1 /* 2 * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/systemDictionary.hpp" 27 #include "classfile/vmSymbols.hpp" 28 #include "code/codeCache.hpp" 29 #include "code/compiledIC.hpp" 30 #include "code/icBuffer.hpp" 31 #include "code/nmethod.hpp" 32 #include "code/pcDesc.hpp" 33 #include "code/scopeDesc.hpp" 34 #include "code/vtableStubs.hpp" 35 #include "compiler/compileBroker.hpp" 36 #include "compiler/compilerOracle.hpp" 37 #include "compiler/oopMap.hpp" 38 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp" 39 #include "gc_implementation/g1/heapRegion.hpp" 40 #include "gc_interface/collectedHeap.hpp" 41 #include "interpreter/bytecode.hpp" 42 #include "interpreter/interpreter.hpp" 43 #include "interpreter/linkResolver.hpp" 44 #include "memory/barrierSet.hpp" 45 #include "memory/gcLocker.inline.hpp" 46 #include "memory/oopFactory.hpp" 47 #include "oops/objArrayKlass.hpp" 48 #include "oops/oop.inline.hpp" 49 #include "opto/ad.hpp" 50 #include "opto/addnode.hpp" 51 #include "opto/callnode.hpp" 52 #include "opto/cfgnode.hpp" 53 #include "opto/graphKit.hpp" 54 #include "opto/machnode.hpp" 55 #include "opto/matcher.hpp" 56 #include "opto/memnode.hpp" 57 #include "opto/mulnode.hpp" 58 #include "opto/runtime.hpp" 59 #include "opto/subnode.hpp" 60 #include "runtime/atomic.inline.hpp" 61 #include "runtime/fprofiler.hpp" 62 #include "runtime/handles.inline.hpp" 63 #include "runtime/interfaceSupport.hpp" 64 #include "runtime/javaCalls.hpp" 65 #include "runtime/sharedRuntime.hpp" 66 #include "runtime/signature.hpp" 67 #include "runtime/threadCritical.hpp" 68 #include "runtime/vframe.hpp" 69 #include "runtime/vframeArray.hpp" 70 #include "runtime/vframe_hp.hpp" 71 #include "utilities/copy.hpp" 72 #include "utilities/preserveException.hpp" 73 74 75 // For debugging purposes: 76 // To force FullGCALot inside a runtime function, add the following two lines 77 // 78 // Universe::release_fullgc_alot_dummy(); 79 // MarkSweep::invoke(0, "Debugging"); 80 // 81 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000 82 83 84 85 86 // Compiled code entry points 87 address OptoRuntime::_new_instance_Java = NULL; 88 address OptoRuntime::_new_array_Java = NULL; 89 address OptoRuntime::_new_array_nozero_Java = NULL; 90 address OptoRuntime::_multianewarray2_Java = NULL; 91 address OptoRuntime::_multianewarray3_Java = NULL; 92 address OptoRuntime::_multianewarray4_Java = NULL; 93 address OptoRuntime::_multianewarray5_Java = NULL; 94 address OptoRuntime::_multianewarrayN_Java = NULL; 95 address OptoRuntime::_g1_wb_pre_Java = NULL; 96 address OptoRuntime::_g1_wb_post_Java = NULL; 97 address OptoRuntime::_vtable_must_compile_Java = NULL; 98 address OptoRuntime::_complete_monitor_locking_Java = NULL; 99 address OptoRuntime::_monitor_notify_Java = NULL; 100 address OptoRuntime::_monitor_notifyAll_Java = NULL; 101 address OptoRuntime::_rethrow_Java = NULL; 102 103 address OptoRuntime::_slow_arraycopy_Java = NULL; 104 address OptoRuntime::_register_finalizer_Java = NULL; 105 106 # ifdef ENABLE_ZAP_DEAD_LOCALS 107 address OptoRuntime::_zap_dead_Java_locals_Java = NULL; 108 address OptoRuntime::_zap_dead_native_locals_Java = NULL; 109 # endif 110 111 ExceptionBlob* OptoRuntime::_exception_blob; 112 113 // This should be called in an assertion at the start of OptoRuntime routines 114 // which are entered from compiled code (all of them) 115 #ifdef ASSERT 116 static bool check_compiled_frame(JavaThread* thread) { 117 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code"); 118 RegisterMap map(thread, false); 119 frame caller = thread->last_frame().sender(&map); 120 assert(caller.is_compiled_frame(), "not being called from compiled like code"); 121 return true; 122 } 123 #endif // ASSERT 124 125 126 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \ 127 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \ 128 if (var == NULL) { return false; } 129 130 bool OptoRuntime::generate(ciEnv* env) { 131 132 generate_exception_blob(); 133 134 // Note: tls: Means fetching the return oop out of the thread-local storage 135 // 136 // variable/name type-function-gen , runtime method ,fncy_jp, tls,save_args,retpc 137 // ------------------------------------------------------------------------------------------------------------------------------- 138 gen(env, _new_instance_Java , new_instance_Type , new_instance_C , 0 , true , false, false); 139 gen(env, _new_array_Java , new_array_Type , new_array_C , 0 , true , false, false); 140 gen(env, _new_array_nozero_Java , new_array_Type , new_array_nozero_C , 0 , true , false, false); 141 gen(env, _multianewarray2_Java , multianewarray2_Type , multianewarray2_C , 0 , true , false, false); 142 gen(env, _multianewarray3_Java , multianewarray3_Type , multianewarray3_C , 0 , true , false, false); 143 gen(env, _multianewarray4_Java , multianewarray4_Type , multianewarray4_C , 0 , true , false, false); 144 gen(env, _multianewarray5_Java , multianewarray5_Type , multianewarray5_C , 0 , true , false, false); 145 gen(env, _multianewarrayN_Java , multianewarrayN_Type , multianewarrayN_C , 0 , true , false, false); 146 gen(env, _g1_wb_pre_Java , g1_wb_pre_Type , SharedRuntime::g1_wb_pre , 0 , false, false, false); 147 gen(env, _g1_wb_post_Java , g1_wb_post_Type , SharedRuntime::g1_wb_post , 0 , false, false, false); 148 gen(env, _complete_monitor_locking_Java , complete_monitor_enter_Type , SharedRuntime::complete_monitor_locking_C, 0, false, false, false); 149 gen(env, _monitor_notify_Java , monitor_notify_Type , monitor_notify_C , 0 , false, false, false); 150 gen(env, _monitor_notifyAll_Java , monitor_notify_Type , monitor_notifyAll_C , 0 , false, false, false); 151 gen(env, _rethrow_Java , rethrow_Type , rethrow_C , 2 , true , false, true ); 152 153 gen(env, _slow_arraycopy_Java , slow_arraycopy_Type , SharedRuntime::slow_arraycopy_C , 0 , false, false, false); 154 gen(env, _register_finalizer_Java , register_finalizer_Type , register_finalizer , 0 , false, false, false); 155 156 # ifdef ENABLE_ZAP_DEAD_LOCALS 157 gen(env, _zap_dead_Java_locals_Java , zap_dead_locals_Type , zap_dead_Java_locals_C , 0 , false, true , false ); 158 gen(env, _zap_dead_native_locals_Java , zap_dead_locals_Type , zap_dead_native_locals_C , 0 , false, true , false ); 159 # endif 160 return true; 161 } 162 163 #undef gen 164 165 166 // Helper method to do generation of RunTimeStub's 167 address OptoRuntime::generate_stub( ciEnv* env, 168 TypeFunc_generator gen, address C_function, 169 const char *name, int is_fancy_jump, 170 bool pass_tls, 171 bool save_argument_registers, 172 bool return_pc ) { 173 ResourceMark rm; 174 Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc ); 175 return C.stub_entry_point(); 176 } 177 178 const char* OptoRuntime::stub_name(address entry) { 179 #ifndef PRODUCT 180 CodeBlob* cb = CodeCache::find_blob(entry); 181 RuntimeStub* rs =(RuntimeStub *)cb; 182 assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub"); 183 return rs->name(); 184 #else 185 // Fast implementation for product mode (maybe it should be inlined too) 186 return "runtime stub"; 187 #endif 188 } 189 190 191 //============================================================================= 192 // Opto compiler runtime routines 193 //============================================================================= 194 195 196 //=============================allocation====================================== 197 // We failed the fast-path allocation. Now we need to do a scavenge or GC 198 // and try allocation again. 199 200 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) { 201 // After any safepoint, just before going back to compiled code, 202 // we inform the GC that we will be doing initializing writes to 203 // this object in the future without emitting card-marks, so 204 // GC may take any compensating steps. 205 // NOTE: Keep this code consistent with GraphKit::store_barrier. 206 207 oop new_obj = thread->vm_result(); 208 if (new_obj == NULL) return; 209 210 assert(Universe::heap()->can_elide_tlab_store_barriers(), 211 "compiler must check this first"); 212 // GC may decide to give back a safer copy of new_obj. 213 new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj); 214 thread->set_vm_result(new_obj); 215 } 216 217 // object allocation 218 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread)) 219 JRT_BLOCK; 220 #ifndef PRODUCT 221 SharedRuntime::_new_instance_ctr++; // new instance requires GC 222 #endif 223 assert(check_compiled_frame(thread), "incorrect caller"); 224 225 // These checks are cheap to make and support reflective allocation. 226 int lh = klass->layout_helper(); 227 if (Klass::layout_helper_needs_slow_path(lh) 228 || !InstanceKlass::cast(klass)->is_initialized()) { 229 KlassHandle kh(THREAD, klass); 230 kh->check_valid_for_instantiation(false, THREAD); 231 if (!HAS_PENDING_EXCEPTION) { 232 InstanceKlass::cast(kh())->initialize(THREAD); 233 } 234 if (!HAS_PENDING_EXCEPTION) { 235 klass = kh(); 236 } else { 237 klass = NULL; 238 } 239 } 240 241 if (klass != NULL) { 242 // Scavenge and allocate an instance. 243 oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD); 244 thread->set_vm_result(result); 245 246 // Pass oops back through thread local storage. Our apparent type to Java 247 // is that we return an oop, but we can block on exit from this routine and 248 // a GC can trash the oop in C's return register. The generated stub will 249 // fetch the oop from TLS after any possible GC. 250 } 251 252 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 253 JRT_BLOCK_END; 254 255 if (GraphKit::use_ReduceInitialCardMarks()) { 256 // inform GC that we won't do card marks for initializing writes. 257 new_store_pre_barrier(thread); 258 } 259 JRT_END 260 261 262 // array allocation 263 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread)) 264 JRT_BLOCK; 265 #ifndef PRODUCT 266 SharedRuntime::_new_array_ctr++; // new array requires GC 267 #endif 268 assert(check_compiled_frame(thread), "incorrect caller"); 269 270 // Scavenge and allocate an instance. 271 oop result; 272 273 if (array_type->oop_is_typeArray()) { 274 // The oopFactory likes to work with the element type. 275 // (We could bypass the oopFactory, since it doesn't add much value.) 276 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 277 result = oopFactory::new_typeArray(elem_type, len, THREAD); 278 } else { 279 // Although the oopFactory likes to work with the elem_type, 280 // the compiler prefers the array_type, since it must already have 281 // that latter value in hand for the fast path. 282 Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass(); 283 result = oopFactory::new_objArray(elem_type, len, THREAD); 284 } 285 286 // Pass oops back through thread local storage. Our apparent type to Java 287 // is that we return an oop, but we can block on exit from this routine and 288 // a GC can trash the oop in C's return register. The generated stub will 289 // fetch the oop from TLS after any possible GC. 290 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 291 thread->set_vm_result(result); 292 JRT_BLOCK_END; 293 294 if (GraphKit::use_ReduceInitialCardMarks()) { 295 // inform GC that we won't do card marks for initializing writes. 296 new_store_pre_barrier(thread); 297 } 298 JRT_END 299 300 // array allocation without zeroing 301 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread)) 302 JRT_BLOCK; 303 #ifndef PRODUCT 304 SharedRuntime::_new_array_ctr++; // new array requires GC 305 #endif 306 assert(check_compiled_frame(thread), "incorrect caller"); 307 308 // Scavenge and allocate an instance. 309 oop result; 310 311 assert(array_type->oop_is_typeArray(), "should be called only for type array"); 312 // The oopFactory likes to work with the element type. 313 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 314 result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD); 315 316 // Pass oops back through thread local storage. Our apparent type to Java 317 // is that we return an oop, but we can block on exit from this routine and 318 // a GC can trash the oop in C's return register. The generated stub will 319 // fetch the oop from TLS after any possible GC. 320 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 321 thread->set_vm_result(result); 322 JRT_BLOCK_END; 323 324 if (GraphKit::use_ReduceInitialCardMarks()) { 325 // inform GC that we won't do card marks for initializing writes. 326 new_store_pre_barrier(thread); 327 } 328 329 oop result = thread->vm_result(); 330 if ((len > 0) && (result != NULL) && 331 is_deoptimized_caller_frame(thread)) { 332 // Zero array here if the caller is deoptimized. 333 int size = ((typeArrayOop)result)->object_size(); 334 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 335 const size_t hs = arrayOopDesc::header_size(elem_type); 336 // Align to next 8 bytes to avoid trashing arrays's length. 337 const size_t aligned_hs = align_object_offset(hs); 338 HeapWord* obj = (HeapWord*)result; 339 if (aligned_hs > hs) { 340 Copy::zero_to_words(obj+hs, aligned_hs-hs); 341 } 342 // Optimized zeroing. 343 Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs); 344 } 345 346 JRT_END 347 348 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array. 349 350 // multianewarray for 2 dimensions 351 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread)) 352 #ifndef PRODUCT 353 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension 354 #endif 355 assert(check_compiled_frame(thread), "incorrect caller"); 356 assert(elem_type->is_klass(), "not a class"); 357 jint dims[2]; 358 dims[0] = len1; 359 dims[1] = len2; 360 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD); 361 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 362 thread->set_vm_result(obj); 363 JRT_END 364 365 // multianewarray for 3 dimensions 366 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread)) 367 #ifndef PRODUCT 368 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension 369 #endif 370 assert(check_compiled_frame(thread), "incorrect caller"); 371 assert(elem_type->is_klass(), "not a class"); 372 jint dims[3]; 373 dims[0] = len1; 374 dims[1] = len2; 375 dims[2] = len3; 376 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD); 377 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 378 thread->set_vm_result(obj); 379 JRT_END 380 381 // multianewarray for 4 dimensions 382 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread)) 383 #ifndef PRODUCT 384 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension 385 #endif 386 assert(check_compiled_frame(thread), "incorrect caller"); 387 assert(elem_type->is_klass(), "not a class"); 388 jint dims[4]; 389 dims[0] = len1; 390 dims[1] = len2; 391 dims[2] = len3; 392 dims[3] = len4; 393 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD); 394 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 395 thread->set_vm_result(obj); 396 JRT_END 397 398 // multianewarray for 5 dimensions 399 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread)) 400 #ifndef PRODUCT 401 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension 402 #endif 403 assert(check_compiled_frame(thread), "incorrect caller"); 404 assert(elem_type->is_klass(), "not a class"); 405 jint dims[5]; 406 dims[0] = len1; 407 dims[1] = len2; 408 dims[2] = len3; 409 dims[3] = len4; 410 dims[4] = len5; 411 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD); 412 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 413 thread->set_vm_result(obj); 414 JRT_END 415 416 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread)) 417 assert(check_compiled_frame(thread), "incorrect caller"); 418 assert(elem_type->is_klass(), "not a class"); 419 assert(oop(dims)->is_typeArray(), "not an array"); 420 421 ResourceMark rm; 422 jint len = dims->length(); 423 assert(len > 0, "Dimensions array should contain data"); 424 jint *j_dims = typeArrayOop(dims)->int_at_addr(0); 425 jint *c_dims = NEW_RESOURCE_ARRAY(jint, len); 426 Copy::conjoint_jints_atomic(j_dims, c_dims, len); 427 428 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD); 429 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 430 thread->set_vm_result(obj); 431 JRT_END 432 433 // Note that hashCode() deserves the same treatment as notify/notifyAll. 434 // The situation is slightly more complicated since hashCode() is virtual, 435 // requiring guards, whereas notify/notifyAll are final 436 437 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread)) 438 439 // Very few notify/notifyAll operations find any threads on the waitset, so 440 // the dominant fast-path is to simply return. 441 // Relatedly, it's critical that notify/notifyAll be fast in order to 442 // reduce lock hold times. 443 if (!SafepointSynchronize::is_synchronizing()) { 444 if (ObjectSynchronizer::quick_notify(obj, thread, false)) { 445 return; 446 } 447 } 448 449 // This is the case the fast-path above isn't provisioned to handle. 450 // The fast-path is designed to handle frequently arising cases in an efficient manner. 451 // (The fast-path is just a degenerate variant of the slow-path). 452 // Perform the dreaded state transition and pass control into the slow-path. 453 JRT_BLOCK; 454 Handle h_obj(THREAD, obj); 455 ObjectSynchronizer::notify(h_obj, CHECK); 456 JRT_BLOCK_END; 457 JRT_END 458 459 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread)) 460 461 if (!SafepointSynchronize::is_synchronizing() ) { 462 if (ObjectSynchronizer::quick_notify(obj, thread, true)) { 463 return; 464 } 465 } 466 467 // This is the case the fast-path above isn't provisioned to handle. 468 // The fast-path is designed to handle frequently arising cases in an efficient manner. 469 // (The fast-path is just a degenerate variant of the slow-path). 470 // Perform the dreaded state transition and pass control into the slow-path. 471 JRT_BLOCK; 472 Handle h_obj(THREAD, obj); 473 ObjectSynchronizer::notifyall(h_obj, CHECK); 474 JRT_BLOCK_END; 475 JRT_END 476 477 const TypeFunc *OptoRuntime::new_instance_Type() { 478 // create input type (domain) 479 const Type **fields = TypeTuple::fields(1); 480 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 481 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 482 483 // create result type (range) 484 fields = TypeTuple::fields(1); 485 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 486 487 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 488 489 return TypeFunc::make(domain, range); 490 } 491 492 493 const TypeFunc *OptoRuntime::athrow_Type() { 494 // create input type (domain) 495 const Type **fields = TypeTuple::fields(1); 496 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 497 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 498 499 // create result type (range) 500 fields = TypeTuple::fields(0); 501 502 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 503 504 return TypeFunc::make(domain, range); 505 } 506 507 508 const TypeFunc *OptoRuntime::new_array_Type() { 509 // create input type (domain) 510 const Type **fields = TypeTuple::fields(2); 511 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 512 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size 513 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 514 515 // create result type (range) 516 fields = TypeTuple::fields(1); 517 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 518 519 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 520 521 return TypeFunc::make(domain, range); 522 } 523 524 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) { 525 // create input type (domain) 526 const int nargs = ndim + 1; 527 const Type **fields = TypeTuple::fields(nargs); 528 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 529 for( int i = 1; i < nargs; i++ ) 530 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size 531 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields); 532 533 // create result type (range) 534 fields = TypeTuple::fields(1); 535 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 536 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 537 538 return TypeFunc::make(domain, range); 539 } 540 541 const TypeFunc *OptoRuntime::multianewarray2_Type() { 542 return multianewarray_Type(2); 543 } 544 545 const TypeFunc *OptoRuntime::multianewarray3_Type() { 546 return multianewarray_Type(3); 547 } 548 549 const TypeFunc *OptoRuntime::multianewarray4_Type() { 550 return multianewarray_Type(4); 551 } 552 553 const TypeFunc *OptoRuntime::multianewarray5_Type() { 554 return multianewarray_Type(5); 555 } 556 557 const TypeFunc *OptoRuntime::multianewarrayN_Type() { 558 // create input type (domain) 559 const Type **fields = TypeTuple::fields(2); 560 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 561 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes 562 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 563 564 // create result type (range) 565 fields = TypeTuple::fields(1); 566 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 567 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 568 569 return TypeFunc::make(domain, range); 570 } 571 572 const TypeFunc *OptoRuntime::g1_wb_pre_Type() { 573 const Type **fields = TypeTuple::fields(2); 574 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value 575 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread 576 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 577 578 // create result type (range) 579 fields = TypeTuple::fields(0); 580 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 581 582 return TypeFunc::make(domain, range); 583 } 584 585 const TypeFunc *OptoRuntime::g1_wb_post_Type() { 586 587 const Type **fields = TypeTuple::fields(2); 588 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Card addr 589 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread 590 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 591 592 // create result type (range) 593 fields = TypeTuple::fields(0); 594 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 595 596 return TypeFunc::make(domain, range); 597 } 598 599 const TypeFunc *OptoRuntime::uncommon_trap_Type() { 600 // create input type (domain) 601 const Type **fields = TypeTuple::fields(1); 602 fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action) 603 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 604 605 // create result type (range) 606 fields = TypeTuple::fields(0); 607 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 608 609 return TypeFunc::make(domain, range); 610 } 611 612 # ifdef ENABLE_ZAP_DEAD_LOCALS 613 // Type used for stub generation for zap_dead_locals. 614 // No inputs or outputs 615 const TypeFunc *OptoRuntime::zap_dead_locals_Type() { 616 // create input type (domain) 617 const Type **fields = TypeTuple::fields(0); 618 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields); 619 620 // create result type (range) 621 fields = TypeTuple::fields(0); 622 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields); 623 624 return TypeFunc::make(domain,range); 625 } 626 # endif 627 628 629 //----------------------------------------------------------------------------- 630 // Monitor Handling 631 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() { 632 // create input type (domain) 633 const Type **fields = TypeTuple::fields(2); 634 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 635 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock 636 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 637 638 // create result type (range) 639 fields = TypeTuple::fields(0); 640 641 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 642 643 return TypeFunc::make(domain,range); 644 } 645 646 647 //----------------------------------------------------------------------------- 648 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() { 649 // create input type (domain) 650 const Type **fields = TypeTuple::fields(3); 651 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 652 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock - BasicLock 653 fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM; // Thread pointer (Self) 654 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields); 655 656 // create result type (range) 657 fields = TypeTuple::fields(0); 658 659 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 660 661 return TypeFunc::make(domain, range); 662 } 663 664 const TypeFunc *OptoRuntime::monitor_notify_Type() { 665 // create input type (domain) 666 const Type **fields = TypeTuple::fields(1); 667 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 668 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 669 670 // create result type (range) 671 fields = TypeTuple::fields(0); 672 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 673 return TypeFunc::make(domain, range); 674 } 675 676 const TypeFunc* OptoRuntime::flush_windows_Type() { 677 // create input type (domain) 678 const Type** fields = TypeTuple::fields(1); 679 fields[TypeFunc::Parms+0] = NULL; // void 680 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 681 682 // create result type 683 fields = TypeTuple::fields(1); 684 fields[TypeFunc::Parms+0] = NULL; // void 685 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 686 687 return TypeFunc::make(domain, range); 688 } 689 690 const TypeFunc* OptoRuntime::l2f_Type() { 691 // create input type (domain) 692 const Type **fields = TypeTuple::fields(2); 693 fields[TypeFunc::Parms+0] = TypeLong::LONG; 694 fields[TypeFunc::Parms+1] = Type::HALF; 695 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 696 697 // create result type (range) 698 fields = TypeTuple::fields(1); 699 fields[TypeFunc::Parms+0] = Type::FLOAT; 700 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 701 702 return TypeFunc::make(domain, range); 703 } 704 705 const TypeFunc* OptoRuntime::modf_Type() { 706 const Type **fields = TypeTuple::fields(2); 707 fields[TypeFunc::Parms+0] = Type::FLOAT; 708 fields[TypeFunc::Parms+1] = Type::FLOAT; 709 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 710 711 // create result type (range) 712 fields = TypeTuple::fields(1); 713 fields[TypeFunc::Parms+0] = Type::FLOAT; 714 715 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 716 717 return TypeFunc::make(domain, range); 718 } 719 720 const TypeFunc *OptoRuntime::Math_D_D_Type() { 721 // create input type (domain) 722 const Type **fields = TypeTuple::fields(2); 723 // Symbol* name of class to be loaded 724 fields[TypeFunc::Parms+0] = Type::DOUBLE; 725 fields[TypeFunc::Parms+1] = Type::HALF; 726 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 727 728 // create result type (range) 729 fields = TypeTuple::fields(2); 730 fields[TypeFunc::Parms+0] = Type::DOUBLE; 731 fields[TypeFunc::Parms+1] = Type::HALF; 732 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 733 734 return TypeFunc::make(domain, range); 735 } 736 737 const TypeFunc* OptoRuntime::Math_DD_D_Type() { 738 const Type **fields = TypeTuple::fields(4); 739 fields[TypeFunc::Parms+0] = Type::DOUBLE; 740 fields[TypeFunc::Parms+1] = Type::HALF; 741 fields[TypeFunc::Parms+2] = Type::DOUBLE; 742 fields[TypeFunc::Parms+3] = Type::HALF; 743 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields); 744 745 // create result type (range) 746 fields = TypeTuple::fields(2); 747 fields[TypeFunc::Parms+0] = Type::DOUBLE; 748 fields[TypeFunc::Parms+1] = Type::HALF; 749 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 750 751 return TypeFunc::make(domain, range); 752 } 753 754 //-------------- currentTimeMillis, currentTimeNanos, etc 755 756 const TypeFunc* OptoRuntime::void_long_Type() { 757 // create input type (domain) 758 const Type **fields = TypeTuple::fields(0); 759 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 760 761 // create result type (range) 762 fields = TypeTuple::fields(2); 763 fields[TypeFunc::Parms+0] = TypeLong::LONG; 764 fields[TypeFunc::Parms+1] = Type::HALF; 765 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 766 767 return TypeFunc::make(domain, range); 768 } 769 770 // arraycopy stub variations: 771 enum ArrayCopyType { 772 ac_fast, // void(ptr, ptr, size_t) 773 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr) 774 ac_slow, // void(ptr, int, ptr, int, int) 775 ac_generic // int(ptr, int, ptr, int, int) 776 }; 777 778 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) { 779 // create input type (domain) 780 int num_args = (act == ac_fast ? 3 : 5); 781 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0); 782 int argcnt = num_args; 783 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths 784 const Type** fields = TypeTuple::fields(argcnt); 785 int argp = TypeFunc::Parms; 786 fields[argp++] = TypePtr::NOTNULL; // src 787 if (num_size_args == 0) { 788 fields[argp++] = TypeInt::INT; // src_pos 789 } 790 fields[argp++] = TypePtr::NOTNULL; // dest 791 if (num_size_args == 0) { 792 fields[argp++] = TypeInt::INT; // dest_pos 793 fields[argp++] = TypeInt::INT; // length 794 } 795 while (num_size_args-- > 0) { 796 fields[argp++] = TypeX_X; // size in whatevers (size_t) 797 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 798 } 799 if (act == ac_checkcast) { 800 fields[argp++] = TypePtr::NOTNULL; // super_klass 801 } 802 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act"); 803 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 804 805 // create result type if needed 806 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0); 807 fields = TypeTuple::fields(1); 808 if (retcnt == 0) 809 fields[TypeFunc::Parms+0] = NULL; // void 810 else 811 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed 812 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields); 813 return TypeFunc::make(domain, range); 814 } 815 816 const TypeFunc* OptoRuntime::fast_arraycopy_Type() { 817 // This signature is simple: Two base pointers and a size_t. 818 return make_arraycopy_Type(ac_fast); 819 } 820 821 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() { 822 // An extension of fast_arraycopy_Type which adds type checking. 823 return make_arraycopy_Type(ac_checkcast); 824 } 825 826 const TypeFunc* OptoRuntime::slow_arraycopy_Type() { 827 // This signature is exactly the same as System.arraycopy. 828 // There are no intptr_t (int/long) arguments. 829 return make_arraycopy_Type(ac_slow); 830 } 831 832 const TypeFunc* OptoRuntime::generic_arraycopy_Type() { 833 // This signature is like System.arraycopy, except that it returns status. 834 return make_arraycopy_Type(ac_generic); 835 } 836 837 838 const TypeFunc* OptoRuntime::array_fill_Type() { 839 const Type** fields; 840 int argp = TypeFunc::Parms; 841 if (CCallingConventionRequiresIntsAsLongs) { 842 // create input type (domain): pointer, int, size_t 843 fields = TypeTuple::fields(3 LP64_ONLY( + 2)); 844 fields[argp++] = TypePtr::NOTNULL; 845 fields[argp++] = TypeLong::LONG; 846 fields[argp++] = Type::HALF; 847 } else { 848 // create input type (domain): pointer, int, size_t 849 fields = TypeTuple::fields(3 LP64_ONLY( + 1)); 850 fields[argp++] = TypePtr::NOTNULL; 851 fields[argp++] = TypeInt::INT; 852 } 853 fields[argp++] = TypeX_X; // size in whatevers (size_t) 854 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 855 const TypeTuple *domain = TypeTuple::make(argp, fields); 856 857 // create result type 858 fields = TypeTuple::fields(1); 859 fields[TypeFunc::Parms+0] = NULL; // void 860 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 861 862 return TypeFunc::make(domain, range); 863 } 864 865 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant) 866 const TypeFunc* OptoRuntime::aescrypt_block_Type() { 867 // create input type (domain) 868 int num_args = 3; 869 if (Matcher::pass_original_key_for_aes()) { 870 num_args = 4; 871 } 872 int argcnt = num_args; 873 const Type** fields = TypeTuple::fields(argcnt); 874 int argp = TypeFunc::Parms; 875 fields[argp++] = TypePtr::NOTNULL; // src 876 fields[argp++] = TypePtr::NOTNULL; // dest 877 fields[argp++] = TypePtr::NOTNULL; // k array 878 if (Matcher::pass_original_key_for_aes()) { 879 fields[argp++] = TypePtr::NOTNULL; // original k array 880 } 881 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 882 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 883 884 // no result type needed 885 fields = TypeTuple::fields(1); 886 fields[TypeFunc::Parms+0] = NULL; // void 887 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 888 return TypeFunc::make(domain, range); 889 } 890 891 /** 892 * int updateBytesCRC32(int crc, byte* b, int len) 893 */ 894 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() { 895 // create input type (domain) 896 int num_args = 3; 897 int argcnt = num_args; 898 const Type** fields = TypeTuple::fields(argcnt); 899 int argp = TypeFunc::Parms; 900 fields[argp++] = TypeInt::INT; // crc 901 fields[argp++] = TypePtr::NOTNULL; // src 902 fields[argp++] = TypeInt::INT; // len 903 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 904 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 905 906 // result type needed 907 fields = TypeTuple::fields(1); 908 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 909 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 910 return TypeFunc::make(domain, range); 911 } 912 913 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int 914 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() { 915 // create input type (domain) 916 int num_args = 5; 917 if (Matcher::pass_original_key_for_aes()) { 918 num_args = 6; 919 } 920 int argcnt = num_args; 921 const Type** fields = TypeTuple::fields(argcnt); 922 int argp = TypeFunc::Parms; 923 fields[argp++] = TypePtr::NOTNULL; // src 924 fields[argp++] = TypePtr::NOTNULL; // dest 925 fields[argp++] = TypePtr::NOTNULL; // k array 926 fields[argp++] = TypePtr::NOTNULL; // r array 927 fields[argp++] = TypeInt::INT; // src len 928 if (Matcher::pass_original_key_for_aes()) { 929 fields[argp++] = TypePtr::NOTNULL; // original k array 930 } 931 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 932 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 933 934 // returning cipher len (int) 935 fields = TypeTuple::fields(1); 936 fields[TypeFunc::Parms+0] = TypeInt::INT; 937 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 938 return TypeFunc::make(domain, range); 939 } 940 941 /* 942 * void implCompress(byte[] buf, int ofs) 943 */ 944 const TypeFunc* OptoRuntime::sha_implCompress_Type() { 945 // create input type (domain) 946 int num_args = 2; 947 int argcnt = num_args; 948 const Type** fields = TypeTuple::fields(argcnt); 949 int argp = TypeFunc::Parms; 950 fields[argp++] = TypePtr::NOTNULL; // buf 951 fields[argp++] = TypePtr::NOTNULL; // state 952 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 953 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 954 955 // no result type needed 956 fields = TypeTuple::fields(1); 957 fields[TypeFunc::Parms+0] = NULL; // void 958 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 959 return TypeFunc::make(domain, range); 960 } 961 962 /* 963 * int implCompressMultiBlock(byte[] b, int ofs, int limit) 964 */ 965 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() { 966 // create input type (domain) 967 int num_args = 4; 968 int argcnt = num_args; 969 const Type** fields = TypeTuple::fields(argcnt); 970 int argp = TypeFunc::Parms; 971 fields[argp++] = TypePtr::NOTNULL; // buf 972 fields[argp++] = TypePtr::NOTNULL; // state 973 fields[argp++] = TypeInt::INT; // ofs 974 fields[argp++] = TypeInt::INT; // limit 975 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 976 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 977 978 // returning ofs (int) 979 fields = TypeTuple::fields(1); 980 fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs 981 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 982 return TypeFunc::make(domain, range); 983 } 984 985 const TypeFunc* OptoRuntime::multiplyToLen_Type() { 986 // create input type (domain) 987 int num_args = 6; 988 int argcnt = num_args; 989 const Type** fields = TypeTuple::fields(argcnt); 990 int argp = TypeFunc::Parms; 991 fields[argp++] = TypePtr::NOTNULL; // x 992 fields[argp++] = TypeInt::INT; // xlen 993 fields[argp++] = TypePtr::NOTNULL; // y 994 fields[argp++] = TypeInt::INT; // ylen 995 fields[argp++] = TypePtr::NOTNULL; // z 996 fields[argp++] = TypeInt::INT; // zlen 997 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 998 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 999 1000 // no result type needed 1001 fields = TypeTuple::fields(1); 1002 fields[TypeFunc::Parms+0] = NULL; 1003 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1004 return TypeFunc::make(domain, range); 1005 } 1006 1007 1008 1009 //------------- Interpreter state access for on stack replacement 1010 const TypeFunc* OptoRuntime::osr_end_Type() { 1011 // create input type (domain) 1012 const Type **fields = TypeTuple::fields(1); 1013 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf 1014 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 1015 1016 // create result type 1017 fields = TypeTuple::fields(1); 1018 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop 1019 fields[TypeFunc::Parms+0] = NULL; // void 1020 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 1021 return TypeFunc::make(domain, range); 1022 } 1023 1024 //-------------- methodData update helpers 1025 1026 const TypeFunc* OptoRuntime::profile_receiver_type_Type() { 1027 // create input type (domain) 1028 const Type **fields = TypeTuple::fields(2); 1029 fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL; // methodData pointer 1030 fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM; // receiver oop 1031 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 1032 1033 // create result type 1034 fields = TypeTuple::fields(1); 1035 fields[TypeFunc::Parms+0] = NULL; // void 1036 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 1037 return TypeFunc::make(domain,range); 1038 } 1039 1040 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver)) 1041 if (receiver == NULL) return; 1042 Klass* receiver_klass = receiver->klass(); 1043 1044 intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells(); 1045 int empty_row = -1; // free row, if any is encountered 1046 1047 // ReceiverTypeData* vc = new ReceiverTypeData(mdp); 1048 for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) { 1049 // if (vc->receiver(row) == receiver_klass) 1050 int receiver_off = ReceiverTypeData::receiver_cell_index(row); 1051 intptr_t row_recv = *(mdp + receiver_off); 1052 if (row_recv == (intptr_t) receiver_klass) { 1053 // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment); 1054 int count_off = ReceiverTypeData::receiver_count_cell_index(row); 1055 *(mdp + count_off) += DataLayout::counter_increment; 1056 return; 1057 } else if (row_recv == 0) { 1058 // else if (vc->receiver(row) == NULL) 1059 empty_row = (int) row; 1060 } 1061 } 1062 1063 if (empty_row != -1) { 1064 int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row); 1065 // vc->set_receiver(empty_row, receiver_klass); 1066 *(mdp + receiver_off) = (intptr_t) receiver_klass; 1067 // vc->set_receiver_count(empty_row, DataLayout::counter_increment); 1068 int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row); 1069 *(mdp + count_off) = DataLayout::counter_increment; 1070 } else { 1071 // Receiver did not match any saved receiver and there is no empty row for it. 1072 // Increment total counter to indicate polymorphic case. 1073 intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset())); 1074 *count_p += DataLayout::counter_increment; 1075 } 1076 JRT_END 1077 1078 //------------------------------------------------------------------------------------- 1079 // register policy 1080 1081 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) { 1082 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register"); 1083 switch (register_save_policy[reg]) { 1084 case 'C': return false; //SOC 1085 case 'E': return true ; //SOE 1086 case 'N': return false; //NS 1087 case 'A': return false; //AS 1088 } 1089 ShouldNotReachHere(); 1090 return false; 1091 } 1092 1093 //----------------------------------------------------------------------- 1094 // Exceptions 1095 // 1096 1097 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN; 1098 1099 // The method is an entry that is always called by a C++ method not 1100 // directly from compiled code. Compiled code will call the C++ method following. 1101 // We can't allow async exception to be installed during exception processing. 1102 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm)) 1103 1104 // Do not confuse exception_oop with pending_exception. The exception_oop 1105 // is only used to pass arguments into the method. Not for general 1106 // exception handling. DO NOT CHANGE IT to use pending_exception, since 1107 // the runtime stubs checks this on exit. 1108 assert(thread->exception_oop() != NULL, "exception oop is found"); 1109 address handler_address = NULL; 1110 1111 Handle exception(thread, thread->exception_oop()); 1112 address pc = thread->exception_pc(); 1113 1114 // Clear out the exception oop and pc since looking up an 1115 // exception handler can cause class loading, which might throw an 1116 // exception and those fields are expected to be clear during 1117 // normal bytecode execution. 1118 thread->clear_exception_oop_and_pc(); 1119 1120 if (TraceExceptions) { 1121 trace_exception(exception(), pc, ""); 1122 } 1123 1124 // for AbortVMOnException flag 1125 NOT_PRODUCT(Exceptions::debug_check_abort(exception)); 1126 1127 #ifdef ASSERT 1128 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) { 1129 // should throw an exception here 1130 ShouldNotReachHere(); 1131 } 1132 #endif 1133 1134 // new exception handling: this method is entered only from adapters 1135 // exceptions from compiled java methods are handled in compiled code 1136 // using rethrow node 1137 1138 nm = CodeCache::find_nmethod(pc); 1139 assert(nm != NULL, "No NMethod found"); 1140 if (nm->is_native_method()) { 1141 fatal("Native method should not have path to exception handling"); 1142 } else { 1143 // we are switching to old paradigm: search for exception handler in caller_frame 1144 // instead in exception handler of caller_frame.sender() 1145 1146 if (JvmtiExport::can_post_on_exceptions()) { 1147 // "Full-speed catching" is not necessary here, 1148 // since we're notifying the VM on every catch. 1149 // Force deoptimization and the rest of the lookup 1150 // will be fine. 1151 deoptimize_caller_frame(thread); 1152 } 1153 1154 // Check the stack guard pages. If enabled, look for handler in this frame; 1155 // otherwise, forcibly unwind the frame. 1156 // 1157 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate. 1158 bool force_unwind = !thread->reguard_stack(); 1159 bool deopting = false; 1160 if (nm->is_deopt_pc(pc)) { 1161 deopting = true; 1162 RegisterMap map(thread, false); 1163 frame deoptee = thread->last_frame().sender(&map); 1164 assert(deoptee.is_deoptimized_frame(), "must be deopted"); 1165 // Adjust the pc back to the original throwing pc 1166 pc = deoptee.pc(); 1167 } 1168 1169 // If we are forcing an unwind because of stack overflow then deopt is 1170 // irrelevant since we are throwing the frame away anyway. 1171 1172 if (deopting && !force_unwind) { 1173 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1174 } else { 1175 1176 handler_address = 1177 force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc); 1178 1179 if (handler_address == NULL) { 1180 Handle original_exception(thread, exception()); 1181 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true); 1182 assert (handler_address != NULL, "must have compiled handler"); 1183 // Update the exception cache only when the unwind was not forced 1184 // and there didn't happen another exception during the computation of the 1185 // compiled exception handler. 1186 if (!force_unwind && original_exception() == exception()) { 1187 nm->add_handler_for_exception_and_pc(exception,pc,handler_address); 1188 } 1189 } else { 1190 assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same"); 1191 } 1192 } 1193 1194 thread->set_exception_pc(pc); 1195 thread->set_exception_handler_pc(handler_address); 1196 1197 // Check if the exception PC is a MethodHandle call site. 1198 thread->set_is_method_handle_return(nm->is_method_handle_return(pc)); 1199 } 1200 1201 // Restore correct return pc. Was saved above. 1202 thread->set_exception_oop(exception()); 1203 return handler_address; 1204 1205 JRT_END 1206 1207 // We are entering here from exception_blob 1208 // If there is a compiled exception handler in this method, we will continue there; 1209 // otherwise we will unwind the stack and continue at the caller of top frame method 1210 // Note we enter without the usual JRT wrapper. We will call a helper routine that 1211 // will do the normal VM entry. We do it this way so that we can see if the nmethod 1212 // we looked up the handler for has been deoptimized in the meantime. If it has been 1213 // we must not use the handler and instead return the deopt blob. 1214 address OptoRuntime::handle_exception_C(JavaThread* thread) { 1215 // 1216 // We are in Java not VM and in debug mode we have a NoHandleMark 1217 // 1218 #ifndef PRODUCT 1219 SharedRuntime::_find_handler_ctr++; // find exception handler 1220 #endif 1221 debug_only(NoHandleMark __hm;) 1222 nmethod* nm = NULL; 1223 address handler_address = NULL; 1224 { 1225 // Enter the VM 1226 1227 ResetNoHandleMark rnhm; 1228 handler_address = handle_exception_C_helper(thread, nm); 1229 } 1230 1231 // Back in java: Use no oops, DON'T safepoint 1232 1233 // Now check to see if the handler we are returning is in a now 1234 // deoptimized frame 1235 1236 if (nm != NULL) { 1237 RegisterMap map(thread, false); 1238 frame caller = thread->last_frame().sender(&map); 1239 #ifdef ASSERT 1240 assert(caller.is_compiled_frame(), "must be"); 1241 #endif // ASSERT 1242 if (caller.is_deoptimized_frame()) { 1243 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1244 } 1245 } 1246 return handler_address; 1247 } 1248 1249 //------------------------------rethrow---------------------------------------- 1250 // We get here after compiled code has executed a 'RethrowNode'. The callee 1251 // is either throwing or rethrowing an exception. The callee-save registers 1252 // have been restored, synchronized objects have been unlocked and the callee 1253 // stack frame has been removed. The return address was passed in. 1254 // Exception oop is passed as the 1st argument. This routine is then called 1255 // from the stub. On exit, we know where to jump in the caller's code. 1256 // After this C code exits, the stub will pop his frame and end in a jump 1257 // (instead of a return). We enter the caller's default handler. 1258 // 1259 // This must be JRT_LEAF: 1260 // - caller will not change its state as we cannot block on exit, 1261 // therefore raw_exception_handler_for_return_address is all it takes 1262 // to handle deoptimized blobs 1263 // 1264 // However, there needs to be a safepoint check in the middle! So compiled 1265 // safepoints are completely watertight. 1266 // 1267 // Thus, it cannot be a leaf since it contains the No_GC_Verifier. 1268 // 1269 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE* 1270 // 1271 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) { 1272 #ifndef PRODUCT 1273 SharedRuntime::_rethrow_ctr++; // count rethrows 1274 #endif 1275 assert (exception != NULL, "should have thrown a NULLPointerException"); 1276 #ifdef ASSERT 1277 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) { 1278 // should throw an exception here 1279 ShouldNotReachHere(); 1280 } 1281 #endif 1282 1283 thread->set_vm_result(exception); 1284 // Frame not compiled (handles deoptimization blob) 1285 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc); 1286 } 1287 1288 1289 const TypeFunc *OptoRuntime::rethrow_Type() { 1290 // create input type (domain) 1291 const Type **fields = TypeTuple::fields(1); 1292 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 1293 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1294 1295 // create result type (range) 1296 fields = TypeTuple::fields(1); 1297 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 1298 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 1299 1300 return TypeFunc::make(domain, range); 1301 } 1302 1303 1304 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) { 1305 // Deoptimize the caller before continuing, as the compiled 1306 // exception handler table may not be valid. 1307 if (!StressCompiledExceptionHandlers && doit) { 1308 deoptimize_caller_frame(thread); 1309 } 1310 } 1311 1312 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) { 1313 // Called from within the owner thread, so no need for safepoint 1314 RegisterMap reg_map(thread); 1315 frame stub_frame = thread->last_frame(); 1316 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 1317 frame caller_frame = stub_frame.sender(®_map); 1318 1319 // Deoptimize the caller frame. 1320 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 1321 } 1322 1323 1324 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) { 1325 // Called from within the owner thread, so no need for safepoint 1326 RegisterMap reg_map(thread); 1327 frame stub_frame = thread->last_frame(); 1328 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 1329 frame caller_frame = stub_frame.sender(®_map); 1330 return caller_frame.is_deoptimized_frame(); 1331 } 1332 1333 1334 const TypeFunc *OptoRuntime::register_finalizer_Type() { 1335 // create input type (domain) 1336 const Type **fields = TypeTuple::fields(1); 1337 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver 1338 // // The JavaThread* is passed to each routine as the last argument 1339 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread 1340 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1341 1342 // create result type (range) 1343 fields = TypeTuple::fields(0); 1344 1345 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1346 1347 return TypeFunc::make(domain,range); 1348 } 1349 1350 1351 //----------------------------------------------------------------------------- 1352 // Dtrace support. entry and exit probes have the same signature 1353 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() { 1354 // create input type (domain) 1355 const Type **fields = TypeTuple::fields(2); 1356 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 1357 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering 1358 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 1359 1360 // create result type (range) 1361 fields = TypeTuple::fields(0); 1362 1363 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1364 1365 return TypeFunc::make(domain,range); 1366 } 1367 1368 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() { 1369 // create input type (domain) 1370 const Type **fields = TypeTuple::fields(2); 1371 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 1372 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object 1373 1374 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 1375 1376 // create result type (range) 1377 fields = TypeTuple::fields(0); 1378 1379 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1380 1381 return TypeFunc::make(domain,range); 1382 } 1383 1384 1385 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread)) 1386 assert(obj->is_oop(), "must be a valid oop"); 1387 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1388 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1389 JRT_END 1390 1391 //----------------------------------------------------------------------------- 1392 1393 NamedCounter * volatile OptoRuntime::_named_counters = NULL; 1394 1395 // 1396 // dump the collected NamedCounters. 1397 // 1398 void OptoRuntime::print_named_counters() { 1399 int total_lock_count = 0; 1400 int eliminated_lock_count = 0; 1401 1402 NamedCounter* c = _named_counters; 1403 while (c) { 1404 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) { 1405 int count = c->count(); 1406 if (count > 0) { 1407 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter; 1408 if (Verbose) { 1409 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : ""); 1410 } 1411 total_lock_count += count; 1412 if (eliminated) { 1413 eliminated_lock_count += count; 1414 } 1415 } 1416 } else if (c->tag() == NamedCounter::BiasedLockingCounter) { 1417 BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters(); 1418 if (blc->nonzero()) { 1419 tty->print_cr("%s", c->name()); 1420 blc->print_on(tty); 1421 } 1422 #if INCLUDE_RTM_OPT 1423 } else if (c->tag() == NamedCounter::RTMLockingCounter) { 1424 RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters(); 1425 if (rlc->nonzero()) { 1426 tty->print_cr("%s", c->name()); 1427 rlc->print_on(tty); 1428 } 1429 #endif 1430 } 1431 c = c->next(); 1432 } 1433 if (total_lock_count > 0) { 1434 tty->print_cr("dynamic locks: %d", total_lock_count); 1435 if (eliminated_lock_count) { 1436 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count, 1437 (int)(eliminated_lock_count * 100.0 / total_lock_count)); 1438 } 1439 } 1440 } 1441 1442 // 1443 // Allocate a new NamedCounter. The JVMState is used to generate the 1444 // name which consists of method@line for the inlining tree. 1445 // 1446 1447 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) { 1448 int max_depth = youngest_jvms->depth(); 1449 1450 // Visit scopes from youngest to oldest. 1451 bool first = true; 1452 stringStream st; 1453 for (int depth = max_depth; depth >= 1; depth--) { 1454 JVMState* jvms = youngest_jvms->of_depth(depth); 1455 ciMethod* m = jvms->has_method() ? jvms->method() : NULL; 1456 if (!first) { 1457 st.print(" "); 1458 } else { 1459 first = false; 1460 } 1461 int bci = jvms->bci(); 1462 if (bci < 0) bci = 0; 1463 st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci); 1464 // To print linenumbers instead of bci use: m->line_number_from_bci(bci) 1465 } 1466 NamedCounter* c; 1467 if (tag == NamedCounter::BiasedLockingCounter) { 1468 c = new BiasedLockingNamedCounter(st.as_string()); 1469 } else if (tag == NamedCounter::RTMLockingCounter) { 1470 c = new RTMLockingNamedCounter(st.as_string()); 1471 } else { 1472 c = new NamedCounter(st.as_string(), tag); 1473 } 1474 1475 // atomically add the new counter to the head of the list. We only 1476 // add counters so this is safe. 1477 NamedCounter* head; 1478 do { 1479 c->set_next(NULL); 1480 head = _named_counters; 1481 c->set_next(head); 1482 } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head); 1483 return c; 1484 } 1485 1486 //----------------------------------------------------------------------------- 1487 // Non-product code 1488 #ifndef PRODUCT 1489 1490 int trace_exception_counter = 0; 1491 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) { 1492 ttyLocker ttyl; 1493 trace_exception_counter++; 1494 tty->print("%d [Exception (%s): ", trace_exception_counter, msg); 1495 exception_oop->print_value(); 1496 tty->print(" in "); 1497 CodeBlob* blob = CodeCache::find_blob(exception_pc); 1498 if (blob->is_nmethod()) { 1499 nmethod* nm = blob->as_nmethod_or_null(); 1500 nm->method()->print_value(); 1501 } else if (blob->is_runtime_stub()) { 1502 tty->print("<runtime-stub>"); 1503 } else { 1504 tty->print("<unknown>"); 1505 } 1506 tty->print(" at " INTPTR_FORMAT, p2i(exception_pc)); 1507 tty->print_cr("]"); 1508 } 1509 1510 #endif // PRODUCT 1511 1512 1513 # ifdef ENABLE_ZAP_DEAD_LOCALS 1514 // Called from call sites in compiled code with oop maps (actually safepoints) 1515 // Zaps dead locals in first java frame. 1516 // Is entry because may need to lock to generate oop maps 1517 // Currently, only used for compiler frames, but someday may be used 1518 // for interpreter frames, too. 1519 1520 int OptoRuntime::ZapDeadCompiledLocals_count = 0; 1521 1522 // avoid pointers to member funcs with these helpers 1523 static bool is_java_frame( frame* f) { return f->is_java_frame(); } 1524 static bool is_native_frame(frame* f) { return f->is_native_frame(); } 1525 1526 1527 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread, 1528 bool (*is_this_the_right_frame_to_zap)(frame*)) { 1529 assert(JavaThread::current() == thread, "is this needed?"); 1530 1531 if ( !ZapDeadCompiledLocals ) return; 1532 1533 bool skip = false; 1534 1535 if ( ZapDeadCompiledLocalsFirst == 0 ) ; // nothing special 1536 else if ( ZapDeadCompiledLocalsFirst > ZapDeadCompiledLocals_count ) skip = true; 1537 else if ( ZapDeadCompiledLocalsFirst == ZapDeadCompiledLocals_count ) 1538 warning("starting zapping after skipping"); 1539 1540 if ( ZapDeadCompiledLocalsLast == -1 ) ; // nothing special 1541 else if ( ZapDeadCompiledLocalsLast < ZapDeadCompiledLocals_count ) skip = true; 1542 else if ( ZapDeadCompiledLocalsLast == ZapDeadCompiledLocals_count ) 1543 warning("about to zap last zap"); 1544 1545 ++ZapDeadCompiledLocals_count; // counts skipped zaps, too 1546 1547 if ( skip ) return; 1548 1549 // find java frame and zap it 1550 1551 for (StackFrameStream sfs(thread); !sfs.is_done(); sfs.next()) { 1552 if (is_this_the_right_frame_to_zap(sfs.current()) ) { 1553 sfs.current()->zap_dead_locals(thread, sfs.register_map()); 1554 return; 1555 } 1556 } 1557 warning("no frame found to zap in zap_dead_Java_locals_C"); 1558 } 1559 1560 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread)) 1561 zap_dead_java_or_native_locals(thread, is_java_frame); 1562 JRT_END 1563 1564 // The following does not work because for one thing, the 1565 // thread state is wrong; it expects java, but it is native. 1566 // Also, the invariants in a native stub are different and 1567 // I'm not sure it is safe to have a MachCalRuntimeDirectNode 1568 // in there. 1569 // So for now, we do not zap in native stubs. 1570 1571 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread)) 1572 zap_dead_java_or_native_locals(thread, is_native_frame); 1573 JRT_END 1574 1575 # endif