1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/callGenerator.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/convertnode.hpp"
  38 #include "opto/countbitsnode.hpp"
  39 #include "opto/intrinsicnode.hpp"
  40 #include "opto/idealKit.hpp"
  41 #include "opto/mathexactnode.hpp"
  42 #include "opto/movenode.hpp"
  43 #include "opto/mulnode.hpp"
  44 #include "opto/narrowptrnode.hpp"
  45 #include "opto/opaquenode.hpp"
  46 #include "opto/parse.hpp"
  47 #include "opto/runtime.hpp"
  48 #include "opto/subnode.hpp"
  49 #include "prims/nativeLookup.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "trace/traceMacros.hpp"
  52 
  53 class LibraryIntrinsic : public InlineCallGenerator {
  54   // Extend the set of intrinsics known to the runtime:
  55  public:
  56  private:
  57   bool             _is_virtual;
  58   bool             _does_virtual_dispatch;
  59   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  60   int8_t           _last_predicate; // Last generated predicate
  61   vmIntrinsics::ID _intrinsic_id;
  62 
  63  public:
  64   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  65     : InlineCallGenerator(m),
  66       _is_virtual(is_virtual),
  67       _does_virtual_dispatch(does_virtual_dispatch),
  68       _predicates_count((int8_t)predicates_count),
  69       _last_predicate((int8_t)-1),
  70       _intrinsic_id(id)
  71   {
  72   }
  73   virtual bool is_intrinsic() const { return true; }
  74   virtual bool is_virtual()   const { return _is_virtual; }
  75   virtual bool is_predicated() const { return _predicates_count > 0; }
  76   virtual int  predicates_count() const { return _predicates_count; }
  77   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  78   virtual JVMState* generate(JVMState* jvms);
  79   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  80   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  81 };
  82 
  83 
  84 // Local helper class for LibraryIntrinsic:
  85 class LibraryCallKit : public GraphKit {
  86  private:
  87   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  88   Node*             _result;        // the result node, if any
  89   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  90 
  91   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  92 
  93  public:
  94   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  95     : GraphKit(jvms),
  96       _intrinsic(intrinsic),
  97       _result(NULL)
  98   {
  99     // Check if this is a root compile.  In that case we don't have a caller.
 100     if (!jvms->has_method()) {
 101       _reexecute_sp = sp();
 102     } else {
 103       // Find out how many arguments the interpreter needs when deoptimizing
 104       // and save the stack pointer value so it can used by uncommon_trap.
 105       // We find the argument count by looking at the declared signature.
 106       bool ignored_will_link;
 107       ciSignature* declared_signature = NULL;
 108       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 109       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 110       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 111     }
 112   }
 113 
 114   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 115 
 116   ciMethod*         caller()    const    { return jvms()->method(); }
 117   int               bci()       const    { return jvms()->bci(); }
 118   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 119   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 120   ciMethod*         callee()    const    { return _intrinsic->method(); }
 121 
 122   bool  try_to_inline(int predicate);
 123   Node* try_to_predicate(int predicate);
 124 
 125   void push_result() {
 126     // Push the result onto the stack.
 127     if (!stopped() && result() != NULL) {
 128       BasicType bt = result()->bottom_type()->basic_type();
 129       push_node(bt, result());
 130     }
 131   }
 132 
 133  private:
 134   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 135     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 136   }
 137 
 138   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 139   void  set_result(RegionNode* region, PhiNode* value);
 140   Node*     result() { return _result; }
 141 
 142   virtual int reexecute_sp() { return _reexecute_sp; }
 143 
 144   // Helper functions to inline natives
 145   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 146   Node* generate_slow_guard(Node* test, RegionNode* region);
 147   Node* generate_fair_guard(Node* test, RegionNode* region);
 148   Node* generate_negative_guard(Node* index, RegionNode* region,
 149                                 // resulting CastII of index:
 150                                 Node* *pos_index = NULL);
 151   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 152                              Node* array_length,
 153                              RegionNode* region);
 154   Node* generate_current_thread(Node* &tls_output);
 155   Node* load_mirror_from_klass(Node* klass);
 156   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 157                                       RegionNode* region, int null_path,
 158                                       int offset);
 159   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 160                                RegionNode* region, int null_path) {
 161     int offset = java_lang_Class::klass_offset_in_bytes();
 162     return load_klass_from_mirror_common(mirror, never_see_null,
 163                                          region, null_path,
 164                                          offset);
 165   }
 166   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 167                                      RegionNode* region, int null_path) {
 168     int offset = java_lang_Class::array_klass_offset_in_bytes();
 169     return load_klass_from_mirror_common(mirror, never_see_null,
 170                                          region, null_path,
 171                                          offset);
 172   }
 173   Node* generate_access_flags_guard(Node* kls,
 174                                     int modifier_mask, int modifier_bits,
 175                                     RegionNode* region);
 176   Node* generate_interface_guard(Node* kls, RegionNode* region);
 177   Node* generate_array_guard(Node* kls, RegionNode* region) {
 178     return generate_array_guard_common(kls, region, false, false);
 179   }
 180   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 181     return generate_array_guard_common(kls, region, false, true);
 182   }
 183   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 184     return generate_array_guard_common(kls, region, true, false);
 185   }
 186   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 187     return generate_array_guard_common(kls, region, true, true);
 188   }
 189   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 190                                     bool obj_array, bool not_array);
 191   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 192   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 193                                      bool is_virtual = false, bool is_static = false);
 194   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 195     return generate_method_call(method_id, false, true);
 196   }
 197   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 198     return generate_method_call(method_id, true, false);
 199   }
 200   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 201 
 202   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 203   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 204   bool inline_string_compareTo();
 205   bool inline_string_indexOf();
 206   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 207   bool inline_string_equals();
 208   Node* round_double_node(Node* n);
 209   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 210   bool inline_math_native(vmIntrinsics::ID id);
 211   bool inline_trig(vmIntrinsics::ID id);
 212   bool inline_math(vmIntrinsics::ID id);
 213   template <typename OverflowOp>
 214   bool inline_math_overflow(Node* arg1, Node* arg2);
 215   void inline_math_mathExact(Node* math, Node* test);
 216   bool inline_math_addExactI(bool is_increment);
 217   bool inline_math_addExactL(bool is_increment);
 218   bool inline_math_multiplyExactI();
 219   bool inline_math_multiplyExactL();
 220   bool inline_math_negateExactI();
 221   bool inline_math_negateExactL();
 222   bool inline_math_subtractExactI(bool is_decrement);
 223   bool inline_math_subtractExactL(bool is_decrement);
 224   bool inline_exp();
 225   bool inline_pow();
 226   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 227   bool inline_min_max(vmIntrinsics::ID id);
 228   bool inline_notify(vmIntrinsics::ID id);
 229   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 230   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 231   int classify_unsafe_addr(Node* &base, Node* &offset);
 232   Node* make_unsafe_address(Node* base, Node* offset);
 233   // Helper for inline_unsafe_access.
 234   // Generates the guards that check whether the result of
 235   // Unsafe.getObject should be recorded in an SATB log buffer.
 236   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 237   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 238   static bool klass_needs_init_guard(Node* kls);
 239   bool inline_unsafe_allocate();
 240   bool inline_unsafe_copyMemory();
 241   bool inline_native_currentThread();
 242 #ifdef TRACE_HAVE_INTRINSICS
 243   bool inline_native_classID();
 244   bool inline_native_threadID();
 245 #endif
 246   bool inline_native_time_funcs(address method, const char* funcName);
 247   bool inline_native_isInterrupted();
 248   bool inline_native_Class_query(vmIntrinsics::ID id);
 249   bool inline_native_subtype_check();
 250 
 251   bool inline_native_newArray();
 252   bool inline_native_getLength();
 253   bool inline_array_copyOf(bool is_copyOfRange);
 254   bool inline_array_equals();
 255   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 256   bool inline_native_clone(bool is_virtual);
 257   bool inline_native_Reflection_getCallerClass();
 258   // Helper function for inlining native object hash method
 259   bool inline_native_hashcode(bool is_virtual, bool is_static);
 260   bool inline_native_getClass();
 261 
 262   // Helper functions for inlining arraycopy
 263   bool inline_arraycopy();
 264   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 265                                                 RegionNode* slow_region);
 266   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 267   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp);
 268 
 269   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 270   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 271   bool inline_unsafe_ordered_store(BasicType type);
 272   bool inline_unsafe_fence(vmIntrinsics::ID id);
 273   bool inline_fp_conversions(vmIntrinsics::ID id);
 274   bool inline_number_methods(vmIntrinsics::ID id);
 275   bool inline_reference_get();
 276   bool inline_Class_cast();
 277   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 278   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 279   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 280   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 281   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 282   bool inline_sha_implCompress(vmIntrinsics::ID id);
 283   bool inline_digestBase_implCompressMB(int predicate);
 284   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 285                                  bool long_state, address stubAddr, const char *stubName,
 286                                  Node* src_start, Node* ofs, Node* limit);
 287   Node* get_state_from_sha_object(Node *sha_object);
 288   Node* get_state_from_sha5_object(Node *sha_object);
 289   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 290   bool inline_encodeISOArray();
 291   bool inline_updateCRC32();
 292   bool inline_updateBytesCRC32();
 293   bool inline_updateByteBufferCRC32();
 294   bool inline_multiplyToLen();
 295 
 296   bool inline_profileBoolean();
 297   bool inline_isCompileConstant();
 298 };
 299 
 300 
 301 //---------------------------make_vm_intrinsic----------------------------
 302 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 303   vmIntrinsics::ID id = m->intrinsic_id();
 304   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 305 
 306   ccstr disable_intr = NULL;
 307 
 308   if ((DisableIntrinsic[0] != '\0'
 309        && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) ||
 310       (method_has_option_value("DisableIntrinsic", disable_intr)
 311        && strstr(disable_intr, vmIntrinsics::name_at(id)) != NULL)) {
 312     // disabled by a user request on the command line:
 313     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 314     return NULL;
 315   }
 316 
 317   if (!m->is_loaded()) {
 318     // do not attempt to inline unloaded methods
 319     return NULL;
 320   }
 321 
 322   // Only a few intrinsics implement a virtual dispatch.
 323   // They are expensive calls which are also frequently overridden.
 324   if (is_virtual) {
 325     switch (id) {
 326     case vmIntrinsics::_hashCode:
 327     case vmIntrinsics::_clone:
 328       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 329       break;
 330     default:
 331       return NULL;
 332     }
 333   }
 334 
 335   // -XX:-InlineNatives disables nearly all intrinsics:
 336   if (!InlineNatives) {
 337     switch (id) {
 338     case vmIntrinsics::_indexOf:
 339     case vmIntrinsics::_compareTo:
 340     case vmIntrinsics::_equals:
 341     case vmIntrinsics::_equalsC:
 342     case vmIntrinsics::_getAndAddInt:
 343     case vmIntrinsics::_getAndAddLong:
 344     case vmIntrinsics::_getAndSetInt:
 345     case vmIntrinsics::_getAndSetLong:
 346     case vmIntrinsics::_getAndSetObject:
 347     case vmIntrinsics::_loadFence:
 348     case vmIntrinsics::_storeFence:
 349     case vmIntrinsics::_fullFence:
 350       break;  // InlineNatives does not control String.compareTo
 351     case vmIntrinsics::_Reference_get:
 352       break;  // InlineNatives does not control Reference.get
 353     default:
 354       return NULL;
 355     }
 356   }
 357 
 358   int predicates = 0;
 359   bool does_virtual_dispatch = false;
 360 
 361   switch (id) {
 362   case vmIntrinsics::_compareTo:
 363     if (!SpecialStringCompareTo)  return NULL;
 364     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 365     break;
 366   case vmIntrinsics::_indexOf:
 367     if (!SpecialStringIndexOf)  return NULL;
 368     break;
 369   case vmIntrinsics::_equals:
 370     if (!SpecialStringEquals)  return NULL;
 371     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 372     break;
 373   case vmIntrinsics::_equalsC:
 374     if (!SpecialArraysEquals)  return NULL;
 375     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 376     break;
 377   case vmIntrinsics::_arraycopy:
 378     if (!InlineArrayCopy)  return NULL;
 379     break;
 380   case vmIntrinsics::_copyMemory:
 381     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 382     if (!InlineArrayCopy)  return NULL;
 383     break;
 384   case vmIntrinsics::_hashCode:
 385     if (!InlineObjectHash)  return NULL;
 386     does_virtual_dispatch = true;
 387     break;
 388   case vmIntrinsics::_clone:
 389     does_virtual_dispatch = true;
 390   case vmIntrinsics::_copyOf:
 391   case vmIntrinsics::_copyOfRange:
 392     if (!InlineObjectCopy)  return NULL;
 393     // These also use the arraycopy intrinsic mechanism:
 394     if (!InlineArrayCopy)  return NULL;
 395     break;
 396   case vmIntrinsics::_encodeISOArray:
 397     if (!SpecialEncodeISOArray)  return NULL;
 398     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 399     break;
 400   case vmIntrinsics::_checkIndex:
 401     // We do not intrinsify this.  The optimizer does fine with it.
 402     return NULL;
 403 
 404   case vmIntrinsics::_getCallerClass:
 405     if (!InlineReflectionGetCallerClass)  return NULL;
 406     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 407     break;
 408 
 409   case vmIntrinsics::_bitCount_i:
 410     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 411     break;
 412 
 413   case vmIntrinsics::_bitCount_l:
 414     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 415     break;
 416 
 417   case vmIntrinsics::_numberOfLeadingZeros_i:
 418     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 419     break;
 420 
 421   case vmIntrinsics::_numberOfLeadingZeros_l:
 422     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 423     break;
 424 
 425   case vmIntrinsics::_numberOfTrailingZeros_i:
 426     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 427     break;
 428 
 429   case vmIntrinsics::_numberOfTrailingZeros_l:
 430     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 431     break;
 432 
 433   case vmIntrinsics::_reverseBytes_c:
 434     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 435     break;
 436   case vmIntrinsics::_reverseBytes_s:
 437     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 438     break;
 439   case vmIntrinsics::_reverseBytes_i:
 440     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 441     break;
 442   case vmIntrinsics::_reverseBytes_l:
 443     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 444     break;
 445 
 446   case vmIntrinsics::_Reference_get:
 447     // Use the intrinsic version of Reference.get() so that the value in
 448     // the referent field can be registered by the G1 pre-barrier code.
 449     // Also add memory barrier to prevent commoning reads from this field
 450     // across safepoint since GC can change it value.
 451     break;
 452 
 453   case vmIntrinsics::_compareAndSwapObject:
 454 #ifdef _LP64
 455     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 456 #endif
 457     break;
 458 
 459   case vmIntrinsics::_compareAndSwapLong:
 460     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 461     break;
 462 
 463   case vmIntrinsics::_getAndAddInt:
 464     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 465     break;
 466 
 467   case vmIntrinsics::_getAndAddLong:
 468     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 469     break;
 470 
 471   case vmIntrinsics::_getAndSetInt:
 472     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 473     break;
 474 
 475   case vmIntrinsics::_getAndSetLong:
 476     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 477     break;
 478 
 479   case vmIntrinsics::_getAndSetObject:
 480 #ifdef _LP64
 481     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 482     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 483     break;
 484 #else
 485     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 486     break;
 487 #endif
 488 
 489   case vmIntrinsics::_aescrypt_encryptBlock:
 490   case vmIntrinsics::_aescrypt_decryptBlock:
 491     if (!UseAESIntrinsics) return NULL;
 492     break;
 493 
 494   case vmIntrinsics::_multiplyToLen:
 495     if (!UseMultiplyToLenIntrinsic) return NULL;
 496     break;
 497 
 498   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 499   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 500     if (!UseAESIntrinsics) return NULL;
 501     // these two require the predicated logic
 502     predicates = 1;
 503     break;
 504 
 505   case vmIntrinsics::_sha_implCompress:
 506     if (!UseSHA1Intrinsics) return NULL;
 507     break;
 508 
 509   case vmIntrinsics::_sha2_implCompress:
 510     if (!UseSHA256Intrinsics) return NULL;
 511     break;
 512 
 513   case vmIntrinsics::_sha5_implCompress:
 514     if (!UseSHA512Intrinsics) return NULL;
 515     break;
 516 
 517   case vmIntrinsics::_digestBase_implCompressMB:
 518     if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return NULL;
 519     predicates = 3;
 520     break;
 521 
 522   case vmIntrinsics::_updateCRC32:
 523   case vmIntrinsics::_updateBytesCRC32:
 524   case vmIntrinsics::_updateByteBufferCRC32:
 525     if (!UseCRC32Intrinsics) return NULL;
 526     break;
 527 
 528   case vmIntrinsics::_incrementExactI:
 529   case vmIntrinsics::_addExactI:
 530     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 531     break;
 532   case vmIntrinsics::_incrementExactL:
 533   case vmIntrinsics::_addExactL:
 534     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 535     break;
 536   case vmIntrinsics::_decrementExactI:
 537   case vmIntrinsics::_subtractExactI:
 538     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 539     break;
 540   case vmIntrinsics::_decrementExactL:
 541   case vmIntrinsics::_subtractExactL:
 542     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 543     break;
 544   case vmIntrinsics::_negateExactI:
 545     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 546     break;
 547   case vmIntrinsics::_negateExactL:
 548     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 549     break;
 550   case vmIntrinsics::_multiplyExactI:
 551     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 552     break;
 553   case vmIntrinsics::_multiplyExactL:
 554     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 555     break;
 556 
 557   case vmIntrinsics::_getShortUnaligned:
 558   case vmIntrinsics::_getCharUnaligned:
 559   case vmIntrinsics::_getIntUnaligned:
 560   case vmIntrinsics::_getLongUnaligned:
 561   case vmIntrinsics::_putShortUnaligned:
 562   case vmIntrinsics::_putCharUnaligned:
 563   case vmIntrinsics::_putIntUnaligned:
 564   case vmIntrinsics::_putLongUnaligned:
 565     if (!UseUnalignedAccesses) return NULL;
 566     break;
 567 
 568  default:
 569     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 570     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 571     break;
 572   }
 573 
 574   // -XX:-InlineClassNatives disables natives from the Class class.
 575   // The flag applies to all reflective calls, notably Array.newArray
 576   // (visible to Java programmers as Array.newInstance).
 577   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 578       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 579     if (!InlineClassNatives)  return NULL;
 580   }
 581 
 582   // -XX:-InlineThreadNatives disables natives from the Thread class.
 583   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 584     if (!InlineThreadNatives)  return NULL;
 585   }
 586 
 587   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 588   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 589       m->holder()->name() == ciSymbol::java_lang_Float() ||
 590       m->holder()->name() == ciSymbol::java_lang_Double()) {
 591     if (!InlineMathNatives)  return NULL;
 592   }
 593 
 594   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 595   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 596     if (!InlineUnsafeOps)  return NULL;
 597   }
 598 
 599   return new LibraryIntrinsic(m, is_virtual, predicates, does_virtual_dispatch, (vmIntrinsics::ID) id);
 600 }
 601 
 602 //----------------------register_library_intrinsics-----------------------
 603 // Initialize this file's data structures, for each Compile instance.
 604 void Compile::register_library_intrinsics() {
 605   // Nothing to do here.
 606 }
 607 
 608 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 609   LibraryCallKit kit(jvms, this);
 610   Compile* C = kit.C;
 611   int nodes = C->unique();
 612 #ifndef PRODUCT
 613   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 614     char buf[1000];
 615     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 616     tty->print_cr("Intrinsic %s", str);
 617   }
 618 #endif
 619   ciMethod* callee = kit.callee();
 620   const int bci    = kit.bci();
 621 
 622   // Try to inline the intrinsic.
 623   if (kit.try_to_inline(_last_predicate)) {
 624     if (C->print_intrinsics() || C->print_inlining()) {
 625       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 626     }
 627     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 628     if (C->log()) {
 629       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 630                      vmIntrinsics::name_at(intrinsic_id()),
 631                      (is_virtual() ? " virtual='1'" : ""),
 632                      C->unique() - nodes);
 633     }
 634     // Push the result from the inlined method onto the stack.
 635     kit.push_result();
 636     C->print_inlining_update(this);
 637     return kit.transfer_exceptions_into_jvms();
 638   }
 639 
 640   // The intrinsic bailed out
 641   if (C->print_intrinsics() || C->print_inlining()) {
 642     if (jvms->has_method()) {
 643       // Not a root compile.
 644       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 645       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 646     } else {
 647       // Root compile
 648       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 649                vmIntrinsics::name_at(intrinsic_id()),
 650                (is_virtual() ? " (virtual)" : ""), bci);
 651     }
 652   }
 653   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 654   C->print_inlining_update(this);
 655   return NULL;
 656 }
 657 
 658 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 659   LibraryCallKit kit(jvms, this);
 660   Compile* C = kit.C;
 661   int nodes = C->unique();
 662   _last_predicate = predicate;
 663 #ifndef PRODUCT
 664   assert(is_predicated() && predicate < predicates_count(), "sanity");
 665   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 666     char buf[1000];
 667     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 668     tty->print_cr("Predicate for intrinsic %s", str);
 669   }
 670 #endif
 671   ciMethod* callee = kit.callee();
 672   const int bci    = kit.bci();
 673 
 674   Node* slow_ctl = kit.try_to_predicate(predicate);
 675   if (!kit.failing()) {
 676     if (C->print_intrinsics() || C->print_inlining()) {
 677       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 678     }
 679     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 680     if (C->log()) {
 681       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 682                      vmIntrinsics::name_at(intrinsic_id()),
 683                      (is_virtual() ? " virtual='1'" : ""),
 684                      C->unique() - nodes);
 685     }
 686     return slow_ctl; // Could be NULL if the check folds.
 687   }
 688 
 689   // The intrinsic bailed out
 690   if (C->print_intrinsics() || C->print_inlining()) {
 691     if (jvms->has_method()) {
 692       // Not a root compile.
 693       const char* msg = "failed to generate predicate for intrinsic";
 694       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 695     } else {
 696       // Root compile
 697       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 698                                         vmIntrinsics::name_at(intrinsic_id()),
 699                                         (is_virtual() ? " (virtual)" : ""), bci);
 700     }
 701   }
 702   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 703   return NULL;
 704 }
 705 
 706 bool LibraryCallKit::try_to_inline(int predicate) {
 707   // Handle symbolic names for otherwise undistinguished boolean switches:
 708   const bool is_store       = true;
 709   const bool is_native_ptr  = true;
 710   const bool is_static      = true;
 711   const bool is_volatile    = true;
 712 
 713   if (!jvms()->has_method()) {
 714     // Root JVMState has a null method.
 715     assert(map()->memory()->Opcode() == Op_Parm, "");
 716     // Insert the memory aliasing node
 717     set_all_memory(reset_memory());
 718   }
 719   assert(merged_memory(), "");
 720 
 721 
 722   switch (intrinsic_id()) {
 723   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 724   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 725   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 726 
 727   case vmIntrinsics::_dsin:
 728   case vmIntrinsics::_dcos:
 729   case vmIntrinsics::_dtan:
 730   case vmIntrinsics::_dabs:
 731   case vmIntrinsics::_datan2:
 732   case vmIntrinsics::_dsqrt:
 733   case vmIntrinsics::_dexp:
 734   case vmIntrinsics::_dlog:
 735   case vmIntrinsics::_dlog10:
 736   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 737 
 738   case vmIntrinsics::_min:
 739   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 740 
 741   case vmIntrinsics::_notify:
 742   case vmIntrinsics::_notifyAll:
 743     if (InlineNotify) {
 744       return inline_notify(intrinsic_id());
 745     }
 746     return false;
 747 
 748   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 749   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 750   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 751   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 752   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 753   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 754   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 755   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 756   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 757   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 758   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 759   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 760 
 761   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 762 
 763   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 764   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 765   case vmIntrinsics::_equals:                   return inline_string_equals();
 766 
 767   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 768   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 769   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 770   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 771   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 772   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 773   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 774   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 775   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 776 
 777   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 778   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 779   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 780   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 781   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 782   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 783   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 784   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 785   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 786 
 787   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 788   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 789   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 790   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 791   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 792   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 793   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 794   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 795 
 796   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 797   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 798   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 799   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 800   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 801   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 802   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 803   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 804 
 805   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 806   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 807   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 808   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 809   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 810   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 811   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 812   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 813   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 814 
 815   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 816   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 817   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 818   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 819   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 820   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 821   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 822   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 823   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 824 
 825   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 826   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 827   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 828   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 829 
 830   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 831   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 832   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 833   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 834 
 835   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 836   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 837   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 838 
 839   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 840   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 841   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 842 
 843   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 844   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 845   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 846   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 847   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 848 
 849   case vmIntrinsics::_loadFence:
 850   case vmIntrinsics::_storeFence:
 851   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 852 
 853   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 854   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 855 
 856 #ifdef TRACE_HAVE_INTRINSICS
 857   case vmIntrinsics::_classID:                  return inline_native_classID();
 858   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 859   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 860 #endif
 861   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 862   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 863   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 864   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 865   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 866   case vmIntrinsics::_getLength:                return inline_native_getLength();
 867   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 868   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 869   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 870   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 871 
 872   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 873 
 874   case vmIntrinsics::_isInstance:
 875   case vmIntrinsics::_getModifiers:
 876   case vmIntrinsics::_isInterface:
 877   case vmIntrinsics::_isArray:
 878   case vmIntrinsics::_isPrimitive:
 879   case vmIntrinsics::_getSuperclass:
 880   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 881 
 882   case vmIntrinsics::_floatToRawIntBits:
 883   case vmIntrinsics::_floatToIntBits:
 884   case vmIntrinsics::_intBitsToFloat:
 885   case vmIntrinsics::_doubleToRawLongBits:
 886   case vmIntrinsics::_doubleToLongBits:
 887   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 888 
 889   case vmIntrinsics::_numberOfLeadingZeros_i:
 890   case vmIntrinsics::_numberOfLeadingZeros_l:
 891   case vmIntrinsics::_numberOfTrailingZeros_i:
 892   case vmIntrinsics::_numberOfTrailingZeros_l:
 893   case vmIntrinsics::_bitCount_i:
 894   case vmIntrinsics::_bitCount_l:
 895   case vmIntrinsics::_reverseBytes_i:
 896   case vmIntrinsics::_reverseBytes_l:
 897   case vmIntrinsics::_reverseBytes_s:
 898   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 899 
 900   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 901 
 902   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 903 
 904   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 905 
 906   case vmIntrinsics::_aescrypt_encryptBlock:
 907   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 908 
 909   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 910   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 911     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 912 
 913   case vmIntrinsics::_sha_implCompress:
 914   case vmIntrinsics::_sha2_implCompress:
 915   case vmIntrinsics::_sha5_implCompress:
 916     return inline_sha_implCompress(intrinsic_id());
 917 
 918   case vmIntrinsics::_digestBase_implCompressMB:
 919     return inline_digestBase_implCompressMB(predicate);
 920 
 921   case vmIntrinsics::_multiplyToLen:
 922     return inline_multiplyToLen();
 923 
 924   case vmIntrinsics::_encodeISOArray:
 925     return inline_encodeISOArray();
 926 
 927   case vmIntrinsics::_updateCRC32:
 928     return inline_updateCRC32();
 929   case vmIntrinsics::_updateBytesCRC32:
 930     return inline_updateBytesCRC32();
 931   case vmIntrinsics::_updateByteBufferCRC32:
 932     return inline_updateByteBufferCRC32();
 933 
 934   case vmIntrinsics::_profileBoolean:
 935     return inline_profileBoolean();
 936   case vmIntrinsics::_isCompileConstant:
 937     return inline_isCompileConstant();
 938 
 939   default:
 940     // If you get here, it may be that someone has added a new intrinsic
 941     // to the list in vmSymbols.hpp without implementing it here.
 942 #ifndef PRODUCT
 943     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 944       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 945                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 946     }
 947 #endif
 948     return false;
 949   }
 950 }
 951 
 952 Node* LibraryCallKit::try_to_predicate(int predicate) {
 953   if (!jvms()->has_method()) {
 954     // Root JVMState has a null method.
 955     assert(map()->memory()->Opcode() == Op_Parm, "");
 956     // Insert the memory aliasing node
 957     set_all_memory(reset_memory());
 958   }
 959   assert(merged_memory(), "");
 960 
 961   switch (intrinsic_id()) {
 962   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 963     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 964   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 965     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 966   case vmIntrinsics::_digestBase_implCompressMB:
 967     return inline_digestBase_implCompressMB_predicate(predicate);
 968 
 969   default:
 970     // If you get here, it may be that someone has added a new intrinsic
 971     // to the list in vmSymbols.hpp without implementing it here.
 972 #ifndef PRODUCT
 973     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 974       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 975                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 976     }
 977 #endif
 978     Node* slow_ctl = control();
 979     set_control(top()); // No fast path instrinsic
 980     return slow_ctl;
 981   }
 982 }
 983 
 984 //------------------------------set_result-------------------------------
 985 // Helper function for finishing intrinsics.
 986 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 987   record_for_igvn(region);
 988   set_control(_gvn.transform(region));
 989   set_result( _gvn.transform(value));
 990   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 991 }
 992 
 993 //------------------------------generate_guard---------------------------
 994 // Helper function for generating guarded fast-slow graph structures.
 995 // The given 'test', if true, guards a slow path.  If the test fails
 996 // then a fast path can be taken.  (We generally hope it fails.)
 997 // In all cases, GraphKit::control() is updated to the fast path.
 998 // The returned value represents the control for the slow path.
 999 // The return value is never 'top'; it is either a valid control
1000 // or NULL if it is obvious that the slow path can never be taken.
1001 // Also, if region and the slow control are not NULL, the slow edge
1002 // is appended to the region.
1003 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
1004   if (stopped()) {
1005     // Already short circuited.
1006     return NULL;
1007   }
1008 
1009   // Build an if node and its projections.
1010   // If test is true we take the slow path, which we assume is uncommon.
1011   if (_gvn.type(test) == TypeInt::ZERO) {
1012     // The slow branch is never taken.  No need to build this guard.
1013     return NULL;
1014   }
1015 
1016   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
1017 
1018   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
1019   if (if_slow == top()) {
1020     // The slow branch is never taken.  No need to build this guard.
1021     return NULL;
1022   }
1023 
1024   if (region != NULL)
1025     region->add_req(if_slow);
1026 
1027   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
1028   set_control(if_fast);
1029 
1030   return if_slow;
1031 }
1032 
1033 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
1034   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
1035 }
1036 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
1037   return generate_guard(test, region, PROB_FAIR);
1038 }
1039 
1040 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
1041                                                      Node* *pos_index) {
1042   if (stopped())
1043     return NULL;                // already stopped
1044   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
1045     return NULL;                // index is already adequately typed
1046   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
1047   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1048   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1049   if (is_neg != NULL && pos_index != NULL) {
1050     // Emulate effect of Parse::adjust_map_after_if.
1051     Node* ccast = new CastIINode(index, TypeInt::POS);
1052     ccast->set_req(0, control());
1053     (*pos_index) = _gvn.transform(ccast);
1054   }
1055   return is_neg;
1056 }
1057 
1058 // Make sure that 'position' is a valid limit index, in [0..length].
1059 // There are two equivalent plans for checking this:
1060 //   A. (offset + copyLength)  unsigned<=  arrayLength
1061 //   B. offset  <=  (arrayLength - copyLength)
1062 // We require that all of the values above, except for the sum and
1063 // difference, are already known to be non-negative.
1064 // Plan A is robust in the face of overflow, if offset and copyLength
1065 // are both hugely positive.
1066 //
1067 // Plan B is less direct and intuitive, but it does not overflow at
1068 // all, since the difference of two non-negatives is always
1069 // representable.  Whenever Java methods must perform the equivalent
1070 // check they generally use Plan B instead of Plan A.
1071 // For the moment we use Plan A.
1072 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1073                                                   Node* subseq_length,
1074                                                   Node* array_length,
1075                                                   RegionNode* region) {
1076   if (stopped())
1077     return NULL;                // already stopped
1078   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1079   if (zero_offset && subseq_length->eqv_uncast(array_length))
1080     return NULL;                // common case of whole-array copy
1081   Node* last = subseq_length;
1082   if (!zero_offset)             // last += offset
1083     last = _gvn.transform(new AddINode(last, offset));
1084   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1085   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1086   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1087   return is_over;
1088 }
1089 
1090 
1091 //--------------------------generate_current_thread--------------------
1092 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1093   ciKlass*    thread_klass = env()->Thread_klass();
1094   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1095   Node* thread = _gvn.transform(new ThreadLocalNode());
1096   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1097   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1098   tls_output = thread;
1099   return threadObj;
1100 }
1101 
1102 
1103 //------------------------------make_string_method_node------------------------
1104 // Helper method for String intrinsic functions. This version is called
1105 // with str1 and str2 pointing to String object nodes.
1106 //
1107 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1108   Node* no_ctrl = NULL;
1109 
1110   // Get start addr of string
1111   Node* str1_value   = load_String_value(no_ctrl, str1);
1112   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1113   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1114 
1115   // Get length of string 1
1116   Node* str1_len  = load_String_length(no_ctrl, str1);
1117 
1118   Node* str2_value   = load_String_value(no_ctrl, str2);
1119   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1120   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1121 
1122   Node* str2_len = NULL;
1123   Node* result = NULL;
1124 
1125   switch (opcode) {
1126   case Op_StrIndexOf:
1127     // Get length of string 2
1128     str2_len = load_String_length(no_ctrl, str2);
1129 
1130     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1131                                 str1_start, str1_len, str2_start, str2_len);
1132     break;
1133   case Op_StrComp:
1134     // Get length of string 2
1135     str2_len = load_String_length(no_ctrl, str2);
1136 
1137     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1138                              str1_start, str1_len, str2_start, str2_len);
1139     break;
1140   case Op_StrEquals:
1141     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1142                                str1_start, str2_start, str1_len);
1143     break;
1144   default:
1145     ShouldNotReachHere();
1146     return NULL;
1147   }
1148 
1149   // All these intrinsics have checks.
1150   C->set_has_split_ifs(true); // Has chance for split-if optimization
1151 
1152   return _gvn.transform(result);
1153 }
1154 
1155 // Helper method for String intrinsic functions. This version is called
1156 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1157 // to Int nodes containing the lenghts of str1 and str2.
1158 //
1159 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1160   Node* result = NULL;
1161   switch (opcode) {
1162   case Op_StrIndexOf:
1163     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1164                                 str1_start, cnt1, str2_start, cnt2);
1165     break;
1166   case Op_StrComp:
1167     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1168                              str1_start, cnt1, str2_start, cnt2);
1169     break;
1170   case Op_StrEquals:
1171     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1172                                str1_start, str2_start, cnt1);
1173     break;
1174   default:
1175     ShouldNotReachHere();
1176     return NULL;
1177   }
1178 
1179   // All these intrinsics have checks.
1180   C->set_has_split_ifs(true); // Has chance for split-if optimization
1181 
1182   return _gvn.transform(result);
1183 }
1184 
1185 //------------------------------inline_string_compareTo------------------------
1186 // public int java.lang.String.compareTo(String anotherString);
1187 bool LibraryCallKit::inline_string_compareTo() {
1188   Node* receiver = null_check(argument(0));
1189   Node* arg      = null_check(argument(1));
1190   if (stopped()) {
1191     return true;
1192   }
1193   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1194   return true;
1195 }
1196 
1197 //------------------------------inline_string_equals------------------------
1198 bool LibraryCallKit::inline_string_equals() {
1199   Node* receiver = null_check_receiver();
1200   // NOTE: Do not null check argument for String.equals() because spec
1201   // allows to specify NULL as argument.
1202   Node* argument = this->argument(1);
1203   if (stopped()) {
1204     return true;
1205   }
1206 
1207   // paths (plus control) merge
1208   RegionNode* region = new RegionNode(5);
1209   Node* phi = new PhiNode(region, TypeInt::BOOL);
1210 
1211   // does source == target string?
1212   Node* cmp = _gvn.transform(new CmpPNode(receiver, argument));
1213   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1214 
1215   Node* if_eq = generate_slow_guard(bol, NULL);
1216   if (if_eq != NULL) {
1217     // receiver == argument
1218     phi->init_req(2, intcon(1));
1219     region->init_req(2, if_eq);
1220   }
1221 
1222   // get String klass for instanceOf
1223   ciInstanceKlass* klass = env()->String_klass();
1224 
1225   if (!stopped()) {
1226     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1227     Node* cmp  = _gvn.transform(new CmpINode(inst, intcon(1)));
1228     Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1229 
1230     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1231     //instanceOf == true, fallthrough
1232 
1233     if (inst_false != NULL) {
1234       phi->init_req(3, intcon(0));
1235       region->init_req(3, inst_false);
1236     }
1237   }
1238 
1239   if (!stopped()) {
1240     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1241 
1242     // Properly cast the argument to String
1243     argument = _gvn.transform(new CheckCastPPNode(control(), argument, string_type));
1244     // This path is taken only when argument's type is String:NotNull.
1245     argument = cast_not_null(argument, false);
1246 
1247     Node* no_ctrl = NULL;
1248 
1249     // Get start addr of receiver
1250     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1251     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1252     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1253 
1254     // Get length of receiver
1255     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1256 
1257     // Get start addr of argument
1258     Node* argument_val    = load_String_value(no_ctrl, argument);
1259     Node* argument_offset = load_String_offset(no_ctrl, argument);
1260     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1261 
1262     // Get length of argument
1263     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1264 
1265     // Check for receiver count != argument count
1266     Node* cmp = _gvn.transform(new CmpINode(receiver_cnt, argument_cnt));
1267     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1268     Node* if_ne = generate_slow_guard(bol, NULL);
1269     if (if_ne != NULL) {
1270       phi->init_req(4, intcon(0));
1271       region->init_req(4, if_ne);
1272     }
1273 
1274     // Check for count == 0 is done by assembler code for StrEquals.
1275 
1276     if (!stopped()) {
1277       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1278       phi->init_req(1, equals);
1279       region->init_req(1, control());
1280     }
1281   }
1282 
1283   // post merge
1284   set_control(_gvn.transform(region));
1285   record_for_igvn(region);
1286 
1287   set_result(_gvn.transform(phi));
1288   return true;
1289 }
1290 
1291 //------------------------------inline_array_equals----------------------------
1292 bool LibraryCallKit::inline_array_equals() {
1293   Node* arg1 = argument(0);
1294   Node* arg2 = argument(1);
1295   set_result(_gvn.transform(new AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1296   return true;
1297 }
1298 
1299 // Java version of String.indexOf(constant string)
1300 // class StringDecl {
1301 //   StringDecl(char[] ca) {
1302 //     offset = 0;
1303 //     count = ca.length;
1304 //     value = ca;
1305 //   }
1306 //   int offset;
1307 //   int count;
1308 //   char[] value;
1309 // }
1310 //
1311 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1312 //                             int targetOffset, int cache_i, int md2) {
1313 //   int cache = cache_i;
1314 //   int sourceOffset = string_object.offset;
1315 //   int sourceCount = string_object.count;
1316 //   int targetCount = target_object.length;
1317 //
1318 //   int targetCountLess1 = targetCount - 1;
1319 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1320 //
1321 //   char[] source = string_object.value;
1322 //   char[] target = target_object;
1323 //   int lastChar = target[targetCountLess1];
1324 //
1325 //  outer_loop:
1326 //   for (int i = sourceOffset; i < sourceEnd; ) {
1327 //     int src = source[i + targetCountLess1];
1328 //     if (src == lastChar) {
1329 //       // With random strings and a 4-character alphabet,
1330 //       // reverse matching at this point sets up 0.8% fewer
1331 //       // frames, but (paradoxically) makes 0.3% more probes.
1332 //       // Since those probes are nearer the lastChar probe,
1333 //       // there is may be a net D$ win with reverse matching.
1334 //       // But, reversing loop inhibits unroll of inner loop
1335 //       // for unknown reason.  So, does running outer loop from
1336 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1337 //       for (int j = 0; j < targetCountLess1; j++) {
1338 //         if (target[targetOffset + j] != source[i+j]) {
1339 //           if ((cache & (1 << source[i+j])) == 0) {
1340 //             if (md2 < j+1) {
1341 //               i += j+1;
1342 //               continue outer_loop;
1343 //             }
1344 //           }
1345 //           i += md2;
1346 //           continue outer_loop;
1347 //         }
1348 //       }
1349 //       return i - sourceOffset;
1350 //     }
1351 //     if ((cache & (1 << src)) == 0) {
1352 //       i += targetCountLess1;
1353 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1354 //     i++;
1355 //   }
1356 //   return -1;
1357 // }
1358 
1359 //------------------------------string_indexOf------------------------
1360 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1361                                      jint cache_i, jint md2_i) {
1362 
1363   Node* no_ctrl  = NULL;
1364   float likely   = PROB_LIKELY(0.9);
1365   float unlikely = PROB_UNLIKELY(0.9);
1366 
1367   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1368 
1369   Node* source        = load_String_value(no_ctrl, string_object);
1370   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1371   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1372 
1373   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1374   jint target_length = target_array->length();
1375   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1376   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1377 
1378   // String.value field is known to be @Stable.
1379   if (UseImplicitStableValues) {
1380     target = cast_array_to_stable(target, target_type);
1381   }
1382 
1383   IdealKit kit(this, false, true);
1384 #define __ kit.
1385   Node* zero             = __ ConI(0);
1386   Node* one              = __ ConI(1);
1387   Node* cache            = __ ConI(cache_i);
1388   Node* md2              = __ ConI(md2_i);
1389   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1390   Node* targetCountLess1 = __ ConI(target_length - 1);
1391   Node* targetOffset     = __ ConI(targetOffset_i);
1392   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1393 
1394   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1395   Node* outer_loop = __ make_label(2 /* goto */);
1396   Node* return_    = __ make_label(1);
1397 
1398   __ set(rtn,__ ConI(-1));
1399   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1400        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1401        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1402        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1403        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1404          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1405               Node* tpj = __ AddI(targetOffset, __ value(j));
1406               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1407               Node* ipj  = __ AddI(__ value(i), __ value(j));
1408               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1409               __ if_then(targ, BoolTest::ne, src2); {
1410                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1411                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1412                     __ increment(i, __ AddI(__ value(j), one));
1413                     __ goto_(outer_loop);
1414                   } __ end_if(); __ dead(j);
1415                 }__ end_if(); __ dead(j);
1416                 __ increment(i, md2);
1417                 __ goto_(outer_loop);
1418               }__ end_if();
1419               __ increment(j, one);
1420          }__ end_loop(); __ dead(j);
1421          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1422          __ goto_(return_);
1423        }__ end_if();
1424        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1425          __ increment(i, targetCountLess1);
1426        }__ end_if();
1427        __ increment(i, one);
1428        __ bind(outer_loop);
1429   }__ end_loop(); __ dead(i);
1430   __ bind(return_);
1431 
1432   // Final sync IdealKit and GraphKit.
1433   final_sync(kit);
1434   Node* result = __ value(rtn);
1435 #undef __
1436   C->set_has_loops(true);
1437   return result;
1438 }
1439 
1440 //------------------------------inline_string_indexOf------------------------
1441 bool LibraryCallKit::inline_string_indexOf() {
1442   Node* receiver = argument(0);
1443   Node* arg      = argument(1);
1444 
1445   Node* result;
1446   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1447       UseSSE42Intrinsics) {
1448     // Generate SSE4.2 version of indexOf
1449     // We currently only have match rules that use SSE4.2
1450 
1451     receiver = null_check(receiver);
1452     arg      = null_check(arg);
1453     if (stopped()) {
1454       return true;
1455     }
1456 
1457     // Make the merge point
1458     RegionNode* result_rgn = new RegionNode(4);
1459     Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1460     Node* no_ctrl  = NULL;
1461 
1462     // Get start addr of source string
1463     Node* source = load_String_value(no_ctrl, receiver);
1464     Node* source_offset = load_String_offset(no_ctrl, receiver);
1465     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1466 
1467     // Get length of source string
1468     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1469 
1470     // Get start addr of substring
1471     Node* substr = load_String_value(no_ctrl, arg);
1472     Node* substr_offset = load_String_offset(no_ctrl, arg);
1473     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1474 
1475     // Get length of source string
1476     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1477 
1478     // Check for substr count > string count
1479     Node* cmp = _gvn.transform(new CmpINode(substr_cnt, source_cnt));
1480     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1481     Node* if_gt = generate_slow_guard(bol, NULL);
1482     if (if_gt != NULL) {
1483       result_phi->init_req(2, intcon(-1));
1484       result_rgn->init_req(2, if_gt);
1485     }
1486 
1487     if (!stopped()) {
1488       // Check for substr count == 0
1489       cmp = _gvn.transform(new CmpINode(substr_cnt, intcon(0)));
1490       bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1491       Node* if_zero = generate_slow_guard(bol, NULL);
1492       if (if_zero != NULL) {
1493         result_phi->init_req(3, intcon(0));
1494         result_rgn->init_req(3, if_zero);
1495       }
1496     }
1497 
1498     if (!stopped()) {
1499       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1500       result_phi->init_req(1, result);
1501       result_rgn->init_req(1, control());
1502     }
1503     set_control(_gvn.transform(result_rgn));
1504     record_for_igvn(result_rgn);
1505     result = _gvn.transform(result_phi);
1506 
1507   } else { // Use LibraryCallKit::string_indexOf
1508     // don't intrinsify if argument isn't a constant string.
1509     if (!arg->is_Con()) {
1510      return false;
1511     }
1512     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1513     if (str_type == NULL) {
1514       return false;
1515     }
1516     ciInstanceKlass* klass = env()->String_klass();
1517     ciObject* str_const = str_type->const_oop();
1518     if (str_const == NULL || str_const->klass() != klass) {
1519       return false;
1520     }
1521     ciInstance* str = str_const->as_instance();
1522     assert(str != NULL, "must be instance");
1523 
1524     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1525     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1526 
1527     int o;
1528     int c;
1529     if (java_lang_String::has_offset_field()) {
1530       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1531       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1532     } else {
1533       o = 0;
1534       c = pat->length();
1535     }
1536 
1537     // constant strings have no offset and count == length which
1538     // simplifies the resulting code somewhat so lets optimize for that.
1539     if (o != 0 || c != pat->length()) {
1540      return false;
1541     }
1542 
1543     receiver = null_check(receiver, T_OBJECT);
1544     // NOTE: No null check on the argument is needed since it's a constant String oop.
1545     if (stopped()) {
1546       return true;
1547     }
1548 
1549     // The null string as a pattern always returns 0 (match at beginning of string)
1550     if (c == 0) {
1551       set_result(intcon(0));
1552       return true;
1553     }
1554 
1555     // Generate default indexOf
1556     jchar lastChar = pat->char_at(o + (c - 1));
1557     int cache = 0;
1558     int i;
1559     for (i = 0; i < c - 1; i++) {
1560       assert(i < pat->length(), "out of range");
1561       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1562     }
1563 
1564     int md2 = c;
1565     for (i = 0; i < c - 1; i++) {
1566       assert(i < pat->length(), "out of range");
1567       if (pat->char_at(o + i) == lastChar) {
1568         md2 = (c - 1) - i;
1569       }
1570     }
1571 
1572     result = string_indexOf(receiver, pat, o, cache, md2);
1573   }
1574   set_result(result);
1575   return true;
1576 }
1577 
1578 //--------------------------round_double_node--------------------------------
1579 // Round a double node if necessary.
1580 Node* LibraryCallKit::round_double_node(Node* n) {
1581   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1582     n = _gvn.transform(new RoundDoubleNode(0, n));
1583   return n;
1584 }
1585 
1586 //------------------------------inline_math-----------------------------------
1587 // public static double Math.abs(double)
1588 // public static double Math.sqrt(double)
1589 // public static double Math.log(double)
1590 // public static double Math.log10(double)
1591 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1592   Node* arg = round_double_node(argument(0));
1593   Node* n;
1594   switch (id) {
1595   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1596   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1597   case vmIntrinsics::_dlog:   n = new LogDNode(C, control(),   arg);  break;
1598   case vmIntrinsics::_dlog10: n = new Log10DNode(C, control(), arg);  break;
1599   default:  fatal_unexpected_iid(id);  break;
1600   }
1601   set_result(_gvn.transform(n));
1602   return true;
1603 }
1604 
1605 //------------------------------inline_trig----------------------------------
1606 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1607 // argument reduction which will turn into a fast/slow diamond.
1608 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1609   Node* arg = round_double_node(argument(0));
1610   Node* n = NULL;
1611 
1612   switch (id) {
1613   case vmIntrinsics::_dsin:  n = new SinDNode(C, control(), arg);  break;
1614   case vmIntrinsics::_dcos:  n = new CosDNode(C, control(), arg);  break;
1615   case vmIntrinsics::_dtan:  n = new TanDNode(C, control(), arg);  break;
1616   default:  fatal_unexpected_iid(id);  break;
1617   }
1618   n = _gvn.transform(n);
1619 
1620   // Rounding required?  Check for argument reduction!
1621   if (Matcher::strict_fp_requires_explicit_rounding) {
1622     static const double     pi_4 =  0.7853981633974483;
1623     static const double neg_pi_4 = -0.7853981633974483;
1624     // pi/2 in 80-bit extended precision
1625     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1626     // -pi/2 in 80-bit extended precision
1627     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1628     // Cutoff value for using this argument reduction technique
1629     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1630     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1631 
1632     // Pseudocode for sin:
1633     // if (x <= Math.PI / 4.0) {
1634     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1635     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1636     // } else {
1637     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1638     // }
1639     // return StrictMath.sin(x);
1640 
1641     // Pseudocode for cos:
1642     // if (x <= Math.PI / 4.0) {
1643     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1644     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1645     // } else {
1646     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1647     // }
1648     // return StrictMath.cos(x);
1649 
1650     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1651     // requires a special machine instruction to load it.  Instead we'll try
1652     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1653     // probably do the math inside the SIN encoding.
1654 
1655     // Make the merge point
1656     RegionNode* r = new RegionNode(3);
1657     Node* phi = new PhiNode(r, Type::DOUBLE);
1658 
1659     // Flatten arg so we need only 1 test
1660     Node *abs = _gvn.transform(new AbsDNode(arg));
1661     // Node for PI/4 constant
1662     Node *pi4 = makecon(TypeD::make(pi_4));
1663     // Check PI/4 : abs(arg)
1664     Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
1665     // Check: If PI/4 < abs(arg) then go slow
1666     Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
1667     // Branch either way
1668     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1669     set_control(opt_iff(r,iff));
1670 
1671     // Set fast path result
1672     phi->init_req(2, n);
1673 
1674     // Slow path - non-blocking leaf call
1675     Node* call = NULL;
1676     switch (id) {
1677     case vmIntrinsics::_dsin:
1678       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1679                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1680                                "Sin", NULL, arg, top());
1681       break;
1682     case vmIntrinsics::_dcos:
1683       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1684                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1685                                "Cos", NULL, arg, top());
1686       break;
1687     case vmIntrinsics::_dtan:
1688       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1689                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1690                                "Tan", NULL, arg, top());
1691       break;
1692     }
1693     assert(control()->in(0) == call, "");
1694     Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1695     r->init_req(1, control());
1696     phi->init_req(1, slow_result);
1697 
1698     // Post-merge
1699     set_control(_gvn.transform(r));
1700     record_for_igvn(r);
1701     n = _gvn.transform(phi);
1702 
1703     C->set_has_split_ifs(true); // Has chance for split-if optimization
1704   }
1705   set_result(n);
1706   return true;
1707 }
1708 
1709 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1710   //-------------------
1711   //result=(result.isNaN())? funcAddr():result;
1712   // Check: If isNaN() by checking result!=result? then either trap
1713   // or go to runtime
1714   Node* cmpisnan = _gvn.transform(new CmpDNode(result, result));
1715   // Build the boolean node
1716   Node* bolisnum = _gvn.transform(new BoolNode(cmpisnan, BoolTest::eq));
1717 
1718   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1719     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1720       // The pow or exp intrinsic returned a NaN, which requires a call
1721       // to the runtime.  Recompile with the runtime call.
1722       uncommon_trap(Deoptimization::Reason_intrinsic,
1723                     Deoptimization::Action_make_not_entrant);
1724     }
1725     return result;
1726   } else {
1727     // If this inlining ever returned NaN in the past, we compile a call
1728     // to the runtime to properly handle corner cases
1729 
1730     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1731     Node* if_slow = _gvn.transform(new IfFalseNode(iff));
1732     Node* if_fast = _gvn.transform(new IfTrueNode(iff));
1733 
1734     if (!if_slow->is_top()) {
1735       RegionNode* result_region = new RegionNode(3);
1736       PhiNode*    result_val = new PhiNode(result_region, Type::DOUBLE);
1737 
1738       result_region->init_req(1, if_fast);
1739       result_val->init_req(1, result);
1740 
1741       set_control(if_slow);
1742 
1743       const TypePtr* no_memory_effects = NULL;
1744       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1745                                    no_memory_effects,
1746                                    x, top(), y, y ? top() : NULL);
1747       Node* value = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+0));
1748 #ifdef ASSERT
1749       Node* value_top = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+1));
1750       assert(value_top == top(), "second value must be top");
1751 #endif
1752 
1753       result_region->init_req(2, control());
1754       result_val->init_req(2, value);
1755       set_control(_gvn.transform(result_region));
1756       return _gvn.transform(result_val);
1757     } else {
1758       return result;
1759     }
1760   }
1761 }
1762 
1763 //------------------------------inline_exp-------------------------------------
1764 // Inline exp instructions, if possible.  The Intel hardware only misses
1765 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1766 bool LibraryCallKit::inline_exp() {
1767   Node* arg = round_double_node(argument(0));
1768   Node* n   = _gvn.transform(new ExpDNode(C, control(), arg));
1769 
1770   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1771   set_result(n);
1772 
1773   C->set_has_split_ifs(true); // Has chance for split-if optimization
1774   return true;
1775 }
1776 
1777 //------------------------------inline_pow-------------------------------------
1778 // Inline power instructions, if possible.
1779 bool LibraryCallKit::inline_pow() {
1780   // Pseudocode for pow
1781   // if (y == 2) {
1782   //   return x * x;
1783   // } else {
1784   //   if (x <= 0.0) {
1785   //     long longy = (long)y;
1786   //     if ((double)longy == y) { // if y is long
1787   //       if (y + 1 == y) longy = 0; // huge number: even
1788   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1789   //     } else {
1790   //       result = NaN;
1791   //     }
1792   //   } else {
1793   //     result = DPow(x,y);
1794   //   }
1795   //   if (result != result)?  {
1796   //     result = uncommon_trap() or runtime_call();
1797   //   }
1798   //   return result;
1799   // }
1800 
1801   Node* x = round_double_node(argument(0));
1802   Node* y = round_double_node(argument(2));
1803 
1804   Node* result = NULL;
1805 
1806   Node*   const_two_node = makecon(TypeD::make(2.0));
1807   Node*   cmp_node       = _gvn.transform(new CmpDNode(y, const_two_node));
1808   Node*   bool_node      = _gvn.transform(new BoolNode(cmp_node, BoolTest::eq));
1809   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1810   Node*   if_true        = _gvn.transform(new IfTrueNode(if_node));
1811   Node*   if_false       = _gvn.transform(new IfFalseNode(if_node));
1812 
1813   RegionNode* region_node = new RegionNode(3);
1814   region_node->init_req(1, if_true);
1815 
1816   Node* phi_node = new PhiNode(region_node, Type::DOUBLE);
1817   // special case for x^y where y == 2, we can convert it to x * x
1818   phi_node->init_req(1, _gvn.transform(new MulDNode(x, x)));
1819 
1820   // set control to if_false since we will now process the false branch
1821   set_control(if_false);
1822 
1823   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1824     // Short form: skip the fancy tests and just check for NaN result.
1825     result = _gvn.transform(new PowDNode(C, control(), x, y));
1826   } else {
1827     // If this inlining ever returned NaN in the past, include all
1828     // checks + call to the runtime.
1829 
1830     // Set the merge point for If node with condition of (x <= 0.0)
1831     // There are four possible paths to region node and phi node
1832     RegionNode *r = new RegionNode(4);
1833     Node *phi = new PhiNode(r, Type::DOUBLE);
1834 
1835     // Build the first if node: if (x <= 0.0)
1836     // Node for 0 constant
1837     Node *zeronode = makecon(TypeD::ZERO);
1838     // Check x:0
1839     Node *cmp = _gvn.transform(new CmpDNode(x, zeronode));
1840     // Check: If (x<=0) then go complex path
1841     Node *bol1 = _gvn.transform(new BoolNode( cmp, BoolTest::le ));
1842     // Branch either way
1843     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1844     // Fast path taken; set region slot 3
1845     Node *fast_taken = _gvn.transform(new IfFalseNode(if1));
1846     r->init_req(3,fast_taken); // Capture fast-control
1847 
1848     // Fast path not-taken, i.e. slow path
1849     Node *complex_path = _gvn.transform(new IfTrueNode(if1));
1850 
1851     // Set fast path result
1852     Node *fast_result = _gvn.transform(new PowDNode(C, control(), x, y));
1853     phi->init_req(3, fast_result);
1854 
1855     // Complex path
1856     // Build the second if node (if y is long)
1857     // Node for (long)y
1858     Node *longy = _gvn.transform(new ConvD2LNode(y));
1859     // Node for (double)((long) y)
1860     Node *doublelongy= _gvn.transform(new ConvL2DNode(longy));
1861     // Check (double)((long) y) : y
1862     Node *cmplongy= _gvn.transform(new CmpDNode(doublelongy, y));
1863     // Check if (y isn't long) then go to slow path
1864 
1865     Node *bol2 = _gvn.transform(new BoolNode( cmplongy, BoolTest::ne ));
1866     // Branch either way
1867     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1868     Node* ylong_path = _gvn.transform(new IfFalseNode(if2));
1869 
1870     Node *slow_path = _gvn.transform(new IfTrueNode(if2));
1871 
1872     // Calculate DPow(abs(x), y)*(1 & (long)y)
1873     // Node for constant 1
1874     Node *conone = longcon(1);
1875     // 1& (long)y
1876     Node *signnode= _gvn.transform(new AndLNode(conone, longy));
1877 
1878     // A huge number is always even. Detect a huge number by checking
1879     // if y + 1 == y and set integer to be tested for parity to 0.
1880     // Required for corner case:
1881     // (long)9.223372036854776E18 = max_jlong
1882     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1883     // max_jlong is odd but 9.223372036854776E18 is even
1884     Node* yplus1 = _gvn.transform(new AddDNode(y, makecon(TypeD::make(1))));
1885     Node *cmpyplus1= _gvn.transform(new CmpDNode(yplus1, y));
1886     Node *bolyplus1 = _gvn.transform(new BoolNode( cmpyplus1, BoolTest::eq ));
1887     Node* correctedsign = NULL;
1888     if (ConditionalMoveLimit != 0) {
1889       correctedsign = _gvn.transform(CMoveNode::make(NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1890     } else {
1891       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1892       RegionNode *r = new RegionNode(3);
1893       Node *phi = new PhiNode(r, TypeLong::LONG);
1894       r->init_req(1, _gvn.transform(new IfFalseNode(ifyplus1)));
1895       r->init_req(2, _gvn.transform(new IfTrueNode(ifyplus1)));
1896       phi->init_req(1, signnode);
1897       phi->init_req(2, longcon(0));
1898       correctedsign = _gvn.transform(phi);
1899       ylong_path = _gvn.transform(r);
1900       record_for_igvn(r);
1901     }
1902 
1903     // zero node
1904     Node *conzero = longcon(0);
1905     // Check (1&(long)y)==0?
1906     Node *cmpeq1 = _gvn.transform(new CmpLNode(correctedsign, conzero));
1907     // Check if (1&(long)y)!=0?, if so the result is negative
1908     Node *bol3 = _gvn.transform(new BoolNode( cmpeq1, BoolTest::ne ));
1909     // abs(x)
1910     Node *absx=_gvn.transform(new AbsDNode(x));
1911     // abs(x)^y
1912     Node *absxpowy = _gvn.transform(new PowDNode(C, control(), absx, y));
1913     // -abs(x)^y
1914     Node *negabsxpowy = _gvn.transform(new NegDNode (absxpowy));
1915     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1916     Node *signresult = NULL;
1917     if (ConditionalMoveLimit != 0) {
1918       signresult = _gvn.transform(CMoveNode::make(NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1919     } else {
1920       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1921       RegionNode *r = new RegionNode(3);
1922       Node *phi = new PhiNode(r, Type::DOUBLE);
1923       r->init_req(1, _gvn.transform(new IfFalseNode(ifyeven)));
1924       r->init_req(2, _gvn.transform(new IfTrueNode(ifyeven)));
1925       phi->init_req(1, absxpowy);
1926       phi->init_req(2, negabsxpowy);
1927       signresult = _gvn.transform(phi);
1928       ylong_path = _gvn.transform(r);
1929       record_for_igvn(r);
1930     }
1931     // Set complex path fast result
1932     r->init_req(2, ylong_path);
1933     phi->init_req(2, signresult);
1934 
1935     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1936     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1937     r->init_req(1,slow_path);
1938     phi->init_req(1,slow_result);
1939 
1940     // Post merge
1941     set_control(_gvn.transform(r));
1942     record_for_igvn(r);
1943     result = _gvn.transform(phi);
1944   }
1945 
1946   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1947 
1948   // control from finish_pow_exp is now input to the region node
1949   region_node->set_req(2, control());
1950   // the result from finish_pow_exp is now input to the phi node
1951   phi_node->init_req(2, result);
1952   set_control(_gvn.transform(region_node));
1953   record_for_igvn(region_node);
1954   set_result(_gvn.transform(phi_node));
1955 
1956   C->set_has_split_ifs(true); // Has chance for split-if optimization
1957   return true;
1958 }
1959 
1960 //------------------------------runtime_math-----------------------------
1961 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1962   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1963          "must be (DD)D or (D)D type");
1964 
1965   // Inputs
1966   Node* a = round_double_node(argument(0));
1967   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1968 
1969   const TypePtr* no_memory_effects = NULL;
1970   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1971                                  no_memory_effects,
1972                                  a, top(), b, b ? top() : NULL);
1973   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1974 #ifdef ASSERT
1975   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1976   assert(value_top == top(), "second value must be top");
1977 #endif
1978 
1979   set_result(value);
1980   return true;
1981 }
1982 
1983 //------------------------------inline_math_native-----------------------------
1984 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1985 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1986   switch (id) {
1987     // These intrinsics are not properly supported on all hardware
1988   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1989     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1990   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1991     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1992   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1993     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1994 
1995   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1996     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1997   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1998     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1999 
2000     // These intrinsics are supported on all hardware
2001   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
2002   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
2003 
2004   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
2005     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
2006   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
2007     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
2008 #undef FN_PTR
2009 
2010    // These intrinsics are not yet correctly implemented
2011   case vmIntrinsics::_datan2:
2012     return false;
2013 
2014   default:
2015     fatal_unexpected_iid(id);
2016     return false;
2017   }
2018 }
2019 
2020 static bool is_simple_name(Node* n) {
2021   return (n->req() == 1         // constant
2022           || (n->is_Type() && n->as_Type()->type()->singleton())
2023           || n->is_Proj()       // parameter or return value
2024           || n->is_Phi()        // local of some sort
2025           );
2026 }
2027 
2028 //----------------------------inline_notify-----------------------------------*
2029 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
2030   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
2031   address func;
2032   if (id == vmIntrinsics::_notify) {
2033     func = OptoRuntime::monitor_notify_Java();
2034   } else {
2035     func = OptoRuntime::monitor_notifyAll_Java();
2036   }
2037   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
2038   make_slow_call_ex(call, env()->Throwable_klass(), false);
2039   return true;
2040 }
2041 
2042 
2043 //----------------------------inline_min_max-----------------------------------
2044 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
2045   set_result(generate_min_max(id, argument(0), argument(1)));
2046   return true;
2047 }
2048 
2049 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
2050   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
2051   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2052   Node* fast_path = _gvn.transform( new IfFalseNode(check));
2053   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
2054 
2055   {
2056     PreserveJVMState pjvms(this);
2057     PreserveReexecuteState preexecs(this);
2058     jvms()->set_should_reexecute(true);
2059 
2060     set_control(slow_path);
2061     set_i_o(i_o());
2062 
2063     uncommon_trap(Deoptimization::Reason_intrinsic,
2064                   Deoptimization::Action_none);
2065   }
2066 
2067   set_control(fast_path);
2068   set_result(math);
2069 }
2070 
2071 template <typename OverflowOp>
2072 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2073   typedef typename OverflowOp::MathOp MathOp;
2074 
2075   MathOp* mathOp = new MathOp(arg1, arg2);
2076   Node* operation = _gvn.transform( mathOp );
2077   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
2078   inline_math_mathExact(operation, ofcheck);
2079   return true;
2080 }
2081 
2082 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2083   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2084 }
2085 
2086 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2087   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2088 }
2089 
2090 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2091   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2092 }
2093 
2094 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2095   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2096 }
2097 
2098 bool LibraryCallKit::inline_math_negateExactI() {
2099   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2100 }
2101 
2102 bool LibraryCallKit::inline_math_negateExactL() {
2103   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2104 }
2105 
2106 bool LibraryCallKit::inline_math_multiplyExactI() {
2107   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2108 }
2109 
2110 bool LibraryCallKit::inline_math_multiplyExactL() {
2111   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2112 }
2113 
2114 Node*
2115 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2116   // These are the candidate return value:
2117   Node* xvalue = x0;
2118   Node* yvalue = y0;
2119 
2120   if (xvalue == yvalue) {
2121     return xvalue;
2122   }
2123 
2124   bool want_max = (id == vmIntrinsics::_max);
2125 
2126   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2127   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2128   if (txvalue == NULL || tyvalue == NULL)  return top();
2129   // This is not really necessary, but it is consistent with a
2130   // hypothetical MaxINode::Value method:
2131   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2132 
2133   // %%% This folding logic should (ideally) be in a different place.
2134   // Some should be inside IfNode, and there to be a more reliable
2135   // transformation of ?: style patterns into cmoves.  We also want
2136   // more powerful optimizations around cmove and min/max.
2137 
2138   // Try to find a dominating comparison of these guys.
2139   // It can simplify the index computation for Arrays.copyOf
2140   // and similar uses of System.arraycopy.
2141   // First, compute the normalized version of CmpI(x, y).
2142   int   cmp_op = Op_CmpI;
2143   Node* xkey = xvalue;
2144   Node* ykey = yvalue;
2145   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
2146   if (ideal_cmpxy->is_Cmp()) {
2147     // E.g., if we have CmpI(length - offset, count),
2148     // it might idealize to CmpI(length, count + offset)
2149     cmp_op = ideal_cmpxy->Opcode();
2150     xkey = ideal_cmpxy->in(1);
2151     ykey = ideal_cmpxy->in(2);
2152   }
2153 
2154   // Start by locating any relevant comparisons.
2155   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2156   Node* cmpxy = NULL;
2157   Node* cmpyx = NULL;
2158   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2159     Node* cmp = start_from->fast_out(k);
2160     if (cmp->outcnt() > 0 &&            // must have prior uses
2161         cmp->in(0) == NULL &&           // must be context-independent
2162         cmp->Opcode() == cmp_op) {      // right kind of compare
2163       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2164       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2165     }
2166   }
2167 
2168   const int NCMPS = 2;
2169   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2170   int cmpn;
2171   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2172     if (cmps[cmpn] != NULL)  break;     // find a result
2173   }
2174   if (cmpn < NCMPS) {
2175     // Look for a dominating test that tells us the min and max.
2176     int depth = 0;                // Limit search depth for speed
2177     Node* dom = control();
2178     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2179       if (++depth >= 100)  break;
2180       Node* ifproj = dom;
2181       if (!ifproj->is_Proj())  continue;
2182       Node* iff = ifproj->in(0);
2183       if (!iff->is_If())  continue;
2184       Node* bol = iff->in(1);
2185       if (!bol->is_Bool())  continue;
2186       Node* cmp = bol->in(1);
2187       if (cmp == NULL)  continue;
2188       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2189         if (cmps[cmpn] == cmp)  break;
2190       if (cmpn == NCMPS)  continue;
2191       BoolTest::mask btest = bol->as_Bool()->_test._test;
2192       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2193       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2194       // At this point, we know that 'x btest y' is true.
2195       switch (btest) {
2196       case BoolTest::eq:
2197         // They are proven equal, so we can collapse the min/max.
2198         // Either value is the answer.  Choose the simpler.
2199         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2200           return yvalue;
2201         return xvalue;
2202       case BoolTest::lt:          // x < y
2203       case BoolTest::le:          // x <= y
2204         return (want_max ? yvalue : xvalue);
2205       case BoolTest::gt:          // x > y
2206       case BoolTest::ge:          // x >= y
2207         return (want_max ? xvalue : yvalue);
2208       }
2209     }
2210   }
2211 
2212   // We failed to find a dominating test.
2213   // Let's pick a test that might GVN with prior tests.
2214   Node*          best_bol   = NULL;
2215   BoolTest::mask best_btest = BoolTest::illegal;
2216   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2217     Node* cmp = cmps[cmpn];
2218     if (cmp == NULL)  continue;
2219     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2220       Node* bol = cmp->fast_out(j);
2221       if (!bol->is_Bool())  continue;
2222       BoolTest::mask btest = bol->as_Bool()->_test._test;
2223       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2224       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2225       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2226         best_bol   = bol->as_Bool();
2227         best_btest = btest;
2228       }
2229     }
2230   }
2231 
2232   Node* answer_if_true  = NULL;
2233   Node* answer_if_false = NULL;
2234   switch (best_btest) {
2235   default:
2236     if (cmpxy == NULL)
2237       cmpxy = ideal_cmpxy;
2238     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2239     // and fall through:
2240   case BoolTest::lt:          // x < y
2241   case BoolTest::le:          // x <= y
2242     answer_if_true  = (want_max ? yvalue : xvalue);
2243     answer_if_false = (want_max ? xvalue : yvalue);
2244     break;
2245   case BoolTest::gt:          // x > y
2246   case BoolTest::ge:          // x >= y
2247     answer_if_true  = (want_max ? xvalue : yvalue);
2248     answer_if_false = (want_max ? yvalue : xvalue);
2249     break;
2250   }
2251 
2252   jint hi, lo;
2253   if (want_max) {
2254     // We can sharpen the minimum.
2255     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2256     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2257   } else {
2258     // We can sharpen the maximum.
2259     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2260     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2261   }
2262 
2263   // Use a flow-free graph structure, to avoid creating excess control edges
2264   // which could hinder other optimizations.
2265   // Since Math.min/max is often used with arraycopy, we want
2266   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2267   Node* cmov = CMoveNode::make(NULL, best_bol,
2268                                answer_if_false, answer_if_true,
2269                                TypeInt::make(lo, hi, widen));
2270 
2271   return _gvn.transform(cmov);
2272 
2273   /*
2274   // This is not as desirable as it may seem, since Min and Max
2275   // nodes do not have a full set of optimizations.
2276   // And they would interfere, anyway, with 'if' optimizations
2277   // and with CMoveI canonical forms.
2278   switch (id) {
2279   case vmIntrinsics::_min:
2280     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2281   case vmIntrinsics::_max:
2282     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2283   default:
2284     ShouldNotReachHere();
2285   }
2286   */
2287 }
2288 
2289 inline int
2290 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2291   const TypePtr* base_type = TypePtr::NULL_PTR;
2292   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2293   if (base_type == NULL) {
2294     // Unknown type.
2295     return Type::AnyPtr;
2296   } else if (base_type == TypePtr::NULL_PTR) {
2297     // Since this is a NULL+long form, we have to switch to a rawptr.
2298     base   = _gvn.transform(new CastX2PNode(offset));
2299     offset = MakeConX(0);
2300     return Type::RawPtr;
2301   } else if (base_type->base() == Type::RawPtr) {
2302     return Type::RawPtr;
2303   } else if (base_type->isa_oopptr()) {
2304     // Base is never null => always a heap address.
2305     if (base_type->ptr() == TypePtr::NotNull) {
2306       return Type::OopPtr;
2307     }
2308     // Offset is small => always a heap address.
2309     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2310     if (offset_type != NULL &&
2311         base_type->offset() == 0 &&     // (should always be?)
2312         offset_type->_lo >= 0 &&
2313         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2314       return Type::OopPtr;
2315     }
2316     // Otherwise, it might either be oop+off or NULL+addr.
2317     return Type::AnyPtr;
2318   } else {
2319     // No information:
2320     return Type::AnyPtr;
2321   }
2322 }
2323 
2324 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2325   int kind = classify_unsafe_addr(base, offset);
2326   if (kind == Type::RawPtr) {
2327     return basic_plus_adr(top(), base, offset);
2328   } else {
2329     return basic_plus_adr(base, offset);
2330   }
2331 }
2332 
2333 //--------------------------inline_number_methods-----------------------------
2334 // inline int     Integer.numberOfLeadingZeros(int)
2335 // inline int        Long.numberOfLeadingZeros(long)
2336 //
2337 // inline int     Integer.numberOfTrailingZeros(int)
2338 // inline int        Long.numberOfTrailingZeros(long)
2339 //
2340 // inline int     Integer.bitCount(int)
2341 // inline int        Long.bitCount(long)
2342 //
2343 // inline char  Character.reverseBytes(char)
2344 // inline short     Short.reverseBytes(short)
2345 // inline int     Integer.reverseBytes(int)
2346 // inline long       Long.reverseBytes(long)
2347 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2348   Node* arg = argument(0);
2349   Node* n;
2350   switch (id) {
2351   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2352   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2353   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2354   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2355   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2356   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2357   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2358   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2359   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2360   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2361   default:  fatal_unexpected_iid(id);  break;
2362   }
2363   set_result(_gvn.transform(n));
2364   return true;
2365 }
2366 
2367 //----------------------------inline_unsafe_access----------------------------
2368 
2369 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2370 
2371 // Helper that guards and inserts a pre-barrier.
2372 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2373                                         Node* pre_val, bool need_mem_bar) {
2374   // We could be accessing the referent field of a reference object. If so, when G1
2375   // is enabled, we need to log the value in the referent field in an SATB buffer.
2376   // This routine performs some compile time filters and generates suitable
2377   // runtime filters that guard the pre-barrier code.
2378   // Also add memory barrier for non volatile load from the referent field
2379   // to prevent commoning of loads across safepoint.
2380   if (!UseG1GC && !need_mem_bar)
2381     return;
2382 
2383   // Some compile time checks.
2384 
2385   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2386   const TypeX* otype = offset->find_intptr_t_type();
2387   if (otype != NULL && otype->is_con() &&
2388       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2389     // Constant offset but not the reference_offset so just return
2390     return;
2391   }
2392 
2393   // We only need to generate the runtime guards for instances.
2394   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2395   if (btype != NULL) {
2396     if (btype->isa_aryptr()) {
2397       // Array type so nothing to do
2398       return;
2399     }
2400 
2401     const TypeInstPtr* itype = btype->isa_instptr();
2402     if (itype != NULL) {
2403       // Can the klass of base_oop be statically determined to be
2404       // _not_ a sub-class of Reference and _not_ Object?
2405       ciKlass* klass = itype->klass();
2406       if ( klass->is_loaded() &&
2407           !klass->is_subtype_of(env()->Reference_klass()) &&
2408           !env()->Object_klass()->is_subtype_of(klass)) {
2409         return;
2410       }
2411     }
2412   }
2413 
2414   // The compile time filters did not reject base_oop/offset so
2415   // we need to generate the following runtime filters
2416   //
2417   // if (offset == java_lang_ref_Reference::_reference_offset) {
2418   //   if (instance_of(base, java.lang.ref.Reference)) {
2419   //     pre_barrier(_, pre_val, ...);
2420   //   }
2421   // }
2422 
2423   float likely   = PROB_LIKELY(  0.999);
2424   float unlikely = PROB_UNLIKELY(0.999);
2425 
2426   IdealKit ideal(this);
2427 #define __ ideal.
2428 
2429   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2430 
2431   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2432       // Update graphKit memory and control from IdealKit.
2433       sync_kit(ideal);
2434 
2435       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2436       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2437 
2438       // Update IdealKit memory and control from graphKit.
2439       __ sync_kit(this);
2440 
2441       Node* one = __ ConI(1);
2442       // is_instof == 0 if base_oop == NULL
2443       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2444 
2445         // Update graphKit from IdeakKit.
2446         sync_kit(ideal);
2447 
2448         // Use the pre-barrier to record the value in the referent field
2449         pre_barrier(false /* do_load */,
2450                     __ ctrl(),
2451                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2452                     pre_val /* pre_val */,
2453                     T_OBJECT);
2454         if (need_mem_bar) {
2455           // Add memory barrier to prevent commoning reads from this field
2456           // across safepoint since GC can change its value.
2457           insert_mem_bar(Op_MemBarCPUOrder);
2458         }
2459         // Update IdealKit from graphKit.
2460         __ sync_kit(this);
2461 
2462       } __ end_if(); // _ref_type != ref_none
2463   } __ end_if(); // offset == referent_offset
2464 
2465   // Final sync IdealKit and GraphKit.
2466   final_sync(ideal);
2467 #undef __
2468 }
2469 
2470 
2471 // Interpret Unsafe.fieldOffset cookies correctly:
2472 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2473 
2474 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2475   // Attempt to infer a sharper value type from the offset and base type.
2476   ciKlass* sharpened_klass = NULL;
2477 
2478   // See if it is an instance field, with an object type.
2479   if (alias_type->field() != NULL) {
2480     assert(!is_native_ptr, "native pointer op cannot use a java address");
2481     if (alias_type->field()->type()->is_klass()) {
2482       sharpened_klass = alias_type->field()->type()->as_klass();
2483     }
2484   }
2485 
2486   // See if it is a narrow oop array.
2487   if (adr_type->isa_aryptr()) {
2488     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2489       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2490       if (elem_type != NULL) {
2491         sharpened_klass = elem_type->klass();
2492       }
2493     }
2494   }
2495 
2496   // The sharpened class might be unloaded if there is no class loader
2497   // contraint in place.
2498   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2499     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2500 
2501 #ifndef PRODUCT
2502     if (C->print_intrinsics() || C->print_inlining()) {
2503       tty->print("  from base type: ");  adr_type->dump();
2504       tty->print("  sharpened value: ");  tjp->dump();
2505     }
2506 #endif
2507     // Sharpen the value type.
2508     return tjp;
2509   }
2510   return NULL;
2511 }
2512 
2513 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2514   if (callee()->is_static())  return false;  // caller must have the capability!
2515 
2516 #ifndef PRODUCT
2517   {
2518     ResourceMark rm;
2519     // Check the signatures.
2520     ciSignature* sig = callee()->signature();
2521 #ifdef ASSERT
2522     if (!is_store) {
2523       // Object getObject(Object base, int/long offset), etc.
2524       BasicType rtype = sig->return_type()->basic_type();
2525       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2526           rtype = T_ADDRESS;  // it is really a C void*
2527       assert(rtype == type, "getter must return the expected value");
2528       if (!is_native_ptr) {
2529         assert(sig->count() == 2, "oop getter has 2 arguments");
2530         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2531         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2532       } else {
2533         assert(sig->count() == 1, "native getter has 1 argument");
2534         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2535       }
2536     } else {
2537       // void putObject(Object base, int/long offset, Object x), etc.
2538       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2539       if (!is_native_ptr) {
2540         assert(sig->count() == 3, "oop putter has 3 arguments");
2541         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2542         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2543       } else {
2544         assert(sig->count() == 2, "native putter has 2 arguments");
2545         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2546       }
2547       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2548       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2549         vtype = T_ADDRESS;  // it is really a C void*
2550       assert(vtype == type, "putter must accept the expected value");
2551     }
2552 #endif // ASSERT
2553  }
2554 #endif //PRODUCT
2555 
2556   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2557 
2558   Node* receiver = argument(0);  // type: oop
2559 
2560   // Build address expression.
2561   Node* adr;
2562   Node* heap_base_oop = top();
2563   Node* offset = top();
2564   Node* val;
2565 
2566   if (!is_native_ptr) {
2567     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2568     Node* base = argument(1);  // type: oop
2569     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2570     offset = argument(2);  // type: long
2571     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2572     // to be plain byte offsets, which are also the same as those accepted
2573     // by oopDesc::field_base.
2574     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2575            "fieldOffset must be byte-scaled");
2576     // 32-bit machines ignore the high half!
2577     offset = ConvL2X(offset);
2578     adr = make_unsafe_address(base, offset);
2579     heap_base_oop = base;
2580     val = is_store ? argument(4) : NULL;
2581   } else {
2582     Node* ptr = argument(1);  // type: long
2583     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2584     adr = make_unsafe_address(NULL, ptr);
2585     val = is_store ? argument(3) : NULL;
2586   }
2587 
2588   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2589 
2590   // First guess at the value type.
2591   const Type *value_type = Type::get_const_basic_type(type);
2592 
2593   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2594   // there was not enough information to nail it down.
2595   Compile::AliasType* alias_type = C->alias_type(adr_type);
2596   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2597 
2598   // We will need memory barriers unless we can determine a unique
2599   // alias category for this reference.  (Note:  If for some reason
2600   // the barriers get omitted and the unsafe reference begins to "pollute"
2601   // the alias analysis of the rest of the graph, either Compile::can_alias
2602   // or Compile::must_alias will throw a diagnostic assert.)
2603   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2604 
2605   // If we are reading the value of the referent field of a Reference
2606   // object (either by using Unsafe directly or through reflection)
2607   // then, if G1 is enabled, we need to record the referent in an
2608   // SATB log buffer using the pre-barrier mechanism.
2609   // Also we need to add memory barrier to prevent commoning reads
2610   // from this field across safepoint since GC can change its value.
2611   bool need_read_barrier = !is_native_ptr && !is_store &&
2612                            offset != top() && heap_base_oop != top();
2613 
2614   if (!is_store && type == T_OBJECT) {
2615     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2616     if (tjp != NULL) {
2617       value_type = tjp;
2618     }
2619   }
2620 
2621   receiver = null_check(receiver);
2622   if (stopped()) {
2623     return true;
2624   }
2625   // Heap pointers get a null-check from the interpreter,
2626   // as a courtesy.  However, this is not guaranteed by Unsafe,
2627   // and it is not possible to fully distinguish unintended nulls
2628   // from intended ones in this API.
2629 
2630   if (is_volatile) {
2631     // We need to emit leading and trailing CPU membars (see below) in
2632     // addition to memory membars when is_volatile. This is a little
2633     // too strong, but avoids the need to insert per-alias-type
2634     // volatile membars (for stores; compare Parse::do_put_xxx), which
2635     // we cannot do effectively here because we probably only have a
2636     // rough approximation of type.
2637     need_mem_bar = true;
2638     // For Stores, place a memory ordering barrier now.
2639     if (is_store) {
2640       insert_mem_bar(Op_MemBarRelease);
2641     } else {
2642       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2643         insert_mem_bar(Op_MemBarVolatile);
2644       }
2645     }
2646   }
2647 
2648   // Memory barrier to prevent normal and 'unsafe' accesses from
2649   // bypassing each other.  Happens after null checks, so the
2650   // exception paths do not take memory state from the memory barrier,
2651   // so there's no problems making a strong assert about mixing users
2652   // of safe & unsafe memory.
2653   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2654 
2655   if (!is_store) {
2656     MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
2657     Node* p = make_load(control(), adr, value_type, type, adr_type, mo, is_volatile);
2658     // load value
2659     switch (type) {
2660     case T_BOOLEAN:
2661     case T_CHAR:
2662     case T_BYTE:
2663     case T_SHORT:
2664     case T_INT:
2665     case T_LONG:
2666     case T_FLOAT:
2667     case T_DOUBLE:
2668       break;
2669     case T_OBJECT:
2670       if (need_read_barrier) {
2671         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2672       }
2673       break;
2674     case T_ADDRESS:
2675       // Cast to an int type.
2676       p = _gvn.transform(new CastP2XNode(NULL, p));
2677       p = ConvX2UL(p);
2678       break;
2679     default:
2680       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2681       break;
2682     }
2683     // The load node has the control of the preceding MemBarCPUOrder.  All
2684     // following nodes will have the control of the MemBarCPUOrder inserted at
2685     // the end of this method.  So, pushing the load onto the stack at a later
2686     // point is fine.
2687     set_result(p);
2688   } else {
2689     // place effect of store into memory
2690     switch (type) {
2691     case T_DOUBLE:
2692       val = dstore_rounding(val);
2693       break;
2694     case T_ADDRESS:
2695       // Repackage the long as a pointer.
2696       val = ConvL2X(val);
2697       val = _gvn.transform(new CastX2PNode(val));
2698       break;
2699     }
2700 
2701     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2702     if (type != T_OBJECT ) {
2703       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2704     } else {
2705       // Possibly an oop being stored to Java heap or native memory
2706       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2707         // oop to Java heap.
2708         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2709       } else {
2710         // We can't tell at compile time if we are storing in the Java heap or outside
2711         // of it. So we need to emit code to conditionally do the proper type of
2712         // store.
2713 
2714         IdealKit ideal(this);
2715 #define __ ideal.
2716         // QQQ who knows what probability is here??
2717         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2718           // Sync IdealKit and graphKit.
2719           sync_kit(ideal);
2720           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2721           // Update IdealKit memory.
2722           __ sync_kit(this);
2723         } __ else_(); {
2724           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2725         } __ end_if();
2726         // Final sync IdealKit and GraphKit.
2727         final_sync(ideal);
2728 #undef __
2729       }
2730     }
2731   }
2732 
2733   if (is_volatile) {
2734     if (!is_store) {
2735       insert_mem_bar(Op_MemBarAcquire);
2736     } else {
2737       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2738         insert_mem_bar(Op_MemBarVolatile);
2739       }
2740     }
2741   }
2742 
2743   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2744 
2745   return true;
2746 }
2747 
2748 //----------------------------inline_unsafe_load_store----------------------------
2749 // This method serves a couple of different customers (depending on LoadStoreKind):
2750 //
2751 // LS_cmpxchg:
2752 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2753 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2754 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2755 //
2756 // LS_xadd:
2757 //   public int  getAndAddInt( Object o, long offset, int  delta)
2758 //   public long getAndAddLong(Object o, long offset, long delta)
2759 //
2760 // LS_xchg:
2761 //   int    getAndSet(Object o, long offset, int    newValue)
2762 //   long   getAndSet(Object o, long offset, long   newValue)
2763 //   Object getAndSet(Object o, long offset, Object newValue)
2764 //
2765 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2766   // This basic scheme here is the same as inline_unsafe_access, but
2767   // differs in enough details that combining them would make the code
2768   // overly confusing.  (This is a true fact! I originally combined
2769   // them, but even I was confused by it!) As much code/comments as
2770   // possible are retained from inline_unsafe_access though to make
2771   // the correspondences clearer. - dl
2772 
2773   if (callee()->is_static())  return false;  // caller must have the capability!
2774 
2775 #ifndef PRODUCT
2776   BasicType rtype;
2777   {
2778     ResourceMark rm;
2779     // Check the signatures.
2780     ciSignature* sig = callee()->signature();
2781     rtype = sig->return_type()->basic_type();
2782     if (kind == LS_xadd || kind == LS_xchg) {
2783       // Check the signatures.
2784 #ifdef ASSERT
2785       assert(rtype == type, "get and set must return the expected type");
2786       assert(sig->count() == 3, "get and set has 3 arguments");
2787       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2788       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2789       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2790 #endif // ASSERT
2791     } else if (kind == LS_cmpxchg) {
2792       // Check the signatures.
2793 #ifdef ASSERT
2794       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2795       assert(sig->count() == 4, "CAS has 4 arguments");
2796       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2797       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2798 #endif // ASSERT
2799     } else {
2800       ShouldNotReachHere();
2801     }
2802   }
2803 #endif //PRODUCT
2804 
2805   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2806 
2807   // Get arguments:
2808   Node* receiver = NULL;
2809   Node* base     = NULL;
2810   Node* offset   = NULL;
2811   Node* oldval   = NULL;
2812   Node* newval   = NULL;
2813   if (kind == LS_cmpxchg) {
2814     const bool two_slot_type = type2size[type] == 2;
2815     receiver = argument(0);  // type: oop
2816     base     = argument(1);  // type: oop
2817     offset   = argument(2);  // type: long
2818     oldval   = argument(4);  // type: oop, int, or long
2819     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2820   } else if (kind == LS_xadd || kind == LS_xchg){
2821     receiver = argument(0);  // type: oop
2822     base     = argument(1);  // type: oop
2823     offset   = argument(2);  // type: long
2824     oldval   = NULL;
2825     newval   = argument(4);  // type: oop, int, or long
2826   }
2827 
2828   // Null check receiver.
2829   receiver = null_check(receiver);
2830   if (stopped()) {
2831     return true;
2832   }
2833 
2834   // Build field offset expression.
2835   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2836   // to be plain byte offsets, which are also the same as those accepted
2837   // by oopDesc::field_base.
2838   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2839   // 32-bit machines ignore the high half of long offsets
2840   offset = ConvL2X(offset);
2841   Node* adr = make_unsafe_address(base, offset);
2842   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2843 
2844   // For CAS, unlike inline_unsafe_access, there seems no point in
2845   // trying to refine types. Just use the coarse types here.
2846   const Type *value_type = Type::get_const_basic_type(type);
2847   Compile::AliasType* alias_type = C->alias_type(adr_type);
2848   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2849 
2850   if (kind == LS_xchg && type == T_OBJECT) {
2851     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2852     if (tjp != NULL) {
2853       value_type = tjp;
2854     }
2855   }
2856 
2857   int alias_idx = C->get_alias_index(adr_type);
2858 
2859   // Memory-model-wise, a LoadStore acts like a little synchronized
2860   // block, so needs barriers on each side.  These don't translate
2861   // into actual barriers on most machines, but we still need rest of
2862   // compiler to respect ordering.
2863 
2864   insert_mem_bar(Op_MemBarRelease);
2865   insert_mem_bar(Op_MemBarCPUOrder);
2866 
2867   // 4984716: MemBars must be inserted before this
2868   //          memory node in order to avoid a false
2869   //          dependency which will confuse the scheduler.
2870   Node *mem = memory(alias_idx);
2871 
2872   // For now, we handle only those cases that actually exist: ints,
2873   // longs, and Object. Adding others should be straightforward.
2874   Node* load_store;
2875   switch(type) {
2876   case T_INT:
2877     if (kind == LS_xadd) {
2878       load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2879     } else if (kind == LS_xchg) {
2880       load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2881     } else if (kind == LS_cmpxchg) {
2882       load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval));
2883     } else {
2884       ShouldNotReachHere();
2885     }
2886     break;
2887   case T_LONG:
2888     if (kind == LS_xadd) {
2889       load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2890     } else if (kind == LS_xchg) {
2891       load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2892     } else if (kind == LS_cmpxchg) {
2893       load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2894     } else {
2895       ShouldNotReachHere();
2896     }
2897     break;
2898   case T_OBJECT:
2899     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2900     // could be delayed during Parse (for example, in adjust_map_after_if()).
2901     // Execute transformation here to avoid barrier generation in such case.
2902     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2903       newval = _gvn.makecon(TypePtr::NULL_PTR);
2904 
2905     // Reference stores need a store barrier.
2906     if (kind == LS_xchg) {
2907       // If pre-barrier must execute before the oop store, old value will require do_load here.
2908       if (!can_move_pre_barrier()) {
2909         pre_barrier(true /* do_load*/,
2910                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2911                     NULL /* pre_val*/,
2912                     T_OBJECT);
2913       } // Else move pre_barrier to use load_store value, see below.
2914     } else if (kind == LS_cmpxchg) {
2915       // Same as for newval above:
2916       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2917         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2918       }
2919       // The only known value which might get overwritten is oldval.
2920       pre_barrier(false /* do_load */,
2921                   control(), NULL, NULL, max_juint, NULL, NULL,
2922                   oldval /* pre_val */,
2923                   T_OBJECT);
2924     } else {
2925       ShouldNotReachHere();
2926     }
2927 
2928 #ifdef _LP64
2929     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2930       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2931       if (kind == LS_xchg) {
2932         load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr,
2933                                                        newval_enc, adr_type, value_type->make_narrowoop()));
2934       } else {
2935         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2936         Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2937         load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr,
2938                                                                 newval_enc, oldval_enc));
2939       }
2940     } else
2941 #endif
2942     {
2943       if (kind == LS_xchg) {
2944         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2945       } else {
2946         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2947         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2948       }
2949     }
2950     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2951     break;
2952   default:
2953     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2954     break;
2955   }
2956 
2957   // SCMemProjNodes represent the memory state of a LoadStore. Their
2958   // main role is to prevent LoadStore nodes from being optimized away
2959   // when their results aren't used.
2960   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
2961   set_memory(proj, alias_idx);
2962 
2963   if (type == T_OBJECT && kind == LS_xchg) {
2964 #ifdef _LP64
2965     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2966       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
2967     }
2968 #endif
2969     if (can_move_pre_barrier()) {
2970       // Don't need to load pre_val. The old value is returned by load_store.
2971       // The pre_barrier can execute after the xchg as long as no safepoint
2972       // gets inserted between them.
2973       pre_barrier(false /* do_load */,
2974                   control(), NULL, NULL, max_juint, NULL, NULL,
2975                   load_store /* pre_val */,
2976                   T_OBJECT);
2977     }
2978   }
2979 
2980   // Add the trailing membar surrounding the access
2981   insert_mem_bar(Op_MemBarCPUOrder);
2982   insert_mem_bar(Op_MemBarAcquire);
2983 
2984   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2985   set_result(load_store);
2986   return true;
2987 }
2988 
2989 //----------------------------inline_unsafe_ordered_store----------------------
2990 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
2991 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
2992 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
2993 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2994   // This is another variant of inline_unsafe_access, differing in
2995   // that it always issues store-store ("release") barrier and ensures
2996   // store-atomicity (which only matters for "long").
2997 
2998   if (callee()->is_static())  return false;  // caller must have the capability!
2999 
3000 #ifndef PRODUCT
3001   {
3002     ResourceMark rm;
3003     // Check the signatures.
3004     ciSignature* sig = callee()->signature();
3005 #ifdef ASSERT
3006     BasicType rtype = sig->return_type()->basic_type();
3007     assert(rtype == T_VOID, "must return void");
3008     assert(sig->count() == 3, "has 3 arguments");
3009     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3010     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3011 #endif // ASSERT
3012   }
3013 #endif //PRODUCT
3014 
3015   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3016 
3017   // Get arguments:
3018   Node* receiver = argument(0);  // type: oop
3019   Node* base     = argument(1);  // type: oop
3020   Node* offset   = argument(2);  // type: long
3021   Node* val      = argument(4);  // type: oop, int, or long
3022 
3023   // Null check receiver.
3024   receiver = null_check(receiver);
3025   if (stopped()) {
3026     return true;
3027   }
3028 
3029   // Build field offset expression.
3030   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3031   // 32-bit machines ignore the high half of long offsets
3032   offset = ConvL2X(offset);
3033   Node* adr = make_unsafe_address(base, offset);
3034   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3035   const Type *value_type = Type::get_const_basic_type(type);
3036   Compile::AliasType* alias_type = C->alias_type(adr_type);
3037 
3038   insert_mem_bar(Op_MemBarRelease);
3039   insert_mem_bar(Op_MemBarCPUOrder);
3040   // Ensure that the store is atomic for longs:
3041   const bool require_atomic_access = true;
3042   Node* store;
3043   if (type == T_OBJECT) // reference stores need a store barrier.
3044     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3045   else {
3046     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3047   }
3048   insert_mem_bar(Op_MemBarCPUOrder);
3049   return true;
3050 }
3051 
3052 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3053   // Regardless of form, don't allow previous ld/st to move down,
3054   // then issue acquire, release, or volatile mem_bar.
3055   insert_mem_bar(Op_MemBarCPUOrder);
3056   switch(id) {
3057     case vmIntrinsics::_loadFence:
3058       insert_mem_bar(Op_LoadFence);
3059       return true;
3060     case vmIntrinsics::_storeFence:
3061       insert_mem_bar(Op_StoreFence);
3062       return true;
3063     case vmIntrinsics::_fullFence:
3064       insert_mem_bar(Op_MemBarVolatile);
3065       return true;
3066     default:
3067       fatal_unexpected_iid(id);
3068       return false;
3069   }
3070 }
3071 
3072 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3073   if (!kls->is_Con()) {
3074     return true;
3075   }
3076   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3077   if (klsptr == NULL) {
3078     return true;
3079   }
3080   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3081   // don't need a guard for a klass that is already initialized
3082   return !ik->is_initialized();
3083 }
3084 
3085 //----------------------------inline_unsafe_allocate---------------------------
3086 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3087 bool LibraryCallKit::inline_unsafe_allocate() {
3088   if (callee()->is_static())  return false;  // caller must have the capability!
3089 
3090   null_check_receiver();  // null-check, then ignore
3091   Node* cls = null_check(argument(1));
3092   if (stopped())  return true;
3093 
3094   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3095   kls = null_check(kls);
3096   if (stopped())  return true;  // argument was like int.class
3097 
3098   Node* test = NULL;
3099   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3100     // Note:  The argument might still be an illegal value like
3101     // Serializable.class or Object[].class.   The runtime will handle it.
3102     // But we must make an explicit check for initialization.
3103     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3104     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3105     // can generate code to load it as unsigned byte.
3106     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3107     Node* bits = intcon(InstanceKlass::fully_initialized);
3108     test = _gvn.transform(new SubINode(inst, bits));
3109     // The 'test' is non-zero if we need to take a slow path.
3110   }
3111 
3112   Node* obj = new_instance(kls, test);
3113   set_result(obj);
3114   return true;
3115 }
3116 
3117 #ifdef TRACE_HAVE_INTRINSICS
3118 /*
3119  * oop -> myklass
3120  * myklass->trace_id |= USED
3121  * return myklass->trace_id & ~0x3
3122  */
3123 bool LibraryCallKit::inline_native_classID() {
3124   null_check_receiver();  // null-check, then ignore
3125   Node* cls = null_check(argument(1), T_OBJECT);
3126   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3127   kls = null_check(kls, T_OBJECT);
3128   ByteSize offset = TRACE_ID_OFFSET;
3129   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3130   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3131   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3132   Node* andl = _gvn.transform(new AndLNode(tvalue, bits));
3133   Node* clsused = longcon(0x01l); // set the class bit
3134   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3135 
3136   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3137   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3138   set_result(andl);
3139   return true;
3140 }
3141 
3142 bool LibraryCallKit::inline_native_threadID() {
3143   Node* tls_ptr = NULL;
3144   Node* cur_thr = generate_current_thread(tls_ptr);
3145   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3146   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3147   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3148 
3149   Node* threadid = NULL;
3150   size_t thread_id_size = OSThread::thread_id_size();
3151   if (thread_id_size == (size_t) BytesPerLong) {
3152     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3153   } else if (thread_id_size == (size_t) BytesPerInt) {
3154     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3155   } else {
3156     ShouldNotReachHere();
3157   }
3158   set_result(threadid);
3159   return true;
3160 }
3161 #endif
3162 
3163 //------------------------inline_native_time_funcs--------------
3164 // inline code for System.currentTimeMillis() and System.nanoTime()
3165 // these have the same type and signature
3166 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3167   const TypeFunc* tf = OptoRuntime::void_long_Type();
3168   const TypePtr* no_memory_effects = NULL;
3169   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3170   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3171 #ifdef ASSERT
3172   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3173   assert(value_top == top(), "second value must be top");
3174 #endif
3175   set_result(value);
3176   return true;
3177 }
3178 
3179 //------------------------inline_native_currentThread------------------
3180 bool LibraryCallKit::inline_native_currentThread() {
3181   Node* junk = NULL;
3182   set_result(generate_current_thread(junk));
3183   return true;
3184 }
3185 
3186 //------------------------inline_native_isInterrupted------------------
3187 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3188 bool LibraryCallKit::inline_native_isInterrupted() {
3189   // Add a fast path to t.isInterrupted(clear_int):
3190   //   (t == Thread.current() &&
3191   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3192   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3193   // So, in the common case that the interrupt bit is false,
3194   // we avoid making a call into the VM.  Even if the interrupt bit
3195   // is true, if the clear_int argument is false, we avoid the VM call.
3196   // However, if the receiver is not currentThread, we must call the VM,
3197   // because there must be some locking done around the operation.
3198 
3199   // We only go to the fast case code if we pass two guards.
3200   // Paths which do not pass are accumulated in the slow_region.
3201 
3202   enum {
3203     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3204     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3205     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3206     PATH_LIMIT
3207   };
3208 
3209   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3210   // out of the function.
3211   insert_mem_bar(Op_MemBarCPUOrder);
3212 
3213   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3214   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3215 
3216   RegionNode* slow_region = new RegionNode(1);
3217   record_for_igvn(slow_region);
3218 
3219   // (a) Receiving thread must be the current thread.
3220   Node* rec_thr = argument(0);
3221   Node* tls_ptr = NULL;
3222   Node* cur_thr = generate_current_thread(tls_ptr);
3223   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3224   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3225 
3226   generate_slow_guard(bol_thr, slow_region);
3227 
3228   // (b) Interrupt bit on TLS must be false.
3229   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3230   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3231   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3232 
3233   // Set the control input on the field _interrupted read to prevent it floating up.
3234   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3235   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3236   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3237 
3238   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3239 
3240   // First fast path:  if (!TLS._interrupted) return false;
3241   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3242   result_rgn->init_req(no_int_result_path, false_bit);
3243   result_val->init_req(no_int_result_path, intcon(0));
3244 
3245   // drop through to next case
3246   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3247 
3248 #ifndef TARGET_OS_FAMILY_windows
3249   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3250   Node* clr_arg = argument(1);
3251   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3252   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3253   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3254 
3255   // Second fast path:  ... else if (!clear_int) return true;
3256   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3257   result_rgn->init_req(no_clear_result_path, false_arg);
3258   result_val->init_req(no_clear_result_path, intcon(1));
3259 
3260   // drop through to next case
3261   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3262 #else
3263   // To return true on Windows you must read the _interrupted field
3264   // and check the the event state i.e. take the slow path.
3265 #endif // TARGET_OS_FAMILY_windows
3266 
3267   // (d) Otherwise, go to the slow path.
3268   slow_region->add_req(control());
3269   set_control( _gvn.transform(slow_region));
3270 
3271   if (stopped()) {
3272     // There is no slow path.
3273     result_rgn->init_req(slow_result_path, top());
3274     result_val->init_req(slow_result_path, top());
3275   } else {
3276     // non-virtual because it is a private non-static
3277     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3278 
3279     Node* slow_val = set_results_for_java_call(slow_call);
3280     // this->control() comes from set_results_for_java_call
3281 
3282     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3283     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3284 
3285     // These two phis are pre-filled with copies of of the fast IO and Memory
3286     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3287     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3288 
3289     result_rgn->init_req(slow_result_path, control());
3290     result_io ->init_req(slow_result_path, i_o());
3291     result_mem->init_req(slow_result_path, reset_memory());
3292     result_val->init_req(slow_result_path, slow_val);
3293 
3294     set_all_memory(_gvn.transform(result_mem));
3295     set_i_o(       _gvn.transform(result_io));
3296   }
3297 
3298   C->set_has_split_ifs(true); // Has chance for split-if optimization
3299   set_result(result_rgn, result_val);
3300   return true;
3301 }
3302 
3303 //---------------------------load_mirror_from_klass----------------------------
3304 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3305 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3306   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3307   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3308 }
3309 
3310 //-----------------------load_klass_from_mirror_common-------------------------
3311 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3312 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3313 // and branch to the given path on the region.
3314 // If never_see_null, take an uncommon trap on null, so we can optimistically
3315 // compile for the non-null case.
3316 // If the region is NULL, force never_see_null = true.
3317 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3318                                                     bool never_see_null,
3319                                                     RegionNode* region,
3320                                                     int null_path,
3321                                                     int offset) {
3322   if (region == NULL)  never_see_null = true;
3323   Node* p = basic_plus_adr(mirror, offset);
3324   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3325   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3326   Node* null_ctl = top();
3327   kls = null_check_oop(kls, &null_ctl, never_see_null);
3328   if (region != NULL) {
3329     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3330     region->init_req(null_path, null_ctl);
3331   } else {
3332     assert(null_ctl == top(), "no loose ends");
3333   }
3334   return kls;
3335 }
3336 
3337 //--------------------(inline_native_Class_query helpers)---------------------
3338 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3339 // Fall through if (mods & mask) == bits, take the guard otherwise.
3340 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3341   // Branch around if the given klass has the given modifier bit set.
3342   // Like generate_guard, adds a new path onto the region.
3343   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3344   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3345   Node* mask = intcon(modifier_mask);
3346   Node* bits = intcon(modifier_bits);
3347   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3348   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3349   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3350   return generate_fair_guard(bol, region);
3351 }
3352 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3353   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3354 }
3355 
3356 //-------------------------inline_native_Class_query-------------------
3357 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3358   const Type* return_type = TypeInt::BOOL;
3359   Node* prim_return_value = top();  // what happens if it's a primitive class?
3360   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3361   bool expect_prim = false;     // most of these guys expect to work on refs
3362 
3363   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3364 
3365   Node* mirror = argument(0);
3366   Node* obj    = top();
3367 
3368   switch (id) {
3369   case vmIntrinsics::_isInstance:
3370     // nothing is an instance of a primitive type
3371     prim_return_value = intcon(0);
3372     obj = argument(1);
3373     break;
3374   case vmIntrinsics::_getModifiers:
3375     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3376     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3377     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3378     break;
3379   case vmIntrinsics::_isInterface:
3380     prim_return_value = intcon(0);
3381     break;
3382   case vmIntrinsics::_isArray:
3383     prim_return_value = intcon(0);
3384     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3385     break;
3386   case vmIntrinsics::_isPrimitive:
3387     prim_return_value = intcon(1);
3388     expect_prim = true;  // obviously
3389     break;
3390   case vmIntrinsics::_getSuperclass:
3391     prim_return_value = null();
3392     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3393     break;
3394   case vmIntrinsics::_getClassAccessFlags:
3395     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3396     return_type = TypeInt::INT;  // not bool!  6297094
3397     break;
3398   default:
3399     fatal_unexpected_iid(id);
3400     break;
3401   }
3402 
3403   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3404   if (mirror_con == NULL)  return false;  // cannot happen?
3405 
3406 #ifndef PRODUCT
3407   if (C->print_intrinsics() || C->print_inlining()) {
3408     ciType* k = mirror_con->java_mirror_type();
3409     if (k) {
3410       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3411       k->print_name();
3412       tty->cr();
3413     }
3414   }
3415 #endif
3416 
3417   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3418   RegionNode* region = new RegionNode(PATH_LIMIT);
3419   record_for_igvn(region);
3420   PhiNode* phi = new PhiNode(region, return_type);
3421 
3422   // The mirror will never be null of Reflection.getClassAccessFlags, however
3423   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3424   // if it is. See bug 4774291.
3425 
3426   // For Reflection.getClassAccessFlags(), the null check occurs in
3427   // the wrong place; see inline_unsafe_access(), above, for a similar
3428   // situation.
3429   mirror = null_check(mirror);
3430   // If mirror or obj is dead, only null-path is taken.
3431   if (stopped())  return true;
3432 
3433   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3434 
3435   // Now load the mirror's klass metaobject, and null-check it.
3436   // Side-effects region with the control path if the klass is null.
3437   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3438   // If kls is null, we have a primitive mirror.
3439   phi->init_req(_prim_path, prim_return_value);
3440   if (stopped()) { set_result(region, phi); return true; }
3441   bool safe_for_replace = (region->in(_prim_path) == top());
3442 
3443   Node* p;  // handy temp
3444   Node* null_ctl;
3445 
3446   // Now that we have the non-null klass, we can perform the real query.
3447   // For constant classes, the query will constant-fold in LoadNode::Value.
3448   Node* query_value = top();
3449   switch (id) {
3450   case vmIntrinsics::_isInstance:
3451     // nothing is an instance of a primitive type
3452     query_value = gen_instanceof(obj, kls, safe_for_replace);
3453     break;
3454 
3455   case vmIntrinsics::_getModifiers:
3456     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3457     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3458     break;
3459 
3460   case vmIntrinsics::_isInterface:
3461     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3462     if (generate_interface_guard(kls, region) != NULL)
3463       // A guard was added.  If the guard is taken, it was an interface.
3464       phi->add_req(intcon(1));
3465     // If we fall through, it's a plain class.
3466     query_value = intcon(0);
3467     break;
3468 
3469   case vmIntrinsics::_isArray:
3470     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3471     if (generate_array_guard(kls, region) != NULL)
3472       // A guard was added.  If the guard is taken, it was an array.
3473       phi->add_req(intcon(1));
3474     // If we fall through, it's a plain class.
3475     query_value = intcon(0);
3476     break;
3477 
3478   case vmIntrinsics::_isPrimitive:
3479     query_value = intcon(0); // "normal" path produces false
3480     break;
3481 
3482   case vmIntrinsics::_getSuperclass:
3483     // The rules here are somewhat unfortunate, but we can still do better
3484     // with random logic than with a JNI call.
3485     // Interfaces store null or Object as _super, but must report null.
3486     // Arrays store an intermediate super as _super, but must report Object.
3487     // Other types can report the actual _super.
3488     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3489     if (generate_interface_guard(kls, region) != NULL)
3490       // A guard was added.  If the guard is taken, it was an interface.
3491       phi->add_req(null());
3492     if (generate_array_guard(kls, region) != NULL)
3493       // A guard was added.  If the guard is taken, it was an array.
3494       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3495     // If we fall through, it's a plain class.  Get its _super.
3496     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3497     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3498     null_ctl = top();
3499     kls = null_check_oop(kls, &null_ctl);
3500     if (null_ctl != top()) {
3501       // If the guard is taken, Object.superClass is null (both klass and mirror).
3502       region->add_req(null_ctl);
3503       phi   ->add_req(null());
3504     }
3505     if (!stopped()) {
3506       query_value = load_mirror_from_klass(kls);
3507     }
3508     break;
3509 
3510   case vmIntrinsics::_getClassAccessFlags:
3511     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3512     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3513     break;
3514 
3515   default:
3516     fatal_unexpected_iid(id);
3517     break;
3518   }
3519 
3520   // Fall-through is the normal case of a query to a real class.
3521   phi->init_req(1, query_value);
3522   region->init_req(1, control());
3523 
3524   C->set_has_split_ifs(true); // Has chance for split-if optimization
3525   set_result(region, phi);
3526   return true;
3527 }
3528 
3529 //-------------------------inline_Class_cast-------------------
3530 bool LibraryCallKit::inline_Class_cast() {
3531   Node* mirror = argument(0); // Class
3532   Node* obj    = argument(1);
3533   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3534   if (mirror_con == NULL) {
3535     return false;  // dead path (mirror->is_top()).
3536   }
3537   if (obj == NULL || obj->is_top()) {
3538     return false;  // dead path
3539   }
3540   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3541 
3542   // First, see if Class.cast() can be folded statically.
3543   // java_mirror_type() returns non-null for compile-time Class constants.
3544   ciType* tm = mirror_con->java_mirror_type();
3545   if (tm != NULL && tm->is_klass() &&
3546       tp != NULL && tp->klass() != NULL) {
3547     if (!tp->klass()->is_loaded()) {
3548       // Don't use intrinsic when class is not loaded.
3549       return false;
3550     } else {
3551       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3552       if (static_res == Compile::SSC_always_true) {
3553         // isInstance() is true - fold the code.
3554         set_result(obj);
3555         return true;
3556       } else if (static_res == Compile::SSC_always_false) {
3557         // Don't use intrinsic, have to throw ClassCastException.
3558         // If the reference is null, the non-intrinsic bytecode will
3559         // be optimized appropriately.
3560         return false;
3561       }
3562     }
3563   }
3564 
3565   // Bailout intrinsic and do normal inlining if exception path is frequent.
3566   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3567     return false;
3568   }
3569 
3570   // Generate dynamic checks.
3571   // Class.cast() is java implementation of _checkcast bytecode.
3572   // Do checkcast (Parse::do_checkcast()) optimizations here.
3573 
3574   mirror = null_check(mirror);
3575   // If mirror is dead, only null-path is taken.
3576   if (stopped()) {
3577     return true;
3578   }
3579 
3580   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3581   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3582   RegionNode* region = new RegionNode(PATH_LIMIT);
3583   record_for_igvn(region);
3584 
3585   // Now load the mirror's klass metaobject, and null-check it.
3586   // If kls is null, we have a primitive mirror and
3587   // nothing is an instance of a primitive type.
3588   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3589 
3590   Node* res = top();
3591   if (!stopped()) {
3592     Node* bad_type_ctrl = top();
3593     // Do checkcast optimizations.
3594     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3595     region->init_req(_bad_type_path, bad_type_ctrl);
3596   }
3597   if (region->in(_prim_path) != top() ||
3598       region->in(_bad_type_path) != top()) {
3599     // Let Interpreter throw ClassCastException.
3600     PreserveJVMState pjvms(this);
3601     set_control(_gvn.transform(region));
3602     uncommon_trap(Deoptimization::Reason_intrinsic,
3603                   Deoptimization::Action_maybe_recompile);
3604   }
3605   if (!stopped()) {
3606     set_result(res);
3607   }
3608   return true;
3609 }
3610 
3611 
3612 //--------------------------inline_native_subtype_check------------------------
3613 // This intrinsic takes the JNI calls out of the heart of
3614 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3615 bool LibraryCallKit::inline_native_subtype_check() {
3616   // Pull both arguments off the stack.
3617   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3618   args[0] = argument(0);
3619   args[1] = argument(1);
3620   Node* klasses[2];             // corresponding Klasses: superk, subk
3621   klasses[0] = klasses[1] = top();
3622 
3623   enum {
3624     // A full decision tree on {superc is prim, subc is prim}:
3625     _prim_0_path = 1,           // {P,N} => false
3626                                 // {P,P} & superc!=subc => false
3627     _prim_same_path,            // {P,P} & superc==subc => true
3628     _prim_1_path,               // {N,P} => false
3629     _ref_subtype_path,          // {N,N} & subtype check wins => true
3630     _both_ref_path,             // {N,N} & subtype check loses => false
3631     PATH_LIMIT
3632   };
3633 
3634   RegionNode* region = new RegionNode(PATH_LIMIT);
3635   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3636   record_for_igvn(region);
3637 
3638   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3639   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3640   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3641 
3642   // First null-check both mirrors and load each mirror's klass metaobject.
3643   int which_arg;
3644   for (which_arg = 0; which_arg <= 1; which_arg++) {
3645     Node* arg = args[which_arg];
3646     arg = null_check(arg);
3647     if (stopped())  break;
3648     args[which_arg] = arg;
3649 
3650     Node* p = basic_plus_adr(arg, class_klass_offset);
3651     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3652     klasses[which_arg] = _gvn.transform(kls);
3653   }
3654 
3655   // Having loaded both klasses, test each for null.
3656   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3657   for (which_arg = 0; which_arg <= 1; which_arg++) {
3658     Node* kls = klasses[which_arg];
3659     Node* null_ctl = top();
3660     kls = null_check_oop(kls, &null_ctl, never_see_null);
3661     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3662     region->init_req(prim_path, null_ctl);
3663     if (stopped())  break;
3664     klasses[which_arg] = kls;
3665   }
3666 
3667   if (!stopped()) {
3668     // now we have two reference types, in klasses[0..1]
3669     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3670     Node* superk = klasses[0];  // the receiver
3671     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3672     // now we have a successful reference subtype check
3673     region->set_req(_ref_subtype_path, control());
3674   }
3675 
3676   // If both operands are primitive (both klasses null), then
3677   // we must return true when they are identical primitives.
3678   // It is convenient to test this after the first null klass check.
3679   set_control(region->in(_prim_0_path)); // go back to first null check
3680   if (!stopped()) {
3681     // Since superc is primitive, make a guard for the superc==subc case.
3682     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3683     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3684     generate_guard(bol_eq, region, PROB_FAIR);
3685     if (region->req() == PATH_LIMIT+1) {
3686       // A guard was added.  If the added guard is taken, superc==subc.
3687       region->swap_edges(PATH_LIMIT, _prim_same_path);
3688       region->del_req(PATH_LIMIT);
3689     }
3690     region->set_req(_prim_0_path, control()); // Not equal after all.
3691   }
3692 
3693   // these are the only paths that produce 'true':
3694   phi->set_req(_prim_same_path,   intcon(1));
3695   phi->set_req(_ref_subtype_path, intcon(1));
3696 
3697   // pull together the cases:
3698   assert(region->req() == PATH_LIMIT, "sane region");
3699   for (uint i = 1; i < region->req(); i++) {
3700     Node* ctl = region->in(i);
3701     if (ctl == NULL || ctl == top()) {
3702       region->set_req(i, top());
3703       phi   ->set_req(i, top());
3704     } else if (phi->in(i) == NULL) {
3705       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3706     }
3707   }
3708 
3709   set_control(_gvn.transform(region));
3710   set_result(_gvn.transform(phi));
3711   return true;
3712 }
3713 
3714 //---------------------generate_array_guard_common------------------------
3715 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3716                                                   bool obj_array, bool not_array) {
3717 
3718   if (stopped()) {
3719     return NULL;
3720   }
3721 
3722   // If obj_array/non_array==false/false:
3723   // Branch around if the given klass is in fact an array (either obj or prim).
3724   // If obj_array/non_array==false/true:
3725   // Branch around if the given klass is not an array klass of any kind.
3726   // If obj_array/non_array==true/true:
3727   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3728   // If obj_array/non_array==true/false:
3729   // Branch around if the kls is an oop array (Object[] or subtype)
3730   //
3731   // Like generate_guard, adds a new path onto the region.
3732   jint  layout_con = 0;
3733   Node* layout_val = get_layout_helper(kls, layout_con);
3734   if (layout_val == NULL) {
3735     bool query = (obj_array
3736                   ? Klass::layout_helper_is_objArray(layout_con)
3737                   : Klass::layout_helper_is_array(layout_con));
3738     if (query == not_array) {
3739       return NULL;                       // never a branch
3740     } else {                             // always a branch
3741       Node* always_branch = control();
3742       if (region != NULL)
3743         region->add_req(always_branch);
3744       set_control(top());
3745       return always_branch;
3746     }
3747   }
3748   // Now test the correct condition.
3749   jint  nval = (obj_array
3750                 ? ((jint)Klass::_lh_array_tag_type_value
3751                    <<    Klass::_lh_array_tag_shift)
3752                 : Klass::_lh_neutral_value);
3753   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3754   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3755   // invert the test if we are looking for a non-array
3756   if (not_array)  btest = BoolTest(btest).negate();
3757   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3758   return generate_fair_guard(bol, region);
3759 }
3760 
3761 
3762 //-----------------------inline_native_newArray--------------------------
3763 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3764 bool LibraryCallKit::inline_native_newArray() {
3765   Node* mirror    = argument(0);
3766   Node* count_val = argument(1);
3767 
3768   mirror = null_check(mirror);
3769   // If mirror or obj is dead, only null-path is taken.
3770   if (stopped())  return true;
3771 
3772   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3773   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3774   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3775   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3776   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3777 
3778   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3779   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3780                                                   result_reg, _slow_path);
3781   Node* normal_ctl   = control();
3782   Node* no_array_ctl = result_reg->in(_slow_path);
3783 
3784   // Generate code for the slow case.  We make a call to newArray().
3785   set_control(no_array_ctl);
3786   if (!stopped()) {
3787     // Either the input type is void.class, or else the
3788     // array klass has not yet been cached.  Either the
3789     // ensuing call will throw an exception, or else it
3790     // will cache the array klass for next time.
3791     PreserveJVMState pjvms(this);
3792     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3793     Node* slow_result = set_results_for_java_call(slow_call);
3794     // this->control() comes from set_results_for_java_call
3795     result_reg->set_req(_slow_path, control());
3796     result_val->set_req(_slow_path, slow_result);
3797     result_io ->set_req(_slow_path, i_o());
3798     result_mem->set_req(_slow_path, reset_memory());
3799   }
3800 
3801   set_control(normal_ctl);
3802   if (!stopped()) {
3803     // Normal case:  The array type has been cached in the java.lang.Class.
3804     // The following call works fine even if the array type is polymorphic.
3805     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3806     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3807     result_reg->init_req(_normal_path, control());
3808     result_val->init_req(_normal_path, obj);
3809     result_io ->init_req(_normal_path, i_o());
3810     result_mem->init_req(_normal_path, reset_memory());
3811   }
3812 
3813   // Return the combined state.
3814   set_i_o(        _gvn.transform(result_io)  );
3815   set_all_memory( _gvn.transform(result_mem));
3816 
3817   C->set_has_split_ifs(true); // Has chance for split-if optimization
3818   set_result(result_reg, result_val);
3819   return true;
3820 }
3821 
3822 //----------------------inline_native_getLength--------------------------
3823 // public static native int java.lang.reflect.Array.getLength(Object array);
3824 bool LibraryCallKit::inline_native_getLength() {
3825   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3826 
3827   Node* array = null_check(argument(0));
3828   // If array is dead, only null-path is taken.
3829   if (stopped())  return true;
3830 
3831   // Deoptimize if it is a non-array.
3832   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3833 
3834   if (non_array != NULL) {
3835     PreserveJVMState pjvms(this);
3836     set_control(non_array);
3837     uncommon_trap(Deoptimization::Reason_intrinsic,
3838                   Deoptimization::Action_maybe_recompile);
3839   }
3840 
3841   // If control is dead, only non-array-path is taken.
3842   if (stopped())  return true;
3843 
3844   // The works fine even if the array type is polymorphic.
3845   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3846   Node* result = load_array_length(array);
3847 
3848   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3849   set_result(result);
3850   return true;
3851 }
3852 
3853 //------------------------inline_array_copyOf----------------------------
3854 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3855 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3856 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3857   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3858 
3859   // Get the arguments.
3860   Node* original          = argument(0);
3861   Node* start             = is_copyOfRange? argument(1): intcon(0);
3862   Node* end               = is_copyOfRange? argument(2): argument(1);
3863   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3864 
3865   Node* newcopy;
3866 
3867   // Set the original stack and the reexecute bit for the interpreter to reexecute
3868   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3869   { PreserveReexecuteState preexecs(this);
3870     jvms()->set_should_reexecute(true);
3871 
3872     array_type_mirror = null_check(array_type_mirror);
3873     original          = null_check(original);
3874 
3875     // Check if a null path was taken unconditionally.
3876     if (stopped())  return true;
3877 
3878     Node* orig_length = load_array_length(original);
3879 
3880     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3881     klass_node = null_check(klass_node);
3882 
3883     RegionNode* bailout = new RegionNode(1);
3884     record_for_igvn(bailout);
3885 
3886     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3887     // Bail out if that is so.
3888     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3889     if (not_objArray != NULL) {
3890       // Improve the klass node's type from the new optimistic assumption:
3891       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3892       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3893       Node* cast = new CastPPNode(klass_node, akls);
3894       cast->init_req(0, control());
3895       klass_node = _gvn.transform(cast);
3896     }
3897 
3898     // Bail out if either start or end is negative.
3899     generate_negative_guard(start, bailout, &start);
3900     generate_negative_guard(end,   bailout, &end);
3901 
3902     Node* length = end;
3903     if (_gvn.type(start) != TypeInt::ZERO) {
3904       length = _gvn.transform(new SubINode(end, start));
3905     }
3906 
3907     // Bail out if length is negative.
3908     // Without this the new_array would throw
3909     // NegativeArraySizeException but IllegalArgumentException is what
3910     // should be thrown
3911     generate_negative_guard(length, bailout, &length);
3912 
3913     if (bailout->req() > 1) {
3914       PreserveJVMState pjvms(this);
3915       set_control(_gvn.transform(bailout));
3916       uncommon_trap(Deoptimization::Reason_intrinsic,
3917                     Deoptimization::Action_maybe_recompile);
3918     }
3919 
3920     if (!stopped()) {
3921       // How many elements will we copy from the original?
3922       // The answer is MinI(orig_length - start, length).
3923       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3924       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3925 
3926       // Generate a direct call to the right arraycopy function(s).
3927       // We know the copy is disjoint but we might not know if the
3928       // oop stores need checking.
3929       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3930       // This will fail a store-check if x contains any non-nulls.
3931 
3932       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
3933       // loads/stores but it is legal only if we're sure the
3934       // Arrays.copyOf would succeed. So we need all input arguments
3935       // to the copyOf to be validated, including that the copy to the
3936       // new array won't trigger an ArrayStoreException. That subtype
3937       // check can be optimized if we know something on the type of
3938       // the input array from type speculation.
3939       if (_gvn.type(klass_node)->singleton()) {
3940         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
3941         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
3942 
3943         int test = C->static_subtype_check(superk, subk);
3944         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
3945           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
3946           if (t_original->speculative_type() != NULL) {
3947             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
3948           }
3949         }
3950       }
3951 
3952       bool validated = false;
3953       // Reason_class_check rather than Reason_intrinsic because we
3954       // want to intrinsify even if this traps.
3955       if (!too_many_traps(Deoptimization::Reason_class_check)) {
3956         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
3957                                                    klass_node);
3958 
3959         if (not_subtype_ctrl != top()) {
3960           PreserveJVMState pjvms(this);
3961           set_control(not_subtype_ctrl);
3962           uncommon_trap(Deoptimization::Reason_class_check,
3963                         Deoptimization::Action_make_not_entrant);
3964           assert(stopped(), "Should be stopped");
3965         }
3966         validated = true;
3967       }
3968 
3969       if (!stopped()) {
3970         newcopy = new_array(klass_node, length, 0);  // no arguments to push
3971 
3972         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true,
3973                                                 load_object_klass(original), klass_node);
3974         if (!is_copyOfRange) {
3975           ac->set_copyof(validated);
3976         } else {
3977           ac->set_copyofrange(validated);
3978         }
3979         Node* n = _gvn.transform(ac);
3980         if (n == ac) {
3981           ac->connect_outputs(this);
3982         } else {
3983           assert(validated, "shouldn't transform if all arguments not validated");
3984           set_all_memory(n);
3985         }
3986       }
3987     }
3988   } // original reexecute is set back here
3989 
3990   C->set_has_split_ifs(true); // Has chance for split-if optimization
3991   if (!stopped()) {
3992     set_result(newcopy);
3993   }
3994   return true;
3995 }
3996 
3997 
3998 //----------------------generate_virtual_guard---------------------------
3999 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4000 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4001                                              RegionNode* slow_region) {
4002   ciMethod* method = callee();
4003   int vtable_index = method->vtable_index();
4004   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4005          err_msg_res("bad index %d", vtable_index));
4006   // Get the Method* out of the appropriate vtable entry.
4007   int entry_offset  = (InstanceKlass::vtable_start_offset() +
4008                      vtable_index*vtableEntry::size()) * wordSize +
4009                      vtableEntry::method_offset_in_bytes();
4010   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4011   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4012 
4013   // Compare the target method with the expected method (e.g., Object.hashCode).
4014   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4015 
4016   Node* native_call = makecon(native_call_addr);
4017   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4018   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4019 
4020   return generate_slow_guard(test_native, slow_region);
4021 }
4022 
4023 //-----------------------generate_method_call----------------------------
4024 // Use generate_method_call to make a slow-call to the real
4025 // method if the fast path fails.  An alternative would be to
4026 // use a stub like OptoRuntime::slow_arraycopy_Java.
4027 // This only works for expanding the current library call,
4028 // not another intrinsic.  (E.g., don't use this for making an
4029 // arraycopy call inside of the copyOf intrinsic.)
4030 CallJavaNode*
4031 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4032   // When compiling the intrinsic method itself, do not use this technique.
4033   guarantee(callee() != C->method(), "cannot make slow-call to self");
4034 
4035   ciMethod* method = callee();
4036   // ensure the JVMS we have will be correct for this call
4037   guarantee(method_id == method->intrinsic_id(), "must match");
4038 
4039   const TypeFunc* tf = TypeFunc::make(method);
4040   CallJavaNode* slow_call;
4041   if (is_static) {
4042     assert(!is_virtual, "");
4043     slow_call = new CallStaticJavaNode(C, tf,
4044                            SharedRuntime::get_resolve_static_call_stub(),
4045                            method, bci());
4046   } else if (is_virtual) {
4047     null_check_receiver();
4048     int vtable_index = Method::invalid_vtable_index;
4049     if (UseInlineCaches) {
4050       // Suppress the vtable call
4051     } else {
4052       // hashCode and clone are not a miranda methods,
4053       // so the vtable index is fixed.
4054       // No need to use the linkResolver to get it.
4055        vtable_index = method->vtable_index();
4056        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4057               err_msg_res("bad index %d", vtable_index));
4058     }
4059     slow_call = new CallDynamicJavaNode(tf,
4060                           SharedRuntime::get_resolve_virtual_call_stub(),
4061                           method, vtable_index, bci());
4062   } else {  // neither virtual nor static:  opt_virtual
4063     null_check_receiver();
4064     slow_call = new CallStaticJavaNode(C, tf,
4065                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4066                                 method, bci());
4067     slow_call->set_optimized_virtual(true);
4068   }
4069   set_arguments_for_java_call(slow_call);
4070   set_edges_for_java_call(slow_call);
4071   return slow_call;
4072 }
4073 
4074 
4075 /**
4076  * Build special case code for calls to hashCode on an object. This call may
4077  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4078  * slightly different code.
4079  */
4080 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4081   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4082   assert(!(is_virtual && is_static), "either virtual, special, or static");
4083 
4084   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4085 
4086   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4087   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4088   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4089   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4090   Node* obj = NULL;
4091   if (!is_static) {
4092     // Check for hashing null object
4093     obj = null_check_receiver();
4094     if (stopped())  return true;        // unconditionally null
4095     result_reg->init_req(_null_path, top());
4096     result_val->init_req(_null_path, top());
4097   } else {
4098     // Do a null check, and return zero if null.
4099     // System.identityHashCode(null) == 0
4100     obj = argument(0);
4101     Node* null_ctl = top();
4102     obj = null_check_oop(obj, &null_ctl);
4103     result_reg->init_req(_null_path, null_ctl);
4104     result_val->init_req(_null_path, _gvn.intcon(0));
4105   }
4106 
4107   // Unconditionally null?  Then return right away.
4108   if (stopped()) {
4109     set_control( result_reg->in(_null_path));
4110     if (!stopped())
4111       set_result(result_val->in(_null_path));
4112     return true;
4113   }
4114 
4115   // We only go to the fast case code if we pass a number of guards.  The
4116   // paths which do not pass are accumulated in the slow_region.
4117   RegionNode* slow_region = new RegionNode(1);
4118   record_for_igvn(slow_region);
4119 
4120   // If this is a virtual call, we generate a funny guard.  We pull out
4121   // the vtable entry corresponding to hashCode() from the target object.
4122   // If the target method which we are calling happens to be the native
4123   // Object hashCode() method, we pass the guard.  We do not need this
4124   // guard for non-virtual calls -- the caller is known to be the native
4125   // Object hashCode().
4126   if (is_virtual) {
4127     // After null check, get the object's klass.
4128     Node* obj_klass = load_object_klass(obj);
4129     generate_virtual_guard(obj_klass, slow_region);
4130   }
4131 
4132   // Get the header out of the object, use LoadMarkNode when available
4133   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4134   // The control of the load must be NULL. Otherwise, the load can move before
4135   // the null check after castPP removal.
4136   Node* no_ctrl = NULL;
4137   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4138 
4139   // Test the header to see if it is unlocked.
4140   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4141   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4142   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4143   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4144   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4145 
4146   generate_slow_guard(test_unlocked, slow_region);
4147 
4148   // Get the hash value and check to see that it has been properly assigned.
4149   // We depend on hash_mask being at most 32 bits and avoid the use of
4150   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4151   // vm: see markOop.hpp.
4152   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4153   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4154   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4155   // This hack lets the hash bits live anywhere in the mark object now, as long
4156   // as the shift drops the relevant bits into the low 32 bits.  Note that
4157   // Java spec says that HashCode is an int so there's no point in capturing
4158   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4159   hshifted_header      = ConvX2I(hshifted_header);
4160   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4161 
4162   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4163   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4164   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4165 
4166   generate_slow_guard(test_assigned, slow_region);
4167 
4168   Node* init_mem = reset_memory();
4169   // fill in the rest of the null path:
4170   result_io ->init_req(_null_path, i_o());
4171   result_mem->init_req(_null_path, init_mem);
4172 
4173   result_val->init_req(_fast_path, hash_val);
4174   result_reg->init_req(_fast_path, control());
4175   result_io ->init_req(_fast_path, i_o());
4176   result_mem->init_req(_fast_path, init_mem);
4177 
4178   // Generate code for the slow case.  We make a call to hashCode().
4179   set_control(_gvn.transform(slow_region));
4180   if (!stopped()) {
4181     // No need for PreserveJVMState, because we're using up the present state.
4182     set_all_memory(init_mem);
4183     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4184     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4185     Node* slow_result = set_results_for_java_call(slow_call);
4186     // this->control() comes from set_results_for_java_call
4187     result_reg->init_req(_slow_path, control());
4188     result_val->init_req(_slow_path, slow_result);
4189     result_io  ->set_req(_slow_path, i_o());
4190     result_mem ->set_req(_slow_path, reset_memory());
4191   }
4192 
4193   // Return the combined state.
4194   set_i_o(        _gvn.transform(result_io)  );
4195   set_all_memory( _gvn.transform(result_mem));
4196 
4197   set_result(result_reg, result_val);
4198   return true;
4199 }
4200 
4201 //---------------------------inline_native_getClass----------------------------
4202 // public final native Class<?> java.lang.Object.getClass();
4203 //
4204 // Build special case code for calls to getClass on an object.
4205 bool LibraryCallKit::inline_native_getClass() {
4206   Node* obj = null_check_receiver();
4207   if (stopped())  return true;
4208   set_result(load_mirror_from_klass(load_object_klass(obj)));
4209   return true;
4210 }
4211 
4212 //-----------------inline_native_Reflection_getCallerClass---------------------
4213 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4214 //
4215 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4216 //
4217 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4218 // in that it must skip particular security frames and checks for
4219 // caller sensitive methods.
4220 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4221 #ifndef PRODUCT
4222   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4223     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4224   }
4225 #endif
4226 
4227   if (!jvms()->has_method()) {
4228 #ifndef PRODUCT
4229     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4230       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4231     }
4232 #endif
4233     return false;
4234   }
4235 
4236   // Walk back up the JVM state to find the caller at the required
4237   // depth.
4238   JVMState* caller_jvms = jvms();
4239 
4240   // Cf. JVM_GetCallerClass
4241   // NOTE: Start the loop at depth 1 because the current JVM state does
4242   // not include the Reflection.getCallerClass() frame.
4243   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4244     ciMethod* m = caller_jvms->method();
4245     switch (n) {
4246     case 0:
4247       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4248       break;
4249     case 1:
4250       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4251       if (!m->caller_sensitive()) {
4252 #ifndef PRODUCT
4253         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4254           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4255         }
4256 #endif
4257         return false;  // bail-out; let JVM_GetCallerClass do the work
4258       }
4259       break;
4260     default:
4261       if (!m->is_ignored_by_security_stack_walk()) {
4262         // We have reached the desired frame; return the holder class.
4263         // Acquire method holder as java.lang.Class and push as constant.
4264         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4265         ciInstance* caller_mirror = caller_klass->java_mirror();
4266         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4267 
4268 #ifndef PRODUCT
4269         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4270           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4271           tty->print_cr("  JVM state at this point:");
4272           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4273             ciMethod* m = jvms()->of_depth(i)->method();
4274             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4275           }
4276         }
4277 #endif
4278         return true;
4279       }
4280       break;
4281     }
4282   }
4283 
4284 #ifndef PRODUCT
4285   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4286     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4287     tty->print_cr("  JVM state at this point:");
4288     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4289       ciMethod* m = jvms()->of_depth(i)->method();
4290       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4291     }
4292   }
4293 #endif
4294 
4295   return false;  // bail-out; let JVM_GetCallerClass do the work
4296 }
4297 
4298 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4299   Node* arg = argument(0);
4300   Node* result;
4301 
4302   switch (id) {
4303   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4304   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4305   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4306   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4307 
4308   case vmIntrinsics::_doubleToLongBits: {
4309     // two paths (plus control) merge in a wood
4310     RegionNode *r = new RegionNode(3);
4311     Node *phi = new PhiNode(r, TypeLong::LONG);
4312 
4313     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4314     // Build the boolean node
4315     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4316 
4317     // Branch either way.
4318     // NaN case is less traveled, which makes all the difference.
4319     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4320     Node *opt_isnan = _gvn.transform(ifisnan);
4321     assert( opt_isnan->is_If(), "Expect an IfNode");
4322     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4323     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4324 
4325     set_control(iftrue);
4326 
4327     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4328     Node *slow_result = longcon(nan_bits); // return NaN
4329     phi->init_req(1, _gvn.transform( slow_result ));
4330     r->init_req(1, iftrue);
4331 
4332     // Else fall through
4333     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4334     set_control(iffalse);
4335 
4336     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4337     r->init_req(2, iffalse);
4338 
4339     // Post merge
4340     set_control(_gvn.transform(r));
4341     record_for_igvn(r);
4342 
4343     C->set_has_split_ifs(true); // Has chance for split-if optimization
4344     result = phi;
4345     assert(result->bottom_type()->isa_long(), "must be");
4346     break;
4347   }
4348 
4349   case vmIntrinsics::_floatToIntBits: {
4350     // two paths (plus control) merge in a wood
4351     RegionNode *r = new RegionNode(3);
4352     Node *phi = new PhiNode(r, TypeInt::INT);
4353 
4354     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4355     // Build the boolean node
4356     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4357 
4358     // Branch either way.
4359     // NaN case is less traveled, which makes all the difference.
4360     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4361     Node *opt_isnan = _gvn.transform(ifisnan);
4362     assert( opt_isnan->is_If(), "Expect an IfNode");
4363     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4364     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4365 
4366     set_control(iftrue);
4367 
4368     static const jint nan_bits = 0x7fc00000;
4369     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4370     phi->init_req(1, _gvn.transform( slow_result ));
4371     r->init_req(1, iftrue);
4372 
4373     // Else fall through
4374     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4375     set_control(iffalse);
4376 
4377     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4378     r->init_req(2, iffalse);
4379 
4380     // Post merge
4381     set_control(_gvn.transform(r));
4382     record_for_igvn(r);
4383 
4384     C->set_has_split_ifs(true); // Has chance for split-if optimization
4385     result = phi;
4386     assert(result->bottom_type()->isa_int(), "must be");
4387     break;
4388   }
4389 
4390   default:
4391     fatal_unexpected_iid(id);
4392     break;
4393   }
4394   set_result(_gvn.transform(result));
4395   return true;
4396 }
4397 
4398 #ifdef _LP64
4399 #define XTOP ,top() /*additional argument*/
4400 #else  //_LP64
4401 #define XTOP        /*no additional argument*/
4402 #endif //_LP64
4403 
4404 //----------------------inline_unsafe_copyMemory-------------------------
4405 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4406 bool LibraryCallKit::inline_unsafe_copyMemory() {
4407   if (callee()->is_static())  return false;  // caller must have the capability!
4408   null_check_receiver();  // null-check receiver
4409   if (stopped())  return true;
4410 
4411   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4412 
4413   Node* src_ptr =         argument(1);   // type: oop
4414   Node* src_off = ConvL2X(argument(2));  // type: long
4415   Node* dst_ptr =         argument(4);   // type: oop
4416   Node* dst_off = ConvL2X(argument(5));  // type: long
4417   Node* size    = ConvL2X(argument(7));  // type: long
4418 
4419   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4420          "fieldOffset must be byte-scaled");
4421 
4422   Node* src = make_unsafe_address(src_ptr, src_off);
4423   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4424 
4425   // Conservatively insert a memory barrier on all memory slices.
4426   // Do not let writes of the copy source or destination float below the copy.
4427   insert_mem_bar(Op_MemBarCPUOrder);
4428 
4429   // Call it.  Note that the length argument is not scaled.
4430   make_runtime_call(RC_LEAF|RC_NO_FP,
4431                     OptoRuntime::fast_arraycopy_Type(),
4432                     StubRoutines::unsafe_arraycopy(),
4433                     "unsafe_arraycopy",
4434                     TypeRawPtr::BOTTOM,
4435                     src, dst, size XTOP);
4436 
4437   // Do not let reads of the copy destination float above the copy.
4438   insert_mem_bar(Op_MemBarCPUOrder);
4439 
4440   return true;
4441 }
4442 
4443 //------------------------clone_coping-----------------------------------
4444 // Helper function for inline_native_clone.
4445 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4446   assert(obj_size != NULL, "");
4447   Node* raw_obj = alloc_obj->in(1);
4448   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4449 
4450   AllocateNode* alloc = NULL;
4451   if (ReduceBulkZeroing) {
4452     // We will be completely responsible for initializing this object -
4453     // mark Initialize node as complete.
4454     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4455     // The object was just allocated - there should be no any stores!
4456     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4457     // Mark as complete_with_arraycopy so that on AllocateNode
4458     // expansion, we know this AllocateNode is initialized by an array
4459     // copy and a StoreStore barrier exists after the array copy.
4460     alloc->initialization()->set_complete_with_arraycopy();
4461   }
4462 
4463   // Copy the fastest available way.
4464   // TODO: generate fields copies for small objects instead.
4465   Node* src  = obj;
4466   Node* dest = alloc_obj;
4467   Node* size = _gvn.transform(obj_size);
4468 
4469   // Exclude the header but include array length to copy by 8 bytes words.
4470   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4471   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4472                             instanceOopDesc::base_offset_in_bytes();
4473   // base_off:
4474   // 8  - 32-bit VM
4475   // 12 - 64-bit VM, compressed klass
4476   // 16 - 64-bit VM, normal klass
4477   if (base_off % BytesPerLong != 0) {
4478     assert(UseCompressedClassPointers, "");
4479     if (is_array) {
4480       // Exclude length to copy by 8 bytes words.
4481       base_off += sizeof(int);
4482     } else {
4483       // Include klass to copy by 8 bytes words.
4484       base_off = instanceOopDesc::klass_offset_in_bytes();
4485     }
4486     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4487   }
4488   src  = basic_plus_adr(src,  base_off);
4489   dest = basic_plus_adr(dest, base_off);
4490 
4491   // Compute the length also, if needed:
4492   Node* countx = size;
4493   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4494   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4495 
4496   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4497 
4498   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
4499   ac->set_clonebasic();
4500   Node* n = _gvn.transform(ac);
4501   if (n == ac) {
4502     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4503   } else {
4504     set_all_memory(n);
4505   }
4506 
4507   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4508   if (card_mark) {
4509     assert(!is_array, "");
4510     // Put in store barrier for any and all oops we are sticking
4511     // into this object.  (We could avoid this if we could prove
4512     // that the object type contains no oop fields at all.)
4513     Node* no_particular_value = NULL;
4514     Node* no_particular_field = NULL;
4515     int raw_adr_idx = Compile::AliasIdxRaw;
4516     post_barrier(control(),
4517                  memory(raw_adr_type),
4518                  alloc_obj,
4519                  no_particular_field,
4520                  raw_adr_idx,
4521                  no_particular_value,
4522                  T_OBJECT,
4523                  false);
4524   }
4525 
4526   // Do not let reads from the cloned object float above the arraycopy.
4527   if (alloc != NULL) {
4528     // Do not let stores that initialize this object be reordered with
4529     // a subsequent store that would make this object accessible by
4530     // other threads.
4531     // Record what AllocateNode this StoreStore protects so that
4532     // escape analysis can go from the MemBarStoreStoreNode to the
4533     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4534     // based on the escape status of the AllocateNode.
4535     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4536   } else {
4537     insert_mem_bar(Op_MemBarCPUOrder);
4538   }
4539 }
4540 
4541 //------------------------inline_native_clone----------------------------
4542 // protected native Object java.lang.Object.clone();
4543 //
4544 // Here are the simple edge cases:
4545 //  null receiver => normal trap
4546 //  virtual and clone was overridden => slow path to out-of-line clone
4547 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4548 //
4549 // The general case has two steps, allocation and copying.
4550 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4551 //
4552 // Copying also has two cases, oop arrays and everything else.
4553 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4554 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4555 //
4556 // These steps fold up nicely if and when the cloned object's klass
4557 // can be sharply typed as an object array, a type array, or an instance.
4558 //
4559 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4560   PhiNode* result_val;
4561 
4562   // Set the reexecute bit for the interpreter to reexecute
4563   // the bytecode that invokes Object.clone if deoptimization happens.
4564   { PreserveReexecuteState preexecs(this);
4565     jvms()->set_should_reexecute(true);
4566 
4567     Node* obj = null_check_receiver();
4568     if (stopped())  return true;
4569 
4570     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4571 
4572     // If we are going to clone an instance, we need its exact type to
4573     // know the number and types of fields to convert the clone to
4574     // loads/stores. Maybe a speculative type can help us.
4575     if (!obj_type->klass_is_exact() &&
4576         obj_type->speculative_type() != NULL &&
4577         obj_type->speculative_type()->is_instance_klass()) {
4578       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4579       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4580           !spec_ik->has_injected_fields()) {
4581         ciKlass* k = obj_type->klass();
4582         if (!k->is_instance_klass() ||
4583             k->as_instance_klass()->is_interface() ||
4584             k->as_instance_klass()->has_subklass()) {
4585           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4586         }
4587       }
4588     }
4589 
4590     Node* obj_klass = load_object_klass(obj);
4591     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4592     const TypeOopPtr*   toop   = ((tklass != NULL)
4593                                 ? tklass->as_instance_type()
4594                                 : TypeInstPtr::NOTNULL);
4595 
4596     // Conservatively insert a memory barrier on all memory slices.
4597     // Do not let writes into the original float below the clone.
4598     insert_mem_bar(Op_MemBarCPUOrder);
4599 
4600     // paths into result_reg:
4601     enum {
4602       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4603       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4604       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4605       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4606       PATH_LIMIT
4607     };
4608     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4609     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4610     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4611     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4612     record_for_igvn(result_reg);
4613 
4614     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4615     int raw_adr_idx = Compile::AliasIdxRaw;
4616 
4617     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4618     if (array_ctl != NULL) {
4619       // It's an array.
4620       PreserveJVMState pjvms(this);
4621       set_control(array_ctl);
4622       Node* obj_length = load_array_length(obj);
4623       Node* obj_size  = NULL;
4624       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4625 
4626       if (!use_ReduceInitialCardMarks()) {
4627         // If it is an oop array, it requires very special treatment,
4628         // because card marking is required on each card of the array.
4629         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4630         if (is_obja != NULL) {
4631           PreserveJVMState pjvms2(this);
4632           set_control(is_obja);
4633           // Generate a direct call to the right arraycopy function(s).
4634           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4635           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
4636           ac->set_cloneoop();
4637           Node* n = _gvn.transform(ac);
4638           assert(n == ac, "cannot disappear");
4639           ac->connect_outputs(this);
4640 
4641           result_reg->init_req(_objArray_path, control());
4642           result_val->init_req(_objArray_path, alloc_obj);
4643           result_i_o ->set_req(_objArray_path, i_o());
4644           result_mem ->set_req(_objArray_path, reset_memory());
4645         }
4646       }
4647       // Otherwise, there are no card marks to worry about.
4648       // (We can dispense with card marks if we know the allocation
4649       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4650       //  causes the non-eden paths to take compensating steps to
4651       //  simulate a fresh allocation, so that no further
4652       //  card marks are required in compiled code to initialize
4653       //  the object.)
4654 
4655       if (!stopped()) {
4656         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4657 
4658         // Present the results of the copy.
4659         result_reg->init_req(_array_path, control());
4660         result_val->init_req(_array_path, alloc_obj);
4661         result_i_o ->set_req(_array_path, i_o());
4662         result_mem ->set_req(_array_path, reset_memory());
4663       }
4664     }
4665 
4666     // We only go to the instance fast case code if we pass a number of guards.
4667     // The paths which do not pass are accumulated in the slow_region.
4668     RegionNode* slow_region = new RegionNode(1);
4669     record_for_igvn(slow_region);
4670     if (!stopped()) {
4671       // It's an instance (we did array above).  Make the slow-path tests.
4672       // If this is a virtual call, we generate a funny guard.  We grab
4673       // the vtable entry corresponding to clone() from the target object.
4674       // If the target method which we are calling happens to be the
4675       // Object clone() method, we pass the guard.  We do not need this
4676       // guard for non-virtual calls; the caller is known to be the native
4677       // Object clone().
4678       if (is_virtual) {
4679         generate_virtual_guard(obj_klass, slow_region);
4680       }
4681 
4682       // The object must be cloneable and must not have a finalizer.
4683       // Both of these conditions may be checked in a single test.
4684       // We could optimize the cloneable test further, but we don't care.
4685       generate_access_flags_guard(obj_klass,
4686                                   // Test both conditions:
4687                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4688                                   // Must be cloneable but not finalizer:
4689                                   JVM_ACC_IS_CLONEABLE,
4690                                   slow_region);
4691     }
4692 
4693     if (!stopped()) {
4694       // It's an instance, and it passed the slow-path tests.
4695       PreserveJVMState pjvms(this);
4696       Node* obj_size  = NULL;
4697       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4698       // is reexecuted if deoptimization occurs and there could be problems when merging
4699       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4700       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4701 
4702       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4703 
4704       // Present the results of the slow call.
4705       result_reg->init_req(_instance_path, control());
4706       result_val->init_req(_instance_path, alloc_obj);
4707       result_i_o ->set_req(_instance_path, i_o());
4708       result_mem ->set_req(_instance_path, reset_memory());
4709     }
4710 
4711     // Generate code for the slow case.  We make a call to clone().
4712     set_control(_gvn.transform(slow_region));
4713     if (!stopped()) {
4714       PreserveJVMState pjvms(this);
4715       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4716       Node* slow_result = set_results_for_java_call(slow_call);
4717       // this->control() comes from set_results_for_java_call
4718       result_reg->init_req(_slow_path, control());
4719       result_val->init_req(_slow_path, slow_result);
4720       result_i_o ->set_req(_slow_path, i_o());
4721       result_mem ->set_req(_slow_path, reset_memory());
4722     }
4723 
4724     // Return the combined state.
4725     set_control(    _gvn.transform(result_reg));
4726     set_i_o(        _gvn.transform(result_i_o));
4727     set_all_memory( _gvn.transform(result_mem));
4728   } // original reexecute is set back here
4729 
4730   set_result(_gvn.transform(result_val));
4731   return true;
4732 }
4733 
4734 // If we have a tighly coupled allocation, the arraycopy may take care
4735 // of the array initialization. If one of the guards we insert between
4736 // the allocation and the arraycopy causes a deoptimization, an
4737 // unitialized array will escape the compiled method. To prevent that
4738 // we set the JVM state for uncommon traps between the allocation and
4739 // the arraycopy to the state before the allocation so, in case of
4740 // deoptimization, we'll reexecute the allocation and the
4741 // initialization.
4742 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4743   if (alloc != NULL) {
4744     ciMethod* trap_method = alloc->jvms()->method();
4745     int trap_bci = alloc->jvms()->bci();
4746 
4747     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4748           !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4749       // Make sure there's no store between the allocation and the
4750       // arraycopy otherwise visible side effects could be rexecuted
4751       // in case of deoptimization and cause incorrect execution.
4752       bool no_interfering_store = true;
4753       Node* mem = alloc->in(TypeFunc::Memory);
4754       if (mem->is_MergeMem()) {
4755         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4756           Node* n = mms.memory();
4757           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4758             assert(n->is_Store(), "what else?");
4759             no_interfering_store = false;
4760             break;
4761           }
4762         }
4763       } else {
4764         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4765           Node* n = mms.memory();
4766           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4767             assert(n->is_Store(), "what else?");
4768             no_interfering_store = false;
4769             break;
4770           }
4771         }
4772       }
4773 
4774       if (no_interfering_store) {
4775         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4776         uint size = alloc->req();
4777         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4778         old_jvms->set_map(sfpt);
4779         for (uint i = 0; i < size; i++) {
4780           sfpt->init_req(i, alloc->in(i));
4781         }
4782         // re-push array length for deoptimization
4783         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4784         old_jvms->set_sp(old_jvms->sp()+1);
4785         old_jvms->set_monoff(old_jvms->monoff()+1);
4786         old_jvms->set_scloff(old_jvms->scloff()+1);
4787         old_jvms->set_endoff(old_jvms->endoff()+1);
4788         old_jvms->set_should_reexecute(true);
4789 
4790         sfpt->set_i_o(map()->i_o());
4791         sfpt->set_memory(map()->memory());
4792         sfpt->set_control(map()->control());
4793 
4794         JVMState* saved_jvms = jvms();
4795         saved_reexecute_sp = _reexecute_sp;
4796 
4797         set_jvms(sfpt->jvms());
4798         _reexecute_sp = jvms()->sp();
4799 
4800         return saved_jvms;
4801       }
4802     }
4803   }
4804   return NULL;
4805 }
4806 
4807 // In case of a deoptimization, we restart execution at the
4808 // allocation, allocating a new array. We would leave an uninitialized
4809 // array in the heap that GCs wouldn't expect. Move the allocation
4810 // after the traps so we don't allocate the array if we
4811 // deoptimize. This is possible because tightly_coupled_allocation()
4812 // guarantees there's no observer of the allocated array at this point
4813 // and the control flow is simple enough.
4814 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp) {
4815   if (saved_jvms != NULL && !stopped()) {
4816     assert(alloc != NULL, "only with a tightly coupled allocation");
4817     // restore JVM state to the state at the arraycopy
4818     saved_jvms->map()->set_control(map()->control());
4819     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4820     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4821     // If we've improved the types of some nodes (null check) while
4822     // emitting the guards, propagate them to the current state
4823     map()->replaced_nodes().apply(saved_jvms->map());
4824     set_jvms(saved_jvms);
4825     _reexecute_sp = saved_reexecute_sp;
4826 
4827     // Remove the allocation from above the guards
4828     CallProjections callprojs;
4829     alloc->extract_projections(&callprojs, true);
4830     InitializeNode* init = alloc->initialization();
4831     Node* alloc_mem = alloc->in(TypeFunc::Memory);
4832     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4833     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4834     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4835 
4836     // move the allocation here (after the guards)
4837     _gvn.hash_delete(alloc);
4838     alloc->set_req(TypeFunc::Control, control());
4839     alloc->set_req(TypeFunc::I_O, i_o());
4840     Node *mem = reset_memory();
4841     set_all_memory(mem);
4842     alloc->set_req(TypeFunc::Memory, mem);
4843     set_control(init->proj_out(TypeFunc::Control));
4844     set_i_o(callprojs.fallthrough_ioproj);
4845 
4846     // Update memory as done in GraphKit::set_output_for_allocation()
4847     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4848     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4849     if (ary_type->isa_aryptr() && length_type != NULL) {
4850       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4851     }
4852     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4853     int            elemidx  = C->get_alias_index(telemref);
4854     set_memory(init->proj_out(TypeFunc::Memory), Compile::AliasIdxRaw);
4855     set_memory(init->proj_out(TypeFunc::Memory), elemidx);
4856 
4857     Node* allocx = _gvn.transform(alloc);
4858     assert(allocx == alloc, "where has the allocation gone?");
4859     assert(dest->is_CheckCastPP(), "not an allocation result?");
4860 
4861     _gvn.hash_delete(dest);
4862     dest->set_req(0, control());
4863     Node* destx = _gvn.transform(dest);
4864     assert(destx == dest, "where has the allocation result gone?");
4865   }
4866 }
4867 
4868 
4869 //------------------------------inline_arraycopy-----------------------
4870 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4871 //                                                      Object dest, int destPos,
4872 //                                                      int length);
4873 bool LibraryCallKit::inline_arraycopy() {
4874   // Get the arguments.
4875   Node* src         = argument(0);  // type: oop
4876   Node* src_offset  = argument(1);  // type: int
4877   Node* dest        = argument(2);  // type: oop
4878   Node* dest_offset = argument(3);  // type: int
4879   Node* length      = argument(4);  // type: int
4880 
4881 
4882   // Check for allocation before we add nodes that would confuse
4883   // tightly_coupled_allocation()
4884   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4885 
4886   int saved_reexecute_sp = -1;
4887   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4888   // See arraycopy_restore_alloc_state() comment
4889   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4890   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4891   // if saved_jvms == NULL and alloc != NULL, we can’t emit any guards
4892   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4893 
4894   // The following tests must be performed
4895   // (1) src and dest are arrays.
4896   // (2) src and dest arrays must have elements of the same BasicType
4897   // (3) src and dest must not be null.
4898   // (4) src_offset must not be negative.
4899   // (5) dest_offset must not be negative.
4900   // (6) length must not be negative.
4901   // (7) src_offset + length must not exceed length of src.
4902   // (8) dest_offset + length must not exceed length of dest.
4903   // (9) each element of an oop array must be assignable
4904 
4905   // (3) src and dest must not be null.
4906   // always do this here because we need the JVM state for uncommon traps
4907   Node* null_ctl = top();
4908   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
4909   assert(null_ctl->is_top(), "no null control here");
4910   dest = null_check(dest, T_ARRAY);
4911 
4912   if (!can_emit_guards) {
4913     // if saved_jvms == NULL and alloc != NULL, we don't emit any
4914     // guards but the arraycopy node could still take advantage of a
4915     // tightly allocated allocation. tightly_coupled_allocation() is
4916     // called again to make sure it takes the null check above into
4917     // account: the null check is mandatory and if it caused an
4918     // uncommon trap to be emitted then the allocation can't be
4919     // considered tightly coupled in this context.
4920     alloc = tightly_coupled_allocation(dest, NULL);
4921   }
4922 
4923   bool validated = false;
4924 
4925   const Type* src_type  = _gvn.type(src);
4926   const Type* dest_type = _gvn.type(dest);
4927   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4928   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4929 
4930   // Do we have the type of src?
4931   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4932   // Do we have the type of dest?
4933   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4934   // Is the type for src from speculation?
4935   bool src_spec = false;
4936   // Is the type for dest from speculation?
4937   bool dest_spec = false;
4938 
4939   if ((!has_src || !has_dest) && can_emit_guards) {
4940     // We don't have sufficient type information, let's see if
4941     // speculative types can help. We need to have types for both src
4942     // and dest so that it pays off.
4943 
4944     // Do we already have or could we have type information for src
4945     bool could_have_src = has_src;
4946     // Do we already have or could we have type information for dest
4947     bool could_have_dest = has_dest;
4948 
4949     ciKlass* src_k = NULL;
4950     if (!has_src) {
4951       src_k = src_type->speculative_type_not_null();
4952       if (src_k != NULL && src_k->is_array_klass()) {
4953         could_have_src = true;
4954       }
4955     }
4956 
4957     ciKlass* dest_k = NULL;
4958     if (!has_dest) {
4959       dest_k = dest_type->speculative_type_not_null();
4960       if (dest_k != NULL && dest_k->is_array_klass()) {
4961         could_have_dest = true;
4962       }
4963     }
4964 
4965     if (could_have_src && could_have_dest) {
4966       // This is going to pay off so emit the required guards
4967       if (!has_src) {
4968         src = maybe_cast_profiled_obj(src, src_k, true);
4969         src_type  = _gvn.type(src);
4970         top_src  = src_type->isa_aryptr();
4971         has_src = (top_src != NULL && top_src->klass() != NULL);
4972         src_spec = true;
4973       }
4974       if (!has_dest) {
4975         dest = maybe_cast_profiled_obj(dest, dest_k, true);
4976         dest_type  = _gvn.type(dest);
4977         top_dest  = dest_type->isa_aryptr();
4978         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4979         dest_spec = true;
4980       }
4981     }
4982   }
4983 
4984   if (has_src && has_dest && can_emit_guards) {
4985     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
4986     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4987     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4988     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4989 
4990     if (src_elem == dest_elem && src_elem == T_OBJECT) {
4991       // If both arrays are object arrays then having the exact types
4992       // for both will remove the need for a subtype check at runtime
4993       // before the call and may make it possible to pick a faster copy
4994       // routine (without a subtype check on every element)
4995       // Do we have the exact type of src?
4996       bool could_have_src = src_spec;
4997       // Do we have the exact type of dest?
4998       bool could_have_dest = dest_spec;
4999       ciKlass* src_k = top_src->klass();
5000       ciKlass* dest_k = top_dest->klass();
5001       if (!src_spec) {
5002         src_k = src_type->speculative_type_not_null();
5003         if (src_k != NULL && src_k->is_array_klass()) {
5004           could_have_src = true;
5005         }
5006       }
5007       if (!dest_spec) {
5008         dest_k = dest_type->speculative_type_not_null();
5009         if (dest_k != NULL && dest_k->is_array_klass()) {
5010           could_have_dest = true;
5011         }
5012       }
5013       if (could_have_src && could_have_dest) {
5014         // If we can have both exact types, emit the missing guards
5015         if (could_have_src && !src_spec) {
5016           src = maybe_cast_profiled_obj(src, src_k, true);
5017         }
5018         if (could_have_dest && !dest_spec) {
5019           dest = maybe_cast_profiled_obj(dest, dest_k, true);
5020         }
5021       }
5022     }
5023   }
5024 
5025   ciMethod* trap_method = method();
5026   int trap_bci = bci();
5027   if (saved_jvms != NULL) {
5028     trap_method = alloc->jvms()->method();
5029     trap_bci = alloc->jvms()->bci();
5030   }
5031 
5032   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5033       can_emit_guards &&
5034       !src->is_top() && !dest->is_top()) {
5035     // validate arguments: enables transformation the ArrayCopyNode
5036     validated = true;
5037 
5038     RegionNode* slow_region = new RegionNode(1);
5039     record_for_igvn(slow_region);
5040 
5041     // (1) src and dest are arrays.
5042     generate_non_array_guard(load_object_klass(src), slow_region);
5043     generate_non_array_guard(load_object_klass(dest), slow_region);
5044 
5045     // (2) src and dest arrays must have elements of the same BasicType
5046     // done at macro expansion or at Ideal transformation time
5047 
5048     // (4) src_offset must not be negative.
5049     generate_negative_guard(src_offset, slow_region);
5050 
5051     // (5) dest_offset must not be negative.
5052     generate_negative_guard(dest_offset, slow_region);
5053 
5054     // (7) src_offset + length must not exceed length of src.
5055     generate_limit_guard(src_offset, length,
5056                          load_array_length(src),
5057                          slow_region);
5058 
5059     // (8) dest_offset + length must not exceed length of dest.
5060     generate_limit_guard(dest_offset, length,
5061                          load_array_length(dest),
5062                          slow_region);
5063 
5064     // (9) each element of an oop array must be assignable
5065     Node* src_klass  = load_object_klass(src);
5066     Node* dest_klass = load_object_klass(dest);
5067     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5068 
5069     if (not_subtype_ctrl != top()) {
5070       PreserveJVMState pjvms(this);
5071       set_control(not_subtype_ctrl);
5072       uncommon_trap(Deoptimization::Reason_intrinsic,
5073                     Deoptimization::Action_make_not_entrant);
5074       assert(stopped(), "Should be stopped");
5075     }
5076     {
5077       PreserveJVMState pjvms(this);
5078       set_control(_gvn.transform(slow_region));
5079       uncommon_trap(Deoptimization::Reason_intrinsic,
5080                     Deoptimization::Action_make_not_entrant);
5081       assert(stopped(), "Should be stopped");
5082     }
5083   }
5084 
5085   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp);
5086 
5087   if (stopped()) {
5088     return true;
5089   }
5090 
5091   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL,
5092                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5093                                           // so the compiler has a chance to eliminate them: during macro expansion,
5094                                           // we have to set their control (CastPP nodes are eliminated).
5095                                           load_object_klass(src), load_object_klass(dest),
5096                                           load_array_length(src), load_array_length(dest));
5097 
5098   ac->set_arraycopy(validated);
5099 
5100   Node* n = _gvn.transform(ac);
5101   if (n == ac) {
5102     ac->connect_outputs(this);
5103   } else {
5104     assert(validated, "shouldn't transform if all arguments not validated");
5105     set_all_memory(n);
5106   }
5107 
5108   return true;
5109 }
5110 
5111 
5112 // Helper function which determines if an arraycopy immediately follows
5113 // an allocation, with no intervening tests or other escapes for the object.
5114 AllocateArrayNode*
5115 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5116                                            RegionNode* slow_region) {
5117   if (stopped())             return NULL;  // no fast path
5118   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5119 
5120   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5121   if (alloc == NULL)  return NULL;
5122 
5123   Node* rawmem = memory(Compile::AliasIdxRaw);
5124   // Is the allocation's memory state untouched?
5125   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5126     // Bail out if there have been raw-memory effects since the allocation.
5127     // (Example:  There might have been a call or safepoint.)
5128     return NULL;
5129   }
5130   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5131   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5132     return NULL;
5133   }
5134 
5135   // There must be no unexpected observers of this allocation.
5136   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5137     Node* obs = ptr->fast_out(i);
5138     if (obs != this->map()) {
5139       return NULL;
5140     }
5141   }
5142 
5143   // This arraycopy must unconditionally follow the allocation of the ptr.
5144   Node* alloc_ctl = ptr->in(0);
5145   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5146 
5147   Node* ctl = control();
5148   while (ctl != alloc_ctl) {
5149     // There may be guards which feed into the slow_region.
5150     // Any other control flow means that we might not get a chance
5151     // to finish initializing the allocated object.
5152     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5153       IfNode* iff = ctl->in(0)->as_If();
5154       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5155       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5156       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5157         ctl = iff->in(0);       // This test feeds the known slow_region.
5158         continue;
5159       }
5160       // One more try:  Various low-level checks bottom out in
5161       // uncommon traps.  If the debug-info of the trap omits
5162       // any reference to the allocation, as we've already
5163       // observed, then there can be no objection to the trap.
5164       bool found_trap = false;
5165       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5166         Node* obs = not_ctl->fast_out(j);
5167         if (obs->in(0) == not_ctl && obs->is_Call() &&
5168             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5169           found_trap = true; break;
5170         }
5171       }
5172       if (found_trap) {
5173         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5174         continue;
5175       }
5176     }
5177     return NULL;
5178   }
5179 
5180   // If we get this far, we have an allocation which immediately
5181   // precedes the arraycopy, and we can take over zeroing the new object.
5182   // The arraycopy will finish the initialization, and provide
5183   // a new control state to which we will anchor the destination pointer.
5184 
5185   return alloc;
5186 }
5187 
5188 //-------------inline_encodeISOArray-----------------------------------
5189 // encode char[] to byte[] in ISO_8859_1
5190 bool LibraryCallKit::inline_encodeISOArray() {
5191   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5192   // no receiver since it is static method
5193   Node *src         = argument(0);
5194   Node *src_offset  = argument(1);
5195   Node *dst         = argument(2);
5196   Node *dst_offset  = argument(3);
5197   Node *length      = argument(4);
5198 
5199   const Type* src_type = src->Value(&_gvn);
5200   const Type* dst_type = dst->Value(&_gvn);
5201   const TypeAryPtr* top_src = src_type->isa_aryptr();
5202   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5203   if (top_src  == NULL || top_src->klass()  == NULL ||
5204       top_dest == NULL || top_dest->klass() == NULL) {
5205     // failed array check
5206     return false;
5207   }
5208 
5209   // Figure out the size and type of the elements we will be copying.
5210   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5211   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5212   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5213     return false;
5214   }
5215   Node* src_start = array_element_address(src, src_offset, src_elem);
5216   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5217   // 'src_start' points to src array + scaled offset
5218   // 'dst_start' points to dst array + scaled offset
5219 
5220   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5221   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5222   enc = _gvn.transform(enc);
5223   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5224   set_memory(res_mem, mtype);
5225   set_result(enc);
5226   return true;
5227 }
5228 
5229 //-------------inline_multiplyToLen-----------------------------------
5230 bool LibraryCallKit::inline_multiplyToLen() {
5231   assert(UseMultiplyToLenIntrinsic, "not implementated on this platform");
5232 
5233   address stubAddr = StubRoutines::multiplyToLen();
5234   if (stubAddr == NULL) {
5235     return false; // Intrinsic's stub is not implemented on this platform
5236   }
5237   const char* stubName = "multiplyToLen";
5238 
5239   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5240 
5241   Node* x    = argument(1);
5242   Node* xlen = argument(2);
5243   Node* y    = argument(3);
5244   Node* ylen = argument(4);
5245   Node* z    = argument(5);
5246 
5247   const Type* x_type = x->Value(&_gvn);
5248   const Type* y_type = y->Value(&_gvn);
5249   const TypeAryPtr* top_x = x_type->isa_aryptr();
5250   const TypeAryPtr* top_y = y_type->isa_aryptr();
5251   if (top_x  == NULL || top_x->klass()  == NULL ||
5252       top_y == NULL || top_y->klass() == NULL) {
5253     // failed array check
5254     return false;
5255   }
5256 
5257   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5258   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5259   if (x_elem != T_INT || y_elem != T_INT) {
5260     return false;
5261   }
5262 
5263   // Set the original stack and the reexecute bit for the interpreter to reexecute
5264   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5265   // on the return from z array allocation in runtime.
5266   { PreserveReexecuteState preexecs(this);
5267     jvms()->set_should_reexecute(true);
5268 
5269     Node* x_start = array_element_address(x, intcon(0), x_elem);
5270     Node* y_start = array_element_address(y, intcon(0), y_elem);
5271     // 'x_start' points to x array + scaled xlen
5272     // 'y_start' points to y array + scaled ylen
5273 
5274     // Allocate the result array
5275     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5276     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5277     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5278 
5279     IdealKit ideal(this);
5280 
5281 #define __ ideal.
5282      Node* one = __ ConI(1);
5283      Node* zero = __ ConI(0);
5284      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5285      __ set(need_alloc, zero);
5286      __ set(z_alloc, z);
5287      __ if_then(z, BoolTest::eq, null()); {
5288        __ increment (need_alloc, one);
5289      } __ else_(); {
5290        // Update graphKit memory and control from IdealKit.
5291        sync_kit(ideal);
5292        Node* zlen_arg = load_array_length(z);
5293        // Update IdealKit memory and control from graphKit.
5294        __ sync_kit(this);
5295        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5296          __ increment (need_alloc, one);
5297        } __ end_if();
5298      } __ end_if();
5299 
5300      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5301        // Update graphKit memory and control from IdealKit.
5302        sync_kit(ideal);
5303        Node * narr = new_array(klass_node, zlen, 1);
5304        // Update IdealKit memory and control from graphKit.
5305        __ sync_kit(this);
5306        __ set(z_alloc, narr);
5307      } __ end_if();
5308 
5309      sync_kit(ideal);
5310      z = __ value(z_alloc);
5311      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5312      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5313      // Final sync IdealKit and GraphKit.
5314      final_sync(ideal);
5315 #undef __
5316 
5317     Node* z_start = array_element_address(z, intcon(0), T_INT);
5318 
5319     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5320                                    OptoRuntime::multiplyToLen_Type(),
5321                                    stubAddr, stubName, TypePtr::BOTTOM,
5322                                    x_start, xlen, y_start, ylen, z_start, zlen);
5323   } // original reexecute is set back here
5324 
5325   C->set_has_split_ifs(true); // Has chance for split-if optimization
5326   set_result(z);
5327   return true;
5328 }
5329 
5330 
5331 /**
5332  * Calculate CRC32 for byte.
5333  * int java.util.zip.CRC32.update(int crc, int b)
5334  */
5335 bool LibraryCallKit::inline_updateCRC32() {
5336   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5337   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5338   // no receiver since it is static method
5339   Node* crc  = argument(0); // type: int
5340   Node* b    = argument(1); // type: int
5341 
5342   /*
5343    *    int c = ~ crc;
5344    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5345    *    b = b ^ (c >>> 8);
5346    *    crc = ~b;
5347    */
5348 
5349   Node* M1 = intcon(-1);
5350   crc = _gvn.transform(new XorINode(crc, M1));
5351   Node* result = _gvn.transform(new XorINode(crc, b));
5352   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5353 
5354   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5355   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5356   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5357   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5358 
5359   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5360   result = _gvn.transform(new XorINode(crc, result));
5361   result = _gvn.transform(new XorINode(result, M1));
5362   set_result(result);
5363   return true;
5364 }
5365 
5366 /**
5367  * Calculate CRC32 for byte[] array.
5368  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5369  */
5370 bool LibraryCallKit::inline_updateBytesCRC32() {
5371   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5372   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5373   // no receiver since it is static method
5374   Node* crc     = argument(0); // type: int
5375   Node* src     = argument(1); // type: oop
5376   Node* offset  = argument(2); // type: int
5377   Node* length  = argument(3); // type: int
5378 
5379   const Type* src_type = src->Value(&_gvn);
5380   const TypeAryPtr* top_src = src_type->isa_aryptr();
5381   if (top_src  == NULL || top_src->klass()  == NULL) {
5382     // failed array check
5383     return false;
5384   }
5385 
5386   // Figure out the size and type of the elements we will be copying.
5387   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5388   if (src_elem != T_BYTE) {
5389     return false;
5390   }
5391 
5392   // 'src_start' points to src array + scaled offset
5393   Node* src_start = array_element_address(src, offset, src_elem);
5394 
5395   // We assume that range check is done by caller.
5396   // TODO: generate range check (offset+length < src.length) in debug VM.
5397 
5398   // Call the stub.
5399   address stubAddr = StubRoutines::updateBytesCRC32();
5400   const char *stubName = "updateBytesCRC32";
5401 
5402   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5403                                  stubAddr, stubName, TypePtr::BOTTOM,
5404                                  crc, src_start, length);
5405   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5406   set_result(result);
5407   return true;
5408 }
5409 
5410 /**
5411  * Calculate CRC32 for ByteBuffer.
5412  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5413  */
5414 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5415   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5416   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5417   // no receiver since it is static method
5418   Node* crc     = argument(0); // type: int
5419   Node* src     = argument(1); // type: long
5420   Node* offset  = argument(3); // type: int
5421   Node* length  = argument(4); // type: int
5422 
5423   src = ConvL2X(src);  // adjust Java long to machine word
5424   Node* base = _gvn.transform(new CastX2PNode(src));
5425   offset = ConvI2X(offset);
5426 
5427   // 'src_start' points to src array + scaled offset
5428   Node* src_start = basic_plus_adr(top(), base, offset);
5429 
5430   // Call the stub.
5431   address stubAddr = StubRoutines::updateBytesCRC32();
5432   const char *stubName = "updateBytesCRC32";
5433 
5434   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5435                                  stubAddr, stubName, TypePtr::BOTTOM,
5436                                  crc, src_start, length);
5437   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5438   set_result(result);
5439   return true;
5440 }
5441 
5442 //----------------------------inline_reference_get----------------------------
5443 // public T java.lang.ref.Reference.get();
5444 bool LibraryCallKit::inline_reference_get() {
5445   const int referent_offset = java_lang_ref_Reference::referent_offset;
5446   guarantee(referent_offset > 0, "should have already been set");
5447 
5448   // Get the argument:
5449   Node* reference_obj = null_check_receiver();
5450   if (stopped()) return true;
5451 
5452   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5453 
5454   ciInstanceKlass* klass = env()->Object_klass();
5455   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5456 
5457   Node* no_ctrl = NULL;
5458   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5459 
5460   // Use the pre-barrier to record the value in the referent field
5461   pre_barrier(false /* do_load */,
5462               control(),
5463               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5464               result /* pre_val */,
5465               T_OBJECT);
5466 
5467   // Add memory barrier to prevent commoning reads from this field
5468   // across safepoint since GC can change its value.
5469   insert_mem_bar(Op_MemBarCPUOrder);
5470 
5471   set_result(result);
5472   return true;
5473 }
5474 
5475 
5476 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5477                                               bool is_exact=true, bool is_static=false) {
5478 
5479   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5480   assert(tinst != NULL, "obj is null");
5481   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5482   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5483 
5484   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5485                                                                           ciSymbol::make(fieldTypeString),
5486                                                                           is_static);
5487   if (field == NULL) return (Node *) NULL;
5488   assert (field != NULL, "undefined field");
5489 
5490   // Next code  copied from Parse::do_get_xxx():
5491 
5492   // Compute address and memory type.
5493   int offset  = field->offset_in_bytes();
5494   bool is_vol = field->is_volatile();
5495   ciType* field_klass = field->type();
5496   assert(field_klass->is_loaded(), "should be loaded");
5497   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5498   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5499   BasicType bt = field->layout_type();
5500 
5501   // Build the resultant type of the load
5502   const Type *type;
5503   if (bt == T_OBJECT) {
5504     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5505   } else {
5506     type = Type::get_const_basic_type(bt);
5507   }
5508 
5509   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
5510     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
5511   }
5512   // Build the load.
5513   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
5514   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, is_vol);
5515   // If reference is volatile, prevent following memory ops from
5516   // floating up past the volatile read.  Also prevents commoning
5517   // another volatile read.
5518   if (is_vol) {
5519     // Memory barrier includes bogus read of value to force load BEFORE membar
5520     insert_mem_bar(Op_MemBarAcquire, loadedField);
5521   }
5522   return loadedField;
5523 }
5524 
5525 
5526 //------------------------------inline_aescrypt_Block-----------------------
5527 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5528   address stubAddr;
5529   const char *stubName;
5530   assert(UseAES, "need AES instruction support");
5531 
5532   switch(id) {
5533   case vmIntrinsics::_aescrypt_encryptBlock:
5534     stubAddr = StubRoutines::aescrypt_encryptBlock();
5535     stubName = "aescrypt_encryptBlock";
5536     break;
5537   case vmIntrinsics::_aescrypt_decryptBlock:
5538     stubAddr = StubRoutines::aescrypt_decryptBlock();
5539     stubName = "aescrypt_decryptBlock";
5540     break;
5541   }
5542   if (stubAddr == NULL) return false;
5543 
5544   Node* aescrypt_object = argument(0);
5545   Node* src             = argument(1);
5546   Node* src_offset      = argument(2);
5547   Node* dest            = argument(3);
5548   Node* dest_offset     = argument(4);
5549 
5550   // (1) src and dest are arrays.
5551   const Type* src_type = src->Value(&_gvn);
5552   const Type* dest_type = dest->Value(&_gvn);
5553   const TypeAryPtr* top_src = src_type->isa_aryptr();
5554   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5555   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5556 
5557   // for the quick and dirty code we will skip all the checks.
5558   // we are just trying to get the call to be generated.
5559   Node* src_start  = src;
5560   Node* dest_start = dest;
5561   if (src_offset != NULL || dest_offset != NULL) {
5562     assert(src_offset != NULL && dest_offset != NULL, "");
5563     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5564     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5565   }
5566 
5567   // now need to get the start of its expanded key array
5568   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5569   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5570   if (k_start == NULL) return false;
5571 
5572   if (Matcher::pass_original_key_for_aes()) {
5573     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5574     // compatibility issues between Java key expansion and SPARC crypto instructions
5575     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5576     if (original_k_start == NULL) return false;
5577 
5578     // Call the stub.
5579     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5580                       stubAddr, stubName, TypePtr::BOTTOM,
5581                       src_start, dest_start, k_start, original_k_start);
5582   } else {
5583     // Call the stub.
5584     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5585                       stubAddr, stubName, TypePtr::BOTTOM,
5586                       src_start, dest_start, k_start);
5587   }
5588 
5589   return true;
5590 }
5591 
5592 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5593 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5594   address stubAddr;
5595   const char *stubName;
5596 
5597   assert(UseAES, "need AES instruction support");
5598 
5599   switch(id) {
5600   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5601     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5602     stubName = "cipherBlockChaining_encryptAESCrypt";
5603     break;
5604   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5605     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5606     stubName = "cipherBlockChaining_decryptAESCrypt";
5607     break;
5608   }
5609   if (stubAddr == NULL) return false;
5610 
5611   Node* cipherBlockChaining_object = argument(0);
5612   Node* src                        = argument(1);
5613   Node* src_offset                 = argument(2);
5614   Node* len                        = argument(3);
5615   Node* dest                       = argument(4);
5616   Node* dest_offset                = argument(5);
5617 
5618   // (1) src and dest are arrays.
5619   const Type* src_type = src->Value(&_gvn);
5620   const Type* dest_type = dest->Value(&_gvn);
5621   const TypeAryPtr* top_src = src_type->isa_aryptr();
5622   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5623   assert (top_src  != NULL && top_src->klass()  != NULL
5624           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5625 
5626   // checks are the responsibility of the caller
5627   Node* src_start  = src;
5628   Node* dest_start = dest;
5629   if (src_offset != NULL || dest_offset != NULL) {
5630     assert(src_offset != NULL && dest_offset != NULL, "");
5631     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5632     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5633   }
5634 
5635   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5636   // (because of the predicated logic executed earlier).
5637   // so we cast it here safely.
5638   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5639 
5640   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5641   if (embeddedCipherObj == NULL) return false;
5642 
5643   // cast it to what we know it will be at runtime
5644   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5645   assert(tinst != NULL, "CBC obj is null");
5646   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5647   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5648   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
5649 
5650   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5651   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5652   const TypeOopPtr* xtype = aklass->as_instance_type();
5653   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
5654   aescrypt_object = _gvn.transform(aescrypt_object);
5655 
5656   // we need to get the start of the aescrypt_object's expanded key array
5657   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5658   if (k_start == NULL) return false;
5659 
5660   // similarly, get the start address of the r vector
5661   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5662   if (objRvec == NULL) return false;
5663   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5664 
5665   Node* cbcCrypt;
5666   if (Matcher::pass_original_key_for_aes()) {
5667     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5668     // compatibility issues between Java key expansion and SPARC crypto instructions
5669     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5670     if (original_k_start == NULL) return false;
5671 
5672     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
5673     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5674                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5675                                  stubAddr, stubName, TypePtr::BOTTOM,
5676                                  src_start, dest_start, k_start, r_start, len, original_k_start);
5677   } else {
5678     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5679     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5680                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5681                                  stubAddr, stubName, TypePtr::BOTTOM,
5682                                  src_start, dest_start, k_start, r_start, len);
5683   }
5684 
5685   // return cipher length (int)
5686   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
5687   set_result(retvalue);
5688   return true;
5689 }
5690 
5691 //------------------------------get_key_start_from_aescrypt_object-----------------------
5692 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
5693   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
5694   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5695   if (objAESCryptKey == NULL) return (Node *) NULL;
5696 
5697   // now have the array, need to get the start address of the K array
5698   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
5699   return k_start;
5700 }
5701 
5702 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
5703 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
5704   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
5705   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5706   if (objAESCryptKey == NULL) return (Node *) NULL;
5707 
5708   // now have the array, need to get the start address of the lastKey array
5709   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
5710   return original_k_start;
5711 }
5712 
5713 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
5714 // Return node representing slow path of predicate check.
5715 // the pseudo code we want to emulate with this predicate is:
5716 // for encryption:
5717 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
5718 // for decryption:
5719 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
5720 //    note cipher==plain is more conservative than the original java code but that's OK
5721 //
5722 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
5723   // The receiver was checked for NULL already.
5724   Node* objCBC = argument(0);
5725 
5726   // Load embeddedCipher field of CipherBlockChaining object.
5727   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5728 
5729   // get AESCrypt klass for instanceOf check
5730   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
5731   // will have same classloader as CipherBlockChaining object
5732   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
5733   assert(tinst != NULL, "CBCobj is null");
5734   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
5735 
5736   // we want to do an instanceof comparison against the AESCrypt class
5737   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5738   if (!klass_AESCrypt->is_loaded()) {
5739     // if AESCrypt is not even loaded, we never take the intrinsic fast path
5740     Node* ctrl = control();
5741     set_control(top()); // no regular fast path
5742     return ctrl;
5743   }
5744   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5745 
5746   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
5747   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
5748   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
5749 
5750   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5751 
5752   // for encryption, we are done
5753   if (!decrypting)
5754     return instof_false;  // even if it is NULL
5755 
5756   // for decryption, we need to add a further check to avoid
5757   // taking the intrinsic path when cipher and plain are the same
5758   // see the original java code for why.
5759   RegionNode* region = new RegionNode(3);
5760   region->init_req(1, instof_false);
5761   Node* src = argument(1);
5762   Node* dest = argument(4);
5763   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
5764   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
5765   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
5766   region->init_req(2, src_dest_conjoint);
5767 
5768   record_for_igvn(region);
5769   return _gvn.transform(region);
5770 }
5771 
5772 //------------------------------inline_sha_implCompress-----------------------
5773 //
5774 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
5775 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
5776 //
5777 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
5778 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
5779 //
5780 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
5781 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
5782 //
5783 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
5784   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
5785 
5786   Node* sha_obj = argument(0);
5787   Node* src     = argument(1); // type oop
5788   Node* ofs     = argument(2); // type int
5789 
5790   const Type* src_type = src->Value(&_gvn);
5791   const TypeAryPtr* top_src = src_type->isa_aryptr();
5792   if (top_src  == NULL || top_src->klass()  == NULL) {
5793     // failed array check
5794     return false;
5795   }
5796   // Figure out the size and type of the elements we will be copying.
5797   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5798   if (src_elem != T_BYTE) {
5799     return false;
5800   }
5801   // 'src_start' points to src array + offset
5802   Node* src_start = array_element_address(src, ofs, src_elem);
5803   Node* state = NULL;
5804   address stubAddr;
5805   const char *stubName;
5806 
5807   switch(id) {
5808   case vmIntrinsics::_sha_implCompress:
5809     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
5810     state = get_state_from_sha_object(sha_obj);
5811     stubAddr = StubRoutines::sha1_implCompress();
5812     stubName = "sha1_implCompress";
5813     break;
5814   case vmIntrinsics::_sha2_implCompress:
5815     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
5816     state = get_state_from_sha_object(sha_obj);
5817     stubAddr = StubRoutines::sha256_implCompress();
5818     stubName = "sha256_implCompress";
5819     break;
5820   case vmIntrinsics::_sha5_implCompress:
5821     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
5822     state = get_state_from_sha5_object(sha_obj);
5823     stubAddr = StubRoutines::sha512_implCompress();
5824     stubName = "sha512_implCompress";
5825     break;
5826   default:
5827     fatal_unexpected_iid(id);
5828     return false;
5829   }
5830   if (state == NULL) return false;
5831 
5832   // Call the stub.
5833   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
5834                                  stubAddr, stubName, TypePtr::BOTTOM,
5835                                  src_start, state);
5836 
5837   return true;
5838 }
5839 
5840 //------------------------------inline_digestBase_implCompressMB-----------------------
5841 //
5842 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
5843 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
5844 //
5845 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
5846   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
5847          "need SHA1/SHA256/SHA512 instruction support");
5848   assert((uint)predicate < 3, "sanity");
5849   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
5850 
5851   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
5852   Node* src            = argument(1); // byte[] array
5853   Node* ofs            = argument(2); // type int
5854   Node* limit          = argument(3); // type int
5855 
5856   const Type* src_type = src->Value(&_gvn);
5857   const TypeAryPtr* top_src = src_type->isa_aryptr();
5858   if (top_src  == NULL || top_src->klass()  == NULL) {
5859     // failed array check
5860     return false;
5861   }
5862   // Figure out the size and type of the elements we will be copying.
5863   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5864   if (src_elem != T_BYTE) {
5865     return false;
5866   }
5867   // 'src_start' points to src array + offset
5868   Node* src_start = array_element_address(src, ofs, src_elem);
5869 
5870   const char* klass_SHA_name = NULL;
5871   const char* stub_name = NULL;
5872   address     stub_addr = NULL;
5873   bool        long_state = false;
5874 
5875   switch (predicate) {
5876   case 0:
5877     if (UseSHA1Intrinsics) {
5878       klass_SHA_name = "sun/security/provider/SHA";
5879       stub_name = "sha1_implCompressMB";
5880       stub_addr = StubRoutines::sha1_implCompressMB();
5881     }
5882     break;
5883   case 1:
5884     if (UseSHA256Intrinsics) {
5885       klass_SHA_name = "sun/security/provider/SHA2";
5886       stub_name = "sha256_implCompressMB";
5887       stub_addr = StubRoutines::sha256_implCompressMB();
5888     }
5889     break;
5890   case 2:
5891     if (UseSHA512Intrinsics) {
5892       klass_SHA_name = "sun/security/provider/SHA5";
5893       stub_name = "sha512_implCompressMB";
5894       stub_addr = StubRoutines::sha512_implCompressMB();
5895       long_state = true;
5896     }
5897     break;
5898   default:
5899     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
5900   }
5901   if (klass_SHA_name != NULL) {
5902     // get DigestBase klass to lookup for SHA klass
5903     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
5904     assert(tinst != NULL, "digestBase_obj is not instance???");
5905     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
5906 
5907     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
5908     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
5909     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
5910     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
5911   }
5912   return false;
5913 }
5914 //------------------------------inline_sha_implCompressMB-----------------------
5915 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
5916                                                bool long_state, address stubAddr, const char *stubName,
5917                                                Node* src_start, Node* ofs, Node* limit) {
5918   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
5919   const TypeOopPtr* xtype = aklass->as_instance_type();
5920   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
5921   sha_obj = _gvn.transform(sha_obj);
5922 
5923   Node* state;
5924   if (long_state) {
5925     state = get_state_from_sha5_object(sha_obj);
5926   } else {
5927     state = get_state_from_sha_object(sha_obj);
5928   }
5929   if (state == NULL) return false;
5930 
5931   // Call the stub.
5932   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5933                                  OptoRuntime::digestBase_implCompressMB_Type(),
5934                                  stubAddr, stubName, TypePtr::BOTTOM,
5935                                  src_start, state, ofs, limit);
5936   // return ofs (int)
5937   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5938   set_result(result);
5939 
5940   return true;
5941 }
5942 
5943 //------------------------------get_state_from_sha_object-----------------------
5944 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
5945   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
5946   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
5947   if (sha_state == NULL) return (Node *) NULL;
5948 
5949   // now have the array, need to get the start address of the state array
5950   Node* state = array_element_address(sha_state, intcon(0), T_INT);
5951   return state;
5952 }
5953 
5954 //------------------------------get_state_from_sha5_object-----------------------
5955 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
5956   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
5957   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
5958   if (sha_state == NULL) return (Node *) NULL;
5959 
5960   // now have the array, need to get the start address of the state array
5961   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
5962   return state;
5963 }
5964 
5965 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
5966 // Return node representing slow path of predicate check.
5967 // the pseudo code we want to emulate with this predicate is:
5968 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
5969 //
5970 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
5971   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
5972          "need SHA1/SHA256/SHA512 instruction support");
5973   assert((uint)predicate < 3, "sanity");
5974 
5975   // The receiver was checked for NULL already.
5976   Node* digestBaseObj = argument(0);
5977 
5978   // get DigestBase klass for instanceOf check
5979   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
5980   assert(tinst != NULL, "digestBaseObj is null");
5981   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
5982 
5983   const char* klass_SHA_name = NULL;
5984   switch (predicate) {
5985   case 0:
5986     if (UseSHA1Intrinsics) {
5987       // we want to do an instanceof comparison against the SHA class
5988       klass_SHA_name = "sun/security/provider/SHA";
5989     }
5990     break;
5991   case 1:
5992     if (UseSHA256Intrinsics) {
5993       // we want to do an instanceof comparison against the SHA2 class
5994       klass_SHA_name = "sun/security/provider/SHA2";
5995     }
5996     break;
5997   case 2:
5998     if (UseSHA512Intrinsics) {
5999       // we want to do an instanceof comparison against the SHA5 class
6000       klass_SHA_name = "sun/security/provider/SHA5";
6001     }
6002     break;
6003   default:
6004     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
6005   }
6006 
6007   ciKlass* klass_SHA = NULL;
6008   if (klass_SHA_name != NULL) {
6009     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6010   }
6011   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6012     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6013     Node* ctrl = control();
6014     set_control(top()); // no intrinsic path
6015     return ctrl;
6016   }
6017   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6018 
6019   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6020   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6021   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6022   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6023 
6024   return instof_false;  // even if it is NULL
6025 }
6026 
6027 bool LibraryCallKit::inline_profileBoolean() {
6028   Node* counts = argument(1);
6029   const TypeAryPtr* ary = NULL;
6030   ciArray* aobj = NULL;
6031   if (counts->is_Con()
6032       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6033       && (aobj = ary->const_oop()->as_array()) != NULL
6034       && (aobj->length() == 2)) {
6035     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6036     jint false_cnt = aobj->element_value(0).as_int();
6037     jint  true_cnt = aobj->element_value(1).as_int();
6038 
6039     method()->set_injected_profile(true);
6040 
6041     if (C->log() != NULL) {
6042       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6043                      false_cnt, true_cnt);
6044     }
6045 
6046     if (false_cnt + true_cnt == 0) {
6047       // According to profile, never executed.
6048       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6049                           Deoptimization::Action_reinterpret);
6050       return true;
6051     }
6052 
6053     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6054     // is a number of each value occurrences.
6055     Node* result = argument(0);
6056     if (false_cnt == 0 || true_cnt == 0) {
6057       // According to profile, one value has been never seen.
6058       int expected_val = (false_cnt == 0) ? 1 : 0;
6059 
6060       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6061       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6062 
6063       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6064       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6065       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6066 
6067       { // Slow path: uncommon trap for never seen value and then reexecute
6068         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6069         // the value has been seen at least once.
6070         PreserveJVMState pjvms(this);
6071         PreserveReexecuteState preexecs(this);
6072         jvms()->set_should_reexecute(true);
6073 
6074         set_control(slow_path);
6075         set_i_o(i_o());
6076 
6077         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6078                             Deoptimization::Action_reinterpret);
6079       }
6080       // The guard for never seen value enables sharpening of the result and
6081       // returning a constant. It allows to eliminate branches on the same value
6082       // later on.
6083       set_control(fast_path);
6084       result = intcon(expected_val);
6085     }
6086     // Stop profiling.
6087     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6088     // By replacing method body with profile data (represented as ProfileBooleanNode
6089     // on IR level) we effectively disable profiling.
6090     // It enables full speed execution once optimized code is generated.
6091     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6092     C->record_for_igvn(profile);
6093     set_result(profile);
6094     return true;
6095   } else {
6096     // Continue profiling.
6097     // Profile data isn't available at the moment. So, execute method's bytecode version.
6098     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6099     // is compiled and counters aren't available since corresponding MethodHandle
6100     // isn't a compile-time constant.
6101     return false;
6102   }
6103 }
6104 
6105 bool LibraryCallKit::inline_isCompileConstant() {
6106   Node* n = argument(0);
6107   set_result(n->is_Con() ? intcon(1) : intcon(0));
6108   return true;
6109 }