd, 0b01, 0b000);
2087   INSN(frintpd, 0b01, 0b001);
2088   INSN(frintxd, 0b01, 0b110);
2089   INSN(frintzd, 0b01, 0b011);
2090 #undef INSN
2091 
2092 /* SIMD extensions
2093  *
2094  * We just use FloatRegister in the following. They are exactly the same
2095  * as SIMD registers.
2096  */
2097  public:
2098 
2099   enum SIMD_Arrangement {
2100        T8B, T16B, T4H, T8H, T2S, T4S, T1D, T2D, T1Q
2101   };
2102 
2103   enum SIMD_RegVariant {
2104        B, H, S, D, Q
2105   };
2106 
2107 private:
2108   static short SIMD_Size_in_bytes[];
2109 
2110 public:
2111 #define INSN(NAME, op)                                            \
2112   void NAME(FloatRegister Rt, SIMD_RegVariant T, const Address &adr) {   \
2113     ld_st2((Register)Rt, adr, (int)T & 3, op + ((T==Q) ? 0b10:0b00), 1); \
2114   }                                                                      \
2115 
2116   INSN(ldr, 1);
2117   INSN(str, 0);
2118 
2119 #undef INSN
2120 
2121  private:
2122 
2123   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, int op1, int op2) {
2124     starti;
2125     f(0,31), f((int)T & 1, 30);
2126     f(op1, 29, 21), f(0, 20, 16), f(op2, 15, 12);
2127     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2128   }
2129   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2130              int imm, int op1, int op2, int regs) {
2131 
2132     bool replicate = op2 >> 2 == 3;
2133     // post-index value (imm) is formed differently for replicate/non-replicate ld* instructions
2134     int expectedImmediate = replicate ? regs * (1 << (T >> 1)) : SIMD_Size_in_bytes[T] * regs;
2135     guarantee(T < T1Q , "incorrect arrangement");
2136     guarantee(imm == expectedImmediate, "bad offset");
2137     starti;
2138     f(0,31), f((int)T & 1, 30);
2139     f(op1 | 0b100, 29, 21), f(0b11111, 20, 16), f(op2, 15, 12);
2140     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2141   }
2142   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2143              Register Xm, int op1, int op2) {
2144     starti;
2145     f(0,31), f((int)T & 1, 30);
2146     f(op1 | 0b100, 29, 21), rf(Xm, 16), f(op2, 15, 12);
2147     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2148   }
2149 
2150   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Address a, int op1, int op2, int regs) {
2151     switch (a.getMode()) {
2152     case Address::base_plus_offset:
2153       guarantee(a.offset() == 0, "no offset allowed here");
2154       ld_st(Vt, T, a.base(), op1, op2);
2155       break;
2156     case Address::post:
2157       ld_st(Vt, T, a.base(), a.offset(), op1, op2, regs);
2158       break;
2159     case Address::post_reg:
2160       ld_st(Vt, T, a.base(), a.index(), op1, op2);
2161       break;
2162     default:
2163       ShouldNotReachHere();
2164     }
2165   }
2166 
2167  public:
2168 
2169 #define INSN1(NAME, op1, op2)                                           \
2170   void NAME(FloatRegister Vt, SIMD_Arrangement T, const Address &a) {   \
2171     ld_st(Vt, T, a, op1, op2, 1);                                       \
2172  }
2173 
2174 #define INSN2(NAME, op1, op2)                                           \
2175   void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_Arrangement T, const Address &a) { \
2176     assert(Vt->successor() == Vt2, "Registers must be ordered");        \
2177     ld_st(Vt, T, a, op1, op2, 2);                                       \
2178   }
2179 
2180 #define INSN3(NAME, op1, op2)                                           \
2181   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2182             SIMD_Arrangement T, const Address &a) {                     \
2183     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3,           \
2184            "Registers must be ordered");                                \
2185     ld_st(Vt, T, a, op1, op2, 3);                                       \
2186   }
2187 
2188 #define INSN4(NAME, op1, op2)                                           \
2189   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2190             FloatRegister Vt4, SIMD_Arrangement T, const Address &a) {  \
2191     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 &&         \
2192            Vt3->successor() == Vt4, "Registers must be ordered");       \
2193     ld_st(Vt, T, a, op1, op2, 4);                                       \
2194   }
2195 
2196   INSN1(ld1,  0b001100010, 0b0111);
2197   INSN2(ld1,  0b001100010, 0b1010);
2198   INSN3(ld1,  0b001100010, 0b0110);
2199   INSN4(ld1,  0b001100010, 0b0010);
2200 
2201   INSN2(ld2,  0b001100010, 0b1000);
2202   INSN3(ld3,  0b001100010, 0b0100);
2203   INSN4(ld4,  0b001100010, 0b0000);
2204 
2205   INSN1(st1,  0b001100000, 0b0111);
2206   INSN2(st1,  0b001100000, 0b1010);
2207   INSN3(st1,  0b001100000, 0b0110);
2208   INSN4(st1,  0b001100000, 0b0010);
2209 
2210   INSN2(st2,  0b001100000, 0b1000);
2211   INSN3(st3,  0b001100000, 0b0100);
2212   INSN4(st4,  0b001100000, 0b0000);
2213 
2214   INSN1(ld1r, 0b001101010, 0b1100);
2215   INSN2(ld2r, 0b001101011, 0b1100);
2216   INSN3(ld3r, 0b001101010, 0b1110);
2217   INSN4(ld4r, 0b001101011, 0b1110);
2218 
2219 #undef INSN1
2220 #undef INSN2
2221 #undef INSN3
2222 #undef INSN4
2223 
2224 #define INSN(NAME, opc)                                                                 \
2225   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2226     starti;                                                                             \
2227     assert(T == T8B || T == T16B, "must be T8B or T16B");                               \
2228     f(0, 31), f((int)T & 1, 30), f(opc, 29, 21);                                        \
2229     rf(Vm, 16), f(0b000111, 15, 10), rf(Vn, 5), rf(Vd, 0);                              \
2230   }
2231 
2232   INSN(eor,  0b101110001);
2233   INSN(orr,  0b001110101);
2234   INSN(andr, 0b001110001);
2235   INSN(bic,  0b001110011);
2236   INSN(bif,  0b101110111);
2237   INSN(bit,  0b101110101);
2238   INSN(bsl,  0b101110011);
2239   INSN(orn,  0b001110111);
2240 
2241 #undef INSN
2242 
2243 #define INSN(NAME, opc, opc2, acceptT2D)                                                \
2244   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2245     guarantee(T != T1Q && T != T1D, "incorrect arrangement");                           \
2246     if (!acceptT2D) guarantee(T != T2D, "incorrect arrangement");                       \
2247     starti;                                                                             \
2248     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2249     f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16), f(opc2, 15, 10);                      \
2250     rf(Vn, 5), rf(Vd, 0);                                                               \
2251   }
2252 
2253   INSN(addv,   0, 0b100001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2254   INSN(subv,   1, 0b100001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2255   INSN(mulv,   0, 0b100111, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2256   INSN(mlav,   0, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2257   INSN(mlsv,   1, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2258   INSN(sshl,   0, 0b010001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2259   INSN(ushl,   1, 0b010001, true);  // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2260   INSN(umullv, 1, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2261   INSN(umlalv, 1, 0b100000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2262 
2263 #undef INSN
2264 
2265 #define INSN(NAME, opc, opc2, accepted) \
2266   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2267     guarantee(T != T1Q && T != T1D, "incorrect arrangement");                           \
2268     if (accepted < 3) guarantee(T != T2D, "incorrect arrangement");                     \
2269     if (accepted < 2) guarantee(T != T2S, "incorrect arrangement");                     \
2270     if (accepted < 1) guarantee(T == T8B || T == T16B, "incorrect arrangement");        \
2271     starti;                                                                             \
2272     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2273     f((int)T >> 1, 23, 22), f(opc2, 21, 10);                                            \
2274     rf(Vn, 5), rf(Vd, 0);                                                               \
2275   }
2276 
2277   INSN(absr,   0, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2278   INSN(negr,   1, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D
2279   INSN(notr,   1, 0b100000010110, 0); // accepted arrangements: T8B, T16B
2280   INSN(addv,   0, 0b110001101110, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2281   INSN(cls,    0, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2282   INSN(clz,    1, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2283   INSN(cnt,    0, 0b100000010110, 0); // accepted arrangements: T8B, T16B
2284   INSN(uaddlp, 1, 0b100000001010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S
2285   INSN(uaddlv, 1, 0b110000001110, 1); // accepted arrangements: T8B, T16B, T4H, T8H,      T4S
2286 
2287 #undef INSN
2288 
2289 #define INSN(NAME, opc) \
2290   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                  \
2291     starti;                                                                            \
2292     assert(T == T4S, "arrangement must be T4S");                                       \
2293     f(0, 31), f((int)T & 1, 30), f(0b101110, 29, 24), f(opc, 23),                      \
2294     f(T == T4S ? 0 : 1, 22), f(0b110000111110, 21, 10); rf(Vn, 5), rf(Vd, 0);          \
2295   }
2296 
2297   INSN(fmaxv, 0);
2298   INSN(fminv, 1);
2299 
2300 #undef INSN
2301 
2302 #define INSN(NAME, op0, cmode0) \
2303   void NAME(FloatRegister Vd, SIMD_Arrangement T, unsigned imm8, unsigned lsl = 0) {   \
2304     unsigned cmode = cmode0;                                                           \
2305     unsigned op = op0;                                                                 \
2306     starti;                                                                            \
2307     assert(lsl == 0 ||                                                                 \
2308            ((T == T4H || T == T8H) && lsl == 8) ||                                     \
2309            ((T == T2S || T == T4S) && ((lsl >> 3) < 4) && ((lsl & 7) == 0)), "invalid shift");\
2310     cmode |= lsl >> 2;                                                                 \
2311     if (T == T4H || T == T8H) cmode |= 0b1000;                                         \
2312     if (!(T == T4H || T == T8H || T == T2S || T == T4S)) {                             \
2313       assert(op == 0 && cmode0 == 0, "must be MOVI");                                  \
2314       cmode = 0b1110;                                                                  \
2315       if (T == T1D || T == T2D) op = 1;                                                \
2316     }                                                                                  \
2317     f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19);                   \
2318     f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5);  \
2319     rf(Vd, 0);                                                                         \
2320   }
2321 
2322   INSN(movi, 0, 0);
2323   INSN(orri, 0, 1);
2324   INSN(mvni, 1, 0);
2325   INSN(bici, 1, 1);
2326 
2327 #undef INSN
2328 
2329 #define INSN(NAME, op1, op2, op3) \
2330   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2331     starti;                                                                             \
2332     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                    \
2333     f(0, 31), f((int)T & 1, 30), f(op1, 29), f(0b01110, 28, 24), f(op2, 23);            \
2334     f(T==T2D ? 1:0, 22); f(1, 21), rf(Vm, 16), f(op3, 15, 10), rf(Vn, 5), rf(Vd, 0);    \
2335   }
2336 
2337   INSN(fadd, 0, 0, 0b110101);
2338   INSN(fdiv, 1, 0, 0b111111);
2339   INSN(fmul, 1, 0, 0b110111);
2340   INSN(fsub, 0, 1, 0b110101);
2341   INSN(fmla, 0, 0, 0b110011);
2342   INSN(fmls, 0, 1, 0b110011);
2343   INSN(fmax, 0, 0, 0b111101);
2344   INSN(fmin, 0, 1, 0b111101);
2345 
2346 #undef INSN
2347 
2348 #define INSN(NAME, opc)                                                                 \
2349   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2350     starti;                                                                             \
2351     assert(T == T4S, "arrangement must be T4S");                                        \
2352     f(0b01011110000, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);         \
2353   }
2354 
2355   INSN(sha1c,     0b000000);
2356   INSN(sha1m,     0b001000);
2357   INSN(sha1p,     0b000100);
2358   INSN(sha1su0,   0b001100);
2359   INSN(sha256h2,  0b010100);
2360   INSN(sha256h,   0b010000);
2361   INSN(sha256su1, 0b011000);
2362 
2363 #undef INSN
2364 
2365 #define INSN(NAME, opc)                                                                 \
2366   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2367     starti;                                                                             \
2368     assert(T == T4S, "arrangement must be T4S");                                        \
2369     f(0b0101111000101000, 31, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);                \
2370   }
2371 
2372   INSN(sha1h,     0b000010);
2373   INSN(sha1su1,   0b000110);
2374   INSN(sha256su0, 0b001010);
2375 
2376 #undef INSN
2377 
2378 #define INSN(NAME, opc)                           \
2379   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2380     starti;                                       \
2381     f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0);         \
2382   }
2383 
2384   INSN(aese, 0b0100111000101000010010);
2385   INSN(aesd, 0b0100111000101000010110);
2386   INSN(aesmc, 0b0100111000101000011010);
2387   INSN(aesimc, 0b0100111000101000011110);
2388 
2389 #undef INSN
2390 
2391 #define INSN(NAME, op1, op2) \
2392   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index = 0) { \
2393     starti;                                                                                            \
2394     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                                   \
2395     assert(index >= 0 && ((T == T2D && index <= 1) || (T != T2D && index <= 3)), "invalid index");     \
2396     f(0, 31), f((int)T & 1, 30), f(op1, 29); f(0b011111, 28, 23);                                      \
2397     f(T == T2D ? 1 : 0, 22), f(T == T2D ? 0 : index & 1, 21), rf(Vm, 16);                              \
2398     f(op2, 15, 12), f(T == T2D ? index : (index >> 1), 11), f(0, 10);                                  \
2399     rf(Vn, 5), rf(Vd, 0);                                                                              \
2400   }
2401 
2402   // FMLA/FMLS - Vector - Scalar
2403   INSN(fmlavs, 0, 0b0001);
2404   INSN(fmlsvs, 0, 0b0101);
2405   // FMULX - Vector - Scalar
2406   INSN(fmulxvs, 1, 0b1001);
2407 
2408 #undef INSN
2409 
2410   // Floating-point Reciprocal Estimate
2411   void frecpe(FloatRegister Vd, FloatRegister Vn, SIMD_RegVariant type) {
2412     assert(type == D || type == S, "Wrong type for frecpe");
2413     starti;
2414     f(0b010111101, 31, 23);
2415     f(type == D ? 1 : 0, 22);
2416     f(0b100001110110, 21, 10);
2417     rf(Vn, 5), rf(Vd, 0);
2418   }
2419 
2420   // (double) {a, b} -> (a + b)
2421   void faddpd(FloatRegister Vd, FloatRegister Vn) {
2422     starti;
2423     f(0b0111111001110000110110, 31, 10);
2424     rf(Vn, 5), rf(Vd, 0);
2425   }
2426 
2427   void ins(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int didx, int sidx) {
2428     starti;
2429     assert(T != Q, "invalid register variant");
2430     f(0b01101110000, 31, 21), f(((didx<<1)|1)<<(int)T, 20, 16), f(0, 15);
2431     f(sidx<<(int)T, 14, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);
2432   }
2433 
2434   void umov(Register Rd, FloatRegister Vn, SIMD_RegVariant T, int idx) {
2435     starti;
2436     f(0, 31), f(T==D ? 1:0, 30), f(0b001110000, 29, 21);
2437     f(((idx<<1)|1)<<(int)T, 20, 16), f(0b001111, 15, 10);
2438     rf(Vn, 5), rf(Rd, 0);
2439   }
2440 
2441 #define INSN(NAME, opc, opc2, isSHR)                                    \
2442   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int shift){ \
2443     starti;                                                             \
2444     /* The encodings for the immh:immb fields (bits 22:16) in *SHR are  \
2445      *   0001 xxx       8B/16B, shift = 16  - UInt(immh:immb)           \
2446      *   001x xxx       4H/8H,  shift = 32  - UInt(immh:immb)           \
2447      *   01xx xxx       2S/4S,  shift = 64  - UInt(immh:immb)           \
2448      *   1xxx xxx       1D/2D,  shift = 128 - UInt(immh:immb)           \
2449      *   (1D is RESERVED)                                               \
2450      * for SHL shift is calculated as:                                  \
2451      *   0001 xxx       8B/16B, shift = UInt(immh:immb) - 8             \
2452      *   001x xxx       4H/8H,  shift = UInt(immh:immb) - 16            \
2453      *   01xx xxx       2S/4S,  shift = UInt(immh:immb) - 32            \
2454      *   1xxx xxx       1D/2D,  shift = UInt(immh:immb) - 64            \
2455      *   (1D is RESERVED)                                               \
2456      */                                                                 \
2457     assert((1 << ((T>>1)+3)) > shift, "Invalid Shift value");           \
2458     int cVal = (1 << (((T >> 1) + 3) + (isSHR ? 1 : 0)));               \
2459     int encodedShift = isSHR ? cVal - shift : cVal + shift;             \
2460     f(0, 31), f(T & 1, 30), f(opc, 29), f(0b011110, 28, 23),            \
2461     f(encodedShift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0);     \
2462   }
2463 
2464   INSN(shl,  0, 0b010101, /* isSHR = */ false);
2465   INSN(sshr, 0, 0b000001, /* isSHR = */ true);
2466   INSN(ushr, 1, 0b000001, /* isSHR = */ true);
2467 
2468 #undef INSN
2469 
2470 #define INSN(NAME, opc, opc2, isSHR)                                    \
2471   void NAME(FloatRegister Vd, FloatRegister Vn, int shift){             \
2472     starti;                                                             \
2473     int encodedShift = isSHR ? 128 - shift : 64 + shift;                \
2474     f(0b01, 31, 30), f(opc, 29), f(0b111110, 28, 23),                   \
2475     f(encodedShift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0);     \
2476   }
2477 
2478   INSN(shld,  0, 0b010101, /* isSHR = */ false);
2479   INSN(sshrd, 0, 0b000001, /* isSHR = */ true);
2480   INSN(ushrd, 1, 0b000001, /* isSHR = */ true);
2481 
2482 #undef INSN
2483 
2484 private:
2485   void _ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
2486     starti;
2487     /* The encodings for the immh:immb fields (bits 22:16) are
2488      *   0001 xxx       8H, 8B/16b shift = xxx
2489      *   001x xxx       4S, 4H/8H  shift = xxxx
2490      *   01xx xxx       2D, 2S/4S  shift = xxxxx
2491      *   1xxx xxx       RESERVED
2492      */
2493     assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement");
2494     assert((1 << ((Tb>>1)+3)) > shift, "Invalid shift value");
2495     f(0, 31), f(Tb & 1, 30), f(0b1011110, 29, 23), f((1 << ((Tb>>1)+3))|shift, 22, 16);
2496     f(0b101001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2497   }
2498 
2499 public:
2500   void ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
2501     assert(Tb == T8B || Tb == T4H || Tb == T2S, "invalid arrangement");
2502     _ushll(Vd, Ta, Vn, Tb, shift);
2503   }
2504 
2505   void ushll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
2506     assert(Tb == T16B || Tb == T8H || Tb == T4S, "invalid arrangement");
2507     _ushll(Vd, Ta, Vn, Tb, shift);
2508   }
2509 
2510   // Move from general purpose register
2511   //   mov  Vd.T[index], Rn
2512   void mov(FloatRegister Vd, SIMD_Arrangement T, int index, Register Xn) {
2513     starti;
2514     f(0b01001110000, 31, 21), f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2515     f(0b000111, 15, 10), zrf(Xn, 5), rf(Vd, 0);
2516   }
2517 
2518   // Move to general purpose register
2519   //   mov  Rd, Vn.T[index]
2520   void mov(Register Xd, FloatRegister Vn, SIMD_Arrangement T, int index) {
2521     guarantee(T >= T2S && T < T1Q, "only D and S arrangements are supported");
2522     starti;
2523     f(0, 31), f((T >= T1D) ? 1:0, 30), f(0b001110000, 29, 21);
2524     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2525     f(0b001111, 15, 10), rf(Vn, 5), rf(Xd, 0);
2526   }
2527 
2528 private:
2529   void _pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2530     starti;
2531     assert((Ta == T1Q && (Tb == T1D || Tb == T2D)) ||
2532            (Ta == T8H && (Tb == T8B || Tb == T16B)), "Invalid Size specifier");
2533     int size = (Ta == T1Q) ? 0b11 : 0b00;
2534     f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size, 23, 22);
2535     f(1, 21), rf(Vm, 16), f(0b111000, 15, 10), rf(Vn, 5), rf(Vd, 0);
2536   }
2537 
2538 public:
2539   void pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2540     assert(Tb == T1D || Tb == T8B, "pmull assumes T1D or T8B as the second size specifier");
2541     _pmull(Vd, Ta, Vn, Vm, Tb);
2542   }
2543 
2544   void pmull2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2545     assert(Tb == T2D || Tb == T16B, "pmull2 assumes T2D or T16B as the second size specifier");
2546     _pmull(Vd, Ta, Vn, Vm, Tb);
2547   }
2548 
2549   void uqxtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
2550     starti;
2551     int size_b = (int)Tb >> 1;
2552     int size_a = (int)Ta >> 1;
2553     assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
2554     f(0, 31), f(Tb & 1, 30), f(0b101110, 29, 24), f(size_b, 23, 22);
2555     f(0b100001010010, 21, 10), rf(Vn, 5), rf(Vd, 0);
2556   }
2557 
2558   void dup(FloatRegister Vd, SIMD_Arrangement T, Register Xs)
2559   {
2560     starti;
2561     assert(T != T1D, "reserved encoding");
2562     f(0,31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2563     f((1 << (T >> 1)), 20, 16), f(0b000011, 15, 10), zrf(Xs, 5), rf(Vd, 0);
2564   }
2565 
2566   void dup(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int index = 0)
2567   {
2568     starti;
2569     assert(T != T1D, "reserved encoding");
2570     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2571     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2572     f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2573   }
2574 
2575   // AdvSIMD ZIP/UZP/TRN
2576 #define INSN(NAME, opcode)                                              \
2577   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2578     guarantee(T != T1D && T != T1Q, "invalid arrangement");             \
2579     starti;                                                             \
2580     f(0, 31), f(0b001110, 29, 24), f(0, 21), f(0, 15);                  \
2581     f(opcode, 14, 12), f(0b10, 11, 10);                                 \
2582     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);                                   \
2583     f(T & 1, 30), f(T >> 1, 23, 22);                                    \
2584   }
2585 
2586   INSN(uzp1, 0b001);
2587   INSN(trn1, 0b010);
2588   INSN(zip1, 0b011);
2589   INSN(uzp2, 0b101);
2590   INSN(trn2, 0b110);
2591   INSN(zip2, 0b111);
2592 
2593 #undef INSN
2594 
2595   // CRC32 instructions
2596 #define INSN(NAME, c, sf, sz)                                             \
2597   void NAME(Register Rd, Register Rn, Register Rm) {                      \
2598     starti;                                                               \
2599     f(sf, 31), f(0b0011010110, 30, 21), f(0b010, 15, 13), f(c, 12);       \
2600     f(sz, 11, 10), rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                      \
2601   }
2602 
2603   INSN(crc32b,  0, 0, 0b00);
2604   INSN(crc32h,  0, 0, 0b01);
2605   INSN(crc32w,  0, 0, 0b10);
2606   INSN(crc32x,  0, 1, 0b11);
2607   INSN(crc32cb, 1, 0, 0b00);
2608   INSN(crc32ch, 1, 0, 0b01);
2609   INSN(crc32cw, 1, 0, 0b10);
2610   INSN(crc32cx, 1, 1, 0b11);
2611 
2612 #undef INSN
2613 
2614   // Table vector lookup
2615 #define INSN(NAME, op)                                                  \
2616   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, unsigned registers, FloatRegister Vm) { \
2617     starti;                                                             \
2618     assert(T == T8B || T == T16B, "invalid arrangement");               \
2619     assert(0 < registers && registers <= 4, "invalid number of registers"); \
2620     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21), rf(Vm, 16), f(0, 15); \
2621     f(registers - 1, 14, 13), f(op, 12),f(0b00, 11, 10), rf(Vn, 5), rf(Vd, 0); \
2622   }
2623 
2624   INSN(tbl, 0);
2625   INSN(tbx, 1);
2626 
2627 #undef INSN
2628 
2629   // AdvSIMD two-reg misc
2630 #define INSN(NAME, U, opcode)                                                       \
2631   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {               \
2632        starti;                                                                      \
2633        assert((ASSERTION), MSG);                                                    \
2634        f(0, 31), f((int)T & 1, 30), f(U, 29), f(0b01110, 28, 24);                   \
2635        f((int)(T >> 1), 23, 22), f(0b10000, 21, 17), f(opcode, 16, 12);             \
2636        f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0);                                       \
2637  }
2638 
2639 #define MSG "invalid arrangement"
2640 
2641 #define ASSERTION (T == T2S || T == T4S || T == T2D)
2642   INSN(fsqrt, 1, 0b11111);
2643   INSN(fabs,  0, 0b01111);
2644   INSN(fneg,  1, 0b01111);
2645 #undef ASSERTION
2646 
2647 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H || T == T2S || T == T4S)
2648   INSN(rev64, 0, 0b00000);
2649 #undef ASSERTION
2650 
2651 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H)
2652   INSN(rev32, 1, 0b00000);
2653 private:
2654   INSN(_rbit, 1, 0b00101);
2655 public:
2656 
2657 #undef ASSERTION
2658 
2659 #define ASSERTION (T == T8B || T == T16B)
2660   INSN(rev16, 0, 0b00001);
2661   // RBIT only allows T8B and T16B but encodes them oddly.  Argh...
2662   void rbit(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
2663     assert((ASSERTION), MSG);
2664     _rbit(Vd, SIMD_Arrangement((T & 1) | 0b010), Vn);
2665   }
2666 #undef ASSERTION
2667 
2668 #undef MSG
2669 
2670 #undef INSN
2671 
2672 void ext(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index)
2673   {
2674     starti;
2675     assert(T == T8B || T == T16B, "invalid arrangement");
2676     assert((T == T8B && index <= 0b0111) || (T == T16B && index <= 0b1111), "Invalid index value");
2677     f(0, 31), f((int)T & 1, 30), f(0b101110000, 29, 21);
2678     rf(Vm, 16), f(0, 15), f(index, 14, 11);
2679     f(0, 10), rf(Vn, 5), rf(Vd, 0);
2680   }
2681 
2682   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
2683   }
2684 
2685   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
2686                                                 Register tmp,
2687                                                 int offset) {
2688     ShouldNotCallThis();
2689     return RegisterOrConstant();
2690   }
2691 
2692   // Stack overflow checking
2693   virtual void bang_stack_with_offset(int offset);
2694 
2695   static bool operand_valid_for_logical_immediate(bool is32, uint64_t imm);
2696   static bool operand_valid_for_add_sub_immediate(long imm);
2697   static bool operand_valid_for_float_immediate(double imm);
2698 
2699   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
2700   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
2701 };
2702 
2703 inline Assembler::Membar_mask_bits operator|(Assembler::Membar_mask_bits a,
2704                                              Assembler::Membar_mask_bits b) {
2705   return Assembler::Membar_mask_bits(unsigned(a)|unsigned(b));
2706 }
2707 
2708 Instruction_aarch64::~Instruction_aarch64() {
2709   assem->emit();
2710 }
2711 
2712 #undef starti
2713 
2714 // Invert a condition
2715 inline const Assembler::Condition operator~(const Assembler::Condition cond) {
2716   return Assembler::Condition(int(cond) ^ 1);
2717 }
2718 
2719 class BiasedLockingCounters;
2720 
2721 extern "C" void das(uint64_t start, int len);
2722 
2723 #endif // CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP