1 /*
   2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "code/debugInfoRec.hpp"
  28 #include "code/icBuffer.hpp"
  29 #include "code/vtableStubs.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "oops/compiledICHolder.hpp"
  32 #include "prims/jvmtiRedefineClassesTrace.hpp"
  33 #include "runtime/sharedRuntime.hpp"
  34 #include "runtime/vframeArray.hpp"
  35 #include "vmreg_sparc.inline.hpp"
  36 #ifdef COMPILER1
  37 #include "c1/c1_Runtime1.hpp"
  38 #endif
  39 #ifdef COMPILER2
  40 #include "opto/runtime.hpp"
  41 #endif
  42 #ifdef SHARK
  43 #include "compiler/compileBroker.hpp"
  44 #include "shark/sharkCompiler.hpp"
  45 #endif
  46 
  47 #define __ masm->
  48 
  49 
  50 class RegisterSaver {
  51 
  52   // Used for saving volatile registers. This is Gregs, Fregs, I/L/O.
  53   // The Oregs are problematic. In the 32bit build the compiler can
  54   // have O registers live with 64 bit quantities. A window save will
  55   // cut the heads off of the registers. We have to do a very extensive
  56   // stack dance to save and restore these properly.
  57 
  58   // Note that the Oregs problem only exists if we block at either a polling
  59   // page exception a compiled code safepoint that was not originally a call
  60   // or deoptimize following one of these kinds of safepoints.
  61 
  62   // Lots of registers to save.  For all builds, a window save will preserve
  63   // the %i and %l registers.  For the 32-bit longs-in-two entries and 64-bit
  64   // builds a window-save will preserve the %o registers.  In the LION build
  65   // we need to save the 64-bit %o registers which requires we save them
  66   // before the window-save (as then they become %i registers and get their
  67   // heads chopped off on interrupt).  We have to save some %g registers here
  68   // as well.
  69   enum {
  70     // This frame's save area.  Includes extra space for the native call:
  71     // vararg's layout space and the like.  Briefly holds the caller's
  72     // register save area.
  73     call_args_area = frame::register_save_words_sp_offset +
  74                      frame::memory_parameter_word_sp_offset*wordSize,
  75     // Make sure save locations are always 8 byte aligned.
  76     // can't use round_to because it doesn't produce compile time constant
  77     start_of_extra_save_area = ((call_args_area + 7) & ~7),
  78     g1_offset = start_of_extra_save_area, // g-regs needing saving
  79     g3_offset = g1_offset+8,
  80     g4_offset = g3_offset+8,
  81     g5_offset = g4_offset+8,
  82     o0_offset = g5_offset+8,
  83     o1_offset = o0_offset+8,
  84     o2_offset = o1_offset+8,
  85     o3_offset = o2_offset+8,
  86     o4_offset = o3_offset+8,
  87     o5_offset = o4_offset+8,
  88     start_of_flags_save_area = o5_offset+8,
  89     ccr_offset = start_of_flags_save_area,
  90     fsr_offset = ccr_offset + 8,
  91     d00_offset = fsr_offset+8,  // Start of float save area
  92     register_save_size = d00_offset+8*32
  93   };
  94 
  95 
  96   public:
  97 
  98   static int Oexception_offset() { return o0_offset; };
  99   static int G3_offset() { return g3_offset; };
 100   static int G5_offset() { return g5_offset; };
 101   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
 102   static void restore_live_registers(MacroAssembler* masm);
 103 
 104   // During deoptimization only the result register need to be restored
 105   // all the other values have already been extracted.
 106 
 107   static void restore_result_registers(MacroAssembler* masm);
 108 };
 109 
 110 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
 111   // Record volatile registers as callee-save values in an OopMap so their save locations will be
 112   // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
 113   // deoptimization; see compiledVFrame::create_stack_value).  The caller's I, L and O registers
 114   // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
 115   // (as the stub's I's) when the runtime routine called by the stub creates its frame.
 116   int i;
 117   // Always make the frame size 16 byte aligned.
 118   int frame_size = round_to(additional_frame_words + register_save_size, 16);
 119   // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words
 120   int frame_size_in_slots = frame_size / sizeof(jint);
 121   // CodeBlob frame size is in words.
 122   *total_frame_words = frame_size / wordSize;
 123   // OopMap* map = new OopMap(*total_frame_words, 0);
 124   OopMap* map = new OopMap(frame_size_in_slots, 0);
 125 
 126 #if !defined(_LP64)
 127 
 128   // Save 64-bit O registers; they will get their heads chopped off on a 'save'.
 129   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
 130   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
 131   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
 132   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
 133   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
 134   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
 135 #endif /* _LP64 */
 136 
 137   __ save(SP, -frame_size, SP);
 138 
 139 #ifndef _LP64
 140   // Reload the 64 bit Oregs. Although they are now Iregs we load them
 141   // to Oregs here to avoid interrupts cutting off their heads
 142 
 143   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
 144   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
 145   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
 146   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
 147   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
 148   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
 149 
 150   __ stx(O0, SP, o0_offset+STACK_BIAS);
 151   map->set_callee_saved(VMRegImpl::stack2reg((o0_offset + 4)>>2), O0->as_VMReg());
 152 
 153   __ stx(O1, SP, o1_offset+STACK_BIAS);
 154 
 155   map->set_callee_saved(VMRegImpl::stack2reg((o1_offset + 4)>>2), O1->as_VMReg());
 156 
 157   __ stx(O2, SP, o2_offset+STACK_BIAS);
 158   map->set_callee_saved(VMRegImpl::stack2reg((o2_offset + 4)>>2), O2->as_VMReg());
 159 
 160   __ stx(O3, SP, o3_offset+STACK_BIAS);
 161   map->set_callee_saved(VMRegImpl::stack2reg((o3_offset + 4)>>2), O3->as_VMReg());
 162 
 163   __ stx(O4, SP, o4_offset+STACK_BIAS);
 164   map->set_callee_saved(VMRegImpl::stack2reg((o4_offset + 4)>>2), O4->as_VMReg());
 165 
 166   __ stx(O5, SP, o5_offset+STACK_BIAS);
 167   map->set_callee_saved(VMRegImpl::stack2reg((o5_offset + 4)>>2), O5->as_VMReg());
 168 #endif /* _LP64 */
 169 
 170 
 171 #ifdef _LP64
 172   int debug_offset = 0;
 173 #else
 174   int debug_offset = 4;
 175 #endif
 176   // Save the G's
 177   __ stx(G1, SP, g1_offset+STACK_BIAS);
 178   map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + debug_offset)>>2), G1->as_VMReg());
 179 
 180   __ stx(G3, SP, g3_offset+STACK_BIAS);
 181   map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + debug_offset)>>2), G3->as_VMReg());
 182 
 183   __ stx(G4, SP, g4_offset+STACK_BIAS);
 184   map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + debug_offset)>>2), G4->as_VMReg());
 185 
 186   __ stx(G5, SP, g5_offset+STACK_BIAS);
 187   map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + debug_offset)>>2), G5->as_VMReg());
 188 
 189   // This is really a waste but we'll keep things as they were for now
 190   if (true) {
 191 #ifndef _LP64
 192     map->set_callee_saved(VMRegImpl::stack2reg((o0_offset)>>2), O0->as_VMReg()->next());
 193     map->set_callee_saved(VMRegImpl::stack2reg((o1_offset)>>2), O1->as_VMReg()->next());
 194     map->set_callee_saved(VMRegImpl::stack2reg((o2_offset)>>2), O2->as_VMReg()->next());
 195     map->set_callee_saved(VMRegImpl::stack2reg((o3_offset)>>2), O3->as_VMReg()->next());
 196     map->set_callee_saved(VMRegImpl::stack2reg((o4_offset)>>2), O4->as_VMReg()->next());
 197     map->set_callee_saved(VMRegImpl::stack2reg((o5_offset)>>2), O5->as_VMReg()->next());
 198     map->set_callee_saved(VMRegImpl::stack2reg((g1_offset)>>2), G1->as_VMReg()->next());
 199     map->set_callee_saved(VMRegImpl::stack2reg((g3_offset)>>2), G3->as_VMReg()->next());
 200     map->set_callee_saved(VMRegImpl::stack2reg((g4_offset)>>2), G4->as_VMReg()->next());
 201     map->set_callee_saved(VMRegImpl::stack2reg((g5_offset)>>2), G5->as_VMReg()->next());
 202 #endif /* _LP64 */
 203   }
 204 
 205 
 206   // Save the flags
 207   __ rdccr( G5 );
 208   __ stx(G5, SP, ccr_offset+STACK_BIAS);
 209   __ stxfsr(SP, fsr_offset+STACK_BIAS);
 210 
 211   // Save all the FP registers: 32 doubles (32 floats correspond to the 2 halves of the first 16 doubles)
 212   int offset = d00_offset;
 213   for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
 214     FloatRegister f = as_FloatRegister(i);
 215     __ stf(FloatRegisterImpl::D,  f, SP, offset+STACK_BIAS);
 216     // Record as callee saved both halves of double registers (2 float registers).
 217     map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg());
 218     map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next());
 219     offset += sizeof(double);
 220   }
 221 
 222   // And we're done.
 223 
 224   return map;
 225 }
 226 
 227 
 228 // Pop the current frame and restore all the registers that we
 229 // saved.
 230 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
 231 
 232   // Restore all the FP registers
 233   for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
 234     __ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i));
 235   }
 236 
 237   __ ldx(SP, ccr_offset+STACK_BIAS, G1);
 238   __ wrccr (G1) ;
 239 
 240   // Restore the G's
 241   // Note that G2 (AKA GThread) must be saved and restored separately.
 242   // TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr.
 243 
 244   __ ldx(SP, g1_offset+STACK_BIAS, G1);
 245   __ ldx(SP, g3_offset+STACK_BIAS, G3);
 246   __ ldx(SP, g4_offset+STACK_BIAS, G4);
 247   __ ldx(SP, g5_offset+STACK_BIAS, G5);
 248 
 249 
 250 #if !defined(_LP64)
 251   // Restore the 64-bit O's.
 252   __ ldx(SP, o0_offset+STACK_BIAS, O0);
 253   __ ldx(SP, o1_offset+STACK_BIAS, O1);
 254   __ ldx(SP, o2_offset+STACK_BIAS, O2);
 255   __ ldx(SP, o3_offset+STACK_BIAS, O3);
 256   __ ldx(SP, o4_offset+STACK_BIAS, O4);
 257   __ ldx(SP, o5_offset+STACK_BIAS, O5);
 258 
 259   // And temporarily place them in TLS
 260 
 261   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
 262   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
 263   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
 264   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
 265   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
 266   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
 267 #endif /* _LP64 */
 268 
 269   // Restore flags
 270 
 271   __ ldxfsr(SP, fsr_offset+STACK_BIAS);
 272 
 273   __ restore();
 274 
 275 #if !defined(_LP64)
 276   // Now reload the 64bit Oregs after we've restore the window.
 277   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
 278   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
 279   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
 280   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
 281   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
 282   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
 283 #endif /* _LP64 */
 284 
 285 }
 286 
 287 // Pop the current frame and restore the registers that might be holding
 288 // a result.
 289 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 290 
 291 #if !defined(_LP64)
 292   // 32bit build returns longs in G1
 293   __ ldx(SP, g1_offset+STACK_BIAS, G1);
 294 
 295   // Retrieve the 64-bit O's.
 296   __ ldx(SP, o0_offset+STACK_BIAS, O0);
 297   __ ldx(SP, o1_offset+STACK_BIAS, O1);
 298   // and save to TLS
 299   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
 300   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
 301 #endif /* _LP64 */
 302 
 303   __ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0));
 304 
 305   __ restore();
 306 
 307 #if !defined(_LP64)
 308   // Now reload the 64bit Oregs after we've restore the window.
 309   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
 310   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
 311 #endif /* _LP64 */
 312 
 313 }
 314 
 315 // Is vector's size (in bytes) bigger than a size saved by default?
 316 // 8 bytes FP registers are saved by default on SPARC.
 317 bool SharedRuntime::is_wide_vector(int size) {
 318   // Note, MaxVectorSize == 8 on SPARC.
 319   assert(size <= 8, err_msg_res("%d bytes vectors are not supported", size));
 320   return size > 8;
 321 }
 322 
 323 // The java_calling_convention describes stack locations as ideal slots on
 324 // a frame with no abi restrictions. Since we must observe abi restrictions
 325 // (like the placement of the register window) the slots must be biased by
 326 // the following value.
 327 static int reg2offset(VMReg r) {
 328   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 329 }
 330 
 331 static VMRegPair reg64_to_VMRegPair(Register r) {
 332   VMRegPair ret;
 333   if (wordSize == 8) {
 334     ret.set2(r->as_VMReg());
 335   } else {
 336     ret.set_pair(r->successor()->as_VMReg(), r->as_VMReg());
 337   }
 338   return ret;
 339 }
 340 
 341 // ---------------------------------------------------------------------------
 342 // Read the array of BasicTypes from a signature, and compute where the
 343 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size)
 344 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 345 // refer to 4-byte stack slots.  All stack slots are based off of the window
 346 // top.  VMRegImpl::stack0 refers to the first slot past the 16-word window,
 347 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 348 // values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit
 349 // integer registers.  Values 64-95 are the (32-bit only) float registers.
 350 // Each 32-bit quantity is given its own number, so the integer registers
 351 // (in either 32- or 64-bit builds) use 2 numbers.  For example, there is
 352 // an O0-low and an O0-high.  Essentially, all int register numbers are doubled.
 353 
 354 // Register results are passed in O0-O5, for outgoing call arguments.  To
 355 // convert to incoming arguments, convert all O's to I's.  The regs array
 356 // refer to the low and hi 32-bit words of 64-bit registers or stack slots.
 357 // If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a
 358 // 32-bit value was passed).  If both are VMRegImpl::Bad(), it means no value was
 359 // passed (used as a placeholder for the other half of longs and doubles in
 360 // the 64-bit build).  regs[].second() is either VMRegImpl::Bad() or regs[].second() is
 361 // regs[].first()+1 (regs[].first() may be misaligned in the C calling convention).
 362 // Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first()
 363 // == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the
 364 // same VMRegPair.
 365 
 366 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 367 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 368 // units regardless of build.
 369 
 370 
 371 // ---------------------------------------------------------------------------
 372 // The compiled Java calling convention.  The Java convention always passes
 373 // 64-bit values in adjacent aligned locations (either registers or stack),
 374 // floats in float registers and doubles in aligned float pairs.  There is
 375 // no backing varargs store for values in registers.
 376 // In the 32-bit build, longs are passed on the stack (cannot be
 377 // passed in I's, because longs in I's get their heads chopped off at
 378 // interrupt).
 379 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 380                                            VMRegPair *regs,
 381                                            int total_args_passed,
 382                                            int is_outgoing) {
 383   assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers");
 384 
 385   const int int_reg_max = SPARC_ARGS_IN_REGS_NUM;
 386   const int flt_reg_max = 8;
 387 
 388   int int_reg = 0;
 389   int flt_reg = 0;
 390   int slot = 0;
 391 
 392   for (int i = 0; i < total_args_passed; i++) {
 393     switch (sig_bt[i]) {
 394     case T_INT:
 395     case T_SHORT:
 396     case T_CHAR:
 397     case T_BYTE:
 398     case T_BOOLEAN:
 399 #ifndef _LP64
 400     case T_OBJECT:
 401     case T_ARRAY:
 402     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
 403 #endif // _LP64
 404       if (int_reg < int_reg_max) {
 405         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
 406         regs[i].set1(r->as_VMReg());
 407       } else {
 408         regs[i].set1(VMRegImpl::stack2reg(slot++));
 409       }
 410       break;
 411 
 412 #ifdef _LP64
 413     case T_LONG:
 414       assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
 415       // fall-through
 416     case T_OBJECT:
 417     case T_ARRAY:
 418     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
 419       if (int_reg < int_reg_max) {
 420         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
 421         regs[i].set2(r->as_VMReg());
 422       } else {
 423         slot = round_to(slot, 2);  // align
 424         regs[i].set2(VMRegImpl::stack2reg(slot));
 425         slot += 2;
 426       }
 427       break;
 428 #else
 429     case T_LONG:
 430       assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
 431       // On 32-bit SPARC put longs always on the stack to keep the pressure off
 432       // integer argument registers.  They should be used for oops.
 433       slot = round_to(slot, 2);  // align
 434       regs[i].set2(VMRegImpl::stack2reg(slot));
 435       slot += 2;
 436 #endif
 437       break;
 438 
 439     case T_FLOAT:
 440       if (flt_reg < flt_reg_max) {
 441         FloatRegister r = as_FloatRegister(flt_reg++);
 442         regs[i].set1(r->as_VMReg());
 443       } else {
 444         regs[i].set1(VMRegImpl::stack2reg(slot++));
 445       }
 446       break;
 447 
 448     case T_DOUBLE:
 449       assert(sig_bt[i+1] == T_VOID, "expecting half");
 450       if (round_to(flt_reg, 2) + 1 < flt_reg_max) {
 451         flt_reg = round_to(flt_reg, 2);  // align
 452         FloatRegister r = as_FloatRegister(flt_reg);
 453         regs[i].set2(r->as_VMReg());
 454         flt_reg += 2;
 455       } else {
 456         slot = round_to(slot, 2);  // align
 457         regs[i].set2(VMRegImpl::stack2reg(slot));
 458         slot += 2;
 459       }
 460       break;
 461 
 462     case T_VOID:
 463       regs[i].set_bad();   // Halves of longs & doubles
 464       break;
 465 
 466     default:
 467       fatal(err_msg_res("unknown basic type %d", sig_bt[i]));
 468       break;
 469     }
 470   }
 471 
 472   // retun the amount of stack space these arguments will need.
 473   return slot;
 474 }
 475 
 476 // Helper class mostly to avoid passing masm everywhere, and handle
 477 // store displacement overflow logic.
 478 class AdapterGenerator {
 479   MacroAssembler *masm;
 480   Register Rdisp;
 481   void set_Rdisp(Register r)  { Rdisp = r; }
 482 
 483   void patch_callers_callsite();
 484 
 485   // base+st_off points to top of argument
 486   int arg_offset(const int st_off) { return st_off; }
 487   int next_arg_offset(const int st_off) {
 488     return st_off - Interpreter::stackElementSize;
 489   }
 490 
 491   // Argument slot values may be loaded first into a register because
 492   // they might not fit into displacement.
 493   RegisterOrConstant arg_slot(const int st_off);
 494   RegisterOrConstant next_arg_slot(const int st_off);
 495 
 496   // Stores long into offset pointed to by base
 497   void store_c2i_long(Register r, Register base,
 498                       const int st_off, bool is_stack);
 499   void store_c2i_object(Register r, Register base,
 500                         const int st_off);
 501   void store_c2i_int(Register r, Register base,
 502                      const int st_off);
 503   void store_c2i_double(VMReg r_2,
 504                         VMReg r_1, Register base, const int st_off);
 505   void store_c2i_float(FloatRegister f, Register base,
 506                        const int st_off);
 507 
 508  public:
 509   void gen_c2i_adapter(int total_args_passed,
 510                               // VMReg max_arg,
 511                               int comp_args_on_stack, // VMRegStackSlots
 512                               const BasicType *sig_bt,
 513                               const VMRegPair *regs,
 514                               Label& skip_fixup);
 515   void gen_i2c_adapter(int total_args_passed,
 516                               // VMReg max_arg,
 517                               int comp_args_on_stack, // VMRegStackSlots
 518                               const BasicType *sig_bt,
 519                               const VMRegPair *regs);
 520 
 521   AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {}
 522 };
 523 
 524 
 525 // Patch the callers callsite with entry to compiled code if it exists.
 526 void AdapterGenerator::patch_callers_callsite() {
 527   Label L;
 528   __ ld_ptr(G5_method, in_bytes(Method::code_offset()), G3_scratch);
 529   __ br_null(G3_scratch, false, Assembler::pt, L);
 530   __ delayed()->nop();
 531   // Call into the VM to patch the caller, then jump to compiled callee
 532   __ save_frame(4);     // Args in compiled layout; do not blow them
 533 
 534   // Must save all the live Gregs the list is:
 535   // G1: 1st Long arg (32bit build)
 536   // G2: global allocated to TLS
 537   // G3: used in inline cache check (scratch)
 538   // G4: 2nd Long arg (32bit build);
 539   // G5: used in inline cache check (Method*)
 540 
 541   // The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops.
 542 
 543 #ifdef _LP64
 544   // mov(s,d)
 545   __ mov(G1, L1);
 546   __ mov(G4, L4);
 547   __ mov(G5_method, L5);
 548   __ mov(G5_method, O0);         // VM needs target method
 549   __ mov(I7, O1);                // VM needs caller's callsite
 550   // Must be a leaf call...
 551   // can be very far once the blob has been relocated
 552   AddressLiteral dest(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
 553   __ relocate(relocInfo::runtime_call_type);
 554   __ jumpl_to(dest, O7, O7);
 555   __ delayed()->mov(G2_thread, L7_thread_cache);
 556   __ mov(L7_thread_cache, G2_thread);
 557   __ mov(L1, G1);
 558   __ mov(L4, G4);
 559   __ mov(L5, G5_method);
 560 #else
 561   __ stx(G1, FP, -8 + STACK_BIAS);
 562   __ stx(G4, FP, -16 + STACK_BIAS);
 563   __ mov(G5_method, L5);
 564   __ mov(G5_method, O0);         // VM needs target method
 565   __ mov(I7, O1);                // VM needs caller's callsite
 566   // Must be a leaf call...
 567   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), relocInfo::runtime_call_type);
 568   __ delayed()->mov(G2_thread, L7_thread_cache);
 569   __ mov(L7_thread_cache, G2_thread);
 570   __ ldx(FP, -8 + STACK_BIAS, G1);
 571   __ ldx(FP, -16 + STACK_BIAS, G4);
 572   __ mov(L5, G5_method);
 573 #endif /* _LP64 */
 574 
 575   __ restore();      // Restore args
 576   __ bind(L);
 577 }
 578 
 579 
 580 RegisterOrConstant AdapterGenerator::arg_slot(const int st_off) {
 581   RegisterOrConstant roc(arg_offset(st_off));
 582   return __ ensure_simm13_or_reg(roc, Rdisp);
 583 }
 584 
 585 RegisterOrConstant AdapterGenerator::next_arg_slot(const int st_off) {
 586   RegisterOrConstant roc(next_arg_offset(st_off));
 587   return __ ensure_simm13_or_reg(roc, Rdisp);
 588 }
 589 
 590 
 591 // Stores long into offset pointed to by base
 592 void AdapterGenerator::store_c2i_long(Register r, Register base,
 593                                       const int st_off, bool is_stack) {
 594 #ifdef _LP64
 595   // In V9, longs are given 2 64-bit slots in the interpreter, but the
 596   // data is passed in only 1 slot.
 597   __ stx(r, base, next_arg_slot(st_off));
 598 #else
 599 #ifdef COMPILER2
 600   // Misaligned store of 64-bit data
 601   __ stw(r, base, arg_slot(st_off));    // lo bits
 602   __ srlx(r, 32, r);
 603   __ stw(r, base, next_arg_slot(st_off));  // hi bits
 604 #else
 605   if (is_stack) {
 606     // Misaligned store of 64-bit data
 607     __ stw(r, base, arg_slot(st_off));    // lo bits
 608     __ srlx(r, 32, r);
 609     __ stw(r, base, next_arg_slot(st_off));  // hi bits
 610   } else {
 611     __ stw(r->successor(), base, arg_slot(st_off)     ); // lo bits
 612     __ stw(r             , base, next_arg_slot(st_off)); // hi bits
 613   }
 614 #endif // COMPILER2
 615 #endif // _LP64
 616 }
 617 
 618 void AdapterGenerator::store_c2i_object(Register r, Register base,
 619                       const int st_off) {
 620   __ st_ptr (r, base, arg_slot(st_off));
 621 }
 622 
 623 void AdapterGenerator::store_c2i_int(Register r, Register base,
 624                    const int st_off) {
 625   __ st (r, base, arg_slot(st_off));
 626 }
 627 
 628 // Stores into offset pointed to by base
 629 void AdapterGenerator::store_c2i_double(VMReg r_2,
 630                       VMReg r_1, Register base, const int st_off) {
 631 #ifdef _LP64
 632   // In V9, doubles are given 2 64-bit slots in the interpreter, but the
 633   // data is passed in only 1 slot.
 634   __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
 635 #else
 636   // Need to marshal 64-bit value from misaligned Lesp loads
 637   __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
 638   __ stf(FloatRegisterImpl::S, r_2->as_FloatRegister(), base, arg_slot(st_off) );
 639 #endif
 640 }
 641 
 642 void AdapterGenerator::store_c2i_float(FloatRegister f, Register base,
 643                                        const int st_off) {
 644   __ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off));
 645 }
 646 
 647 void AdapterGenerator::gen_c2i_adapter(
 648                             int total_args_passed,
 649                             // VMReg max_arg,
 650                             int comp_args_on_stack, // VMRegStackSlots
 651                             const BasicType *sig_bt,
 652                             const VMRegPair *regs,
 653                             Label& L_skip_fixup) {
 654 
 655   // Before we get into the guts of the C2I adapter, see if we should be here
 656   // at all.  We've come from compiled code and are attempting to jump to the
 657   // interpreter, which means the caller made a static call to get here
 658   // (vcalls always get a compiled target if there is one).  Check for a
 659   // compiled target.  If there is one, we need to patch the caller's call.
 660   // However we will run interpreted if we come thru here. The next pass
 661   // thru the call site will run compiled. If we ran compiled here then
 662   // we can (theorectically) do endless i2c->c2i->i2c transitions during
 663   // deopt/uncommon trap cycles. If we always go interpreted here then
 664   // we can have at most one and don't need to play any tricks to keep
 665   // from endlessly growing the stack.
 666   //
 667   // Actually if we detected that we had an i2c->c2i transition here we
 668   // ought to be able to reset the world back to the state of the interpreted
 669   // call and not bother building another interpreter arg area. We don't
 670   // do that at this point.
 671 
 672   patch_callers_callsite();
 673 
 674   __ bind(L_skip_fixup);
 675 
 676   // Since all args are passed on the stack, total_args_passed*wordSize is the
 677   // space we need.  Add in varargs area needed by the interpreter. Round up
 678   // to stack alignment.
 679   const int arg_size = total_args_passed * Interpreter::stackElementSize;
 680   const int varargs_area =
 681                  (frame::varargs_offset - frame::register_save_words)*wordSize;
 682   const int extraspace = round_to(arg_size + varargs_area, 2*wordSize);
 683 
 684   const int bias = STACK_BIAS;
 685   const int interp_arg_offset = frame::varargs_offset*wordSize +
 686                         (total_args_passed-1)*Interpreter::stackElementSize;
 687 
 688   const Register base = SP;
 689 
 690   // Make some extra space on the stack.
 691   __ sub(SP, __ ensure_simm13_or_reg(extraspace, G3_scratch), SP);
 692   set_Rdisp(G3_scratch);
 693 
 694   // Write the args into the outgoing interpreter space.
 695   for (int i = 0; i < total_args_passed; i++) {
 696     const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
 697     VMReg r_1 = regs[i].first();
 698     VMReg r_2 = regs[i].second();
 699     if (!r_1->is_valid()) {
 700       assert(!r_2->is_valid(), "");
 701       continue;
 702     }
 703     if (r_1->is_stack()) {        // Pretend stack targets are loaded into G1
 704       RegisterOrConstant ld_off = reg2offset(r_1) + extraspace + bias;
 705       ld_off = __ ensure_simm13_or_reg(ld_off, Rdisp);
 706       r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle
 707       if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch);
 708       else                  __ ldx(base, ld_off, G1_scratch);
 709     }
 710 
 711     if (r_1->is_Register()) {
 712       Register r = r_1->as_Register()->after_restore();
 713       if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
 714         store_c2i_object(r, base, st_off);
 715       } else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 716         store_c2i_long(r, base, st_off, r_2->is_stack());
 717       } else {
 718         store_c2i_int(r, base, st_off);
 719       }
 720     } else {
 721       assert(r_1->is_FloatRegister(), "");
 722       if (sig_bt[i] == T_FLOAT) {
 723         store_c2i_float(r_1->as_FloatRegister(), base, st_off);
 724       } else {
 725         assert(sig_bt[i] == T_DOUBLE, "wrong type");
 726         store_c2i_double(r_2, r_1, base, st_off);
 727       }
 728     }
 729   }
 730 
 731   // Load the interpreter entry point.
 732   __ ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), G3_scratch);
 733 
 734   // Pass O5_savedSP as an argument to the interpreter.
 735   // The interpreter will restore SP to this value before returning.
 736   __ add(SP, __ ensure_simm13_or_reg(extraspace, G1), O5_savedSP);
 737 
 738   __ mov((frame::varargs_offset)*wordSize -
 739          1*Interpreter::stackElementSize+bias+BytesPerWord, G1);
 740   // Jump to the interpreter just as if interpreter was doing it.
 741   __ jmpl(G3_scratch, 0, G0);
 742   // Setup Lesp for the call.  Cannot actually set Lesp as the current Lesp
 743   // (really L0) is in use by the compiled frame as a generic temp.  However,
 744   // the interpreter does not know where its args are without some kind of
 745   // arg pointer being passed in.  Pass it in Gargs.
 746   __ delayed()->add(SP, G1, Gargs);
 747 }
 748 
 749 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg, Register temp2_reg,
 750                         address code_start, address code_end,
 751                         Label& L_ok) {
 752   Label L_fail;
 753   __ set(ExternalAddress(code_start), temp_reg);
 754   __ set(pointer_delta(code_end, code_start, 1), temp2_reg);
 755   __ cmp(pc_reg, temp_reg);
 756   __ brx(Assembler::lessEqualUnsigned, false, Assembler::pn, L_fail);
 757   __ delayed()->add(temp_reg, temp2_reg, temp_reg);
 758   __ cmp(pc_reg, temp_reg);
 759   __ cmp_and_brx_short(pc_reg, temp_reg, Assembler::lessUnsigned, Assembler::pt, L_ok);
 760   __ bind(L_fail);
 761 }
 762 
 763 void AdapterGenerator::gen_i2c_adapter(
 764                             int total_args_passed,
 765                             // VMReg max_arg,
 766                             int comp_args_on_stack, // VMRegStackSlots
 767                             const BasicType *sig_bt,
 768                             const VMRegPair *regs) {
 769 
 770   // Generate an I2C adapter: adjust the I-frame to make space for the C-frame
 771   // layout.  Lesp was saved by the calling I-frame and will be restored on
 772   // return.  Meanwhile, outgoing arg space is all owned by the callee
 773   // C-frame, so we can mangle it at will.  After adjusting the frame size,
 774   // hoist register arguments and repack other args according to the compiled
 775   // code convention.  Finally, end in a jump to the compiled code.  The entry
 776   // point address is the start of the buffer.
 777 
 778   // We will only enter here from an interpreted frame and never from after
 779   // passing thru a c2i. Azul allowed this but we do not. If we lose the
 780   // race and use a c2i we will remain interpreted for the race loser(s).
 781   // This removes all sorts of headaches on the x86 side and also eliminates
 782   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
 783 
 784   // More detail:
 785   // Adapters can be frameless because they do not require the caller
 786   // to perform additional cleanup work, such as correcting the stack pointer.
 787   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
 788   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
 789   // even if a callee has modified the stack pointer.
 790   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
 791   // routinely repairs its caller's stack pointer (from sender_sp, which is set
 792   // up via the senderSP register).
 793   // In other words, if *either* the caller or callee is interpreted, we can
 794   // get the stack pointer repaired after a call.
 795   // This is why c2i and i2c adapters cannot be indefinitely composed.
 796   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 797   // both caller and callee would be compiled methods, and neither would
 798   // clean up the stack pointer changes performed by the two adapters.
 799   // If this happens, control eventually transfers back to the compiled
 800   // caller, but with an uncorrected stack, causing delayed havoc.
 801 
 802   if (VerifyAdapterCalls &&
 803       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
 804     // So, let's test for cascading c2i/i2c adapters right now.
 805     //  assert(Interpreter::contains($return_addr) ||
 806     //         StubRoutines::contains($return_addr),
 807     //         "i2c adapter must return to an interpreter frame");
 808     __ block_comment("verify_i2c { ");
 809     Label L_ok;
 810     if (Interpreter::code() != NULL)
 811       range_check(masm, O7, O0, O1,
 812                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
 813                   L_ok);
 814     if (StubRoutines::code1() != NULL)
 815       range_check(masm, O7, O0, O1,
 816                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
 817                   L_ok);
 818     if (StubRoutines::code2() != NULL)
 819       range_check(masm, O7, O0, O1,
 820                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
 821                   L_ok);
 822     const char* msg = "i2c adapter must return to an interpreter frame";
 823     __ block_comment(msg);
 824     __ stop(msg);
 825     __ bind(L_ok);
 826     __ block_comment("} verify_i2ce ");
 827   }
 828 
 829   // As you can see from the list of inputs & outputs there are not a lot
 830   // of temp registers to work with: mostly G1, G3 & G4.
 831 
 832   // Inputs:
 833   // G2_thread      - TLS
 834   // G5_method      - Method oop
 835   // G4 (Gargs)     - Pointer to interpreter's args
 836   // O0..O4         - free for scratch
 837   // O5_savedSP     - Caller's saved SP, to be restored if needed
 838   // O6             - Current SP!
 839   // O7             - Valid return address
 840   // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
 841 
 842   // Outputs:
 843   // G2_thread      - TLS
 844   // O0-O5          - Outgoing args in compiled layout
 845   // O6             - Adjusted or restored SP
 846   // O7             - Valid return address
 847   // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
 848   // F0-F7          - more outgoing args
 849 
 850 
 851   // Gargs is the incoming argument base, and also an outgoing argument.
 852   __ sub(Gargs, BytesPerWord, Gargs);
 853 
 854   // ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME
 855   // WITH O7 HOLDING A VALID RETURN PC
 856   //
 857   // |              |
 858   // :  java stack  :
 859   // |              |
 860   // +--------------+ <--- start of outgoing args
 861   // |   receiver   |   |
 862   // : rest of args :   |---size is java-arg-words
 863   // |              |   |
 864   // +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I
 865   // |              |   |
 866   // :    unused    :   |---Space for max Java stack, plus stack alignment
 867   // |              |   |
 868   // +--------------+ <--- SP + 16*wordsize
 869   // |              |
 870   // :    window    :
 871   // |              |
 872   // +--------------+ <--- SP
 873 
 874   // WE REPACK THE STACK.  We use the common calling convention layout as
 875   // discovered by calling SharedRuntime::calling_convention.  We assume it
 876   // causes an arbitrary shuffle of memory, which may require some register
 877   // temps to do the shuffle.  We hope for (and optimize for) the case where
 878   // temps are not needed.  We may have to resize the stack slightly, in case
 879   // we need alignment padding (32-bit interpreter can pass longs & doubles
 880   // misaligned, but the compilers expect them aligned).
 881   //
 882   // |              |
 883   // :  java stack  :
 884   // |              |
 885   // +--------------+ <--- start of outgoing args
 886   // |  pad, align  |   |
 887   // +--------------+   |
 888   // | ints, longs, |   |
 889   // |    floats,   |   |---Outgoing stack args.
 890   // :    doubles   :   |   First few args in registers.
 891   // |              |   |
 892   // +--------------+ <--- SP' + 16*wordsize
 893   // |              |
 894   // :    window    :
 895   // |              |
 896   // +--------------+ <--- SP'
 897 
 898   // ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME
 899   // WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP
 900   // FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN.
 901 
 902   // Cut-out for having no stack args.  Since up to 6 args are passed
 903   // in registers, we will commonly have no stack args.
 904   if (comp_args_on_stack > 0) {
 905     // Convert VMReg stack slots to words.
 906     int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
 907     // Round up to miminum stack alignment, in wordSize
 908     comp_words_on_stack = round_to(comp_words_on_stack, 2);
 909     // Now compute the distance from Lesp to SP.  This calculation does not
 910     // include the space for total_args_passed because Lesp has not yet popped
 911     // the arguments.
 912     __ sub(SP, (comp_words_on_stack)*wordSize, SP);
 913   }
 914 
 915   // Now generate the shuffle code.  Pick up all register args and move the
 916   // rest through G1_scratch.
 917   for (int i = 0; i < total_args_passed; i++) {
 918     if (sig_bt[i] == T_VOID) {
 919       // Longs and doubles are passed in native word order, but misaligned
 920       // in the 32-bit build.
 921       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 922       continue;
 923     }
 924 
 925     // Pick up 0, 1 or 2 words from Lesp+offset.  Assume mis-aligned in the
 926     // 32-bit build and aligned in the 64-bit build.  Look for the obvious
 927     // ldx/lddf optimizations.
 928 
 929     // Load in argument order going down.
 930     const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
 931     set_Rdisp(G1_scratch);
 932 
 933     VMReg r_1 = regs[i].first();
 934     VMReg r_2 = regs[i].second();
 935     if (!r_1->is_valid()) {
 936       assert(!r_2->is_valid(), "");
 937       continue;
 938     }
 939     if (r_1->is_stack()) {        // Pretend stack targets are loaded into F8/F9
 940       r_1 = F8->as_VMReg();        // as part of the load/store shuffle
 941       if (r_2->is_valid()) r_2 = r_1->next();
 942     }
 943     if (r_1->is_Register()) {  // Register argument
 944       Register r = r_1->as_Register()->after_restore();
 945       if (!r_2->is_valid()) {
 946         __ ld(Gargs, arg_slot(ld_off), r);
 947       } else {
 948 #ifdef _LP64
 949         // In V9, longs are given 2 64-bit slots in the interpreter, but the
 950         // data is passed in only 1 slot.
 951         RegisterOrConstant slot = (sig_bt[i] == T_LONG) ?
 952               next_arg_slot(ld_off) : arg_slot(ld_off);
 953         __ ldx(Gargs, slot, r);
 954 #else
 955         fatal("longs should be on stack");
 956 #endif
 957       }
 958     } else {
 959       assert(r_1->is_FloatRegister(), "");
 960       if (!r_2->is_valid()) {
 961         __ ldf(FloatRegisterImpl::S, Gargs,      arg_slot(ld_off), r_1->as_FloatRegister());
 962       } else {
 963 #ifdef _LP64
 964         // In V9, doubles are given 2 64-bit slots in the interpreter, but the
 965         // data is passed in only 1 slot.  This code also handles longs that
 966         // are passed on the stack, but need a stack-to-stack move through a
 967         // spare float register.
 968         RegisterOrConstant slot = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ?
 969               next_arg_slot(ld_off) : arg_slot(ld_off);
 970         __ ldf(FloatRegisterImpl::D, Gargs,                  slot, r_1->as_FloatRegister());
 971 #else
 972         // Need to marshal 64-bit value from misaligned Lesp loads
 973         __ ldf(FloatRegisterImpl::S, Gargs, next_arg_slot(ld_off), r_1->as_FloatRegister());
 974         __ ldf(FloatRegisterImpl::S, Gargs,      arg_slot(ld_off), r_2->as_FloatRegister());
 975 #endif
 976       }
 977     }
 978     // Was the argument really intended to be on the stack, but was loaded
 979     // into F8/F9?
 980     if (regs[i].first()->is_stack()) {
 981       assert(r_1->as_FloatRegister() == F8, "fix this code");
 982       // Convert stack slot to an SP offset
 983       int st_off = reg2offset(regs[i].first()) + STACK_BIAS;
 984       // Store down the shuffled stack word.  Target address _is_ aligned.
 985       RegisterOrConstant slot = __ ensure_simm13_or_reg(st_off, Rdisp);
 986       if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, slot);
 987       else                  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, slot);
 988     }
 989   }
 990 
 991   // Jump to the compiled code just as if compiled code was doing it.
 992   __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3);
 993 
 994   // 6243940 We might end up in handle_wrong_method if
 995   // the callee is deoptimized as we race thru here. If that
 996   // happens we don't want to take a safepoint because the
 997   // caller frame will look interpreted and arguments are now
 998   // "compiled" so it is much better to make this transition
 999   // invisible to the stack walking code. Unfortunately if
1000   // we try and find the callee by normal means a safepoint
1001   // is possible. So we stash the desired callee in the thread
1002   // and the vm will find there should this case occur.
1003   Address callee_target_addr(G2_thread, JavaThread::callee_target_offset());
1004   __ st_ptr(G5_method, callee_target_addr);
1005   __ jmpl(G3, 0, G0);
1006   __ delayed()->nop();
1007 }
1008 
1009 // ---------------------------------------------------------------
1010 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
1011                                                             int total_args_passed,
1012                                                             // VMReg max_arg,
1013                                                             int comp_args_on_stack, // VMRegStackSlots
1014                                                             const BasicType *sig_bt,
1015                                                             const VMRegPair *regs,
1016                                                             AdapterFingerPrint* fingerprint) {
1017   address i2c_entry = __ pc();
1018 
1019   AdapterGenerator agen(masm);
1020 
1021   agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs);
1022 
1023 
1024   // -------------------------------------------------------------------------
1025   // Generate a C2I adapter.  On entry we know G5 holds the Method*.  The
1026   // args start out packed in the compiled layout.  They need to be unpacked
1027   // into the interpreter layout.  This will almost always require some stack
1028   // space.  We grow the current (compiled) stack, then repack the args.  We
1029   // finally end in a jump to the generic interpreter entry point.  On exit
1030   // from the interpreter, the interpreter will restore our SP (lest the
1031   // compiled code, which relys solely on SP and not FP, get sick).
1032 
1033   address c2i_unverified_entry = __ pc();
1034   Label L_skip_fixup;
1035   {
1036     Register R_temp = G1;  // another scratch register
1037 
1038     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
1039 
1040     __ verify_oop(O0);
1041     __ load_klass(O0, G3_scratch);
1042 
1043     __ ld_ptr(G5_method, CompiledICHolder::holder_klass_offset(), R_temp);
1044     __ cmp(G3_scratch, R_temp);
1045 
1046     Label ok, ok2;
1047     __ brx(Assembler::equal, false, Assembler::pt, ok);
1048     __ delayed()->ld_ptr(G5_method, CompiledICHolder::holder_method_offset(), G5_method);
1049     __ jump_to(ic_miss, G3_scratch);
1050     __ delayed()->nop();
1051 
1052     __ bind(ok);
1053     // Method might have been compiled since the call site was patched to
1054     // interpreted if that is the case treat it as a miss so we can get
1055     // the call site corrected.
1056     __ ld_ptr(G5_method, in_bytes(Method::code_offset()), G3_scratch);
1057     __ bind(ok2);
1058     __ br_null(G3_scratch, false, Assembler::pt, L_skip_fixup);
1059     __ delayed()->nop();
1060     __ jump_to(ic_miss, G3_scratch);
1061     __ delayed()->nop();
1062 
1063   }
1064 
1065   address c2i_entry = __ pc();
1066 
1067   agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, L_skip_fixup);
1068 
1069   __ flush();
1070   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
1071 
1072 }
1073 
1074 // Helper function for native calling conventions
1075 static VMReg int_stk_helper( int i ) {
1076   // Bias any stack based VMReg we get by ignoring the window area
1077   // but not the register parameter save area.
1078   //
1079   // This is strange for the following reasons. We'd normally expect
1080   // the calling convention to return an VMReg for a stack slot
1081   // completely ignoring any abi reserved area. C2 thinks of that
1082   // abi area as only out_preserve_stack_slots. This does not include
1083   // the area allocated by the C abi to store down integer arguments
1084   // because the java calling convention does not use it. So
1085   // since c2 assumes that there are only out_preserve_stack_slots
1086   // to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack
1087   // location the c calling convention must add in this bias amount
1088   // to make up for the fact that the out_preserve_stack_slots is
1089   // insufficient for C calls. What a mess. I sure hope those 6
1090   // stack words were worth it on every java call!
1091 
1092   // Another way of cleaning this up would be for out_preserve_stack_slots
1093   // to take a parameter to say whether it was C or java calling conventions.
1094   // Then things might look a little better (but not much).
1095 
1096   int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM;
1097   if( mem_parm_offset < 0 ) {
1098     return as_oRegister(i)->as_VMReg();
1099   } else {
1100     int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word;
1101     // Now return a biased offset that will be correct when out_preserve_slots is added back in
1102     return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots());
1103   }
1104 }
1105 
1106 
1107 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
1108                                          VMRegPair *regs,
1109                                          VMRegPair *regs2,
1110                                          int total_args_passed) {
1111     assert(regs2 == NULL, "not needed on sparc");
1112 
1113     // Return the number of VMReg stack_slots needed for the args.
1114     // This value does not include an abi space (like register window
1115     // save area).
1116 
1117     // The native convention is V8 if !LP64
1118     // The LP64 convention is the V9 convention which is slightly more sane.
1119 
1120     // We return the amount of VMReg stack slots we need to reserve for all
1121     // the arguments NOT counting out_preserve_stack_slots. Since we always
1122     // have space for storing at least 6 registers to memory we start with that.
1123     // See int_stk_helper for a further discussion.
1124     int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots();
1125 
1126 #ifdef _LP64
1127     // V9 convention: All things "as-if" on double-wide stack slots.
1128     // Hoist any int/ptr/long's in the first 6 to int regs.
1129     // Hoist any flt/dbl's in the first 16 dbl regs.
1130     int j = 0;                  // Count of actual args, not HALVES
1131     VMRegPair param_array_reg;  // location of the argument in the parameter array
1132     for (int i = 0; i < total_args_passed; i++, j++) {
1133       param_array_reg.set_bad();
1134       switch (sig_bt[i]) {
1135       case T_BOOLEAN:
1136       case T_BYTE:
1137       case T_CHAR:
1138       case T_INT:
1139       case T_SHORT:
1140         regs[i].set1(int_stk_helper(j));
1141         break;
1142       case T_LONG:
1143         assert(sig_bt[i+1] == T_VOID, "expecting half");
1144       case T_ADDRESS: // raw pointers, like current thread, for VM calls
1145       case T_ARRAY:
1146       case T_OBJECT:
1147       case T_METADATA:
1148         regs[i].set2(int_stk_helper(j));
1149         break;
1150       case T_FLOAT:
1151         // Per SPARC Compliance Definition 2.4.1, page 3P-12 available here
1152         // http://www.sparc.org/wp-content/uploads/2014/01/SCD.2.4.1.pdf.gz
1153         //
1154         // "When a callee prototype exists, and does not indicate variable arguments,
1155         // floating-point values assigned to locations %sp+BIAS+128 through %sp+BIAS+248
1156         // will be promoted to floating-point registers"
1157         //
1158         // By "promoted" it means that the argument is located in two places, an unused
1159         // spill slot in the "parameter array" (starts at %sp+BIAS+128), and a live
1160         // float register.  In most cases, there are 6 or fewer arguments of any type,
1161         // and the standard parameter array slots (%sp+BIAS+128 to %sp+BIAS+176 exclusive)
1162         // serve as shadow slots.  Per the spec floating point registers %d6 to %d16
1163         // require slots beyond that (up to %sp+BIAS+248).
1164         //
1165         {
1166           // V9ism: floats go in ODD registers and stack slots
1167           int float_index = 1 + (j << 1);
1168           param_array_reg.set1(VMRegImpl::stack2reg(float_index));
1169           if (j < 16) {
1170             regs[i].set1(as_FloatRegister(float_index)->as_VMReg());
1171           } else {
1172             regs[i] = param_array_reg;
1173           }
1174         }
1175         break;
1176       case T_DOUBLE:
1177         {
1178           assert(sig_bt[i + 1] == T_VOID, "expecting half");
1179           // V9ism: doubles go in EVEN/ODD regs and stack slots
1180           int double_index = (j << 1);
1181           param_array_reg.set2(VMRegImpl::stack2reg(double_index));
1182           if (j < 16) {
1183             regs[i].set2(as_FloatRegister(double_index)->as_VMReg());
1184           } else {
1185             // V9ism: doubles go in EVEN/ODD stack slots
1186             regs[i] = param_array_reg;
1187           }
1188         }
1189         break;
1190       case T_VOID:
1191         regs[i].set_bad();
1192         j--;
1193         break; // Do not count HALVES
1194       default:
1195         ShouldNotReachHere();
1196       }
1197       // Keep track of the deepest parameter array slot.
1198       if (!param_array_reg.first()->is_valid()) {
1199         param_array_reg = regs[i];
1200       }
1201       if (param_array_reg.first()->is_stack()) {
1202         int off = param_array_reg.first()->reg2stack();
1203         if (off > max_stack_slots) max_stack_slots = off;
1204       }
1205       if (param_array_reg.second()->is_stack()) {
1206         int off = param_array_reg.second()->reg2stack();
1207         if (off > max_stack_slots) max_stack_slots = off;
1208       }
1209     }
1210 
1211 #else // _LP64
1212     // V8 convention: first 6 things in O-regs, rest on stack.
1213     // Alignment is willy-nilly.
1214     for (int i = 0; i < total_args_passed; i++) {
1215       switch (sig_bt[i]) {
1216       case T_ADDRESS: // raw pointers, like current thread, for VM calls
1217       case T_ARRAY:
1218       case T_BOOLEAN:
1219       case T_BYTE:
1220       case T_CHAR:
1221       case T_FLOAT:
1222       case T_INT:
1223       case T_OBJECT:
1224       case T_METADATA:
1225       case T_SHORT:
1226         regs[i].set1(int_stk_helper(i));
1227         break;
1228       case T_DOUBLE:
1229       case T_LONG:
1230         assert(sig_bt[i + 1] == T_VOID, "expecting half");
1231         regs[i].set_pair(int_stk_helper(i + 1), int_stk_helper(i));
1232         break;
1233       case T_VOID: regs[i].set_bad(); break;
1234       default:
1235         ShouldNotReachHere();
1236       }
1237       if (regs[i].first()->is_stack()) {
1238         int off = regs[i].first()->reg2stack();
1239         if (off > max_stack_slots) max_stack_slots = off;
1240       }
1241       if (regs[i].second()->is_stack()) {
1242         int off = regs[i].second()->reg2stack();
1243         if (off > max_stack_slots) max_stack_slots = off;
1244       }
1245     }
1246 #endif // _LP64
1247 
1248   return round_to(max_stack_slots + 1, 2);
1249 
1250 }
1251 
1252 
1253 // ---------------------------------------------------------------------------
1254 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1255   switch (ret_type) {
1256   case T_FLOAT:
1257     __ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS);
1258     break;
1259   case T_DOUBLE:
1260     __ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS);
1261     break;
1262   }
1263 }
1264 
1265 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1266   switch (ret_type) {
1267   case T_FLOAT:
1268     __ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0);
1269     break;
1270   case T_DOUBLE:
1271     __ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0);
1272     break;
1273   }
1274 }
1275 
1276 // Check and forward and pending exception.  Thread is stored in
1277 // L7_thread_cache and possibly NOT in G2_thread.  Since this is a native call, there
1278 // is no exception handler.  We merely pop this frame off and throw the
1279 // exception in the caller's frame.
1280 static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) {
1281   Label L;
1282   __ br_null(Rex_oop, false, Assembler::pt, L);
1283   __ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception
1284   // Since this is a native call, we *know* the proper exception handler
1285   // without calling into the VM: it's the empty function.  Just pop this
1286   // frame and then jump to forward_exception_entry; O7 will contain the
1287   // native caller's return PC.
1288  AddressLiteral exception_entry(StubRoutines::forward_exception_entry());
1289   __ jump_to(exception_entry, G3_scratch);
1290   __ delayed()->restore();      // Pop this frame off.
1291   __ bind(L);
1292 }
1293 
1294 // A simple move of integer like type
1295 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1296   if (src.first()->is_stack()) {
1297     if (dst.first()->is_stack()) {
1298       // stack to stack
1299       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1300       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1301     } else {
1302       // stack to reg
1303       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1304     }
1305   } else if (dst.first()->is_stack()) {
1306     // reg to stack
1307     __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1308   } else {
1309     __ mov(src.first()->as_Register(), dst.first()->as_Register());
1310   }
1311 }
1312 
1313 // On 64 bit we will store integer like items to the stack as
1314 // 64 bits items (sparc abi) even though java would only store
1315 // 32bits for a parameter. On 32bit it will simply be 32 bits
1316 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
1317 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1318   if (src.first()->is_stack()) {
1319     if (dst.first()->is_stack()) {
1320       // stack to stack
1321       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1322       __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1323     } else {
1324       // stack to reg
1325       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1326     }
1327   } else if (dst.first()->is_stack()) {
1328     // reg to stack
1329     __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1330   } else {
1331     __ mov(src.first()->as_Register(), dst.first()->as_Register());
1332   }
1333 }
1334 
1335 
1336 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1337   if (src.first()->is_stack()) {
1338     if (dst.first()->is_stack()) {
1339       // stack to stack
1340       __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1341       __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1342     } else {
1343       // stack to reg
1344       __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1345     }
1346   } else if (dst.first()->is_stack()) {
1347     // reg to stack
1348     __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1349   } else {
1350     __ mov(src.first()->as_Register(), dst.first()->as_Register());
1351   }
1352 }
1353 
1354 
1355 // An oop arg. Must pass a handle not the oop itself
1356 static void object_move(MacroAssembler* masm,
1357                         OopMap* map,
1358                         int oop_handle_offset,
1359                         int framesize_in_slots,
1360                         VMRegPair src,
1361                         VMRegPair dst,
1362                         bool is_receiver,
1363                         int* receiver_offset) {
1364 
1365   // must pass a handle. First figure out the location we use as a handle
1366 
1367   if (src.first()->is_stack()) {
1368     // Oop is already on the stack
1369     Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register();
1370     __ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle);
1371     __ ld_ptr(rHandle, 0, L4);
1372 #ifdef _LP64
1373     __ movr( Assembler::rc_z, L4, G0, rHandle );
1374 #else
1375     __ tst( L4 );
1376     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
1377 #endif
1378     if (dst.first()->is_stack()) {
1379       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
1380     }
1381     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1382     if (is_receiver) {
1383       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1384     }
1385     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1386   } else {
1387     // Oop is in an input register pass we must flush it to the stack
1388     const Register rOop = src.first()->as_Register();
1389     const Register rHandle = L5;
1390     int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
1391     int offset = oop_slot * VMRegImpl::stack_slot_size;
1392     __ st_ptr(rOop, SP, offset + STACK_BIAS);
1393     if (is_receiver) {
1394        *receiver_offset = offset;
1395     }
1396     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1397     __ add(SP, offset + STACK_BIAS, rHandle);
1398 #ifdef _LP64
1399     __ movr( Assembler::rc_z, rOop, G0, rHandle );
1400 #else
1401     __ tst( rOop );
1402     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
1403 #endif
1404 
1405     if (dst.first()->is_stack()) {
1406       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
1407     } else {
1408       __ mov(rHandle, dst.first()->as_Register());
1409     }
1410   }
1411 }
1412 
1413 // A float arg may have to do float reg int reg conversion
1414 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1415   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1416 
1417   if (src.first()->is_stack()) {
1418     if (dst.first()->is_stack()) {
1419       // stack to stack the easiest of the bunch
1420       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1421       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1422     } else {
1423       // stack to reg
1424       if (dst.first()->is_Register()) {
1425         __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1426       } else {
1427         __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1428       }
1429     }
1430   } else if (dst.first()->is_stack()) {
1431     // reg to stack
1432     if (src.first()->is_Register()) {
1433       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1434     } else {
1435       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1436     }
1437   } else {
1438     // reg to reg
1439     if (src.first()->is_Register()) {
1440       if (dst.first()->is_Register()) {
1441         // gpr -> gpr
1442         __ mov(src.first()->as_Register(), dst.first()->as_Register());
1443       } else {
1444         // gpr -> fpr
1445         __ st(src.first()->as_Register(), FP, -4 + STACK_BIAS);
1446         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister());
1447       }
1448     } else if (dst.first()->is_Register()) {
1449       // fpr -> gpr
1450       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS);
1451       __ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register());
1452     } else {
1453       // fpr -> fpr
1454       // In theory these overlap but the ordering is such that this is likely a nop
1455       if ( src.first() != dst.first()) {
1456         __ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
1457       }
1458     }
1459   }
1460 }
1461 
1462 static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1463   VMRegPair src_lo(src.first());
1464   VMRegPair src_hi(src.second());
1465   VMRegPair dst_lo(dst.first());
1466   VMRegPair dst_hi(dst.second());
1467   simple_move32(masm, src_lo, dst_lo);
1468   simple_move32(masm, src_hi, dst_hi);
1469 }
1470 
1471 // A long move
1472 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1473 
1474   // Do the simple ones here else do two int moves
1475   if (src.is_single_phys_reg() ) {
1476     if (dst.is_single_phys_reg()) {
1477       __ mov(src.first()->as_Register(), dst.first()->as_Register());
1478     } else {
1479       // split src into two separate registers
1480       // Remember hi means hi address or lsw on sparc
1481       // Move msw to lsw
1482       if (dst.second()->is_reg()) {
1483         // MSW -> MSW
1484         __ srax(src.first()->as_Register(), 32, dst.first()->as_Register());
1485         // Now LSW -> LSW
1486         // this will only move lo -> lo and ignore hi
1487         VMRegPair split(dst.second());
1488         simple_move32(masm, src, split);
1489       } else {
1490         VMRegPair split(src.first(), L4->as_VMReg());
1491         // MSW -> MSW (lo ie. first word)
1492         __ srax(src.first()->as_Register(), 32, L4);
1493         split_long_move(masm, split, dst);
1494       }
1495     }
1496   } else if (dst.is_single_phys_reg()) {
1497     if (src.is_adjacent_aligned_on_stack(2)) {
1498       __ ldx(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1499     } else {
1500       // dst is a single reg.
1501       // Remember lo is low address not msb for stack slots
1502       // and lo is the "real" register for registers
1503       // src is
1504 
1505       VMRegPair split;
1506 
1507       if (src.first()->is_reg()) {
1508         // src.lo (msw) is a reg, src.hi is stk/reg
1509         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg]
1510         split.set_pair(dst.first(), src.first());
1511       } else {
1512         // msw is stack move to L5
1513         // lsw is stack move to dst.lo (real reg)
1514         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5
1515         split.set_pair(dst.first(), L5->as_VMReg());
1516       }
1517 
1518       // src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg)
1519       // msw   -> src.lo/L5,  lsw -> dst.lo
1520       split_long_move(masm, src, split);
1521 
1522       // So dst now has the low order correct position the
1523       // msw half
1524       __ sllx(split.first()->as_Register(), 32, L5);
1525 
1526       const Register d = dst.first()->as_Register();
1527       __ or3(L5, d, d);
1528     }
1529   } else {
1530     // For LP64 we can probably do better.
1531     split_long_move(masm, src, dst);
1532   }
1533 }
1534 
1535 // A double move
1536 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1537 
1538   // The painful thing here is that like long_move a VMRegPair might be
1539   // 1: a single physical register
1540   // 2: two physical registers (v8)
1541   // 3: a physical reg [lo] and a stack slot [hi] (v8)
1542   // 4: two stack slots
1543 
1544   // Since src is always a java calling convention we know that the src pair
1545   // is always either all registers or all stack (and aligned?)
1546 
1547   // in a register [lo] and a stack slot [hi]
1548   if (src.first()->is_stack()) {
1549     if (dst.first()->is_stack()) {
1550       // stack to stack the easiest of the bunch
1551       // ought to be a way to do this where if alignment is ok we use ldd/std when possible
1552       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1553       __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1554       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1555       __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1556     } else {
1557       // stack to reg
1558       if (dst.second()->is_stack()) {
1559         // stack -> reg, stack -> stack
1560         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1561         if (dst.first()->is_Register()) {
1562           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1563         } else {
1564           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1565         }
1566         // This was missing. (very rare case)
1567         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1568       } else {
1569         // stack -> reg
1570         // Eventually optimize for alignment QQQ
1571         if (dst.first()->is_Register()) {
1572           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1573           __ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register());
1574         } else {
1575           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1576           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister());
1577         }
1578       }
1579     }
1580   } else if (dst.first()->is_stack()) {
1581     // reg to stack
1582     if (src.first()->is_Register()) {
1583       // Eventually optimize for alignment QQQ
1584       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1585       if (src.second()->is_stack()) {
1586         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1587         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1588       } else {
1589         __ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS);
1590       }
1591     } else {
1592       // fpr to stack
1593       if (src.second()->is_stack()) {
1594         ShouldNotReachHere();
1595       } else {
1596         // Is the stack aligned?
1597         if (reg2offset(dst.first()) & 0x7) {
1598           // No do as pairs
1599           __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1600           __ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS);
1601         } else {
1602           __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1603         }
1604       }
1605     }
1606   } else {
1607     // reg to reg
1608     if (src.first()->is_Register()) {
1609       if (dst.first()->is_Register()) {
1610         // gpr -> gpr
1611         __ mov(src.first()->as_Register(), dst.first()->as_Register());
1612         __ mov(src.second()->as_Register(), dst.second()->as_Register());
1613       } else {
1614         // gpr -> fpr
1615         // ought to be able to do a single store
1616         __ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS);
1617         __ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS);
1618         // ought to be able to do a single load
1619         __ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister());
1620         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister());
1621       }
1622     } else if (dst.first()->is_Register()) {
1623       // fpr -> gpr
1624       // ought to be able to do a single store
1625       __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS);
1626       // ought to be able to do a single load
1627       // REMEMBER first() is low address not LSB
1628       __ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register());
1629       if (dst.second()->is_Register()) {
1630         __ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register());
1631       } else {
1632         __ ld(FP, -4 + STACK_BIAS, L4);
1633         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1634       }
1635     } else {
1636       // fpr -> fpr
1637       // In theory these overlap but the ordering is such that this is likely a nop
1638       if ( src.first() != dst.first()) {
1639         __ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
1640       }
1641     }
1642   }
1643 }
1644 
1645 // Creates an inner frame if one hasn't already been created, and
1646 // saves a copy of the thread in L7_thread_cache
1647 static void create_inner_frame(MacroAssembler* masm, bool* already_created) {
1648   if (!*already_created) {
1649     __ save_frame(0);
1650     // Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below
1651     // Don't use save_thread because it smashes G2 and we merely want to save a
1652     // copy
1653     __ mov(G2_thread, L7_thread_cache);
1654     *already_created = true;
1655   }
1656 }
1657 
1658 
1659 static void save_or_restore_arguments(MacroAssembler* masm,
1660                                       const int stack_slots,
1661                                       const int total_in_args,
1662                                       const int arg_save_area,
1663                                       OopMap* map,
1664                                       VMRegPair* in_regs,
1665                                       BasicType* in_sig_bt) {
1666   // if map is non-NULL then the code should store the values,
1667   // otherwise it should load them.
1668   if (map != NULL) {
1669     // Fill in the map
1670     for (int i = 0; i < total_in_args; i++) {
1671       if (in_sig_bt[i] == T_ARRAY) {
1672         if (in_regs[i].first()->is_stack()) {
1673           int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1674           map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1675         } else if (in_regs[i].first()->is_Register()) {
1676           map->set_oop(in_regs[i].first());
1677         } else {
1678           ShouldNotReachHere();
1679         }
1680       }
1681     }
1682   }
1683 
1684   // Save or restore double word values
1685   int handle_index = 0;
1686   for (int i = 0; i < total_in_args; i++) {
1687     int slot = handle_index + arg_save_area;
1688     int offset = slot * VMRegImpl::stack_slot_size;
1689     if (in_sig_bt[i] == T_LONG && in_regs[i].first()->is_Register()) {
1690       const Register reg = in_regs[i].first()->as_Register();
1691       if (reg->is_global()) {
1692         handle_index += 2;
1693         assert(handle_index <= stack_slots, "overflow");
1694         if (map != NULL) {
1695           __ stx(reg, SP, offset + STACK_BIAS);
1696         } else {
1697           __ ldx(SP, offset + STACK_BIAS, reg);
1698         }
1699       }
1700     } else if (in_sig_bt[i] == T_DOUBLE && in_regs[i].first()->is_FloatRegister()) {
1701       handle_index += 2;
1702       assert(handle_index <= stack_slots, "overflow");
1703       if (map != NULL) {
1704         __ stf(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
1705       } else {
1706         __ ldf(FloatRegisterImpl::D, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
1707       }
1708     }
1709   }
1710   // Save floats
1711   for (int i = 0; i < total_in_args; i++) {
1712     int slot = handle_index + arg_save_area;
1713     int offset = slot * VMRegImpl::stack_slot_size;
1714     if (in_sig_bt[i] == T_FLOAT && in_regs[i].first()->is_FloatRegister()) {
1715       handle_index++;
1716       assert(handle_index <= stack_slots, "overflow");
1717       if (map != NULL) {
1718         __ stf(FloatRegisterImpl::S, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
1719       } else {
1720         __ ldf(FloatRegisterImpl::S, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
1721       }
1722     }
1723   }
1724 
1725 }
1726 
1727 
1728 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
1729 // keeps a new JNI critical region from starting until a GC has been
1730 // forced.  Save down any oops in registers and describe them in an
1731 // OopMap.
1732 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1733                                                const int stack_slots,
1734                                                const int total_in_args,
1735                                                const int arg_save_area,
1736                                                OopMapSet* oop_maps,
1737                                                VMRegPair* in_regs,
1738                                                BasicType* in_sig_bt) {
1739   __ block_comment("check GC_locker::needs_gc");
1740   Label cont;
1741   AddressLiteral sync_state(GC_locker::needs_gc_address());
1742   __ load_bool_contents(sync_state, G3_scratch);
1743   __ cmp_zero_and_br(Assembler::equal, G3_scratch, cont);
1744   __ delayed()->nop();
1745 
1746   // Save down any values that are live in registers and call into the
1747   // runtime to halt for a GC
1748   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1749   save_or_restore_arguments(masm, stack_slots, total_in_args,
1750                             arg_save_area, map, in_regs, in_sig_bt);
1751 
1752   __ mov(G2_thread, L7_thread_cache);
1753 
1754   __ set_last_Java_frame(SP, noreg);
1755 
1756   __ block_comment("block_for_jni_critical");
1757   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical), relocInfo::runtime_call_type);
1758   __ delayed()->mov(L7_thread_cache, O0);
1759   oop_maps->add_gc_map( __ offset(), map);
1760 
1761   __ restore_thread(L7_thread_cache); // restore G2_thread
1762   __ reset_last_Java_frame();
1763 
1764   // Reload all the register arguments
1765   save_or_restore_arguments(masm, stack_slots, total_in_args,
1766                             arg_save_area, NULL, in_regs, in_sig_bt);
1767 
1768   __ bind(cont);
1769 #ifdef ASSERT
1770   if (StressCriticalJNINatives) {
1771     // Stress register saving
1772     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1773     save_or_restore_arguments(masm, stack_slots, total_in_args,
1774                               arg_save_area, map, in_regs, in_sig_bt);
1775     // Destroy argument registers
1776     for (int i = 0; i < total_in_args; i++) {
1777       if (in_regs[i].first()->is_Register()) {
1778         const Register reg = in_regs[i].first()->as_Register();
1779         if (reg->is_global()) {
1780           __ mov(G0, reg);
1781         }
1782       } else if (in_regs[i].first()->is_FloatRegister()) {
1783         __ fneg(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), in_regs[i].first()->as_FloatRegister());
1784       }
1785     }
1786 
1787     save_or_restore_arguments(masm, stack_slots, total_in_args,
1788                               arg_save_area, NULL, in_regs, in_sig_bt);
1789   }
1790 #endif
1791 }
1792 
1793 // Unpack an array argument into a pointer to the body and the length
1794 // if the array is non-null, otherwise pass 0 for both.
1795 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1796   // Pass the length, ptr pair
1797   Label is_null, done;
1798   if (reg.first()->is_stack()) {
1799     VMRegPair tmp  = reg64_to_VMRegPair(L2);
1800     // Load the arg up from the stack
1801     move_ptr(masm, reg, tmp);
1802     reg = tmp;
1803   }
1804   __ cmp(reg.first()->as_Register(), G0);
1805   __ brx(Assembler::equal, false, Assembler::pt, is_null);
1806   __ delayed()->add(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type), L4);
1807   move_ptr(masm, reg64_to_VMRegPair(L4), body_arg);
1808   __ ld(reg.first()->as_Register(), arrayOopDesc::length_offset_in_bytes(), L4);
1809   move32_64(masm, reg64_to_VMRegPair(L4), length_arg);
1810   __ ba_short(done);
1811   __ bind(is_null);
1812   // Pass zeros
1813   move_ptr(masm, reg64_to_VMRegPair(G0), body_arg);
1814   move32_64(masm, reg64_to_VMRegPair(G0), length_arg);
1815   __ bind(done);
1816 }
1817 
1818 static void verify_oop_args(MacroAssembler* masm,
1819                             methodHandle method,
1820                             const BasicType* sig_bt,
1821                             const VMRegPair* regs) {
1822   Register temp_reg = G5_method;  // not part of any compiled calling seq
1823   if (VerifyOops) {
1824     for (int i = 0; i < method->size_of_parameters(); i++) {
1825       if (sig_bt[i] == T_OBJECT ||
1826           sig_bt[i] == T_ARRAY) {
1827         VMReg r = regs[i].first();
1828         assert(r->is_valid(), "bad oop arg");
1829         if (r->is_stack()) {
1830           RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
1831           ld_off = __ ensure_simm13_or_reg(ld_off, temp_reg);
1832           __ ld_ptr(SP, ld_off, temp_reg);
1833           __ verify_oop(temp_reg);
1834         } else {
1835           __ verify_oop(r->as_Register());
1836         }
1837       }
1838     }
1839   }
1840 }
1841 
1842 static void gen_special_dispatch(MacroAssembler* masm,
1843                                  methodHandle method,
1844                                  const BasicType* sig_bt,
1845                                  const VMRegPair* regs) {
1846   verify_oop_args(masm, method, sig_bt, regs);
1847   vmIntrinsics::ID iid = method->intrinsic_id();
1848 
1849   // Now write the args into the outgoing interpreter space
1850   bool     has_receiver   = false;
1851   Register receiver_reg   = noreg;
1852   int      member_arg_pos = -1;
1853   Register member_reg     = noreg;
1854   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1855   if (ref_kind != 0) {
1856     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1857     member_reg = G5_method;  // known to be free at this point
1858     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1859   } else if (iid == vmIntrinsics::_invokeBasic) {
1860     has_receiver = true;
1861   } else {
1862     fatal(err_msg_res("unexpected intrinsic id %d", iid));
1863   }
1864 
1865   if (member_reg != noreg) {
1866     // Load the member_arg into register, if necessary.
1867     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1868     VMReg r = regs[member_arg_pos].first();
1869     if (r->is_stack()) {
1870       RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
1871       ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
1872       __ ld_ptr(SP, ld_off, member_reg);
1873     } else {
1874       // no data motion is needed
1875       member_reg = r->as_Register();
1876     }
1877   }
1878 
1879   if (has_receiver) {
1880     // Make sure the receiver is loaded into a register.
1881     assert(method->size_of_parameters() > 0, "oob");
1882     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1883     VMReg r = regs[0].first();
1884     assert(r->is_valid(), "bad receiver arg");
1885     if (r->is_stack()) {
1886       // Porting note:  This assumes that compiled calling conventions always
1887       // pass the receiver oop in a register.  If this is not true on some
1888       // platform, pick a temp and load the receiver from stack.
1889       fatal("receiver always in a register");
1890       receiver_reg = G3_scratch;  // known to be free at this point
1891       RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
1892       ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
1893       __ ld_ptr(SP, ld_off, receiver_reg);
1894     } else {
1895       // no data motion is needed
1896       receiver_reg = r->as_Register();
1897     }
1898   }
1899 
1900   // Figure out which address we are really jumping to:
1901   MethodHandles::generate_method_handle_dispatch(masm, iid,
1902                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1903 }
1904 
1905 // ---------------------------------------------------------------------------
1906 // Generate a native wrapper for a given method.  The method takes arguments
1907 // in the Java compiled code convention, marshals them to the native
1908 // convention (handlizes oops, etc), transitions to native, makes the call,
1909 // returns to java state (possibly blocking), unhandlizes any result and
1910 // returns.
1911 //
1912 // Critical native functions are a shorthand for the use of
1913 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1914 // functions.  The wrapper is expected to unpack the arguments before
1915 // passing them to the callee and perform checks before and after the
1916 // native call to ensure that they GC_locker
1917 // lock_critical/unlock_critical semantics are followed.  Some other
1918 // parts of JNI setup are skipped like the tear down of the JNI handle
1919 // block and the check for pending exceptions it's impossible for them
1920 // to be thrown.
1921 //
1922 // They are roughly structured like this:
1923 //    if (GC_locker::needs_gc())
1924 //      SharedRuntime::block_for_jni_critical();
1925 //    tranistion to thread_in_native
1926 //    unpack arrray arguments and call native entry point
1927 //    check for safepoint in progress
1928 //    check if any thread suspend flags are set
1929 //      call into JVM and possible unlock the JNI critical
1930 //      if a GC was suppressed while in the critical native.
1931 //    transition back to thread_in_Java
1932 //    return to caller
1933 //
1934 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1935                                                 methodHandle method,
1936                                                 int compile_id,
1937                                                 BasicType* in_sig_bt,
1938                                                 VMRegPair* in_regs,
1939                                                 BasicType ret_type) {
1940   if (method->is_method_handle_intrinsic()) {
1941     vmIntrinsics::ID iid = method->intrinsic_id();
1942     intptr_t start = (intptr_t)__ pc();
1943     int vep_offset = ((intptr_t)__ pc()) - start;
1944     gen_special_dispatch(masm,
1945                          method,
1946                          in_sig_bt,
1947                          in_regs);
1948     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1949     __ flush();
1950     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1951     return nmethod::new_native_nmethod(method,
1952                                        compile_id,
1953                                        masm->code(),
1954                                        vep_offset,
1955                                        frame_complete,
1956                                        stack_slots / VMRegImpl::slots_per_word,
1957                                        in_ByteSize(-1),
1958                                        in_ByteSize(-1),
1959                                        (OopMapSet*)NULL);
1960   }
1961   bool is_critical_native = true;
1962   address native_func = method->critical_native_function();
1963   if (native_func == NULL) {
1964     native_func = method->native_function();
1965     is_critical_native = false;
1966   }
1967   assert(native_func != NULL, "must have function");
1968 
1969   // Native nmethod wrappers never take possesion of the oop arguments.
1970   // So the caller will gc the arguments. The only thing we need an
1971   // oopMap for is if the call is static
1972   //
1973   // An OopMap for lock (and class if static), and one for the VM call itself
1974   OopMapSet *oop_maps = new OopMapSet();
1975   intptr_t start = (intptr_t)__ pc();
1976 
1977   // First thing make an ic check to see if we should even be here
1978   {
1979     Label L;
1980     const Register temp_reg = G3_scratch;
1981     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
1982     __ verify_oop(O0);
1983     __ load_klass(O0, temp_reg);
1984     __ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
1985 
1986     __ jump_to(ic_miss, temp_reg);
1987     __ delayed()->nop();
1988     __ align(CodeEntryAlignment);
1989     __ bind(L);
1990   }
1991 
1992   int vep_offset = ((intptr_t)__ pc()) - start;
1993 
1994 #ifdef COMPILER1
1995   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
1996     // Object.hashCode can pull the hashCode from the header word
1997     // instead of doing a full VM transition once it's been computed.
1998     // Since hashCode is usually polymorphic at call sites we can't do
1999     // this optimization at the call site without a lot of work.
2000     Label slowCase;
2001     Register receiver             = O0;
2002     Register result               = O0;
2003     Register header               = G3_scratch;
2004     Register hash                 = G3_scratch; // overwrite header value with hash value
2005     Register mask                 = G1;         // to get hash field from header
2006 
2007     // Read the header and build a mask to get its hash field.  Give up if the object is not unlocked.
2008     // We depend on hash_mask being at most 32 bits and avoid the use of
2009     // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
2010     // vm: see markOop.hpp.
2011     __ ld_ptr(receiver, oopDesc::mark_offset_in_bytes(), header);
2012     __ sethi(markOopDesc::hash_mask, mask);
2013     __ btst(markOopDesc::unlocked_value, header);
2014     __ br(Assembler::zero, false, Assembler::pn, slowCase);
2015     if (UseBiasedLocking) {
2016       // Check if biased and fall through to runtime if so
2017       __ delayed()->nop();
2018       __ btst(markOopDesc::biased_lock_bit_in_place, header);
2019       __ br(Assembler::notZero, false, Assembler::pn, slowCase);
2020     }
2021     __ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask);
2022 
2023     // Check for a valid (non-zero) hash code and get its value.
2024 #ifdef _LP64
2025     __ srlx(header, markOopDesc::hash_shift, hash);
2026 #else
2027     __ srl(header, markOopDesc::hash_shift, hash);
2028 #endif
2029     __ andcc(hash, mask, hash);
2030     __ br(Assembler::equal, false, Assembler::pn, slowCase);
2031     __ delayed()->nop();
2032 
2033     // leaf return.
2034     __ retl();
2035     __ delayed()->mov(hash, result);
2036     __ bind(slowCase);
2037   }
2038 #endif // COMPILER1
2039 
2040 
2041   // We have received a description of where all the java arg are located
2042   // on entry to the wrapper. We need to convert these args to where
2043   // the jni function will expect them. To figure out where they go
2044   // we convert the java signature to a C signature by inserting
2045   // the hidden arguments as arg[0] and possibly arg[1] (static method)
2046 
2047   const int total_in_args = method->size_of_parameters();
2048   int total_c_args = total_in_args;
2049   int total_save_slots = 6 * VMRegImpl::slots_per_word;
2050   if (!is_critical_native) {
2051     total_c_args += 1;
2052     if (method->is_static()) {
2053       total_c_args++;
2054     }
2055   } else {
2056     for (int i = 0; i < total_in_args; i++) {
2057       if (in_sig_bt[i] == T_ARRAY) {
2058         // These have to be saved and restored across the safepoint
2059         total_c_args++;
2060       }
2061     }
2062   }
2063 
2064   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
2065   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
2066   BasicType* in_elem_bt = NULL;
2067 
2068   int argc = 0;
2069   if (!is_critical_native) {
2070     out_sig_bt[argc++] = T_ADDRESS;
2071     if (method->is_static()) {
2072       out_sig_bt[argc++] = T_OBJECT;
2073     }
2074 
2075     for (int i = 0; i < total_in_args ; i++ ) {
2076       out_sig_bt[argc++] = in_sig_bt[i];
2077     }
2078   } else {
2079     Thread* THREAD = Thread::current();
2080     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
2081     SignatureStream ss(method->signature());
2082     for (int i = 0; i < total_in_args ; i++ ) {
2083       if (in_sig_bt[i] == T_ARRAY) {
2084         // Arrays are passed as int, elem* pair
2085         out_sig_bt[argc++] = T_INT;
2086         out_sig_bt[argc++] = T_ADDRESS;
2087         Symbol* atype = ss.as_symbol(CHECK_NULL);
2088         const char* at = atype->as_C_string();
2089         if (strlen(at) == 2) {
2090           assert(at[0] == '[', "must be");
2091           switch (at[1]) {
2092             case 'B': in_elem_bt[i]  = T_BYTE; break;
2093             case 'C': in_elem_bt[i]  = T_CHAR; break;
2094             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
2095             case 'F': in_elem_bt[i]  = T_FLOAT; break;
2096             case 'I': in_elem_bt[i]  = T_INT; break;
2097             case 'J': in_elem_bt[i]  = T_LONG; break;
2098             case 'S': in_elem_bt[i]  = T_SHORT; break;
2099             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
2100             default: ShouldNotReachHere();
2101           }
2102         }
2103       } else {
2104         out_sig_bt[argc++] = in_sig_bt[i];
2105         in_elem_bt[i] = T_VOID;
2106       }
2107       if (in_sig_bt[i] != T_VOID) {
2108         assert(in_sig_bt[i] == ss.type(), "must match");
2109         ss.next();
2110       }
2111     }
2112   }
2113 
2114   // Now figure out where the args must be stored and how much stack space
2115   // they require (neglecting out_preserve_stack_slots but space for storing
2116   // the 1st six register arguments). It's weird see int_stk_helper.
2117   //
2118   int out_arg_slots;
2119   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
2120 
2121   if (is_critical_native) {
2122     // Critical natives may have to call out so they need a save area
2123     // for register arguments.
2124     int double_slots = 0;
2125     int single_slots = 0;
2126     for ( int i = 0; i < total_in_args; i++) {
2127       if (in_regs[i].first()->is_Register()) {
2128         const Register reg = in_regs[i].first()->as_Register();
2129         switch (in_sig_bt[i]) {
2130           case T_ARRAY:
2131           case T_BOOLEAN:
2132           case T_BYTE:
2133           case T_SHORT:
2134           case T_CHAR:
2135           case T_INT:  assert(reg->is_in(), "don't need to save these"); break;
2136           case T_LONG: if (reg->is_global()) double_slots++; break;
2137           default:  ShouldNotReachHere();
2138         }
2139       } else if (in_regs[i].first()->is_FloatRegister()) {
2140         switch (in_sig_bt[i]) {
2141           case T_FLOAT:  single_slots++; break;
2142           case T_DOUBLE: double_slots++; break;
2143           default:  ShouldNotReachHere();
2144         }
2145       }
2146     }
2147     total_save_slots = double_slots * 2 + single_slots;
2148   }
2149 
2150   // Compute framesize for the wrapper.  We need to handlize all oops in
2151   // registers. We must create space for them here that is disjoint from
2152   // the windowed save area because we have no control over when we might
2153   // flush the window again and overwrite values that gc has since modified.
2154   // (The live window race)
2155   //
2156   // We always just allocate 6 word for storing down these object. This allow
2157   // us to simply record the base and use the Ireg number to decide which
2158   // slot to use. (Note that the reg number is the inbound number not the
2159   // outbound number).
2160   // We must shuffle args to match the native convention, and include var-args space.
2161 
2162   // Calculate the total number of stack slots we will need.
2163 
2164   // First count the abi requirement plus all of the outgoing args
2165   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2166 
2167   // Now the space for the inbound oop handle area
2168 
2169   int oop_handle_offset = round_to(stack_slots, 2);
2170   stack_slots += total_save_slots;
2171 
2172   // Now any space we need for handlizing a klass if static method
2173 
2174   int klass_slot_offset = 0;
2175   int klass_offset = -1;
2176   int lock_slot_offset = 0;
2177   bool is_static = false;
2178 
2179   if (method->is_static()) {
2180     klass_slot_offset = stack_slots;
2181     stack_slots += VMRegImpl::slots_per_word;
2182     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
2183     is_static = true;
2184   }
2185 
2186   // Plus a lock if needed
2187 
2188   if (method->is_synchronized()) {
2189     lock_slot_offset = stack_slots;
2190     stack_slots += VMRegImpl::slots_per_word;
2191   }
2192 
2193   // Now a place to save return value or as a temporary for any gpr -> fpr moves
2194   stack_slots += 2;
2195 
2196   // Ok The space we have allocated will look like:
2197   //
2198   //
2199   // FP-> |                     |
2200   //      |---------------------|
2201   //      | 2 slots for moves   |
2202   //      |---------------------|
2203   //      | lock box (if sync)  |
2204   //      |---------------------| <- lock_slot_offset
2205   //      | klass (if static)   |
2206   //      |---------------------| <- klass_slot_offset
2207   //      | oopHandle area      |
2208   //      |---------------------| <- oop_handle_offset
2209   //      | outbound memory     |
2210   //      | based arguments     |
2211   //      |                     |
2212   //      |---------------------|
2213   //      | vararg area         |
2214   //      |---------------------|
2215   //      |                     |
2216   // SP-> | out_preserved_slots |
2217   //
2218   //
2219 
2220 
2221   // Now compute actual number of stack words we need rounding to make
2222   // stack properly aligned.
2223   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
2224 
2225   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2226 
2227   // Generate stack overflow check before creating frame
2228   __ generate_stack_overflow_check(stack_size);
2229 
2230   // Generate a new frame for the wrapper.
2231   __ save(SP, -stack_size, SP);
2232 
2233   int frame_complete = ((intptr_t)__ pc()) - start;
2234 
2235   __ verify_thread();
2236 
2237   if (is_critical_native) {
2238     check_needs_gc_for_critical_native(masm, stack_slots,  total_in_args,
2239                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
2240   }
2241 
2242   //
2243   // We immediately shuffle the arguments so that any vm call we have to
2244   // make from here on out (sync slow path, jvmti, etc.) we will have
2245   // captured the oops from our caller and have a valid oopMap for
2246   // them.
2247 
2248   // -----------------
2249   // The Grand Shuffle
2250   //
2251   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
2252   // (derived from JavaThread* which is in L7_thread_cache) and, if static,
2253   // the class mirror instead of a receiver.  This pretty much guarantees that
2254   // register layout will not match.  We ignore these extra arguments during
2255   // the shuffle. The shuffle is described by the two calling convention
2256   // vectors we have in our possession. We simply walk the java vector to
2257   // get the source locations and the c vector to get the destinations.
2258   // Because we have a new window and the argument registers are completely
2259   // disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about
2260   // here.
2261 
2262   // This is a trick. We double the stack slots so we can claim
2263   // the oops in the caller's frame. Since we are sure to have
2264   // more args than the caller doubling is enough to make
2265   // sure we can capture all the incoming oop args from the
2266   // caller.
2267   //
2268   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2269   // Record sp-based slot for receiver on stack for non-static methods
2270   int receiver_offset = -1;
2271 
2272   // We move the arguments backward because the floating point registers
2273   // destination will always be to a register with a greater or equal register
2274   // number or the stack.
2275 
2276 #ifdef ASSERT
2277   bool reg_destroyed[RegisterImpl::number_of_registers];
2278   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
2279   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2280     reg_destroyed[r] = false;
2281   }
2282   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
2283     freg_destroyed[f] = false;
2284   }
2285 
2286 #endif /* ASSERT */
2287 
2288   for ( int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0 ; i--, c_arg-- ) {
2289 
2290 #ifdef ASSERT
2291     if (in_regs[i].first()->is_Register()) {
2292       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!");
2293     } else if (in_regs[i].first()->is_FloatRegister()) {
2294       assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!");
2295     }
2296     if (out_regs[c_arg].first()->is_Register()) {
2297       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2298     } else if (out_regs[c_arg].first()->is_FloatRegister()) {
2299       freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true;
2300     }
2301 #endif /* ASSERT */
2302 
2303     switch (in_sig_bt[i]) {
2304       case T_ARRAY:
2305         if (is_critical_native) {
2306           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg], out_regs[c_arg - 1]);
2307           c_arg--;
2308           break;
2309         }
2310       case T_OBJECT:
2311         assert(!is_critical_native, "no oop arguments");
2312         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2313                     ((i == 0) && (!is_static)),
2314                     &receiver_offset);
2315         break;
2316       case T_VOID:
2317         break;
2318 
2319       case T_FLOAT:
2320         float_move(masm, in_regs[i], out_regs[c_arg]);
2321         break;
2322 
2323       case T_DOUBLE:
2324         assert( i + 1 < total_in_args &&
2325                 in_sig_bt[i + 1] == T_VOID &&
2326                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2327         double_move(masm, in_regs[i], out_regs[c_arg]);
2328         break;
2329 
2330       case T_LONG :
2331         long_move(masm, in_regs[i], out_regs[c_arg]);
2332         break;
2333 
2334       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2335 
2336       default:
2337         move32_64(masm, in_regs[i], out_regs[c_arg]);
2338     }
2339   }
2340 
2341   // Pre-load a static method's oop into O1.  Used both by locking code and
2342   // the normal JNI call code.
2343   if (method->is_static() && !is_critical_native) {
2344     __ set_oop_constant(JNIHandles::make_local(method->method_holder()->java_mirror()), O1);
2345 
2346     // Now handlize the static class mirror in O1.  It's known not-null.
2347     __ st_ptr(O1, SP, klass_offset + STACK_BIAS);
2348     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2349     __ add(SP, klass_offset + STACK_BIAS, O1);
2350   }
2351 
2352 
2353   const Register L6_handle = L6;
2354 
2355   if (method->is_synchronized()) {
2356     assert(!is_critical_native, "unhandled");
2357     __ mov(O1, L6_handle);
2358   }
2359 
2360   // We have all of the arguments setup at this point. We MUST NOT touch any Oregs
2361   // except O6/O7. So if we must call out we must push a new frame. We immediately
2362   // push a new frame and flush the windows.
2363 #ifdef _LP64
2364   intptr_t thepc = (intptr_t) __ pc();
2365   {
2366     address here = __ pc();
2367     // Call the next instruction
2368     __ call(here + 8, relocInfo::none);
2369     __ delayed()->nop();
2370   }
2371 #else
2372   intptr_t thepc = __ load_pc_address(O7, 0);
2373 #endif /* _LP64 */
2374 
2375   // We use the same pc/oopMap repeatedly when we call out
2376   oop_maps->add_gc_map(thepc - start, map);
2377 
2378   // O7 now has the pc loaded that we will use when we finally call to native.
2379 
2380   // Save thread in L7; it crosses a bunch of VM calls below
2381   // Don't use save_thread because it smashes G2 and we merely
2382   // want to save a copy
2383   __ mov(G2_thread, L7_thread_cache);
2384 
2385 
2386   // If we create an inner frame once is plenty
2387   // when we create it we must also save G2_thread
2388   bool inner_frame_created = false;
2389 
2390   // dtrace method entry support
2391   {
2392     SkipIfEqual skip_if(
2393       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
2394     // create inner frame
2395     __ save_frame(0);
2396     __ mov(G2_thread, L7_thread_cache);
2397     __ set_metadata_constant(method(), O1);
2398     __ call_VM_leaf(L7_thread_cache,
2399          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2400          G2_thread, O1);
2401     __ restore();
2402   }
2403 
2404   // RedefineClasses() tracing support for obsolete method entry
2405   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2406     // create inner frame
2407     __ save_frame(0);
2408     __ mov(G2_thread, L7_thread_cache);
2409     __ set_metadata_constant(method(), O1);
2410     __ call_VM_leaf(L7_thread_cache,
2411          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2412          G2_thread, O1);
2413     __ restore();
2414   }
2415 
2416   // We are in the jni frame unless saved_frame is true in which case
2417   // we are in one frame deeper (the "inner" frame). If we are in the
2418   // "inner" frames the args are in the Iregs and if the jni frame then
2419   // they are in the Oregs.
2420   // If we ever need to go to the VM (for locking, jvmti) then
2421   // we will always be in the "inner" frame.
2422 
2423   // Lock a synchronized method
2424   int lock_offset = -1;         // Set if locked
2425   if (method->is_synchronized()) {
2426     Register Roop = O1;
2427     const Register L3_box = L3;
2428 
2429     create_inner_frame(masm, &inner_frame_created);
2430 
2431     __ ld_ptr(I1, 0, O1);
2432     Label done;
2433 
2434     lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
2435     __ add(FP, lock_offset+STACK_BIAS, L3_box);
2436 #ifdef ASSERT
2437     if (UseBiasedLocking) {
2438       // making the box point to itself will make it clear it went unused
2439       // but also be obviously invalid
2440       __ st_ptr(L3_box, L3_box, 0);
2441     }
2442 #endif // ASSERT
2443     //
2444     // Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch
2445     //
2446     __ compiler_lock_object(Roop, L1,    L3_box, L2);
2447     __ br(Assembler::equal, false, Assembler::pt, done);
2448     __ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box);
2449 
2450 
2451     // None of the above fast optimizations worked so we have to get into the
2452     // slow case of monitor enter.  Inline a special case of call_VM that
2453     // disallows any pending_exception.
2454     __ mov(Roop, O0);            // Need oop in O0
2455     __ mov(L3_box, O1);
2456 
2457     // Record last_Java_sp, in case the VM code releases the JVM lock.
2458 
2459     __ set_last_Java_frame(FP, I7);
2460 
2461     // do the call
2462     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type);
2463     __ delayed()->mov(L7_thread_cache, O2);
2464 
2465     __ restore_thread(L7_thread_cache); // restore G2_thread
2466     __ reset_last_Java_frame();
2467 
2468 #ifdef ASSERT
2469     { Label L;
2470     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
2471     __ br_null_short(O0, Assembler::pt, L);
2472     __ stop("no pending exception allowed on exit from IR::monitorenter");
2473     __ bind(L);
2474     }
2475 #endif
2476     __ bind(done);
2477   }
2478 
2479 
2480   // Finally just about ready to make the JNI call
2481 
2482   __ flushw();
2483   if (inner_frame_created) {
2484     __ restore();
2485   } else {
2486     // Store only what we need from this frame
2487     // QQQ I think that non-v9 (like we care) we don't need these saves
2488     // either as the flush traps and the current window goes too.
2489     __ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
2490     __ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
2491   }
2492 
2493   // get JNIEnv* which is first argument to native
2494   if (!is_critical_native) {
2495     __ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
2496   }
2497 
2498   // Use that pc we placed in O7 a while back as the current frame anchor
2499   __ set_last_Java_frame(SP, O7);
2500 
2501   // We flushed the windows ages ago now mark them as flushed before transitioning.
2502   __ set(JavaFrameAnchor::flushed, G3_scratch);
2503   __ st(G3_scratch, G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
2504 
2505   // Transition from _thread_in_Java to _thread_in_native.
2506   __ set(_thread_in_native, G3_scratch);
2507 
2508 #ifdef _LP64
2509   AddressLiteral dest(native_func);
2510   __ relocate(relocInfo::runtime_call_type);
2511   __ jumpl_to(dest, O7, O7);
2512 #else
2513   __ call(native_func, relocInfo::runtime_call_type);
2514 #endif
2515   __ delayed()->st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2516 
2517   __ restore_thread(L7_thread_cache); // restore G2_thread
2518 
2519   // Unpack native results.  For int-types, we do any needed sign-extension
2520   // and move things into I0.  The return value there will survive any VM
2521   // calls for blocking or unlocking.  An FP or OOP result (handle) is done
2522   // specially in the slow-path code.
2523   switch (ret_type) {
2524   case T_VOID:    break;        // Nothing to do!
2525   case T_FLOAT:   break;        // Got it where we want it (unless slow-path)
2526   case T_DOUBLE:  break;        // Got it where we want it (unless slow-path)
2527   // In 64 bits build result is in O0, in O0, O1 in 32bit build
2528   case T_LONG:
2529 #ifndef _LP64
2530                   __ mov(O1, I1);
2531 #endif
2532                   // Fall thru
2533   case T_OBJECT:                // Really a handle
2534   case T_ARRAY:
2535   case T_INT:
2536                   __ mov(O0, I0);
2537                   break;
2538   case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false
2539   case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, I0);   break;
2540   case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, I0);   break; // cannot use and3, 0xFFFF too big as immediate value!
2541   case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, I0);   break;
2542     break;                      // Cannot de-handlize until after reclaiming jvm_lock
2543   default:
2544     ShouldNotReachHere();
2545   }
2546 
2547   Label after_transition;
2548   // must we block?
2549 
2550   // Block, if necessary, before resuming in _thread_in_Java state.
2551   // In order for GC to work, don't clear the last_Java_sp until after blocking.
2552   { Label no_block;
2553     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
2554 
2555     // Switch thread to "native transition" state before reading the synchronization state.
2556     // This additional state is necessary because reading and testing the synchronization
2557     // state is not atomic w.r.t. GC, as this scenario demonstrates:
2558     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2559     //     VM thread changes sync state to synchronizing and suspends threads for GC.
2560     //     Thread A is resumed to finish this native method, but doesn't block here since it
2561     //     didn't see any synchronization is progress, and escapes.
2562     __ set(_thread_in_native_trans, G3_scratch);
2563     __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2564     if(os::is_MP()) {
2565       if (UseMembar) {
2566         // Force this write out before the read below
2567         __ membar(Assembler::StoreLoad);
2568       } else {
2569         // Write serialization page so VM thread can do a pseudo remote membar.
2570         // We use the current thread pointer to calculate a thread specific
2571         // offset to write to within the page. This minimizes bus traffic
2572         // due to cache line collision.
2573         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
2574       }
2575     }
2576     __ load_contents(sync_state, G3_scratch);
2577     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
2578 
2579     Label L;
2580     Address suspend_state(G2_thread, JavaThread::suspend_flags_offset());
2581     __ br(Assembler::notEqual, false, Assembler::pn, L);
2582     __ delayed()->ld(suspend_state, G3_scratch);
2583     __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
2584     __ bind(L);
2585 
2586     // Block.  Save any potential method result value before the operation and
2587     // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
2588     // lets us share the oopMap we used when we went native rather the create
2589     // a distinct one for this pc
2590     //
2591     save_native_result(masm, ret_type, stack_slots);
2592     if (!is_critical_native) {
2593       __ call_VM_leaf(L7_thread_cache,
2594                       CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
2595                       G2_thread);
2596     } else {
2597       __ call_VM_leaf(L7_thread_cache,
2598                       CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition),
2599                       G2_thread);
2600     }
2601 
2602     // Restore any method result value
2603     restore_native_result(masm, ret_type, stack_slots);
2604 
2605     if (is_critical_native) {
2606       // The call above performed the transition to thread_in_Java so
2607       // skip the transition logic below.
2608       __ ba(after_transition);
2609       __ delayed()->nop();
2610     }
2611 
2612     __ bind(no_block);
2613   }
2614 
2615   // thread state is thread_in_native_trans. Any safepoint blocking has already
2616   // happened so we can now change state to _thread_in_Java.
2617   __ set(_thread_in_Java, G3_scratch);
2618   __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2619   __ bind(after_transition);
2620 
2621   Label no_reguard;
2622   __ ld(G2_thread, JavaThread::stack_guard_state_offset(), G3_scratch);
2623   __ cmp_and_br_short(G3_scratch, JavaThread::stack_guard_yellow_disabled, Assembler::notEqual, Assembler::pt, no_reguard);
2624 
2625     save_native_result(masm, ret_type, stack_slots);
2626   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
2627   __ delayed()->nop();
2628 
2629   __ restore_thread(L7_thread_cache); // restore G2_thread
2630     restore_native_result(masm, ret_type, stack_slots);
2631 
2632   __ bind(no_reguard);
2633 
2634   // Handle possible exception (will unlock if necessary)
2635 
2636   // native result if any is live in freg or I0 (and I1 if long and 32bit vm)
2637 
2638   // Unlock
2639   if (method->is_synchronized()) {
2640     Label done;
2641     Register I2_ex_oop = I2;
2642     const Register L3_box = L3;
2643     // Get locked oop from the handle we passed to jni
2644     __ ld_ptr(L6_handle, 0, L4);
2645     __ add(SP, lock_offset+STACK_BIAS, L3_box);
2646     // Must save pending exception around the slow-path VM call.  Since it's a
2647     // leaf call, the pending exception (if any) can be kept in a register.
2648     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop);
2649     // Now unlock
2650     //                       (Roop, Rmark, Rbox,   Rscratch)
2651     __ compiler_unlock_object(L4,   L1,    L3_box, L2);
2652     __ br(Assembler::equal, false, Assembler::pt, done);
2653     __ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box);
2654 
2655     // save and restore any potential method result value around the unlocking
2656     // operation.  Will save in I0 (or stack for FP returns).
2657     save_native_result(masm, ret_type, stack_slots);
2658 
2659     // Must clear pending-exception before re-entering the VM.  Since this is
2660     // a leaf call, pending-exception-oop can be safely kept in a register.
2661     __ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset()));
2662 
2663     // slow case of monitor enter.  Inline a special case of call_VM that
2664     // disallows any pending_exception.
2665     __ mov(L3_box, O1);
2666 
2667     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type);
2668     __ delayed()->mov(L4, O0);              // Need oop in O0
2669 
2670     __ restore_thread(L7_thread_cache); // restore G2_thread
2671 
2672 #ifdef ASSERT
2673     { Label L;
2674     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
2675     __ br_null_short(O0, Assembler::pt, L);
2676     __ stop("no pending exception allowed on exit from IR::monitorexit");
2677     __ bind(L);
2678     }
2679 #endif
2680     restore_native_result(masm, ret_type, stack_slots);
2681     // check_forward_pending_exception jump to forward_exception if any pending
2682     // exception is set.  The forward_exception routine expects to see the
2683     // exception in pending_exception and not in a register.  Kind of clumsy,
2684     // since all folks who branch to forward_exception must have tested
2685     // pending_exception first and hence have it in a register already.
2686     __ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset()));
2687     __ bind(done);
2688   }
2689 
2690   // Tell dtrace about this method exit
2691   {
2692     SkipIfEqual skip_if(
2693       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
2694     save_native_result(masm, ret_type, stack_slots);
2695     __ set_metadata_constant(method(), O1);
2696     __ call_VM_leaf(L7_thread_cache,
2697        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2698        G2_thread, O1);
2699     restore_native_result(masm, ret_type, stack_slots);
2700   }
2701 
2702   // Clear "last Java frame" SP and PC.
2703   __ verify_thread(); // G2_thread must be correct
2704   __ reset_last_Java_frame();
2705 
2706   // Unpack oop result
2707   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2708       Label L;
2709       __ addcc(G0, I0, G0);
2710       __ brx(Assembler::notZero, true, Assembler::pt, L);
2711       __ delayed()->ld_ptr(I0, 0, I0);
2712       __ mov(G0, I0);
2713       __ bind(L);
2714       __ verify_oop(I0);
2715   }
2716 
2717   if (!is_critical_native) {
2718     // reset handle block
2719     __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5);
2720     __ st(G0, L5, JNIHandleBlock::top_offset_in_bytes());
2721 
2722     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch);
2723     check_forward_pending_exception(masm, G3_scratch);
2724   }
2725 
2726 
2727   // Return
2728 
2729 #ifndef _LP64
2730   if (ret_type == T_LONG) {
2731 
2732     // Must leave proper result in O0,O1 and G1 (c2/tiered only)
2733     __ sllx(I0, 32, G1);          // Shift bits into high G1
2734     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
2735     __ or3 (I1, G1, G1);          // OR 64 bits into G1
2736   }
2737 #endif
2738 
2739   __ ret();
2740   __ delayed()->restore();
2741 
2742   __ flush();
2743 
2744   nmethod *nm = nmethod::new_native_nmethod(method,
2745                                             compile_id,
2746                                             masm->code(),
2747                                             vep_offset,
2748                                             frame_complete,
2749                                             stack_slots / VMRegImpl::slots_per_word,
2750                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2751                                             in_ByteSize(lock_offset),
2752                                             oop_maps);
2753 
2754   if (is_critical_native) {
2755     nm->set_lazy_critical_native(true);
2756   }
2757   return nm;
2758 
2759 }
2760 
2761 // this function returns the adjust size (in number of words) to a c2i adapter
2762 // activation for use during deoptimization
2763 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
2764   assert(callee_locals >= callee_parameters,
2765           "test and remove; got more parms than locals");
2766   if (callee_locals < callee_parameters)
2767     return 0;                   // No adjustment for negative locals
2768   int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2769   return round_to(diff, WordsPerLong);
2770 }
2771 
2772 // "Top of Stack" slots that may be unused by the calling convention but must
2773 // otherwise be preserved.
2774 // On Intel these are not necessary and the value can be zero.
2775 // On Sparc this describes the words reserved for storing a register window
2776 // when an interrupt occurs.
2777 uint SharedRuntime::out_preserve_stack_slots() {
2778   return frame::register_save_words * VMRegImpl::slots_per_word;
2779 }
2780 
2781 static void gen_new_frame(MacroAssembler* masm, bool deopt) {
2782 //
2783 // Common out the new frame generation for deopt and uncommon trap
2784 //
2785   Register        G3pcs              = G3_scratch; // Array of new pcs (input)
2786   Register        Oreturn0           = O0;
2787   Register        Oreturn1           = O1;
2788   Register        O2UnrollBlock      = O2;
2789   Register        O3array            = O3;         // Array of frame sizes (input)
2790   Register        O4array_size       = O4;         // number of frames (input)
2791   Register        O7frame_size       = O7;         // number of frames (input)
2792 
2793   __ ld_ptr(O3array, 0, O7frame_size);
2794   __ sub(G0, O7frame_size, O7frame_size);
2795   __ save(SP, O7frame_size, SP);
2796   __ ld_ptr(G3pcs, 0, I7);                      // load frame's new pc
2797 
2798   #ifdef ASSERT
2799   // make sure that the frames are aligned properly
2800 #ifndef _LP64
2801   __ btst(wordSize*2-1, SP);
2802   __ breakpoint_trap(Assembler::notZero, Assembler::ptr_cc);
2803 #endif
2804   #endif
2805 
2806   // Deopt needs to pass some extra live values from frame to frame
2807 
2808   if (deopt) {
2809     __ mov(Oreturn0->after_save(), Oreturn0);
2810     __ mov(Oreturn1->after_save(), Oreturn1);
2811   }
2812 
2813   __ mov(O4array_size->after_save(), O4array_size);
2814   __ sub(O4array_size, 1, O4array_size);
2815   __ mov(O3array->after_save(), O3array);
2816   __ mov(O2UnrollBlock->after_save(), O2UnrollBlock);
2817   __ add(G3pcs, wordSize, G3pcs);               // point to next pc value
2818 
2819   #ifdef ASSERT
2820   // trash registers to show a clear pattern in backtraces
2821   __ set(0xDEAD0000, I0);
2822   __ add(I0,  2, I1);
2823   __ add(I0,  4, I2);
2824   __ add(I0,  6, I3);
2825   __ add(I0,  8, I4);
2826   // Don't touch I5 could have valuable savedSP
2827   __ set(0xDEADBEEF, L0);
2828   __ mov(L0, L1);
2829   __ mov(L0, L2);
2830   __ mov(L0, L3);
2831   __ mov(L0, L4);
2832   __ mov(L0, L5);
2833 
2834   // trash the return value as there is nothing to return yet
2835   __ set(0xDEAD0001, O7);
2836   #endif
2837 
2838   __ mov(SP, O5_savedSP);
2839 }
2840 
2841 
2842 static void make_new_frames(MacroAssembler* masm, bool deopt) {
2843   //
2844   // loop through the UnrollBlock info and create new frames
2845   //
2846   Register        G3pcs              = G3_scratch;
2847   Register        Oreturn0           = O0;
2848   Register        Oreturn1           = O1;
2849   Register        O2UnrollBlock      = O2;
2850   Register        O3array            = O3;
2851   Register        O4array_size       = O4;
2852   Label           loop;
2853 
2854 #ifdef ASSERT
2855   // Compilers generate code that bang the stack by as much as the
2856   // interpreter would need. So this stack banging should never
2857   // trigger a fault. Verify that it does not on non product builds.
2858   if (UseStackBanging) {
2859     // Get total frame size for interpreted frames
2860     __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes(), O4);
2861     __ bang_stack_size(O4, O3, G3_scratch);
2862   }
2863 #endif
2864 
2865   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(), O4array_size);
2866   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(), G3pcs);
2867   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(), O3array);
2868 
2869   // Adjust old interpreter frame to make space for new frame's extra java locals
2870   //
2871   // We capture the original sp for the transition frame only because it is needed in
2872   // order to properly calculate interpreter_sp_adjustment. Even though in real life
2873   // every interpreter frame captures a savedSP it is only needed at the transition
2874   // (fortunately). If we had to have it correct everywhere then we would need to
2875   // be told the sp_adjustment for each frame we create. If the frame size array
2876   // were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size]
2877   // for each frame we create and keep up the illusion every where.
2878   //
2879 
2880   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(), O7);
2881   __ mov(SP, O5_savedSP);       // remember initial sender's original sp before adjustment
2882   __ sub(SP, O7, SP);
2883 
2884 #ifdef ASSERT
2885   // make sure that there is at least one entry in the array
2886   __ tst(O4array_size);
2887   __ breakpoint_trap(Assembler::zero, Assembler::icc);
2888 #endif
2889 
2890   // Now push the new interpreter frames
2891   __ bind(loop);
2892 
2893   // allocate a new frame, filling the registers
2894 
2895   gen_new_frame(masm, deopt);        // allocate an interpreter frame
2896 
2897   __ cmp_zero_and_br(Assembler::notZero, O4array_size, loop);
2898   __ delayed()->add(O3array, wordSize, O3array);
2899   __ ld_ptr(G3pcs, 0, O7);                      // load final frame new pc
2900 
2901 }
2902 
2903 //------------------------------generate_deopt_blob----------------------------
2904 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
2905 // instead.
2906 void SharedRuntime::generate_deopt_blob() {
2907   // allocate space for the code
2908   ResourceMark rm;
2909   // setup code generation tools
2910   int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code
2911 #ifdef ASSERT
2912   if (UseStackBanging) {
2913     pad += StackShadowPages*16 + 32;
2914   }
2915 #endif
2916 #ifdef _LP64
2917   CodeBuffer buffer("deopt_blob", 2100+pad, 512);
2918 #else
2919   // Measured 8/7/03 at 1212 in 32bit debug build (no VerifyThread)
2920   // Measured 8/7/03 at 1396 in 32bit debug build (VerifyThread)
2921   CodeBuffer buffer("deopt_blob", 1600+pad, 512);
2922 #endif /* _LP64 */
2923   MacroAssembler* masm               = new MacroAssembler(&buffer);
2924   FloatRegister   Freturn0           = F0;
2925   Register        Greturn1           = G1;
2926   Register        Oreturn0           = O0;
2927   Register        Oreturn1           = O1;
2928   Register        O2UnrollBlock      = O2;
2929   Register        L0deopt_mode       = L0;
2930   Register        G4deopt_mode       = G4_scratch;
2931   int             frame_size_words;
2932   Address         saved_Freturn0_addr(FP, -sizeof(double) + STACK_BIAS);
2933 #if !defined(_LP64) && defined(COMPILER2)
2934   Address         saved_Greturn1_addr(FP, -sizeof(double) -sizeof(jlong) + STACK_BIAS);
2935 #endif
2936   Label           cont;
2937 
2938   OopMapSet *oop_maps = new OopMapSet();
2939 
2940   //
2941   // This is the entry point for code which is returning to a de-optimized
2942   // frame.
2943   // The steps taken by this frame are as follows:
2944   //   - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1)
2945   //     and all potentially live registers (at a pollpoint many registers can be live).
2946   //
2947   //   - call the C routine: Deoptimization::fetch_unroll_info (this function
2948   //     returns information about the number and size of interpreter frames
2949   //     which are equivalent to the frame which is being deoptimized)
2950   //   - deallocate the unpack frame, restoring only results values. Other
2951   //     volatile registers will now be captured in the vframeArray as needed.
2952   //   - deallocate the deoptimization frame
2953   //   - in a loop using the information returned in the previous step
2954   //     push new interpreter frames (take care to propagate the return
2955   //     values through each new frame pushed)
2956   //   - create a dummy "unpack_frame" and save the return values (O0, O1, F0)
2957   //   - call the C routine: Deoptimization::unpack_frames (this function
2958   //     lays out values on the interpreter frame which was just created)
2959   //   - deallocate the dummy unpack_frame
2960   //   - ensure that all the return values are correctly set and then do
2961   //     a return to the interpreter entry point
2962   //
2963   // Refer to the following methods for more information:
2964   //   - Deoptimization::fetch_unroll_info
2965   //   - Deoptimization::unpack_frames
2966 
2967   OopMap* map = NULL;
2968 
2969   int start = __ offset();
2970 
2971   // restore G2, the trampoline destroyed it
2972   __ get_thread();
2973 
2974   // On entry we have been called by the deoptimized nmethod with a call that
2975   // replaced the original call (or safepoint polling location) so the deoptimizing
2976   // pc is now in O7. Return values are still in the expected places
2977 
2978   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
2979   __ ba(cont);
2980   __ delayed()->mov(Deoptimization::Unpack_deopt, L0deopt_mode);
2981 
2982   int exception_offset = __ offset() - start;
2983 
2984   // restore G2, the trampoline destroyed it
2985   __ get_thread();
2986 
2987   // On entry we have been jumped to by the exception handler (or exception_blob
2988   // for server).  O0 contains the exception oop and O7 contains the original
2989   // exception pc.  So if we push a frame here it will look to the
2990   // stack walking code (fetch_unroll_info) just like a normal call so
2991   // state will be extracted normally.
2992 
2993   // save exception oop in JavaThread and fall through into the
2994   // exception_in_tls case since they are handled in same way except
2995   // for where the pending exception is kept.
2996   __ st_ptr(Oexception, G2_thread, JavaThread::exception_oop_offset());
2997 
2998   //
2999   // Vanilla deoptimization with an exception pending in exception_oop
3000   //
3001   int exception_in_tls_offset = __ offset() - start;
3002 
3003   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
3004   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3005 
3006   // Restore G2_thread
3007   __ get_thread();
3008 
3009 #ifdef ASSERT
3010   {
3011     // verify that there is really an exception oop in exception_oop
3012     Label has_exception;
3013     __ ld_ptr(G2_thread, JavaThread::exception_oop_offset(), Oexception);
3014     __ br_notnull_short(Oexception, Assembler::pt, has_exception);
3015     __ stop("no exception in thread");
3016     __ bind(has_exception);
3017 
3018     // verify that there is no pending exception
3019     Label no_pending_exception;
3020     Address exception_addr(G2_thread, Thread::pending_exception_offset());
3021     __ ld_ptr(exception_addr, Oexception);
3022     __ br_null_short(Oexception, Assembler::pt, no_pending_exception);
3023     __ stop("must not have pending exception here");
3024     __ bind(no_pending_exception);
3025   }
3026 #endif
3027 
3028   __ ba(cont);
3029   __ delayed()->mov(Deoptimization::Unpack_exception, L0deopt_mode);;
3030 
3031   //
3032   // Reexecute entry, similar to c2 uncommon trap
3033   //
3034   int reexecute_offset = __ offset() - start;
3035 
3036   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
3037   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3038 
3039   __ mov(Deoptimization::Unpack_reexecute, L0deopt_mode);
3040 
3041   __ bind(cont);
3042 
3043   __ set_last_Java_frame(SP, noreg);
3044 
3045   // do the call by hand so we can get the oopmap
3046 
3047   __ mov(G2_thread, L7_thread_cache);
3048   __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type);
3049   __ delayed()->mov(G2_thread, O0);
3050 
3051   // Set an oopmap for the call site this describes all our saved volatile registers
3052 
3053   oop_maps->add_gc_map( __ offset()-start, map);
3054 
3055   __ mov(L7_thread_cache, G2_thread);
3056 
3057   __ reset_last_Java_frame();
3058 
3059   // NOTE: we know that only O0/O1 will be reloaded by restore_result_registers
3060   // so this move will survive
3061 
3062   __ mov(L0deopt_mode, G4deopt_mode);
3063 
3064   __ mov(O0, O2UnrollBlock->after_save());
3065 
3066   RegisterSaver::restore_result_registers(masm);
3067 
3068   Label noException;
3069   __ cmp_and_br_short(G4deopt_mode, Deoptimization::Unpack_exception, Assembler::notEqual, Assembler::pt, noException);
3070 
3071   // Move the pending exception from exception_oop to Oexception so
3072   // the pending exception will be picked up the interpreter.
3073   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
3074   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
3075   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
3076   __ bind(noException);
3077 
3078   // deallocate the deoptimization frame taking care to preserve the return values
3079   __ mov(Oreturn0,     Oreturn0->after_save());
3080   __ mov(Oreturn1,     Oreturn1->after_save());
3081   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
3082   __ restore();
3083 
3084   // Allocate new interpreter frame(s) and possible c2i adapter frame
3085 
3086   make_new_frames(masm, true);
3087 
3088   // push a dummy "unpack_frame" taking care of float return values and
3089   // call Deoptimization::unpack_frames to have the unpacker layout
3090   // information in the interpreter frames just created and then return
3091   // to the interpreter entry point
3092   __ save(SP, -frame_size_words*wordSize, SP);
3093   __ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr);
3094 #if !defined(_LP64)
3095 #if defined(COMPILER2)
3096   // 32-bit 1-register longs return longs in G1
3097   __ stx(Greturn1, saved_Greturn1_addr);
3098 #endif
3099   __ set_last_Java_frame(SP, noreg);
3100   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, G4deopt_mode);
3101 #else
3102   // LP64 uses g4 in set_last_Java_frame
3103   __ mov(G4deopt_mode, O1);
3104   __ set_last_Java_frame(SP, G0);
3105   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1);
3106 #endif
3107   __ reset_last_Java_frame();
3108   __ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0);
3109 
3110 #if !defined(_LP64) && defined(COMPILER2)
3111   // In 32 bit, C2 returns longs in G1 so restore the saved G1 into
3112   // I0/I1 if the return value is long.
3113   Label not_long;
3114   __ cmp_and_br_short(O0,T_LONG, Assembler::notEqual, Assembler::pt, not_long);
3115   __ ldd(saved_Greturn1_addr,I0);
3116   __ bind(not_long);
3117 #endif
3118   __ ret();
3119   __ delayed()->restore();
3120 
3121   masm->flush();
3122   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words);
3123   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3124 }
3125 
3126 #ifdef COMPILER2
3127 
3128 //------------------------------generate_uncommon_trap_blob--------------------
3129 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
3130 // instead.
3131 void SharedRuntime::generate_uncommon_trap_blob() {
3132   // allocate space for the code
3133   ResourceMark rm;
3134   // setup code generation tools
3135   int pad = VerifyThread ? 512 : 0;
3136 #ifdef ASSERT
3137   if (UseStackBanging) {
3138     pad += StackShadowPages*16 + 32;
3139   }
3140 #endif
3141 #ifdef _LP64
3142   CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
3143 #else
3144   // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
3145   // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
3146   CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
3147 #endif
3148   MacroAssembler* masm               = new MacroAssembler(&buffer);
3149   Register        O2UnrollBlock      = O2;
3150   Register        O2klass_index      = O2;
3151 
3152   //
3153   // This is the entry point for all traps the compiler takes when it thinks
3154   // it cannot handle further execution of compilation code. The frame is
3155   // deoptimized in these cases and converted into interpreter frames for
3156   // execution
3157   // The steps taken by this frame are as follows:
3158   //   - push a fake "unpack_frame"
3159   //   - call the C routine Deoptimization::uncommon_trap (this function
3160   //     packs the current compiled frame into vframe arrays and returns
3161   //     information about the number and size of interpreter frames which
3162   //     are equivalent to the frame which is being deoptimized)
3163   //   - deallocate the "unpack_frame"
3164   //   - deallocate the deoptimization frame
3165   //   - in a loop using the information returned in the previous step
3166   //     push interpreter frames;
3167   //   - create a dummy "unpack_frame"
3168   //   - call the C routine: Deoptimization::unpack_frames (this function
3169   //     lays out values on the interpreter frame which was just created)
3170   //   - deallocate the dummy unpack_frame
3171   //   - return to the interpreter entry point
3172   //
3173   //  Refer to the following methods for more information:
3174   //   - Deoptimization::uncommon_trap
3175   //   - Deoptimization::unpack_frame
3176 
3177   // the unloaded class index is in O0 (first parameter to this blob)
3178 
3179   // push a dummy "unpack_frame"
3180   // and call Deoptimization::uncommon_trap to pack the compiled frame into
3181   // vframe array and return the UnrollBlock information
3182   __ save_frame(0);
3183   __ set_last_Java_frame(SP, noreg);
3184   __ mov(I0, O2klass_index);
3185   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index);
3186   __ reset_last_Java_frame();
3187   __ mov(O0, O2UnrollBlock->after_save());
3188   __ restore();
3189 
3190   // deallocate the deoptimized frame taking care to preserve the return values
3191   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
3192   __ restore();
3193 
3194   // Allocate new interpreter frame(s) and possible c2i adapter frame
3195 
3196   make_new_frames(masm, false);
3197 
3198   // push a dummy "unpack_frame" taking care of float return values and
3199   // call Deoptimization::unpack_frames to have the unpacker layout
3200   // information in the interpreter frames just created and then return
3201   // to the interpreter entry point
3202   __ save_frame(0);
3203   __ set_last_Java_frame(SP, noreg);
3204   __ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case
3205   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3);
3206   __ reset_last_Java_frame();
3207   __ ret();
3208   __ delayed()->restore();
3209 
3210   masm->flush();
3211   _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize);
3212 }
3213 
3214 #endif // COMPILER2
3215 
3216 //------------------------------generate_handler_blob-------------------
3217 //
3218 // Generate a special Compile2Runtime blob that saves all registers, and sets
3219 // up an OopMap.
3220 //
3221 // This blob is jumped to (via a breakpoint and the signal handler) from a
3222 // safepoint in compiled code.  On entry to this blob, O7 contains the
3223 // address in the original nmethod at which we should resume normal execution.
3224 // Thus, this blob looks like a subroutine which must preserve lots of
3225 // registers and return normally.  Note that O7 is never register-allocated,
3226 // so it is guaranteed to be free here.
3227 //
3228 
3229 // The hardest part of what this blob must do is to save the 64-bit %o
3230 // registers in the 32-bit build.  A simple 'save' turn the %o's to %i's and
3231 // an interrupt will chop off their heads.  Making space in the caller's frame
3232 // first will let us save the 64-bit %o's before save'ing, but we cannot hand
3233 // the adjusted FP off to the GC stack-crawler: this will modify the caller's
3234 // SP and mess up HIS OopMaps.  So we first adjust the caller's SP, then save
3235 // the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
3236 // Tricky, tricky, tricky...
3237 
3238 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
3239   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3240 
3241   // allocate space for the code
3242   ResourceMark rm;
3243   // setup code generation tools
3244   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
3245   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
3246   // even larger with TraceJumps
3247   int pad = TraceJumps ? 512 : 0;
3248   CodeBuffer buffer("handler_blob", 1600 + pad, 512);
3249   MacroAssembler* masm                = new MacroAssembler(&buffer);
3250   int             frame_size_words;
3251   OopMapSet *oop_maps = new OopMapSet();
3252   OopMap* map = NULL;
3253 
3254   int start = __ offset();
3255 
3256   bool cause_return = (poll_type == POLL_AT_RETURN);
3257   // If this causes a return before the processing, then do a "restore"
3258   if (cause_return) {
3259     __ restore();
3260   } else {
3261     // Make it look like we were called via the poll
3262     // so that frame constructor always sees a valid return address
3263     __ ld_ptr(G2_thread, in_bytes(JavaThread::saved_exception_pc_offset()), O7);
3264     __ sub(O7, frame::pc_return_offset, O7);
3265   }
3266 
3267   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3268 
3269   // setup last_Java_sp (blows G4)
3270   __ set_last_Java_frame(SP, noreg);
3271 
3272   // call into the runtime to handle illegal instructions exception
3273   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
3274   __ mov(G2_thread, O0);
3275   __ save_thread(L7_thread_cache);
3276   __ call(call_ptr);
3277   __ delayed()->nop();
3278 
3279   // Set an oopmap for the call site.
3280   // We need this not only for callee-saved registers, but also for volatile
3281   // registers that the compiler might be keeping live across a safepoint.
3282 
3283   oop_maps->add_gc_map( __ offset() - start, map);
3284 
3285   __ restore_thread(L7_thread_cache);
3286   // clear last_Java_sp
3287   __ reset_last_Java_frame();
3288 
3289   // Check for exceptions
3290   Label pending;
3291 
3292   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
3293   __ br_notnull_short(O1, Assembler::pn, pending);
3294 
3295   RegisterSaver::restore_live_registers(masm);
3296 
3297   // We are back the the original state on entry and ready to go.
3298 
3299   __ retl();
3300   __ delayed()->nop();
3301 
3302   // Pending exception after the safepoint
3303 
3304   __ bind(pending);
3305 
3306   RegisterSaver::restore_live_registers(masm);
3307 
3308   // We are back the the original state on entry.
3309 
3310   // Tail-call forward_exception_entry, with the issuing PC in O7,
3311   // so it looks like the original nmethod called forward_exception_entry.
3312   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
3313   __ JMP(O0, 0);
3314   __ delayed()->nop();
3315 
3316   // -------------
3317   // make sure all code is generated
3318   masm->flush();
3319 
3320   // return exception blob
3321   return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
3322 }
3323 
3324 //
3325 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3326 //
3327 // Generate a stub that calls into vm to find out the proper destination
3328 // of a java call. All the argument registers are live at this point
3329 // but since this is generic code we don't know what they are and the caller
3330 // must do any gc of the args.
3331 //
3332 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3333   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3334 
3335   // allocate space for the code
3336   ResourceMark rm;
3337   // setup code generation tools
3338   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
3339   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
3340   // even larger with TraceJumps
3341   int pad = TraceJumps ? 512 : 0;
3342   CodeBuffer buffer(name, 1600 + pad, 512);
3343   MacroAssembler* masm                = new MacroAssembler(&buffer);
3344   int             frame_size_words;
3345   OopMapSet *oop_maps = new OopMapSet();
3346   OopMap* map = NULL;
3347 
3348   int start = __ offset();
3349 
3350   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3351 
3352   int frame_complete = __ offset();
3353 
3354   // setup last_Java_sp (blows G4)
3355   __ set_last_Java_frame(SP, noreg);
3356 
3357   // call into the runtime to handle illegal instructions exception
3358   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
3359   __ mov(G2_thread, O0);
3360   __ save_thread(L7_thread_cache);
3361   __ call(destination, relocInfo::runtime_call_type);
3362   __ delayed()->nop();
3363 
3364   // O0 contains the address we are going to jump to assuming no exception got installed
3365 
3366   // Set an oopmap for the call site.
3367   // We need this not only for callee-saved registers, but also for volatile
3368   // registers that the compiler might be keeping live across a safepoint.
3369 
3370   oop_maps->add_gc_map( __ offset() - start, map);
3371 
3372   __ restore_thread(L7_thread_cache);
3373   // clear last_Java_sp
3374   __ reset_last_Java_frame();
3375 
3376   // Check for exceptions
3377   Label pending;
3378 
3379   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
3380   __ br_notnull_short(O1, Assembler::pn, pending);
3381 
3382   // get the returned Method*
3383 
3384   __ get_vm_result_2(G5_method);
3385   __ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS);
3386 
3387   // O0 is where we want to jump, overwrite G3 which is saved and scratch
3388 
3389   __ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS);
3390 
3391   RegisterSaver::restore_live_registers(masm);
3392 
3393   // We are back the the original state on entry and ready to go.
3394 
3395   __ JMP(G3, 0);
3396   __ delayed()->nop();
3397 
3398   // Pending exception after the safepoint
3399 
3400   __ bind(pending);
3401 
3402   RegisterSaver::restore_live_registers(masm);
3403 
3404   // We are back the the original state on entry.
3405 
3406   // Tail-call forward_exception_entry, with the issuing PC in O7,
3407   // so it looks like the original nmethod called forward_exception_entry.
3408   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
3409   __ JMP(O0, 0);
3410   __ delayed()->nop();
3411 
3412   // -------------
3413   // make sure all code is generated
3414   masm->flush();
3415 
3416   // return the  blob
3417   // frame_size_words or bytes??
3418   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
3419 }