1 /*
   2  * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "libadt/vectset.hpp"
  28 #include "opto/addnode.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/castnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/compile.hpp"
  33 #include "opto/convertnode.hpp"
  34 #include "opto/locknode.hpp"
  35 #include "opto/loopnode.hpp"
  36 #include "opto/macro.hpp"
  37 #include "opto/memnode.hpp"
  38 #include "opto/narrowptrnode.hpp"
  39 #include "opto/node.hpp"
  40 #include "opto/opaquenode.hpp"
  41 #include "opto/phaseX.hpp"
  42 #include "opto/rootnode.hpp"
  43 #include "opto/runtime.hpp"
  44 #include "opto/subnode.hpp"
  45 #include "opto/type.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 
  48 
  49 //
  50 // Replace any references to "oldref" in inputs to "use" with "newref".
  51 // Returns the number of replacements made.
  52 //
  53 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
  54   int nreplacements = 0;
  55   uint req = use->req();
  56   for (uint j = 0; j < use->len(); j++) {
  57     Node *uin = use->in(j);
  58     if (uin == oldref) {
  59       if (j < req)
  60         use->set_req(j, newref);
  61       else
  62         use->set_prec(j, newref);
  63       nreplacements++;
  64     } else if (j >= req && uin == NULL) {
  65       break;
  66     }
  67   }
  68   return nreplacements;
  69 }
  70 
  71 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
  72   // Copy debug information and adjust JVMState information
  73   uint old_dbg_start = oldcall->tf()->domain()->cnt();
  74   uint new_dbg_start = newcall->tf()->domain()->cnt();
  75   int jvms_adj  = new_dbg_start - old_dbg_start;
  76   assert (new_dbg_start == newcall->req(), "argument count mismatch");
  77 
  78   // SafePointScalarObject node could be referenced several times in debug info.
  79   // Use Dict to record cloned nodes.
  80   Dict* sosn_map = new Dict(cmpkey,hashkey);
  81   for (uint i = old_dbg_start; i < oldcall->req(); i++) {
  82     Node* old_in = oldcall->in(i);
  83     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
  84     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
  85       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
  86       uint old_unique = C->unique();
  87       Node* new_in = old_sosn->clone(sosn_map);
  88       if (old_unique != C->unique()) { // New node?
  89         new_in->set_req(0, C->root()); // reset control edge
  90         new_in = transform_later(new_in); // Register new node.
  91       }
  92       old_in = new_in;
  93     }
  94     newcall->add_req(old_in);
  95   }
  96 
  97   // JVMS may be shared so clone it before we modify it
  98   newcall->set_jvms(oldcall->jvms() != NULL ? oldcall->jvms()->clone_deep(C) : NULL);
  99   for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
 100     jvms->set_map(newcall);
 101     jvms->set_locoff(jvms->locoff()+jvms_adj);
 102     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
 103     jvms->set_monoff(jvms->monoff()+jvms_adj);
 104     jvms->set_scloff(jvms->scloff()+jvms_adj);
 105     jvms->set_endoff(jvms->endoff()+jvms_adj);
 106   }
 107 }
 108 
 109 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
 110   Node* cmp;
 111   if (mask != 0) {
 112     Node* and_node = transform_later(new AndXNode(word, MakeConX(mask)));
 113     cmp = transform_later(new CmpXNode(and_node, MakeConX(bits)));
 114   } else {
 115     cmp = word;
 116   }
 117   Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne));
 118   IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
 119   transform_later(iff);
 120 
 121   // Fast path taken.
 122   Node *fast_taken = transform_later(new IfFalseNode(iff));
 123 
 124   // Fast path not-taken, i.e. slow path
 125   Node *slow_taken = transform_later(new IfTrueNode(iff));
 126 
 127   if (return_fast_path) {
 128     region->init_req(edge, slow_taken); // Capture slow-control
 129     return fast_taken;
 130   } else {
 131     region->init_req(edge, fast_taken); // Capture fast-control
 132     return slow_taken;
 133   }
 134 }
 135 
 136 //--------------------copy_predefined_input_for_runtime_call--------------------
 137 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
 138   // Set fixed predefined input arguments
 139   call->init_req( TypeFunc::Control, ctrl );
 140   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
 141   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
 142   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
 143   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
 144 }
 145 
 146 //------------------------------make_slow_call---------------------------------
 147 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type,
 148                                            address slow_call, const char* leaf_name, Node* slow_path,
 149                                            Node* parm0, Node* parm1, Node* parm2) {
 150 
 151   // Slow-path call
 152  CallNode *call = leaf_name
 153    ? (CallNode*)new CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
 154    : (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
 155 
 156   // Slow path call has no side-effects, uses few values
 157   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
 158   if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
 159   if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
 160   if (parm2 != NULL)  call->init_req(TypeFunc::Parms+2, parm2);
 161   copy_call_debug_info(oldcall, call);
 162   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
 163   _igvn.replace_node(oldcall, call);
 164   transform_later(call);
 165 
 166   return call;
 167 }
 168 
 169 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
 170   _fallthroughproj = NULL;
 171   _fallthroughcatchproj = NULL;
 172   _ioproj_fallthrough = NULL;
 173   _ioproj_catchall = NULL;
 174   _catchallcatchproj = NULL;
 175   _memproj_fallthrough = NULL;
 176   _memproj_catchall = NULL;
 177   _resproj = NULL;
 178   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
 179     ProjNode *pn = call->fast_out(i)->as_Proj();
 180     switch (pn->_con) {
 181       case TypeFunc::Control:
 182       {
 183         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 184         _fallthroughproj = pn;
 185         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
 186         const Node *cn = pn->fast_out(j);
 187         if (cn->is_Catch()) {
 188           ProjNode *cpn = NULL;
 189           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 190             cpn = cn->fast_out(k)->as_Proj();
 191             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 192             if (cpn->_con == CatchProjNode::fall_through_index)
 193               _fallthroughcatchproj = cpn;
 194             else {
 195               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 196               _catchallcatchproj = cpn;
 197             }
 198           }
 199         }
 200         break;
 201       }
 202       case TypeFunc::I_O:
 203         if (pn->_is_io_use)
 204           _ioproj_catchall = pn;
 205         else
 206           _ioproj_fallthrough = pn;
 207         break;
 208       case TypeFunc::Memory:
 209         if (pn->_is_io_use)
 210           _memproj_catchall = pn;
 211         else
 212           _memproj_fallthrough = pn;
 213         break;
 214       case TypeFunc::Parms:
 215         _resproj = pn;
 216         break;
 217       default:
 218         assert(false, "unexpected projection from allocation node.");
 219     }
 220   }
 221 
 222 }
 223 
 224 // Eliminate a card mark sequence.  p2x is a ConvP2XNode
 225 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
 226   assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
 227   if (!UseG1GC) {
 228     // vanilla/CMS post barrier
 229     Node *shift = p2x->unique_out();
 230     Node *addp = shift->unique_out();
 231     for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
 232       Node *mem = addp->last_out(j);
 233       if (UseCondCardMark && mem->is_Load()) {
 234         assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
 235         // The load is checking if the card has been written so
 236         // replace it with zero to fold the test.
 237         _igvn.replace_node(mem, intcon(0));
 238         continue;
 239       }
 240       assert(mem->is_Store(), "store required");
 241       _igvn.replace_node(mem, mem->in(MemNode::Memory));
 242     }
 243   } else {
 244     // G1 pre/post barriers
 245     assert(p2x->outcnt() <= 2, "expects 1 or 2 users: Xor and URShift nodes");
 246     // It could be only one user, URShift node, in Object.clone() instrinsic
 247     // but the new allocation is passed to arraycopy stub and it could not
 248     // be scalar replaced. So we don't check the case.
 249 
 250     // An other case of only one user (Xor) is when the value check for NULL
 251     // in G1 post barrier is folded after CCP so the code which used URShift
 252     // is removed.
 253 
 254     // Take Region node before eliminating post barrier since it also
 255     // eliminates CastP2X node when it has only one user.
 256     Node* this_region = p2x->in(0);
 257     assert(this_region != NULL, "");
 258 
 259     // Remove G1 post barrier.
 260 
 261     // Search for CastP2X->Xor->URShift->Cmp path which
 262     // checks if the store done to a different from the value's region.
 263     // And replace Cmp with #0 (false) to collapse G1 post barrier.
 264     Node* xorx = p2x->find_out_with(Op_XorX);
 265     assert(xorx != NULL, "missing G1 post barrier");
 266     Node* shift = xorx->unique_out();
 267     Node* cmpx = shift->unique_out();
 268     assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
 269     cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
 270     "missing region check in G1 post barrier");
 271     _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
 272 
 273     // Remove G1 pre barrier.
 274 
 275     // Search "if (marking != 0)" check and set it to "false".
 276     // There is no G1 pre barrier if previous stored value is NULL
 277     // (for example, after initialization).
 278     if (this_region->is_Region() && this_region->req() == 3) {
 279       int ind = 1;
 280       if (!this_region->in(ind)->is_IfFalse()) {
 281         ind = 2;
 282       }
 283       if (this_region->in(ind)->is_IfFalse()) {
 284         Node* bol = this_region->in(ind)->in(0)->in(1);
 285         assert(bol->is_Bool(), "");
 286         cmpx = bol->in(1);
 287         if (bol->as_Bool()->_test._test == BoolTest::ne &&
 288             cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
 289             cmpx->in(1)->is_Load()) {
 290           Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
 291           const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
 292                                               PtrQueue::byte_offset_of_active());
 293           if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
 294               adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 295               adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
 296             _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
 297           }
 298         }
 299       }
 300     }
 301     // Now CastP2X can be removed since it is used only on dead path
 302     // which currently still alive until igvn optimize it.
 303     assert(p2x->outcnt() == 0 || p2x->unique_out()->Opcode() == Op_URShiftX, "");
 304     _igvn.replace_node(p2x, top());
 305   }
 306 }
 307 
 308 // Search for a memory operation for the specified memory slice.
 309 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
 310   Node *orig_mem = mem;
 311   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 312   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
 313   while (true) {
 314     if (mem == alloc_mem || mem == start_mem ) {
 315       return mem;  // hit one of our sentinels
 316     } else if (mem->is_MergeMem()) {
 317       mem = mem->as_MergeMem()->memory_at(alias_idx);
 318     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
 319       Node *in = mem->in(0);
 320       // we can safely skip over safepoints, calls, locks and membars because we
 321       // already know that the object is safe to eliminate.
 322       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
 323         return in;
 324       } else if (in->is_Call()) {
 325         CallNode *call = in->as_Call();
 326         if (!call->may_modify(tinst, phase)) {
 327           mem = call->in(TypeFunc::Memory);
 328         }
 329         mem = in->in(TypeFunc::Memory);
 330       } else if (in->is_MemBar()) {
 331         mem = in->in(TypeFunc::Memory);
 332       } else {
 333         assert(false, "unexpected projection");
 334       }
 335     } else if (mem->is_Store()) {
 336       const TypePtr* atype = mem->as_Store()->adr_type();
 337       int adr_idx = Compile::current()->get_alias_index(atype);
 338       if (adr_idx == alias_idx) {
 339         assert(atype->isa_oopptr(), "address type must be oopptr");
 340         int adr_offset = atype->offset();
 341         uint adr_iid = atype->is_oopptr()->instance_id();
 342         // Array elements references have the same alias_idx
 343         // but different offset and different instance_id.
 344         if (adr_offset == offset && adr_iid == alloc->_idx)
 345           return mem;
 346       } else {
 347         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
 348       }
 349       mem = mem->in(MemNode::Memory);
 350     } else if (mem->is_ClearArray()) {
 351       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
 352         // Can not bypass initialization of the instance
 353         // we are looking.
 354         debug_only(intptr_t offset;)
 355         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
 356         InitializeNode* init = alloc->as_Allocate()->initialization();
 357         // We are looking for stored value, return Initialize node
 358         // or memory edge from Allocate node.
 359         if (init != NULL)
 360           return init;
 361         else
 362           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
 363       }
 364       // Otherwise skip it (the call updated 'mem' value).
 365     } else if (mem->Opcode() == Op_SCMemProj) {
 366       mem = mem->in(0);
 367       Node* adr = NULL;
 368       if (mem->is_LoadStore()) {
 369         adr = mem->in(MemNode::Address);
 370       } else {
 371         assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
 372         adr = mem->in(3); // Destination array
 373       }
 374       const TypePtr* atype = adr->bottom_type()->is_ptr();
 375       int adr_idx = Compile::current()->get_alias_index(atype);
 376       if (adr_idx == alias_idx) {
 377         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
 378         return NULL;
 379       }
 380       mem = mem->in(MemNode::Memory);
 381     } else {
 382       return mem;
 383     }
 384     assert(mem != orig_mem, "dead memory loop");
 385   }
 386 }
 387 
 388 //
 389 // Given a Memory Phi, compute a value Phi containing the values from stores
 390 // on the input paths.
 391 // Note: this function is recursive, its depth is limied by the "level" argument
 392 // Returns the computed Phi, or NULL if it cannot compute it.
 393 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
 394   assert(mem->is_Phi(), "sanity");
 395   int alias_idx = C->get_alias_index(adr_t);
 396   int offset = adr_t->offset();
 397   int instance_id = adr_t->instance_id();
 398 
 399   // Check if an appropriate value phi already exists.
 400   Node* region = mem->in(0);
 401   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 402     Node* phi = region->fast_out(k);
 403     if (phi->is_Phi() && phi != mem &&
 404         phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
 405       return phi;
 406     }
 407   }
 408   // Check if an appropriate new value phi already exists.
 409   Node* new_phi = value_phis->find(mem->_idx);
 410   if (new_phi != NULL)
 411     return new_phi;
 412 
 413   if (level <= 0) {
 414     return NULL; // Give up: phi tree too deep
 415   }
 416   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 417   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 418 
 419   uint length = mem->req();
 420   GrowableArray <Node *> values(length, length, NULL, false);
 421 
 422   // create a new Phi for the value
 423   PhiNode *phi = new PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
 424   transform_later(phi);
 425   value_phis->push(phi, mem->_idx);
 426 
 427   for (uint j = 1; j < length; j++) {
 428     Node *in = mem->in(j);
 429     if (in == NULL || in->is_top()) {
 430       values.at_put(j, in);
 431     } else  {
 432       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
 433       if (val == start_mem || val == alloc_mem) {
 434         // hit a sentinel, return appropriate 0 value
 435         values.at_put(j, _igvn.zerocon(ft));
 436         continue;
 437       }
 438       if (val->is_Initialize()) {
 439         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 440       }
 441       if (val == NULL) {
 442         return NULL;  // can't find a value on this path
 443       }
 444       if (val == mem) {
 445         values.at_put(j, mem);
 446       } else if (val->is_Store()) {
 447         values.at_put(j, val->in(MemNode::ValueIn));
 448       } else if(val->is_Proj() && val->in(0) == alloc) {
 449         values.at_put(j, _igvn.zerocon(ft));
 450       } else if (val->is_Phi()) {
 451         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
 452         if (val == NULL) {
 453           return NULL;
 454         }
 455         values.at_put(j, val);
 456       } else if (val->Opcode() == Op_SCMemProj) {
 457         assert(val->in(0)->is_LoadStore() || val->in(0)->Opcode() == Op_EncodeISOArray, "sanity");
 458         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
 459         return NULL;
 460       } else {
 461 #ifdef ASSERT
 462         val->dump();
 463         assert(false, "unknown node on this path");
 464 #endif
 465         return NULL;  // unknown node on this path
 466       }
 467     }
 468   }
 469   // Set Phi's inputs
 470   for (uint j = 1; j < length; j++) {
 471     if (values.at(j) == mem) {
 472       phi->init_req(j, phi);
 473     } else {
 474       phi->init_req(j, values.at(j));
 475     }
 476   }
 477   return phi;
 478 }
 479 
 480 // Search the last value stored into the object's field.
 481 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
 482   assert(adr_t->is_known_instance_field(), "instance required");
 483   int instance_id = adr_t->instance_id();
 484   assert((uint)instance_id == alloc->_idx, "wrong allocation");
 485 
 486   int alias_idx = C->get_alias_index(adr_t);
 487   int offset = adr_t->offset();
 488   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 489   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
 490   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 491   Arena *a = Thread::current()->resource_area();
 492   VectorSet visited(a);
 493 
 494 
 495   bool done = sfpt_mem == alloc_mem;
 496   Node *mem = sfpt_mem;
 497   while (!done) {
 498     if (visited.test_set(mem->_idx)) {
 499       return NULL;  // found a loop, give up
 500     }
 501     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
 502     if (mem == start_mem || mem == alloc_mem) {
 503       done = true;  // hit a sentinel, return appropriate 0 value
 504     } else if (mem->is_Initialize()) {
 505       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 506       if (mem == NULL) {
 507         done = true; // Something go wrong.
 508       } else if (mem->is_Store()) {
 509         const TypePtr* atype = mem->as_Store()->adr_type();
 510         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
 511         done = true;
 512       }
 513     } else if (mem->is_Store()) {
 514       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
 515       assert(atype != NULL, "address type must be oopptr");
 516       assert(C->get_alias_index(atype) == alias_idx &&
 517              atype->is_known_instance_field() && atype->offset() == offset &&
 518              atype->instance_id() == instance_id, "store is correct memory slice");
 519       done = true;
 520     } else if (mem->is_Phi()) {
 521       // try to find a phi's unique input
 522       Node *unique_input = NULL;
 523       Node *top = C->top();
 524       for (uint i = 1; i < mem->req(); i++) {
 525         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
 526         if (n == NULL || n == top || n == mem) {
 527           continue;
 528         } else if (unique_input == NULL) {
 529           unique_input = n;
 530         } else if (unique_input != n) {
 531           unique_input = top;
 532           break;
 533         }
 534       }
 535       if (unique_input != NULL && unique_input != top) {
 536         mem = unique_input;
 537       } else {
 538         done = true;
 539       }
 540     } else {
 541       assert(false, "unexpected node");
 542     }
 543   }
 544   if (mem != NULL) {
 545     if (mem == start_mem || mem == alloc_mem) {
 546       // hit a sentinel, return appropriate 0 value
 547       return _igvn.zerocon(ft);
 548     } else if (mem->is_Store()) {
 549       return mem->in(MemNode::ValueIn);
 550     } else if (mem->is_Phi()) {
 551       // attempt to produce a Phi reflecting the values on the input paths of the Phi
 552       Node_Stack value_phis(a, 8);
 553       Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
 554       if (phi != NULL) {
 555         return phi;
 556       } else {
 557         // Kill all new Phis
 558         while(value_phis.is_nonempty()) {
 559           Node* n = value_phis.node();
 560           _igvn.replace_node(n, C->top());
 561           value_phis.pop();
 562         }
 563       }
 564     }
 565   }
 566   // Something go wrong.
 567   return NULL;
 568 }
 569 
 570 // Check the possibility of scalar replacement.
 571 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 572   //  Scan the uses of the allocation to check for anything that would
 573   //  prevent us from eliminating it.
 574   NOT_PRODUCT( const char* fail_eliminate = NULL; )
 575   DEBUG_ONLY( Node* disq_node = NULL; )
 576   bool  can_eliminate = true;
 577 
 578   Node* res = alloc->result_cast();
 579   const TypeOopPtr* res_type = NULL;
 580   if (res == NULL) {
 581     // All users were eliminated.
 582   } else if (!res->is_CheckCastPP()) {
 583     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
 584     can_eliminate = false;
 585   } else {
 586     res_type = _igvn.type(res)->isa_oopptr();
 587     if (res_type == NULL) {
 588       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
 589       can_eliminate = false;
 590     } else if (res_type->isa_aryptr()) {
 591       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 592       if (length < 0) {
 593         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
 594         can_eliminate = false;
 595       }
 596     }
 597   }
 598 
 599   if (can_eliminate && res != NULL) {
 600     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
 601                                j < jmax && can_eliminate; j++) {
 602       Node* use = res->fast_out(j);
 603 
 604       if (use->is_AddP()) {
 605         const TypePtr* addp_type = _igvn.type(use)->is_ptr();
 606         int offset = addp_type->offset();
 607 
 608         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
 609           NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
 610           can_eliminate = false;
 611           break;
 612         }
 613         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
 614                                    k < kmax && can_eliminate; k++) {
 615           Node* n = use->fast_out(k);
 616           if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
 617             DEBUG_ONLY(disq_node = n;)
 618             if (n->is_Load() || n->is_LoadStore()) {
 619               NOT_PRODUCT(fail_eliminate = "Field load";)
 620             } else {
 621               NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
 622             }
 623             can_eliminate = false;
 624           }
 625         }
 626       } else if (use->is_SafePoint()) {
 627         SafePointNode* sfpt = use->as_SafePoint();
 628         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
 629           // Object is passed as argument.
 630           DEBUG_ONLY(disq_node = use;)
 631           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
 632           can_eliminate = false;
 633         }
 634         Node* sfptMem = sfpt->memory();
 635         if (sfptMem == NULL || sfptMem->is_top()) {
 636           DEBUG_ONLY(disq_node = use;)
 637           NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
 638           can_eliminate = false;
 639         } else {
 640           safepoints.append_if_missing(sfpt);
 641         }
 642       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
 643         if (use->is_Phi()) {
 644           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
 645             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 646           } else {
 647             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
 648           }
 649           DEBUG_ONLY(disq_node = use;)
 650         } else {
 651           if (use->Opcode() == Op_Return) {
 652             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 653           }else {
 654             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
 655           }
 656           DEBUG_ONLY(disq_node = use;)
 657         }
 658         can_eliminate = false;
 659       }
 660     }
 661   }
 662 
 663 #ifndef PRODUCT
 664   if (PrintEliminateAllocations) {
 665     if (can_eliminate) {
 666       tty->print("Scalar ");
 667       if (res == NULL)
 668         alloc->dump();
 669       else
 670         res->dump();
 671     } else if (alloc->_is_scalar_replaceable) {
 672       tty->print("NotScalar (%s)", fail_eliminate);
 673       if (res == NULL)
 674         alloc->dump();
 675       else
 676         res->dump();
 677 #ifdef ASSERT
 678       if (disq_node != NULL) {
 679           tty->print("  >>>> ");
 680           disq_node->dump();
 681       }
 682 #endif /*ASSERT*/
 683     }
 684   }
 685 #endif
 686   return can_eliminate;
 687 }
 688 
 689 // Do scalar replacement.
 690 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 691   GrowableArray <SafePointNode *> safepoints_done;
 692 
 693   ciKlass* klass = NULL;
 694   ciInstanceKlass* iklass = NULL;
 695   int nfields = 0;
 696   int array_base;
 697   int element_size;
 698   BasicType basic_elem_type;
 699   ciType* elem_type;
 700 
 701   Node* res = alloc->result_cast();
 702   assert(res == NULL || res->is_CheckCastPP(), "unexpected AllocateNode result");
 703   const TypeOopPtr* res_type = NULL;
 704   if (res != NULL) { // Could be NULL when there are no users
 705     res_type = _igvn.type(res)->isa_oopptr();
 706   }
 707 
 708   if (res != NULL) {
 709     klass = res_type->klass();
 710     if (res_type->isa_instptr()) {
 711       // find the fields of the class which will be needed for safepoint debug information
 712       assert(klass->is_instance_klass(), "must be an instance klass.");
 713       iklass = klass->as_instance_klass();
 714       nfields = iklass->nof_nonstatic_fields();
 715     } else {
 716       // find the array's elements which will be needed for safepoint debug information
 717       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 718       assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
 719       elem_type = klass->as_array_klass()->element_type();
 720       basic_elem_type = elem_type->basic_type();
 721       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
 722       element_size = type2aelembytes(basic_elem_type);
 723     }
 724   }
 725   //
 726   // Process the safepoint uses
 727   //
 728   while (safepoints.length() > 0) {
 729     SafePointNode* sfpt = safepoints.pop();
 730     Node* mem = sfpt->memory();
 731     assert(sfpt->jvms() != NULL, "missed JVMS");
 732     // Fields of scalar objs are referenced only at the end
 733     // of regular debuginfo at the last (youngest) JVMS.
 734     // Record relative start index.
 735     uint first_ind = (sfpt->req() - sfpt->jvms()->scloff());
 736     SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type,
 737 #ifdef ASSERT
 738                                                  alloc,
 739 #endif
 740                                                  first_ind, nfields);
 741     sobj->init_req(0, C->root());
 742     transform_later(sobj);
 743 
 744     // Scan object's fields adding an input to the safepoint for each field.
 745     for (int j = 0; j < nfields; j++) {
 746       intptr_t offset;
 747       ciField* field = NULL;
 748       if (iklass != NULL) {
 749         field = iklass->nonstatic_field_at(j);
 750         offset = field->offset();
 751         elem_type = field->type();
 752         basic_elem_type = field->layout_type();
 753       } else {
 754         offset = array_base + j * (intptr_t)element_size;
 755       }
 756 
 757       const Type *field_type;
 758       // The next code is taken from Parse::do_get_xxx().
 759       if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
 760         if (!elem_type->is_loaded()) {
 761           field_type = TypeInstPtr::BOTTOM;
 762         } else if (field != NULL && field->is_constant() && field->is_static()) {
 763           // This can happen if the constant oop is non-perm.
 764           ciObject* con = field->constant_value().as_object();
 765           // Do not "join" in the previous type; it doesn't add value,
 766           // and may yield a vacuous result if the field is of interface type.
 767           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
 768           assert(field_type != NULL, "field singleton type must be consistent");
 769         } else {
 770           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
 771         }
 772         if (UseCompressedOops) {
 773           field_type = field_type->make_narrowoop();
 774           basic_elem_type = T_NARROWOOP;
 775         }
 776       } else {
 777         field_type = Type::get_const_basic_type(basic_elem_type);
 778       }
 779 
 780       const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
 781 
 782       Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
 783       if (field_val == NULL) {
 784         // We weren't able to find a value for this field,
 785         // give up on eliminating this allocation.
 786 
 787         // Remove any extra entries we added to the safepoint.
 788         uint last = sfpt->req() - 1;
 789         for (int k = 0;  k < j; k++) {
 790           sfpt->del_req(last--);
 791         }
 792         _igvn._worklist.push(sfpt);
 793         // rollback processed safepoints
 794         while (safepoints_done.length() > 0) {
 795           SafePointNode* sfpt_done = safepoints_done.pop();
 796           // remove any extra entries we added to the safepoint
 797           last = sfpt_done->req() - 1;
 798           for (int k = 0;  k < nfields; k++) {
 799             sfpt_done->del_req(last--);
 800           }
 801           JVMState *jvms = sfpt_done->jvms();
 802           jvms->set_endoff(sfpt_done->req());
 803           // Now make a pass over the debug information replacing any references
 804           // to SafePointScalarObjectNode with the allocated object.
 805           int start = jvms->debug_start();
 806           int end   = jvms->debug_end();
 807           for (int i = start; i < end; i++) {
 808             if (sfpt_done->in(i)->is_SafePointScalarObject()) {
 809               SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
 810               if (scobj->first_index(jvms) == sfpt_done->req() &&
 811                   scobj->n_fields() == (uint)nfields) {
 812                 assert(scobj->alloc() == alloc, "sanity");
 813                 sfpt_done->set_req(i, res);
 814               }
 815             }
 816           }
 817           _igvn._worklist.push(sfpt_done);
 818         }
 819 #ifndef PRODUCT
 820         if (PrintEliminateAllocations) {
 821           if (field != NULL) {
 822             tty->print("=== At SafePoint node %d can't find value of Field: ",
 823                        sfpt->_idx);
 824             field->print();
 825             int field_idx = C->get_alias_index(field_addr_type);
 826             tty->print(" (alias_idx=%d)", field_idx);
 827           } else { // Array's element
 828             tty->print("=== At SafePoint node %d can't find value of array element [%d]",
 829                        sfpt->_idx, j);
 830           }
 831           tty->print(", which prevents elimination of: ");
 832           if (res == NULL)
 833             alloc->dump();
 834           else
 835             res->dump();
 836         }
 837 #endif
 838         return false;
 839       }
 840       if (UseCompressedOops && field_type->isa_narrowoop()) {
 841         // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
 842         // to be able scalar replace the allocation.
 843         if (field_val->is_EncodeP()) {
 844           field_val = field_val->in(1);
 845         } else {
 846           field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type()));
 847         }
 848       }
 849       sfpt->add_req(field_val);
 850     }
 851     JVMState *jvms = sfpt->jvms();
 852     jvms->set_endoff(sfpt->req());
 853     // Now make a pass over the debug information replacing any references
 854     // to the allocated object with "sobj"
 855     int start = jvms->debug_start();
 856     int end   = jvms->debug_end();
 857     sfpt->replace_edges_in_range(res, sobj, start, end);
 858     _igvn._worklist.push(sfpt);
 859     safepoints_done.append_if_missing(sfpt); // keep it for rollback
 860   }
 861   return true;
 862 }
 863 
 864 // Process users of eliminated allocation.
 865 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) {
 866   Node* res = alloc->result_cast();
 867   if (res != NULL) {
 868     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
 869       Node *use = res->last_out(j);
 870       uint oc1 = res->outcnt();
 871 
 872       if (use->is_AddP()) {
 873         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
 874           Node *n = use->last_out(k);
 875           uint oc2 = use->outcnt();
 876           if (n->is_Store()) {
 877 #ifdef ASSERT
 878             // Verify that there is no dependent MemBarVolatile nodes,
 879             // they should be removed during IGVN, see MemBarNode::Ideal().
 880             for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
 881                                        p < pmax; p++) {
 882               Node* mb = n->fast_out(p);
 883               assert(mb->is_Initialize() || !mb->is_MemBar() ||
 884                      mb->req() <= MemBarNode::Precedent ||
 885                      mb->in(MemBarNode::Precedent) != n,
 886                      "MemBarVolatile should be eliminated for non-escaping object");
 887             }
 888 #endif
 889             _igvn.replace_node(n, n->in(MemNode::Memory));
 890           } else {
 891             eliminate_card_mark(n);
 892           }
 893           k -= (oc2 - use->outcnt());
 894         }
 895       } else {
 896         eliminate_card_mark(use);
 897       }
 898       j -= (oc1 - res->outcnt());
 899     }
 900     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
 901     _igvn.remove_dead_node(res);
 902   }
 903 
 904   //
 905   // Process other users of allocation's projections
 906   //
 907   if (_resproj != NULL && _resproj->outcnt() != 0) {
 908     // First disconnect stores captured by Initialize node.
 909     // If Initialize node is eliminated first in the following code,
 910     // it will kill such stores and DUIterator_Last will assert.
 911     for (DUIterator_Fast jmax, j = _resproj->fast_outs(jmax);  j < jmax; j++) {
 912       Node *use = _resproj->fast_out(j);
 913       if (use->is_AddP()) {
 914         // raw memory addresses used only by the initialization
 915         _igvn.replace_node(use, C->top());
 916         --j; --jmax;
 917       }
 918     }
 919     for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
 920       Node *use = _resproj->last_out(j);
 921       uint oc1 = _resproj->outcnt();
 922       if (use->is_Initialize()) {
 923         // Eliminate Initialize node.
 924         InitializeNode *init = use->as_Initialize();
 925         assert(init->outcnt() <= 2, "only a control and memory projection expected");
 926         Node *ctrl_proj = init->proj_out(TypeFunc::Control);
 927         if (ctrl_proj != NULL) {
 928            assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
 929           _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
 930         }
 931         Node *mem_proj = init->proj_out(TypeFunc::Memory);
 932         if (mem_proj != NULL) {
 933           Node *mem = init->in(TypeFunc::Memory);
 934 #ifdef ASSERT
 935           if (mem->is_MergeMem()) {
 936             assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
 937           } else {
 938             assert(mem == _memproj_fallthrough, "allocation memory projection");
 939           }
 940 #endif
 941           _igvn.replace_node(mem_proj, mem);
 942         }
 943       } else  {
 944         assert(false, "only Initialize or AddP expected");
 945       }
 946       j -= (oc1 - _resproj->outcnt());
 947     }
 948   }
 949   if (_fallthroughcatchproj != NULL) {
 950     _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
 951   }
 952   if (_memproj_fallthrough != NULL) {
 953     _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
 954   }
 955   if (_memproj_catchall != NULL) {
 956     _igvn.replace_node(_memproj_catchall, C->top());
 957   }
 958   if (_ioproj_fallthrough != NULL) {
 959     _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
 960   }
 961   if (_ioproj_catchall != NULL) {
 962     _igvn.replace_node(_ioproj_catchall, C->top());
 963   }
 964   if (_catchallcatchproj != NULL) {
 965     _igvn.replace_node(_catchallcatchproj, C->top());
 966   }
 967 }
 968 
 969 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
 970   // Don't do scalar replacement if the frame can be popped by JVMTI:
 971   // if reallocation fails during deoptimization we'll pop all
 972   // interpreter frames for this compiled frame and that won't play
 973   // nice with JVMTI popframe.
 974   if (!EliminateAllocations || JvmtiExport::can_pop_frame() || !alloc->_is_non_escaping) {
 975     return false;
 976   }
 977   Node* klass = alloc->in(AllocateNode::KlassNode);
 978   const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
 979   Node* res = alloc->result_cast();
 980   // Eliminate boxing allocations which are not used
 981   // regardless scalar replacable status.
 982   bool boxing_alloc = C->eliminate_boxing() &&
 983                       tklass->klass()->is_instance_klass()  &&
 984                       tklass->klass()->as_instance_klass()->is_box_klass();
 985   if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != NULL))) {
 986     return false;
 987   }
 988 
 989   extract_call_projections(alloc);
 990 
 991   GrowableArray <SafePointNode *> safepoints;
 992   if (!can_eliminate_allocation(alloc, safepoints)) {
 993     return false;
 994   }
 995 
 996   if (!alloc->_is_scalar_replaceable) {
 997     assert(res == NULL, "sanity");
 998     // We can only eliminate allocation if all debug info references
 999     // are already replaced with SafePointScalarObject because
1000     // we can't search for a fields value without instance_id.
1001     if (safepoints.length() > 0) {
1002       return false;
1003     }
1004   }
1005 
1006   if (!scalar_replacement(alloc, safepoints)) {
1007     return false;
1008   }
1009 
1010   CompileLog* log = C->log();
1011   if (log != NULL) {
1012     log->head("eliminate_allocation type='%d'",
1013               log->identify(tklass->klass()));
1014     JVMState* p = alloc->jvms();
1015     while (p != NULL) {
1016       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1017       p = p->caller();
1018     }
1019     log->tail("eliminate_allocation");
1020   }
1021 
1022   process_users_of_allocation(alloc);
1023 
1024 #ifndef PRODUCT
1025   if (PrintEliminateAllocations) {
1026     if (alloc->is_AllocateArray())
1027       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
1028     else
1029       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
1030   }
1031 #endif
1032 
1033   return true;
1034 }
1035 
1036 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) {
1037   // EA should remove all uses of non-escaping boxing node.
1038   if (!C->eliminate_boxing() || boxing->proj_out(TypeFunc::Parms) != NULL) {
1039     return false;
1040   }
1041 
1042   assert(boxing->result_cast() == NULL, "unexpected boxing node result");
1043 
1044   extract_call_projections(boxing);
1045 
1046   const TypeTuple* r = boxing->tf()->range();
1047   assert(r->cnt() > TypeFunc::Parms, "sanity");
1048   const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr();
1049   assert(t != NULL, "sanity");
1050 
1051   CompileLog* log = C->log();
1052   if (log != NULL) {
1053     log->head("eliminate_boxing type='%d'",
1054               log->identify(t->klass()));
1055     JVMState* p = boxing->jvms();
1056     while (p != NULL) {
1057       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1058       p = p->caller();
1059     }
1060     log->tail("eliminate_boxing");
1061   }
1062 
1063   process_users_of_allocation(boxing);
1064 
1065 #ifndef PRODUCT
1066   if (PrintEliminateAllocations) {
1067     tty->print("++++ Eliminated: %d ", boxing->_idx);
1068     boxing->method()->print_short_name(tty);
1069     tty->cr();
1070   }
1071 #endif
1072 
1073   return true;
1074 }
1075 
1076 //---------------------------set_eden_pointers-------------------------
1077 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
1078   if (UseTLAB) {                // Private allocation: load from TLS
1079     Node* thread = transform_later(new ThreadLocalNode());
1080     int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
1081     int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
1082     eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
1083     eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
1084   } else {                      // Shared allocation: load from globals
1085     CollectedHeap* ch = Universe::heap();
1086     address top_adr = (address)ch->top_addr();
1087     address end_adr = (address)ch->end_addr();
1088     eden_top_adr = makecon(TypeRawPtr::make(top_adr));
1089     eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
1090   }
1091 }
1092 
1093 
1094 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
1095   Node* adr = basic_plus_adr(base, offset);
1096   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
1097   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered);
1098   transform_later(value);
1099   return value;
1100 }
1101 
1102 
1103 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
1104   Node* adr = basic_plus_adr(base, offset);
1105   mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt, MemNode::unordered);
1106   transform_later(mem);
1107   return mem;
1108 }
1109 
1110 //=============================================================================
1111 //
1112 //                              A L L O C A T I O N
1113 //
1114 // Allocation attempts to be fast in the case of frequent small objects.
1115 // It breaks down like this:
1116 //
1117 // 1) Size in doublewords is computed.  This is a constant for objects and
1118 // variable for most arrays.  Doubleword units are used to avoid size
1119 // overflow of huge doubleword arrays.  We need doublewords in the end for
1120 // rounding.
1121 //
1122 // 2) Size is checked for being 'too large'.  Too-large allocations will go
1123 // the slow path into the VM.  The slow path can throw any required
1124 // exceptions, and does all the special checks for very large arrays.  The
1125 // size test can constant-fold away for objects.  For objects with
1126 // finalizers it constant-folds the otherway: you always go slow with
1127 // finalizers.
1128 //
1129 // 3) If NOT using TLABs, this is the contended loop-back point.
1130 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
1131 //
1132 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
1133 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
1134 // "size*8" we always enter the VM, where "largish" is a constant picked small
1135 // enough that there's always space between the eden max and 4Gig (old space is
1136 // there so it's quite large) and large enough that the cost of entering the VM
1137 // is dwarfed by the cost to initialize the space.
1138 //
1139 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
1140 // down.  If contended, repeat at step 3.  If using TLABs normal-store
1141 // adjusted heap top back down; there is no contention.
1142 //
1143 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
1144 // fields.
1145 //
1146 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
1147 // oop flavor.
1148 //
1149 //=============================================================================
1150 // FastAllocateSizeLimit value is in DOUBLEWORDS.
1151 // Allocations bigger than this always go the slow route.
1152 // This value must be small enough that allocation attempts that need to
1153 // trigger exceptions go the slow route.  Also, it must be small enough so
1154 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
1155 //=============================================================================j//
1156 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
1157 // The allocator will coalesce int->oop copies away.  See comment in
1158 // coalesce.cpp about how this works.  It depends critically on the exact
1159 // code shape produced here, so if you are changing this code shape
1160 // make sure the GC info for the heap-top is correct in and around the
1161 // slow-path call.
1162 //
1163 
1164 void PhaseMacroExpand::expand_allocate_common(
1165             AllocateNode* alloc, // allocation node to be expanded
1166             Node* length,  // array length for an array allocation
1167             const TypeFunc* slow_call_type, // Type of slow call
1168             address slow_call_address  // Address of slow call
1169     )
1170 {
1171 
1172   Node* ctrl = alloc->in(TypeFunc::Control);
1173   Node* mem  = alloc->in(TypeFunc::Memory);
1174   Node* i_o  = alloc->in(TypeFunc::I_O);
1175   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
1176   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
1177   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
1178 
1179   assert(ctrl != NULL, "must have control");
1180   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
1181   // they will not be used if "always_slow" is set
1182   enum { slow_result_path = 1, fast_result_path = 2 };
1183   Node *result_region;
1184   Node *result_phi_rawmem;
1185   Node *result_phi_rawoop;
1186   Node *result_phi_i_o;
1187 
1188   // The initial slow comparison is a size check, the comparison
1189   // we want to do is a BoolTest::gt
1190   bool always_slow = false;
1191   int tv = _igvn.find_int_con(initial_slow_test, -1);
1192   if (tv >= 0) {
1193     always_slow = (tv == 1);
1194     initial_slow_test = NULL;
1195   } else {
1196     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
1197   }
1198 
1199   if (C->env()->dtrace_alloc_probes() ||
1200       !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc())) {
1201     // Force slow-path allocation
1202     always_slow = true;
1203     initial_slow_test = NULL;
1204   }
1205 
1206 
1207   enum { too_big_or_final_path = 1, need_gc_path = 2 };
1208   Node *slow_region = NULL;
1209   Node *toobig_false = ctrl;
1210 
1211   assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
1212   // generate the initial test if necessary
1213   if (initial_slow_test != NULL ) {
1214     slow_region = new RegionNode(3);
1215 
1216     // Now make the initial failure test.  Usually a too-big test but
1217     // might be a TRUE for finalizers or a fancy class check for
1218     // newInstance0.
1219     IfNode *toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
1220     transform_later(toobig_iff);
1221     // Plug the failing-too-big test into the slow-path region
1222     Node *toobig_true = new IfTrueNode( toobig_iff );
1223     transform_later(toobig_true);
1224     slow_region    ->init_req( too_big_or_final_path, toobig_true );
1225     toobig_false = new IfFalseNode( toobig_iff );
1226     transform_later(toobig_false);
1227   } else {         // No initial test, just fall into next case
1228     toobig_false = ctrl;
1229     debug_only(slow_region = NodeSentinel);
1230   }
1231 
1232   Node *slow_mem = mem;  // save the current memory state for slow path
1233   // generate the fast allocation code unless we know that the initial test will always go slow
1234   if (!always_slow) {
1235     // Fast path modifies only raw memory.
1236     if (mem->is_MergeMem()) {
1237       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1238     }
1239 
1240     Node* eden_top_adr;
1241     Node* eden_end_adr;
1242 
1243     set_eden_pointers(eden_top_adr, eden_end_adr);
1244 
1245     // Load Eden::end.  Loop invariant and hoisted.
1246     //
1247     // Note: We set the control input on "eden_end" and "old_eden_top" when using
1248     //       a TLAB to work around a bug where these values were being moved across
1249     //       a safepoint.  These are not oops, so they cannot be include in the oop
1250     //       map, but they can be changed by a GC.   The proper way to fix this would
1251     //       be to set the raw memory state when generating a  SafepointNode.  However
1252     //       this will require extensive changes to the loop optimization in order to
1253     //       prevent a degradation of the optimization.
1254     //       See comment in memnode.hpp, around line 227 in class LoadPNode.
1255     Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
1256 
1257     // allocate the Region and Phi nodes for the result
1258     result_region = new RegionNode(3);
1259     result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1260     result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM);
1261     result_phi_i_o    = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
1262 
1263     // We need a Region for the loop-back contended case.
1264     enum { fall_in_path = 1, contended_loopback_path = 2 };
1265     Node *contended_region;
1266     Node *contended_phi_rawmem;
1267     if (UseTLAB) {
1268       contended_region = toobig_false;
1269       contended_phi_rawmem = mem;
1270     } else {
1271       contended_region = new RegionNode(3);
1272       contended_phi_rawmem = new PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1273       // Now handle the passing-too-big test.  We fall into the contended
1274       // loop-back merge point.
1275       contended_region    ->init_req(fall_in_path, toobig_false);
1276       contended_phi_rawmem->init_req(fall_in_path, mem);
1277       transform_later(contended_region);
1278       transform_later(contended_phi_rawmem);
1279     }
1280 
1281     // Load(-locked) the heap top.
1282     // See note above concerning the control input when using a TLAB
1283     Node *old_eden_top = UseTLAB
1284       ? new LoadPNode      (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered)
1285       : new LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr, MemNode::acquire);
1286 
1287     transform_later(old_eden_top);
1288     // Add to heap top to get a new heap top
1289     Node *new_eden_top = new AddPNode(top(), old_eden_top, size_in_bytes);
1290     transform_later(new_eden_top);
1291     // Check for needing a GC; compare against heap end
1292     Node *needgc_cmp = new CmpPNode(new_eden_top, eden_end);
1293     transform_later(needgc_cmp);
1294     Node *needgc_bol = new BoolNode(needgc_cmp, BoolTest::ge);
1295     transform_later(needgc_bol);
1296     IfNode *needgc_iff = new IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
1297     transform_later(needgc_iff);
1298 
1299     // Plug the failing-heap-space-need-gc test into the slow-path region
1300     Node *needgc_true = new IfTrueNode(needgc_iff);
1301     transform_later(needgc_true);
1302     if (initial_slow_test) {
1303       slow_region->init_req(need_gc_path, needgc_true);
1304       // This completes all paths into the slow merge point
1305       transform_later(slow_region);
1306     } else {                      // No initial slow path needed!
1307       // Just fall from the need-GC path straight into the VM call.
1308       slow_region = needgc_true;
1309     }
1310     // No need for a GC.  Setup for the Store-Conditional
1311     Node *needgc_false = new IfFalseNode(needgc_iff);
1312     transform_later(needgc_false);
1313 
1314     // Grab regular I/O before optional prefetch may change it.
1315     // Slow-path does no I/O so just set it to the original I/O.
1316     result_phi_i_o->init_req(slow_result_path, i_o);
1317 
1318     i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
1319                               old_eden_top, new_eden_top, length);
1320 
1321     // Name successful fast-path variables
1322     Node* fast_oop = old_eden_top;
1323     Node* fast_oop_ctrl;
1324     Node* fast_oop_rawmem;
1325 
1326     // Store (-conditional) the modified eden top back down.
1327     // StorePConditional produces flags for a test PLUS a modified raw
1328     // memory state.
1329     if (UseTLAB) {
1330       Node* store_eden_top =
1331         new StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
1332                               TypeRawPtr::BOTTOM, new_eden_top, MemNode::unordered);
1333       transform_later(store_eden_top);
1334       fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
1335       fast_oop_rawmem = store_eden_top;
1336     } else {
1337       Node* store_eden_top =
1338         new StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
1339                                          new_eden_top, fast_oop/*old_eden_top*/);
1340       transform_later(store_eden_top);
1341       Node *contention_check = new BoolNode(store_eden_top, BoolTest::ne);
1342       transform_later(contention_check);
1343       store_eden_top = new SCMemProjNode(store_eden_top);
1344       transform_later(store_eden_top);
1345 
1346       // If not using TLABs, check to see if there was contention.
1347       IfNode *contention_iff = new IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
1348       transform_later(contention_iff);
1349       Node *contention_true = new IfTrueNode(contention_iff);
1350       transform_later(contention_true);
1351       // If contention, loopback and try again.
1352       contended_region->init_req(contended_loopback_path, contention_true);
1353       contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
1354 
1355       // Fast-path succeeded with no contention!
1356       Node *contention_false = new IfFalseNode(contention_iff);
1357       transform_later(contention_false);
1358       fast_oop_ctrl = contention_false;
1359 
1360       // Bump total allocated bytes for this thread
1361       Node* thread = new ThreadLocalNode();
1362       transform_later(thread);
1363       Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread,
1364                                              in_bytes(JavaThread::allocated_bytes_offset()));
1365       Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
1366                                     0, TypeLong::LONG, T_LONG);
1367 #ifdef _LP64
1368       Node* alloc_size = size_in_bytes;
1369 #else
1370       Node* alloc_size = new ConvI2LNode(size_in_bytes);
1371       transform_later(alloc_size);
1372 #endif
1373       Node* new_alloc_bytes = new AddLNode(alloc_bytes, alloc_size);
1374       transform_later(new_alloc_bytes);
1375       fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
1376                                    0, new_alloc_bytes, T_LONG);
1377     }
1378 
1379     InitializeNode* init = alloc->initialization();
1380     fast_oop_rawmem = initialize_object(alloc,
1381                                         fast_oop_ctrl, fast_oop_rawmem, fast_oop,
1382                                         klass_node, length, size_in_bytes);
1383 
1384     // If initialization is performed by an array copy, any required
1385     // MemBarStoreStore was already added. If the object does not
1386     // escape no need for a MemBarStoreStore. Otherwise we need a
1387     // MemBarStoreStore so that stores that initialize this object
1388     // can't be reordered with a subsequent store that makes this
1389     // object accessible by other threads.
1390     if (init == NULL || (!init->is_complete_with_arraycopy() && !init->does_not_escape())) {
1391       if (init == NULL || init->req() < InitializeNode::RawStores) {
1392         // No InitializeNode or no stores captured by zeroing
1393         // elimination. Simply add the MemBarStoreStore after object
1394         // initialization.
1395         MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1396         transform_later(mb);
1397 
1398         mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
1399         mb->init_req(TypeFunc::Control, fast_oop_ctrl);
1400         fast_oop_ctrl = new ProjNode(mb,TypeFunc::Control);
1401         transform_later(fast_oop_ctrl);
1402         fast_oop_rawmem = new ProjNode(mb,TypeFunc::Memory);
1403         transform_later(fast_oop_rawmem);
1404       } else {
1405         // Add the MemBarStoreStore after the InitializeNode so that
1406         // all stores performing the initialization that were moved
1407         // before the InitializeNode happen before the storestore
1408         // barrier.
1409 
1410         Node* init_ctrl = init->proj_out(TypeFunc::Control);
1411         Node* init_mem = init->proj_out(TypeFunc::Memory);
1412 
1413         MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1414         transform_later(mb);
1415 
1416         Node* ctrl = new ProjNode(init,TypeFunc::Control);
1417         transform_later(ctrl);
1418         Node* mem = new ProjNode(init,TypeFunc::Memory);
1419         transform_later(mem);
1420 
1421         // The MemBarStoreStore depends on control and memory coming
1422         // from the InitializeNode
1423         mb->init_req(TypeFunc::Memory, mem);
1424         mb->init_req(TypeFunc::Control, ctrl);
1425 
1426         ctrl = new ProjNode(mb,TypeFunc::Control);
1427         transform_later(ctrl);
1428         mem = new ProjNode(mb,TypeFunc::Memory);
1429         transform_later(mem);
1430 
1431         // All nodes that depended on the InitializeNode for control
1432         // and memory must now depend on the MemBarNode that itself
1433         // depends on the InitializeNode
1434         _igvn.replace_node(init_ctrl, ctrl);
1435         _igvn.replace_node(init_mem, mem);
1436       }
1437     }
1438 
1439     if (C->env()->dtrace_extended_probes()) {
1440       // Slow-path call
1441       int size = TypeFunc::Parms + 2;
1442       CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
1443                                             CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
1444                                             "dtrace_object_alloc",
1445                                             TypeRawPtr::BOTTOM);
1446 
1447       // Get base of thread-local storage area
1448       Node* thread = new ThreadLocalNode();
1449       transform_later(thread);
1450 
1451       call->init_req(TypeFunc::Parms+0, thread);
1452       call->init_req(TypeFunc::Parms+1, fast_oop);
1453       call->init_req(TypeFunc::Control, fast_oop_ctrl);
1454       call->init_req(TypeFunc::I_O    , top()); // does no i/o
1455       call->init_req(TypeFunc::Memory , fast_oop_rawmem);
1456       call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1457       call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
1458       transform_later(call);
1459       fast_oop_ctrl = new ProjNode(call,TypeFunc::Control);
1460       transform_later(fast_oop_ctrl);
1461       fast_oop_rawmem = new ProjNode(call,TypeFunc::Memory);
1462       transform_later(fast_oop_rawmem);
1463     }
1464 
1465     // Plug in the successful fast-path into the result merge point
1466     result_region    ->init_req(fast_result_path, fast_oop_ctrl);
1467     result_phi_rawoop->init_req(fast_result_path, fast_oop);
1468     result_phi_i_o   ->init_req(fast_result_path, i_o);
1469     result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
1470   } else {
1471     slow_region = ctrl;
1472     result_phi_i_o = i_o; // Rename it to use in the following code.
1473   }
1474 
1475   // Generate slow-path call
1476   CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address,
1477                                OptoRuntime::stub_name(slow_call_address),
1478                                alloc->jvms()->bci(),
1479                                TypePtr::BOTTOM);
1480   call->init_req( TypeFunc::Control, slow_region );
1481   call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
1482   call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
1483   call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
1484   call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
1485 
1486   call->init_req(TypeFunc::Parms+0, klass_node);
1487   if (length != NULL) {
1488     call->init_req(TypeFunc::Parms+1, length);
1489   }
1490 
1491   // Copy debug information and adjust JVMState information, then replace
1492   // allocate node with the call
1493   copy_call_debug_info((CallNode *) alloc,  call);
1494   if (!always_slow) {
1495     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1496   } else {
1497     // Hook i_o projection to avoid its elimination during allocation
1498     // replacement (when only a slow call is generated).
1499     call->set_req(TypeFunc::I_O, result_phi_i_o);
1500   }
1501   _igvn.replace_node(alloc, call);
1502   transform_later(call);
1503 
1504   // Identify the output projections from the allocate node and
1505   // adjust any references to them.
1506   // The control and io projections look like:
1507   //
1508   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
1509   //  Allocate                   Catch
1510   //        ^---Proj(io) <-------+   ^---CatchProj(io)
1511   //
1512   //  We are interested in the CatchProj nodes.
1513   //
1514   extract_call_projections(call);
1515 
1516   // An allocate node has separate memory projections for the uses on
1517   // the control and i_o paths. Replace the control memory projection with
1518   // result_phi_rawmem (unless we are only generating a slow call when
1519   // both memory projections are combined)
1520   if (!always_slow && _memproj_fallthrough != NULL) {
1521     for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
1522       Node *use = _memproj_fallthrough->fast_out(i);
1523       _igvn.rehash_node_delayed(use);
1524       imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
1525       // back up iterator
1526       --i;
1527     }
1528   }
1529   // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete
1530   // _memproj_catchall so we end up with a call that has only 1 memory projection.
1531   if (_memproj_catchall != NULL ) {
1532     if (_memproj_fallthrough == NULL) {
1533       _memproj_fallthrough = new ProjNode(call, TypeFunc::Memory);
1534       transform_later(_memproj_fallthrough);
1535     }
1536     for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
1537       Node *use = _memproj_catchall->fast_out(i);
1538       _igvn.rehash_node_delayed(use);
1539       imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
1540       // back up iterator
1541       --i;
1542     }
1543     assert(_memproj_catchall->outcnt() == 0, "all uses must be deleted");
1544     _igvn.remove_dead_node(_memproj_catchall);
1545   }
1546 
1547   // An allocate node has separate i_o projections for the uses on the control
1548   // and i_o paths. Always replace the control i_o projection with result i_o
1549   // otherwise incoming i_o become dead when only a slow call is generated
1550   // (it is different from memory projections where both projections are
1551   // combined in such case).
1552   if (_ioproj_fallthrough != NULL) {
1553     for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
1554       Node *use = _ioproj_fallthrough->fast_out(i);
1555       _igvn.rehash_node_delayed(use);
1556       imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
1557       // back up iterator
1558       --i;
1559     }
1560   }
1561   // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete
1562   // _ioproj_catchall so we end up with a call that has only 1 i_o projection.
1563   if (_ioproj_catchall != NULL ) {
1564     if (_ioproj_fallthrough == NULL) {
1565       _ioproj_fallthrough = new ProjNode(call, TypeFunc::I_O);
1566       transform_later(_ioproj_fallthrough);
1567     }
1568     for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
1569       Node *use = _ioproj_catchall->fast_out(i);
1570       _igvn.rehash_node_delayed(use);
1571       imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
1572       // back up iterator
1573       --i;
1574     }
1575     assert(_ioproj_catchall->outcnt() == 0, "all uses must be deleted");
1576     _igvn.remove_dead_node(_ioproj_catchall);
1577   }
1578 
1579   // if we generated only a slow call, we are done
1580   if (always_slow) {
1581     // Now we can unhook i_o.
1582     if (result_phi_i_o->outcnt() > 1) {
1583       call->set_req(TypeFunc::I_O, top());
1584     } else {
1585       assert(result_phi_i_o->unique_ctrl_out() == call, "");
1586       // Case of new array with negative size known during compilation.
1587       // AllocateArrayNode::Ideal() optimization disconnect unreachable
1588       // following code since call to runtime will throw exception.
1589       // As result there will be no users of i_o after the call.
1590       // Leave i_o attached to this call to avoid problems in preceding graph.
1591     }
1592     return;
1593   }
1594 
1595 
1596   if (_fallthroughcatchproj != NULL) {
1597     ctrl = _fallthroughcatchproj->clone();
1598     transform_later(ctrl);
1599     _igvn.replace_node(_fallthroughcatchproj, result_region);
1600   } else {
1601     ctrl = top();
1602   }
1603   Node *slow_result;
1604   if (_resproj == NULL) {
1605     // no uses of the allocation result
1606     slow_result = top();
1607   } else {
1608     slow_result = _resproj->clone();
1609     transform_later(slow_result);
1610     _igvn.replace_node(_resproj, result_phi_rawoop);
1611   }
1612 
1613   // Plug slow-path into result merge point
1614   result_region    ->init_req( slow_result_path, ctrl );
1615   result_phi_rawoop->init_req( slow_result_path, slow_result);
1616   result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
1617   transform_later(result_region);
1618   transform_later(result_phi_rawoop);
1619   transform_later(result_phi_rawmem);
1620   transform_later(result_phi_i_o);
1621   // This completes all paths into the result merge point
1622 }
1623 
1624 
1625 // Helper for PhaseMacroExpand::expand_allocate_common.
1626 // Initializes the newly-allocated storage.
1627 Node*
1628 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
1629                                     Node* control, Node* rawmem, Node* object,
1630                                     Node* klass_node, Node* length,
1631                                     Node* size_in_bytes) {
1632   InitializeNode* init = alloc->initialization();
1633   // Store the klass & mark bits
1634   Node* mark_node = NULL;
1635   // For now only enable fast locking for non-array types
1636   if (UseBiasedLocking && (length == NULL)) {
1637     mark_node = make_load(control, rawmem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
1638   } else {
1639     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
1640   }
1641   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
1642 
1643   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
1644   int header_size = alloc->minimum_header_size();  // conservatively small
1645 
1646   // Array length
1647   if (length != NULL) {         // Arrays need length field
1648     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
1649     // conservatively small header size:
1650     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1651     ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1652     if (k->is_array_klass())    // we know the exact header size in most cases:
1653       header_size = Klass::layout_helper_header_size(k->layout_helper());
1654   }
1655 
1656   // Clear the object body, if necessary.
1657   if (init == NULL) {
1658     // The init has somehow disappeared; be cautious and clear everything.
1659     //
1660     // This can happen if a node is allocated but an uncommon trap occurs
1661     // immediately.  In this case, the Initialize gets associated with the
1662     // trap, and may be placed in a different (outer) loop, if the Allocate
1663     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
1664     // there can be two Allocates to one Initialize.  The answer in all these
1665     // edge cases is safety first.  It is always safe to clear immediately
1666     // within an Allocate, and then (maybe or maybe not) clear some more later.
1667     if (!ZeroTLAB)
1668       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
1669                                             header_size, size_in_bytes,
1670                                             &_igvn);
1671   } else {
1672     if (!init->is_complete()) {
1673       // Try to win by zeroing only what the init does not store.
1674       // We can also try to do some peephole optimizations,
1675       // such as combining some adjacent subword stores.
1676       rawmem = init->complete_stores(control, rawmem, object,
1677                                      header_size, size_in_bytes, &_igvn);
1678     }
1679     // We have no more use for this link, since the AllocateNode goes away:
1680     init->set_req(InitializeNode::RawAddress, top());
1681     // (If we keep the link, it just confuses the register allocator,
1682     // who thinks he sees a real use of the address by the membar.)
1683   }
1684 
1685   return rawmem;
1686 }
1687 
1688 // Generate prefetch instructions for next allocations.
1689 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
1690                                         Node*& contended_phi_rawmem,
1691                                         Node* old_eden_top, Node* new_eden_top,
1692                                         Node* length) {
1693    enum { fall_in_path = 1, pf_path = 2 };
1694    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
1695       // Generate prefetch allocation with watermark check.
1696       // As an allocation hits the watermark, we will prefetch starting
1697       // at a "distance" away from watermark.
1698 
1699       Node *pf_region = new RegionNode(3);
1700       Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY,
1701                                                 TypeRawPtr::BOTTOM );
1702       // I/O is used for Prefetch
1703       Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO );
1704 
1705       Node *thread = new ThreadLocalNode();
1706       transform_later(thread);
1707 
1708       Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread,
1709                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
1710       transform_later(eden_pf_adr);
1711 
1712       Node *old_pf_wm = new LoadPNode(needgc_false,
1713                                    contended_phi_rawmem, eden_pf_adr,
1714                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,
1715                                    MemNode::unordered);
1716       transform_later(old_pf_wm);
1717 
1718       // check against new_eden_top
1719       Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm );
1720       transform_later(need_pf_cmp);
1721       Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge );
1722       transform_later(need_pf_bol);
1723       IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol,
1724                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1725       transform_later(need_pf_iff);
1726 
1727       // true node, add prefetchdistance
1728       Node *need_pf_true = new IfTrueNode( need_pf_iff );
1729       transform_later(need_pf_true);
1730 
1731       Node *need_pf_false = new IfFalseNode( need_pf_iff );
1732       transform_later(need_pf_false);
1733 
1734       Node *new_pf_wmt = new AddPNode( top(), old_pf_wm,
1735                                     _igvn.MakeConX(AllocatePrefetchDistance) );
1736       transform_later(new_pf_wmt );
1737       new_pf_wmt->set_req(0, need_pf_true);
1738 
1739       Node *store_new_wmt = new StorePNode(need_pf_true,
1740                                        contended_phi_rawmem, eden_pf_adr,
1741                                        TypeRawPtr::BOTTOM, new_pf_wmt,
1742                                        MemNode::unordered);
1743       transform_later(store_new_wmt);
1744 
1745       // adding prefetches
1746       pf_phi_abio->init_req( fall_in_path, i_o );
1747 
1748       Node *prefetch_adr;
1749       Node *prefetch;
1750       uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
1751       uint step_size = AllocatePrefetchStepSize;
1752       uint distance = 0;
1753 
1754       for ( uint i = 0; i < lines; i++ ) {
1755         prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt,
1756                                             _igvn.MakeConX(distance) );
1757         transform_later(prefetch_adr);
1758         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
1759         transform_later(prefetch);
1760         distance += step_size;
1761         i_o = prefetch;
1762       }
1763       pf_phi_abio->set_req( pf_path, i_o );
1764 
1765       pf_region->init_req( fall_in_path, need_pf_false );
1766       pf_region->init_req( pf_path, need_pf_true );
1767 
1768       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
1769       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
1770 
1771       transform_later(pf_region);
1772       transform_later(pf_phi_rawmem);
1773       transform_later(pf_phi_abio);
1774 
1775       needgc_false = pf_region;
1776       contended_phi_rawmem = pf_phi_rawmem;
1777       i_o = pf_phi_abio;
1778    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
1779       // Insert a prefetch for each allocation.
1780       // This code is used for Sparc with BIS.
1781       Node *pf_region = new RegionNode(3);
1782       Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY,
1783                                              TypeRawPtr::BOTTOM );
1784       transform_later(pf_region);
1785 
1786       // Generate several prefetch instructions.
1787       uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
1788       uint step_size = AllocatePrefetchStepSize;
1789       uint distance = AllocatePrefetchDistance;
1790 
1791       // Next cache address.
1792       Node *cache_adr = new AddPNode(old_eden_top, old_eden_top,
1793                                             _igvn.MakeConX(distance));
1794       transform_later(cache_adr);
1795       cache_adr = new CastP2XNode(needgc_false, cache_adr);
1796       transform_later(cache_adr);
1797       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
1798       cache_adr = new AndXNode(cache_adr, mask);
1799       transform_later(cache_adr);
1800       cache_adr = new CastX2PNode(cache_adr);
1801       transform_later(cache_adr);
1802 
1803       // Prefetch
1804       Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
1805       prefetch->set_req(0, needgc_false);
1806       transform_later(prefetch);
1807       contended_phi_rawmem = prefetch;
1808       Node *prefetch_adr;
1809       distance = step_size;
1810       for ( uint i = 1; i < lines; i++ ) {
1811         prefetch_adr = new AddPNode( cache_adr, cache_adr,
1812                                             _igvn.MakeConX(distance) );
1813         transform_later(prefetch_adr);
1814         prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
1815         transform_later(prefetch);
1816         distance += step_size;
1817         contended_phi_rawmem = prefetch;
1818       }
1819    } else if( AllocatePrefetchStyle > 0 ) {
1820       // Insert a prefetch for each allocation only on the fast-path
1821       Node *prefetch_adr;
1822       Node *prefetch;
1823       // Generate several prefetch instructions.
1824       uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
1825       uint step_size = AllocatePrefetchStepSize;
1826       uint distance = AllocatePrefetchDistance;
1827       for ( uint i = 0; i < lines; i++ ) {
1828         prefetch_adr = new AddPNode( old_eden_top, new_eden_top,
1829                                             _igvn.MakeConX(distance) );
1830         transform_later(prefetch_adr);
1831         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
1832         // Do not let it float too high, since if eden_top == eden_end,
1833         // both might be null.
1834         if( i == 0 ) { // Set control for first prefetch, next follows it
1835           prefetch->init_req(0, needgc_false);
1836         }
1837         transform_later(prefetch);
1838         distance += step_size;
1839         i_o = prefetch;
1840       }
1841    }
1842    return i_o;
1843 }
1844 
1845 
1846 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
1847   expand_allocate_common(alloc, NULL,
1848                          OptoRuntime::new_instance_Type(),
1849                          OptoRuntime::new_instance_Java());
1850 }
1851 
1852 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
1853   Node* length = alloc->in(AllocateNode::ALength);
1854   InitializeNode* init = alloc->initialization();
1855   Node* klass_node = alloc->in(AllocateNode::KlassNode);
1856   ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1857   address slow_call_address;  // Address of slow call
1858   if (init != NULL && init->is_complete_with_arraycopy() &&
1859       k->is_type_array_klass()) {
1860     // Don't zero type array during slow allocation in VM since
1861     // it will be initialized later by arraycopy in compiled code.
1862     slow_call_address = OptoRuntime::new_array_nozero_Java();
1863   } else {
1864     slow_call_address = OptoRuntime::new_array_Java();
1865   }
1866   expand_allocate_common(alloc, length,
1867                          OptoRuntime::new_array_Type(),
1868                          slow_call_address);
1869 }
1870 
1871 //-------------------mark_eliminated_box----------------------------------
1872 //
1873 // During EA obj may point to several objects but after few ideal graph
1874 // transformations (CCP) it may point to only one non escaping object
1875 // (but still using phi), corresponding locks and unlocks will be marked
1876 // for elimination. Later obj could be replaced with a new node (new phi)
1877 // and which does not have escape information. And later after some graph
1878 // reshape other locks and unlocks (which were not marked for elimination
1879 // before) are connected to this new obj (phi) but they still will not be
1880 // marked for elimination since new obj has no escape information.
1881 // Mark all associated (same box and obj) lock and unlock nodes for
1882 // elimination if some of them marked already.
1883 void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) {
1884   if (oldbox->as_BoxLock()->is_eliminated())
1885     return; // This BoxLock node was processed already.
1886 
1887   // New implementation (EliminateNestedLocks) has separate BoxLock
1888   // node for each locked region so mark all associated locks/unlocks as
1889   // eliminated even if different objects are referenced in one locked region
1890   // (for example, OSR compilation of nested loop inside locked scope).
1891   if (EliminateNestedLocks ||
1892       oldbox->as_BoxLock()->is_simple_lock_region(NULL, obj)) {
1893     // Box is used only in one lock region. Mark this box as eliminated.
1894     _igvn.hash_delete(oldbox);
1895     oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value
1896      _igvn.hash_insert(oldbox);
1897 
1898     for (uint i = 0; i < oldbox->outcnt(); i++) {
1899       Node* u = oldbox->raw_out(i);
1900       if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
1901         AbstractLockNode* alock = u->as_AbstractLock();
1902         // Check lock's box since box could be referenced by Lock's debug info.
1903         if (alock->box_node() == oldbox) {
1904           // Mark eliminated all related locks and unlocks.
1905 #ifdef ASSERT
1906           alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4");
1907 #endif
1908           alock->set_non_esc_obj();
1909         }
1910       }
1911     }
1912     return;
1913   }
1914 
1915   // Create new "eliminated" BoxLock node and use it in monitor debug info
1916   // instead of oldbox for the same object.
1917   BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
1918 
1919   // Note: BoxLock node is marked eliminated only here and it is used
1920   // to indicate that all associated lock and unlock nodes are marked
1921   // for elimination.
1922   newbox->set_eliminated();
1923   transform_later(newbox);
1924 
1925   // Replace old box node with new box for all users of the same object.
1926   for (uint i = 0; i < oldbox->outcnt();) {
1927     bool next_edge = true;
1928 
1929     Node* u = oldbox->raw_out(i);
1930     if (u->is_AbstractLock()) {
1931       AbstractLockNode* alock = u->as_AbstractLock();
1932       if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
1933         // Replace Box and mark eliminated all related locks and unlocks.
1934 #ifdef ASSERT
1935         alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5");
1936 #endif
1937         alock->set_non_esc_obj();
1938         _igvn.rehash_node_delayed(alock);
1939         alock->set_box_node(newbox);
1940         next_edge = false;
1941       }
1942     }
1943     if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
1944       FastLockNode* flock = u->as_FastLock();
1945       assert(flock->box_node() == oldbox, "sanity");
1946       _igvn.rehash_node_delayed(flock);
1947       flock->set_box_node(newbox);
1948       next_edge = false;
1949     }
1950 
1951     // Replace old box in monitor debug info.
1952     if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
1953       SafePointNode* sfn = u->as_SafePoint();
1954       JVMState* youngest_jvms = sfn->jvms();
1955       int max_depth = youngest_jvms->depth();
1956       for (int depth = 1; depth <= max_depth; depth++) {
1957         JVMState* jvms = youngest_jvms->of_depth(depth);
1958         int num_mon  = jvms->nof_monitors();
1959         // Loop over monitors
1960         for (int idx = 0; idx < num_mon; idx++) {
1961           Node* obj_node = sfn->monitor_obj(jvms, idx);
1962           Node* box_node = sfn->monitor_box(jvms, idx);
1963           if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
1964             int j = jvms->monitor_box_offset(idx);
1965             _igvn.replace_input_of(u, j, newbox);
1966             next_edge = false;
1967           }
1968         }
1969       }
1970     }
1971     if (next_edge) i++;
1972   }
1973 }
1974 
1975 //-----------------------mark_eliminated_locking_nodes-----------------------
1976 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
1977   if (EliminateNestedLocks) {
1978     if (alock->is_nested()) {
1979        assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
1980        return;
1981     } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
1982       // Only Lock node has JVMState needed here.
1983       // Not that preceding claim is documented anywhere else.
1984       if (alock->jvms() != NULL) {
1985         if (alock->as_Lock()->is_nested_lock_region()) {
1986           // Mark eliminated related nested locks and unlocks.
1987           Node* obj = alock->obj_node();
1988           BoxLockNode* box_node = alock->box_node()->as_BoxLock();
1989           assert(!box_node->is_eliminated(), "should not be marked yet");
1990           // Note: BoxLock node is marked eliminated only here
1991           // and it is used to indicate that all associated lock
1992           // and unlock nodes are marked for elimination.
1993           box_node->set_eliminated(); // Box's hash is always NO_HASH here
1994           for (uint i = 0; i < box_node->outcnt(); i++) {
1995             Node* u = box_node->raw_out(i);
1996             if (u->is_AbstractLock()) {
1997               alock = u->as_AbstractLock();
1998               if (alock->box_node() == box_node) {
1999                 // Verify that this Box is referenced only by related locks.
2000                 assert(alock->obj_node()->eqv_uncast(obj), "");
2001                 // Mark all related locks and unlocks.
2002 #ifdef ASSERT
2003                 alock->log_lock_optimization(C, "eliminate_lock_set_nested");
2004 #endif
2005                 alock->set_nested();
2006               }
2007             }
2008           }
2009         } else {
2010 #ifdef ASSERT
2011           alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region");
2012           if (C->log() != NULL)
2013             alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output
2014 #endif
2015         }
2016       }
2017       return;
2018     }
2019     // Process locks for non escaping object
2020     assert(alock->is_non_esc_obj(), "");
2021   } // EliminateNestedLocks
2022 
2023   if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
2024     // Look for all locks of this object and mark them and
2025     // corresponding BoxLock nodes as eliminated.
2026     Node* obj = alock->obj_node();
2027     for (uint j = 0; j < obj->outcnt(); j++) {
2028       Node* o = obj->raw_out(j);
2029       if (o->is_AbstractLock() &&
2030           o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
2031         alock = o->as_AbstractLock();
2032         Node* box = alock->box_node();
2033         // Replace old box node with new eliminated box for all users
2034         // of the same object and mark related locks as eliminated.
2035         mark_eliminated_box(box, obj);
2036       }
2037     }
2038   }
2039 }
2040 
2041 // we have determined that this lock/unlock can be eliminated, we simply
2042 // eliminate the node without expanding it.
2043 //
2044 // Note:  The membar's associated with the lock/unlock are currently not
2045 //        eliminated.  This should be investigated as a future enhancement.
2046 //
2047 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
2048 
2049   if (!alock->is_eliminated()) {
2050     return false;
2051   }
2052 #ifdef ASSERT
2053   if (!alock->is_coarsened()) {
2054     // Check that new "eliminated" BoxLock node is created.
2055     BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
2056     assert(oldbox->is_eliminated(), "should be done already");
2057   }
2058 #endif
2059 
2060   alock->log_lock_optimization(C, "eliminate_lock");
2061 
2062 #ifndef PRODUCT
2063   if (PrintEliminateLocks) {
2064     if (alock->is_Lock()) {
2065       tty->print_cr("++++ Eliminated: %d Lock", alock->_idx);
2066     } else {
2067       tty->print_cr("++++ Eliminated: %d Unlock", alock->_idx);
2068     }
2069   }
2070 #endif
2071 
2072   Node* mem  = alock->in(TypeFunc::Memory);
2073   Node* ctrl = alock->in(TypeFunc::Control);
2074 
2075   extract_call_projections(alock);
2076   // There are 2 projections from the lock.  The lock node will
2077   // be deleted when its last use is subsumed below.
2078   assert(alock->outcnt() == 2 &&
2079          _fallthroughproj != NULL &&
2080          _memproj_fallthrough != NULL,
2081          "Unexpected projections from Lock/Unlock");
2082 
2083   Node* fallthroughproj = _fallthroughproj;
2084   Node* memproj_fallthrough = _memproj_fallthrough;
2085 
2086   // The memory projection from a lock/unlock is RawMem
2087   // The input to a Lock is merged memory, so extract its RawMem input
2088   // (unless the MergeMem has been optimized away.)
2089   if (alock->is_Lock()) {
2090     // Seach for MemBarAcquireLock node and delete it also.
2091     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
2092     assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, "");
2093     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
2094     Node* memproj = membar->proj_out(TypeFunc::Memory);
2095     _igvn.replace_node(ctrlproj, fallthroughproj);
2096     _igvn.replace_node(memproj, memproj_fallthrough);
2097 
2098     // Delete FastLock node also if this Lock node is unique user
2099     // (a loop peeling may clone a Lock node).
2100     Node* flock = alock->as_Lock()->fastlock_node();
2101     if (flock->outcnt() == 1) {
2102       assert(flock->unique_out() == alock, "sanity");
2103       _igvn.replace_node(flock, top());
2104     }
2105   }
2106 
2107   // Seach for MemBarReleaseLock node and delete it also.
2108   if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
2109       ctrl->in(0)->is_MemBar()) {
2110     MemBarNode* membar = ctrl->in(0)->as_MemBar();
2111     assert(membar->Opcode() == Op_MemBarReleaseLock &&
2112            mem->is_Proj() && membar == mem->in(0), "");
2113     _igvn.replace_node(fallthroughproj, ctrl);
2114     _igvn.replace_node(memproj_fallthrough, mem);
2115     fallthroughproj = ctrl;
2116     memproj_fallthrough = mem;
2117     ctrl = membar->in(TypeFunc::Control);
2118     mem  = membar->in(TypeFunc::Memory);
2119   }
2120 
2121   _igvn.replace_node(fallthroughproj, ctrl);
2122   _igvn.replace_node(memproj_fallthrough, mem);
2123   return true;
2124 }
2125 
2126 
2127 //------------------------------expand_lock_node----------------------
2128 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
2129 
2130   Node* ctrl = lock->in(TypeFunc::Control);
2131   Node* mem = lock->in(TypeFunc::Memory);
2132   Node* obj = lock->obj_node();
2133   Node* box = lock->box_node();
2134   Node* flock = lock->fastlock_node();
2135 
2136   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2137 
2138   // Make the merge point
2139   Node *region;
2140   Node *mem_phi;
2141   Node *slow_path;
2142 
2143   if (UseOptoBiasInlining) {
2144     /*
2145      *  See the full description in MacroAssembler::biased_locking_enter().
2146      *
2147      *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
2148      *    // The object is biased.
2149      *    proto_node = klass->prototype_header;
2150      *    o_node = thread | proto_node;
2151      *    x_node = o_node ^ mark_word;
2152      *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
2153      *      // Done.
2154      *    } else {
2155      *      if( (x_node & biased_lock_mask) != 0 ) {
2156      *        // The klass's prototype header is no longer biased.
2157      *        cas(&mark_word, mark_word, proto_node)
2158      *        goto cas_lock;
2159      *      } else {
2160      *        // The klass's prototype header is still biased.
2161      *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
2162      *          old = mark_word;
2163      *          new = o_node;
2164      *        } else {
2165      *          // Different thread or anonymous biased.
2166      *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
2167      *          new = thread | old;
2168      *        }
2169      *        // Try to rebias.
2170      *        if( cas(&mark_word, old, new) == 0 ) {
2171      *          // Done.
2172      *        } else {
2173      *          goto slow_path; // Failed.
2174      *        }
2175      *      }
2176      *    }
2177      *  } else {
2178      *    // The object is not biased.
2179      *    cas_lock:
2180      *    if( FastLock(obj) == 0 ) {
2181      *      // Done.
2182      *    } else {
2183      *      slow_path:
2184      *      OptoRuntime::complete_monitor_locking_Java(obj);
2185      *    }
2186      *  }
2187      */
2188 
2189     region  = new RegionNode(5);
2190     // create a Phi for the memory state
2191     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2192 
2193     Node* fast_lock_region  = new RegionNode(3);
2194     Node* fast_lock_mem_phi = new PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
2195 
2196     // First, check mark word for the biased lock pattern.
2197     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2198 
2199     // Get fast path - mark word has the biased lock pattern.
2200     ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
2201                          markOopDesc::biased_lock_mask_in_place,
2202                          markOopDesc::biased_lock_pattern, true);
2203     // fast_lock_region->in(1) is set to slow path.
2204     fast_lock_mem_phi->init_req(1, mem);
2205 
2206     // Now check that the lock is biased to the current thread and has
2207     // the same epoch and bias as Klass::_prototype_header.
2208 
2209     // Special-case a fresh allocation to avoid building nodes:
2210     Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
2211     if (klass_node == NULL) {
2212       Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
2213       klass_node = transform_later(LoadKlassNode::make(_igvn, NULL, mem, k_adr, _igvn.type(k_adr)->is_ptr()));
2214 #ifdef _LP64
2215       if (UseCompressedClassPointers && klass_node->is_DecodeNKlass()) {
2216         assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
2217         klass_node->in(1)->init_req(0, ctrl);
2218       } else
2219 #endif
2220       klass_node->init_req(0, ctrl);
2221     }
2222     Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type());
2223 
2224     Node* thread = transform_later(new ThreadLocalNode());
2225     Node* cast_thread = transform_later(new CastP2XNode(ctrl, thread));
2226     Node* o_node = transform_later(new OrXNode(cast_thread, proto_node));
2227     Node* x_node = transform_later(new XorXNode(o_node, mark_node));
2228 
2229     // Get slow path - mark word does NOT match the value.
2230     Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
2231                                       (~markOopDesc::age_mask_in_place), 0);
2232     // region->in(3) is set to fast path - the object is biased to the current thread.
2233     mem_phi->init_req(3, mem);
2234 
2235 
2236     // Mark word does NOT match the value (thread | Klass::_prototype_header).
2237 
2238 
2239     // First, check biased pattern.
2240     // Get fast path - _prototype_header has the same biased lock pattern.
2241     ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
2242                           markOopDesc::biased_lock_mask_in_place, 0, true);
2243 
2244     not_biased_ctrl = fast_lock_region->in(2); // Slow path
2245     // fast_lock_region->in(2) - the prototype header is no longer biased
2246     // and we have to revoke the bias on this object.
2247     // We are going to try to reset the mark of this object to the prototype
2248     // value and fall through to the CAS-based locking scheme.
2249     Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
2250     Node* cas = new StoreXConditionalNode(not_biased_ctrl, mem, adr,
2251                                           proto_node, mark_node);
2252     transform_later(cas);
2253     Node* proj = transform_later(new SCMemProjNode(cas));
2254     fast_lock_mem_phi->init_req(2, proj);
2255 
2256 
2257     // Second, check epoch bits.
2258     Node* rebiased_region  = new RegionNode(3);
2259     Node* old_phi = new PhiNode( rebiased_region, TypeX_X);
2260     Node* new_phi = new PhiNode( rebiased_region, TypeX_X);
2261 
2262     // Get slow path - mark word does NOT match epoch bits.
2263     Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
2264                                       markOopDesc::epoch_mask_in_place, 0);
2265     // The epoch of the current bias is not valid, attempt to rebias the object
2266     // toward the current thread.
2267     rebiased_region->init_req(2, epoch_ctrl);
2268     old_phi->init_req(2, mark_node);
2269     new_phi->init_req(2, o_node);
2270 
2271     // rebiased_region->in(1) is set to fast path.
2272     // The epoch of the current bias is still valid but we know
2273     // nothing about the owner; it might be set or it might be clear.
2274     Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
2275                              markOopDesc::age_mask_in_place |
2276                              markOopDesc::epoch_mask_in_place);
2277     Node* old = transform_later(new AndXNode(mark_node, cmask));
2278     cast_thread = transform_later(new CastP2XNode(ctrl, thread));
2279     Node* new_mark = transform_later(new OrXNode(cast_thread, old));
2280     old_phi->init_req(1, old);
2281     new_phi->init_req(1, new_mark);
2282 
2283     transform_later(rebiased_region);
2284     transform_later(old_phi);
2285     transform_later(new_phi);
2286 
2287     // Try to acquire the bias of the object using an atomic operation.
2288     // If this fails we will go in to the runtime to revoke the object's bias.
2289     cas = new StoreXConditionalNode(rebiased_region, mem, adr, new_phi, old_phi);
2290     transform_later(cas);
2291     proj = transform_later(new SCMemProjNode(cas));
2292 
2293     // Get slow path - Failed to CAS.
2294     not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
2295     mem_phi->init_req(4, proj);
2296     // region->in(4) is set to fast path - the object is rebiased to the current thread.
2297 
2298     // Failed to CAS.
2299     slow_path  = new RegionNode(3);
2300     Node *slow_mem = new PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
2301 
2302     slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
2303     slow_mem->init_req(1, proj);
2304 
2305     // Call CAS-based locking scheme (FastLock node).
2306 
2307     transform_later(fast_lock_region);
2308     transform_later(fast_lock_mem_phi);
2309 
2310     // Get slow path - FastLock failed to lock the object.
2311     ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
2312     mem_phi->init_req(2, fast_lock_mem_phi);
2313     // region->in(2) is set to fast path - the object is locked to the current thread.
2314 
2315     slow_path->init_req(2, ctrl); // Capture slow-control
2316     slow_mem->init_req(2, fast_lock_mem_phi);
2317 
2318     transform_later(slow_path);
2319     transform_later(slow_mem);
2320     // Reset lock's memory edge.
2321     lock->set_req(TypeFunc::Memory, slow_mem);
2322 
2323   } else {
2324     region  = new RegionNode(3);
2325     // create a Phi for the memory state
2326     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2327 
2328     // Optimize test; set region slot 2
2329     slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
2330     mem_phi->init_req(2, mem);
2331   }
2332 
2333   // Make slow path call
2334   CallNode *call = make_slow_call((CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(),
2335                                   OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path,
2336                                   obj, box, NULL);
2337 
2338   extract_call_projections(call);
2339 
2340   // Slow path can only throw asynchronous exceptions, which are always
2341   // de-opted.  So the compiler thinks the slow-call can never throw an
2342   // exception.  If it DOES throw an exception we would need the debug
2343   // info removed first (since if it throws there is no monitor).
2344   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2345            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2346 
2347   // Capture slow path
2348   // disconnect fall-through projection from call and create a new one
2349   // hook up users of fall-through projection to region
2350   Node *slow_ctrl = _fallthroughproj->clone();
2351   transform_later(slow_ctrl);
2352   _igvn.hash_delete(_fallthroughproj);
2353   _fallthroughproj->disconnect_inputs(NULL, C);
2354   region->init_req(1, slow_ctrl);
2355   // region inputs are now complete
2356   transform_later(region);
2357   _igvn.replace_node(_fallthroughproj, region);
2358 
2359   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory));
2360   mem_phi->init_req(1, memproj );
2361   transform_later(mem_phi);
2362   _igvn.replace_node(_memproj_fallthrough, mem_phi);
2363 }
2364 
2365 //------------------------------expand_unlock_node----------------------
2366 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
2367 
2368   Node* ctrl = unlock->in(TypeFunc::Control);
2369   Node* mem = unlock->in(TypeFunc::Memory);
2370   Node* obj = unlock->obj_node();
2371   Node* box = unlock->box_node();
2372 
2373   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2374 
2375   // No need for a null check on unlock
2376 
2377   // Make the merge point
2378   Node *region;
2379   Node *mem_phi;
2380 
2381   if (UseOptoBiasInlining) {
2382     // Check for biased locking unlock case, which is a no-op.
2383     // See the full description in MacroAssembler::biased_locking_exit().
2384     region  = new RegionNode(4);
2385     // create a Phi for the memory state
2386     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2387     mem_phi->init_req(3, mem);
2388 
2389     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2390     ctrl = opt_bits_test(ctrl, region, 3, mark_node,
2391                          markOopDesc::biased_lock_mask_in_place,
2392                          markOopDesc::biased_lock_pattern);
2393   } else {
2394     region  = new RegionNode(3);
2395     // create a Phi for the memory state
2396     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2397   }
2398 
2399   FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box );
2400   funlock = transform_later( funlock )->as_FastUnlock();
2401   // Optimize test; set region slot 2
2402   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
2403   Node *thread = transform_later(new ThreadLocalNode());
2404 
2405   CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(),
2406                                   CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C),
2407                                   "complete_monitor_unlocking_C", slow_path, obj, box, thread);
2408 
2409   extract_call_projections(call);
2410 
2411   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2412            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2413 
2414   // No exceptions for unlocking
2415   // Capture slow path
2416   // disconnect fall-through projection from call and create a new one
2417   // hook up users of fall-through projection to region
2418   Node *slow_ctrl = _fallthroughproj->clone();
2419   transform_later(slow_ctrl);
2420   _igvn.hash_delete(_fallthroughproj);
2421   _fallthroughproj->disconnect_inputs(NULL, C);
2422   region->init_req(1, slow_ctrl);
2423   // region inputs are now complete
2424   transform_later(region);
2425   _igvn.replace_node(_fallthroughproj, region);
2426 
2427   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) );
2428   mem_phi->init_req(1, memproj );
2429   mem_phi->init_req(2, mem);
2430   transform_later(mem_phi);
2431   _igvn.replace_node(_memproj_fallthrough, mem_phi);
2432 }
2433 
2434 //---------------------------eliminate_macro_nodes----------------------
2435 // Eliminate scalar replaced allocations and associated locks.
2436 void PhaseMacroExpand::eliminate_macro_nodes() {
2437   if (C->macro_count() == 0)
2438     return;
2439 
2440   // First, attempt to eliminate locks
2441   int cnt = C->macro_count();
2442   for (int i=0; i < cnt; i++) {
2443     Node *n = C->macro_node(i);
2444     if (n->is_AbstractLock()) { // Lock and Unlock nodes
2445       // Before elimination mark all associated (same box and obj)
2446       // lock and unlock nodes.
2447       mark_eliminated_locking_nodes(n->as_AbstractLock());
2448     }
2449   }
2450   bool progress = true;
2451   while (progress) {
2452     progress = false;
2453     for (int i = C->macro_count(); i > 0; i--) {
2454       Node * n = C->macro_node(i-1);
2455       bool success = false;
2456       debug_only(int old_macro_count = C->macro_count(););
2457       if (n->is_AbstractLock()) {
2458         success = eliminate_locking_node(n->as_AbstractLock());
2459       }
2460       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2461       progress = progress || success;
2462     }
2463   }
2464   // Next, attempt to eliminate allocations
2465   _has_locks = false;
2466   progress = true;
2467   while (progress) {
2468     progress = false;
2469     for (int i = C->macro_count(); i > 0; i--) {
2470       Node * n = C->macro_node(i-1);
2471       bool success = false;
2472       debug_only(int old_macro_count = C->macro_count(););
2473       switch (n->class_id()) {
2474       case Node::Class_Allocate:
2475       case Node::Class_AllocateArray:
2476         success = eliminate_allocate_node(n->as_Allocate());
2477         break;
2478       case Node::Class_CallStaticJava:
2479         success = eliminate_boxing_node(n->as_CallStaticJava());
2480         break;
2481       case Node::Class_Lock:
2482       case Node::Class_Unlock:
2483         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
2484         _has_locks = true;
2485         break;
2486       case Node::Class_ArrayCopy:
2487         break;
2488       default:
2489         assert(n->Opcode() == Op_LoopLimit ||
2490                n->Opcode() == Op_Opaque1   ||
2491                n->Opcode() == Op_Opaque2   ||
2492                n->Opcode() == Op_Opaque3, "unknown node type in macro list");
2493       }
2494       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2495       progress = progress || success;
2496     }
2497   }
2498 }
2499 
2500 //------------------------------expand_macro_nodes----------------------
2501 //  Returns true if a failure occurred.
2502 bool PhaseMacroExpand::expand_macro_nodes() {
2503   // Last attempt to eliminate macro nodes.
2504   eliminate_macro_nodes();
2505 
2506   // Make sure expansion will not cause node limit to be exceeded.
2507   // Worst case is a macro node gets expanded into about 50 nodes.
2508   // Allow 50% more for optimization.
2509   if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
2510     return true;
2511 
2512   // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
2513   bool progress = true;
2514   while (progress) {
2515     progress = false;
2516     for (int i = C->macro_count(); i > 0; i--) {
2517       Node * n = C->macro_node(i-1);
2518       bool success = false;
2519       debug_only(int old_macro_count = C->macro_count(););
2520       if (n->Opcode() == Op_LoopLimit) {
2521         // Remove it from macro list and put on IGVN worklist to optimize.
2522         C->remove_macro_node(n);
2523         _igvn._worklist.push(n);
2524         success = true;
2525       } else if (n->Opcode() == Op_CallStaticJava) {
2526         // Remove it from macro list and put on IGVN worklist to optimize.
2527         C->remove_macro_node(n);
2528         _igvn._worklist.push(n);
2529         success = true;
2530       } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
2531         _igvn.replace_node(n, n->in(1));
2532         success = true;
2533 #if INCLUDE_RTM_OPT
2534       } else if ((n->Opcode() == Op_Opaque3) && ((Opaque3Node*)n)->rtm_opt()) {
2535         assert(C->profile_rtm(), "should be used only in rtm deoptimization code");
2536         assert((n->outcnt() == 1) && n->unique_out()->is_Cmp(), "");
2537         Node* cmp = n->unique_out();
2538 #ifdef ASSERT
2539         // Validate graph.
2540         assert((cmp->outcnt() == 1) && cmp->unique_out()->is_Bool(), "");
2541         BoolNode* bol = cmp->unique_out()->as_Bool();
2542         assert((bol->outcnt() == 1) && bol->unique_out()->is_If() &&
2543                (bol->_test._test == BoolTest::ne), "");
2544         IfNode* ifn = bol->unique_out()->as_If();
2545         assert((ifn->outcnt() == 2) &&
2546                ifn->proj_out(1)->is_uncommon_trap_proj(Deoptimization::Reason_rtm_state_change), "");
2547 #endif
2548         Node* repl = n->in(1);
2549         if (!_has_locks) {
2550           // Remove RTM state check if there are no locks in the code.
2551           // Replace input to compare the same value.
2552           repl = (cmp->in(1) == n) ? cmp->in(2) : cmp->in(1);
2553         }
2554         _igvn.replace_node(n, repl);
2555         success = true;
2556 #endif
2557       }
2558       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2559       progress = progress || success;
2560     }
2561   }
2562 
2563   // expand arraycopy "macro" nodes first
2564   // For ReduceBulkZeroing, we must first process all arraycopy nodes
2565   // before the allocate nodes are expanded.
2566   int macro_idx = C->macro_count() - 1;
2567   while (macro_idx >= 0) {
2568     Node * n = C->macro_node(macro_idx);
2569     assert(n->is_macro(), "only macro nodes expected here");
2570     if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
2571       // node is unreachable, so don't try to expand it
2572       C->remove_macro_node(n);
2573     } else if (n->is_ArrayCopy()){
2574       int macro_count = C->macro_count();
2575       expand_arraycopy_node(n->as_ArrayCopy());
2576       assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
2577     }
2578     if (C->failing())  return true;
2579     macro_idx --;
2580   }
2581 
2582   // expand "macro" nodes
2583   // nodes are removed from the macro list as they are processed
2584   while (C->macro_count() > 0) {
2585     int macro_count = C->macro_count();
2586     Node * n = C->macro_node(macro_count-1);
2587     assert(n->is_macro(), "only macro nodes expected here");
2588     if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
2589       // node is unreachable, so don't try to expand it
2590       C->remove_macro_node(n);
2591       continue;
2592     }
2593     switch (n->class_id()) {
2594     case Node::Class_Allocate:
2595       expand_allocate(n->as_Allocate());
2596       break;
2597     case Node::Class_AllocateArray:
2598       expand_allocate_array(n->as_AllocateArray());
2599       break;
2600     case Node::Class_Lock:
2601       expand_lock_node(n->as_Lock());
2602       break;
2603     case Node::Class_Unlock:
2604       expand_unlock_node(n->as_Unlock());
2605       break;
2606     default:
2607       assert(false, "unknown node type in macro list");
2608     }
2609     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
2610     if (C->failing())  return true;
2611   }
2612 
2613   _igvn.set_delay_transform(false);
2614   _igvn.optimize();
2615   if (C->failing())  return true;
2616   return false;
2617 }