1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #ifdef _WIN64
  26 // Must be at least Windows 2000 or XP to use VectoredExceptions
  27 #define _WIN32_WINNT 0x500
  28 #endif
  29 
  30 // do not include precompiled header file
  31 # include "incls/_os_windows.cpp.incl"
  32 
  33 #ifdef _DEBUG
  34 #include <crtdbg.h>
  35 #endif
  36 
  37 
  38 #include <windows.h>
  39 #include <sys/types.h>
  40 #include <sys/stat.h>
  41 #include <sys/timeb.h>
  42 #include <objidl.h>
  43 #include <shlobj.h>
  44 
  45 #include <malloc.h>
  46 #include <signal.h>
  47 #include <direct.h>
  48 #include <errno.h>
  49 #include <fcntl.h>
  50 #include <io.h>
  51 #include <process.h>              // For _beginthreadex(), _endthreadex()
  52 #include <imagehlp.h>             // For os::dll_address_to_function_name
  53 
  54 /* for enumerating dll libraries */
  55 #include <tlhelp32.h>
  56 #include <vdmdbg.h>
  57 
  58 // for timer info max values which include all bits
  59 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
  60 
  61 // For DLL loading/load error detection
  62 // Values of PE COFF
  63 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
  64 #define IMAGE_FILE_SIGNATURE_LENGTH 4
  65 
  66 static HANDLE main_process;
  67 static HANDLE main_thread;
  68 static int    main_thread_id;
  69 
  70 static FILETIME process_creation_time;
  71 static FILETIME process_exit_time;
  72 static FILETIME process_user_time;
  73 static FILETIME process_kernel_time;
  74 
  75 #ifdef _WIN64
  76 PVOID  topLevelVectoredExceptionHandler = NULL;
  77 #endif
  78 
  79 #ifdef _M_IA64
  80 #define __CPU__ ia64
  81 #elif _M_AMD64
  82 #define __CPU__ amd64
  83 #else
  84 #define __CPU__ i486
  85 #endif
  86 
  87 // save DLL module handle, used by GetModuleFileName
  88 
  89 HINSTANCE vm_lib_handle;
  90 static int getLastErrorString(char *buf, size_t len);
  91 
  92 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
  93   switch (reason) {
  94     case DLL_PROCESS_ATTACH:
  95       vm_lib_handle = hinst;
  96       if(ForceTimeHighResolution)
  97         timeBeginPeriod(1L);
  98       break;
  99     case DLL_PROCESS_DETACH:
 100       if(ForceTimeHighResolution)
 101         timeEndPeriod(1L);
 102 #ifdef _WIN64
 103       if (topLevelVectoredExceptionHandler != NULL) {
 104         RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
 105         topLevelVectoredExceptionHandler = NULL;
 106       }
 107 #endif
 108       break;
 109     default:
 110       break;
 111   }
 112   return true;
 113 }
 114 
 115 static inline double fileTimeAsDouble(FILETIME* time) {
 116   const double high  = (double) ((unsigned int) ~0);
 117   const double split = 10000000.0;
 118   double result = (time->dwLowDateTime / split) +
 119                    time->dwHighDateTime * (high/split);
 120   return result;
 121 }
 122 
 123 // Implementation of os
 124 
 125 bool os::getenv(const char* name, char* buffer, int len) {
 126  int result = GetEnvironmentVariable(name, buffer, len);
 127  return result > 0 && result < len;
 128 }
 129 
 130 
 131 // No setuid programs under Windows.
 132 bool os::have_special_privileges() {
 133   return false;
 134 }
 135 
 136 
 137 // This method is  a periodic task to check for misbehaving JNI applications
 138 // under CheckJNI, we can add any periodic checks here.
 139 // For Windows at the moment does nothing
 140 void os::run_periodic_checks() {
 141   return;
 142 }
 143 
 144 #ifndef _WIN64
 145 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 146 #endif
 147 void os::init_system_properties_values() {
 148   /* sysclasspath, java_home, dll_dir */
 149   {
 150       char *home_path;
 151       char *dll_path;
 152       char *pslash;
 153       char *bin = "\\bin";
 154       char home_dir[MAX_PATH];
 155 
 156       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
 157           os::jvm_path(home_dir, sizeof(home_dir));
 158           // Found the full path to jvm[_g].dll.
 159           // Now cut the path to <java_home>/jre if we can.
 160           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
 161           pslash = strrchr(home_dir, '\\');
 162           if (pslash != NULL) {
 163               *pslash = '\0';                 /* get rid of \{client|server} */
 164               pslash = strrchr(home_dir, '\\');
 165               if (pslash != NULL)
 166                   *pslash = '\0';             /* get rid of \bin */
 167           }
 168       }
 169 
 170       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1);
 171       if (home_path == NULL)
 172           return;
 173       strcpy(home_path, home_dir);
 174       Arguments::set_java_home(home_path);
 175 
 176       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1);
 177       if (dll_path == NULL)
 178           return;
 179       strcpy(dll_path, home_dir);
 180       strcat(dll_path, bin);
 181       Arguments::set_dll_dir(dll_path);
 182 
 183       if (!set_boot_path('\\', ';'))
 184           return;
 185   }
 186 
 187   /* library_path */
 188   #define EXT_DIR "\\lib\\ext"
 189   #define BIN_DIR "\\bin"
 190   #define PACKAGE_DIR "\\Sun\\Java"
 191   {
 192     /* Win32 library search order (See the documentation for LoadLibrary):
 193      *
 194      * 1. The directory from which application is loaded.
 195      * 2. The current directory
 196      * 3. The system wide Java Extensions directory (Java only)
 197      * 4. System directory (GetSystemDirectory)
 198      * 5. Windows directory (GetWindowsDirectory)
 199      * 6. The PATH environment variable
 200      */
 201 
 202     char *library_path;
 203     char tmp[MAX_PATH];
 204     char *path_str = ::getenv("PATH");
 205 
 206     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 207         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10);
 208 
 209     library_path[0] = '\0';
 210 
 211     GetModuleFileName(NULL, tmp, sizeof(tmp));
 212     *(strrchr(tmp, '\\')) = '\0';
 213     strcat(library_path, tmp);
 214 
 215     strcat(library_path, ";.");
 216 
 217     GetWindowsDirectory(tmp, sizeof(tmp));
 218     strcat(library_path, ";");
 219     strcat(library_path, tmp);
 220     strcat(library_path, PACKAGE_DIR BIN_DIR);
 221 
 222     GetSystemDirectory(tmp, sizeof(tmp));
 223     strcat(library_path, ";");
 224     strcat(library_path, tmp);
 225 
 226     GetWindowsDirectory(tmp, sizeof(tmp));
 227     strcat(library_path, ";");
 228     strcat(library_path, tmp);
 229 
 230     if (path_str) {
 231         strcat(library_path, ";");
 232         strcat(library_path, path_str);
 233     }
 234 
 235     Arguments::set_library_path(library_path);
 236     FREE_C_HEAP_ARRAY(char, library_path);
 237   }
 238 
 239   /* Default extensions directory */
 240   {
 241     char path[MAX_PATH];
 242     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 243     GetWindowsDirectory(path, MAX_PATH);
 244     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 245         path, PACKAGE_DIR, EXT_DIR);
 246     Arguments::set_ext_dirs(buf);
 247   }
 248   #undef EXT_DIR
 249   #undef BIN_DIR
 250   #undef PACKAGE_DIR
 251 
 252   /* Default endorsed standards directory. */
 253   {
 254     #define ENDORSED_DIR "\\lib\\endorsed"
 255     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
 256     char * buf = NEW_C_HEAP_ARRAY(char, len);
 257     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
 258     Arguments::set_endorsed_dirs(buf);
 259     #undef ENDORSED_DIR
 260   }
 261 
 262 #ifndef _WIN64
 263   SetUnhandledExceptionFilter(Handle_FLT_Exception);
 264 #endif
 265 
 266   // Done
 267   return;
 268 }
 269 
 270 void os::breakpoint() {
 271   DebugBreak();
 272 }
 273 
 274 // Invoked from the BREAKPOINT Macro
 275 extern "C" void breakpoint() {
 276   os::breakpoint();
 277 }
 278 
 279 // Returns an estimate of the current stack pointer. Result must be guaranteed
 280 // to point into the calling threads stack, and be no lower than the current
 281 // stack pointer.
 282 
 283 address os::current_stack_pointer() {
 284   int dummy;
 285   address sp = (address)&dummy;
 286   return sp;
 287 }
 288 
 289 // os::current_stack_base()
 290 //
 291 //   Returns the base of the stack, which is the stack's
 292 //   starting address.  This function must be called
 293 //   while running on the stack of the thread being queried.
 294 
 295 address os::current_stack_base() {
 296   MEMORY_BASIC_INFORMATION minfo;
 297   address stack_bottom;
 298   size_t stack_size;
 299 
 300   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 301   stack_bottom =  (address)minfo.AllocationBase;
 302   stack_size = minfo.RegionSize;
 303 
 304   // Add up the sizes of all the regions with the same
 305   // AllocationBase.
 306   while( 1 )
 307   {
 308     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 309     if ( stack_bottom == (address)minfo.AllocationBase )
 310       stack_size += minfo.RegionSize;
 311     else
 312       break;
 313   }
 314 
 315 #ifdef _M_IA64
 316   // IA64 has memory and register stacks
 317   stack_size = stack_size / 2;
 318 #endif
 319   return stack_bottom + stack_size;
 320 }
 321 
 322 size_t os::current_stack_size() {
 323   size_t sz;
 324   MEMORY_BASIC_INFORMATION minfo;
 325   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 326   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 327   return sz;
 328 }
 329 
 330 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 331   const struct tm* time_struct_ptr = localtime(clock);
 332   if (time_struct_ptr != NULL) {
 333     *res = *time_struct_ptr;
 334     return res;
 335   }
 336   return NULL;
 337 }
 338 
 339 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 340 
 341 // Thread start routine for all new Java threads
 342 static unsigned __stdcall java_start(Thread* thread) {
 343   // Try to randomize the cache line index of hot stack frames.
 344   // This helps when threads of the same stack traces evict each other's
 345   // cache lines. The threads can be either from the same JVM instance, or
 346   // from different JVM instances. The benefit is especially true for
 347   // processors with hyperthreading technology.
 348   static int counter = 0;
 349   int pid = os::current_process_id();
 350   _alloca(((pid ^ counter++) & 7) * 128);
 351 
 352   OSThread* osthr = thread->osthread();
 353   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 354 
 355   if (UseNUMA) {
 356     int lgrp_id = os::numa_get_group_id();
 357     if (lgrp_id != -1) {
 358       thread->set_lgrp_id(lgrp_id);
 359     }
 360   }
 361 
 362 
 363   if (UseVectoredExceptions) {
 364     // If we are using vectored exception we don't need to set a SEH
 365     thread->run();
 366   }
 367   else {
 368     // Install a win32 structured exception handler around every thread created
 369     // by VM, so VM can genrate error dump when an exception occurred in non-
 370     // Java thread (e.g. VM thread).
 371     __try {
 372        thread->run();
 373     } __except(topLevelExceptionFilter(
 374                (_EXCEPTION_POINTERS*)_exception_info())) {
 375         // Nothing to do.
 376     }
 377   }
 378 
 379   // One less thread is executing
 380   // When the VMThread gets here, the main thread may have already exited
 381   // which frees the CodeHeap containing the Atomic::add code
 382   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 383     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 384   }
 385 
 386   return 0;
 387 }
 388 
 389 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
 390   // Allocate the OSThread object
 391   OSThread* osthread = new OSThread(NULL, NULL);
 392   if (osthread == NULL) return NULL;
 393 
 394   // Initialize support for Java interrupts
 395   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 396   if (interrupt_event == NULL) {
 397     delete osthread;
 398     return NULL;
 399   }
 400   osthread->set_interrupt_event(interrupt_event);
 401 
 402   // Store info on the Win32 thread into the OSThread
 403   osthread->set_thread_handle(thread_handle);
 404   osthread->set_thread_id(thread_id);
 405 
 406   if (UseNUMA) {
 407     int lgrp_id = os::numa_get_group_id();
 408     if (lgrp_id != -1) {
 409       thread->set_lgrp_id(lgrp_id);
 410     }
 411   }
 412 
 413   // Initial thread state is INITIALIZED, not SUSPENDED
 414   osthread->set_state(INITIALIZED);
 415 
 416   return osthread;
 417 }
 418 
 419 
 420 bool os::create_attached_thread(JavaThread* thread) {
 421 #ifdef ASSERT
 422   thread->verify_not_published();
 423 #endif
 424   HANDLE thread_h;
 425   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 426                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 427     fatal("DuplicateHandle failed\n");
 428   }
 429   OSThread* osthread = create_os_thread(thread, thread_h,
 430                                         (int)current_thread_id());
 431   if (osthread == NULL) {
 432      return false;
 433   }
 434 
 435   // Initial thread state is RUNNABLE
 436   osthread->set_state(RUNNABLE);
 437 
 438   thread->set_osthread(osthread);
 439   return true;
 440 }
 441 
 442 bool os::create_main_thread(JavaThread* thread) {
 443 #ifdef ASSERT
 444   thread->verify_not_published();
 445 #endif
 446   if (_starting_thread == NULL) {
 447     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 448      if (_starting_thread == NULL) {
 449         return false;
 450      }
 451   }
 452 
 453   // The primordial thread is runnable from the start)
 454   _starting_thread->set_state(RUNNABLE);
 455 
 456   thread->set_osthread(_starting_thread);
 457   return true;
 458 }
 459 
 460 // Allocate and initialize a new OSThread
 461 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 462   unsigned thread_id;
 463 
 464   // Allocate the OSThread object
 465   OSThread* osthread = new OSThread(NULL, NULL);
 466   if (osthread == NULL) {
 467     return false;
 468   }
 469 
 470   // Initialize support for Java interrupts
 471   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 472   if (interrupt_event == NULL) {
 473     delete osthread;
 474     return NULL;
 475   }
 476   osthread->set_interrupt_event(interrupt_event);
 477   osthread->set_interrupted(false);
 478 
 479   thread->set_osthread(osthread);
 480 
 481   if (stack_size == 0) {
 482     switch (thr_type) {
 483     case os::java_thread:
 484       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 485       if (JavaThread::stack_size_at_create() > 0)
 486         stack_size = JavaThread::stack_size_at_create();
 487       break;
 488     case os::compiler_thread:
 489       if (CompilerThreadStackSize > 0) {
 490         stack_size = (size_t)(CompilerThreadStackSize * K);
 491         break;
 492       } // else fall through:
 493         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 494     case os::vm_thread:
 495     case os::pgc_thread:
 496     case os::cgc_thread:
 497     case os::watcher_thread:
 498       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 499       break;
 500     }
 501   }
 502 
 503   // Create the Win32 thread
 504   //
 505   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 506   // does not specify stack size. Instead, it specifies the size of
 507   // initially committed space. The stack size is determined by
 508   // PE header in the executable. If the committed "stack_size" is larger
 509   // than default value in the PE header, the stack is rounded up to the
 510   // nearest multiple of 1MB. For example if the launcher has default
 511   // stack size of 320k, specifying any size less than 320k does not
 512   // affect the actual stack size at all, it only affects the initial
 513   // commitment. On the other hand, specifying 'stack_size' larger than
 514   // default value may cause significant increase in memory usage, because
 515   // not only the stack space will be rounded up to MB, but also the
 516   // entire space is committed upfront.
 517   //
 518   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 519   // for CreateThread() that can treat 'stack_size' as stack size. However we
 520   // are not supposed to call CreateThread() directly according to MSDN
 521   // document because JVM uses C runtime library. The good news is that the
 522   // flag appears to work with _beginthredex() as well.
 523 
 524 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 525 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 526 #endif
 527 
 528   HANDLE thread_handle =
 529     (HANDLE)_beginthreadex(NULL,
 530                            (unsigned)stack_size,
 531                            (unsigned (__stdcall *)(void*)) java_start,
 532                            thread,
 533                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 534                            &thread_id);
 535   if (thread_handle == NULL) {
 536     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 537     // without the flag.
 538     thread_handle =
 539     (HANDLE)_beginthreadex(NULL,
 540                            (unsigned)stack_size,
 541                            (unsigned (__stdcall *)(void*)) java_start,
 542                            thread,
 543                            CREATE_SUSPENDED,
 544                            &thread_id);
 545   }
 546   if (thread_handle == NULL) {
 547     // Need to clean up stuff we've allocated so far
 548     CloseHandle(osthread->interrupt_event());
 549     thread->set_osthread(NULL);
 550     delete osthread;
 551     return NULL;
 552   }
 553 
 554   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 555 
 556   // Store info on the Win32 thread into the OSThread
 557   osthread->set_thread_handle(thread_handle);
 558   osthread->set_thread_id(thread_id);
 559 
 560   // Initial thread state is INITIALIZED, not SUSPENDED
 561   osthread->set_state(INITIALIZED);
 562 
 563   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 564   return true;
 565 }
 566 
 567 
 568 // Free Win32 resources related to the OSThread
 569 void os::free_thread(OSThread* osthread) {
 570   assert(osthread != NULL, "osthread not set");
 571   CloseHandle(osthread->thread_handle());
 572   CloseHandle(osthread->interrupt_event());
 573   delete osthread;
 574 }
 575 
 576 
 577 static int    has_performance_count = 0;
 578 static jlong first_filetime;
 579 static jlong initial_performance_count;
 580 static jlong performance_frequency;
 581 
 582 
 583 jlong as_long(LARGE_INTEGER x) {
 584   jlong result = 0; // initialization to avoid warning
 585   set_high(&result, x.HighPart);
 586   set_low(&result,  x.LowPart);
 587   return result;
 588 }
 589 
 590 
 591 jlong os::elapsed_counter() {
 592   LARGE_INTEGER count;
 593   if (has_performance_count) {
 594     QueryPerformanceCounter(&count);
 595     return as_long(count) - initial_performance_count;
 596   } else {
 597     FILETIME wt;
 598     GetSystemTimeAsFileTime(&wt);
 599     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 600   }
 601 }
 602 
 603 
 604 jlong os::elapsed_frequency() {
 605   if (has_performance_count) {
 606     return performance_frequency;
 607   } else {
 608    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 609    return 10000000;
 610   }
 611 }
 612 
 613 
 614 julong os::available_memory() {
 615   return win32::available_memory();
 616 }
 617 
 618 julong os::win32::available_memory() {
 619   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 620   // value if total memory is larger than 4GB
 621   MEMORYSTATUSEX ms;
 622   ms.dwLength = sizeof(ms);
 623   GlobalMemoryStatusEx(&ms);
 624 
 625   return (julong)ms.ullAvailPhys;
 626 }
 627 
 628 julong os::physical_memory() {
 629   return win32::physical_memory();
 630 }
 631 
 632 julong os::allocatable_physical_memory(julong size) {
 633 #ifdef _LP64
 634   return size;
 635 #else
 636   // Limit to 1400m because of the 2gb address space wall
 637   return MIN2(size, (julong)1400*M);
 638 #endif
 639 }
 640 
 641 // VC6 lacks DWORD_PTR
 642 #if _MSC_VER < 1300
 643 typedef UINT_PTR DWORD_PTR;
 644 #endif
 645 
 646 int os::active_processor_count() {
 647   DWORD_PTR lpProcessAffinityMask = 0;
 648   DWORD_PTR lpSystemAffinityMask = 0;
 649   int proc_count = processor_count();
 650   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 651       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 652     // Nof active processors is number of bits in process affinity mask
 653     int bitcount = 0;
 654     while (lpProcessAffinityMask != 0) {
 655       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 656       bitcount++;
 657     }
 658     return bitcount;
 659   } else {
 660     return proc_count;
 661   }
 662 }
 663 
 664 bool os::distribute_processes(uint length, uint* distribution) {
 665   // Not yet implemented.
 666   return false;
 667 }
 668 
 669 bool os::bind_to_processor(uint processor_id) {
 670   // Not yet implemented.
 671   return false;
 672 }
 673 
 674 static void initialize_performance_counter() {
 675   LARGE_INTEGER count;
 676   if (QueryPerformanceFrequency(&count)) {
 677     has_performance_count = 1;
 678     performance_frequency = as_long(count);
 679     QueryPerformanceCounter(&count);
 680     initial_performance_count = as_long(count);
 681   } else {
 682     has_performance_count = 0;
 683     FILETIME wt;
 684     GetSystemTimeAsFileTime(&wt);
 685     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 686   }
 687 }
 688 
 689 
 690 double os::elapsedTime() {
 691   return (double) elapsed_counter() / (double) elapsed_frequency();
 692 }
 693 
 694 
 695 // Windows format:
 696 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 697 // Java format:
 698 //   Java standards require the number of milliseconds since 1/1/1970
 699 
 700 // Constant offset - calculated using offset()
 701 static jlong  _offset   = 116444736000000000;
 702 // Fake time counter for reproducible results when debugging
 703 static jlong  fake_time = 0;
 704 
 705 #ifdef ASSERT
 706 // Just to be safe, recalculate the offset in debug mode
 707 static jlong _calculated_offset = 0;
 708 static int   _has_calculated_offset = 0;
 709 
 710 jlong offset() {
 711   if (_has_calculated_offset) return _calculated_offset;
 712   SYSTEMTIME java_origin;
 713   java_origin.wYear          = 1970;
 714   java_origin.wMonth         = 1;
 715   java_origin.wDayOfWeek     = 0; // ignored
 716   java_origin.wDay           = 1;
 717   java_origin.wHour          = 0;
 718   java_origin.wMinute        = 0;
 719   java_origin.wSecond        = 0;
 720   java_origin.wMilliseconds  = 0;
 721   FILETIME jot;
 722   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 723     fatal1("Error = %d\nWindows error", GetLastError());
 724   }
 725   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 726   _has_calculated_offset = 1;
 727   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 728   return _calculated_offset;
 729 }
 730 #else
 731 jlong offset() {
 732   return _offset;
 733 }
 734 #endif
 735 
 736 jlong windows_to_java_time(FILETIME wt) {
 737   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 738   return (a - offset()) / 10000;
 739 }
 740 
 741 FILETIME java_to_windows_time(jlong l) {
 742   jlong a = (l * 10000) + offset();
 743   FILETIME result;
 744   result.dwHighDateTime = high(a);
 745   result.dwLowDateTime  = low(a);
 746   return result;
 747 }
 748 
 749 // For now, we say that Windows does not support vtime.  I have no idea
 750 // whether it can actually be made to (DLD, 9/13/05).
 751 
 752 bool os::supports_vtime() { return false; }
 753 bool os::enable_vtime() { return false; }
 754 bool os::vtime_enabled() { return false; }
 755 double os::elapsedVTime() {
 756   // better than nothing, but not much
 757   return elapsedTime();
 758 }
 759 
 760 jlong os::javaTimeMillis() {
 761   if (UseFakeTimers) {
 762     return fake_time++;
 763   } else {
 764     FILETIME wt;
 765     GetSystemTimeAsFileTime(&wt);
 766     return windows_to_java_time(wt);
 767   }
 768 }
 769 
 770 #define NANOS_PER_SEC         CONST64(1000000000)
 771 #define NANOS_PER_MILLISEC    1000000
 772 jlong os::javaTimeNanos() {
 773   if (!has_performance_count) {
 774     return javaTimeMillis() * NANOS_PER_MILLISEC; // the best we can do.
 775   } else {
 776     LARGE_INTEGER current_count;
 777     QueryPerformanceCounter(&current_count);
 778     double current = as_long(current_count);
 779     double freq = performance_frequency;
 780     jlong time = (jlong)((current/freq) * NANOS_PER_SEC);
 781     return time;
 782   }
 783 }
 784 
 785 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 786   if (!has_performance_count) {
 787     // javaTimeMillis() doesn't have much percision,
 788     // but it is not going to wrap -- so all 64 bits
 789     info_ptr->max_value = ALL_64_BITS;
 790 
 791     // this is a wall clock timer, so may skip
 792     info_ptr->may_skip_backward = true;
 793     info_ptr->may_skip_forward = true;
 794   } else {
 795     jlong freq = performance_frequency;
 796     if (freq < NANOS_PER_SEC) {
 797       // the performance counter is 64 bits and we will
 798       // be multiplying it -- so no wrap in 64 bits
 799       info_ptr->max_value = ALL_64_BITS;
 800     } else if (freq > NANOS_PER_SEC) {
 801       // use the max value the counter can reach to
 802       // determine the max value which could be returned
 803       julong max_counter = (julong)ALL_64_BITS;
 804       info_ptr->max_value = (jlong)(max_counter / (freq / NANOS_PER_SEC));
 805     } else {
 806       // the performance counter is 64 bits and we will
 807       // be using it directly -- so no wrap in 64 bits
 808       info_ptr->max_value = ALL_64_BITS;
 809     }
 810 
 811     // using a counter, so no skipping
 812     info_ptr->may_skip_backward = false;
 813     info_ptr->may_skip_forward = false;
 814   }
 815   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 816 }
 817 
 818 char* os::local_time_string(char *buf, size_t buflen) {
 819   SYSTEMTIME st;
 820   GetLocalTime(&st);
 821   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 822                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 823   return buf;
 824 }
 825 
 826 bool os::getTimesSecs(double* process_real_time,
 827                      double* process_user_time,
 828                      double* process_system_time) {
 829   HANDLE h_process = GetCurrentProcess();
 830   FILETIME create_time, exit_time, kernel_time, user_time;
 831   BOOL result = GetProcessTimes(h_process,
 832                                &create_time,
 833                                &exit_time,
 834                                &kernel_time,
 835                                &user_time);
 836   if (result != 0) {
 837     FILETIME wt;
 838     GetSystemTimeAsFileTime(&wt);
 839     jlong rtc_millis = windows_to_java_time(wt);
 840     jlong user_millis = windows_to_java_time(user_time);
 841     jlong system_millis = windows_to_java_time(kernel_time);
 842     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 843     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 844     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 845     return true;
 846   } else {
 847     return false;
 848   }
 849 }
 850 
 851 void os::shutdown() {
 852 
 853   // allow PerfMemory to attempt cleanup of any persistent resources
 854   perfMemory_exit();
 855 
 856   // flush buffered output, finish log files
 857   ostream_abort();
 858 
 859   // Check for abort hook
 860   abort_hook_t abort_hook = Arguments::abort_hook();
 861   if (abort_hook != NULL) {
 862     abort_hook();
 863   }
 864 }
 865 
 866 void os::abort(bool dump_core)
 867 {
 868   os::shutdown();
 869   // no core dump on Windows
 870   ::exit(1);
 871 }
 872 
 873 // Die immediately, no exit hook, no abort hook, no cleanup.
 874 void os::die() {
 875   _exit(-1);
 876 }
 877 
 878 // Directory routines copied from src/win32/native/java/io/dirent_md.c
 879 //  * dirent_md.c       1.15 00/02/02
 880 //
 881 // The declarations for DIR and struct dirent are in jvm_win32.h.
 882 
 883 /* Caller must have already run dirname through JVM_NativePath, which removes
 884    duplicate slashes and converts all instances of '/' into '\\'. */
 885 
 886 DIR *
 887 os::opendir(const char *dirname)
 888 {
 889     assert(dirname != NULL, "just checking");   // hotspot change
 890     DIR *dirp = (DIR *)malloc(sizeof(DIR));
 891     DWORD fattr;                                // hotspot change
 892     char alt_dirname[4] = { 0, 0, 0, 0 };
 893 
 894     if (dirp == 0) {
 895         errno = ENOMEM;
 896         return 0;
 897     }
 898 
 899     /*
 900      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
 901      * as a directory in FindFirstFile().  We detect this case here and
 902      * prepend the current drive name.
 903      */
 904     if (dirname[1] == '\0' && dirname[0] == '\\') {
 905         alt_dirname[0] = _getdrive() + 'A' - 1;
 906         alt_dirname[1] = ':';
 907         alt_dirname[2] = '\\';
 908         alt_dirname[3] = '\0';
 909         dirname = alt_dirname;
 910     }
 911 
 912     dirp->path = (char *)malloc(strlen(dirname) + 5);
 913     if (dirp->path == 0) {
 914         free(dirp);
 915         errno = ENOMEM;
 916         return 0;
 917     }
 918     strcpy(dirp->path, dirname);
 919 
 920     fattr = GetFileAttributes(dirp->path);
 921     if (fattr == 0xffffffff) {
 922         free(dirp->path);
 923         free(dirp);
 924         errno = ENOENT;
 925         return 0;
 926     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
 927         free(dirp->path);
 928         free(dirp);
 929         errno = ENOTDIR;
 930         return 0;
 931     }
 932 
 933     /* Append "*.*", or possibly "\\*.*", to path */
 934     if (dirp->path[1] == ':'
 935         && (dirp->path[2] == '\0'
 936             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
 937         /* No '\\' needed for cases like "Z:" or "Z:\" */
 938         strcat(dirp->path, "*.*");
 939     } else {
 940         strcat(dirp->path, "\\*.*");
 941     }
 942 
 943     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
 944     if (dirp->handle == INVALID_HANDLE_VALUE) {
 945         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
 946             free(dirp->path);
 947             free(dirp);
 948             errno = EACCES;
 949             return 0;
 950         }
 951     }
 952     return dirp;
 953 }
 954 
 955 /* parameter dbuf unused on Windows */
 956 
 957 struct dirent *
 958 os::readdir(DIR *dirp, dirent *dbuf)
 959 {
 960     assert(dirp != NULL, "just checking");      // hotspot change
 961     if (dirp->handle == INVALID_HANDLE_VALUE) {
 962         return 0;
 963     }
 964 
 965     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
 966 
 967     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
 968         if (GetLastError() == ERROR_INVALID_HANDLE) {
 969             errno = EBADF;
 970             return 0;
 971         }
 972         FindClose(dirp->handle);
 973         dirp->handle = INVALID_HANDLE_VALUE;
 974     }
 975 
 976     return &dirp->dirent;
 977 }
 978 
 979 int
 980 os::closedir(DIR *dirp)
 981 {
 982     assert(dirp != NULL, "just checking");      // hotspot change
 983     if (dirp->handle != INVALID_HANDLE_VALUE) {
 984         if (!FindClose(dirp->handle)) {
 985             errno = EBADF;
 986             return -1;
 987         }
 988         dirp->handle = INVALID_HANDLE_VALUE;
 989     }
 990     free(dirp->path);
 991     free(dirp);
 992     return 0;
 993 }
 994 
 995 const char* os::dll_file_extension() { return ".dll"; }
 996 
 997 const char * os::get_temp_directory()
 998 {
 999     static char path_buf[MAX_PATH];
1000     if (GetTempPath(MAX_PATH, path_buf)>0)
1001       return path_buf;
1002     else{
1003       path_buf[0]='\0';
1004       return path_buf;
1005     }
1006 }
1007 
1008 static bool file_exists(const char* filename) {
1009   if (filename == NULL || strlen(filename) == 0) {
1010     return false;
1011   }
1012   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1013 }
1014 
1015 void os::dll_build_name(char *buffer, size_t buflen,
1016                         const char* pname, const char* fname) {
1017   // Copied from libhpi
1018   const size_t pnamelen = pname ? strlen(pname) : 0;
1019   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1020 
1021   // Quietly truncates on buffer overflow. Should be an error.
1022   if (pnamelen + strlen(fname) + 10 > buflen) {
1023     *buffer = '\0';
1024     return;
1025   }
1026 
1027   if (pnamelen == 0) {
1028     jio_snprintf(buffer, buflen, "%s.dll", fname);
1029   } else if (c == ':' || c == '\\') {
1030     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1031   } else if (strchr(pname, *os::path_separator()) != NULL) {
1032     int n;
1033     char** pelements = split_path(pname, &n);
1034     for (int i = 0 ; i < n ; i++) {
1035       char* path = pelements[i];
1036       // Really shouldn't be NULL, but check can't hurt
1037       size_t plen = (path == NULL) ? 0 : strlen(path);
1038       if (plen == 0) {
1039         continue; // skip the empty path values
1040       }
1041       const char lastchar = path[plen - 1];
1042       if (lastchar == ':' || lastchar == '\\') {
1043         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1044       } else {
1045         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1046       }
1047       if (file_exists(buffer)) {
1048         break;
1049       }
1050     }
1051     // release the storage
1052     for (int i = 0 ; i < n ; i++) {
1053       if (pelements[i] != NULL) {
1054         FREE_C_HEAP_ARRAY(char, pelements[i]);
1055       }
1056     }
1057     if (pelements != NULL) {
1058       FREE_C_HEAP_ARRAY(char*, pelements);
1059     }
1060   } else {
1061     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1062   }
1063 }
1064 
1065 // Needs to be in os specific directory because windows requires another
1066 // header file <direct.h>
1067 const char* os::get_current_directory(char *buf, int buflen) {
1068   return _getcwd(buf, buflen);
1069 }
1070 
1071 //-----------------------------------------------------------
1072 // Helper functions for fatal error handler
1073 
1074 // The following library functions are resolved dynamically at runtime:
1075 
1076 // PSAPI functions, for Windows NT, 2000, XP
1077 
1078 // psapi.h doesn't come with Visual Studio 6; it can be downloaded as Platform
1079 // SDK from Microsoft.  Here are the definitions copied from psapi.h
1080 typedef struct _MODULEINFO {
1081     LPVOID lpBaseOfDll;
1082     DWORD SizeOfImage;
1083     LPVOID EntryPoint;
1084 } MODULEINFO, *LPMODULEINFO;
1085 
1086 static BOOL  (WINAPI *_EnumProcessModules)  ( HANDLE, HMODULE *, DWORD, LPDWORD );
1087 static DWORD (WINAPI *_GetModuleFileNameEx) ( HANDLE, HMODULE, LPTSTR, DWORD );
1088 static BOOL  (WINAPI *_GetModuleInformation)( HANDLE, HMODULE, LPMODULEINFO, DWORD );
1089 
1090 // ToolHelp Functions, for Windows 95, 98 and ME
1091 
1092 static HANDLE(WINAPI *_CreateToolhelp32Snapshot)(DWORD,DWORD) ;
1093 static BOOL  (WINAPI *_Module32First)           (HANDLE,LPMODULEENTRY32) ;
1094 static BOOL  (WINAPI *_Module32Next)            (HANDLE,LPMODULEENTRY32) ;
1095 
1096 bool _has_psapi;
1097 bool _psapi_init = false;
1098 bool _has_toolhelp;
1099 
1100 static bool _init_psapi() {
1101   HINSTANCE psapi = LoadLibrary( "PSAPI.DLL" ) ;
1102   if( psapi == NULL ) return false ;
1103 
1104   _EnumProcessModules = CAST_TO_FN_PTR(
1105       BOOL(WINAPI *)(HANDLE, HMODULE *, DWORD, LPDWORD),
1106       GetProcAddress(psapi, "EnumProcessModules")) ;
1107   _GetModuleFileNameEx = CAST_TO_FN_PTR(
1108       DWORD (WINAPI *)(HANDLE, HMODULE, LPTSTR, DWORD),
1109       GetProcAddress(psapi, "GetModuleFileNameExA"));
1110   _GetModuleInformation = CAST_TO_FN_PTR(
1111       BOOL (WINAPI *)(HANDLE, HMODULE, LPMODULEINFO, DWORD),
1112       GetProcAddress(psapi, "GetModuleInformation"));
1113 
1114   _has_psapi = (_EnumProcessModules && _GetModuleFileNameEx && _GetModuleInformation);
1115   _psapi_init = true;
1116   return _has_psapi;
1117 }
1118 
1119 static bool _init_toolhelp() {
1120   HINSTANCE kernel32 = LoadLibrary("Kernel32.DLL") ;
1121   if (kernel32 == NULL) return false ;
1122 
1123   _CreateToolhelp32Snapshot = CAST_TO_FN_PTR(
1124       HANDLE(WINAPI *)(DWORD,DWORD),
1125       GetProcAddress(kernel32, "CreateToolhelp32Snapshot"));
1126   _Module32First = CAST_TO_FN_PTR(
1127       BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
1128       GetProcAddress(kernel32, "Module32First" ));
1129   _Module32Next = CAST_TO_FN_PTR(
1130       BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
1131       GetProcAddress(kernel32, "Module32Next" ));
1132 
1133   _has_toolhelp = (_CreateToolhelp32Snapshot && _Module32First && _Module32Next);
1134   return _has_toolhelp;
1135 }
1136 
1137 #ifdef _WIN64
1138 // Helper routine which returns true if address in
1139 // within the NTDLL address space.
1140 //
1141 static bool _addr_in_ntdll( address addr )
1142 {
1143   HMODULE hmod;
1144   MODULEINFO minfo;
1145 
1146   hmod = GetModuleHandle("NTDLL.DLL");
1147   if ( hmod == NULL ) return false;
1148   if ( !_GetModuleInformation( GetCurrentProcess(), hmod,
1149                                &minfo, sizeof(MODULEINFO)) )
1150     return false;
1151 
1152   if ( (addr >= minfo.lpBaseOfDll) &&
1153        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
1154     return true;
1155   else
1156     return false;
1157 }
1158 #endif
1159 
1160 
1161 // Enumerate all modules for a given process ID
1162 //
1163 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
1164 // different API for doing this. We use PSAPI.DLL on NT based
1165 // Windows and ToolHelp on 95/98/Me.
1166 
1167 // Callback function that is called by enumerate_modules() on
1168 // every DLL module.
1169 // Input parameters:
1170 //    int       pid,
1171 //    char*     module_file_name,
1172 //    address   module_base_addr,
1173 //    unsigned  module_size,
1174 //    void*     param
1175 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
1176 
1177 // enumerate_modules for Windows NT, using PSAPI
1178 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
1179 {
1180   HANDLE   hProcess ;
1181 
1182 # define MAX_NUM_MODULES 128
1183   HMODULE     modules[MAX_NUM_MODULES];
1184   static char filename[ MAX_PATH ];
1185   int         result = 0;
1186 
1187   if (!_has_psapi && (_psapi_init || !_init_psapi())) return 0;
1188 
1189   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1190                          FALSE, pid ) ;
1191   if (hProcess == NULL) return 0;
1192 
1193   DWORD size_needed;
1194   if (!_EnumProcessModules(hProcess, modules,
1195                            sizeof(modules), &size_needed)) {
1196       CloseHandle( hProcess );
1197       return 0;
1198   }
1199 
1200   // number of modules that are currently loaded
1201   int num_modules = size_needed / sizeof(HMODULE);
1202 
1203   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1204     // Get Full pathname:
1205     if(!_GetModuleFileNameEx(hProcess, modules[i],
1206                              filename, sizeof(filename))) {
1207         filename[0] = '\0';
1208     }
1209 
1210     MODULEINFO modinfo;
1211     if (!_GetModuleInformation(hProcess, modules[i],
1212                                &modinfo, sizeof(modinfo))) {
1213         modinfo.lpBaseOfDll = NULL;
1214         modinfo.SizeOfImage = 0;
1215     }
1216 
1217     // Invoke callback function
1218     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
1219                   modinfo.SizeOfImage, param);
1220     if (result) break;
1221   }
1222 
1223   CloseHandle( hProcess ) ;
1224   return result;
1225 }
1226 
1227 
1228 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
1229 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
1230 {
1231   HANDLE                hSnapShot ;
1232   static MODULEENTRY32  modentry ;
1233   int                   result = 0;
1234 
1235   if (!_has_toolhelp) return 0;
1236 
1237   // Get a handle to a Toolhelp snapshot of the system
1238   hSnapShot = _CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
1239   if( hSnapShot == INVALID_HANDLE_VALUE ) {
1240       return FALSE ;
1241   }
1242 
1243   // iterate through all modules
1244   modentry.dwSize = sizeof(MODULEENTRY32) ;
1245   bool not_done = _Module32First( hSnapShot, &modentry ) != 0;
1246 
1247   while( not_done ) {
1248     // invoke the callback
1249     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
1250                 modentry.modBaseSize, param);
1251     if (result) break;
1252 
1253     modentry.dwSize = sizeof(MODULEENTRY32) ;
1254     not_done = _Module32Next( hSnapShot, &modentry ) != 0;
1255   }
1256 
1257   CloseHandle(hSnapShot);
1258   return result;
1259 }
1260 
1261 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
1262 {
1263   // Get current process ID if caller doesn't provide it.
1264   if (!pid) pid = os::current_process_id();
1265 
1266   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
1267   else                    return _enumerate_modules_windows(pid, func, param);
1268 }
1269 
1270 struct _modinfo {
1271    address addr;
1272    char*   full_path;   // point to a char buffer
1273    int     buflen;      // size of the buffer
1274    address base_addr;
1275 };
1276 
1277 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
1278                                   unsigned size, void * param) {
1279    struct _modinfo *pmod = (struct _modinfo *)param;
1280    if (!pmod) return -1;
1281 
1282    if (base_addr     <= pmod->addr &&
1283        base_addr+size > pmod->addr) {
1284      // if a buffer is provided, copy path name to the buffer
1285      if (pmod->full_path) {
1286        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1287      }
1288      pmod->base_addr = base_addr;
1289      return 1;
1290    }
1291    return 0;
1292 }
1293 
1294 bool os::dll_address_to_library_name(address addr, char* buf,
1295                                      int buflen, int* offset) {
1296 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1297 //       return the full path to the DLL file, sometimes it returns path
1298 //       to the corresponding PDB file (debug info); sometimes it only
1299 //       returns partial path, which makes life painful.
1300 
1301    struct _modinfo mi;
1302    mi.addr      = addr;
1303    mi.full_path = buf;
1304    mi.buflen    = buflen;
1305    int pid = os::current_process_id();
1306    if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
1307       // buf already contains path name
1308       if (offset) *offset = addr - mi.base_addr;
1309       return true;
1310    } else {
1311       if (buf) buf[0] = '\0';
1312       if (offset) *offset = -1;
1313       return false;
1314    }
1315 }
1316 
1317 bool os::dll_address_to_function_name(address addr, char *buf,
1318                                       int buflen, int *offset) {
1319   // Unimplemented on Windows - in order to use SymGetSymFromAddr(),
1320   // we need to initialize imagehlp/dbghelp, then load symbol table
1321   // for every module. That's too much work to do after a fatal error.
1322   // For an example on how to implement this function, see 1.4.2.
1323   if (offset)  *offset  = -1;
1324   if (buf) buf[0] = '\0';
1325   return false;
1326 }
1327 
1328 void* os::dll_lookup(void* handle, const char* name) {
1329   return GetProcAddress((HMODULE)handle, name);
1330 }
1331 
1332 // save the start and end address of jvm.dll into param[0] and param[1]
1333 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
1334                     unsigned size, void * param) {
1335    if (!param) return -1;
1336 
1337    if (base_addr     <= (address)_locate_jvm_dll &&
1338        base_addr+size > (address)_locate_jvm_dll) {
1339          ((address*)param)[0] = base_addr;
1340          ((address*)param)[1] = base_addr + size;
1341          return 1;
1342    }
1343    return 0;
1344 }
1345 
1346 address vm_lib_location[2];    // start and end address of jvm.dll
1347 
1348 // check if addr is inside jvm.dll
1349 bool os::address_is_in_vm(address addr) {
1350   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1351     int pid = os::current_process_id();
1352     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
1353       assert(false, "Can't find jvm module.");
1354       return false;
1355     }
1356   }
1357 
1358   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1359 }
1360 
1361 // print module info; param is outputStream*
1362 static int _print_module(int pid, char* fname, address base,
1363                          unsigned size, void* param) {
1364    if (!param) return -1;
1365 
1366    outputStream* st = (outputStream*)param;
1367 
1368    address end_addr = base + size;
1369    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
1370    return 0;
1371 }
1372 
1373 // Loads .dll/.so and
1374 // in case of error it checks if .dll/.so was built for the
1375 // same architecture as Hotspot is running on
1376 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
1377 {
1378   void * result = LoadLibrary(name);
1379   if (result != NULL)
1380   {
1381     return result;
1382   }
1383 
1384   long errcode = GetLastError();
1385   if (errcode == ERROR_MOD_NOT_FOUND) {
1386     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
1387     ebuf[ebuflen-1]='\0';
1388     return NULL;
1389   }
1390 
1391   // Parsing dll below
1392   // If we can read dll-info and find that dll was built
1393   // for an architecture other than Hotspot is running in
1394   // - then print to buffer "DLL was built for a different architecture"
1395   // else call getLastErrorString to obtain system error message
1396 
1397   // Read system error message into ebuf
1398   // It may or may not be overwritten below (in the for loop and just above)
1399   getLastErrorString(ebuf, (size_t) ebuflen);
1400   ebuf[ebuflen-1]='\0';
1401   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
1402   if (file_descriptor<0)
1403   {
1404     return NULL;
1405   }
1406 
1407   uint32_t signature_offset;
1408   uint16_t lib_arch=0;
1409   bool failed_to_get_lib_arch=
1410   (
1411     //Go to position 3c in the dll
1412     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
1413     ||
1414     // Read loacation of signature
1415     (sizeof(signature_offset)!=
1416       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
1417     ||
1418     //Go to COFF File Header in dll
1419     //that is located after"signature" (4 bytes long)
1420     (os::seek_to_file_offset(file_descriptor,
1421       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
1422     ||
1423     //Read field that contains code of architecture
1424     // that dll was build for
1425     (sizeof(lib_arch)!=
1426       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
1427   );
1428 
1429   ::close(file_descriptor);
1430   if (failed_to_get_lib_arch)
1431   {
1432     // file i/o error - report getLastErrorString(...) msg
1433     return NULL;
1434   }
1435 
1436   typedef struct
1437   {
1438     uint16_t arch_code;
1439     char* arch_name;
1440   } arch_t;
1441 
1442   static const arch_t arch_array[]={
1443     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1444     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1445     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1446   };
1447   #if   (defined _M_IA64)
1448     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
1449   #elif (defined _M_AMD64)
1450     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
1451   #elif (defined _M_IX86)
1452     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
1453   #else
1454     #error Method os::dll_load requires that one of following \
1455            is defined :_M_IA64,_M_AMD64 or _M_IX86
1456   #endif
1457 
1458 
1459   // Obtain a string for printf operation
1460   // lib_arch_str shall contain string what platform this .dll was built for
1461   // running_arch_str shall string contain what platform Hotspot was built for
1462   char *running_arch_str=NULL,*lib_arch_str=NULL;
1463   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
1464   {
1465     if (lib_arch==arch_array[i].arch_code)
1466       lib_arch_str=arch_array[i].arch_name;
1467     if (running_arch==arch_array[i].arch_code)
1468       running_arch_str=arch_array[i].arch_name;
1469   }
1470 
1471   assert(running_arch_str,
1472     "Didn't find runing architecture code in arch_array");
1473 
1474   // If the architure is right
1475   // but some other error took place - report getLastErrorString(...) msg
1476   if (lib_arch == running_arch)
1477   {
1478     return NULL;
1479   }
1480 
1481   if (lib_arch_str!=NULL)
1482   {
1483     ::_snprintf(ebuf, ebuflen-1,
1484       "Can't load %s-bit .dll on a %s-bit platform",
1485       lib_arch_str,running_arch_str);
1486   }
1487   else
1488   {
1489     // don't know what architecture this dll was build for
1490     ::_snprintf(ebuf, ebuflen-1,
1491       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1492       lib_arch,running_arch_str);
1493   }
1494 
1495   return NULL;
1496 }
1497 
1498 
1499 void os::print_dll_info(outputStream *st) {
1500    int pid = os::current_process_id();
1501    st->print_cr("Dynamic libraries:");
1502    enumerate_modules(pid, _print_module, (void *)st);
1503 }
1504 
1505 // function pointer to Windows API "GetNativeSystemInfo".
1506 typedef void (WINAPI *GetNativeSystemInfo_func_type)(LPSYSTEM_INFO);
1507 static GetNativeSystemInfo_func_type _GetNativeSystemInfo;
1508 
1509 void os::print_os_info(outputStream* st) {
1510   st->print("OS:");
1511 
1512   OSVERSIONINFOEX osvi;
1513   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1514   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1515 
1516   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1517     st->print_cr("N/A");
1518     return;
1519   }
1520 
1521   int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
1522   if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
1523     switch (os_vers) {
1524     case 3051: st->print(" Windows NT 3.51"); break;
1525     case 4000: st->print(" Windows NT 4.0"); break;
1526     case 5000: st->print(" Windows 2000"); break;
1527     case 5001: st->print(" Windows XP"); break;
1528     case 5002:
1529     case 6000:
1530     case 6001: {
1531       // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1532       // find out whether we are running on 64 bit processor or not.
1533       SYSTEM_INFO si;
1534       ZeroMemory(&si, sizeof(SYSTEM_INFO));
1535       // Check to see if _GetNativeSystemInfo has been initialized.
1536       if (_GetNativeSystemInfo == NULL) {
1537         HMODULE hKernel32 = GetModuleHandle(TEXT("kernel32.dll"));
1538         _GetNativeSystemInfo =
1539             CAST_TO_FN_PTR(GetNativeSystemInfo_func_type,
1540                            GetProcAddress(hKernel32,
1541                                           "GetNativeSystemInfo"));
1542         if (_GetNativeSystemInfo == NULL)
1543           GetSystemInfo(&si);
1544       } else {
1545         _GetNativeSystemInfo(&si);
1546       }
1547       if (os_vers == 5002) {
1548         if (osvi.wProductType == VER_NT_WORKSTATION &&
1549             si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1550           st->print(" Windows XP x64 Edition");
1551         else
1552             st->print(" Windows Server 2003 family");
1553       } else if (os_vers == 6000) {
1554         if (osvi.wProductType == VER_NT_WORKSTATION)
1555             st->print(" Windows Vista");
1556         else
1557             st->print(" Windows Server 2008");
1558         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1559             st->print(" , 64 bit");
1560       } else if (os_vers == 6001) {
1561         if (osvi.wProductType == VER_NT_WORKSTATION) {
1562             st->print(" Windows 7");
1563         } else {
1564             // Unrecognized windows, print out its major and minor versions
1565             st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1566         }
1567         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1568             st->print(" , 64 bit");
1569       } else { // future os
1570         // Unrecognized windows, print out its major and minor versions
1571         st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1572         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1573             st->print(" , 64 bit");
1574       }
1575       break;
1576     }
1577     default: // future windows, print out its major and minor versions
1578       st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1579     }
1580   } else {
1581     switch (os_vers) {
1582     case 4000: st->print(" Windows 95"); break;
1583     case 4010: st->print(" Windows 98"); break;
1584     case 4090: st->print(" Windows Me"); break;
1585     default: // future windows, print out its major and minor versions
1586       st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1587     }
1588   }
1589   st->print(" Build %d", osvi.dwBuildNumber);
1590   st->print(" %s", osvi.szCSDVersion);           // service pack
1591   st->cr();
1592 }
1593 
1594 void os::print_memory_info(outputStream* st) {
1595   st->print("Memory:");
1596   st->print(" %dk page", os::vm_page_size()>>10);
1597 
1598   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1599   // value if total memory is larger than 4GB
1600   MEMORYSTATUSEX ms;
1601   ms.dwLength = sizeof(ms);
1602   GlobalMemoryStatusEx(&ms);
1603 
1604   st->print(", physical %uk", os::physical_memory() >> 10);
1605   st->print("(%uk free)", os::available_memory() >> 10);
1606 
1607   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1608   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1609   st->cr();
1610 }
1611 
1612 void os::print_siginfo(outputStream *st, void *siginfo) {
1613   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1614   st->print("siginfo:");
1615   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1616 
1617   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1618       er->NumberParameters >= 2) {
1619       switch (er->ExceptionInformation[0]) {
1620       case 0: st->print(", reading address"); break;
1621       case 1: st->print(", writing address"); break;
1622       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1623                             er->ExceptionInformation[0]);
1624       }
1625       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1626   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1627              er->NumberParameters >= 2 && UseSharedSpaces) {
1628     FileMapInfo* mapinfo = FileMapInfo::current_info();
1629     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1630       st->print("\n\nError accessing class data sharing archive."       \
1631                 " Mapped file inaccessible during execution, "          \
1632                 " possible disk/network problem.");
1633     }
1634   } else {
1635     int num = er->NumberParameters;
1636     if (num > 0) {
1637       st->print(", ExceptionInformation=");
1638       for (int i = 0; i < num; i++) {
1639         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1640       }
1641     }
1642   }
1643   st->cr();
1644 }
1645 
1646 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1647   // do nothing
1648 }
1649 
1650 static char saved_jvm_path[MAX_PATH] = {0};
1651 
1652 // Find the full path to the current module, jvm.dll or jvm_g.dll
1653 void os::jvm_path(char *buf, jint buflen) {
1654   // Error checking.
1655   if (buflen < MAX_PATH) {
1656     assert(false, "must use a large-enough buffer");
1657     buf[0] = '\0';
1658     return;
1659   }
1660   // Lazy resolve the path to current module.
1661   if (saved_jvm_path[0] != 0) {
1662     strcpy(buf, saved_jvm_path);
1663     return;
1664   }
1665 
1666   GetModuleFileName(vm_lib_handle, buf, buflen);
1667   strcpy(saved_jvm_path, buf);
1668 }
1669 
1670 
1671 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1672 #ifndef _WIN64
1673   st->print("_");
1674 #endif
1675 }
1676 
1677 
1678 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1679 #ifndef _WIN64
1680   st->print("@%d", args_size  * sizeof(int));
1681 #endif
1682 }
1683 
1684 // sun.misc.Signal
1685 // NOTE that this is a workaround for an apparent kernel bug where if
1686 // a signal handler for SIGBREAK is installed then that signal handler
1687 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1688 // See bug 4416763.
1689 static void (*sigbreakHandler)(int) = NULL;
1690 
1691 static void UserHandler(int sig, void *siginfo, void *context) {
1692   os::signal_notify(sig);
1693   // We need to reinstate the signal handler each time...
1694   os::signal(sig, (void*)UserHandler);
1695 }
1696 
1697 void* os::user_handler() {
1698   return (void*) UserHandler;
1699 }
1700 
1701 void* os::signal(int signal_number, void* handler) {
1702   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1703     void (*oldHandler)(int) = sigbreakHandler;
1704     sigbreakHandler = (void (*)(int)) handler;
1705     return (void*) oldHandler;
1706   } else {
1707     return (void*)::signal(signal_number, (void (*)(int))handler);
1708   }
1709 }
1710 
1711 void os::signal_raise(int signal_number) {
1712   raise(signal_number);
1713 }
1714 
1715 // The Win32 C runtime library maps all console control events other than ^C
1716 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1717 // logoff, and shutdown events.  We therefore install our own console handler
1718 // that raises SIGTERM for the latter cases.
1719 //
1720 static BOOL WINAPI consoleHandler(DWORD event) {
1721   switch(event) {
1722     case CTRL_C_EVENT:
1723       if (is_error_reported()) {
1724         // Ctrl-C is pressed during error reporting, likely because the error
1725         // handler fails to abort. Let VM die immediately.
1726         os::die();
1727       }
1728 
1729       os::signal_raise(SIGINT);
1730       return TRUE;
1731       break;
1732     case CTRL_BREAK_EVENT:
1733       if (sigbreakHandler != NULL) {
1734         (*sigbreakHandler)(SIGBREAK);
1735       }
1736       return TRUE;
1737       break;
1738     case CTRL_CLOSE_EVENT:
1739     case CTRL_LOGOFF_EVENT:
1740     case CTRL_SHUTDOWN_EVENT:
1741       os::signal_raise(SIGTERM);
1742       return TRUE;
1743       break;
1744     default:
1745       break;
1746   }
1747   return FALSE;
1748 }
1749 
1750 /*
1751  * The following code is moved from os.cpp for making this
1752  * code platform specific, which it is by its very nature.
1753  */
1754 
1755 // Return maximum OS signal used + 1 for internal use only
1756 // Used as exit signal for signal_thread
1757 int os::sigexitnum_pd(){
1758   return NSIG;
1759 }
1760 
1761 // a counter for each possible signal value, including signal_thread exit signal
1762 static volatile jint pending_signals[NSIG+1] = { 0 };
1763 static HANDLE sig_sem;
1764 
1765 void os::signal_init_pd() {
1766   // Initialize signal structures
1767   memset((void*)pending_signals, 0, sizeof(pending_signals));
1768 
1769   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1770 
1771   // Programs embedding the VM do not want it to attempt to receive
1772   // events like CTRL_LOGOFF_EVENT, which are used to implement the
1773   // shutdown hooks mechanism introduced in 1.3.  For example, when
1774   // the VM is run as part of a Windows NT service (i.e., a servlet
1775   // engine in a web server), the correct behavior is for any console
1776   // control handler to return FALSE, not TRUE, because the OS's
1777   // "final" handler for such events allows the process to continue if
1778   // it is a service (while terminating it if it is not a service).
1779   // To make this behavior uniform and the mechanism simpler, we
1780   // completely disable the VM's usage of these console events if -Xrs
1781   // (=ReduceSignalUsage) is specified.  This means, for example, that
1782   // the CTRL-BREAK thread dump mechanism is also disabled in this
1783   // case.  See bugs 4323062, 4345157, and related bugs.
1784 
1785   if (!ReduceSignalUsage) {
1786     // Add a CTRL-C handler
1787     SetConsoleCtrlHandler(consoleHandler, TRUE);
1788   }
1789 }
1790 
1791 void os::signal_notify(int signal_number) {
1792   BOOL ret;
1793 
1794   Atomic::inc(&pending_signals[signal_number]);
1795   ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1796   assert(ret != 0, "ReleaseSemaphore() failed");
1797 }
1798 
1799 static int check_pending_signals(bool wait_for_signal) {
1800   DWORD ret;
1801   while (true) {
1802     for (int i = 0; i < NSIG + 1; i++) {
1803       jint n = pending_signals[i];
1804       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1805         return i;
1806       }
1807     }
1808     if (!wait_for_signal) {
1809       return -1;
1810     }
1811 
1812     JavaThread *thread = JavaThread::current();
1813 
1814     ThreadBlockInVM tbivm(thread);
1815 
1816     bool threadIsSuspended;
1817     do {
1818       thread->set_suspend_equivalent();
1819       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1820       ret = ::WaitForSingleObject(sig_sem, INFINITE);
1821       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
1822 
1823       // were we externally suspended while we were waiting?
1824       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1825       if (threadIsSuspended) {
1826         //
1827         // The semaphore has been incremented, but while we were waiting
1828         // another thread suspended us. We don't want to continue running
1829         // while suspended because that would surprise the thread that
1830         // suspended us.
1831         //
1832         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1833         assert(ret != 0, "ReleaseSemaphore() failed");
1834 
1835         thread->java_suspend_self();
1836       }
1837     } while (threadIsSuspended);
1838   }
1839 }
1840 
1841 int os::signal_lookup() {
1842   return check_pending_signals(false);
1843 }
1844 
1845 int os::signal_wait() {
1846   return check_pending_signals(true);
1847 }
1848 
1849 // Implicit OS exception handling
1850 
1851 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
1852   JavaThread* thread = JavaThread::current();
1853   // Save pc in thread
1854 #ifdef _M_IA64
1855   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
1856   // Set pc to handler
1857   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
1858 #elif _M_AMD64
1859   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
1860   // Set pc to handler
1861   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
1862 #else
1863   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
1864   // Set pc to handler
1865   exceptionInfo->ContextRecord->Eip = (LONG)handler;
1866 #endif
1867 
1868   // Continue the execution
1869   return EXCEPTION_CONTINUE_EXECUTION;
1870 }
1871 
1872 
1873 // Used for PostMortemDump
1874 extern "C" void safepoints();
1875 extern "C" void find(int x);
1876 extern "C" void events();
1877 
1878 // According to Windows API documentation, an illegal instruction sequence should generate
1879 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
1880 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
1881 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
1882 
1883 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
1884 
1885 // From "Execution Protection in the Windows Operating System" draft 0.35
1886 // Once a system header becomes available, the "real" define should be
1887 // included or copied here.
1888 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
1889 
1890 #define def_excpt(val) #val, val
1891 
1892 struct siglabel {
1893   char *name;
1894   int   number;
1895 };
1896 
1897 struct siglabel exceptlabels[] = {
1898     def_excpt(EXCEPTION_ACCESS_VIOLATION),
1899     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
1900     def_excpt(EXCEPTION_BREAKPOINT),
1901     def_excpt(EXCEPTION_SINGLE_STEP),
1902     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
1903     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
1904     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
1905     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
1906     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
1907     def_excpt(EXCEPTION_FLT_OVERFLOW),
1908     def_excpt(EXCEPTION_FLT_STACK_CHECK),
1909     def_excpt(EXCEPTION_FLT_UNDERFLOW),
1910     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
1911     def_excpt(EXCEPTION_INT_OVERFLOW),
1912     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
1913     def_excpt(EXCEPTION_IN_PAGE_ERROR),
1914     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
1915     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
1916     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
1917     def_excpt(EXCEPTION_STACK_OVERFLOW),
1918     def_excpt(EXCEPTION_INVALID_DISPOSITION),
1919     def_excpt(EXCEPTION_GUARD_PAGE),
1920     def_excpt(EXCEPTION_INVALID_HANDLE),
1921     NULL, 0
1922 };
1923 
1924 const char* os::exception_name(int exception_code, char *buf, size_t size) {
1925   for (int i = 0; exceptlabels[i].name != NULL; i++) {
1926     if (exceptlabels[i].number == exception_code) {
1927        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
1928        return buf;
1929     }
1930   }
1931 
1932   return NULL;
1933 }
1934 
1935 //-----------------------------------------------------------------------------
1936 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
1937   // handle exception caused by idiv; should only happen for -MinInt/-1
1938   // (division by zero is handled explicitly)
1939 #ifdef _M_IA64
1940   assert(0, "Fix Handle_IDiv_Exception");
1941 #elif _M_AMD64
1942   PCONTEXT ctx = exceptionInfo->ContextRecord;
1943   address pc = (address)ctx->Rip;
1944   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
1945   assert(pc[0] == 0xF7, "not an idiv opcode");
1946   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
1947   assert(ctx->Rax == min_jint, "unexpected idiv exception");
1948   // set correct result values and continue after idiv instruction
1949   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
1950   ctx->Rax = (DWORD)min_jint;      // result
1951   ctx->Rdx = (DWORD)0;             // remainder
1952   // Continue the execution
1953 #else
1954   PCONTEXT ctx = exceptionInfo->ContextRecord;
1955   address pc = (address)ctx->Eip;
1956   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
1957   assert(pc[0] == 0xF7, "not an idiv opcode");
1958   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
1959   assert(ctx->Eax == min_jint, "unexpected idiv exception");
1960   // set correct result values and continue after idiv instruction
1961   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
1962   ctx->Eax = (DWORD)min_jint;      // result
1963   ctx->Edx = (DWORD)0;             // remainder
1964   // Continue the execution
1965 #endif
1966   return EXCEPTION_CONTINUE_EXECUTION;
1967 }
1968 
1969 #ifndef  _WIN64
1970 //-----------------------------------------------------------------------------
1971 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
1972   // handle exception caused by native mothod modifying control word
1973   PCONTEXT ctx = exceptionInfo->ContextRecord;
1974   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
1975 
1976   switch (exception_code) {
1977     case EXCEPTION_FLT_DENORMAL_OPERAND:
1978     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
1979     case EXCEPTION_FLT_INEXACT_RESULT:
1980     case EXCEPTION_FLT_INVALID_OPERATION:
1981     case EXCEPTION_FLT_OVERFLOW:
1982     case EXCEPTION_FLT_STACK_CHECK:
1983     case EXCEPTION_FLT_UNDERFLOW:
1984       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
1985       if (fp_control_word != ctx->FloatSave.ControlWord) {
1986         // Restore FPCW and mask out FLT exceptions
1987         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
1988         // Mask out pending FLT exceptions
1989         ctx->FloatSave.StatusWord &=  0xffffff00;
1990         return EXCEPTION_CONTINUE_EXECUTION;
1991       }
1992   }
1993   return EXCEPTION_CONTINUE_SEARCH;
1994 }
1995 #else //_WIN64
1996 /*
1997   On Windows, the mxcsr control bits are non-volatile across calls
1998   See also CR 6192333
1999   If EXCEPTION_FLT_* happened after some native method modified
2000   mxcsr - it is not a jvm fault.
2001   However should we decide to restore of mxcsr after a faulty
2002   native method we can uncomment following code
2003       jint MxCsr = INITIAL_MXCSR;
2004         // we can't use StubRoutines::addr_mxcsr_std()
2005         // because in Win64 mxcsr is not saved there
2006       if (MxCsr != ctx->MxCsr) {
2007         ctx->MxCsr = MxCsr;
2008         return EXCEPTION_CONTINUE_EXECUTION;
2009       }
2010 
2011 */
2012 #endif //_WIN64
2013 
2014 
2015 // Fatal error reporting is single threaded so we can make this a
2016 // static and preallocated.  If it's more than MAX_PATH silently ignore
2017 // it.
2018 static char saved_error_file[MAX_PATH] = {0};
2019 
2020 void os::set_error_file(const char *logfile) {
2021   if (strlen(logfile) <= MAX_PATH) {
2022     strncpy(saved_error_file, logfile, MAX_PATH);
2023   }
2024 }
2025 
2026 static inline void report_error(Thread* t, DWORD exception_code,
2027                                 address addr, void* siginfo, void* context) {
2028   VMError err(t, exception_code, addr, siginfo, context);
2029   err.report_and_die();
2030 
2031   // If UseOsErrorReporting, this will return here and save the error file
2032   // somewhere where we can find it in the minidump.
2033 }
2034 
2035 //-----------------------------------------------------------------------------
2036 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2037   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2038   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2039 #ifdef _M_IA64
2040   address pc = (address) exceptionInfo->ContextRecord->StIIP;
2041 #elif _M_AMD64
2042   address pc = (address) exceptionInfo->ContextRecord->Rip;
2043 #else
2044   address pc = (address) exceptionInfo->ContextRecord->Eip;
2045 #endif
2046   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2047 
2048 #ifndef _WIN64
2049   // Execution protection violation - win32 running on AMD64 only
2050   // Handled first to avoid misdiagnosis as a "normal" access violation;
2051   // This is safe to do because we have a new/unique ExceptionInformation
2052   // code for this condition.
2053   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2054     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2055     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2056     address addr = (address) exceptionRecord->ExceptionInformation[1];
2057 
2058     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2059       int page_size = os::vm_page_size();
2060 
2061       // Make sure the pc and the faulting address are sane.
2062       //
2063       // If an instruction spans a page boundary, and the page containing
2064       // the beginning of the instruction is executable but the following
2065       // page is not, the pc and the faulting address might be slightly
2066       // different - we still want to unguard the 2nd page in this case.
2067       //
2068       // 15 bytes seems to be a (very) safe value for max instruction size.
2069       bool pc_is_near_addr =
2070         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2071       bool instr_spans_page_boundary =
2072         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2073                          (intptr_t) page_size) > 0);
2074 
2075       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2076         static volatile address last_addr =
2077           (address) os::non_memory_address_word();
2078 
2079         // In conservative mode, don't unguard unless the address is in the VM
2080         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2081             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2082 
2083           // Set memory to RWX and retry
2084           address page_start =
2085             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2086           bool res = os::protect_memory((char*) page_start, page_size,
2087                                         os::MEM_PROT_RWX);
2088 
2089           if (PrintMiscellaneous && Verbose) {
2090             char buf[256];
2091             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2092                          "at " INTPTR_FORMAT
2093                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2094                          page_start, (res ? "success" : strerror(errno)));
2095             tty->print_raw_cr(buf);
2096           }
2097 
2098           // Set last_addr so if we fault again at the same address, we don't
2099           // end up in an endless loop.
2100           //
2101           // There are two potential complications here.  Two threads trapping
2102           // at the same address at the same time could cause one of the
2103           // threads to think it already unguarded, and abort the VM.  Likely
2104           // very rare.
2105           //
2106           // The other race involves two threads alternately trapping at
2107           // different addresses and failing to unguard the page, resulting in
2108           // an endless loop.  This condition is probably even more unlikely
2109           // than the first.
2110           //
2111           // Although both cases could be avoided by using locks or thread
2112           // local last_addr, these solutions are unnecessary complication:
2113           // this handler is a best-effort safety net, not a complete solution.
2114           // It is disabled by default and should only be used as a workaround
2115           // in case we missed any no-execute-unsafe VM code.
2116 
2117           last_addr = addr;
2118 
2119           return EXCEPTION_CONTINUE_EXECUTION;
2120         }
2121       }
2122 
2123       // Last unguard failed or not unguarding
2124       tty->print_raw_cr("Execution protection violation");
2125       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2126                    exceptionInfo->ContextRecord);
2127       return EXCEPTION_CONTINUE_SEARCH;
2128     }
2129   }
2130 #endif // _WIN64
2131 
2132   // Check to see if we caught the safepoint code in the
2133   // process of write protecting the memory serialization page.
2134   // It write enables the page immediately after protecting it
2135   // so just return.
2136   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
2137     JavaThread* thread = (JavaThread*) t;
2138     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2139     address addr = (address) exceptionRecord->ExceptionInformation[1];
2140     if ( os::is_memory_serialize_page(thread, addr) ) {
2141       // Block current thread until the memory serialize page permission restored.
2142       os::block_on_serialize_page_trap();
2143       return EXCEPTION_CONTINUE_EXECUTION;
2144     }
2145   }
2146 
2147 
2148   if (t != NULL && t->is_Java_thread()) {
2149     JavaThread* thread = (JavaThread*) t;
2150     bool in_java = thread->thread_state() == _thread_in_Java;
2151 
2152     // Handle potential stack overflows up front.
2153     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2154       if (os::uses_stack_guard_pages()) {
2155 #ifdef _M_IA64
2156         //
2157         // If it's a legal stack address continue, Windows will map it in.
2158         //
2159         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2160         address addr = (address) exceptionRecord->ExceptionInformation[1];
2161         if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
2162           return EXCEPTION_CONTINUE_EXECUTION;
2163 
2164         // The register save area is the same size as the memory stack
2165         // and starts at the page just above the start of the memory stack.
2166         // If we get a fault in this area, we've run out of register
2167         // stack.  If we are in java, try throwing a stack overflow exception.
2168         if (addr > thread->stack_base() &&
2169                       addr <= (thread->stack_base()+thread->stack_size()) ) {
2170           char buf[256];
2171           jio_snprintf(buf, sizeof(buf),
2172                        "Register stack overflow, addr:%p, stack_base:%p\n",
2173                        addr, thread->stack_base() );
2174           tty->print_raw_cr(buf);
2175           // If not in java code, return and hope for the best.
2176           return in_java ? Handle_Exception(exceptionInfo,
2177             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2178             :  EXCEPTION_CONTINUE_EXECUTION;
2179         }
2180 #endif
2181         if (thread->stack_yellow_zone_enabled()) {
2182           // Yellow zone violation.  The o/s has unprotected the first yellow
2183           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2184           // update the enabled status, even if the zone contains only one page.
2185           thread->disable_stack_yellow_zone();
2186           // If not in java code, return and hope for the best.
2187           return in_java ? Handle_Exception(exceptionInfo,
2188             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2189             :  EXCEPTION_CONTINUE_EXECUTION;
2190         } else {
2191           // Fatal red zone violation.
2192           thread->disable_stack_red_zone();
2193           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2194           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2195                        exceptionInfo->ContextRecord);
2196           return EXCEPTION_CONTINUE_SEARCH;
2197         }
2198       } else if (in_java) {
2199         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2200         // a one-time-only guard page, which it has released to us.  The next
2201         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2202         return Handle_Exception(exceptionInfo,
2203           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2204       } else {
2205         // Can only return and hope for the best.  Further stack growth will
2206         // result in an ACCESS_VIOLATION.
2207         return EXCEPTION_CONTINUE_EXECUTION;
2208       }
2209     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2210       // Either stack overflow or null pointer exception.
2211       if (in_java) {
2212         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2213         address addr = (address) exceptionRecord->ExceptionInformation[1];
2214         address stack_end = thread->stack_base() - thread->stack_size();
2215         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2216           // Stack overflow.
2217           assert(!os::uses_stack_guard_pages(),
2218             "should be caught by red zone code above.");
2219           return Handle_Exception(exceptionInfo,
2220             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2221         }
2222         //
2223         // Check for safepoint polling and implicit null
2224         // We only expect null pointers in the stubs (vtable)
2225         // the rest are checked explicitly now.
2226         //
2227         CodeBlob* cb = CodeCache::find_blob(pc);
2228         if (cb != NULL) {
2229           if (os::is_poll_address(addr)) {
2230             address stub = SharedRuntime::get_poll_stub(pc);
2231             return Handle_Exception(exceptionInfo, stub);
2232           }
2233         }
2234         {
2235 #ifdef _WIN64
2236           //
2237           // If it's a legal stack address map the entire region in
2238           //
2239           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2240           address addr = (address) exceptionRecord->ExceptionInformation[1];
2241           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
2242                   addr = (address)((uintptr_t)addr &
2243                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2244                   os::commit_memory((char *)addr, thread->stack_base() - addr,
2245                                     false );
2246                   return EXCEPTION_CONTINUE_EXECUTION;
2247           }
2248           else
2249 #endif
2250           {
2251             // Null pointer exception.
2252 #ifdef _M_IA64
2253             // We catch register stack overflows in compiled code by doing
2254             // an explicit compare and executing a st8(G0, G0) if the
2255             // BSP enters into our guard area.  We test for the overflow
2256             // condition and fall into the normal null pointer exception
2257             // code if BSP hasn't overflowed.
2258             if ( in_java ) {
2259               if(thread->register_stack_overflow()) {
2260                 assert((address)exceptionInfo->ContextRecord->IntS3 ==
2261                                 thread->register_stack_limit(),
2262                                "GR7 doesn't contain register_stack_limit");
2263                 // Disable the yellow zone which sets the state that
2264                 // we've got a stack overflow problem.
2265                 if (thread->stack_yellow_zone_enabled()) {
2266                   thread->disable_stack_yellow_zone();
2267                 }
2268                 // Give us some room to process the exception
2269                 thread->disable_register_stack_guard();
2270                 // Update GR7 with the new limit so we can continue running
2271                 // compiled code.
2272                 exceptionInfo->ContextRecord->IntS3 =
2273                                (ULONGLONG)thread->register_stack_limit();
2274                 return Handle_Exception(exceptionInfo,
2275                        SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2276               } else {
2277                 //
2278                 // Check for implicit null
2279                 // We only expect null pointers in the stubs (vtable)
2280                 // the rest are checked explicitly now.
2281                 //
2282                 if (((uintptr_t)addr) < os::vm_page_size() ) {
2283                   // an access to the first page of VM--assume it is a null pointer
2284                   address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2285                   if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2286                 }
2287               }
2288             } // in_java
2289 
2290             // IA64 doesn't use implicit null checking yet. So we shouldn't
2291             // get here.
2292             tty->print_raw_cr("Access violation, possible null pointer exception");
2293             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2294                          exceptionInfo->ContextRecord);
2295             return EXCEPTION_CONTINUE_SEARCH;
2296 #else /* !IA64 */
2297 
2298             // Windows 98 reports faulting addresses incorrectly
2299             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2300                 !os::win32::is_nt()) {
2301               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2302               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2303             }
2304             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2305                          exceptionInfo->ContextRecord);
2306             return EXCEPTION_CONTINUE_SEARCH;
2307 #endif
2308           }
2309         }
2310       }
2311 
2312 #ifdef _WIN64
2313       // Special care for fast JNI field accessors.
2314       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2315       // in and the heap gets shrunk before the field access.
2316       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2317         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2318         if (addr != (address)-1) {
2319           return Handle_Exception(exceptionInfo, addr);
2320         }
2321       }
2322 #endif
2323 
2324 #ifdef _WIN64
2325       // Windows will sometimes generate an access violation
2326       // when we call malloc.  Since we use VectoredExceptions
2327       // on 64 bit platforms, we see this exception.  We must
2328       // pass this exception on so Windows can recover.
2329       // We check to see if the pc of the fault is in NTDLL.DLL
2330       // if so, we pass control on to Windows for handling.
2331       if (UseVectoredExceptions && _addr_in_ntdll(pc)) return EXCEPTION_CONTINUE_SEARCH;
2332 #endif
2333 
2334       // Stack overflow or null pointer exception in native code.
2335       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2336                    exceptionInfo->ContextRecord);
2337       return EXCEPTION_CONTINUE_SEARCH;
2338     }
2339 
2340     if (in_java) {
2341       switch (exception_code) {
2342       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2343         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2344 
2345       case EXCEPTION_INT_OVERFLOW:
2346         return Handle_IDiv_Exception(exceptionInfo);
2347 
2348       } // switch
2349     }
2350 #ifndef _WIN64
2351     if ((thread->thread_state() == _thread_in_Java) ||
2352         (thread->thread_state() == _thread_in_native) )
2353     {
2354       LONG result=Handle_FLT_Exception(exceptionInfo);
2355       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2356     }
2357 #endif //_WIN64
2358   }
2359 
2360   if (exception_code != EXCEPTION_BREAKPOINT) {
2361 #ifndef _WIN64
2362     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2363                  exceptionInfo->ContextRecord);
2364 #else
2365     // Itanium Windows uses a VectoredExceptionHandler
2366     // Which means that C++ programatic exception handlers (try/except)
2367     // will get here.  Continue the search for the right except block if
2368     // the exception code is not a fatal code.
2369     switch ( exception_code ) {
2370       case EXCEPTION_ACCESS_VIOLATION:
2371       case EXCEPTION_STACK_OVERFLOW:
2372       case EXCEPTION_ILLEGAL_INSTRUCTION:
2373       case EXCEPTION_ILLEGAL_INSTRUCTION_2:
2374       case EXCEPTION_INT_OVERFLOW:
2375       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2376       {  report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2377                        exceptionInfo->ContextRecord);
2378       }
2379         break;
2380       default:
2381         break;
2382     }
2383 #endif
2384   }
2385   return EXCEPTION_CONTINUE_SEARCH;
2386 }
2387 
2388 #ifndef _WIN64
2389 // Special care for fast JNI accessors.
2390 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2391 // the heap gets shrunk before the field access.
2392 // Need to install our own structured exception handler since native code may
2393 // install its own.
2394 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2395   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2396   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2397     address pc = (address) exceptionInfo->ContextRecord->Eip;
2398     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2399     if (addr != (address)-1) {
2400       return Handle_Exception(exceptionInfo, addr);
2401     }
2402   }
2403   return EXCEPTION_CONTINUE_SEARCH;
2404 }
2405 
2406 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
2407 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
2408   __try { \
2409     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
2410   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
2411   } \
2412   return 0; \
2413 }
2414 
2415 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2416 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2417 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2418 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2419 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2420 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2421 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2422 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2423 
2424 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2425   switch (type) {
2426     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2427     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2428     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2429     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2430     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2431     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2432     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2433     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2434     default:        ShouldNotReachHere();
2435   }
2436   return (address)-1;
2437 }
2438 #endif
2439 
2440 // Virtual Memory
2441 
2442 int os::vm_page_size() { return os::win32::vm_page_size(); }
2443 int os::vm_allocation_granularity() {
2444   return os::win32::vm_allocation_granularity();
2445 }
2446 
2447 // Windows large page support is available on Windows 2003. In order to use
2448 // large page memory, the administrator must first assign additional privilege
2449 // to the user:
2450 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2451 //   + select Local Policies -> User Rights Assignment
2452 //   + double click "Lock pages in memory", add users and/or groups
2453 //   + reboot
2454 // Note the above steps are needed for administrator as well, as administrators
2455 // by default do not have the privilege to lock pages in memory.
2456 //
2457 // Note about Windows 2003: although the API supports committing large page
2458 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2459 // scenario, I found through experiment it only uses large page if the entire
2460 // memory region is reserved and committed in a single VirtualAlloc() call.
2461 // This makes Windows large page support more or less like Solaris ISM, in
2462 // that the entire heap must be committed upfront. This probably will change
2463 // in the future, if so the code below needs to be revisited.
2464 
2465 #ifndef MEM_LARGE_PAGES
2466 #define MEM_LARGE_PAGES 0x20000000
2467 #endif
2468 
2469 // GetLargePageMinimum is only available on Windows 2003. The other functions
2470 // are available on NT but not on Windows 98/Me. We have to resolve them at
2471 // runtime.
2472 typedef SIZE_T (WINAPI *GetLargePageMinimum_func_type) (void);
2473 typedef BOOL (WINAPI *AdjustTokenPrivileges_func_type)
2474              (HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
2475 typedef BOOL (WINAPI *OpenProcessToken_func_type) (HANDLE, DWORD, PHANDLE);
2476 typedef BOOL (WINAPI *LookupPrivilegeValue_func_type) (LPCTSTR, LPCTSTR, PLUID);
2477 
2478 static GetLargePageMinimum_func_type   _GetLargePageMinimum;
2479 static AdjustTokenPrivileges_func_type _AdjustTokenPrivileges;
2480 static OpenProcessToken_func_type      _OpenProcessToken;
2481 static LookupPrivilegeValue_func_type  _LookupPrivilegeValue;
2482 
2483 static HINSTANCE _kernel32;
2484 static HINSTANCE _advapi32;
2485 static HANDLE    _hProcess;
2486 static HANDLE    _hToken;
2487 
2488 static size_t _large_page_size = 0;
2489 
2490 static bool resolve_functions_for_large_page_init() {
2491   _kernel32 = LoadLibrary("kernel32.dll");
2492   if (_kernel32 == NULL) return false;
2493 
2494   _GetLargePageMinimum   = CAST_TO_FN_PTR(GetLargePageMinimum_func_type,
2495                             GetProcAddress(_kernel32, "GetLargePageMinimum"));
2496   if (_GetLargePageMinimum == NULL) return false;
2497 
2498   _advapi32 = LoadLibrary("advapi32.dll");
2499   if (_advapi32 == NULL) return false;
2500 
2501   _AdjustTokenPrivileges = CAST_TO_FN_PTR(AdjustTokenPrivileges_func_type,
2502                             GetProcAddress(_advapi32, "AdjustTokenPrivileges"));
2503   _OpenProcessToken      = CAST_TO_FN_PTR(OpenProcessToken_func_type,
2504                             GetProcAddress(_advapi32, "OpenProcessToken"));
2505   _LookupPrivilegeValue  = CAST_TO_FN_PTR(LookupPrivilegeValue_func_type,
2506                             GetProcAddress(_advapi32, "LookupPrivilegeValueA"));
2507   return _AdjustTokenPrivileges != NULL &&
2508          _OpenProcessToken      != NULL &&
2509          _LookupPrivilegeValue  != NULL;
2510 }
2511 
2512 static bool request_lock_memory_privilege() {
2513   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2514                                 os::current_process_id());
2515 
2516   LUID luid;
2517   if (_hProcess != NULL &&
2518       _OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2519       _LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2520 
2521     TOKEN_PRIVILEGES tp;
2522     tp.PrivilegeCount = 1;
2523     tp.Privileges[0].Luid = luid;
2524     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2525 
2526     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2527     // privilege. Check GetLastError() too. See MSDN document.
2528     if (_AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2529         (GetLastError() == ERROR_SUCCESS)) {
2530       return true;
2531     }
2532   }
2533 
2534   return false;
2535 }
2536 
2537 static void cleanup_after_large_page_init() {
2538   _GetLargePageMinimum = NULL;
2539   _AdjustTokenPrivileges = NULL;
2540   _OpenProcessToken = NULL;
2541   _LookupPrivilegeValue = NULL;
2542   if (_kernel32) FreeLibrary(_kernel32);
2543   _kernel32 = NULL;
2544   if (_advapi32) FreeLibrary(_advapi32);
2545   _advapi32 = NULL;
2546   if (_hProcess) CloseHandle(_hProcess);
2547   _hProcess = NULL;
2548   if (_hToken) CloseHandle(_hToken);
2549   _hToken = NULL;
2550 }
2551 
2552 bool os::large_page_init() {
2553   if (!UseLargePages) return false;
2554 
2555   // print a warning if any large page related flag is specified on command line
2556   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2557                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2558   bool success = false;
2559 
2560 # define WARN(msg) if (warn_on_failure) { warning(msg); }
2561   if (resolve_functions_for_large_page_init()) {
2562     if (request_lock_memory_privilege()) {
2563       size_t s = _GetLargePageMinimum();
2564       if (s) {
2565 #if defined(IA32) || defined(AMD64)
2566         if (s > 4*M || LargePageSizeInBytes > 4*M) {
2567           WARN("JVM cannot use large pages bigger than 4mb.");
2568         } else {
2569 #endif
2570           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2571             _large_page_size = LargePageSizeInBytes;
2572           } else {
2573             _large_page_size = s;
2574           }
2575           success = true;
2576 #if defined(IA32) || defined(AMD64)
2577         }
2578 #endif
2579       } else {
2580         WARN("Large page is not supported by the processor.");
2581       }
2582     } else {
2583       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
2584     }
2585   } else {
2586     WARN("Large page is not supported by the operating system.");
2587   }
2588 #undef WARN
2589 
2590   const size_t default_page_size = (size_t) vm_page_size();
2591   if (success && _large_page_size > default_page_size) {
2592     _page_sizes[0] = _large_page_size;
2593     _page_sizes[1] = default_page_size;
2594     _page_sizes[2] = 0;
2595   }
2596 
2597   cleanup_after_large_page_init();
2598   return success;
2599 }
2600 
2601 // On win32, one cannot release just a part of reserved memory, it's an
2602 // all or nothing deal.  When we split a reservation, we must break the
2603 // reservation into two reservations.
2604 void os::split_reserved_memory(char *base, size_t size, size_t split,
2605                               bool realloc) {
2606   if (size > 0) {
2607     release_memory(base, size);
2608     if (realloc) {
2609       reserve_memory(split, base);
2610     }
2611     if (size != split) {
2612       reserve_memory(size - split, base + split);
2613     }
2614   }
2615 }
2616 
2617 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
2618   assert((size_t)addr % os::vm_allocation_granularity() == 0,
2619          "reserve alignment");
2620   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
2621   char* res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
2622   assert(res == NULL || addr == NULL || addr == res,
2623          "Unexpected address from reserve.");
2624   return res;
2625 }
2626 
2627 // Reserve memory at an arbitrary address, only if that area is
2628 // available (and not reserved for something else).
2629 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2630   // Windows os::reserve_memory() fails of the requested address range is
2631   // not avilable.
2632   return reserve_memory(bytes, requested_addr);
2633 }
2634 
2635 size_t os::large_page_size() {
2636   return _large_page_size;
2637 }
2638 
2639 bool os::can_commit_large_page_memory() {
2640   // Windows only uses large page memory when the entire region is reserved
2641   // and committed in a single VirtualAlloc() call. This may change in the
2642   // future, but with Windows 2003 it's not possible to commit on demand.
2643   return false;
2644 }
2645 
2646 bool os::can_execute_large_page_memory() {
2647   return true;
2648 }
2649 
2650 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
2651 
2652   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
2653 
2654   if (UseLargePagesIndividualAllocation) {
2655     if (TracePageSizes && Verbose) {
2656        tty->print_cr("Reserving large pages individually.");
2657     }
2658     char * p_buf;
2659     // first reserve enough address space in advance since we want to be
2660     // able to break a single contiguous virtual address range into multiple
2661     // large page commits but WS2003 does not allow reserving large page space
2662     // so we just use 4K pages for reserve, this gives us a legal contiguous
2663     // address space. then we will deallocate that reservation, and re alloc
2664     // using large pages
2665     const size_t size_of_reserve = bytes + _large_page_size;
2666     if (bytes > size_of_reserve) {
2667       // Overflowed.
2668       warning("Individually allocated large pages failed, "
2669         "use -XX:-UseLargePagesIndividualAllocation to turn off");
2670       return NULL;
2671     }
2672     p_buf = (char *) VirtualAlloc(addr,
2673                                  size_of_reserve,  // size of Reserve
2674                                  MEM_RESERVE,
2675                                  PAGE_READWRITE);
2676     // If reservation failed, return NULL
2677     if (p_buf == NULL) return NULL;
2678 
2679     release_memory(p_buf, bytes + _large_page_size);
2680     // round up to page boundary.  If the size_of_reserve did not
2681     // overflow and the reservation did not fail, this align up
2682     // should not overflow.
2683     p_buf = (char *) align_size_up((size_t)p_buf, _large_page_size);
2684 
2685     // now go through and allocate one page at a time until all bytes are
2686     // allocated
2687     size_t  bytes_remaining = align_size_up(bytes, _large_page_size);
2688     // An overflow of align_size_up() would have been caught above
2689     // in the calculation of size_of_reserve.
2690     char * next_alloc_addr = p_buf;
2691 
2692 #ifdef ASSERT
2693     // Variable for the failure injection
2694     long ran_num = os::random();
2695     size_t fail_after = ran_num % bytes;
2696 #endif
2697 
2698     while (bytes_remaining) {
2699       size_t bytes_to_rq = MIN2(bytes_remaining, _large_page_size);
2700       // Note allocate and commit
2701       char * p_new;
2702 
2703 #ifdef ASSERT
2704       bool inject_error = LargePagesIndividualAllocationInjectError &&
2705           (bytes_remaining <= fail_after);
2706 #else
2707       const bool inject_error = false;
2708 #endif
2709 
2710       if (inject_error) {
2711         p_new = NULL;
2712       } else {
2713         p_new = (char *) VirtualAlloc(next_alloc_addr,
2714                                     bytes_to_rq,
2715                                     MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES,
2716                                     prot);
2717       }
2718 
2719       if (p_new == NULL) {
2720         // Free any allocated pages
2721         if (next_alloc_addr > p_buf) {
2722           // Some memory was committed so release it.
2723           size_t bytes_to_release = bytes - bytes_remaining;
2724           release_memory(p_buf, bytes_to_release);
2725         }
2726 #ifdef ASSERT
2727         if (UseLargePagesIndividualAllocation &&
2728             LargePagesIndividualAllocationInjectError) {
2729           if (TracePageSizes && Verbose) {
2730              tty->print_cr("Reserving large pages individually failed.");
2731           }
2732         }
2733 #endif
2734         return NULL;
2735       }
2736       bytes_remaining -= bytes_to_rq;
2737       next_alloc_addr += bytes_to_rq;
2738     }
2739 
2740     return p_buf;
2741 
2742   } else {
2743     // normal policy just allocate it all at once
2744     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
2745     char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
2746     return res;
2747   }
2748 }
2749 
2750 bool os::release_memory_special(char* base, size_t bytes) {
2751   return release_memory(base, bytes);
2752 }
2753 
2754 void os::print_statistics() {
2755 }
2756 
2757 bool os::commit_memory(char* addr, size_t bytes, bool exec) {
2758   if (bytes == 0) {
2759     // Don't bother the OS with noops.
2760     return true;
2761   }
2762   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
2763   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
2764   // Don't attempt to print anything if the OS call fails. We're
2765   // probably low on resources, so the print itself may cause crashes.
2766   bool result = VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) != 0;
2767   if (result != NULL && exec) {
2768     DWORD oldprot;
2769     // Windows doc says to use VirtualProtect to get execute permissions
2770     return VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot) != 0;
2771   } else {
2772     return result;
2773   }
2774 }
2775 
2776 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2777                        bool exec) {
2778   return commit_memory(addr, size, exec);
2779 }
2780 
2781 bool os::uncommit_memory(char* addr, size_t bytes) {
2782   if (bytes == 0) {
2783     // Don't bother the OS with noops.
2784     return true;
2785   }
2786   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
2787   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
2788   return VirtualFree(addr, bytes, MEM_DECOMMIT) != 0;
2789 }
2790 
2791 bool os::release_memory(char* addr, size_t bytes) {
2792   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
2793 }
2794 
2795 // Set protections specified
2796 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2797                         bool is_committed) {
2798   unsigned int p = 0;
2799   switch (prot) {
2800   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
2801   case MEM_PROT_READ: p = PAGE_READONLY; break;
2802   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
2803   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
2804   default:
2805     ShouldNotReachHere();
2806   }
2807 
2808   DWORD old_status;
2809 
2810   // Strange enough, but on Win32 one can change protection only for committed
2811   // memory, not a big deal anyway, as bytes less or equal than 64K
2812   if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
2813     fatal("cannot commit protection page");
2814   }
2815   // One cannot use os::guard_memory() here, as on Win32 guard page
2816   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
2817   //
2818   // Pages in the region become guard pages. Any attempt to access a guard page
2819   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
2820   // the guard page status. Guard pages thus act as a one-time access alarm.
2821   return VirtualProtect(addr, bytes, p, &old_status) != 0;
2822 }
2823 
2824 bool os::guard_memory(char* addr, size_t bytes) {
2825   DWORD old_status;
2826   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
2827 }
2828 
2829 bool os::unguard_memory(char* addr, size_t bytes) {
2830   DWORD old_status;
2831   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
2832 }
2833 
2834 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
2835 void os::free_memory(char *addr, size_t bytes)         { }
2836 void os::numa_make_global(char *addr, size_t bytes)    { }
2837 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
2838 bool os::numa_topology_changed()                       { return false; }
2839 size_t os::numa_get_groups_num()                       { return 1; }
2840 int os::numa_get_group_id()                            { return 0; }
2841 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2842   if (size > 0) {
2843     ids[0] = 0;
2844     return 1;
2845   }
2846   return 0;
2847 }
2848 
2849 bool os::get_page_info(char *start, page_info* info) {
2850   return false;
2851 }
2852 
2853 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2854   return end;
2855 }
2856 
2857 char* os::non_memory_address_word() {
2858   // Must never look like an address returned by reserve_memory,
2859   // even in its subfields (as defined by the CPU immediate fields,
2860   // if the CPU splits constants across multiple instructions).
2861   return (char*)-1;
2862 }
2863 
2864 #define MAX_ERROR_COUNT 100
2865 #define SYS_THREAD_ERROR 0xffffffffUL
2866 
2867 void os::pd_start_thread(Thread* thread) {
2868   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
2869   // Returns previous suspend state:
2870   // 0:  Thread was not suspended
2871   // 1:  Thread is running now
2872   // >1: Thread is still suspended.
2873   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
2874 }
2875 
2876 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2877   return ::read(fd, buf, nBytes);
2878 }
2879 
2880 class HighResolutionInterval {
2881   // The default timer resolution seems to be 10 milliseconds.
2882   // (Where is this written down?)
2883   // If someone wants to sleep for only a fraction of the default,
2884   // then we set the timer resolution down to 1 millisecond for
2885   // the duration of their interval.
2886   // We carefully set the resolution back, since otherwise we
2887   // seem to incur an overhead (3%?) that we don't need.
2888   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
2889   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
2890   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
2891   // timeBeginPeriod() if the relative error exceeded some threshold.
2892   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
2893   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
2894   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
2895   // resolution timers running.
2896 private:
2897     jlong resolution;
2898 public:
2899   HighResolutionInterval(jlong ms) {
2900     resolution = ms % 10L;
2901     if (resolution != 0) {
2902       MMRESULT result = timeBeginPeriod(1L);
2903     }
2904   }
2905   ~HighResolutionInterval() {
2906     if (resolution != 0) {
2907       MMRESULT result = timeEndPeriod(1L);
2908     }
2909     resolution = 0L;
2910   }
2911 };
2912 
2913 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
2914   jlong limit = (jlong) MAXDWORD;
2915 
2916   while(ms > limit) {
2917     int res;
2918     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
2919       return res;
2920     ms -= limit;
2921   }
2922 
2923   assert(thread == Thread::current(),  "thread consistency check");
2924   OSThread* osthread = thread->osthread();
2925   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
2926   int result;
2927   if (interruptable) {
2928     assert(thread->is_Java_thread(), "must be java thread");
2929     JavaThread *jt = (JavaThread *) thread;
2930     ThreadBlockInVM tbivm(jt);
2931 
2932     jt->set_suspend_equivalent();
2933     // cleared by handle_special_suspend_equivalent_condition() or
2934     // java_suspend_self() via check_and_wait_while_suspended()
2935 
2936     HANDLE events[1];
2937     events[0] = osthread->interrupt_event();
2938     HighResolutionInterval *phri=NULL;
2939     if(!ForceTimeHighResolution)
2940       phri = new HighResolutionInterval( ms );
2941     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
2942       result = OS_TIMEOUT;
2943     } else {
2944       ResetEvent(osthread->interrupt_event());
2945       osthread->set_interrupted(false);
2946       result = OS_INTRPT;
2947     }
2948     delete phri; //if it is NULL, harmless
2949 
2950     // were we externally suspended while we were waiting?
2951     jt->check_and_wait_while_suspended();
2952   } else {
2953     assert(!thread->is_Java_thread(), "must not be java thread");
2954     Sleep((long) ms);
2955     result = OS_TIMEOUT;
2956   }
2957   return result;
2958 }
2959 
2960 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2961 void os::infinite_sleep() {
2962   while (true) {    // sleep forever ...
2963     Sleep(100000);  // ... 100 seconds at a time
2964   }
2965 }
2966 
2967 typedef BOOL (WINAPI * STTSignature)(void) ;
2968 
2969 os::YieldResult os::NakedYield() {
2970   // Use either SwitchToThread() or Sleep(0)
2971   // Consider passing back the return value from SwitchToThread().
2972   // We use GetProcAddress() as ancient Win9X versions of windows doen't support SwitchToThread.
2973   // In that case we revert to Sleep(0).
2974   static volatile STTSignature stt = (STTSignature) 1 ;
2975 
2976   if (stt == ((STTSignature) 1)) {
2977     stt = (STTSignature) ::GetProcAddress (LoadLibrary ("Kernel32.dll"), "SwitchToThread") ;
2978     // It's OK if threads race during initialization as the operation above is idempotent.
2979   }
2980   if (stt != NULL) {
2981     return (*stt)() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
2982   } else {
2983     Sleep (0) ;
2984   }
2985   return os::YIELD_UNKNOWN ;
2986 }
2987 
2988 void os::yield() {  os::NakedYield(); }
2989 
2990 void os::yield_all(int attempts) {
2991   // Yields to all threads, including threads with lower priorities
2992   Sleep(1);
2993 }
2994 
2995 // Win32 only gives you access to seven real priorities at a time,
2996 // so we compress Java's ten down to seven.  It would be better
2997 // if we dynamically adjusted relative priorities.
2998 
2999 int os::java_to_os_priority[MaxPriority + 1] = {
3000   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3001   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3002   THREAD_PRIORITY_LOWEST,                       // 2
3003   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3004   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3005   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3006   THREAD_PRIORITY_NORMAL,                       // 6
3007   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3008   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3009   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3010   THREAD_PRIORITY_HIGHEST                       // 10 MaxPriority
3011 };
3012 
3013 int prio_policy1[MaxPriority + 1] = {
3014   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3015   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3016   THREAD_PRIORITY_LOWEST,                       // 2
3017   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3018   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3019   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3020   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3021   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3022   THREAD_PRIORITY_HIGHEST,                      // 8
3023   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3024   THREAD_PRIORITY_TIME_CRITICAL                 // 10 MaxPriority
3025 };
3026 
3027 static int prio_init() {
3028   // If ThreadPriorityPolicy is 1, switch tables
3029   if (ThreadPriorityPolicy == 1) {
3030     int i;
3031     for (i = 0; i < MaxPriority + 1; i++) {
3032       os::java_to_os_priority[i] = prio_policy1[i];
3033     }
3034   }
3035   return 0;
3036 }
3037 
3038 OSReturn os::set_native_priority(Thread* thread, int priority) {
3039   if (!UseThreadPriorities) return OS_OK;
3040   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3041   return ret ? OS_OK : OS_ERR;
3042 }
3043 
3044 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
3045   if ( !UseThreadPriorities ) {
3046     *priority_ptr = java_to_os_priority[NormPriority];
3047     return OS_OK;
3048   }
3049   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3050   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3051     assert(false, "GetThreadPriority failed");
3052     return OS_ERR;
3053   }
3054   *priority_ptr = os_prio;
3055   return OS_OK;
3056 }
3057 
3058 
3059 // Hint to the underlying OS that a task switch would not be good.
3060 // Void return because it's a hint and can fail.
3061 void os::hint_no_preempt() {}
3062 
3063 void os::interrupt(Thread* thread) {
3064   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3065          "possibility of dangling Thread pointer");
3066 
3067   OSThread* osthread = thread->osthread();
3068   osthread->set_interrupted(true);
3069   // More than one thread can get here with the same value of osthread,
3070   // resulting in multiple notifications.  We do, however, want the store
3071   // to interrupted() to be visible to other threads before we post
3072   // the interrupt event.
3073   OrderAccess::release();
3074   SetEvent(osthread->interrupt_event());
3075   // For JSR166:  unpark after setting status
3076   if (thread->is_Java_thread())
3077     ((JavaThread*)thread)->parker()->unpark();
3078 
3079   ParkEvent * ev = thread->_ParkEvent ;
3080   if (ev != NULL) ev->unpark() ;
3081 
3082 }
3083 
3084 
3085 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3086   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3087          "possibility of dangling Thread pointer");
3088 
3089   OSThread* osthread = thread->osthread();
3090   bool interrupted;
3091   interrupted = osthread->interrupted();
3092   if (clear_interrupted == true) {
3093     osthread->set_interrupted(false);
3094     ResetEvent(osthread->interrupt_event());
3095   } // Otherwise leave the interrupted state alone
3096 
3097   return interrupted;
3098 }
3099 
3100 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3101 ExtendedPC os::get_thread_pc(Thread* thread) {
3102   CONTEXT context;
3103   context.ContextFlags = CONTEXT_CONTROL;
3104   HANDLE handle = thread->osthread()->thread_handle();
3105 #ifdef _M_IA64
3106   assert(0, "Fix get_thread_pc");
3107   return ExtendedPC(NULL);
3108 #else
3109   if (GetThreadContext(handle, &context)) {
3110 #ifdef _M_AMD64
3111     return ExtendedPC((address) context.Rip);
3112 #else
3113     return ExtendedPC((address) context.Eip);
3114 #endif
3115   } else {
3116     return ExtendedPC(NULL);
3117   }
3118 #endif
3119 }
3120 
3121 // GetCurrentThreadId() returns DWORD
3122 intx os::current_thread_id()          { return GetCurrentThreadId(); }
3123 
3124 static int _initial_pid = 0;
3125 
3126 int os::current_process_id()
3127 {
3128   return (_initial_pid ? _initial_pid : _getpid());
3129 }
3130 
3131 int    os::win32::_vm_page_size       = 0;
3132 int    os::win32::_vm_allocation_granularity = 0;
3133 int    os::win32::_processor_type     = 0;
3134 // Processor level is not available on non-NT systems, use vm_version instead
3135 int    os::win32::_processor_level    = 0;
3136 julong os::win32::_physical_memory    = 0;
3137 size_t os::win32::_default_stack_size = 0;
3138 
3139          intx os::win32::_os_thread_limit    = 0;
3140 volatile intx os::win32::_os_thread_count    = 0;
3141 
3142 bool   os::win32::_is_nt              = false;
3143 bool   os::win32::_is_windows_2003    = false;
3144 
3145 
3146 void os::win32::initialize_system_info() {
3147   SYSTEM_INFO si;
3148   GetSystemInfo(&si);
3149   _vm_page_size    = si.dwPageSize;
3150   _vm_allocation_granularity = si.dwAllocationGranularity;
3151   _processor_type  = si.dwProcessorType;
3152   _processor_level = si.wProcessorLevel;
3153   set_processor_count(si.dwNumberOfProcessors);
3154 
3155   MEMORYSTATUSEX ms;
3156   ms.dwLength = sizeof(ms);
3157 
3158   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3159   // dwMemoryLoad (% of memory in use)
3160   GlobalMemoryStatusEx(&ms);
3161   _physical_memory = ms.ullTotalPhys;
3162 
3163   OSVERSIONINFO oi;
3164   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
3165   GetVersionEx(&oi);
3166   switch(oi.dwPlatformId) {
3167     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3168     case VER_PLATFORM_WIN32_NT:
3169       _is_nt = true;
3170       {
3171         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3172         if (os_vers == 5002) {
3173           _is_windows_2003 = true;
3174         }
3175       }
3176       break;
3177     default: fatal("Unknown platform");
3178   }
3179 
3180   _default_stack_size = os::current_stack_size();
3181   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3182   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3183     "stack size not a multiple of page size");
3184 
3185   initialize_performance_counter();
3186 
3187   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3188   // known to deadlock the system, if the VM issues to thread operations with
3189   // a too high frequency, e.g., such as changing the priorities.
3190   // The 6000 seems to work well - no deadlocks has been notices on the test
3191   // programs that we have seen experience this problem.
3192   if (!os::win32::is_nt()) {
3193     StarvationMonitorInterval = 6000;
3194   }
3195 }
3196 
3197 
3198 void os::win32::setmode_streams() {
3199   _setmode(_fileno(stdin), _O_BINARY);
3200   _setmode(_fileno(stdout), _O_BINARY);
3201   _setmode(_fileno(stderr), _O_BINARY);
3202 }
3203 
3204 
3205 int os::message_box(const char* title, const char* message) {
3206   int result = MessageBox(NULL, message, title,
3207                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3208   return result == IDYES;
3209 }
3210 
3211 int os::allocate_thread_local_storage() {
3212   return TlsAlloc();
3213 }
3214 
3215 
3216 void os::free_thread_local_storage(int index) {
3217   TlsFree(index);
3218 }
3219 
3220 
3221 void os::thread_local_storage_at_put(int index, void* value) {
3222   TlsSetValue(index, value);
3223   assert(thread_local_storage_at(index) == value, "Just checking");
3224 }
3225 
3226 
3227 void* os::thread_local_storage_at(int index) {
3228   return TlsGetValue(index);
3229 }
3230 
3231 
3232 #ifndef PRODUCT
3233 #ifndef _WIN64
3234 // Helpers to check whether NX protection is enabled
3235 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3236   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3237       pex->ExceptionRecord->NumberParameters > 0 &&
3238       pex->ExceptionRecord->ExceptionInformation[0] ==
3239       EXCEPTION_INFO_EXEC_VIOLATION) {
3240     return EXCEPTION_EXECUTE_HANDLER;
3241   }
3242   return EXCEPTION_CONTINUE_SEARCH;
3243 }
3244 
3245 void nx_check_protection() {
3246   // If NX is enabled we'll get an exception calling into code on the stack
3247   char code[] = { (char)0xC3 }; // ret
3248   void *code_ptr = (void *)code;
3249   __try {
3250     __asm call code_ptr
3251   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3252     tty->print_raw_cr("NX protection detected.");
3253   }
3254 }
3255 #endif // _WIN64
3256 #endif // PRODUCT
3257 
3258 // this is called _before_ the global arguments have been parsed
3259 void os::init(void) {
3260   _initial_pid = _getpid();
3261 
3262   init_random(1234567);
3263 
3264   win32::initialize_system_info();
3265   win32::setmode_streams();
3266   init_page_sizes((size_t) win32::vm_page_size());
3267 
3268   // For better scalability on MP systems (must be called after initialize_system_info)
3269 #ifndef PRODUCT
3270   if (is_MP()) {
3271     NoYieldsInMicrolock = true;
3272   }
3273 #endif
3274   // This may be overridden later when argument processing is done.
3275   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3276     os::win32::is_windows_2003());
3277 
3278   // Initialize main_process and main_thread
3279   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3280  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3281                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3282     fatal("DuplicateHandle failed\n");
3283   }
3284   main_thread_id = (int) GetCurrentThreadId();
3285 }
3286 
3287 // To install functions for atexit processing
3288 extern "C" {
3289   static void perfMemory_exit_helper() {
3290     perfMemory_exit();
3291   }
3292 }
3293 
3294 
3295 // this is called _after_ the global arguments have been parsed
3296 jint os::init_2(void) {
3297   // Allocate a single page and mark it as readable for safepoint polling
3298   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3299   guarantee( polling_page != NULL, "Reserve Failed for polling page");
3300 
3301   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3302   guarantee( return_page != NULL, "Commit Failed for polling page");
3303 
3304   os::set_polling_page( polling_page );
3305 
3306 #ifndef PRODUCT
3307   if( Verbose && PrintMiscellaneous )
3308     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3309 #endif
3310 
3311   if (!UseMembar) {
3312     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
3313     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3314 
3315     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
3316     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
3317 
3318     os::set_memory_serialize_page( mem_serialize_page );
3319 
3320 #ifndef PRODUCT
3321     if(Verbose && PrintMiscellaneous)
3322       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3323 #endif
3324 }
3325 
3326   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
3327 
3328   // Setup Windows Exceptions
3329 
3330   // On Itanium systems, Structured Exception Handling does not
3331   // work since stack frames must be walkable by the OS.  Since
3332   // much of our code is dynamically generated, and we do not have
3333   // proper unwind .xdata sections, the system simply exits
3334   // rather than delivering the exception.  To work around
3335   // this we use VectorExceptions instead.
3336 #ifdef _WIN64
3337   if (UseVectoredExceptions) {
3338     topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelExceptionFilter);
3339   }
3340 #endif
3341 
3342   // for debugging float code generation bugs
3343   if (ForceFloatExceptions) {
3344 #ifndef  _WIN64
3345     static long fp_control_word = 0;
3346     __asm { fstcw fp_control_word }
3347     // see Intel PPro Manual, Vol. 2, p 7-16
3348     const long precision = 0x20;
3349     const long underflow = 0x10;
3350     const long overflow  = 0x08;
3351     const long zero_div  = 0x04;
3352     const long denorm    = 0x02;
3353     const long invalid   = 0x01;
3354     fp_control_word |= invalid;
3355     __asm { fldcw fp_control_word }
3356 #endif
3357   }
3358 
3359   // Initialize HPI.
3360   jint hpi_result = hpi::initialize();
3361   if (hpi_result != JNI_OK) { return hpi_result; }
3362 
3363   // If stack_commit_size is 0, windows will reserve the default size,
3364   // but only commit a small portion of it.
3365   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
3366   size_t default_reserve_size = os::win32::default_stack_size();
3367   size_t actual_reserve_size = stack_commit_size;
3368   if (stack_commit_size < default_reserve_size) {
3369     // If stack_commit_size == 0, we want this too
3370     actual_reserve_size = default_reserve_size;
3371   }
3372 
3373   JavaThread::set_stack_size_at_create(stack_commit_size);
3374 
3375   // Calculate theoretical max. size of Threads to guard gainst artifical
3376   // out-of-memory situations, where all available address-space has been
3377   // reserved by thread stacks.
3378   assert(actual_reserve_size != 0, "Must have a stack");
3379 
3380   // Calculate the thread limit when we should start doing Virtual Memory
3381   // banging. Currently when the threads will have used all but 200Mb of space.
3382   //
3383   // TODO: consider performing a similar calculation for commit size instead
3384   // as reserve size, since on a 64-bit platform we'll run into that more
3385   // often than running out of virtual memory space.  We can use the
3386   // lower value of the two calculations as the os_thread_limit.
3387   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
3388   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3389 
3390   // at exit methods are called in the reverse order of their registration.
3391   // there is no limit to the number of functions registered. atexit does
3392   // not set errno.
3393 
3394   if (PerfAllowAtExitRegistration) {
3395     // only register atexit functions if PerfAllowAtExitRegistration is set.
3396     // atexit functions can be delayed until process exit time, which
3397     // can be problematic for embedded VM situations. Embedded VMs should
3398     // call DestroyJavaVM() to assure that VM resources are released.
3399 
3400     // note: perfMemory_exit_helper atexit function may be removed in
3401     // the future if the appropriate cleanup code can be added to the
3402     // VM_Exit VMOperation's doit method.
3403     if (atexit(perfMemory_exit_helper) != 0) {
3404       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3405     }
3406   }
3407 
3408   // initialize PSAPI or ToolHelp for fatal error handler
3409   if (win32::is_nt()) _init_psapi();
3410   else _init_toolhelp();
3411 
3412 #ifndef _WIN64
3413   // Print something if NX is enabled (win32 on AMD64)
3414   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
3415 #endif
3416 
3417   // initialize thread priority policy
3418   prio_init();
3419 
3420   if (UseNUMA && !ForceNUMA) {
3421     UseNUMA = false; // Currently unsupported.
3422   }
3423 
3424   return JNI_OK;
3425 }
3426 
3427 
3428 // Mark the polling page as unreadable
3429 void os::make_polling_page_unreadable(void) {
3430   DWORD old_status;
3431   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
3432     fatal("Could not disable polling page");
3433 };
3434 
3435 // Mark the polling page as readable
3436 void os::make_polling_page_readable(void) {
3437   DWORD old_status;
3438   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
3439     fatal("Could not enable polling page");
3440 };
3441 
3442 
3443 int os::stat(const char *path, struct stat *sbuf) {
3444   char pathbuf[MAX_PATH];
3445   if (strlen(path) > MAX_PATH - 1) {
3446     errno = ENAMETOOLONG;
3447     return -1;
3448   }
3449   hpi::native_path(strcpy(pathbuf, path));
3450   int ret = ::stat(pathbuf, sbuf);
3451   if (sbuf != NULL && UseUTCFileTimestamp) {
3452     // Fix for 6539723.  st_mtime returned from stat() is dependent on
3453     // the system timezone and so can return different values for the
3454     // same file if/when daylight savings time changes.  This adjustment
3455     // makes sure the same timestamp is returned regardless of the TZ.
3456     //
3457     // See:
3458     // http://msdn.microsoft.com/library/
3459     //   default.asp?url=/library/en-us/sysinfo/base/
3460     //   time_zone_information_str.asp
3461     // and
3462     // http://msdn.microsoft.com/library/default.asp?url=
3463     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
3464     //
3465     // NOTE: there is a insidious bug here:  If the timezone is changed
3466     // after the call to stat() but before 'GetTimeZoneInformation()', then
3467     // the adjustment we do here will be wrong and we'll return the wrong
3468     // value (which will likely end up creating an invalid class data
3469     // archive).  Absent a better API for this, or some time zone locking
3470     // mechanism, we'll have to live with this risk.
3471     TIME_ZONE_INFORMATION tz;
3472     DWORD tzid = GetTimeZoneInformation(&tz);
3473     int daylightBias =
3474       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
3475     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
3476   }
3477   return ret;
3478 }
3479 
3480 
3481 #define FT2INT64(ft) \
3482   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
3483 
3484 
3485 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3486 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3487 // of a thread.
3488 //
3489 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3490 // the fast estimate available on the platform.
3491 
3492 // current_thread_cpu_time() is not optimized for Windows yet
3493 jlong os::current_thread_cpu_time() {
3494   // return user + sys since the cost is the same
3495   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
3496 }
3497 
3498 jlong os::thread_cpu_time(Thread* thread) {
3499   // consistent with what current_thread_cpu_time() returns.
3500   return os::thread_cpu_time(thread, true /* user+sys */);
3501 }
3502 
3503 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3504   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3505 }
3506 
3507 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
3508   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
3509   // If this function changes, os::is_thread_cpu_time_supported() should too
3510   if (os::win32::is_nt()) {
3511     FILETIME CreationTime;
3512     FILETIME ExitTime;
3513     FILETIME KernelTime;
3514     FILETIME UserTime;
3515 
3516     if ( GetThreadTimes(thread->osthread()->thread_handle(),
3517                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3518       return -1;
3519     else
3520       if (user_sys_cpu_time) {
3521         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
3522       } else {
3523         return FT2INT64(UserTime) * 100;
3524       }
3525   } else {
3526     return (jlong) timeGetTime() * 1000000;
3527   }
3528 }
3529 
3530 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3531   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3532   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3533   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3534   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3535 }
3536 
3537 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3538   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3539   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3540   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3541   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3542 }
3543 
3544 bool os::is_thread_cpu_time_supported() {
3545   // see os::thread_cpu_time
3546   if (os::win32::is_nt()) {
3547     FILETIME CreationTime;
3548     FILETIME ExitTime;
3549     FILETIME KernelTime;
3550     FILETIME UserTime;
3551 
3552     if ( GetThreadTimes(GetCurrentThread(),
3553                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3554       return false;
3555     else
3556       return true;
3557   } else {
3558     return false;
3559   }
3560 }
3561 
3562 // Windows does't provide a loadavg primitive so this is stubbed out for now.
3563 // It does have primitives (PDH API) to get CPU usage and run queue length.
3564 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
3565 // If we wanted to implement loadavg on Windows, we have a few options:
3566 //
3567 // a) Query CPU usage and run queue length and "fake" an answer by
3568 //    returning the CPU usage if it's under 100%, and the run queue
3569 //    length otherwise.  It turns out that querying is pretty slow
3570 //    on Windows, on the order of 200 microseconds on a fast machine.
3571 //    Note that on the Windows the CPU usage value is the % usage
3572 //    since the last time the API was called (and the first call
3573 //    returns 100%), so we'd have to deal with that as well.
3574 //
3575 // b) Sample the "fake" answer using a sampling thread and store
3576 //    the answer in a global variable.  The call to loadavg would
3577 //    just return the value of the global, avoiding the slow query.
3578 //
3579 // c) Sample a better answer using exponential decay to smooth the
3580 //    value.  This is basically the algorithm used by UNIX kernels.
3581 //
3582 // Note that sampling thread starvation could affect both (b) and (c).
3583 int os::loadavg(double loadavg[], int nelem) {
3584   return -1;
3585 }
3586 
3587 
3588 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
3589 bool os::dont_yield() {
3590   return DontYieldALot;
3591 }
3592 
3593 // Is a (classpath) directory empty?
3594 bool os::dir_is_empty(const char* path) {
3595   WIN32_FIND_DATA fd;
3596   HANDLE f = FindFirstFile(path, &fd);
3597   if (f == INVALID_HANDLE_VALUE) {
3598     return true;
3599   }
3600   FindClose(f);
3601   return false;
3602 }
3603 
3604 // create binary file, rewriting existing file if required
3605 int os::create_binary_file(const char* path, bool rewrite_existing) {
3606   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
3607   if (!rewrite_existing) {
3608     oflags |= _O_EXCL;
3609   }
3610   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
3611 }
3612 
3613 // return current position of file pointer
3614 jlong os::current_file_offset(int fd) {
3615   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
3616 }
3617 
3618 // move file pointer to the specified offset
3619 jlong os::seek_to_file_offset(int fd, jlong offset) {
3620   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
3621 }
3622 
3623 
3624 // Map a block of memory.
3625 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
3626                      char *addr, size_t bytes, bool read_only,
3627                      bool allow_exec) {
3628   HANDLE hFile;
3629   char* base;
3630 
3631   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
3632                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
3633   if (hFile == NULL) {
3634     if (PrintMiscellaneous && Verbose) {
3635       DWORD err = GetLastError();
3636       tty->print_cr("CreateFile() failed: GetLastError->%ld.");
3637     }
3638     return NULL;
3639   }
3640 
3641   if (allow_exec) {
3642     // CreateFileMapping/MapViewOfFileEx can't map executable memory
3643     // unless it comes from a PE image (which the shared archive is not.)
3644     // Even VirtualProtect refuses to give execute access to mapped memory
3645     // that was not previously executable.
3646     //
3647     // Instead, stick the executable region in anonymous memory.  Yuck.
3648     // Penalty is that ~4 pages will not be shareable - in the future
3649     // we might consider DLLizing the shared archive with a proper PE
3650     // header so that mapping executable + sharing is possible.
3651 
3652     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
3653                                 PAGE_READWRITE);
3654     if (base == NULL) {
3655       if (PrintMiscellaneous && Verbose) {
3656         DWORD err = GetLastError();
3657         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
3658       }
3659       CloseHandle(hFile);
3660       return NULL;
3661     }
3662 
3663     DWORD bytes_read;
3664     OVERLAPPED overlapped;
3665     overlapped.Offset = (DWORD)file_offset;
3666     overlapped.OffsetHigh = 0;
3667     overlapped.hEvent = NULL;
3668     // ReadFile guarantees that if the return value is true, the requested
3669     // number of bytes were read before returning.
3670     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
3671     if (!res) {
3672       if (PrintMiscellaneous && Verbose) {
3673         DWORD err = GetLastError();
3674         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
3675       }
3676       release_memory(base, bytes);
3677       CloseHandle(hFile);
3678       return NULL;
3679     }
3680   } else {
3681     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
3682                                     NULL /*file_name*/);
3683     if (hMap == NULL) {
3684       if (PrintMiscellaneous && Verbose) {
3685         DWORD err = GetLastError();
3686         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
3687       }
3688       CloseHandle(hFile);
3689       return NULL;
3690     }
3691 
3692     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
3693     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
3694                                   (DWORD)bytes, addr);
3695     if (base == NULL) {
3696       if (PrintMiscellaneous && Verbose) {
3697         DWORD err = GetLastError();
3698         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
3699       }
3700       CloseHandle(hMap);
3701       CloseHandle(hFile);
3702       return NULL;
3703     }
3704 
3705     if (CloseHandle(hMap) == 0) {
3706       if (PrintMiscellaneous && Verbose) {
3707         DWORD err = GetLastError();
3708         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
3709       }
3710       CloseHandle(hFile);
3711       return base;
3712     }
3713   }
3714 
3715   if (allow_exec) {
3716     DWORD old_protect;
3717     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
3718     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
3719 
3720     if (!res) {
3721       if (PrintMiscellaneous && Verbose) {
3722         DWORD err = GetLastError();
3723         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
3724       }
3725       // Don't consider this a hard error, on IA32 even if the
3726       // VirtualProtect fails, we should still be able to execute
3727       CloseHandle(hFile);
3728       return base;
3729     }
3730   }
3731 
3732   if (CloseHandle(hFile) == 0) {
3733     if (PrintMiscellaneous && Verbose) {
3734       DWORD err = GetLastError();
3735       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
3736     }
3737     return base;
3738   }
3739 
3740   return base;
3741 }
3742 
3743 
3744 // Remap a block of memory.
3745 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
3746                        char *addr, size_t bytes, bool read_only,
3747                        bool allow_exec) {
3748   // This OS does not allow existing memory maps to be remapped so we
3749   // have to unmap the memory before we remap it.
3750   if (!os::unmap_memory(addr, bytes)) {
3751     return NULL;
3752   }
3753 
3754   // There is a very small theoretical window between the unmap_memory()
3755   // call above and the map_memory() call below where a thread in native
3756   // code may be able to access an address that is no longer mapped.
3757 
3758   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3759                         allow_exec);
3760 }
3761 
3762 
3763 // Unmap a block of memory.
3764 // Returns true=success, otherwise false.
3765 
3766 bool os::unmap_memory(char* addr, size_t bytes) {
3767   BOOL result = UnmapViewOfFile(addr);
3768   if (result == 0) {
3769     if (PrintMiscellaneous && Verbose) {
3770       DWORD err = GetLastError();
3771       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
3772     }
3773     return false;
3774   }
3775   return true;
3776 }
3777 
3778 void os::pause() {
3779   char filename[MAX_PATH];
3780   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
3781     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
3782   } else {
3783     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
3784   }
3785 
3786   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
3787   if (fd != -1) {
3788     struct stat buf;
3789     close(fd);
3790     while (::stat(filename, &buf) == 0) {
3791       Sleep(100);
3792     }
3793   } else {
3794     jio_fprintf(stderr,
3795       "Could not open pause file '%s', continuing immediately.\n", filename);
3796   }
3797 }
3798 
3799 // An Event wraps a win32 "CreateEvent" kernel handle.
3800 //
3801 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
3802 //
3803 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
3804 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
3805 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
3806 //     In addition, an unpark() operation might fetch the handle field, but the
3807 //     event could recycle between the fetch and the SetEvent() operation.
3808 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
3809 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
3810 //     on an stale but recycled handle would be harmless, but in practice this might
3811 //     confuse other non-Sun code, so it's not a viable approach.
3812 //
3813 // 2:  Once a win32 event handle is associated with an Event, it remains associated
3814 //     with the Event.  The event handle is never closed.  This could be construed
3815 //     as handle leakage, but only up to the maximum # of threads that have been extant
3816 //     at any one time.  This shouldn't be an issue, as windows platforms typically
3817 //     permit a process to have hundreds of thousands of open handles.
3818 //
3819 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
3820 //     and release unused handles.
3821 //
3822 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
3823 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
3824 //
3825 // 5.  Use an RCU-like mechanism (Read-Copy Update).
3826 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
3827 //
3828 // We use (2).
3829 //
3830 // TODO-FIXME:
3831 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
3832 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
3833 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
3834 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
3835 //     into a single win32 CreateEvent() handle.
3836 //
3837 // _Event transitions in park()
3838 //   -1 => -1 : illegal
3839 //    1 =>  0 : pass - return immediately
3840 //    0 => -1 : block
3841 //
3842 // _Event serves as a restricted-range semaphore :
3843 //    -1 : thread is blocked
3844 //     0 : neutral  - thread is running or ready
3845 //     1 : signaled - thread is running or ready
3846 //
3847 // Another possible encoding of _Event would be
3848 // with explicit "PARKED" and "SIGNALED" bits.
3849 
3850 int os::PlatformEvent::park (jlong Millis) {
3851     guarantee (_ParkHandle != NULL , "Invariant") ;
3852     guarantee (Millis > 0          , "Invariant") ;
3853     int v ;
3854 
3855     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
3856     // the initial park() operation.
3857 
3858     for (;;) {
3859         v = _Event ;
3860         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
3861     }
3862     guarantee ((v == 0) || (v == 1), "invariant") ;
3863     if (v != 0) return OS_OK ;
3864 
3865     // Do this the hard way by blocking ...
3866     // TODO: consider a brief spin here, gated on the success of recent
3867     // spin attempts by this thread.
3868     //
3869     // We decompose long timeouts into series of shorter timed waits.
3870     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
3871     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
3872     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
3873     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
3874     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
3875     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
3876     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
3877     // for the already waited time.  This policy does not admit any new outcomes.
3878     // In the future, however, we might want to track the accumulated wait time and
3879     // adjust Millis accordingly if we encounter a spurious wakeup.
3880 
3881     const int MAXTIMEOUT = 0x10000000 ;
3882     DWORD rv = WAIT_TIMEOUT ;
3883     while (_Event < 0 && Millis > 0) {
3884        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
3885        if (Millis > MAXTIMEOUT) {
3886           prd = MAXTIMEOUT ;
3887        }
3888        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
3889        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
3890        if (rv == WAIT_TIMEOUT) {
3891            Millis -= prd ;
3892        }
3893     }
3894     v = _Event ;
3895     _Event = 0 ;
3896     OrderAccess::fence() ;
3897     // If we encounter a nearly simultanous timeout expiry and unpark()
3898     // we return OS_OK indicating we awoke via unpark().
3899     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
3900     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
3901 }
3902 
3903 void os::PlatformEvent::park () {
3904     guarantee (_ParkHandle != NULL, "Invariant") ;
3905     // Invariant: Only the thread associated with the Event/PlatformEvent
3906     // may call park().
3907     int v ;
3908     for (;;) {
3909         v = _Event ;
3910         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
3911     }
3912     guarantee ((v == 0) || (v == 1), "invariant") ;
3913     if (v != 0) return ;
3914 
3915     // Do this the hard way by blocking ...
3916     // TODO: consider a brief spin here, gated on the success of recent
3917     // spin attempts by this thread.
3918     while (_Event < 0) {
3919        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
3920        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
3921     }
3922 
3923     // Usually we'll find _Event == 0 at this point, but as
3924     // an optional optimization we clear it, just in case can
3925     // multiple unpark() operations drove _Event up to 1.
3926     _Event = 0 ;
3927     OrderAccess::fence() ;
3928     guarantee (_Event >= 0, "invariant") ;
3929 }
3930 
3931 void os::PlatformEvent::unpark() {
3932   guarantee (_ParkHandle != NULL, "Invariant") ;
3933   int v ;
3934   for (;;) {
3935       v = _Event ;      // Increment _Event if it's < 1.
3936       if (v > 0) {
3937          // If it's already signaled just return.
3938          // The LD of _Event could have reordered or be satisfied
3939          // by a read-aside from this processor's write buffer.
3940          // To avoid problems execute a barrier and then
3941          // ratify the value.  A degenerate CAS() would also work.
3942          // Viz., CAS (v+0, &_Event, v) == v).
3943          OrderAccess::fence() ;
3944          if (_Event == v) return ;
3945          continue ;
3946       }
3947       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
3948   }
3949   if (v < 0) {
3950      ::SetEvent (_ParkHandle) ;
3951   }
3952 }
3953 
3954 
3955 // JSR166
3956 // -------------------------------------------------------
3957 
3958 /*
3959  * The Windows implementation of Park is very straightforward: Basic
3960  * operations on Win32 Events turn out to have the right semantics to
3961  * use them directly. We opportunistically resuse the event inherited
3962  * from Monitor.
3963  */
3964 
3965 
3966 void Parker::park(bool isAbsolute, jlong time) {
3967   guarantee (_ParkEvent != NULL, "invariant") ;
3968   // First, demultiplex/decode time arguments
3969   if (time < 0) { // don't wait
3970     return;
3971   }
3972   else if (time == 0) {
3973     time = INFINITE;
3974   }
3975   else if  (isAbsolute) {
3976     time -= os::javaTimeMillis(); // convert to relative time
3977     if (time <= 0) // already elapsed
3978       return;
3979   }
3980   else { // relative
3981     time /= 1000000; // Must coarsen from nanos to millis
3982     if (time == 0)   // Wait for the minimal time unit if zero
3983       time = 1;
3984   }
3985 
3986   JavaThread* thread = (JavaThread*)(Thread::current());
3987   assert(thread->is_Java_thread(), "Must be JavaThread");
3988   JavaThread *jt = (JavaThread *)thread;
3989 
3990   // Don't wait if interrupted or already triggered
3991   if (Thread::is_interrupted(thread, false) ||
3992     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
3993     ResetEvent(_ParkEvent);
3994     return;
3995   }
3996   else {
3997     ThreadBlockInVM tbivm(jt);
3998     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3999     jt->set_suspend_equivalent();
4000 
4001     WaitForSingleObject(_ParkEvent,  time);
4002     ResetEvent(_ParkEvent);
4003 
4004     // If externally suspended while waiting, re-suspend
4005     if (jt->handle_special_suspend_equivalent_condition()) {
4006       jt->java_suspend_self();
4007     }
4008   }
4009 }
4010 
4011 void Parker::unpark() {
4012   guarantee (_ParkEvent != NULL, "invariant") ;
4013   SetEvent(_ParkEvent);
4014 }
4015 
4016 // Run the specified command in a separate process. Return its exit value,
4017 // or -1 on failure (e.g. can't create a new process).
4018 int os::fork_and_exec(char* cmd) {
4019   STARTUPINFO si;
4020   PROCESS_INFORMATION pi;
4021 
4022   memset(&si, 0, sizeof(si));
4023   si.cb = sizeof(si);
4024   memset(&pi, 0, sizeof(pi));
4025   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
4026                             cmd,    // command line
4027                             NULL,   // process security attribute
4028                             NULL,   // thread security attribute
4029                             TRUE,   // inherits system handles
4030                             0,      // no creation flags
4031                             NULL,   // use parent's environment block
4032                             NULL,   // use parent's starting directory
4033                             &si,    // (in) startup information
4034                             &pi);   // (out) process information
4035 
4036   if (rslt) {
4037     // Wait until child process exits.
4038     WaitForSingleObject(pi.hProcess, INFINITE);
4039 
4040     DWORD exit_code;
4041     GetExitCodeProcess(pi.hProcess, &exit_code);
4042 
4043     // Close process and thread handles.
4044     CloseHandle(pi.hProcess);
4045     CloseHandle(pi.hThread);
4046 
4047     return (int)exit_code;
4048   } else {
4049     return -1;
4050   }
4051 }
4052 
4053 //--------------------------------------------------------------------------------------------------
4054 // Non-product code
4055 
4056 static int mallocDebugIntervalCounter = 0;
4057 static int mallocDebugCounter = 0;
4058 bool os::check_heap(bool force) {
4059   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
4060   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
4061     // Note: HeapValidate executes two hardware breakpoints when it finds something
4062     // wrong; at these points, eax contains the address of the offending block (I think).
4063     // To get to the exlicit error message(s) below, just continue twice.
4064     HANDLE heap = GetProcessHeap();
4065     { HeapLock(heap);
4066       PROCESS_HEAP_ENTRY phe;
4067       phe.lpData = NULL;
4068       while (HeapWalk(heap, &phe) != 0) {
4069         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
4070             !HeapValidate(heap, 0, phe.lpData)) {
4071           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
4072           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
4073           fatal("corrupted C heap");
4074         }
4075       }
4076       int err = GetLastError();
4077       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
4078         fatal1("heap walk aborted with error %d", err);
4079       }
4080       HeapUnlock(heap);
4081     }
4082     mallocDebugIntervalCounter = 0;
4083   }
4084   return true;
4085 }
4086 
4087 
4088 #ifndef PRODUCT
4089 bool os::find(address addr) {
4090   // Nothing yet
4091   return false;
4092 }
4093 #endif
4094 
4095 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
4096   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
4097 
4098   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
4099     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
4100     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
4101     address addr = (address) exceptionRecord->ExceptionInformation[1];
4102 
4103     if (os::is_memory_serialize_page(thread, addr))
4104       return EXCEPTION_CONTINUE_EXECUTION;
4105   }
4106 
4107   return EXCEPTION_CONTINUE_SEARCH;
4108 }
4109 
4110 static int getLastErrorString(char *buf, size_t len)
4111 {
4112     long errval;
4113 
4114     if ((errval = GetLastError()) != 0)
4115     {
4116       /* DOS error */
4117       size_t n = (size_t)FormatMessage(
4118             FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
4119             NULL,
4120             errval,
4121             0,
4122             buf,
4123             (DWORD)len,
4124             NULL);
4125       if (n > 3) {
4126         /* Drop final '.', CR, LF */
4127         if (buf[n - 1] == '\n') n--;
4128         if (buf[n - 1] == '\r') n--;
4129         if (buf[n - 1] == '.') n--;
4130         buf[n] = '\0';
4131       }
4132       return (int)n;
4133     }
4134 
4135     if (errno != 0)
4136     {
4137       /* C runtime error that has no corresponding DOS error code */
4138       const char *s = strerror(errno);
4139       size_t n = strlen(s);
4140       if (n >= len) n = len - 1;
4141       strncpy(buf, s, n);
4142       buf[n] = '\0';
4143       return (int)n;
4144     }
4145     return 0;
4146 }