1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/compilerOracle.hpp"
  37 #include "compiler/oopMap.hpp"
  38 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  39 #include "gc_implementation/g1/heapRegion.hpp"
  40 #include "gc_interface/collectedHeap.hpp"
  41 #include "interpreter/bytecode.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/linkResolver.hpp"
  44 #include "memory/barrierSet.hpp"
  45 #include "memory/gcLocker.inline.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "oops/objArrayKlass.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "opto/ad.hpp"
  50 #include "opto/addnode.hpp"
  51 #include "opto/callnode.hpp"
  52 #include "opto/cfgnode.hpp"
  53 #include "opto/graphKit.hpp"
  54 #include "opto/machnode.hpp"
  55 #include "opto/matcher.hpp"
  56 #include "opto/memnode.hpp"
  57 #include "opto/mulnode.hpp"
  58 #include "opto/runtime.hpp"
  59 #include "opto/subnode.hpp"
  60 #include "runtime/atomic.inline.hpp"
  61 #include "runtime/fprofiler.hpp"
  62 #include "runtime/handles.inline.hpp"
  63 #include "runtime/interfaceSupport.hpp"
  64 #include "runtime/javaCalls.hpp"
  65 #include "runtime/sharedRuntime.hpp"
  66 #include "runtime/signature.hpp"
  67 #include "runtime/threadCritical.hpp"
  68 #include "runtime/vframe.hpp"
  69 #include "runtime/vframeArray.hpp"
  70 #include "runtime/vframe_hp.hpp"
  71 #include "utilities/copy.hpp"
  72 #include "utilities/preserveException.hpp"
  73 
  74 
  75 // For debugging purposes:
  76 //  To force FullGCALot inside a runtime function, add the following two lines
  77 //
  78 //  Universe::release_fullgc_alot_dummy();
  79 //  MarkSweep::invoke(0, "Debugging");
  80 //
  81 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  82 
  83 
  84 
  85 
  86 // Compiled code entry points
  87 address OptoRuntime::_new_instance_Java                           = NULL;
  88 address OptoRuntime::_new_array_Java                              = NULL;
  89 address OptoRuntime::_new_array_nozero_Java                       = NULL;
  90 address OptoRuntime::_multianewarray2_Java                        = NULL;
  91 address OptoRuntime::_multianewarray3_Java                        = NULL;
  92 address OptoRuntime::_multianewarray4_Java                        = NULL;
  93 address OptoRuntime::_multianewarray5_Java                        = NULL;
  94 address OptoRuntime::_multianewarrayN_Java                        = NULL;
  95 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
  96 address OptoRuntime::_g1_wb_post_Java                             = NULL;
  97 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
  98 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
  99 address OptoRuntime::_rethrow_Java                                = NULL;
 100 
 101 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 102 address OptoRuntime::_register_finalizer_Java                     = NULL;
 103 
 104 # ifdef ENABLE_ZAP_DEAD_LOCALS
 105 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
 106 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
 107 # endif
 108 
 109 ExceptionBlob* OptoRuntime::_exception_blob;
 110 
 111 // This should be called in an assertion at the start of OptoRuntime routines
 112 // which are entered from compiled code (all of them)
 113 #ifdef ASSERT
 114 static bool check_compiled_frame(JavaThread* thread) {
 115   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 116   RegisterMap map(thread, false);
 117   frame caller = thread->last_frame().sender(&map);
 118   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 119   return true;
 120 }
 121 #endif // ASSERT
 122 
 123 
 124 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 125   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 126   if (var == NULL) { return false; }
 127 
 128 bool OptoRuntime::generate(ciEnv* env) {
 129 
 130   generate_exception_blob();
 131 
 132   // Note: tls: Means fetching the return oop out of the thread-local storage
 133   //
 134   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 135   // -------------------------------------------------------------------------------------------------------------------------------
 136   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 137   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 138   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 139   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 140   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 141   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 142   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 143   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 144   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 145   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 146   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 147   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 148 
 149   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 150   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 151 
 152 # ifdef ENABLE_ZAP_DEAD_LOCALS
 153   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
 154   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
 155 # endif
 156   return true;
 157 }
 158 
 159 #undef gen
 160 
 161 
 162 // Helper method to do generation of RunTimeStub's
 163 address OptoRuntime::generate_stub( ciEnv* env,
 164                                     TypeFunc_generator gen, address C_function,
 165                                     const char *name, int is_fancy_jump,
 166                                     bool pass_tls,
 167                                     bool save_argument_registers,
 168                                     bool return_pc ) {
 169   ResourceMark rm;
 170   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
 171   return  C.stub_entry_point();
 172 }
 173 
 174 const char* OptoRuntime::stub_name(address entry) {
 175 #ifndef PRODUCT
 176   CodeBlob* cb = CodeCache::find_blob(entry);
 177   RuntimeStub* rs =(RuntimeStub *)cb;
 178   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 179   return rs->name();
 180 #else
 181   // Fast implementation for product mode (maybe it should be inlined too)
 182   return "runtime stub";
 183 #endif
 184 }
 185 
 186 
 187 //=============================================================================
 188 // Opto compiler runtime routines
 189 //=============================================================================
 190 
 191 
 192 //=============================allocation======================================
 193 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 194 // and try allocation again.
 195 
 196 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
 197   // After any safepoint, just before going back to compiled code,
 198   // we inform the GC that we will be doing initializing writes to
 199   // this object in the future without emitting card-marks, so
 200   // GC may take any compensating steps.
 201   // NOTE: Keep this code consistent with GraphKit::store_barrier.
 202 
 203   oop new_obj = thread->vm_result();
 204   if (new_obj == NULL)  return;
 205 
 206   assert(Universe::heap()->can_elide_tlab_store_barriers(),
 207          "compiler must check this first");
 208   // GC may decide to give back a safer copy of new_obj.
 209   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
 210   thread->set_vm_result(new_obj);
 211 }
 212 
 213 // object allocation
 214 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 215   JRT_BLOCK;
 216 #ifndef PRODUCT
 217   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 218 #endif
 219   assert(check_compiled_frame(thread), "incorrect caller");
 220 
 221   // These checks are cheap to make and support reflective allocation.
 222   int lh = klass->layout_helper();
 223   if (Klass::layout_helper_needs_slow_path(lh)
 224       || !InstanceKlass::cast(klass)->is_initialized()) {
 225     KlassHandle kh(THREAD, klass);
 226     kh->check_valid_for_instantiation(false, THREAD);
 227     if (!HAS_PENDING_EXCEPTION) {
 228       InstanceKlass::cast(kh())->initialize(THREAD);
 229     }
 230     if (!HAS_PENDING_EXCEPTION) {
 231       klass = kh();
 232     } else {
 233       klass = NULL;
 234     }
 235   }
 236 
 237   if (klass != NULL) {
 238     // Scavenge and allocate an instance.
 239     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 240     thread->set_vm_result(result);
 241 
 242     // Pass oops back through thread local storage.  Our apparent type to Java
 243     // is that we return an oop, but we can block on exit from this routine and
 244     // a GC can trash the oop in C's return register.  The generated stub will
 245     // fetch the oop from TLS after any possible GC.
 246   }
 247 
 248   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 249   JRT_BLOCK_END;
 250 
 251   if (GraphKit::use_ReduceInitialCardMarks()) {
 252     // inform GC that we won't do card marks for initializing writes.
 253     new_store_pre_barrier(thread);
 254   }
 255 JRT_END
 256 
 257 
 258 // array allocation
 259 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 260   JRT_BLOCK;
 261 #ifndef PRODUCT
 262   SharedRuntime::_new_array_ctr++;            // new array requires GC
 263 #endif
 264   assert(check_compiled_frame(thread), "incorrect caller");
 265 
 266   // Scavenge and allocate an instance.
 267   oop result;
 268 
 269   if (array_type->oop_is_typeArray()) {
 270     // The oopFactory likes to work with the element type.
 271     // (We could bypass the oopFactory, since it doesn't add much value.)
 272     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 273     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 274   } else {
 275     // Although the oopFactory likes to work with the elem_type,
 276     // the compiler prefers the array_type, since it must already have
 277     // that latter value in hand for the fast path.
 278     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 279     result = oopFactory::new_objArray(elem_type, len, THREAD);
 280   }
 281 
 282   // Pass oops back through thread local storage.  Our apparent type to Java
 283   // is that we return an oop, but we can block on exit from this routine and
 284   // a GC can trash the oop in C's return register.  The generated stub will
 285   // fetch the oop from TLS after any possible GC.
 286   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 287   thread->set_vm_result(result);
 288   JRT_BLOCK_END;
 289 
 290   if (GraphKit::use_ReduceInitialCardMarks()) {
 291     // inform GC that we won't do card marks for initializing writes.
 292     new_store_pre_barrier(thread);
 293   }
 294 JRT_END
 295 
 296 // array allocation without zeroing
 297 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 298   JRT_BLOCK;
 299 #ifndef PRODUCT
 300   SharedRuntime::_new_array_ctr++;            // new array requires GC
 301 #endif
 302   assert(check_compiled_frame(thread), "incorrect caller");
 303 
 304   // Scavenge and allocate an instance.
 305   oop result;
 306 
 307   assert(array_type->oop_is_typeArray(), "should be called only for type array");
 308   // The oopFactory likes to work with the element type.
 309   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 310   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 311 
 312   // Pass oops back through thread local storage.  Our apparent type to Java
 313   // is that we return an oop, but we can block on exit from this routine and
 314   // a GC can trash the oop in C's return register.  The generated stub will
 315   // fetch the oop from TLS after any possible GC.
 316   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 317   thread->set_vm_result(result);
 318   JRT_BLOCK_END;
 319 
 320   if (GraphKit::use_ReduceInitialCardMarks()) {
 321     // inform GC that we won't do card marks for initializing writes.
 322     new_store_pre_barrier(thread);
 323   }
 324 
 325   oop result = thread->vm_result();
 326   if ((len > 0) && (result != NULL) &&
 327       is_deoptimized_caller_frame(thread)) {
 328     // Zero array here if the caller is deoptimized.
 329     int size = ((typeArrayOop)result)->object_size();
 330     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 331     const size_t hs = arrayOopDesc::header_size(elem_type);
 332     // Align to next 8 bytes to avoid trashing arrays's length.
 333     const size_t aligned_hs = align_object_offset(hs);
 334     HeapWord* obj = (HeapWord*)result;
 335     if (aligned_hs > hs) {
 336       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 337     }
 338     // Optimized zeroing.
 339     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 340   }
 341 
 342 JRT_END
 343 
 344 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 345 
 346 // multianewarray for 2 dimensions
 347 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 348 #ifndef PRODUCT
 349   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 350 #endif
 351   assert(check_compiled_frame(thread), "incorrect caller");
 352   assert(elem_type->is_klass(), "not a class");
 353   jint dims[2];
 354   dims[0] = len1;
 355   dims[1] = len2;
 356   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 357   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 358   thread->set_vm_result(obj);
 359 JRT_END
 360 
 361 // multianewarray for 3 dimensions
 362 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 363 #ifndef PRODUCT
 364   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 365 #endif
 366   assert(check_compiled_frame(thread), "incorrect caller");
 367   assert(elem_type->is_klass(), "not a class");
 368   jint dims[3];
 369   dims[0] = len1;
 370   dims[1] = len2;
 371   dims[2] = len3;
 372   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 373   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 374   thread->set_vm_result(obj);
 375 JRT_END
 376 
 377 // multianewarray for 4 dimensions
 378 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 379 #ifndef PRODUCT
 380   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 381 #endif
 382   assert(check_compiled_frame(thread), "incorrect caller");
 383   assert(elem_type->is_klass(), "not a class");
 384   jint dims[4];
 385   dims[0] = len1;
 386   dims[1] = len2;
 387   dims[2] = len3;
 388   dims[3] = len4;
 389   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 390   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 391   thread->set_vm_result(obj);
 392 JRT_END
 393 
 394 // multianewarray for 5 dimensions
 395 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 396 #ifndef PRODUCT
 397   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 398 #endif
 399   assert(check_compiled_frame(thread), "incorrect caller");
 400   assert(elem_type->is_klass(), "not a class");
 401   jint dims[5];
 402   dims[0] = len1;
 403   dims[1] = len2;
 404   dims[2] = len3;
 405   dims[3] = len4;
 406   dims[4] = len5;
 407   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 408   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 409   thread->set_vm_result(obj);
 410 JRT_END
 411 
 412 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 413   assert(check_compiled_frame(thread), "incorrect caller");
 414   assert(elem_type->is_klass(), "not a class");
 415   assert(oop(dims)->is_typeArray(), "not an array");
 416 
 417   ResourceMark rm;
 418   jint len = dims->length();
 419   assert(len > 0, "Dimensions array should contain data");
 420   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
 421   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 422   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 423 
 424   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 425   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 426   thread->set_vm_result(obj);
 427 JRT_END
 428 
 429 
 430 const TypeFunc *OptoRuntime::new_instance_Type() {
 431   // create input type (domain)
 432   const Type **fields = TypeTuple::fields(1);
 433   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 434   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 435 
 436   // create result type (range)
 437   fields = TypeTuple::fields(1);
 438   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 439 
 440   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 441 
 442   return TypeFunc::make(domain, range);
 443 }
 444 
 445 
 446 const TypeFunc *OptoRuntime::athrow_Type() {
 447   // create input type (domain)
 448   const Type **fields = TypeTuple::fields(1);
 449   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 450   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 451 
 452   // create result type (range)
 453   fields = TypeTuple::fields(0);
 454 
 455   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 456 
 457   return TypeFunc::make(domain, range);
 458 }
 459 
 460 
 461 const TypeFunc *OptoRuntime::new_array_Type() {
 462   // create input type (domain)
 463   const Type **fields = TypeTuple::fields(2);
 464   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 465   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 466   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 467 
 468   // create result type (range)
 469   fields = TypeTuple::fields(1);
 470   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 471 
 472   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 473 
 474   return TypeFunc::make(domain, range);
 475 }
 476 
 477 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 478   // create input type (domain)
 479   const int nargs = ndim + 1;
 480   const Type **fields = TypeTuple::fields(nargs);
 481   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 482   for( int i = 1; i < nargs; i++ )
 483     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 484   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 485 
 486   // create result type (range)
 487   fields = TypeTuple::fields(1);
 488   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 489   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 490 
 491   return TypeFunc::make(domain, range);
 492 }
 493 
 494 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 495   return multianewarray_Type(2);
 496 }
 497 
 498 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 499   return multianewarray_Type(3);
 500 }
 501 
 502 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 503   return multianewarray_Type(4);
 504 }
 505 
 506 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 507   return multianewarray_Type(5);
 508 }
 509 
 510 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 511   // create input type (domain)
 512   const Type **fields = TypeTuple::fields(2);
 513   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 514   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 515   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 516 
 517   // create result type (range)
 518   fields = TypeTuple::fields(1);
 519   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 520   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 521 
 522   return TypeFunc::make(domain, range);
 523 }
 524 
 525 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 526   const Type **fields = TypeTuple::fields(2);
 527   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 528   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 529   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 530 
 531   // create result type (range)
 532   fields = TypeTuple::fields(0);
 533   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 534 
 535   return TypeFunc::make(domain, range);
 536 }
 537 
 538 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 539 
 540   const Type **fields = TypeTuple::fields(2);
 541   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 542   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 543   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 544 
 545   // create result type (range)
 546   fields = TypeTuple::fields(0);
 547   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 548 
 549   return TypeFunc::make(domain, range);
 550 }
 551 
 552 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 553   // create input type (domain)
 554   const Type **fields = TypeTuple::fields(1);
 555   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 556   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 557 
 558   // create result type (range)
 559   fields = TypeTuple::fields(0);
 560   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 561 
 562   return TypeFunc::make(domain, range);
 563 }
 564 
 565 # ifdef ENABLE_ZAP_DEAD_LOCALS
 566 // Type used for stub generation for zap_dead_locals.
 567 // No inputs or outputs
 568 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
 569   // create input type (domain)
 570   const Type **fields = TypeTuple::fields(0);
 571   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
 572 
 573   // create result type (range)
 574   fields = TypeTuple::fields(0);
 575   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
 576 
 577   return TypeFunc::make(domain,range);
 578 }
 579 # endif
 580 
 581 
 582 //-----------------------------------------------------------------------------
 583 // Monitor Handling
 584 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 585   // create input type (domain)
 586   const Type **fields = TypeTuple::fields(2);
 587   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 588   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 589   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 590 
 591   // create result type (range)
 592   fields = TypeTuple::fields(0);
 593 
 594   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 595 
 596   return TypeFunc::make(domain,range);
 597 }
 598 
 599 
 600 //-----------------------------------------------------------------------------
 601 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 602   // create input type (domain)
 603   const Type **fields = TypeTuple::fields(3);
 604   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 605   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 606   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 607   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
 608 
 609   // create result type (range)
 610   fields = TypeTuple::fields(0);
 611 
 612   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 613 
 614   return TypeFunc::make(domain,range);
 615 }
 616 
 617 const TypeFunc* OptoRuntime::flush_windows_Type() {
 618   // create input type (domain)
 619   const Type** fields = TypeTuple::fields(1);
 620   fields[TypeFunc::Parms+0] = NULL; // void
 621   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 622 
 623   // create result type
 624   fields = TypeTuple::fields(1);
 625   fields[TypeFunc::Parms+0] = NULL; // void
 626   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 627 
 628   return TypeFunc::make(domain, range);
 629 }
 630 
 631 const TypeFunc* OptoRuntime::l2f_Type() {
 632   // create input type (domain)
 633   const Type **fields = TypeTuple::fields(2);
 634   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 635   fields[TypeFunc::Parms+1] = Type::HALF;
 636   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 637 
 638   // create result type (range)
 639   fields = TypeTuple::fields(1);
 640   fields[TypeFunc::Parms+0] = Type::FLOAT;
 641   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 642 
 643   return TypeFunc::make(domain, range);
 644 }
 645 
 646 const TypeFunc* OptoRuntime::modf_Type() {
 647   const Type **fields = TypeTuple::fields(2);
 648   fields[TypeFunc::Parms+0] = Type::FLOAT;
 649   fields[TypeFunc::Parms+1] = Type::FLOAT;
 650   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 651 
 652   // create result type (range)
 653   fields = TypeTuple::fields(1);
 654   fields[TypeFunc::Parms+0] = Type::FLOAT;
 655 
 656   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 657 
 658   return TypeFunc::make(domain, range);
 659 }
 660 
 661 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 662   // create input type (domain)
 663   const Type **fields = TypeTuple::fields(2);
 664   // Symbol* name of class to be loaded
 665   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 666   fields[TypeFunc::Parms+1] = Type::HALF;
 667   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 668 
 669   // create result type (range)
 670   fields = TypeTuple::fields(2);
 671   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 672   fields[TypeFunc::Parms+1] = Type::HALF;
 673   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 674 
 675   return TypeFunc::make(domain, range);
 676 }
 677 
 678 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 679   const Type **fields = TypeTuple::fields(4);
 680   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 681   fields[TypeFunc::Parms+1] = Type::HALF;
 682   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 683   fields[TypeFunc::Parms+3] = Type::HALF;
 684   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 685 
 686   // create result type (range)
 687   fields = TypeTuple::fields(2);
 688   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 689   fields[TypeFunc::Parms+1] = Type::HALF;
 690   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 691 
 692   return TypeFunc::make(domain, range);
 693 }
 694 
 695 //-------------- currentTimeMillis, currentTimeNanos, etc
 696 
 697 const TypeFunc* OptoRuntime::void_long_Type() {
 698   // create input type (domain)
 699   const Type **fields = TypeTuple::fields(0);
 700   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 701 
 702   // create result type (range)
 703   fields = TypeTuple::fields(2);
 704   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 705   fields[TypeFunc::Parms+1] = Type::HALF;
 706   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 707 
 708   return TypeFunc::make(domain, range);
 709 }
 710 
 711 // arraycopy stub variations:
 712 enum ArrayCopyType {
 713   ac_fast,                      // void(ptr, ptr, size_t)
 714   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 715   ac_slow,                      // void(ptr, int, ptr, int, int)
 716   ac_generic                    //  int(ptr, int, ptr, int, int)
 717 };
 718 
 719 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 720   // create input type (domain)
 721   int num_args      = (act == ac_fast ? 3 : 5);
 722   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 723   int argcnt = num_args;
 724   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 725   const Type** fields = TypeTuple::fields(argcnt);
 726   int argp = TypeFunc::Parms;
 727   fields[argp++] = TypePtr::NOTNULL;    // src
 728   if (num_size_args == 0) {
 729     fields[argp++] = TypeInt::INT;      // src_pos
 730   }
 731   fields[argp++] = TypePtr::NOTNULL;    // dest
 732   if (num_size_args == 0) {
 733     fields[argp++] = TypeInt::INT;      // dest_pos
 734     fields[argp++] = TypeInt::INT;      // length
 735   }
 736   while (num_size_args-- > 0) {
 737     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 738     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 739   }
 740   if (act == ac_checkcast) {
 741     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 742   }
 743   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 744   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 745 
 746   // create result type if needed
 747   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 748   fields = TypeTuple::fields(1);
 749   if (retcnt == 0)
 750     fields[TypeFunc::Parms+0] = NULL; // void
 751   else
 752     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 753   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 754   return TypeFunc::make(domain, range);
 755 }
 756 
 757 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 758   // This signature is simple:  Two base pointers and a size_t.
 759   return make_arraycopy_Type(ac_fast);
 760 }
 761 
 762 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 763   // An extension of fast_arraycopy_Type which adds type checking.
 764   return make_arraycopy_Type(ac_checkcast);
 765 }
 766 
 767 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 768   // This signature is exactly the same as System.arraycopy.
 769   // There are no intptr_t (int/long) arguments.
 770   return make_arraycopy_Type(ac_slow);
 771 }
 772 
 773 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 774   // This signature is like System.arraycopy, except that it returns status.
 775   return make_arraycopy_Type(ac_generic);
 776 }
 777 
 778 
 779 const TypeFunc* OptoRuntime::array_fill_Type() {
 780   const Type** fields;
 781   int argp = TypeFunc::Parms;
 782   if (CCallingConventionRequiresIntsAsLongs) {
 783   // create input type (domain): pointer, int, size_t
 784     fields = TypeTuple::fields(3 LP64_ONLY( + 2));
 785     fields[argp++] = TypePtr::NOTNULL;
 786     fields[argp++] = TypeLong::LONG;
 787     fields[argp++] = Type::HALF;
 788   } else {
 789     // create input type (domain): pointer, int, size_t
 790     fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 791     fields[argp++] = TypePtr::NOTNULL;
 792     fields[argp++] = TypeInt::INT;
 793   }
 794   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 795   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 796   const TypeTuple *domain = TypeTuple::make(argp, fields);
 797 
 798   // create result type
 799   fields = TypeTuple::fields(1);
 800   fields[TypeFunc::Parms+0] = NULL; // void
 801   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 802 
 803   return TypeFunc::make(domain, range);
 804 }
 805 
 806 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 807 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 808   // create input type (domain)
 809   int num_args      = 3;
 810   if (Matcher::pass_original_key_for_aes()) {
 811     num_args = 4;
 812   }
 813   int argcnt = num_args;
 814   const Type** fields = TypeTuple::fields(argcnt);
 815   int argp = TypeFunc::Parms;
 816   fields[argp++] = TypePtr::NOTNULL;    // src
 817   fields[argp++] = TypePtr::NOTNULL;    // dest
 818   fields[argp++] = TypePtr::NOTNULL;    // k array
 819   if (Matcher::pass_original_key_for_aes()) {
 820     fields[argp++] = TypePtr::NOTNULL;    // original k array
 821   }
 822   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 823   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 824 
 825   // no result type needed
 826   fields = TypeTuple::fields(1);
 827   fields[TypeFunc::Parms+0] = NULL; // void
 828   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 829   return TypeFunc::make(domain, range);
 830 }
 831 
 832 /**
 833  * int updateBytesCRC32(int crc, byte* b, int len)
 834  */
 835 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 836   // create input type (domain)
 837   int num_args      = 3;
 838   int argcnt = num_args;
 839   const Type** fields = TypeTuple::fields(argcnt);
 840   int argp = TypeFunc::Parms;
 841   fields[argp++] = TypeInt::INT;        // crc
 842   fields[argp++] = TypePtr::NOTNULL;    // src
 843   fields[argp++] = TypeInt::INT;        // len
 844   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 845   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 846 
 847   // result type needed
 848   fields = TypeTuple::fields(1);
 849   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 850   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 851   return TypeFunc::make(domain, range);
 852 }
 853 
 854 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 855 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 856   // create input type (domain)
 857   int num_args      = 5;
 858   if (Matcher::pass_original_key_for_aes()) {
 859     num_args = 6;
 860   }
 861   int argcnt = num_args;
 862   const Type** fields = TypeTuple::fields(argcnt);
 863   int argp = TypeFunc::Parms;
 864   fields[argp++] = TypePtr::NOTNULL;    // src
 865   fields[argp++] = TypePtr::NOTNULL;    // dest
 866   fields[argp++] = TypePtr::NOTNULL;    // k array
 867   fields[argp++] = TypePtr::NOTNULL;    // r array
 868   fields[argp++] = TypeInt::INT;        // src len
 869   if (Matcher::pass_original_key_for_aes()) {
 870     fields[argp++] = TypePtr::NOTNULL;    // original k array
 871   }
 872   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 873   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 874 
 875   // returning cipher len (int)
 876   fields = TypeTuple::fields(1);
 877   fields[TypeFunc::Parms+0] = TypeInt::INT;
 878   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 879   return TypeFunc::make(domain, range);
 880 }
 881 
 882 /*
 883  * void implCompress(byte[] buf, int ofs)
 884  */
 885 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
 886   // create input type (domain)
 887   int num_args = 2;
 888   int argcnt = num_args;
 889   const Type** fields = TypeTuple::fields(argcnt);
 890   int argp = TypeFunc::Parms;
 891   fields[argp++] = TypePtr::NOTNULL; // buf
 892   fields[argp++] = TypePtr::NOTNULL; // state
 893   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 894   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 895 
 896   // no result type needed
 897   fields = TypeTuple::fields(1);
 898   fields[TypeFunc::Parms+0] = NULL; // void
 899   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 900   return TypeFunc::make(domain, range);
 901 }
 902 
 903 /*
 904  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
 905  */
 906 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
 907   // create input type (domain)
 908   int num_args = 4;
 909   int argcnt = num_args;
 910   const Type** fields = TypeTuple::fields(argcnt);
 911   int argp = TypeFunc::Parms;
 912   fields[argp++] = TypePtr::NOTNULL; // buf
 913   fields[argp++] = TypePtr::NOTNULL; // state
 914   fields[argp++] = TypeInt::INT;     // ofs
 915   fields[argp++] = TypeInt::INT;     // limit
 916   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 917   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 918 
 919   // returning ofs (int)
 920   fields = TypeTuple::fields(1);
 921   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
 922   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 923   return TypeFunc::make(domain, range);
 924 }
 925 
 926 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
 927   // create input type (domain)
 928   int num_args      = 6;
 929   int argcnt = num_args;
 930   const Type** fields = TypeTuple::fields(argcnt);
 931   int argp = TypeFunc::Parms;
 932   fields[argp++] = TypePtr::NOTNULL;    // x
 933   fields[argp++] = TypeInt::INT;        // xlen
 934   fields[argp++] = TypePtr::NOTNULL;    // y
 935   fields[argp++] = TypeInt::INT;        // ylen
 936   fields[argp++] = TypePtr::NOTNULL;    // z
 937   fields[argp++] = TypeInt::INT;        // zlen
 938   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 939   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 940 
 941   // no result type needed
 942   fields = TypeTuple::fields(1);
 943   fields[TypeFunc::Parms+0] = NULL;
 944   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 945   return TypeFunc::make(domain, range);
 946 }
 947 
 948 
 949 
 950 //------------- Interpreter state access for on stack replacement
 951 const TypeFunc* OptoRuntime::osr_end_Type() {
 952   // create input type (domain)
 953   const Type **fields = TypeTuple::fields(1);
 954   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
 955   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 956 
 957   // create result type
 958   fields = TypeTuple::fields(1);
 959   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
 960   fields[TypeFunc::Parms+0] = NULL; // void
 961   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 962   return TypeFunc::make(domain, range);
 963 }
 964 
 965 //-------------- methodData update helpers
 966 
 967 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
 968   // create input type (domain)
 969   const Type **fields = TypeTuple::fields(2);
 970   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
 971   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
 972   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 973 
 974   // create result type
 975   fields = TypeTuple::fields(1);
 976   fields[TypeFunc::Parms+0] = NULL; // void
 977   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 978   return TypeFunc::make(domain,range);
 979 }
 980 
 981 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
 982   if (receiver == NULL) return;
 983   Klass* receiver_klass = receiver->klass();
 984 
 985   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
 986   int empty_row = -1;           // free row, if any is encountered
 987 
 988   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
 989   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
 990     // if (vc->receiver(row) == receiver_klass)
 991     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
 992     intptr_t row_recv = *(mdp + receiver_off);
 993     if (row_recv == (intptr_t) receiver_klass) {
 994       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
 995       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
 996       *(mdp + count_off) += DataLayout::counter_increment;
 997       return;
 998     } else if (row_recv == 0) {
 999       // else if (vc->receiver(row) == NULL)
1000       empty_row = (int) row;
1001     }
1002   }
1003 
1004   if (empty_row != -1) {
1005     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1006     // vc->set_receiver(empty_row, receiver_klass);
1007     *(mdp + receiver_off) = (intptr_t) receiver_klass;
1008     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1009     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1010     *(mdp + count_off) = DataLayout::counter_increment;
1011   } else {
1012     // Receiver did not match any saved receiver and there is no empty row for it.
1013     // Increment total counter to indicate polymorphic case.
1014     intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
1015     *count_p += DataLayout::counter_increment;
1016   }
1017 JRT_END
1018 
1019 //-------------------------------------------------------------------------------------
1020 // register policy
1021 
1022 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1023   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1024   switch (register_save_policy[reg]) {
1025     case 'C': return false; //SOC
1026     case 'E': return true ; //SOE
1027     case 'N': return false; //NS
1028     case 'A': return false; //AS
1029   }
1030   ShouldNotReachHere();
1031   return false;
1032 }
1033 
1034 //-----------------------------------------------------------------------
1035 // Exceptions
1036 //
1037 
1038 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
1039 
1040 // The method is an entry that is always called by a C++ method not
1041 // directly from compiled code. Compiled code will call the C++ method following.
1042 // We can't allow async exception to be installed during  exception processing.
1043 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1044 
1045   // Do not confuse exception_oop with pending_exception. The exception_oop
1046   // is only used to pass arguments into the method. Not for general
1047   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1048   // the runtime stubs checks this on exit.
1049   assert(thread->exception_oop() != NULL, "exception oop is found");
1050   address handler_address = NULL;
1051 
1052   Handle exception(thread, thread->exception_oop());
1053   address pc = thread->exception_pc();
1054 
1055   // Clear out the exception oop and pc since looking up an
1056   // exception handler can cause class loading, which might throw an
1057   // exception and those fields are expected to be clear during
1058   // normal bytecode execution.
1059   thread->clear_exception_oop_and_pc();
1060 
1061   if (TraceExceptions) {
1062     trace_exception(exception(), pc, "");
1063   }
1064 
1065   // for AbortVMOnException flag
1066   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
1067 
1068 #ifdef ASSERT
1069   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1070     // should throw an exception here
1071     ShouldNotReachHere();
1072   }
1073 #endif
1074 
1075   // new exception handling: this method is entered only from adapters
1076   // exceptions from compiled java methods are handled in compiled code
1077   // using rethrow node
1078 
1079   nm = CodeCache::find_nmethod(pc);
1080   assert(nm != NULL, "No NMethod found");
1081   if (nm->is_native_method()) {
1082     fatal("Native method should not have path to exception handling");
1083   } else {
1084     // we are switching to old paradigm: search for exception handler in caller_frame
1085     // instead in exception handler of caller_frame.sender()
1086 
1087     if (JvmtiExport::can_post_on_exceptions()) {
1088       // "Full-speed catching" is not necessary here,
1089       // since we're notifying the VM on every catch.
1090       // Force deoptimization and the rest of the lookup
1091       // will be fine.
1092       deoptimize_caller_frame(thread);
1093     }
1094 
1095     // Check the stack guard pages.  If enabled, look for handler in this frame;
1096     // otherwise, forcibly unwind the frame.
1097     //
1098     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1099     bool force_unwind = !thread->reguard_stack();
1100     bool deopting = false;
1101     if (nm->is_deopt_pc(pc)) {
1102       deopting = true;
1103       RegisterMap map(thread, false);
1104       frame deoptee = thread->last_frame().sender(&map);
1105       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1106       // Adjust the pc back to the original throwing pc
1107       pc = deoptee.pc();
1108     }
1109 
1110     // If we are forcing an unwind because of stack overflow then deopt is
1111     // irrelevant since we are throwing the frame away anyway.
1112 
1113     if (deopting && !force_unwind) {
1114       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1115     } else {
1116 
1117       handler_address =
1118         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1119 
1120       if (handler_address == NULL) {
1121         Handle original_exception(thread, exception());
1122         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
1123         assert (handler_address != NULL, "must have compiled handler");
1124         // Update the exception cache only when the unwind was not forced
1125         // and there didn't happen another exception during the computation of the
1126         // compiled exception handler.
1127         if (!force_unwind && original_exception() == exception()) {
1128           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1129         }
1130       } else {
1131         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
1132       }
1133     }
1134 
1135     thread->set_exception_pc(pc);
1136     thread->set_exception_handler_pc(handler_address);
1137 
1138     // Check if the exception PC is a MethodHandle call site.
1139     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1140   }
1141 
1142   // Restore correct return pc.  Was saved above.
1143   thread->set_exception_oop(exception());
1144   return handler_address;
1145 
1146 JRT_END
1147 
1148 // We are entering here from exception_blob
1149 // If there is a compiled exception handler in this method, we will continue there;
1150 // otherwise we will unwind the stack and continue at the caller of top frame method
1151 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1152 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1153 // we looked up the handler for has been deoptimized in the meantime. If it has been
1154 // we must not use the handler and instead return the deopt blob.
1155 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1156 //
1157 // We are in Java not VM and in debug mode we have a NoHandleMark
1158 //
1159 #ifndef PRODUCT
1160   SharedRuntime::_find_handler_ctr++;          // find exception handler
1161 #endif
1162   debug_only(NoHandleMark __hm;)
1163   nmethod* nm = NULL;
1164   address handler_address = NULL;
1165   {
1166     // Enter the VM
1167 
1168     ResetNoHandleMark rnhm;
1169     handler_address = handle_exception_C_helper(thread, nm);
1170   }
1171 
1172   // Back in java: Use no oops, DON'T safepoint
1173 
1174   // Now check to see if the handler we are returning is in a now
1175   // deoptimized frame
1176 
1177   if (nm != NULL) {
1178     RegisterMap map(thread, false);
1179     frame caller = thread->last_frame().sender(&map);
1180 #ifdef ASSERT
1181     assert(caller.is_compiled_frame(), "must be");
1182 #endif // ASSERT
1183     if (caller.is_deoptimized_frame()) {
1184       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1185     }
1186   }
1187   return handler_address;
1188 }
1189 
1190 //------------------------------rethrow----------------------------------------
1191 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1192 // is either throwing or rethrowing an exception.  The callee-save registers
1193 // have been restored, synchronized objects have been unlocked and the callee
1194 // stack frame has been removed.  The return address was passed in.
1195 // Exception oop is passed as the 1st argument.  This routine is then called
1196 // from the stub.  On exit, we know where to jump in the caller's code.
1197 // After this C code exits, the stub will pop his frame and end in a jump
1198 // (instead of a return).  We enter the caller's default handler.
1199 //
1200 // This must be JRT_LEAF:
1201 //     - caller will not change its state as we cannot block on exit,
1202 //       therefore raw_exception_handler_for_return_address is all it takes
1203 //       to handle deoptimized blobs
1204 //
1205 // However, there needs to be a safepoint check in the middle!  So compiled
1206 // safepoints are completely watertight.
1207 //
1208 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1209 //
1210 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1211 //
1212 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1213 #ifndef PRODUCT
1214   SharedRuntime::_rethrow_ctr++;               // count rethrows
1215 #endif
1216   assert (exception != NULL, "should have thrown a NULLPointerException");
1217 #ifdef ASSERT
1218   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1219     // should throw an exception here
1220     ShouldNotReachHere();
1221   }
1222 #endif
1223 
1224   thread->set_vm_result(exception);
1225   // Frame not compiled (handles deoptimization blob)
1226   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1227 }
1228 
1229 
1230 const TypeFunc *OptoRuntime::rethrow_Type() {
1231   // create input type (domain)
1232   const Type **fields = TypeTuple::fields(1);
1233   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1234   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1235 
1236   // create result type (range)
1237   fields = TypeTuple::fields(1);
1238   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1239   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1240 
1241   return TypeFunc::make(domain, range);
1242 }
1243 
1244 
1245 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1246   // Deoptimize the caller before continuing, as the compiled
1247   // exception handler table may not be valid.
1248   if (!StressCompiledExceptionHandlers && doit) {
1249     deoptimize_caller_frame(thread);
1250   }
1251 }
1252 
1253 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1254   // Called from within the owner thread, so no need for safepoint
1255   RegisterMap reg_map(thread);
1256   frame stub_frame = thread->last_frame();
1257   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1258   frame caller_frame = stub_frame.sender(&reg_map);
1259 
1260   // Deoptimize the caller frame.
1261   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1262 }
1263 
1264 
1265 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1266   // Called from within the owner thread, so no need for safepoint
1267   RegisterMap reg_map(thread);
1268   frame stub_frame = thread->last_frame();
1269   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1270   frame caller_frame = stub_frame.sender(&reg_map);
1271   return caller_frame.is_deoptimized_frame();
1272 }
1273 
1274 
1275 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1276   // create input type (domain)
1277   const Type **fields = TypeTuple::fields(1);
1278   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1279   // // The JavaThread* is passed to each routine as the last argument
1280   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1281   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1282 
1283   // create result type (range)
1284   fields = TypeTuple::fields(0);
1285 
1286   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1287 
1288   return TypeFunc::make(domain,range);
1289 }
1290 
1291 
1292 //-----------------------------------------------------------------------------
1293 // Dtrace support.  entry and exit probes have the same signature
1294 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1295   // create input type (domain)
1296   const Type **fields = TypeTuple::fields(2);
1297   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1298   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1299   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1300 
1301   // create result type (range)
1302   fields = TypeTuple::fields(0);
1303 
1304   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1305 
1306   return TypeFunc::make(domain,range);
1307 }
1308 
1309 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1310   // create input type (domain)
1311   const Type **fields = TypeTuple::fields(2);
1312   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1313   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1314 
1315   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1316 
1317   // create result type (range)
1318   fields = TypeTuple::fields(0);
1319 
1320   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1321 
1322   return TypeFunc::make(domain,range);
1323 }
1324 
1325 
1326 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1327   assert(obj->is_oop(), "must be a valid oop");
1328   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1329   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1330 JRT_END
1331 
1332 //-----------------------------------------------------------------------------
1333 
1334 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1335 
1336 //
1337 // dump the collected NamedCounters.
1338 //
1339 void OptoRuntime::print_named_counters() {
1340   int total_lock_count = 0;
1341   int eliminated_lock_count = 0;
1342 
1343   NamedCounter* c = _named_counters;
1344   while (c) {
1345     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1346       int count = c->count();
1347       if (count > 0) {
1348         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1349         if (Verbose) {
1350           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1351         }
1352         total_lock_count += count;
1353         if (eliminated) {
1354           eliminated_lock_count += count;
1355         }
1356       }
1357     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1358       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1359       if (blc->nonzero()) {
1360         tty->print_cr("%s", c->name());
1361         blc->print_on(tty);
1362       }
1363 #if INCLUDE_RTM_OPT
1364     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1365       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1366       if (rlc->nonzero()) {
1367         tty->print_cr("%s", c->name());
1368         rlc->print_on(tty);
1369       }
1370 #endif
1371     }
1372     c = c->next();
1373   }
1374   if (total_lock_count > 0) {
1375     tty->print_cr("dynamic locks: %d", total_lock_count);
1376     if (eliminated_lock_count) {
1377       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1378                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1379     }
1380   }
1381 }
1382 
1383 //
1384 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1385 //  name which consists of method@line for the inlining tree.
1386 //
1387 
1388 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1389   int max_depth = youngest_jvms->depth();
1390 
1391   // Visit scopes from youngest to oldest.
1392   bool first = true;
1393   stringStream st;
1394   for (int depth = max_depth; depth >= 1; depth--) {
1395     JVMState* jvms = youngest_jvms->of_depth(depth);
1396     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1397     if (!first) {
1398       st.print(" ");
1399     } else {
1400       first = false;
1401     }
1402     int bci = jvms->bci();
1403     if (bci < 0) bci = 0;
1404     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1405     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1406   }
1407   NamedCounter* c;
1408   if (tag == NamedCounter::BiasedLockingCounter) {
1409     c = new BiasedLockingNamedCounter(st.as_string());
1410   } else if (tag == NamedCounter::RTMLockingCounter) {
1411     c = new RTMLockingNamedCounter(st.as_string());
1412   } else {
1413     c = new NamedCounter(st.as_string(), tag);
1414   }
1415 
1416   // atomically add the new counter to the head of the list.  We only
1417   // add counters so this is safe.
1418   NamedCounter* head;
1419   do {
1420     c->set_next(NULL);
1421     head = _named_counters;
1422     c->set_next(head);
1423   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1424   return c;
1425 }
1426 
1427 //-----------------------------------------------------------------------------
1428 // Non-product code
1429 #ifndef PRODUCT
1430 
1431 int trace_exception_counter = 0;
1432 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1433   ttyLocker ttyl;
1434   trace_exception_counter++;
1435   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1436   exception_oop->print_value();
1437   tty->print(" in ");
1438   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1439   if (blob->is_nmethod()) {
1440     nmethod* nm = blob->as_nmethod_or_null();
1441     nm->method()->print_value();
1442   } else if (blob->is_runtime_stub()) {
1443     tty->print("<runtime-stub>");
1444   } else {
1445     tty->print("<unknown>");
1446   }
1447   tty->print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1448   tty->print_cr("]");
1449 }
1450 
1451 #endif  // PRODUCT
1452 
1453 
1454 # ifdef ENABLE_ZAP_DEAD_LOCALS
1455 // Called from call sites in compiled code with oop maps (actually safepoints)
1456 // Zaps dead locals in first java frame.
1457 // Is entry because may need to lock to generate oop maps
1458 // Currently, only used for compiler frames, but someday may be used
1459 // for interpreter frames, too.
1460 
1461 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
1462 
1463 // avoid pointers to member funcs with these helpers
1464 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
1465 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
1466 
1467 
1468 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
1469                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
1470   assert(JavaThread::current() == thread, "is this needed?");
1471 
1472   if ( !ZapDeadCompiledLocals )  return;
1473 
1474   bool skip = false;
1475 
1476        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
1477   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
1478   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
1479     warning("starting zapping after skipping");
1480 
1481        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
1482   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
1483   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
1484     warning("about to zap last zap");
1485 
1486   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
1487 
1488   if ( skip )  return;
1489 
1490   // find java frame and zap it
1491 
1492   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
1493     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
1494       sfs.current()->zap_dead_locals(thread, sfs.register_map());
1495       return;
1496     }
1497   }
1498   warning("no frame found to zap in zap_dead_Java_locals_C");
1499 }
1500 
1501 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
1502   zap_dead_java_or_native_locals(thread, is_java_frame);
1503 JRT_END
1504 
1505 // The following does not work because for one thing, the
1506 // thread state is wrong; it expects java, but it is native.
1507 // Also, the invariants in a native stub are different and
1508 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
1509 // in there.
1510 // So for now, we do not zap in native stubs.
1511 
1512 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
1513   zap_dead_java_or_native_locals(thread, is_native_frame);
1514 JRT_END
1515 
1516 # endif