1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/linkResolver.hpp"
  35 #include "interpreter/oopMapCache.hpp"
  36 #include "jvmtifiles/jvmtiEnv.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/metaspaceShared.hpp"
  39 #include "memory/oopFactory.hpp"
  40 #include "memory/universe.inline.hpp"
  41 #include "oops/instanceKlass.hpp"
  42 #include "oops/objArrayOop.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "oops/symbol.hpp"
  45 #include "prims/jvm_misc.hpp"
  46 #include "prims/jvmtiExport.hpp"
  47 #include "prims/jvmtiThreadState.hpp"
  48 #include "prims/privilegedStack.hpp"
  49 #include "runtime/arguments.hpp"
  50 #include "runtime/atomic.inline.hpp"
  51 #include "runtime/biasedLocking.hpp"
  52 #include "runtime/deoptimization.hpp"
  53 #include "runtime/fprofiler.hpp"
  54 #include "runtime/frame.inline.hpp"
  55 #include "runtime/init.hpp"
  56 #include "runtime/interfaceSupport.hpp"
  57 #include "runtime/java.hpp"
  58 #include "runtime/javaCalls.hpp"
  59 #include "runtime/jniPeriodicChecker.hpp"
  60 #include "runtime/memprofiler.hpp"
  61 #include "runtime/mutexLocker.hpp"
  62 #include "runtime/objectMonitor.hpp"
  63 #include "runtime/orderAccess.inline.hpp"
  64 #include "runtime/osThread.hpp"
  65 #include "runtime/safepoint.hpp"
  66 #include "runtime/sharedRuntime.hpp"
  67 #include "runtime/statSampler.hpp"
  68 #include "runtime/stubRoutines.hpp"
  69 #include "runtime/sweeper.hpp"
  70 #include "runtime/task.hpp"
  71 #include "runtime/thread.inline.hpp"
  72 #include "runtime/threadCritical.hpp"
  73 #include "runtime/threadLocalStorage.hpp"
  74 #include "runtime/vframe.hpp"
  75 #include "runtime/vframeArray.hpp"
  76 #include "runtime/vframe_hp.hpp"
  77 #include "runtime/vmThread.hpp"
  78 #include "runtime/vm_operations.hpp"
  79 #include "runtime/vm_version.hpp"
  80 #include "services/attachListener.hpp"
  81 #include "services/management.hpp"
  82 #include "services/memTracker.hpp"
  83 #include "services/threadService.hpp"
  84 #include "trace/tracing.hpp"
  85 #include "trace/traceMacros.hpp"
  86 #include "utilities/defaultStream.hpp"
  87 #include "utilities/dtrace.hpp"
  88 #include "utilities/events.hpp"
  89 #include "utilities/preserveException.hpp"
  90 #include "utilities/macros.hpp"
  91 #if INCLUDE_ALL_GCS
  92 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  93 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  94 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
  95 #endif // INCLUDE_ALL_GCS
  96 #ifdef COMPILER1
  97 #include "c1/c1_Compiler.hpp"
  98 #endif
  99 #ifdef COMPILER2
 100 #include "opto/c2compiler.hpp"
 101 #include "opto/idealGraphPrinter.hpp"
 102 #endif
 103 #if INCLUDE_RTM_OPT
 104 #include "runtime/rtmLocking.hpp"
 105 #endif
 106 
 107 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 108 
 109 #ifdef DTRACE_ENABLED
 110 
 111 // Only bother with this argument setup if dtrace is available
 112 
 113   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 114   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 115 
 116   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 117     {                                                                      \
 118       ResourceMark rm(this);                                               \
 119       int len = 0;                                                         \
 120       const char* name = (javathread)->get_thread_name();                  \
 121       len = strlen(name);                                                  \
 122       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 123         (char *) name, len,                                                \
 124         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 125         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 126         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 127     }
 128 
 129 #else //  ndef DTRACE_ENABLED
 130 
 131   #define DTRACE_THREAD_PROBE(probe, javathread)
 132 
 133 #endif // ndef DTRACE_ENABLED
 134 
 135 
 136 // Class hierarchy
 137 // - Thread
 138 //   - VMThread
 139 //   - WatcherThread
 140 //   - ConcurrentMarkSweepThread
 141 //   - JavaThread
 142 //     - CompilerThread
 143 
 144 // ======= Thread ========
 145 // Support for forcing alignment of thread objects for biased locking
 146 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 147   if (UseBiasedLocking) {
 148     const int alignment = markOopDesc::biased_lock_alignment;
 149     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 150     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 151                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 152                                                          AllocFailStrategy::RETURN_NULL);
 153     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 154     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 155            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 156            "JavaThread alignment code overflowed allocated storage");
 157     if (TraceBiasedLocking) {
 158       if (aligned_addr != real_malloc_addr) {
 159         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 160                       real_malloc_addr, aligned_addr);
 161       }
 162     }
 163     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 164     return aligned_addr;
 165   } else {
 166     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 167                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 168   }
 169 }
 170 
 171 void Thread::operator delete(void* p) {
 172   if (UseBiasedLocking) {
 173     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 174     FreeHeap(real_malloc_addr);
 175   } else {
 176     FreeHeap(p);
 177   }
 178 }
 179 
 180 
 181 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 182 // JavaThread
 183 
 184 
 185 Thread::Thread() {
 186   // stack and get_thread
 187   set_stack_base(NULL);
 188   set_stack_size(0);
 189   set_self_raw_id(0);
 190   set_lgrp_id(-1);
 191 
 192   // allocated data structures
 193   set_osthread(NULL);
 194   set_resource_area(new (mtThread)ResourceArea());
 195   DEBUG_ONLY(_current_resource_mark = NULL;)
 196   set_handle_area(new (mtThread) HandleArea(NULL));
 197   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 198   set_active_handles(NULL);
 199   set_free_handle_block(NULL);
 200   set_last_handle_mark(NULL);
 201 
 202   // This initial value ==> never claimed.
 203   _oops_do_parity = 0;
 204 
 205   _metadata_on_stack_buffer = NULL;
 206 
 207   // the handle mark links itself to last_handle_mark
 208   new HandleMark(this);
 209 
 210   // plain initialization
 211   debug_only(_owned_locks = NULL;)
 212   debug_only(_allow_allocation_count = 0;)
 213   NOT_PRODUCT(_allow_safepoint_count = 0;)
 214   NOT_PRODUCT(_skip_gcalot = false;)
 215   _jvmti_env_iteration_count = 0;
 216   set_allocated_bytes(0);
 217   _vm_operation_started_count = 0;
 218   _vm_operation_completed_count = 0;
 219   _current_pending_monitor = NULL;
 220   _current_pending_monitor_is_from_java = true;
 221   _current_waiting_monitor = NULL;
 222   _num_nested_signal = 0;
 223   omFreeList = NULL;
 224   omFreeCount = 0;
 225   omFreeProvision = 32;
 226   omInUseList = NULL;
 227   omInUseCount = 0;
 228 
 229 #ifdef ASSERT
 230   _visited_for_critical_count = false;
 231 #endif
 232 
 233   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 234                          Monitor::_safepoint_check_sometimes);
 235   _suspend_flags = 0;
 236 
 237   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 238   _hashStateX = os::random();
 239   _hashStateY = 842502087;
 240   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 241   _hashStateW = 273326509;
 242 
 243   _OnTrap   = 0;
 244   _schedctl = NULL;
 245   _Stalled  = 0;
 246   _TypeTag  = 0x2BAD;
 247 
 248   // Many of the following fields are effectively final - immutable
 249   // Note that nascent threads can't use the Native Monitor-Mutex
 250   // construct until the _MutexEvent is initialized ...
 251   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 252   // we might instead use a stack of ParkEvents that we could provision on-demand.
 253   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 254   // and ::Release()
 255   _ParkEvent   = ParkEvent::Allocate(this);
 256   _SleepEvent  = ParkEvent::Allocate(this);
 257   _MutexEvent  = ParkEvent::Allocate(this);
 258   _MuxEvent    = ParkEvent::Allocate(this);
 259 
 260 #ifdef CHECK_UNHANDLED_OOPS
 261   if (CheckUnhandledOops) {
 262     _unhandled_oops = new UnhandledOops(this);
 263   }
 264 #endif // CHECK_UNHANDLED_OOPS
 265 #ifdef ASSERT
 266   if (UseBiasedLocking) {
 267     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 268     assert(this == _real_malloc_address ||
 269            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 270            "bug in forced alignment of thread objects");
 271   }
 272 #endif // ASSERT
 273 }
 274 
 275 void Thread::initialize_thread_local_storage() {
 276   // Note: Make sure this method only calls
 277   // non-blocking operations. Otherwise, it might not work
 278   // with the thread-startup/safepoint interaction.
 279 
 280   // During Java thread startup, safepoint code should allow this
 281   // method to complete because it may need to allocate memory to
 282   // store information for the new thread.
 283 
 284   // initialize structure dependent on thread local storage
 285   ThreadLocalStorage::set_thread(this);
 286 }
 287 
 288 void Thread::record_stack_base_and_size() {
 289   set_stack_base(os::current_stack_base());
 290   set_stack_size(os::current_stack_size());
 291   if (is_Java_thread()) {
 292     ((JavaThread*) this)->set_stack_overflow_limit();
 293   }
 294   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 295   // in initialize_thread(). Without the adjustment, stack size is
 296   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 297   // So far, only Solaris has real implementation of initialize_thread().
 298   //
 299   // set up any platform-specific state.
 300   os::initialize_thread(this);
 301 
 302 #if INCLUDE_NMT
 303   // record thread's native stack, stack grows downward
 304   address stack_low_addr = stack_base() - stack_size();
 305   MemTracker::record_thread_stack(stack_low_addr, stack_size());
 306 #endif // INCLUDE_NMT
 307 }
 308 
 309 
 310 Thread::~Thread() {
 311   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 312   ObjectSynchronizer::omFlush(this);
 313 
 314   EVENT_THREAD_DESTRUCT(this);
 315 
 316   // stack_base can be NULL if the thread is never started or exited before
 317   // record_stack_base_and_size called. Although, we would like to ensure
 318   // that all started threads do call record_stack_base_and_size(), there is
 319   // not proper way to enforce that.
 320 #if INCLUDE_NMT
 321   if (_stack_base != NULL) {
 322     address low_stack_addr = stack_base() - stack_size();
 323     MemTracker::release_thread_stack(low_stack_addr, stack_size());
 324 #ifdef ASSERT
 325     set_stack_base(NULL);
 326 #endif
 327   }
 328 #endif // INCLUDE_NMT
 329 
 330   // deallocate data structures
 331   delete resource_area();
 332   // since the handle marks are using the handle area, we have to deallocated the root
 333   // handle mark before deallocating the thread's handle area,
 334   assert(last_handle_mark() != NULL, "check we have an element");
 335   delete last_handle_mark();
 336   assert(last_handle_mark() == NULL, "check we have reached the end");
 337 
 338   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 339   // We NULL out the fields for good hygiene.
 340   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 341   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 342   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 343   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 344 
 345   delete handle_area();
 346   delete metadata_handles();
 347 
 348   // osthread() can be NULL, if creation of thread failed.
 349   if (osthread() != NULL) os::free_thread(osthread());
 350 
 351   delete _SR_lock;
 352 
 353   // clear thread local storage if the Thread is deleting itself
 354   if (this == Thread::current()) {
 355     ThreadLocalStorage::set_thread(NULL);
 356   } else {
 357     // In the case where we're not the current thread, invalidate all the
 358     // caches in case some code tries to get the current thread or the
 359     // thread that was destroyed, and gets stale information.
 360     ThreadLocalStorage::invalidate_all();
 361   }
 362   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 363 }
 364 
 365 // NOTE: dummy function for assertion purpose.
 366 void Thread::run() {
 367   ShouldNotReachHere();
 368 }
 369 
 370 #ifdef ASSERT
 371 // Private method to check for dangling thread pointer
 372 void check_for_dangling_thread_pointer(Thread *thread) {
 373   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 374          "possibility of dangling Thread pointer");
 375 }
 376 #endif
 377 
 378 ThreadPriority Thread::get_priority(const Thread* const thread) {
 379   ThreadPriority priority;
 380   // Can return an error!
 381   (void)os::get_priority(thread, priority);
 382   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 383   return priority;
 384 }
 385 
 386 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 387   debug_only(check_for_dangling_thread_pointer(thread);)
 388   // Can return an error!
 389   (void)os::set_priority(thread, priority);
 390 }
 391 
 392 
 393 void Thread::start(Thread* thread) {
 394   // Start is different from resume in that its safety is guaranteed by context or
 395   // being called from a Java method synchronized on the Thread object.
 396   if (!DisableStartThread) {
 397     if (thread->is_Java_thread()) {
 398       // Initialize the thread state to RUNNABLE before starting this thread.
 399       // Can not set it after the thread started because we do not know the
 400       // exact thread state at that time. It could be in MONITOR_WAIT or
 401       // in SLEEPING or some other state.
 402       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 403                                           java_lang_Thread::RUNNABLE);
 404     }
 405     os::start_thread(thread);
 406   }
 407 }
 408 
 409 // Enqueue a VM_Operation to do the job for us - sometime later
 410 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 411   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 412   VMThread::execute(vm_stop);
 413 }
 414 
 415 
 416 // Check if an external suspend request has completed (or has been
 417 // cancelled). Returns true if the thread is externally suspended and
 418 // false otherwise.
 419 //
 420 // The bits parameter returns information about the code path through
 421 // the routine. Useful for debugging:
 422 //
 423 // set in is_ext_suspend_completed():
 424 // 0x00000001 - routine was entered
 425 // 0x00000010 - routine return false at end
 426 // 0x00000100 - thread exited (return false)
 427 // 0x00000200 - suspend request cancelled (return false)
 428 // 0x00000400 - thread suspended (return true)
 429 // 0x00001000 - thread is in a suspend equivalent state (return true)
 430 // 0x00002000 - thread is native and walkable (return true)
 431 // 0x00004000 - thread is native_trans and walkable (needed retry)
 432 //
 433 // set in wait_for_ext_suspend_completion():
 434 // 0x00010000 - routine was entered
 435 // 0x00020000 - suspend request cancelled before loop (return false)
 436 // 0x00040000 - thread suspended before loop (return true)
 437 // 0x00080000 - suspend request cancelled in loop (return false)
 438 // 0x00100000 - thread suspended in loop (return true)
 439 // 0x00200000 - suspend not completed during retry loop (return false)
 440 
 441 // Helper class for tracing suspend wait debug bits.
 442 //
 443 // 0x00000100 indicates that the target thread exited before it could
 444 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 445 // 0x00080000 each indicate a cancelled suspend request so they don't
 446 // count as wait failures either.
 447 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 448 
 449 class TraceSuspendDebugBits : public StackObj {
 450  private:
 451   JavaThread * jt;
 452   bool         is_wait;
 453   bool         called_by_wait;  // meaningful when !is_wait
 454   uint32_t *   bits;
 455 
 456  public:
 457   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 458                         uint32_t *_bits) {
 459     jt             = _jt;
 460     is_wait        = _is_wait;
 461     called_by_wait = _called_by_wait;
 462     bits           = _bits;
 463   }
 464 
 465   ~TraceSuspendDebugBits() {
 466     if (!is_wait) {
 467 #if 1
 468       // By default, don't trace bits for is_ext_suspend_completed() calls.
 469       // That trace is very chatty.
 470       return;
 471 #else
 472       if (!called_by_wait) {
 473         // If tracing for is_ext_suspend_completed() is enabled, then only
 474         // trace calls to it from wait_for_ext_suspend_completion()
 475         return;
 476       }
 477 #endif
 478     }
 479 
 480     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 481       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 482         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 483         ResourceMark rm;
 484 
 485         tty->print_cr(
 486                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 487                       jt->get_thread_name(), *bits);
 488 
 489         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 490       }
 491     }
 492   }
 493 };
 494 #undef DEBUG_FALSE_BITS
 495 
 496 
 497 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 498                                           uint32_t *bits) {
 499   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 500 
 501   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 502   bool do_trans_retry;           // flag to force the retry
 503 
 504   *bits |= 0x00000001;
 505 
 506   do {
 507     do_trans_retry = false;
 508 
 509     if (is_exiting()) {
 510       // Thread is in the process of exiting. This is always checked
 511       // first to reduce the risk of dereferencing a freed JavaThread.
 512       *bits |= 0x00000100;
 513       return false;
 514     }
 515 
 516     if (!is_external_suspend()) {
 517       // Suspend request is cancelled. This is always checked before
 518       // is_ext_suspended() to reduce the risk of a rogue resume
 519       // confusing the thread that made the suspend request.
 520       *bits |= 0x00000200;
 521       return false;
 522     }
 523 
 524     if (is_ext_suspended()) {
 525       // thread is suspended
 526       *bits |= 0x00000400;
 527       return true;
 528     }
 529 
 530     // Now that we no longer do hard suspends of threads running
 531     // native code, the target thread can be changing thread state
 532     // while we are in this routine:
 533     //
 534     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 535     //
 536     // We save a copy of the thread state as observed at this moment
 537     // and make our decision about suspend completeness based on the
 538     // copy. This closes the race where the thread state is seen as
 539     // _thread_in_native_trans in the if-thread_blocked check, but is
 540     // seen as _thread_blocked in if-thread_in_native_trans check.
 541     JavaThreadState save_state = thread_state();
 542 
 543     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 544       // If the thread's state is _thread_blocked and this blocking
 545       // condition is known to be equivalent to a suspend, then we can
 546       // consider the thread to be externally suspended. This means that
 547       // the code that sets _thread_blocked has been modified to do
 548       // self-suspension if the blocking condition releases. We also
 549       // used to check for CONDVAR_WAIT here, but that is now covered by
 550       // the _thread_blocked with self-suspension check.
 551       //
 552       // Return true since we wouldn't be here unless there was still an
 553       // external suspend request.
 554       *bits |= 0x00001000;
 555       return true;
 556     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 557       // Threads running native code will self-suspend on native==>VM/Java
 558       // transitions. If its stack is walkable (should always be the case
 559       // unless this function is called before the actual java_suspend()
 560       // call), then the wait is done.
 561       *bits |= 0x00002000;
 562       return true;
 563     } else if (!called_by_wait && !did_trans_retry &&
 564                save_state == _thread_in_native_trans &&
 565                frame_anchor()->walkable()) {
 566       // The thread is transitioning from thread_in_native to another
 567       // thread state. check_safepoint_and_suspend_for_native_trans()
 568       // will force the thread to self-suspend. If it hasn't gotten
 569       // there yet we may have caught the thread in-between the native
 570       // code check above and the self-suspend. Lucky us. If we were
 571       // called by wait_for_ext_suspend_completion(), then it
 572       // will be doing the retries so we don't have to.
 573       //
 574       // Since we use the saved thread state in the if-statement above,
 575       // there is a chance that the thread has already transitioned to
 576       // _thread_blocked by the time we get here. In that case, we will
 577       // make a single unnecessary pass through the logic below. This
 578       // doesn't hurt anything since we still do the trans retry.
 579 
 580       *bits |= 0x00004000;
 581 
 582       // Once the thread leaves thread_in_native_trans for another
 583       // thread state, we break out of this retry loop. We shouldn't
 584       // need this flag to prevent us from getting back here, but
 585       // sometimes paranoia is good.
 586       did_trans_retry = true;
 587 
 588       // We wait for the thread to transition to a more usable state.
 589       for (int i = 1; i <= SuspendRetryCount; i++) {
 590         // We used to do an "os::yield_all(i)" call here with the intention
 591         // that yielding would increase on each retry. However, the parameter
 592         // is ignored on Linux which means the yield didn't scale up. Waiting
 593         // on the SR_lock below provides a much more predictable scale up for
 594         // the delay. It also provides a simple/direct point to check for any
 595         // safepoint requests from the VMThread
 596 
 597         // temporarily drops SR_lock while doing wait with safepoint check
 598         // (if we're a JavaThread - the WatcherThread can also call this)
 599         // and increase delay with each retry
 600         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 601 
 602         // check the actual thread state instead of what we saved above
 603         if (thread_state() != _thread_in_native_trans) {
 604           // the thread has transitioned to another thread state so
 605           // try all the checks (except this one) one more time.
 606           do_trans_retry = true;
 607           break;
 608         }
 609       } // end retry loop
 610 
 611 
 612     }
 613   } while (do_trans_retry);
 614 
 615   *bits |= 0x00000010;
 616   return false;
 617 }
 618 
 619 // Wait for an external suspend request to complete (or be cancelled).
 620 // Returns true if the thread is externally suspended and false otherwise.
 621 //
 622 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 623                                                  uint32_t *bits) {
 624   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 625                              false /* !called_by_wait */, bits);
 626 
 627   // local flag copies to minimize SR_lock hold time
 628   bool is_suspended;
 629   bool pending;
 630   uint32_t reset_bits;
 631 
 632   // set a marker so is_ext_suspend_completed() knows we are the caller
 633   *bits |= 0x00010000;
 634 
 635   // We use reset_bits to reinitialize the bits value at the top of
 636   // each retry loop. This allows the caller to make use of any
 637   // unused bits for their own marking purposes.
 638   reset_bits = *bits;
 639 
 640   {
 641     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 642     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 643                                             delay, bits);
 644     pending = is_external_suspend();
 645   }
 646   // must release SR_lock to allow suspension to complete
 647 
 648   if (!pending) {
 649     // A cancelled suspend request is the only false return from
 650     // is_ext_suspend_completed() that keeps us from entering the
 651     // retry loop.
 652     *bits |= 0x00020000;
 653     return false;
 654   }
 655 
 656   if (is_suspended) {
 657     *bits |= 0x00040000;
 658     return true;
 659   }
 660 
 661   for (int i = 1; i <= retries; i++) {
 662     *bits = reset_bits;  // reinit to only track last retry
 663 
 664     // We used to do an "os::yield_all(i)" call here with the intention
 665     // that yielding would increase on each retry. However, the parameter
 666     // is ignored on Linux which means the yield didn't scale up. Waiting
 667     // on the SR_lock below provides a much more predictable scale up for
 668     // the delay. It also provides a simple/direct point to check for any
 669     // safepoint requests from the VMThread
 670 
 671     {
 672       MutexLocker ml(SR_lock());
 673       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 674       // can also call this)  and increase delay with each retry
 675       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 676 
 677       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 678                                               delay, bits);
 679 
 680       // It is possible for the external suspend request to be cancelled
 681       // (by a resume) before the actual suspend operation is completed.
 682       // Refresh our local copy to see if we still need to wait.
 683       pending = is_external_suspend();
 684     }
 685 
 686     if (!pending) {
 687       // A cancelled suspend request is the only false return from
 688       // is_ext_suspend_completed() that keeps us from staying in the
 689       // retry loop.
 690       *bits |= 0x00080000;
 691       return false;
 692     }
 693 
 694     if (is_suspended) {
 695       *bits |= 0x00100000;
 696       return true;
 697     }
 698   } // end retry loop
 699 
 700   // thread did not suspend after all our retries
 701   *bits |= 0x00200000;
 702   return false;
 703 }
 704 
 705 #ifndef PRODUCT
 706 void JavaThread::record_jump(address target, address instr, const char* file,
 707                              int line) {
 708 
 709   // This should not need to be atomic as the only way for simultaneous
 710   // updates is via interrupts. Even then this should be rare or non-existent
 711   // and we don't care that much anyway.
 712 
 713   int index = _jmp_ring_index;
 714   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 715   _jmp_ring[index]._target = (intptr_t) target;
 716   _jmp_ring[index]._instruction = (intptr_t) instr;
 717   _jmp_ring[index]._file = file;
 718   _jmp_ring[index]._line = line;
 719 }
 720 #endif // PRODUCT
 721 
 722 // Called by flat profiler
 723 // Callers have already called wait_for_ext_suspend_completion
 724 // The assertion for that is currently too complex to put here:
 725 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 726   bool gotframe = false;
 727   // self suspension saves needed state.
 728   if (has_last_Java_frame() && _anchor.walkable()) {
 729     *_fr = pd_last_frame();
 730     gotframe = true;
 731   }
 732   return gotframe;
 733 }
 734 
 735 void Thread::interrupt(Thread* thread) {
 736   debug_only(check_for_dangling_thread_pointer(thread);)
 737   os::interrupt(thread);
 738 }
 739 
 740 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 741   debug_only(check_for_dangling_thread_pointer(thread);)
 742   // Note:  If clear_interrupted==false, this simply fetches and
 743   // returns the value of the field osthread()->interrupted().
 744   return os::is_interrupted(thread, clear_interrupted);
 745 }
 746 
 747 
 748 // GC Support
 749 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 750   jint thread_parity = _oops_do_parity;
 751   if (thread_parity != strong_roots_parity) {
 752     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 753     if (res == thread_parity) {
 754       return true;
 755     } else {
 756       guarantee(res == strong_roots_parity, "Or else what?");
 757       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 758              "Should only fail when parallel.");
 759       return false;
 760     }
 761   }
 762   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 763          "Should only fail when parallel.");
 764   return false;
 765 }
 766 
 767 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 768   active_handles()->oops_do(f);
 769   // Do oop for ThreadShadow
 770   f->do_oop((oop*)&_pending_exception);
 771   handle_area()->oops_do(f);
 772 }
 773 
 774 void Thread::nmethods_do(CodeBlobClosure* cf) {
 775   // no nmethods in a generic thread...
 776 }
 777 
 778 void Thread::metadata_do(void f(Metadata*)) {
 779   if (metadata_handles() != NULL) {
 780     for (int i = 0; i< metadata_handles()->length(); i++) {
 781       f(metadata_handles()->at(i));
 782     }
 783   }
 784 }
 785 
 786 void Thread::print_on(outputStream* st) const {
 787   // get_priority assumes osthread initialized
 788   if (osthread() != NULL) {
 789     int os_prio;
 790     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 791       st->print("os_prio=%d ", os_prio);
 792     }
 793     st->print("tid=" INTPTR_FORMAT " ", this);
 794     ext().print_on(st);
 795     osthread()->print_on(st);
 796   }
 797   debug_only(if (WizardMode) print_owned_locks_on(st);)
 798 }
 799 
 800 // Thread::print_on_error() is called by fatal error handler. Don't use
 801 // any lock or allocate memory.
 802 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 803   if (is_VM_thread())                 st->print("VMThread");
 804   else if (is_Compiler_thread())      st->print("CompilerThread");
 805   else if (is_Java_thread())          st->print("JavaThread");
 806   else if (is_GC_task_thread())       st->print("GCTaskThread");
 807   else if (is_Watcher_thread())       st->print("WatcherThread");
 808   else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
 809   else                                st->print("Thread");
 810 
 811   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 812             _stack_base - _stack_size, _stack_base);
 813 
 814   if (osthread()) {
 815     st->print(" [id=%d]", osthread()->thread_id());
 816   }
 817 }
 818 
 819 #ifdef ASSERT
 820 void Thread::print_owned_locks_on(outputStream* st) const {
 821   Monitor *cur = _owned_locks;
 822   if (cur == NULL) {
 823     st->print(" (no locks) ");
 824   } else {
 825     st->print_cr(" Locks owned:");
 826     while (cur) {
 827       cur->print_on(st);
 828       cur = cur->next();
 829     }
 830   }
 831 }
 832 
 833 static int ref_use_count  = 0;
 834 
 835 bool Thread::owns_locks_but_compiled_lock() const {
 836   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 837     if (cur != Compile_lock) return true;
 838   }
 839   return false;
 840 }
 841 
 842 
 843 #endif
 844 
 845 #ifndef PRODUCT
 846 
 847 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 848 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 849 // no threads which allow_vm_block's are held
 850 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 851   // Check if current thread is allowed to block at a safepoint
 852   if (!(_allow_safepoint_count == 0)) {
 853     fatal("Possible safepoint reached by thread that does not allow it");
 854   }
 855   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 856     fatal("LEAF method calling lock?");
 857   }
 858 
 859 #ifdef ASSERT
 860   if (potential_vm_operation && is_Java_thread()
 861       && !Universe::is_bootstrapping()) {
 862     // Make sure we do not hold any locks that the VM thread also uses.
 863     // This could potentially lead to deadlocks
 864     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 865       // Threads_lock is special, since the safepoint synchronization will not start before this is
 866       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 867       // since it is used to transfer control between JavaThreads and the VMThread
 868       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 869       if ((cur->allow_vm_block() &&
 870            cur != Threads_lock &&
 871            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 872            cur != VMOperationRequest_lock &&
 873            cur != VMOperationQueue_lock) ||
 874            cur->rank() == Mutex::special) {
 875         fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
 876       }
 877     }
 878   }
 879 
 880   if (GCALotAtAllSafepoints) {
 881     // We could enter a safepoint here and thus have a gc
 882     InterfaceSupport::check_gc_alot();
 883   }
 884 #endif
 885 }
 886 #endif
 887 
 888 bool Thread::is_in_stack(address adr) const {
 889   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 890   address end = os::current_stack_pointer();
 891   // Allow non Java threads to call this without stack_base
 892   if (_stack_base == NULL) return true;
 893   if (stack_base() >= adr && adr >= end) return true;
 894 
 895   return false;
 896 }
 897 
 898 
 899 bool Thread::is_in_usable_stack(address adr) const {
 900   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
 901   size_t usable_stack_size = _stack_size - stack_guard_size;
 902 
 903   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 904 }
 905 
 906 
 907 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 908 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 909 // used for compilation in the future. If that change is made, the need for these methods
 910 // should be revisited, and they should be removed if possible.
 911 
 912 bool Thread::is_lock_owned(address adr) const {
 913   return on_local_stack(adr);
 914 }
 915 
 916 bool Thread::set_as_starting_thread() {
 917   // NOTE: this must be called inside the main thread.
 918   return os::create_main_thread((JavaThread*)this);
 919 }
 920 
 921 static void initialize_class(Symbol* class_name, TRAPS) {
 922   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 923   InstanceKlass::cast(klass)->initialize(CHECK);
 924 }
 925 
 926 
 927 // Creates the initial ThreadGroup
 928 static Handle create_initial_thread_group(TRAPS) {
 929   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 930   instanceKlassHandle klass (THREAD, k);
 931 
 932   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 933   {
 934     JavaValue result(T_VOID);
 935     JavaCalls::call_special(&result,
 936                             system_instance,
 937                             klass,
 938                             vmSymbols::object_initializer_name(),
 939                             vmSymbols::void_method_signature(),
 940                             CHECK_NH);
 941   }
 942   Universe::set_system_thread_group(system_instance());
 943 
 944   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 945   {
 946     JavaValue result(T_VOID);
 947     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 948     JavaCalls::call_special(&result,
 949                             main_instance,
 950                             klass,
 951                             vmSymbols::object_initializer_name(),
 952                             vmSymbols::threadgroup_string_void_signature(),
 953                             system_instance,
 954                             string,
 955                             CHECK_NH);
 956   }
 957   return main_instance;
 958 }
 959 
 960 // Creates the initial Thread
 961 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 962                                  TRAPS) {
 963   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 964   instanceKlassHandle klass (THREAD, k);
 965   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 966 
 967   java_lang_Thread::set_thread(thread_oop(), thread);
 968   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 969   thread->set_threadObj(thread_oop());
 970 
 971   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 972 
 973   JavaValue result(T_VOID);
 974   JavaCalls::call_special(&result, thread_oop,
 975                           klass,
 976                           vmSymbols::object_initializer_name(),
 977                           vmSymbols::threadgroup_string_void_signature(),
 978                           thread_group,
 979                           string,
 980                           CHECK_NULL);
 981   return thread_oop();
 982 }
 983 
 984 static void call_initializeSystemClass(TRAPS) {
 985   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
 986   instanceKlassHandle klass (THREAD, k);
 987 
 988   JavaValue result(T_VOID);
 989   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
 990                          vmSymbols::void_method_signature(), CHECK);
 991 }
 992 
 993 char java_runtime_name[128] = "";
 994 char java_runtime_version[128] = "";
 995 
 996 // extract the JRE name from sun.misc.Version.java_runtime_name
 997 static const char* get_java_runtime_name(TRAPS) {
 998   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
 999                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1000   fieldDescriptor fd;
1001   bool found = k != NULL &&
1002                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1003                                                         vmSymbols::string_signature(), &fd);
1004   if (found) {
1005     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1006     if (name_oop == NULL) {
1007       return NULL;
1008     }
1009     const char* name = java_lang_String::as_utf8_string(name_oop,
1010                                                         java_runtime_name,
1011                                                         sizeof(java_runtime_name));
1012     return name;
1013   } else {
1014     return NULL;
1015   }
1016 }
1017 
1018 // extract the JRE version from sun.misc.Version.java_runtime_version
1019 static const char* get_java_runtime_version(TRAPS) {
1020   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1021                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1022   fieldDescriptor fd;
1023   bool found = k != NULL &&
1024                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1025                                                         vmSymbols::string_signature(), &fd);
1026   if (found) {
1027     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1028     if (name_oop == NULL) {
1029       return NULL;
1030     }
1031     const char* name = java_lang_String::as_utf8_string(name_oop,
1032                                                         java_runtime_version,
1033                                                         sizeof(java_runtime_version));
1034     return name;
1035   } else {
1036     return NULL;
1037   }
1038 }
1039 
1040 // General purpose hook into Java code, run once when the VM is initialized.
1041 // The Java library method itself may be changed independently from the VM.
1042 static void call_postVMInitHook(TRAPS) {
1043   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1044   instanceKlassHandle klass (THREAD, k);
1045   if (klass.not_null()) {
1046     JavaValue result(T_VOID);
1047     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1048                            vmSymbols::void_method_signature(),
1049                            CHECK);
1050   }
1051 }
1052 
1053 static void reset_vm_info_property(TRAPS) {
1054   // the vm info string
1055   ResourceMark rm(THREAD);
1056   const char *vm_info = VM_Version::vm_info_string();
1057 
1058   // java.lang.System class
1059   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1060   instanceKlassHandle klass (THREAD, k);
1061 
1062   // setProperty arguments
1063   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1064   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1065 
1066   // return value
1067   JavaValue r(T_OBJECT);
1068 
1069   // public static String setProperty(String key, String value);
1070   JavaCalls::call_static(&r,
1071                          klass,
1072                          vmSymbols::setProperty_name(),
1073                          vmSymbols::string_string_string_signature(),
1074                          key_str,
1075                          value_str,
1076                          CHECK);
1077 }
1078 
1079 
1080 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1081                                     bool daemon, TRAPS) {
1082   assert(thread_group.not_null(), "thread group should be specified");
1083   assert(threadObj() == NULL, "should only create Java thread object once");
1084 
1085   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1086   instanceKlassHandle klass (THREAD, k);
1087   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1088 
1089   java_lang_Thread::set_thread(thread_oop(), this);
1090   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1091   set_threadObj(thread_oop());
1092 
1093   JavaValue result(T_VOID);
1094   if (thread_name != NULL) {
1095     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1096     // Thread gets assigned specified name and null target
1097     JavaCalls::call_special(&result,
1098                             thread_oop,
1099                             klass,
1100                             vmSymbols::object_initializer_name(),
1101                             vmSymbols::threadgroup_string_void_signature(),
1102                             thread_group, // Argument 1
1103                             name,         // Argument 2
1104                             THREAD);
1105   } else {
1106     // Thread gets assigned name "Thread-nnn" and null target
1107     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1108     JavaCalls::call_special(&result,
1109                             thread_oop,
1110                             klass,
1111                             vmSymbols::object_initializer_name(),
1112                             vmSymbols::threadgroup_runnable_void_signature(),
1113                             thread_group, // Argument 1
1114                             Handle(),     // Argument 2
1115                             THREAD);
1116   }
1117 
1118 
1119   if (daemon) {
1120     java_lang_Thread::set_daemon(thread_oop());
1121   }
1122 
1123   if (HAS_PENDING_EXCEPTION) {
1124     return;
1125   }
1126 
1127   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1128   Handle threadObj(THREAD, this->threadObj());
1129 
1130   JavaCalls::call_special(&result,
1131                           thread_group,
1132                           group,
1133                           vmSymbols::add_method_name(),
1134                           vmSymbols::thread_void_signature(),
1135                           threadObj,          // Arg 1
1136                           THREAD);
1137 }
1138 
1139 // NamedThread --  non-JavaThread subclasses with multiple
1140 // uniquely named instances should derive from this.
1141 NamedThread::NamedThread() : Thread() {
1142   _name = NULL;
1143   _processed_thread = NULL;
1144 }
1145 
1146 NamedThread::~NamedThread() {
1147   if (_name != NULL) {
1148     FREE_C_HEAP_ARRAY(char, _name);
1149     _name = NULL;
1150   }
1151 }
1152 
1153 void NamedThread::set_name(const char* format, ...) {
1154   guarantee(_name == NULL, "Only get to set name once.");
1155   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1156   guarantee(_name != NULL, "alloc failure");
1157   va_list ap;
1158   va_start(ap, format);
1159   jio_vsnprintf(_name, max_name_len, format, ap);
1160   va_end(ap);
1161 }
1162 
1163 void NamedThread::print_on(outputStream* st) const {
1164   st->print("\"%s\" ", name());
1165   Thread::print_on(st);
1166   st->cr();
1167 }
1168 
1169 
1170 // ======= WatcherThread ========
1171 
1172 // The watcher thread exists to simulate timer interrupts.  It should
1173 // be replaced by an abstraction over whatever native support for
1174 // timer interrupts exists on the platform.
1175 
1176 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1177 bool WatcherThread::_startable = false;
1178 volatile bool  WatcherThread::_should_terminate = false;
1179 
1180 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1181   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1182   if (os::create_thread(this, os::watcher_thread)) {
1183     _watcher_thread = this;
1184 
1185     // Set the watcher thread to the highest OS priority which should not be
1186     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1187     // is created. The only normal thread using this priority is the reference
1188     // handler thread, which runs for very short intervals only.
1189     // If the VMThread's priority is not lower than the WatcherThread profiling
1190     // will be inaccurate.
1191     os::set_priority(this, MaxPriority);
1192     if (!DisableStartThread) {
1193       os::start_thread(this);
1194     }
1195   }
1196 }
1197 
1198 int WatcherThread::sleep() const {
1199   // The WatcherThread does not honor the safepoint protocol for
1200   // PeriodicTask_lock in order to provide more consistent task
1201   // execution timing.
1202   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1203 
1204   if (_should_terminate) {
1205     // check for termination before we do any housekeeping or wait
1206     return 0;  // we did not sleep.
1207   }
1208 
1209   // remaining will be zero if there are no tasks,
1210   // causing the WatcherThread to sleep until a task is
1211   // enrolled
1212   int remaining = PeriodicTask::time_to_wait();
1213   int time_slept = 0;
1214 
1215   // we expect this to timeout - we only ever get unparked when
1216   // we should terminate or when a new task has been enrolled
1217   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1218 
1219   jlong time_before_loop = os::javaTimeNanos();
1220 
1221   while (true) {
1222     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1223                                             remaining);
1224     jlong now = os::javaTimeNanos();
1225 
1226     if (remaining == 0) {
1227       // if we didn't have any tasks we could have waited for a long time
1228       // consider the time_slept zero and reset time_before_loop
1229       time_slept = 0;
1230       time_before_loop = now;
1231     } else {
1232       // need to recalculate since we might have new tasks in _tasks
1233       time_slept = (int) ((now - time_before_loop) / 1000000);
1234     }
1235 
1236     // Change to task list or spurious wakeup of some kind
1237     if (timedout || _should_terminate) {
1238       break;
1239     }
1240 
1241     remaining = PeriodicTask::time_to_wait();
1242     if (remaining == 0) {
1243       // Last task was just disenrolled so loop around and wait until
1244       // another task gets enrolled
1245       continue;
1246     }
1247 
1248     remaining -= time_slept;
1249     if (remaining <= 0) {
1250       break;
1251     }
1252   }
1253 
1254   return time_slept;
1255 }
1256 
1257 void WatcherThread::run() {
1258   assert(this == watcher_thread(), "just checking");
1259 
1260   this->record_stack_base_and_size();
1261   this->initialize_thread_local_storage();
1262   this->set_native_thread_name(this->name());
1263   this->set_active_handles(JNIHandleBlock::allocate_block());
1264   while (true) {
1265     assert(watcher_thread() == Thread::current(), "thread consistency check");
1266     assert(watcher_thread() == this, "thread consistency check");
1267 
1268     // Calculate how long it'll be until the next PeriodicTask work
1269     // should be done, and sleep that amount of time.
1270     int time_waited = sleep();
1271 
1272     if (is_error_reported()) {
1273       // A fatal error has happened, the error handler(VMError::report_and_die)
1274       // should abort JVM after creating an error log file. However in some
1275       // rare cases, the error handler itself might deadlock. Here we try to
1276       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1277       //
1278       // This code is in WatcherThread because WatcherThread wakes up
1279       // periodically so the fatal error handler doesn't need to do anything;
1280       // also because the WatcherThread is less likely to crash than other
1281       // threads.
1282 
1283       for (;;) {
1284         if (!ShowMessageBoxOnError
1285             && (OnError == NULL || OnError[0] == '\0')
1286             && Arguments::abort_hook() == NULL) {
1287           os::sleep(this, 2 * 60 * 1000, false);
1288           fdStream err(defaultStream::output_fd());
1289           err.print_raw_cr("# [ timer expired, abort... ]");
1290           // skip atexit/vm_exit/vm_abort hooks
1291           os::die();
1292         }
1293 
1294         // Wake up 5 seconds later, the fatal handler may reset OnError or
1295         // ShowMessageBoxOnError when it is ready to abort.
1296         os::sleep(this, 5 * 1000, false);
1297       }
1298     }
1299 
1300     if (_should_terminate) {
1301       // check for termination before posting the next tick
1302       break;
1303     }
1304 
1305     PeriodicTask::real_time_tick(time_waited);
1306   }
1307 
1308   // Signal that it is terminated
1309   {
1310     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1311     _watcher_thread = NULL;
1312     Terminator_lock->notify();
1313   }
1314 
1315   // Thread destructor usually does this..
1316   ThreadLocalStorage::set_thread(NULL);
1317 }
1318 
1319 void WatcherThread::start() {
1320   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1321 
1322   if (watcher_thread() == NULL && _startable) {
1323     _should_terminate = false;
1324     // Create the single instance of WatcherThread
1325     new WatcherThread();
1326   }
1327 }
1328 
1329 void WatcherThread::make_startable() {
1330   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1331   _startable = true;
1332 }
1333 
1334 void WatcherThread::stop() {
1335   {
1336     // Follow normal safepoint aware lock enter protocol since the
1337     // WatcherThread is stopped by another JavaThread.
1338     MutexLocker ml(PeriodicTask_lock);
1339     _should_terminate = true;
1340     OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1341 
1342     WatcherThread* watcher = watcher_thread();
1343     if (watcher != NULL) {
1344       // unpark the WatcherThread so it can see that it should terminate
1345       watcher->unpark();
1346     }
1347   }
1348 
1349   MutexLocker mu(Terminator_lock);
1350 
1351   while (watcher_thread() != NULL) {
1352     // This wait should make safepoint checks, wait without a timeout,
1353     // and wait as a suspend-equivalent condition.
1354     //
1355     // Note: If the FlatProfiler is running, then this thread is waiting
1356     // for the WatcherThread to terminate and the WatcherThread, via the
1357     // FlatProfiler task, is waiting for the external suspend request on
1358     // this thread to complete. wait_for_ext_suspend_completion() will
1359     // eventually timeout, but that takes time. Making this wait a
1360     // suspend-equivalent condition solves that timeout problem.
1361     //
1362     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1363                           Mutex::_as_suspend_equivalent_flag);
1364   }
1365 }
1366 
1367 void WatcherThread::unpark() {
1368   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1369   PeriodicTask_lock->notify();
1370 }
1371 
1372 void WatcherThread::print_on(outputStream* st) const {
1373   st->print("\"%s\" ", name());
1374   Thread::print_on(st);
1375   st->cr();
1376 }
1377 
1378 // ======= JavaThread ========
1379 
1380 // A JavaThread is a normal Java thread
1381 
1382 void JavaThread::initialize() {
1383   // Initialize fields
1384 
1385   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1386   set_claimed_par_id(UINT_MAX);
1387 
1388   set_saved_exception_pc(NULL);
1389   set_threadObj(NULL);
1390   _anchor.clear();
1391   set_entry_point(NULL);
1392   set_jni_functions(jni_functions());
1393   set_callee_target(NULL);
1394   set_vm_result(NULL);
1395   set_vm_result_2(NULL);
1396   set_vframe_array_head(NULL);
1397   set_vframe_array_last(NULL);
1398   set_deferred_locals(NULL);
1399   set_deopt_mark(NULL);
1400   set_deopt_nmethod(NULL);
1401   clear_must_deopt_id();
1402   set_monitor_chunks(NULL);
1403   set_next(NULL);
1404   set_thread_state(_thread_new);
1405   _terminated = _not_terminated;
1406   _privileged_stack_top = NULL;
1407   _array_for_gc = NULL;
1408   _suspend_equivalent = false;
1409   _in_deopt_handler = 0;
1410   _doing_unsafe_access = false;
1411   _stack_guard_state = stack_guard_unused;
1412   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1413   _exception_pc  = 0;
1414   _exception_handler_pc = 0;
1415   _is_method_handle_return = 0;
1416   _jvmti_thread_state= NULL;
1417   _should_post_on_exceptions_flag = JNI_FALSE;
1418   _jvmti_get_loaded_classes_closure = NULL;
1419   _interp_only_mode    = 0;
1420   _special_runtime_exit_condition = _no_async_condition;
1421   _pending_async_exception = NULL;
1422   _thread_stat = NULL;
1423   _thread_stat = new ThreadStatistics();
1424   _blocked_on_compilation = false;
1425   _jni_active_critical = 0;
1426   _pending_jni_exception_check_fn = NULL;
1427   _do_not_unlock_if_synchronized = false;
1428   _cached_monitor_info = NULL;
1429   _parker = Parker::Allocate(this);
1430 
1431 #ifndef PRODUCT
1432   _jmp_ring_index = 0;
1433   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1434     record_jump(NULL, NULL, NULL, 0);
1435   }
1436 #endif // PRODUCT
1437 
1438   set_thread_profiler(NULL);
1439   if (FlatProfiler::is_active()) {
1440     // This is where we would decide to either give each thread it's own profiler
1441     // or use one global one from FlatProfiler,
1442     // or up to some count of the number of profiled threads, etc.
1443     ThreadProfiler* pp = new ThreadProfiler();
1444     pp->engage();
1445     set_thread_profiler(pp);
1446   }
1447 
1448   // Setup safepoint state info for this thread
1449   ThreadSafepointState::create(this);
1450 
1451   debug_only(_java_call_counter = 0);
1452 
1453   // JVMTI PopFrame support
1454   _popframe_condition = popframe_inactive;
1455   _popframe_preserved_args = NULL;
1456   _popframe_preserved_args_size = 0;
1457   _frames_to_pop_failed_realloc = 0;
1458 
1459   pd_initialize();
1460 }
1461 
1462 #if INCLUDE_ALL_GCS
1463 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1464 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1465 #endif // INCLUDE_ALL_GCS
1466 
1467 JavaThread::JavaThread(bool is_attaching_via_jni) :
1468                        Thread()
1469 #if INCLUDE_ALL_GCS
1470                        , _satb_mark_queue(&_satb_mark_queue_set),
1471                        _dirty_card_queue(&_dirty_card_queue_set)
1472 #endif // INCLUDE_ALL_GCS
1473 {
1474   initialize();
1475   if (is_attaching_via_jni) {
1476     _jni_attach_state = _attaching_via_jni;
1477   } else {
1478     _jni_attach_state = _not_attaching_via_jni;
1479   }
1480   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1481 }
1482 
1483 bool JavaThread::reguard_stack(address cur_sp) {
1484   if (_stack_guard_state != stack_guard_yellow_disabled) {
1485     return true; // Stack already guarded or guard pages not needed.
1486   }
1487 
1488   if (register_stack_overflow()) {
1489     // For those architectures which have separate register and
1490     // memory stacks, we must check the register stack to see if
1491     // it has overflowed.
1492     return false;
1493   }
1494 
1495   // Java code never executes within the yellow zone: the latter is only
1496   // there to provoke an exception during stack banging.  If java code
1497   // is executing there, either StackShadowPages should be larger, or
1498   // some exception code in c1, c2 or the interpreter isn't unwinding
1499   // when it should.
1500   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1501 
1502   enable_stack_yellow_zone();
1503   return true;
1504 }
1505 
1506 bool JavaThread::reguard_stack(void) {
1507   return reguard_stack(os::current_stack_pointer());
1508 }
1509 
1510 
1511 void JavaThread::block_if_vm_exited() {
1512   if (_terminated == _vm_exited) {
1513     // _vm_exited is set at safepoint, and Threads_lock is never released
1514     // we will block here forever
1515     Threads_lock->lock_without_safepoint_check();
1516     ShouldNotReachHere();
1517   }
1518 }
1519 
1520 
1521 // Remove this ifdef when C1 is ported to the compiler interface.
1522 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1523 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1524 
1525 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1526                        Thread()
1527 #if INCLUDE_ALL_GCS
1528                        , _satb_mark_queue(&_satb_mark_queue_set),
1529                        _dirty_card_queue(&_dirty_card_queue_set)
1530 #endif // INCLUDE_ALL_GCS
1531 {
1532   initialize();
1533   _jni_attach_state = _not_attaching_via_jni;
1534   set_entry_point(entry_point);
1535   // Create the native thread itself.
1536   // %note runtime_23
1537   os::ThreadType thr_type = os::java_thread;
1538   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1539                                                      os::java_thread;
1540   os::create_thread(this, thr_type, stack_sz);
1541   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1542   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1543   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1544   // the exception consists of creating the exception object & initializing it, initialization
1545   // will leave the VM via a JavaCall and then all locks must be unlocked).
1546   //
1547   // The thread is still suspended when we reach here. Thread must be explicit started
1548   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1549   // by calling Threads:add. The reason why this is not done here, is because the thread
1550   // object must be fully initialized (take a look at JVM_Start)
1551 }
1552 
1553 JavaThread::~JavaThread() {
1554 
1555   // JSR166 -- return the parker to the free list
1556   Parker::Release(_parker);
1557   _parker = NULL;
1558 
1559   // Free any remaining  previous UnrollBlock
1560   vframeArray* old_array = vframe_array_last();
1561 
1562   if (old_array != NULL) {
1563     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1564     old_array->set_unroll_block(NULL);
1565     delete old_info;
1566     delete old_array;
1567   }
1568 
1569   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1570   if (deferred != NULL) {
1571     // This can only happen if thread is destroyed before deoptimization occurs.
1572     assert(deferred->length() != 0, "empty array!");
1573     do {
1574       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1575       deferred->remove_at(0);
1576       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1577       delete dlv;
1578     } while (deferred->length() != 0);
1579     delete deferred;
1580   }
1581 
1582   // All Java related clean up happens in exit
1583   ThreadSafepointState::destroy(this);
1584   if (_thread_profiler != NULL) delete _thread_profiler;
1585   if (_thread_stat != NULL) delete _thread_stat;
1586 }
1587 
1588 
1589 // The first routine called by a new Java thread
1590 void JavaThread::run() {
1591   // initialize thread-local alloc buffer related fields
1592   this->initialize_tlab();
1593 
1594   // used to test validity of stack trace backs
1595   this->record_base_of_stack_pointer();
1596 
1597   // Record real stack base and size.
1598   this->record_stack_base_and_size();
1599 
1600   // Initialize thread local storage; set before calling MutexLocker
1601   this->initialize_thread_local_storage();
1602 
1603   this->create_stack_guard_pages();
1604 
1605   this->cache_global_variables();
1606 
1607   // Thread is now sufficient initialized to be handled by the safepoint code as being
1608   // in the VM. Change thread state from _thread_new to _thread_in_vm
1609   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1610 
1611   assert(JavaThread::current() == this, "sanity check");
1612   assert(!Thread::current()->owns_locks(), "sanity check");
1613 
1614   DTRACE_THREAD_PROBE(start, this);
1615 
1616   // This operation might block. We call that after all safepoint checks for a new thread has
1617   // been completed.
1618   this->set_active_handles(JNIHandleBlock::allocate_block());
1619 
1620   if (JvmtiExport::should_post_thread_life()) {
1621     JvmtiExport::post_thread_start(this);
1622   }
1623 
1624   EventThreadStart event;
1625   if (event.should_commit()) {
1626     event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1627     event.commit();
1628   }
1629 
1630   // We call another function to do the rest so we are sure that the stack addresses used
1631   // from there will be lower than the stack base just computed
1632   thread_main_inner();
1633 
1634   // Note, thread is no longer valid at this point!
1635 }
1636 
1637 
1638 void JavaThread::thread_main_inner() {
1639   assert(JavaThread::current() == this, "sanity check");
1640   assert(this->threadObj() != NULL, "just checking");
1641 
1642   // Execute thread entry point unless this thread has a pending exception
1643   // or has been stopped before starting.
1644   // Note: Due to JVM_StopThread we can have pending exceptions already!
1645   if (!this->has_pending_exception() &&
1646       !java_lang_Thread::is_stillborn(this->threadObj())) {
1647     {
1648       ResourceMark rm(this);
1649       this->set_native_thread_name(this->get_thread_name());
1650     }
1651     HandleMark hm(this);
1652     this->entry_point()(this, this);
1653   }
1654 
1655   DTRACE_THREAD_PROBE(stop, this);
1656 
1657   this->exit(false);
1658   delete this;
1659 }
1660 
1661 
1662 static void ensure_join(JavaThread* thread) {
1663   // We do not need to grap the Threads_lock, since we are operating on ourself.
1664   Handle threadObj(thread, thread->threadObj());
1665   assert(threadObj.not_null(), "java thread object must exist");
1666   ObjectLocker lock(threadObj, thread);
1667   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1668   thread->clear_pending_exception();
1669   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1670   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1671   // Clear the native thread instance - this makes isAlive return false and allows the join()
1672   // to complete once we've done the notify_all below
1673   java_lang_Thread::set_thread(threadObj(), NULL);
1674   lock.notify_all(thread);
1675   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1676   thread->clear_pending_exception();
1677 }
1678 
1679 
1680 // For any new cleanup additions, please check to see if they need to be applied to
1681 // cleanup_failed_attach_current_thread as well.
1682 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1683   assert(this == JavaThread::current(), "thread consistency check");
1684 
1685   HandleMark hm(this);
1686   Handle uncaught_exception(this, this->pending_exception());
1687   this->clear_pending_exception();
1688   Handle threadObj(this, this->threadObj());
1689   assert(threadObj.not_null(), "Java thread object should be created");
1690 
1691   if (get_thread_profiler() != NULL) {
1692     get_thread_profiler()->disengage();
1693     ResourceMark rm;
1694     get_thread_profiler()->print(get_thread_name());
1695   }
1696 
1697 
1698   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1699   {
1700     EXCEPTION_MARK;
1701 
1702     CLEAR_PENDING_EXCEPTION;
1703   }
1704   if (!destroy_vm) {
1705     if (uncaught_exception.not_null()) {
1706       EXCEPTION_MARK;
1707       // Call method Thread.dispatchUncaughtException().
1708       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1709       JavaValue result(T_VOID);
1710       JavaCalls::call_virtual(&result,
1711                               threadObj, thread_klass,
1712                               vmSymbols::dispatchUncaughtException_name(),
1713                               vmSymbols::throwable_void_signature(),
1714                               uncaught_exception,
1715                               THREAD);
1716       if (HAS_PENDING_EXCEPTION) {
1717         ResourceMark rm(this);
1718         jio_fprintf(defaultStream::error_stream(),
1719                     "\nException: %s thrown from the UncaughtExceptionHandler"
1720                     " in thread \"%s\"\n",
1721                     pending_exception()->klass()->external_name(),
1722                     get_thread_name());
1723         CLEAR_PENDING_EXCEPTION;
1724       }
1725     }
1726 
1727     // Called before the java thread exit since we want to read info
1728     // from java_lang_Thread object
1729     EventThreadEnd event;
1730     if (event.should_commit()) {
1731       event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1732       event.commit();
1733     }
1734 
1735     // Call after last event on thread
1736     EVENT_THREAD_EXIT(this);
1737 
1738     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1739     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1740     // is deprecated anyhow.
1741     if (!is_Compiler_thread()) {
1742       int count = 3;
1743       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1744         EXCEPTION_MARK;
1745         JavaValue result(T_VOID);
1746         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1747         JavaCalls::call_virtual(&result,
1748                                 threadObj, thread_klass,
1749                                 vmSymbols::exit_method_name(),
1750                                 vmSymbols::void_method_signature(),
1751                                 THREAD);
1752         CLEAR_PENDING_EXCEPTION;
1753       }
1754     }
1755     // notify JVMTI
1756     if (JvmtiExport::should_post_thread_life()) {
1757       JvmtiExport::post_thread_end(this);
1758     }
1759 
1760     // We have notified the agents that we are exiting, before we go on,
1761     // we must check for a pending external suspend request and honor it
1762     // in order to not surprise the thread that made the suspend request.
1763     while (true) {
1764       {
1765         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1766         if (!is_external_suspend()) {
1767           set_terminated(_thread_exiting);
1768           ThreadService::current_thread_exiting(this);
1769           break;
1770         }
1771         // Implied else:
1772         // Things get a little tricky here. We have a pending external
1773         // suspend request, but we are holding the SR_lock so we
1774         // can't just self-suspend. So we temporarily drop the lock
1775         // and then self-suspend.
1776       }
1777 
1778       ThreadBlockInVM tbivm(this);
1779       java_suspend_self();
1780 
1781       // We're done with this suspend request, but we have to loop around
1782       // and check again. Eventually we will get SR_lock without a pending
1783       // external suspend request and will be able to mark ourselves as
1784       // exiting.
1785     }
1786     // no more external suspends are allowed at this point
1787   } else {
1788     // before_exit() has already posted JVMTI THREAD_END events
1789   }
1790 
1791   // Notify waiters on thread object. This has to be done after exit() is called
1792   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1793   // group should have the destroyed bit set before waiters are notified).
1794   ensure_join(this);
1795   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1796 
1797   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1798   // held by this thread must be released.  A detach operation must only
1799   // get here if there are no Java frames on the stack.  Therefore, any
1800   // owned monitors at this point MUST be JNI-acquired monitors which are
1801   // pre-inflated and in the monitor cache.
1802   //
1803   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1804   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1805     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1806     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1807     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1808   }
1809 
1810   // These things needs to be done while we are still a Java Thread. Make sure that thread
1811   // is in a consistent state, in case GC happens
1812   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1813 
1814   if (active_handles() != NULL) {
1815     JNIHandleBlock* block = active_handles();
1816     set_active_handles(NULL);
1817     JNIHandleBlock::release_block(block);
1818   }
1819 
1820   if (free_handle_block() != NULL) {
1821     JNIHandleBlock* block = free_handle_block();
1822     set_free_handle_block(NULL);
1823     JNIHandleBlock::release_block(block);
1824   }
1825 
1826   // These have to be removed while this is still a valid thread.
1827   remove_stack_guard_pages();
1828 
1829   if (UseTLAB) {
1830     tlab().make_parsable(true);  // retire TLAB
1831   }
1832 
1833   if (JvmtiEnv::environments_might_exist()) {
1834     JvmtiExport::cleanup_thread(this);
1835   }
1836 
1837   // We must flush any deferred card marks before removing a thread from
1838   // the list of active threads.
1839   Universe::heap()->flush_deferred_store_barrier(this);
1840   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1841 
1842 #if INCLUDE_ALL_GCS
1843   // We must flush the G1-related buffers before removing a thread
1844   // from the list of active threads. We must do this after any deferred
1845   // card marks have been flushed (above) so that any entries that are
1846   // added to the thread's dirty card queue as a result are not lost.
1847   if (UseG1GC) {
1848     flush_barrier_queues();
1849   }
1850 #endif // INCLUDE_ALL_GCS
1851 
1852   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1853   Threads::remove(this);
1854 }
1855 
1856 #if INCLUDE_ALL_GCS
1857 // Flush G1-related queues.
1858 void JavaThread::flush_barrier_queues() {
1859   satb_mark_queue().flush();
1860   dirty_card_queue().flush();
1861 }
1862 
1863 void JavaThread::initialize_queues() {
1864   assert(!SafepointSynchronize::is_at_safepoint(),
1865          "we should not be at a safepoint");
1866 
1867   ObjPtrQueue& satb_queue = satb_mark_queue();
1868   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1869   // The SATB queue should have been constructed with its active
1870   // field set to false.
1871   assert(!satb_queue.is_active(), "SATB queue should not be active");
1872   assert(satb_queue.is_empty(), "SATB queue should be empty");
1873   // If we are creating the thread during a marking cycle, we should
1874   // set the active field of the SATB queue to true.
1875   if (satb_queue_set.is_active()) {
1876     satb_queue.set_active(true);
1877   }
1878 
1879   DirtyCardQueue& dirty_queue = dirty_card_queue();
1880   // The dirty card queue should have been constructed with its
1881   // active field set to true.
1882   assert(dirty_queue.is_active(), "dirty card queue should be active");
1883 }
1884 #endif // INCLUDE_ALL_GCS
1885 
1886 void JavaThread::cleanup_failed_attach_current_thread() {
1887   if (get_thread_profiler() != NULL) {
1888     get_thread_profiler()->disengage();
1889     ResourceMark rm;
1890     get_thread_profiler()->print(get_thread_name());
1891   }
1892 
1893   if (active_handles() != NULL) {
1894     JNIHandleBlock* block = active_handles();
1895     set_active_handles(NULL);
1896     JNIHandleBlock::release_block(block);
1897   }
1898 
1899   if (free_handle_block() != NULL) {
1900     JNIHandleBlock* block = free_handle_block();
1901     set_free_handle_block(NULL);
1902     JNIHandleBlock::release_block(block);
1903   }
1904 
1905   // These have to be removed while this is still a valid thread.
1906   remove_stack_guard_pages();
1907 
1908   if (UseTLAB) {
1909     tlab().make_parsable(true);  // retire TLAB, if any
1910   }
1911 
1912 #if INCLUDE_ALL_GCS
1913   if (UseG1GC) {
1914     flush_barrier_queues();
1915   }
1916 #endif // INCLUDE_ALL_GCS
1917 
1918   Threads::remove(this);
1919   delete this;
1920 }
1921 
1922 
1923 
1924 
1925 JavaThread* JavaThread::active() {
1926   Thread* thread = ThreadLocalStorage::thread();
1927   assert(thread != NULL, "just checking");
1928   if (thread->is_Java_thread()) {
1929     return (JavaThread*) thread;
1930   } else {
1931     assert(thread->is_VM_thread(), "this must be a vm thread");
1932     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1933     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1934     assert(ret->is_Java_thread(), "must be a Java thread");
1935     return ret;
1936   }
1937 }
1938 
1939 bool JavaThread::is_lock_owned(address adr) const {
1940   if (Thread::is_lock_owned(adr)) return true;
1941 
1942   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1943     if (chunk->contains(adr)) return true;
1944   }
1945 
1946   return false;
1947 }
1948 
1949 
1950 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1951   chunk->set_next(monitor_chunks());
1952   set_monitor_chunks(chunk);
1953 }
1954 
1955 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1956   guarantee(monitor_chunks() != NULL, "must be non empty");
1957   if (monitor_chunks() == chunk) {
1958     set_monitor_chunks(chunk->next());
1959   } else {
1960     MonitorChunk* prev = monitor_chunks();
1961     while (prev->next() != chunk) prev = prev->next();
1962     prev->set_next(chunk->next());
1963   }
1964 }
1965 
1966 // JVM support.
1967 
1968 // Note: this function shouldn't block if it's called in
1969 // _thread_in_native_trans state (such as from
1970 // check_special_condition_for_native_trans()).
1971 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1972 
1973   if (has_last_Java_frame() && has_async_condition()) {
1974     // If we are at a polling page safepoint (not a poll return)
1975     // then we must defer async exception because live registers
1976     // will be clobbered by the exception path. Poll return is
1977     // ok because the call we a returning from already collides
1978     // with exception handling registers and so there is no issue.
1979     // (The exception handling path kills call result registers but
1980     //  this is ok since the exception kills the result anyway).
1981 
1982     if (is_at_poll_safepoint()) {
1983       // if the code we are returning to has deoptimized we must defer
1984       // the exception otherwise live registers get clobbered on the
1985       // exception path before deoptimization is able to retrieve them.
1986       //
1987       RegisterMap map(this, false);
1988       frame caller_fr = last_frame().sender(&map);
1989       assert(caller_fr.is_compiled_frame(), "what?");
1990       if (caller_fr.is_deoptimized_frame()) {
1991         if (TraceExceptions) {
1992           ResourceMark rm;
1993           tty->print_cr("deferred async exception at compiled safepoint");
1994         }
1995         return;
1996       }
1997     }
1998   }
1999 
2000   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2001   if (condition == _no_async_condition) {
2002     // Conditions have changed since has_special_runtime_exit_condition()
2003     // was called:
2004     // - if we were here only because of an external suspend request,
2005     //   then that was taken care of above (or cancelled) so we are done
2006     // - if we were here because of another async request, then it has
2007     //   been cleared between the has_special_runtime_exit_condition()
2008     //   and now so again we are done
2009     return;
2010   }
2011 
2012   // Check for pending async. exception
2013   if (_pending_async_exception != NULL) {
2014     // Only overwrite an already pending exception, if it is not a threadDeath.
2015     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2016 
2017       // We cannot call Exceptions::_throw(...) here because we cannot block
2018       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2019 
2020       if (TraceExceptions) {
2021         ResourceMark rm;
2022         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2023         if (has_last_Java_frame()) {
2024           frame f = last_frame();
2025           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2026         }
2027         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2028       }
2029       _pending_async_exception = NULL;
2030       clear_has_async_exception();
2031     }
2032   }
2033 
2034   if (check_unsafe_error &&
2035       condition == _async_unsafe_access_error && !has_pending_exception()) {
2036     condition = _no_async_condition;  // done
2037     switch (thread_state()) {
2038     case _thread_in_vm: {
2039       JavaThread* THREAD = this;
2040       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2041     }
2042     case _thread_in_native: {
2043       ThreadInVMfromNative tiv(this);
2044       JavaThread* THREAD = this;
2045       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2046     }
2047     case _thread_in_Java: {
2048       ThreadInVMfromJava tiv(this);
2049       JavaThread* THREAD = this;
2050       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2051     }
2052     default:
2053       ShouldNotReachHere();
2054     }
2055   }
2056 
2057   assert(condition == _no_async_condition || has_pending_exception() ||
2058          (!check_unsafe_error && condition == _async_unsafe_access_error),
2059          "must have handled the async condition, if no exception");
2060 }
2061 
2062 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2063   //
2064   // Check for pending external suspend. Internal suspend requests do
2065   // not use handle_special_runtime_exit_condition().
2066   // If JNIEnv proxies are allowed, don't self-suspend if the target
2067   // thread is not the current thread. In older versions of jdbx, jdbx
2068   // threads could call into the VM with another thread's JNIEnv so we
2069   // can be here operating on behalf of a suspended thread (4432884).
2070   bool do_self_suspend = is_external_suspend_with_lock();
2071   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2072     //
2073     // Because thread is external suspended the safepoint code will count
2074     // thread as at a safepoint. This can be odd because we can be here
2075     // as _thread_in_Java which would normally transition to _thread_blocked
2076     // at a safepoint. We would like to mark the thread as _thread_blocked
2077     // before calling java_suspend_self like all other callers of it but
2078     // we must then observe proper safepoint protocol. (We can't leave
2079     // _thread_blocked with a safepoint in progress). However we can be
2080     // here as _thread_in_native_trans so we can't use a normal transition
2081     // constructor/destructor pair because they assert on that type of
2082     // transition. We could do something like:
2083     //
2084     // JavaThreadState state = thread_state();
2085     // set_thread_state(_thread_in_vm);
2086     // {
2087     //   ThreadBlockInVM tbivm(this);
2088     //   java_suspend_self()
2089     // }
2090     // set_thread_state(_thread_in_vm_trans);
2091     // if (safepoint) block;
2092     // set_thread_state(state);
2093     //
2094     // but that is pretty messy. Instead we just go with the way the
2095     // code has worked before and note that this is the only path to
2096     // java_suspend_self that doesn't put the thread in _thread_blocked
2097     // mode.
2098 
2099     frame_anchor()->make_walkable(this);
2100     java_suspend_self();
2101 
2102     // We might be here for reasons in addition to the self-suspend request
2103     // so check for other async requests.
2104   }
2105 
2106   if (check_asyncs) {
2107     check_and_handle_async_exceptions();
2108   }
2109 }
2110 
2111 void JavaThread::send_thread_stop(oop java_throwable)  {
2112   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2113   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2114   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2115 
2116   // Do not throw asynchronous exceptions against the compiler thread
2117   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2118   if (is_Compiler_thread()) return;
2119 
2120   {
2121     // Actually throw the Throwable against the target Thread - however
2122     // only if there is no thread death exception installed already.
2123     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2124       // If the topmost frame is a runtime stub, then we are calling into
2125       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2126       // must deoptimize the caller before continuing, as the compiled  exception handler table
2127       // may not be valid
2128       if (has_last_Java_frame()) {
2129         frame f = last_frame();
2130         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2131           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2132           RegisterMap reg_map(this, UseBiasedLocking);
2133           frame compiled_frame = f.sender(&reg_map);
2134           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2135             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2136           }
2137         }
2138       }
2139 
2140       // Set async. pending exception in thread.
2141       set_pending_async_exception(java_throwable);
2142 
2143       if (TraceExceptions) {
2144         ResourceMark rm;
2145         tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2146       }
2147       // for AbortVMOnException flag
2148       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2149     }
2150   }
2151 
2152 
2153   // Interrupt thread so it will wake up from a potential wait()
2154   Thread::interrupt(this);
2155 }
2156 
2157 // External suspension mechanism.
2158 //
2159 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2160 // to any VM_locks and it is at a transition
2161 // Self-suspension will happen on the transition out of the vm.
2162 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2163 //
2164 // Guarantees on return:
2165 //   + Target thread will not execute any new bytecode (that's why we need to
2166 //     force a safepoint)
2167 //   + Target thread will not enter any new monitors
2168 //
2169 void JavaThread::java_suspend() {
2170   { MutexLocker mu(Threads_lock);
2171     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2172       return;
2173     }
2174   }
2175 
2176   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2177     if (!is_external_suspend()) {
2178       // a racing resume has cancelled us; bail out now
2179       return;
2180     }
2181 
2182     // suspend is done
2183     uint32_t debug_bits = 0;
2184     // Warning: is_ext_suspend_completed() may temporarily drop the
2185     // SR_lock to allow the thread to reach a stable thread state if
2186     // it is currently in a transient thread state.
2187     if (is_ext_suspend_completed(false /* !called_by_wait */,
2188                                  SuspendRetryDelay, &debug_bits)) {
2189       return;
2190     }
2191   }
2192 
2193   VM_ForceSafepoint vm_suspend;
2194   VMThread::execute(&vm_suspend);
2195 }
2196 
2197 // Part II of external suspension.
2198 // A JavaThread self suspends when it detects a pending external suspend
2199 // request. This is usually on transitions. It is also done in places
2200 // where continuing to the next transition would surprise the caller,
2201 // e.g., monitor entry.
2202 //
2203 // Returns the number of times that the thread self-suspended.
2204 //
2205 // Note: DO NOT call java_suspend_self() when you just want to block current
2206 //       thread. java_suspend_self() is the second stage of cooperative
2207 //       suspension for external suspend requests and should only be used
2208 //       to complete an external suspend request.
2209 //
2210 int JavaThread::java_suspend_self() {
2211   int ret = 0;
2212 
2213   // we are in the process of exiting so don't suspend
2214   if (is_exiting()) {
2215     clear_external_suspend();
2216     return ret;
2217   }
2218 
2219   assert(_anchor.walkable() ||
2220          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2221          "must have walkable stack");
2222 
2223   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2224 
2225   assert(!this->is_ext_suspended(),
2226          "a thread trying to self-suspend should not already be suspended");
2227 
2228   if (this->is_suspend_equivalent()) {
2229     // If we are self-suspending as a result of the lifting of a
2230     // suspend equivalent condition, then the suspend_equivalent
2231     // flag is not cleared until we set the ext_suspended flag so
2232     // that wait_for_ext_suspend_completion() returns consistent
2233     // results.
2234     this->clear_suspend_equivalent();
2235   }
2236 
2237   // A racing resume may have cancelled us before we grabbed SR_lock
2238   // above. Or another external suspend request could be waiting for us
2239   // by the time we return from SR_lock()->wait(). The thread
2240   // that requested the suspension may already be trying to walk our
2241   // stack and if we return now, we can change the stack out from under
2242   // it. This would be a "bad thing (TM)" and cause the stack walker
2243   // to crash. We stay self-suspended until there are no more pending
2244   // external suspend requests.
2245   while (is_external_suspend()) {
2246     ret++;
2247     this->set_ext_suspended();
2248 
2249     // _ext_suspended flag is cleared by java_resume()
2250     while (is_ext_suspended()) {
2251       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2252     }
2253   }
2254 
2255   return ret;
2256 }
2257 
2258 #ifdef ASSERT
2259 // verify the JavaThread has not yet been published in the Threads::list, and
2260 // hence doesn't need protection from concurrent access at this stage
2261 void JavaThread::verify_not_published() {
2262   if (!Threads_lock->owned_by_self()) {
2263     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2264     assert(!Threads::includes(this),
2265            "java thread shouldn't have been published yet!");
2266   } else {
2267     assert(!Threads::includes(this),
2268            "java thread shouldn't have been published yet!");
2269   }
2270 }
2271 #endif
2272 
2273 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2274 // progress or when _suspend_flags is non-zero.
2275 // Current thread needs to self-suspend if there is a suspend request and/or
2276 // block if a safepoint is in progress.
2277 // Async exception ISN'T checked.
2278 // Note only the ThreadInVMfromNative transition can call this function
2279 // directly and when thread state is _thread_in_native_trans
2280 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2281   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2282 
2283   JavaThread *curJT = JavaThread::current();
2284   bool do_self_suspend = thread->is_external_suspend();
2285 
2286   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2287 
2288   // If JNIEnv proxies are allowed, don't self-suspend if the target
2289   // thread is not the current thread. In older versions of jdbx, jdbx
2290   // threads could call into the VM with another thread's JNIEnv so we
2291   // can be here operating on behalf of a suspended thread (4432884).
2292   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2293     JavaThreadState state = thread->thread_state();
2294 
2295     // We mark this thread_blocked state as a suspend-equivalent so
2296     // that a caller to is_ext_suspend_completed() won't be confused.
2297     // The suspend-equivalent state is cleared by java_suspend_self().
2298     thread->set_suspend_equivalent();
2299 
2300     // If the safepoint code sees the _thread_in_native_trans state, it will
2301     // wait until the thread changes to other thread state. There is no
2302     // guarantee on how soon we can obtain the SR_lock and complete the
2303     // self-suspend request. It would be a bad idea to let safepoint wait for
2304     // too long. Temporarily change the state to _thread_blocked to
2305     // let the VM thread know that this thread is ready for GC. The problem
2306     // of changing thread state is that safepoint could happen just after
2307     // java_suspend_self() returns after being resumed, and VM thread will
2308     // see the _thread_blocked state. We must check for safepoint
2309     // after restoring the state and make sure we won't leave while a safepoint
2310     // is in progress.
2311     thread->set_thread_state(_thread_blocked);
2312     thread->java_suspend_self();
2313     thread->set_thread_state(state);
2314     // Make sure new state is seen by VM thread
2315     if (os::is_MP()) {
2316       if (UseMembar) {
2317         // Force a fence between the write above and read below
2318         OrderAccess::fence();
2319       } else {
2320         // Must use this rather than serialization page in particular on Windows
2321         InterfaceSupport::serialize_memory(thread);
2322       }
2323     }
2324   }
2325 
2326   if (SafepointSynchronize::do_call_back()) {
2327     // If we are safepointing, then block the caller which may not be
2328     // the same as the target thread (see above).
2329     SafepointSynchronize::block(curJT);
2330   }
2331 
2332   if (thread->is_deopt_suspend()) {
2333     thread->clear_deopt_suspend();
2334     RegisterMap map(thread, false);
2335     frame f = thread->last_frame();
2336     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2337       f = f.sender(&map);
2338     }
2339     if (f.id() == thread->must_deopt_id()) {
2340       thread->clear_must_deopt_id();
2341       f.deoptimize(thread);
2342     } else {
2343       fatal("missed deoptimization!");
2344     }
2345   }
2346 }
2347 
2348 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2349 // progress or when _suspend_flags is non-zero.
2350 // Current thread needs to self-suspend if there is a suspend request and/or
2351 // block if a safepoint is in progress.
2352 // Also check for pending async exception (not including unsafe access error).
2353 // Note only the native==>VM/Java barriers can call this function and when
2354 // thread state is _thread_in_native_trans.
2355 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2356   check_safepoint_and_suspend_for_native_trans(thread);
2357 
2358   if (thread->has_async_exception()) {
2359     // We are in _thread_in_native_trans state, don't handle unsafe
2360     // access error since that may block.
2361     thread->check_and_handle_async_exceptions(false);
2362   }
2363 }
2364 
2365 // This is a variant of the normal
2366 // check_special_condition_for_native_trans with slightly different
2367 // semantics for use by critical native wrappers.  It does all the
2368 // normal checks but also performs the transition back into
2369 // thread_in_Java state.  This is required so that critical natives
2370 // can potentially block and perform a GC if they are the last thread
2371 // exiting the GC_locker.
2372 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2373   check_special_condition_for_native_trans(thread);
2374 
2375   // Finish the transition
2376   thread->set_thread_state(_thread_in_Java);
2377 
2378   if (thread->do_critical_native_unlock()) {
2379     ThreadInVMfromJavaNoAsyncException tiv(thread);
2380     GC_locker::unlock_critical(thread);
2381     thread->clear_critical_native_unlock();
2382   }
2383 }
2384 
2385 // We need to guarantee the Threads_lock here, since resumes are not
2386 // allowed during safepoint synchronization
2387 // Can only resume from an external suspension
2388 void JavaThread::java_resume() {
2389   assert_locked_or_safepoint(Threads_lock);
2390 
2391   // Sanity check: thread is gone, has started exiting or the thread
2392   // was not externally suspended.
2393   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2394     return;
2395   }
2396 
2397   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2398 
2399   clear_external_suspend();
2400 
2401   if (is_ext_suspended()) {
2402     clear_ext_suspended();
2403     SR_lock()->notify_all();
2404   }
2405 }
2406 
2407 void JavaThread::create_stack_guard_pages() {
2408   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2409   address low_addr = stack_base() - stack_size();
2410   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2411 
2412   int allocate = os::allocate_stack_guard_pages();
2413   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2414 
2415   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2416     warning("Attempt to allocate stack guard pages failed.");
2417     return;
2418   }
2419 
2420   if (os::guard_memory((char *) low_addr, len)) {
2421     _stack_guard_state = stack_guard_enabled;
2422   } else {
2423     warning("Attempt to protect stack guard pages failed.");
2424     if (os::uncommit_memory((char *) low_addr, len)) {
2425       warning("Attempt to deallocate stack guard pages failed.");
2426     }
2427   }
2428 }
2429 
2430 void JavaThread::remove_stack_guard_pages() {
2431   assert(Thread::current() == this, "from different thread");
2432   if (_stack_guard_state == stack_guard_unused) return;
2433   address low_addr = stack_base() - stack_size();
2434   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2435 
2436   if (os::allocate_stack_guard_pages()) {
2437     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2438       _stack_guard_state = stack_guard_unused;
2439     } else {
2440       warning("Attempt to deallocate stack guard pages failed.");
2441     }
2442   } else {
2443     if (_stack_guard_state == stack_guard_unused) return;
2444     if (os::unguard_memory((char *) low_addr, len)) {
2445       _stack_guard_state = stack_guard_unused;
2446     } else {
2447       warning("Attempt to unprotect stack guard pages failed.");
2448     }
2449   }
2450 }
2451 
2452 void JavaThread::enable_stack_yellow_zone() {
2453   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2454   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2455 
2456   // The base notation is from the stacks point of view, growing downward.
2457   // We need to adjust it to work correctly with guard_memory()
2458   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2459 
2460   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2461   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2462 
2463   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2464     _stack_guard_state = stack_guard_enabled;
2465   } else {
2466     warning("Attempt to guard stack yellow zone failed.");
2467   }
2468   enable_register_stack_guard();
2469 }
2470 
2471 void JavaThread::disable_stack_yellow_zone() {
2472   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2473   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2474 
2475   // Simply return if called for a thread that does not use guard pages.
2476   if (_stack_guard_state == stack_guard_unused) return;
2477 
2478   // The base notation is from the stacks point of view, growing downward.
2479   // We need to adjust it to work correctly with guard_memory()
2480   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2481 
2482   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2483     _stack_guard_state = stack_guard_yellow_disabled;
2484   } else {
2485     warning("Attempt to unguard stack yellow zone failed.");
2486   }
2487   disable_register_stack_guard();
2488 }
2489 
2490 void JavaThread::enable_stack_red_zone() {
2491   // The base notation is from the stacks point of view, growing downward.
2492   // We need to adjust it to work correctly with guard_memory()
2493   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2494   address base = stack_red_zone_base() - stack_red_zone_size();
2495 
2496   guarantee(base < stack_base(), "Error calculating stack red zone");
2497   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2498 
2499   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2500     warning("Attempt to guard stack red zone failed.");
2501   }
2502 }
2503 
2504 void JavaThread::disable_stack_red_zone() {
2505   // The base notation is from the stacks point of view, growing downward.
2506   // We need to adjust it to work correctly with guard_memory()
2507   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2508   address base = stack_red_zone_base() - stack_red_zone_size();
2509   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2510     warning("Attempt to unguard stack red zone failed.");
2511   }
2512 }
2513 
2514 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2515   // ignore is there is no stack
2516   if (!has_last_Java_frame()) return;
2517   // traverse the stack frames. Starts from top frame.
2518   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2519     frame* fr = fst.current();
2520     f(fr, fst.register_map());
2521   }
2522 }
2523 
2524 
2525 #ifndef PRODUCT
2526 // Deoptimization
2527 // Function for testing deoptimization
2528 void JavaThread::deoptimize() {
2529   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2530   StackFrameStream fst(this, UseBiasedLocking);
2531   bool deopt = false;           // Dump stack only if a deopt actually happens.
2532   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2533   // Iterate over all frames in the thread and deoptimize
2534   for (; !fst.is_done(); fst.next()) {
2535     if (fst.current()->can_be_deoptimized()) {
2536 
2537       if (only_at) {
2538         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2539         // consists of comma or carriage return separated numbers so
2540         // search for the current bci in that string.
2541         address pc = fst.current()->pc();
2542         nmethod* nm =  (nmethod*) fst.current()->cb();
2543         ScopeDesc* sd = nm->scope_desc_at(pc);
2544         char buffer[8];
2545         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2546         size_t len = strlen(buffer);
2547         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2548         while (found != NULL) {
2549           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2550               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2551             // Check that the bci found is bracketed by terminators.
2552             break;
2553           }
2554           found = strstr(found + 1, buffer);
2555         }
2556         if (!found) {
2557           continue;
2558         }
2559       }
2560 
2561       if (DebugDeoptimization && !deopt) {
2562         deopt = true; // One-time only print before deopt
2563         tty->print_cr("[BEFORE Deoptimization]");
2564         trace_frames();
2565         trace_stack();
2566       }
2567       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2568     }
2569   }
2570 
2571   if (DebugDeoptimization && deopt) {
2572     tty->print_cr("[AFTER Deoptimization]");
2573     trace_frames();
2574   }
2575 }
2576 
2577 
2578 // Make zombies
2579 void JavaThread::make_zombies() {
2580   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2581     if (fst.current()->can_be_deoptimized()) {
2582       // it is a Java nmethod
2583       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2584       nm->make_not_entrant();
2585     }
2586   }
2587 }
2588 #endif // PRODUCT
2589 
2590 
2591 void JavaThread::deoptimized_wrt_marked_nmethods() {
2592   if (!has_last_Java_frame()) return;
2593   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2594   StackFrameStream fst(this, UseBiasedLocking);
2595   for (; !fst.is_done(); fst.next()) {
2596     if (fst.current()->should_be_deoptimized()) {
2597       if (LogCompilation && xtty != NULL) {
2598         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2599         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2600                    this->name(), nm != NULL ? nm->compile_id() : -1);
2601       }
2602 
2603       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2604     }
2605   }
2606 }
2607 
2608 
2609 // If the caller is a NamedThread, then remember, in the current scope,
2610 // the given JavaThread in its _processed_thread field.
2611 class RememberProcessedThread: public StackObj {
2612   NamedThread* _cur_thr;
2613  public:
2614   RememberProcessedThread(JavaThread* jthr) {
2615     Thread* thread = Thread::current();
2616     if (thread->is_Named_thread()) {
2617       _cur_thr = (NamedThread *)thread;
2618       _cur_thr->set_processed_thread(jthr);
2619     } else {
2620       _cur_thr = NULL;
2621     }
2622   }
2623 
2624   ~RememberProcessedThread() {
2625     if (_cur_thr) {
2626       _cur_thr->set_processed_thread(NULL);
2627     }
2628   }
2629 };
2630 
2631 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2632   // Verify that the deferred card marks have been flushed.
2633   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2634 
2635   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2636   // since there may be more than one thread using each ThreadProfiler.
2637 
2638   // Traverse the GCHandles
2639   Thread::oops_do(f, cld_f, cf);
2640 
2641   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2642          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2643 
2644   if (has_last_Java_frame()) {
2645     // Record JavaThread to GC thread
2646     RememberProcessedThread rpt(this);
2647 
2648     // Traverse the privileged stack
2649     if (_privileged_stack_top != NULL) {
2650       _privileged_stack_top->oops_do(f);
2651     }
2652 
2653     // traverse the registered growable array
2654     if (_array_for_gc != NULL) {
2655       for (int index = 0; index < _array_for_gc->length(); index++) {
2656         f->do_oop(_array_for_gc->adr_at(index));
2657       }
2658     }
2659 
2660     // Traverse the monitor chunks
2661     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2662       chunk->oops_do(f);
2663     }
2664 
2665     // Traverse the execution stack
2666     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2667       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2668     }
2669   }
2670 
2671   // callee_target is never live across a gc point so NULL it here should
2672   // it still contain a methdOop.
2673 
2674   set_callee_target(NULL);
2675 
2676   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2677   // If we have deferred set_locals there might be oops waiting to be
2678   // written
2679   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2680   if (list != NULL) {
2681     for (int i = 0; i < list->length(); i++) {
2682       list->at(i)->oops_do(f);
2683     }
2684   }
2685 
2686   // Traverse instance variables at the end since the GC may be moving things
2687   // around using this function
2688   f->do_oop((oop*) &_threadObj);
2689   f->do_oop((oop*) &_vm_result);
2690   f->do_oop((oop*) &_exception_oop);
2691   f->do_oop((oop*) &_pending_async_exception);
2692 
2693   if (jvmti_thread_state() != NULL) {
2694     jvmti_thread_state()->oops_do(f);
2695   }
2696 }
2697 
2698 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2699   Thread::nmethods_do(cf);  // (super method is a no-op)
2700 
2701   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2702          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2703 
2704   if (has_last_Java_frame()) {
2705     // Traverse the execution stack
2706     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2707       fst.current()->nmethods_do(cf);
2708     }
2709   }
2710 }
2711 
2712 void JavaThread::metadata_do(void f(Metadata*)) {
2713   Thread::metadata_do(f);
2714   if (has_last_Java_frame()) {
2715     // Traverse the execution stack to call f() on the methods in the stack
2716     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2717       fst.current()->metadata_do(f);
2718     }
2719   } else if (is_Compiler_thread()) {
2720     // need to walk ciMetadata in current compile tasks to keep alive.
2721     CompilerThread* ct = (CompilerThread*)this;
2722     if (ct->env() != NULL) {
2723       ct->env()->metadata_do(f);
2724     }
2725   }
2726 }
2727 
2728 // Printing
2729 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2730   switch (_thread_state) {
2731   case _thread_uninitialized:     return "_thread_uninitialized";
2732   case _thread_new:               return "_thread_new";
2733   case _thread_new_trans:         return "_thread_new_trans";
2734   case _thread_in_native:         return "_thread_in_native";
2735   case _thread_in_native_trans:   return "_thread_in_native_trans";
2736   case _thread_in_vm:             return "_thread_in_vm";
2737   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2738   case _thread_in_Java:           return "_thread_in_Java";
2739   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2740   case _thread_blocked:           return "_thread_blocked";
2741   case _thread_blocked_trans:     return "_thread_blocked_trans";
2742   default:                        return "unknown thread state";
2743   }
2744 }
2745 
2746 #ifndef PRODUCT
2747 void JavaThread::print_thread_state_on(outputStream *st) const {
2748   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2749 };
2750 void JavaThread::print_thread_state() const {
2751   print_thread_state_on(tty);
2752 }
2753 #endif // PRODUCT
2754 
2755 // Called by Threads::print() for VM_PrintThreads operation
2756 void JavaThread::print_on(outputStream *st) const {
2757   st->print("\"%s\" ", get_thread_name());
2758   oop thread_oop = threadObj();
2759   if (thread_oop != NULL) {
2760     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2761     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2762     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2763   }
2764   Thread::print_on(st);
2765   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2766   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2767   if (thread_oop != NULL) {
2768     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2769   }
2770 #ifndef PRODUCT
2771   print_thread_state_on(st);
2772   _safepoint_state->print_on(st);
2773 #endif // PRODUCT
2774 }
2775 
2776 // Called by fatal error handler. The difference between this and
2777 // JavaThread::print() is that we can't grab lock or allocate memory.
2778 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2779   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2780   oop thread_obj = threadObj();
2781   if (thread_obj != NULL) {
2782     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2783   }
2784   st->print(" [");
2785   st->print("%s", _get_thread_state_name(_thread_state));
2786   if (osthread()) {
2787     st->print(", id=%d", osthread()->thread_id());
2788   }
2789   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2790             _stack_base - _stack_size, _stack_base);
2791   st->print("]");
2792   return;
2793 }
2794 
2795 // Verification
2796 
2797 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2798 
2799 void JavaThread::verify() {
2800   // Verify oops in the thread.
2801   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2802 
2803   // Verify the stack frames.
2804   frames_do(frame_verify);
2805 }
2806 
2807 // CR 6300358 (sub-CR 2137150)
2808 // Most callers of this method assume that it can't return NULL but a
2809 // thread may not have a name whilst it is in the process of attaching to
2810 // the VM - see CR 6412693, and there are places where a JavaThread can be
2811 // seen prior to having it's threadObj set (eg JNI attaching threads and
2812 // if vm exit occurs during initialization). These cases can all be accounted
2813 // for such that this method never returns NULL.
2814 const char* JavaThread::get_thread_name() const {
2815 #ifdef ASSERT
2816   // early safepoints can hit while current thread does not yet have TLS
2817   if (!SafepointSynchronize::is_at_safepoint()) {
2818     Thread *cur = Thread::current();
2819     if (!(cur->is_Java_thread() && cur == this)) {
2820       // Current JavaThreads are allowed to get their own name without
2821       // the Threads_lock.
2822       assert_locked_or_safepoint(Threads_lock);
2823     }
2824   }
2825 #endif // ASSERT
2826   return get_thread_name_string();
2827 }
2828 
2829 // Returns a non-NULL representation of this thread's name, or a suitable
2830 // descriptive string if there is no set name
2831 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2832   const char* name_str;
2833   oop thread_obj = threadObj();
2834   if (thread_obj != NULL) {
2835     oop name = java_lang_Thread::name(thread_obj);
2836     if (name != NULL) {
2837       if (buf == NULL) {
2838         name_str = java_lang_String::as_utf8_string(name);
2839       } else {
2840         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2841       }
2842     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2843       name_str = "<no-name - thread is attaching>";
2844     } else {
2845       name_str = Thread::name();
2846     }
2847   } else {
2848     name_str = Thread::name();
2849   }
2850   assert(name_str != NULL, "unexpected NULL thread name");
2851   return name_str;
2852 }
2853 
2854 
2855 const char* JavaThread::get_threadgroup_name() const {
2856   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2857   oop thread_obj = threadObj();
2858   if (thread_obj != NULL) {
2859     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2860     if (thread_group != NULL) {
2861       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2862       // ThreadGroup.name can be null
2863       if (name != NULL) {
2864         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2865         return str;
2866       }
2867     }
2868   }
2869   return NULL;
2870 }
2871 
2872 const char* JavaThread::get_parent_name() const {
2873   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2874   oop thread_obj = threadObj();
2875   if (thread_obj != NULL) {
2876     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2877     if (thread_group != NULL) {
2878       oop parent = java_lang_ThreadGroup::parent(thread_group);
2879       if (parent != NULL) {
2880         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2881         // ThreadGroup.name can be null
2882         if (name != NULL) {
2883           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2884           return str;
2885         }
2886       }
2887     }
2888   }
2889   return NULL;
2890 }
2891 
2892 ThreadPriority JavaThread::java_priority() const {
2893   oop thr_oop = threadObj();
2894   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2895   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2896   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2897   return priority;
2898 }
2899 
2900 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2901 
2902   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2903   // Link Java Thread object <-> C++ Thread
2904 
2905   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2906   // and put it into a new Handle.  The Handle "thread_oop" can then
2907   // be used to pass the C++ thread object to other methods.
2908 
2909   // Set the Java level thread object (jthread) field of the
2910   // new thread (a JavaThread *) to C++ thread object using the
2911   // "thread_oop" handle.
2912 
2913   // Set the thread field (a JavaThread *) of the
2914   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2915 
2916   Handle thread_oop(Thread::current(),
2917                     JNIHandles::resolve_non_null(jni_thread));
2918   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2919          "must be initialized");
2920   set_threadObj(thread_oop());
2921   java_lang_Thread::set_thread(thread_oop(), this);
2922 
2923   if (prio == NoPriority) {
2924     prio = java_lang_Thread::priority(thread_oop());
2925     assert(prio != NoPriority, "A valid priority should be present");
2926   }
2927 
2928   // Push the Java priority down to the native thread; needs Threads_lock
2929   Thread::set_priority(this, prio);
2930 
2931   prepare_ext();
2932 
2933   // Add the new thread to the Threads list and set it in motion.
2934   // We must have threads lock in order to call Threads::add.
2935   // It is crucial that we do not block before the thread is
2936   // added to the Threads list for if a GC happens, then the java_thread oop
2937   // will not be visited by GC.
2938   Threads::add(this);
2939 }
2940 
2941 oop JavaThread::current_park_blocker() {
2942   // Support for JSR-166 locks
2943   oop thread_oop = threadObj();
2944   if (thread_oop != NULL &&
2945       JDK_Version::current().supports_thread_park_blocker()) {
2946     return java_lang_Thread::park_blocker(thread_oop);
2947   }
2948   return NULL;
2949 }
2950 
2951 
2952 void JavaThread::print_stack_on(outputStream* st) {
2953   if (!has_last_Java_frame()) return;
2954   ResourceMark rm;
2955   HandleMark   hm;
2956 
2957   RegisterMap reg_map(this);
2958   vframe* start_vf = last_java_vframe(&reg_map);
2959   int count = 0;
2960   for (vframe* f = start_vf; f; f = f->sender()) {
2961     if (f->is_java_frame()) {
2962       javaVFrame* jvf = javaVFrame::cast(f);
2963       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2964 
2965       // Print out lock information
2966       if (JavaMonitorsInStackTrace) {
2967         jvf->print_lock_info_on(st, count);
2968       }
2969     } else {
2970       // Ignore non-Java frames
2971     }
2972 
2973     // Bail-out case for too deep stacks
2974     count++;
2975     if (MaxJavaStackTraceDepth == count) return;
2976   }
2977 }
2978 
2979 
2980 // JVMTI PopFrame support
2981 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2982   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2983   if (in_bytes(size_in_bytes) != 0) {
2984     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
2985     _popframe_preserved_args_size = in_bytes(size_in_bytes);
2986     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2987   }
2988 }
2989 
2990 void* JavaThread::popframe_preserved_args() {
2991   return _popframe_preserved_args;
2992 }
2993 
2994 ByteSize JavaThread::popframe_preserved_args_size() {
2995   return in_ByteSize(_popframe_preserved_args_size);
2996 }
2997 
2998 WordSize JavaThread::popframe_preserved_args_size_in_words() {
2999   int sz = in_bytes(popframe_preserved_args_size());
3000   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3001   return in_WordSize(sz / wordSize);
3002 }
3003 
3004 void JavaThread::popframe_free_preserved_args() {
3005   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3006   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3007   _popframe_preserved_args = NULL;
3008   _popframe_preserved_args_size = 0;
3009 }
3010 
3011 #ifndef PRODUCT
3012 
3013 void JavaThread::trace_frames() {
3014   tty->print_cr("[Describe stack]");
3015   int frame_no = 1;
3016   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3017     tty->print("  %d. ", frame_no++);
3018     fst.current()->print_value_on(tty, this);
3019     tty->cr();
3020   }
3021 }
3022 
3023 class PrintAndVerifyOopClosure: public OopClosure {
3024  protected:
3025   template <class T> inline void do_oop_work(T* p) {
3026     oop obj = oopDesc::load_decode_heap_oop(p);
3027     if (obj == NULL) return;
3028     tty->print(INTPTR_FORMAT ": ", p);
3029     if (obj->is_oop_or_null()) {
3030       if (obj->is_objArray()) {
3031         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3032       } else {
3033         obj->print();
3034       }
3035     } else {
3036       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3037     }
3038     tty->cr();
3039   }
3040  public:
3041   virtual void do_oop(oop* p) { do_oop_work(p); }
3042   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3043 };
3044 
3045 
3046 static void oops_print(frame* f, const RegisterMap *map) {
3047   PrintAndVerifyOopClosure print;
3048   f->print_value();
3049   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3050 }
3051 
3052 // Print our all the locations that contain oops and whether they are
3053 // valid or not.  This useful when trying to find the oldest frame
3054 // where an oop has gone bad since the frame walk is from youngest to
3055 // oldest.
3056 void JavaThread::trace_oops() {
3057   tty->print_cr("[Trace oops]");
3058   frames_do(oops_print);
3059 }
3060 
3061 
3062 #ifdef ASSERT
3063 // Print or validate the layout of stack frames
3064 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3065   ResourceMark rm;
3066   PRESERVE_EXCEPTION_MARK;
3067   FrameValues values;
3068   int frame_no = 0;
3069   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3070     fst.current()->describe(values, ++frame_no);
3071     if (depth == frame_no) break;
3072   }
3073   if (validate_only) {
3074     values.validate();
3075   } else {
3076     tty->print_cr("[Describe stack layout]");
3077     values.print(this);
3078   }
3079 }
3080 #endif
3081 
3082 void JavaThread::trace_stack_from(vframe* start_vf) {
3083   ResourceMark rm;
3084   int vframe_no = 1;
3085   for (vframe* f = start_vf; f; f = f->sender()) {
3086     if (f->is_java_frame()) {
3087       javaVFrame::cast(f)->print_activation(vframe_no++);
3088     } else {
3089       f->print();
3090     }
3091     if (vframe_no > StackPrintLimit) {
3092       tty->print_cr("...<more frames>...");
3093       return;
3094     }
3095   }
3096 }
3097 
3098 
3099 void JavaThread::trace_stack() {
3100   if (!has_last_Java_frame()) return;
3101   ResourceMark rm;
3102   HandleMark   hm;
3103   RegisterMap reg_map(this);
3104   trace_stack_from(last_java_vframe(&reg_map));
3105 }
3106 
3107 
3108 #endif // PRODUCT
3109 
3110 
3111 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3112   assert(reg_map != NULL, "a map must be given");
3113   frame f = last_frame();
3114   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3115     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3116   }
3117   return NULL;
3118 }
3119 
3120 
3121 Klass* JavaThread::security_get_caller_class(int depth) {
3122   vframeStream vfst(this);
3123   vfst.security_get_caller_frame(depth);
3124   if (!vfst.at_end()) {
3125     return vfst.method()->method_holder();
3126   }
3127   return NULL;
3128 }
3129 
3130 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3131   assert(thread->is_Compiler_thread(), "must be compiler thread");
3132   CompileBroker::compiler_thread_loop();
3133 }
3134 
3135 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3136   NMethodSweeper::sweeper_loop();
3137 }
3138 
3139 // Create a CompilerThread
3140 CompilerThread::CompilerThread(CompileQueue* queue,
3141                                CompilerCounters* counters)
3142                                : JavaThread(&compiler_thread_entry) {
3143   _env   = NULL;
3144   _log   = NULL;
3145   _task  = NULL;
3146   _queue = queue;
3147   _counters = counters;
3148   _buffer_blob = NULL;
3149   _compiler = NULL;
3150 
3151 #ifndef PRODUCT
3152   _ideal_graph_printer = NULL;
3153 #endif
3154 }
3155 
3156 // Create sweeper thread
3157 CodeCacheSweeperThread::CodeCacheSweeperThread()
3158 : JavaThread(&sweeper_thread_entry) {
3159   _scanned_nmethod = NULL;
3160 }
3161 void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3162   JavaThread::oops_do(f, cld_f, cf);
3163   if (_scanned_nmethod != NULL && cf != NULL) {
3164     // Safepoints can occur when the sweeper is scanning an nmethod so
3165     // process it here to make sure it isn't unloaded in the middle of
3166     // a scan.
3167     cf->do_code_blob(_scanned_nmethod);
3168   }
3169 }
3170 
3171 
3172 // ======= Threads ========
3173 
3174 // The Threads class links together all active threads, and provides
3175 // operations over all threads.  It is protected by its own Mutex
3176 // lock, which is also used in other contexts to protect thread
3177 // operations from having the thread being operated on from exiting
3178 // and going away unexpectedly (e.g., safepoint synchronization)
3179 
3180 JavaThread* Threads::_thread_list = NULL;
3181 int         Threads::_number_of_threads = 0;
3182 int         Threads::_number_of_non_daemon_threads = 0;
3183 int         Threads::_return_code = 0;
3184 size_t      JavaThread::_stack_size_at_create = 0;
3185 #ifdef ASSERT
3186 bool        Threads::_vm_complete = false;
3187 #endif
3188 
3189 // All JavaThreads
3190 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3191 
3192 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3193 void Threads::threads_do(ThreadClosure* tc) {
3194   assert_locked_or_safepoint(Threads_lock);
3195   // ALL_JAVA_THREADS iterates through all JavaThreads
3196   ALL_JAVA_THREADS(p) {
3197     tc->do_thread(p);
3198   }
3199   // Someday we could have a table or list of all non-JavaThreads.
3200   // For now, just manually iterate through them.
3201   tc->do_thread(VMThread::vm_thread());
3202   Universe::heap()->gc_threads_do(tc);
3203   WatcherThread *wt = WatcherThread::watcher_thread();
3204   // Strictly speaking, the following NULL check isn't sufficient to make sure
3205   // the data for WatcherThread is still valid upon being examined. However,
3206   // considering that WatchThread terminates when the VM is on the way to
3207   // exit at safepoint, the chance of the above is extremely small. The right
3208   // way to prevent termination of WatcherThread would be to acquire
3209   // Terminator_lock, but we can't do that without violating the lock rank
3210   // checking in some cases.
3211   if (wt != NULL) {
3212     tc->do_thread(wt);
3213   }
3214 
3215   // If CompilerThreads ever become non-JavaThreads, add them here
3216 }
3217 
3218 
3219 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3220   TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3221 
3222   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3223     create_vm_init_libraries();
3224   }
3225 
3226   initialize_class(vmSymbols::java_lang_String(), CHECK);
3227 
3228   // Initialize java_lang.System (needed before creating the thread)
3229   initialize_class(vmSymbols::java_lang_System(), CHECK);
3230   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3231   Handle thread_group = create_initial_thread_group(CHECK);
3232   Universe::set_main_thread_group(thread_group());
3233   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3234   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3235   main_thread->set_threadObj(thread_object);
3236   // Set thread status to running since main thread has
3237   // been started and running.
3238   java_lang_Thread::set_thread_status(thread_object,
3239                                       java_lang_Thread::RUNNABLE);
3240 
3241   // The VM creates & returns objects of this class. Make sure it's initialized.
3242   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3243 
3244   // The VM preresolves methods to these classes. Make sure that they get initialized
3245   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3246   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3247   call_initializeSystemClass(CHECK);
3248 
3249   // get the Java runtime name after java.lang.System is initialized
3250   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3251   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3252 
3253   // an instance of OutOfMemory exception has been allocated earlier
3254   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3255   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3256   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3257   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3258   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3259   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3260   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3261   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3262 }
3263 
3264 void Threads::initialize_jsr292_core_classes(TRAPS) {
3265   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3266   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3267   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3268 }
3269 
3270 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3271   extern void JDK_Version_init();
3272 
3273   // Check version
3274   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3275 
3276   // Initialize the output stream module
3277   ostream_init();
3278 
3279   // Process java launcher properties.
3280   Arguments::process_sun_java_launcher_properties(args);
3281 
3282   // Initialize the os module before using TLS
3283   os::init();
3284 
3285   // Initialize system properties.
3286   Arguments::init_system_properties();
3287 
3288   // So that JDK version can be used as a discriminator when parsing arguments
3289   JDK_Version_init();
3290 
3291   // Update/Initialize System properties after JDK version number is known
3292   Arguments::init_version_specific_system_properties();
3293 
3294   // Parse arguments
3295   jint parse_result = Arguments::parse(args);
3296   if (parse_result != JNI_OK) return parse_result;
3297 
3298   os::init_before_ergo();
3299 
3300   jint ergo_result = Arguments::apply_ergo();
3301   if (ergo_result != JNI_OK) return ergo_result;
3302 
3303   if (PauseAtStartup) {
3304     os::pause();
3305   }
3306 
3307   HOTSPOT_VM_INIT_BEGIN();
3308 
3309   // Record VM creation timing statistics
3310   TraceVmCreationTime create_vm_timer;
3311   create_vm_timer.start();
3312 
3313   // Timing (must come after argument parsing)
3314   TraceTime timer("Create VM", TraceStartupTime);
3315 
3316   // Initialize the os module after parsing the args
3317   jint os_init_2_result = os::init_2();
3318   if (os_init_2_result != JNI_OK) return os_init_2_result;
3319 
3320   jint adjust_after_os_result = Arguments::adjust_after_os();
3321   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3322 
3323   // initialize TLS
3324   ThreadLocalStorage::init();
3325 
3326   // Initialize output stream logging
3327   ostream_init_log();
3328 
3329   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3330   // Must be before create_vm_init_agents()
3331   if (Arguments::init_libraries_at_startup()) {
3332     convert_vm_init_libraries_to_agents();
3333   }
3334 
3335   // Launch -agentlib/-agentpath and converted -Xrun agents
3336   if (Arguments::init_agents_at_startup()) {
3337     create_vm_init_agents();
3338   }
3339 
3340   // Initialize Threads state
3341   _thread_list = NULL;
3342   _number_of_threads = 0;
3343   _number_of_non_daemon_threads = 0;
3344 
3345   // Initialize global data structures and create system classes in heap
3346   vm_init_globals();
3347 
3348   // Attach the main thread to this os thread
3349   JavaThread* main_thread = new JavaThread();
3350   main_thread->set_thread_state(_thread_in_vm);
3351   // must do this before set_active_handles and initialize_thread_local_storage
3352   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3353   // change the stack size recorded here to one based on the java thread
3354   // stacksize. This adjusted size is what is used to figure the placement
3355   // of the guard pages.
3356   main_thread->record_stack_base_and_size();
3357   main_thread->initialize_thread_local_storage();
3358 
3359   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3360 
3361   if (!main_thread->set_as_starting_thread()) {
3362     vm_shutdown_during_initialization(
3363                                       "Failed necessary internal allocation. Out of swap space");
3364     delete main_thread;
3365     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3366     return JNI_ENOMEM;
3367   }
3368 
3369   // Enable guard page *after* os::create_main_thread(), otherwise it would
3370   // crash Linux VM, see notes in os_linux.cpp.
3371   main_thread->create_stack_guard_pages();
3372 
3373   // Initialize Java-Level synchronization subsystem
3374   ObjectMonitor::Initialize();
3375 
3376   // Initialize global modules
3377   jint status = init_globals();
3378   if (status != JNI_OK) {
3379     delete main_thread;
3380     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3381     return status;
3382   }
3383 
3384   // Should be done after the heap is fully created
3385   main_thread->cache_global_variables();
3386 
3387   HandleMark hm;
3388 
3389   { MutexLocker mu(Threads_lock);
3390     Threads::add(main_thread);
3391   }
3392 
3393   // Any JVMTI raw monitors entered in onload will transition into
3394   // real raw monitor. VM is setup enough here for raw monitor enter.
3395   JvmtiExport::transition_pending_onload_raw_monitors();
3396 
3397   // Create the VMThread
3398   { TraceTime timer("Start VMThread", TraceStartupTime);
3399     VMThread::create();
3400     Thread* vmthread = VMThread::vm_thread();
3401 
3402     if (!os::create_thread(vmthread, os::vm_thread)) {
3403       vm_exit_during_initialization("Cannot create VM thread. "
3404                                     "Out of system resources.");
3405     }
3406 
3407     // Wait for the VM thread to become ready, and VMThread::run to initialize
3408     // Monitors can have spurious returns, must always check another state flag
3409     {
3410       MutexLocker ml(Notify_lock);
3411       os::start_thread(vmthread);
3412       while (vmthread->active_handles() == NULL) {
3413         Notify_lock->wait();
3414       }
3415     }
3416   }
3417 
3418   assert(Universe::is_fully_initialized(), "not initialized");
3419   if (VerifyDuringStartup) {
3420     // Make sure we're starting with a clean slate.
3421     VM_Verify verify_op;
3422     VMThread::execute(&verify_op);
3423   }
3424 
3425   Thread* THREAD = Thread::current();
3426 
3427   // At this point, the Universe is initialized, but we have not executed
3428   // any byte code.  Now is a good time (the only time) to dump out the
3429   // internal state of the JVM for sharing.
3430   if (DumpSharedSpaces) {
3431     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3432     ShouldNotReachHere();
3433   }
3434 
3435   // Always call even when there are not JVMTI environments yet, since environments
3436   // may be attached late and JVMTI must track phases of VM execution
3437   JvmtiExport::enter_start_phase();
3438 
3439   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3440   JvmtiExport::post_vm_start();
3441 
3442   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3443 
3444   // We need this for ClassDataSharing - the initial vm.info property is set
3445   // with the default value of CDS "sharing" which may be reset through
3446   // command line options.
3447   reset_vm_info_property(CHECK_JNI_ERR);
3448 
3449   quicken_jni_functions();
3450 
3451   // Must be run after init_ft which initializes ft_enabled
3452   if (TRACE_INITIALIZE() != JNI_OK) {
3453     vm_exit_during_initialization("Failed to initialize tracing backend");
3454   }
3455 
3456   // Set flag that basic initialization has completed. Used by exceptions and various
3457   // debug stuff, that does not work until all basic classes have been initialized.
3458   set_init_completed();
3459 
3460   Metaspace::post_initialize();
3461 
3462   HOTSPOT_VM_INIT_END();
3463 
3464   // record VM initialization completion time
3465 #if INCLUDE_MANAGEMENT
3466   Management::record_vm_init_completed();
3467 #endif // INCLUDE_MANAGEMENT
3468 
3469   // Compute system loader. Note that this has to occur after set_init_completed, since
3470   // valid exceptions may be thrown in the process.
3471   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3472   // set_init_completed has just been called, causing exceptions not to be shortcut
3473   // anymore. We call vm_exit_during_initialization directly instead.
3474   SystemDictionary::compute_java_system_loader(CHECK_JNI_ERR);
3475 
3476 #if INCLUDE_ALL_GCS
3477   // Support for ConcurrentMarkSweep. This should be cleaned up
3478   // and better encapsulated. The ugly nested if test would go away
3479   // once things are properly refactored. XXX YSR
3480   if (UseConcMarkSweepGC || UseG1GC) {
3481     if (UseConcMarkSweepGC) {
3482       ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3483     } else {
3484       ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3485     }
3486   }
3487 #endif // INCLUDE_ALL_GCS
3488 
3489   // Always call even when there are not JVMTI environments yet, since environments
3490   // may be attached late and JVMTI must track phases of VM execution
3491   JvmtiExport::enter_live_phase();
3492 
3493   // Signal Dispatcher needs to be started before VMInit event is posted
3494   os::signal_init();
3495 
3496   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3497   if (!DisableAttachMechanism) {
3498     AttachListener::vm_start();
3499     if (StartAttachListener || AttachListener::init_at_startup()) {
3500       AttachListener::init();
3501     }
3502   }
3503 
3504   // Launch -Xrun agents
3505   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3506   // back-end can launch with -Xdebug -Xrunjdwp.
3507   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3508     create_vm_init_libraries();
3509   }
3510 
3511   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3512   JvmtiExport::post_vm_initialized();
3513 
3514   if (TRACE_START() != JNI_OK) {
3515     vm_exit_during_initialization("Failed to start tracing backend.");
3516   }
3517 
3518   if (CleanChunkPoolAsync) {
3519     Chunk::start_chunk_pool_cleaner_task();
3520   }
3521 
3522   // initialize compiler(s)
3523 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3524   CompileBroker::compilation_init();
3525 #endif
3526 
3527   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3528   // It is done after compilers are initialized, because otherwise compilations of
3529   // signature polymorphic MH intrinsics can be missed
3530   // (see SystemDictionary::find_method_handle_intrinsic).
3531   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3532 
3533 #if INCLUDE_MANAGEMENT
3534   Management::initialize(THREAD);
3535 
3536   if (HAS_PENDING_EXCEPTION) {
3537     // management agent fails to start possibly due to
3538     // configuration problem and is responsible for printing
3539     // stack trace if appropriate. Simply exit VM.
3540     vm_exit(1);
3541   }
3542 #endif // INCLUDE_MANAGEMENT
3543 
3544   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3545   if (MemProfiling)                   MemProfiler::engage();
3546   StatSampler::engage();
3547   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3548 
3549   BiasedLocking::init();
3550 
3551 #if INCLUDE_RTM_OPT
3552   RTMLockingCounters::init();
3553 #endif
3554 
3555   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3556     call_postVMInitHook(THREAD);
3557     // The Java side of PostVMInitHook.run must deal with all
3558     // exceptions and provide means of diagnosis.
3559     if (HAS_PENDING_EXCEPTION) {
3560       CLEAR_PENDING_EXCEPTION;
3561     }
3562   }
3563 
3564   {
3565     MutexLocker ml(PeriodicTask_lock);
3566     // Make sure the WatcherThread can be started by WatcherThread::start()
3567     // or by dynamic enrollment.
3568     WatcherThread::make_startable();
3569     // Start up the WatcherThread if there are any periodic tasks
3570     // NOTE:  All PeriodicTasks should be registered by now. If they
3571     //   aren't, late joiners might appear to start slowly (we might
3572     //   take a while to process their first tick).
3573     if (PeriodicTask::num_tasks() > 0) {
3574       WatcherThread::start();
3575     }
3576   }
3577 
3578   create_vm_timer.end();
3579 #ifdef ASSERT
3580   _vm_complete = true;
3581 #endif
3582   return JNI_OK;
3583 }
3584 
3585 // type for the Agent_OnLoad and JVM_OnLoad entry points
3586 extern "C" {
3587   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3588 }
3589 // Find a command line agent library and return its entry point for
3590 //         -agentlib:  -agentpath:   -Xrun
3591 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3592 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3593                                     const char *on_load_symbols[],
3594                                     size_t num_symbol_entries) {
3595   OnLoadEntry_t on_load_entry = NULL;
3596   void *library = NULL;
3597 
3598   if (!agent->valid()) {
3599     char buffer[JVM_MAXPATHLEN];
3600     char ebuf[1024] = "";
3601     const char *name = agent->name();
3602     const char *msg = "Could not find agent library ";
3603 
3604     // First check to see if agent is statically linked into executable
3605     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3606       library = agent->os_lib();
3607     } else if (agent->is_absolute_path()) {
3608       library = os::dll_load(name, ebuf, sizeof ebuf);
3609       if (library == NULL) {
3610         const char *sub_msg = " in absolute path, with error: ";
3611         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3612         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3613         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3614         // If we can't find the agent, exit.
3615         vm_exit_during_initialization(buf, NULL);
3616         FREE_C_HEAP_ARRAY(char, buf);
3617       }
3618     } else {
3619       // Try to load the agent from the standard dll directory
3620       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3621                              name)) {
3622         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3623       }
3624       if (library == NULL) { // Try the local directory
3625         char ns[1] = {0};
3626         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3627           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3628         }
3629         if (library == NULL) {
3630           const char *sub_msg = " on the library path, with error: ";
3631           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3632           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3633           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3634           // If we can't find the agent, exit.
3635           vm_exit_during_initialization(buf, NULL);
3636           FREE_C_HEAP_ARRAY(char, buf);
3637         }
3638       }
3639     }
3640     agent->set_os_lib(library);
3641     agent->set_valid();
3642   }
3643 
3644   // Find the OnLoad function.
3645   on_load_entry =
3646     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3647                                                           false,
3648                                                           on_load_symbols,
3649                                                           num_symbol_entries));
3650   return on_load_entry;
3651 }
3652 
3653 // Find the JVM_OnLoad entry point
3654 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3655   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3656   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3657 }
3658 
3659 // Find the Agent_OnLoad entry point
3660 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3661   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3662   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3663 }
3664 
3665 // For backwards compatibility with -Xrun
3666 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3667 // treated like -agentpath:
3668 // Must be called before agent libraries are created
3669 void Threads::convert_vm_init_libraries_to_agents() {
3670   AgentLibrary* agent;
3671   AgentLibrary* next;
3672 
3673   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3674     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3675     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3676 
3677     // If there is an JVM_OnLoad function it will get called later,
3678     // otherwise see if there is an Agent_OnLoad
3679     if (on_load_entry == NULL) {
3680       on_load_entry = lookup_agent_on_load(agent);
3681       if (on_load_entry != NULL) {
3682         // switch it to the agent list -- so that Agent_OnLoad will be called,
3683         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3684         Arguments::convert_library_to_agent(agent);
3685       } else {
3686         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3687       }
3688     }
3689   }
3690 }
3691 
3692 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3693 // Invokes Agent_OnLoad
3694 // Called very early -- before JavaThreads exist
3695 void Threads::create_vm_init_agents() {
3696   extern struct JavaVM_ main_vm;
3697   AgentLibrary* agent;
3698 
3699   JvmtiExport::enter_onload_phase();
3700 
3701   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3702     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3703 
3704     if (on_load_entry != NULL) {
3705       // Invoke the Agent_OnLoad function
3706       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3707       if (err != JNI_OK) {
3708         vm_exit_during_initialization("agent library failed to init", agent->name());
3709       }
3710     } else {
3711       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3712     }
3713   }
3714   JvmtiExport::enter_primordial_phase();
3715 }
3716 
3717 extern "C" {
3718   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3719 }
3720 
3721 void Threads::shutdown_vm_agents() {
3722   // Send any Agent_OnUnload notifications
3723   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3724   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3725   extern struct JavaVM_ main_vm;
3726   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3727 
3728     // Find the Agent_OnUnload function.
3729     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3730                                                    os::find_agent_function(agent,
3731                                                    false,
3732                                                    on_unload_symbols,
3733                                                    num_symbol_entries));
3734 
3735     // Invoke the Agent_OnUnload function
3736     if (unload_entry != NULL) {
3737       JavaThread* thread = JavaThread::current();
3738       ThreadToNativeFromVM ttn(thread);
3739       HandleMark hm(thread);
3740       (*unload_entry)(&main_vm);
3741     }
3742   }
3743 }
3744 
3745 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3746 // Invokes JVM_OnLoad
3747 void Threads::create_vm_init_libraries() {
3748   extern struct JavaVM_ main_vm;
3749   AgentLibrary* agent;
3750 
3751   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3752     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3753 
3754     if (on_load_entry != NULL) {
3755       // Invoke the JVM_OnLoad function
3756       JavaThread* thread = JavaThread::current();
3757       ThreadToNativeFromVM ttn(thread);
3758       HandleMark hm(thread);
3759       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3760       if (err != JNI_OK) {
3761         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3762       }
3763     } else {
3764       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3765     }
3766   }
3767 }
3768 
3769 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3770   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3771 
3772   JavaThread* java_thread = NULL;
3773   // Sequential search for now.  Need to do better optimization later.
3774   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3775     oop tobj = thread->threadObj();
3776     if (!thread->is_exiting() &&
3777         tobj != NULL &&
3778         java_tid == java_lang_Thread::thread_id(tobj)) {
3779       java_thread = thread;
3780       break;
3781     }
3782   }
3783   return java_thread;
3784 }
3785 
3786 
3787 // Last thread running calls java.lang.Shutdown.shutdown()
3788 void JavaThread::invoke_shutdown_hooks() {
3789   HandleMark hm(this);
3790 
3791   // We could get here with a pending exception, if so clear it now.
3792   if (this->has_pending_exception()) {
3793     this->clear_pending_exception();
3794   }
3795 
3796   EXCEPTION_MARK;
3797   Klass* k =
3798     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3799                                       THREAD);
3800   if (k != NULL) {
3801     // SystemDictionary::resolve_or_null will return null if there was
3802     // an exception.  If we cannot load the Shutdown class, just don't
3803     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3804     // and finalizers (if runFinalizersOnExit is set) won't be run.
3805     // Note that if a shutdown hook was registered or runFinalizersOnExit
3806     // was called, the Shutdown class would have already been loaded
3807     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3808     instanceKlassHandle shutdown_klass (THREAD, k);
3809     JavaValue result(T_VOID);
3810     JavaCalls::call_static(&result,
3811                            shutdown_klass,
3812                            vmSymbols::shutdown_method_name(),
3813                            vmSymbols::void_method_signature(),
3814                            THREAD);
3815   }
3816   CLEAR_PENDING_EXCEPTION;
3817 }
3818 
3819 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3820 // the program falls off the end of main(). Another VM exit path is through
3821 // vm_exit() when the program calls System.exit() to return a value or when
3822 // there is a serious error in VM. The two shutdown paths are not exactly
3823 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3824 // and VM_Exit op at VM level.
3825 //
3826 // Shutdown sequence:
3827 //   + Shutdown native memory tracking if it is on
3828 //   + Wait until we are the last non-daemon thread to execute
3829 //     <-- every thing is still working at this moment -->
3830 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3831 //        shutdown hooks, run finalizers if finalization-on-exit
3832 //   + Call before_exit(), prepare for VM exit
3833 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3834 //        currently the only user of this mechanism is File.deleteOnExit())
3835 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3836 //        post thread end and vm death events to JVMTI,
3837 //        stop signal thread
3838 //   + Call JavaThread::exit(), it will:
3839 //      > release JNI handle blocks, remove stack guard pages
3840 //      > remove this thread from Threads list
3841 //     <-- no more Java code from this thread after this point -->
3842 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3843 //     the compiler threads at safepoint
3844 //     <-- do not use anything that could get blocked by Safepoint -->
3845 //   + Disable tracing at JNI/JVM barriers
3846 //   + Set _vm_exited flag for threads that are still running native code
3847 //   + Delete this thread
3848 //   + Call exit_globals()
3849 //      > deletes tty
3850 //      > deletes PerfMemory resources
3851 //   + Return to caller
3852 
3853 bool Threads::destroy_vm() {
3854   JavaThread* thread = JavaThread::current();
3855 
3856 #ifdef ASSERT
3857   _vm_complete = false;
3858 #endif
3859   // Wait until we are the last non-daemon thread to execute
3860   { MutexLocker nu(Threads_lock);
3861     while (Threads::number_of_non_daemon_threads() > 1)
3862       // This wait should make safepoint checks, wait without a timeout,
3863       // and wait as a suspend-equivalent condition.
3864       //
3865       // Note: If the FlatProfiler is running and this thread is waiting
3866       // for another non-daemon thread to finish, then the FlatProfiler
3867       // is waiting for the external suspend request on this thread to
3868       // complete. wait_for_ext_suspend_completion() will eventually
3869       // timeout, but that takes time. Making this wait a suspend-
3870       // equivalent condition solves that timeout problem.
3871       //
3872       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3873                          Mutex::_as_suspend_equivalent_flag);
3874   }
3875 
3876   // Hang forever on exit if we are reporting an error.
3877   if (ShowMessageBoxOnError && is_error_reported()) {
3878     os::infinite_sleep();
3879   }
3880   os::wait_for_keypress_at_exit();
3881 
3882   // run Java level shutdown hooks
3883   thread->invoke_shutdown_hooks();
3884 
3885   before_exit(thread);
3886 
3887   thread->exit(true);
3888 
3889   // Stop VM thread.
3890   {
3891     // 4945125 The vm thread comes to a safepoint during exit.
3892     // GC vm_operations can get caught at the safepoint, and the
3893     // heap is unparseable if they are caught. Grab the Heap_lock
3894     // to prevent this. The GC vm_operations will not be able to
3895     // queue until after the vm thread is dead. After this point,
3896     // we'll never emerge out of the safepoint before the VM exits.
3897 
3898     MutexLocker ml(Heap_lock);
3899 
3900     VMThread::wait_for_vm_thread_exit();
3901     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3902     VMThread::destroy();
3903   }
3904 
3905   // clean up ideal graph printers
3906 #if defined(COMPILER2) && !defined(PRODUCT)
3907   IdealGraphPrinter::clean_up();
3908 #endif
3909 
3910   // Now, all Java threads are gone except daemon threads. Daemon threads
3911   // running Java code or in VM are stopped by the Safepoint. However,
3912   // daemon threads executing native code are still running.  But they
3913   // will be stopped at native=>Java/VM barriers. Note that we can't
3914   // simply kill or suspend them, as it is inherently deadlock-prone.
3915 
3916 #ifndef PRODUCT
3917   // disable function tracing at JNI/JVM barriers
3918   TraceJNICalls = false;
3919   TraceJVMCalls = false;
3920   TraceRuntimeCalls = false;
3921 #endif
3922 
3923   VM_Exit::set_vm_exited();
3924 
3925   notify_vm_shutdown();
3926 
3927   delete thread;
3928 
3929   // exit_globals() will delete tty
3930   exit_globals();
3931 
3932   return true;
3933 }
3934 
3935 
3936 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3937   if (version == JNI_VERSION_1_1) return JNI_TRUE;
3938   return is_supported_jni_version(version);
3939 }
3940 
3941 
3942 jboolean Threads::is_supported_jni_version(jint version) {
3943   if (version == JNI_VERSION_1_2) return JNI_TRUE;
3944   if (version == JNI_VERSION_1_4) return JNI_TRUE;
3945   if (version == JNI_VERSION_1_6) return JNI_TRUE;
3946   if (version == JNI_VERSION_1_8) return JNI_TRUE;
3947   return JNI_FALSE;
3948 }
3949 
3950 
3951 void Threads::add(JavaThread* p, bool force_daemon) {
3952   // The threads lock must be owned at this point
3953   assert_locked_or_safepoint(Threads_lock);
3954 
3955   // See the comment for this method in thread.hpp for its purpose and
3956   // why it is called here.
3957   p->initialize_queues();
3958   p->set_next(_thread_list);
3959   _thread_list = p;
3960   _number_of_threads++;
3961   oop threadObj = p->threadObj();
3962   bool daemon = true;
3963   // Bootstrapping problem: threadObj can be null for initial
3964   // JavaThread (or for threads attached via JNI)
3965   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3966     _number_of_non_daemon_threads++;
3967     daemon = false;
3968   }
3969 
3970   ThreadService::add_thread(p, daemon);
3971 
3972   // Possible GC point.
3973   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
3974 }
3975 
3976 void Threads::remove(JavaThread* p) {
3977   // Extra scope needed for Thread_lock, so we can check
3978   // that we do not remove thread without safepoint code notice
3979   { MutexLocker ml(Threads_lock);
3980 
3981     assert(includes(p), "p must be present");
3982 
3983     JavaThread* current = _thread_list;
3984     JavaThread* prev    = NULL;
3985 
3986     while (current != p) {
3987       prev    = current;
3988       current = current->next();
3989     }
3990 
3991     if (prev) {
3992       prev->set_next(current->next());
3993     } else {
3994       _thread_list = p->next();
3995     }
3996     _number_of_threads--;
3997     oop threadObj = p->threadObj();
3998     bool daemon = true;
3999     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4000       _number_of_non_daemon_threads--;
4001       daemon = false;
4002 
4003       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4004       // on destroy_vm will wake up.
4005       if (number_of_non_daemon_threads() == 1) {
4006         Threads_lock->notify_all();
4007       }
4008     }
4009     ThreadService::remove_thread(p, daemon);
4010 
4011     // Make sure that safepoint code disregard this thread. This is needed since
4012     // the thread might mess around with locks after this point. This can cause it
4013     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4014     // of this thread since it is removed from the queue.
4015     p->set_terminated_value();
4016   } // unlock Threads_lock
4017 
4018   // Since Events::log uses a lock, we grab it outside the Threads_lock
4019   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4020 }
4021 
4022 // Threads_lock must be held when this is called (or must be called during a safepoint)
4023 bool Threads::includes(JavaThread* p) {
4024   assert(Threads_lock->is_locked(), "sanity check");
4025   ALL_JAVA_THREADS(q) {
4026     if (q == p) {
4027       return true;
4028     }
4029   }
4030   return false;
4031 }
4032 
4033 // Operations on the Threads list for GC.  These are not explicitly locked,
4034 // but the garbage collector must provide a safe context for them to run.
4035 // In particular, these things should never be called when the Threads_lock
4036 // is held by some other thread. (Note: the Safepoint abstraction also
4037 // uses the Threads_lock to guarantee this property. It also makes sure that
4038 // all threads gets blocked when exiting or starting).
4039 
4040 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4041   ALL_JAVA_THREADS(p) {
4042     p->oops_do(f, cld_f, cf);
4043   }
4044   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4045 }
4046 
4047 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4048   // Introduce a mechanism allowing parallel threads to claim threads as
4049   // root groups.  Overhead should be small enough to use all the time,
4050   // even in sequential code.
4051   SharedHeap* sh = SharedHeap::heap();
4052   // Cannot yet substitute active_workers for n_par_threads
4053   // because of G1CollectedHeap::verify() use of
4054   // SharedHeap::process_roots().  n_par_threads == 0 will
4055   // turn off parallelism in process_roots while active_workers
4056   // is being used for parallelism elsewhere.
4057   bool is_par = sh->n_par_threads() > 0;
4058   assert(!is_par ||
4059          (SharedHeap::heap()->n_par_threads() ==
4060          SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4061   int cp = SharedHeap::heap()->strong_roots_parity();
4062   ALL_JAVA_THREADS(p) {
4063     if (p->claim_oops_do(is_par, cp)) {
4064       p->oops_do(f, cld_f, cf);
4065     }
4066   }
4067   VMThread* vmt = VMThread::vm_thread();
4068   if (vmt->claim_oops_do(is_par, cp)) {
4069     vmt->oops_do(f, cld_f, cf);
4070   }
4071 }
4072 
4073 #if INCLUDE_ALL_GCS
4074 // Used by ParallelScavenge
4075 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4076   ALL_JAVA_THREADS(p) {
4077     q->enqueue(new ThreadRootsTask(p));
4078   }
4079   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4080 }
4081 
4082 // Used by Parallel Old
4083 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4084   ALL_JAVA_THREADS(p) {
4085     q->enqueue(new ThreadRootsMarkingTask(p));
4086   }
4087   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4088 }
4089 #endif // INCLUDE_ALL_GCS
4090 
4091 void Threads::nmethods_do(CodeBlobClosure* cf) {
4092   ALL_JAVA_THREADS(p) {
4093     p->nmethods_do(cf);
4094   }
4095   VMThread::vm_thread()->nmethods_do(cf);
4096 }
4097 
4098 void Threads::metadata_do(void f(Metadata*)) {
4099   ALL_JAVA_THREADS(p) {
4100     p->metadata_do(f);
4101   }
4102 }
4103 
4104 void Threads::deoptimized_wrt_marked_nmethods() {
4105   ALL_JAVA_THREADS(p) {
4106     p->deoptimized_wrt_marked_nmethods();
4107   }
4108 }
4109 
4110 
4111 // Get count Java threads that are waiting to enter the specified monitor.
4112 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4113                                                          address monitor,
4114                                                          bool doLock) {
4115   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4116          "must grab Threads_lock or be at safepoint");
4117   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4118 
4119   int i = 0;
4120   {
4121     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4122     ALL_JAVA_THREADS(p) {
4123       if (p->is_Compiler_thread()) continue;
4124 
4125       address pending = (address)p->current_pending_monitor();
4126       if (pending == monitor) {             // found a match
4127         if (i < count) result->append(p);   // save the first count matches
4128         i++;
4129       }
4130     }
4131   }
4132   return result;
4133 }
4134 
4135 
4136 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4137                                                       bool doLock) {
4138   assert(doLock ||
4139          Threads_lock->owned_by_self() ||
4140          SafepointSynchronize::is_at_safepoint(),
4141          "must grab Threads_lock or be at safepoint");
4142 
4143   // NULL owner means not locked so we can skip the search
4144   if (owner == NULL) return NULL;
4145 
4146   {
4147     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4148     ALL_JAVA_THREADS(p) {
4149       // first, see if owner is the address of a Java thread
4150       if (owner == (address)p) return p;
4151     }
4152   }
4153   // Cannot assert on lack of success here since this function may be
4154   // used by code that is trying to report useful problem information
4155   // like deadlock detection.
4156   if (UseHeavyMonitors) return NULL;
4157 
4158   // If we didn't find a matching Java thread and we didn't force use of
4159   // heavyweight monitors, then the owner is the stack address of the
4160   // Lock Word in the owning Java thread's stack.
4161   //
4162   JavaThread* the_owner = NULL;
4163   {
4164     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4165     ALL_JAVA_THREADS(q) {
4166       if (q->is_lock_owned(owner)) {
4167         the_owner = q;
4168         break;
4169       }
4170     }
4171   }
4172   // cannot assert on lack of success here; see above comment
4173   return the_owner;
4174 }
4175 
4176 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4177 void Threads::print_on(outputStream* st, bool print_stacks,
4178                        bool internal_format, bool print_concurrent_locks) {
4179   char buf[32];
4180   st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4181 
4182   st->print_cr("Full thread dump %s (%s %s):",
4183                Abstract_VM_Version::vm_name(),
4184                Abstract_VM_Version::vm_release(),
4185                Abstract_VM_Version::vm_info_string());
4186   st->cr();
4187 
4188 #if INCLUDE_ALL_GCS
4189   // Dump concurrent locks
4190   ConcurrentLocksDump concurrent_locks;
4191   if (print_concurrent_locks) {
4192     concurrent_locks.dump_at_safepoint();
4193   }
4194 #endif // INCLUDE_ALL_GCS
4195 
4196   ALL_JAVA_THREADS(p) {
4197     ResourceMark rm;
4198     p->print_on(st);
4199     if (print_stacks) {
4200       if (internal_format) {
4201         p->trace_stack();
4202       } else {
4203         p->print_stack_on(st);
4204       }
4205     }
4206     st->cr();
4207 #if INCLUDE_ALL_GCS
4208     if (print_concurrent_locks) {
4209       concurrent_locks.print_locks_on(p, st);
4210     }
4211 #endif // INCLUDE_ALL_GCS
4212   }
4213 
4214   VMThread::vm_thread()->print_on(st);
4215   st->cr();
4216   Universe::heap()->print_gc_threads_on(st);
4217   WatcherThread* wt = WatcherThread::watcher_thread();
4218   if (wt != NULL) {
4219     wt->print_on(st);
4220     st->cr();
4221   }
4222   CompileBroker::print_compiler_threads_on(st);
4223   st->flush();
4224 }
4225 
4226 // Threads::print_on_error() is called by fatal error handler. It's possible
4227 // that VM is not at safepoint and/or current thread is inside signal handler.
4228 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4229 // memory (even in resource area), it might deadlock the error handler.
4230 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4231                              int buflen) {
4232   bool found_current = false;
4233   st->print_cr("Java Threads: ( => current thread )");
4234   ALL_JAVA_THREADS(thread) {
4235     bool is_current = (current == thread);
4236     found_current = found_current || is_current;
4237 
4238     st->print("%s", is_current ? "=>" : "  ");
4239 
4240     st->print(PTR_FORMAT, thread);
4241     st->print(" ");
4242     thread->print_on_error(st, buf, buflen);
4243     st->cr();
4244   }
4245   st->cr();
4246 
4247   st->print_cr("Other Threads:");
4248   if (VMThread::vm_thread()) {
4249     bool is_current = (current == VMThread::vm_thread());
4250     found_current = found_current || is_current;
4251     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4252 
4253     st->print(PTR_FORMAT, VMThread::vm_thread());
4254     st->print(" ");
4255     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4256     st->cr();
4257   }
4258   WatcherThread* wt = WatcherThread::watcher_thread();
4259   if (wt != NULL) {
4260     bool is_current = (current == wt);
4261     found_current = found_current || is_current;
4262     st->print("%s", is_current ? "=>" : "  ");
4263 
4264     st->print(PTR_FORMAT, wt);
4265     st->print(" ");
4266     wt->print_on_error(st, buf, buflen);
4267     st->cr();
4268   }
4269   if (!found_current) {
4270     st->cr();
4271     st->print("=>" PTR_FORMAT " (exited) ", current);
4272     current->print_on_error(st, buf, buflen);
4273     st->cr();
4274   }
4275 }
4276 
4277 // Internal SpinLock and Mutex
4278 // Based on ParkEvent
4279 
4280 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4281 //
4282 // We employ SpinLocks _only for low-contention, fixed-length
4283 // short-duration critical sections where we're concerned
4284 // about native mutex_t or HotSpot Mutex:: latency.
4285 // The mux construct provides a spin-then-block mutual exclusion
4286 // mechanism.
4287 //
4288 // Testing has shown that contention on the ListLock guarding gFreeList
4289 // is common.  If we implement ListLock as a simple SpinLock it's common
4290 // for the JVM to devolve to yielding with little progress.  This is true
4291 // despite the fact that the critical sections protected by ListLock are
4292 // extremely short.
4293 //
4294 // TODO-FIXME: ListLock should be of type SpinLock.
4295 // We should make this a 1st-class type, integrated into the lock
4296 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4297 // should have sufficient padding to avoid false-sharing and excessive
4298 // cache-coherency traffic.
4299 
4300 
4301 typedef volatile int SpinLockT;
4302 
4303 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4304   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4305     return;   // normal fast-path return
4306   }
4307 
4308   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4309   TEVENT(SpinAcquire - ctx);
4310   int ctr = 0;
4311   int Yields = 0;
4312   for (;;) {
4313     while (*adr != 0) {
4314       ++ctr;
4315       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4316         if (Yields > 5) {
4317           os::naked_short_sleep(1);
4318         } else {
4319           os::naked_yield();
4320           ++Yields;
4321         }
4322       } else {
4323         SpinPause();
4324       }
4325     }
4326     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4327   }
4328 }
4329 
4330 void Thread::SpinRelease(volatile int * adr) {
4331   assert(*adr != 0, "invariant");
4332   OrderAccess::fence();      // guarantee at least release consistency.
4333   // Roach-motel semantics.
4334   // It's safe if subsequent LDs and STs float "up" into the critical section,
4335   // but prior LDs and STs within the critical section can't be allowed
4336   // to reorder or float past the ST that releases the lock.
4337   // Loads and stores in the critical section - which appear in program
4338   // order before the store that releases the lock - must also appear
4339   // before the store that releases the lock in memory visibility order.
4340   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4341   // the ST of 0 into the lock-word which releases the lock, so fence
4342   // more than covers this on all platforms.
4343   *adr = 0;
4344 }
4345 
4346 // muxAcquire and muxRelease:
4347 //
4348 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4349 //    The LSB of the word is set IFF the lock is held.
4350 //    The remainder of the word points to the head of a singly-linked list
4351 //    of threads blocked on the lock.
4352 //
4353 // *  The current implementation of muxAcquire-muxRelease uses its own
4354 //    dedicated Thread._MuxEvent instance.  If we're interested in
4355 //    minimizing the peak number of extant ParkEvent instances then
4356 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4357 //    as certain invariants were satisfied.  Specifically, care would need
4358 //    to be taken with regards to consuming unpark() "permits".
4359 //    A safe rule of thumb is that a thread would never call muxAcquire()
4360 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4361 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4362 //    consume an unpark() permit intended for monitorenter, for instance.
4363 //    One way around this would be to widen the restricted-range semaphore
4364 //    implemented in park().  Another alternative would be to provide
4365 //    multiple instances of the PlatformEvent() for each thread.  One
4366 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4367 //
4368 // *  Usage:
4369 //    -- Only as leaf locks
4370 //    -- for short-term locking only as muxAcquire does not perform
4371 //       thread state transitions.
4372 //
4373 // Alternatives:
4374 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4375 //    but with parking or spin-then-park instead of pure spinning.
4376 // *  Use Taura-Oyama-Yonenzawa locks.
4377 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4378 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4379 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4380 //    acquiring threads use timers (ParkTimed) to detect and recover from
4381 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4382 //    boundaries by using placement-new.
4383 // *  Augment MCS with advisory back-link fields maintained with CAS().
4384 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4385 //    The validity of the backlinks must be ratified before we trust the value.
4386 //    If the backlinks are invalid the exiting thread must back-track through the
4387 //    the forward links, which are always trustworthy.
4388 // *  Add a successor indication.  The LockWord is currently encoded as
4389 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4390 //    to provide the usual futile-wakeup optimization.
4391 //    See RTStt for details.
4392 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4393 //
4394 
4395 
4396 typedef volatile intptr_t MutexT;      // Mux Lock-word
4397 enum MuxBits { LOCKBIT = 1 };
4398 
4399 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4400   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4401   if (w == 0) return;
4402   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4403     return;
4404   }
4405 
4406   TEVENT(muxAcquire - Contention);
4407   ParkEvent * const Self = Thread::current()->_MuxEvent;
4408   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4409   for (;;) {
4410     int its = (os::is_MP() ? 100 : 0) + 1;
4411 
4412     // Optional spin phase: spin-then-park strategy
4413     while (--its >= 0) {
4414       w = *Lock;
4415       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4416         return;
4417       }
4418     }
4419 
4420     Self->reset();
4421     Self->OnList = intptr_t(Lock);
4422     // The following fence() isn't _strictly necessary as the subsequent
4423     // CAS() both serializes execution and ratifies the fetched *Lock value.
4424     OrderAccess::fence();
4425     for (;;) {
4426       w = *Lock;
4427       if ((w & LOCKBIT) == 0) {
4428         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4429           Self->OnList = 0;   // hygiene - allows stronger asserts
4430           return;
4431         }
4432         continue;      // Interference -- *Lock changed -- Just retry
4433       }
4434       assert(w & LOCKBIT, "invariant");
4435       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4436       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4437     }
4438 
4439     while (Self->OnList != 0) {
4440       Self->park();
4441     }
4442   }
4443 }
4444 
4445 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4446   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4447   if (w == 0) return;
4448   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4449     return;
4450   }
4451 
4452   TEVENT(muxAcquire - Contention);
4453   ParkEvent * ReleaseAfter = NULL;
4454   if (ev == NULL) {
4455     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4456   }
4457   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4458   for (;;) {
4459     guarantee(ev->OnList == 0, "invariant");
4460     int its = (os::is_MP() ? 100 : 0) + 1;
4461 
4462     // Optional spin phase: spin-then-park strategy
4463     while (--its >= 0) {
4464       w = *Lock;
4465       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4466         if (ReleaseAfter != NULL) {
4467           ParkEvent::Release(ReleaseAfter);
4468         }
4469         return;
4470       }
4471     }
4472 
4473     ev->reset();
4474     ev->OnList = intptr_t(Lock);
4475     // The following fence() isn't _strictly necessary as the subsequent
4476     // CAS() both serializes execution and ratifies the fetched *Lock value.
4477     OrderAccess::fence();
4478     for (;;) {
4479       w = *Lock;
4480       if ((w & LOCKBIT) == 0) {
4481         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4482           ev->OnList = 0;
4483           // We call ::Release while holding the outer lock, thus
4484           // artificially lengthening the critical section.
4485           // Consider deferring the ::Release() until the subsequent unlock(),
4486           // after we've dropped the outer lock.
4487           if (ReleaseAfter != NULL) {
4488             ParkEvent::Release(ReleaseAfter);
4489           }
4490           return;
4491         }
4492         continue;      // Interference -- *Lock changed -- Just retry
4493       }
4494       assert(w & LOCKBIT, "invariant");
4495       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4496       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4497     }
4498 
4499     while (ev->OnList != 0) {
4500       ev->park();
4501     }
4502   }
4503 }
4504 
4505 // Release() must extract a successor from the list and then wake that thread.
4506 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4507 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4508 // Release() would :
4509 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4510 // (B) Extract a successor from the private list "in-hand"
4511 // (C) attempt to CAS() the residual back into *Lock over null.
4512 //     If there were any newly arrived threads and the CAS() would fail.
4513 //     In that case Release() would detach the RATs, re-merge the list in-hand
4514 //     with the RATs and repeat as needed.  Alternately, Release() might
4515 //     detach and extract a successor, but then pass the residual list to the wakee.
4516 //     The wakee would be responsible for reattaching and remerging before it
4517 //     competed for the lock.
4518 //
4519 // Both "pop" and DMR are immune from ABA corruption -- there can be
4520 // multiple concurrent pushers, but only one popper or detacher.
4521 // This implementation pops from the head of the list.  This is unfair,
4522 // but tends to provide excellent throughput as hot threads remain hot.
4523 // (We wake recently run threads first).
4524 //
4525 // All paths through muxRelease() will execute a CAS.
4526 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4527 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4528 // executed within the critical section are complete and globally visible before the
4529 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4530 void Thread::muxRelease(volatile intptr_t * Lock)  {
4531   for (;;) {
4532     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4533     assert(w & LOCKBIT, "invariant");
4534     if (w == LOCKBIT) return;
4535     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4536     assert(List != NULL, "invariant");
4537     assert(List->OnList == intptr_t(Lock), "invariant");
4538     ParkEvent * const nxt = List->ListNext;
4539     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4540 
4541     // The following CAS() releases the lock and pops the head element.
4542     // The CAS() also ratifies the previously fetched lock-word value.
4543     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4544       continue;
4545     }
4546     List->OnList = 0;
4547     OrderAccess::fence();
4548     List->unpark();
4549     return;
4550   }
4551 }
4552 
4553 
4554 void Threads::verify() {
4555   ALL_JAVA_THREADS(p) {
4556     p->verify();
4557   }
4558   VMThread* thread = VMThread::vm_thread();
4559   if (thread != NULL) thread->verify();
4560 }