1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/compilerOracle.hpp"
  37 #include "compiler/oopMap.hpp"
  38 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  39 #include "gc_implementation/g1/heapRegion.hpp"
  40 #include "gc_interface/collectedHeap.hpp"
  41 #include "interpreter/bytecode.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/linkResolver.hpp"
  44 #include "memory/barrierSet.hpp"
  45 #include "memory/gcLocker.inline.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "oops/objArrayKlass.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "opto/ad.hpp"
  50 #include "opto/addnode.hpp"
  51 #include "opto/callnode.hpp"
  52 #include "opto/cfgnode.hpp"
  53 #include "opto/graphKit.hpp"
  54 #include "opto/machnode.hpp"
  55 #include "opto/matcher.hpp"
  56 #include "opto/memnode.hpp"
  57 #include "opto/mulnode.hpp"
  58 #include "opto/runtime.hpp"
  59 #include "opto/subnode.hpp"
  60 #include "runtime/atomic.inline.hpp"
  61 #include "runtime/fprofiler.hpp"
  62 #include "runtime/handles.inline.hpp"
  63 #include "runtime/interfaceSupport.hpp"
  64 #include "runtime/javaCalls.hpp"
  65 #include "runtime/sharedRuntime.hpp"
  66 #include "runtime/signature.hpp"
  67 #include "runtime/threadCritical.hpp"
  68 #include "runtime/vframe.hpp"
  69 #include "runtime/vframeArray.hpp"
  70 #include "runtime/vframe_hp.hpp"
  71 #include "utilities/copy.hpp"
  72 #include "utilities/preserveException.hpp"
  73 
  74 
  75 // For debugging purposes:
  76 //  To force FullGCALot inside a runtime function, add the following two lines
  77 //
  78 //  Universe::release_fullgc_alot_dummy();
  79 //  MarkSweep::invoke(0, "Debugging");
  80 //
  81 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  82 
  83 
  84 
  85 
  86 // Compiled code entry points
  87 address OptoRuntime::_new_instance_Java                           = NULL;
  88 address OptoRuntime::_new_array_Java                              = NULL;
  89 address OptoRuntime::_new_array_nozero_Java                       = NULL;
  90 address OptoRuntime::_multianewarray2_Java                        = NULL;
  91 address OptoRuntime::_multianewarray3_Java                        = NULL;
  92 address OptoRuntime::_multianewarray4_Java                        = NULL;
  93 address OptoRuntime::_multianewarray5_Java                        = NULL;
  94 address OptoRuntime::_multianewarrayN_Java                        = NULL;
  95 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
  96 address OptoRuntime::_g1_wb_post_Java                             = NULL;
  97 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
  98 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
  99 address OptoRuntime::_monitor_notify_Java                         = NULL;
 100 address OptoRuntime::_monitor_notifyAll_Java                      = NULL;
 101 address OptoRuntime::_rethrow_Java                                = NULL;
 102 
 103 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 104 address OptoRuntime::_register_finalizer_Java                     = NULL;
 105 
 106 # ifdef ENABLE_ZAP_DEAD_LOCALS
 107 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
 108 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
 109 # endif
 110 
 111 ExceptionBlob* OptoRuntime::_exception_blob;
 112 
 113 // This should be called in an assertion at the start of OptoRuntime routines
 114 // which are entered from compiled code (all of them)
 115 #ifdef ASSERT
 116 static bool check_compiled_frame(JavaThread* thread) {
 117   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 118   RegisterMap map(thread, false);
 119   frame caller = thread->last_frame().sender(&map);
 120   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 121   return true;
 122 }
 123 #endif // ASSERT
 124 
 125 
 126 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 127   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 128   if (var == NULL) { return false; }
 129 
 130 bool OptoRuntime::generate(ciEnv* env) {
 131 
 132   generate_exception_blob();
 133 
 134   // Note: tls: Means fetching the return oop out of the thread-local storage
 135   //
 136   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 137   // -------------------------------------------------------------------------------------------------------------------------------
 138   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 139   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 140   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 141   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 142   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 143   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 144   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 145   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 146   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 147   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 148   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 149   gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false, false);
 150   gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false, false);
 151   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 152 
 153   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 154   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 155 
 156 # ifdef ENABLE_ZAP_DEAD_LOCALS
 157   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
 158   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
 159 # endif
 160   return true;
 161 }
 162 
 163 #undef gen
 164 
 165 
 166 // Helper method to do generation of RunTimeStub's
 167 address OptoRuntime::generate_stub( ciEnv* env,
 168                                     TypeFunc_generator gen, address C_function,
 169                                     const char *name, int is_fancy_jump,
 170                                     bool pass_tls,
 171                                     bool save_argument_registers,
 172                                     bool return_pc ) {
 173   ResourceMark rm;
 174   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
 175   return  C.stub_entry_point();
 176 }
 177 
 178 const char* OptoRuntime::stub_name(address entry) {
 179 #ifndef PRODUCT
 180   CodeBlob* cb = CodeCache::find_blob(entry);
 181   RuntimeStub* rs =(RuntimeStub *)cb;
 182   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 183   return rs->name();
 184 #else
 185   // Fast implementation for product mode (maybe it should be inlined too)
 186   return "runtime stub";
 187 #endif
 188 }
 189 
 190 
 191 //=============================================================================
 192 // Opto compiler runtime routines
 193 //=============================================================================
 194 
 195 
 196 //=============================allocation======================================
 197 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 198 // and try allocation again.
 199 
 200 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
 201   // After any safepoint, just before going back to compiled code,
 202   // we inform the GC that we will be doing initializing writes to
 203   // this object in the future without emitting card-marks, so
 204   // GC may take any compensating steps.
 205   // NOTE: Keep this code consistent with GraphKit::store_barrier.
 206 
 207   oop new_obj = thread->vm_result();
 208   if (new_obj == NULL)  return;
 209 
 210   assert(Universe::heap()->can_elide_tlab_store_barriers(),
 211          "compiler must check this first");
 212   // GC may decide to give back a safer copy of new_obj.
 213   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
 214   thread->set_vm_result(new_obj);
 215 }
 216 
 217 // object allocation
 218 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 219   JRT_BLOCK;
 220 #ifndef PRODUCT
 221   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 222 #endif
 223   assert(check_compiled_frame(thread), "incorrect caller");
 224 
 225   // These checks are cheap to make and support reflective allocation.
 226   int lh = klass->layout_helper();
 227   if (Klass::layout_helper_needs_slow_path(lh)
 228       || !InstanceKlass::cast(klass)->is_initialized()) {
 229     KlassHandle kh(THREAD, klass);
 230     kh->check_valid_for_instantiation(false, THREAD);
 231     if (!HAS_PENDING_EXCEPTION) {
 232       InstanceKlass::cast(kh())->initialize(THREAD);
 233     }
 234     if (!HAS_PENDING_EXCEPTION) {
 235       klass = kh();
 236     } else {
 237       klass = NULL;
 238     }
 239   }
 240 
 241   if (klass != NULL) {
 242     // Scavenge and allocate an instance.
 243     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 244     thread->set_vm_result(result);
 245 
 246     // Pass oops back through thread local storage.  Our apparent type to Java
 247     // is that we return an oop, but we can block on exit from this routine and
 248     // a GC can trash the oop in C's return register.  The generated stub will
 249     // fetch the oop from TLS after any possible GC.
 250   }
 251 
 252   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 253   JRT_BLOCK_END;
 254 
 255   if (GraphKit::use_ReduceInitialCardMarks()) {
 256     // inform GC that we won't do card marks for initializing writes.
 257     new_store_pre_barrier(thread);
 258   }
 259 JRT_END
 260 
 261 
 262 // array allocation
 263 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 264   JRT_BLOCK;
 265 #ifndef PRODUCT
 266   SharedRuntime::_new_array_ctr++;            // new array requires GC
 267 #endif
 268   assert(check_compiled_frame(thread), "incorrect caller");
 269 
 270   // Scavenge and allocate an instance.
 271   oop result;
 272 
 273   if (array_type->oop_is_typeArray()) {
 274     // The oopFactory likes to work with the element type.
 275     // (We could bypass the oopFactory, since it doesn't add much value.)
 276     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 277     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 278   } else {
 279     // Although the oopFactory likes to work with the elem_type,
 280     // the compiler prefers the array_type, since it must already have
 281     // that latter value in hand for the fast path.
 282     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 283     result = oopFactory::new_objArray(elem_type, len, THREAD);
 284   }
 285 
 286   // Pass oops back through thread local storage.  Our apparent type to Java
 287   // is that we return an oop, but we can block on exit from this routine and
 288   // a GC can trash the oop in C's return register.  The generated stub will
 289   // fetch the oop from TLS after any possible GC.
 290   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 291   thread->set_vm_result(result);
 292   JRT_BLOCK_END;
 293 
 294   if (GraphKit::use_ReduceInitialCardMarks()) {
 295     // inform GC that we won't do card marks for initializing writes.
 296     new_store_pre_barrier(thread);
 297   }
 298 JRT_END
 299 
 300 // array allocation without zeroing
 301 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 302   JRT_BLOCK;
 303 #ifndef PRODUCT
 304   SharedRuntime::_new_array_ctr++;            // new array requires GC
 305 #endif
 306   assert(check_compiled_frame(thread), "incorrect caller");
 307 
 308   // Scavenge and allocate an instance.
 309   oop result;
 310 
 311   assert(array_type->oop_is_typeArray(), "should be called only for type array");
 312   // The oopFactory likes to work with the element type.
 313   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 314   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 315 
 316   // Pass oops back through thread local storage.  Our apparent type to Java
 317   // is that we return an oop, but we can block on exit from this routine and
 318   // a GC can trash the oop in C's return register.  The generated stub will
 319   // fetch the oop from TLS after any possible GC.
 320   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 321   thread->set_vm_result(result);
 322   JRT_BLOCK_END;
 323 
 324   if (GraphKit::use_ReduceInitialCardMarks()) {
 325     // inform GC that we won't do card marks for initializing writes.
 326     new_store_pre_barrier(thread);
 327   }
 328 
 329   oop result = thread->vm_result();
 330   if ((len > 0) && (result != NULL) &&
 331       is_deoptimized_caller_frame(thread)) {
 332     // Zero array here if the caller is deoptimized.
 333     int size = ((typeArrayOop)result)->object_size();
 334     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 335     const size_t hs = arrayOopDesc::header_size(elem_type);
 336     // Align to next 8 bytes to avoid trashing arrays's length.
 337     const size_t aligned_hs = align_object_offset(hs);
 338     HeapWord* obj = (HeapWord*)result;
 339     if (aligned_hs > hs) {
 340       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 341     }
 342     // Optimized zeroing.
 343     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 344   }
 345 
 346 JRT_END
 347 
 348 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 349 
 350 // multianewarray for 2 dimensions
 351 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 352 #ifndef PRODUCT
 353   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 354 #endif
 355   assert(check_compiled_frame(thread), "incorrect caller");
 356   assert(elem_type->is_klass(), "not a class");
 357   jint dims[2];
 358   dims[0] = len1;
 359   dims[1] = len2;
 360   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 361   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 362   thread->set_vm_result(obj);
 363 JRT_END
 364 
 365 // multianewarray for 3 dimensions
 366 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 367 #ifndef PRODUCT
 368   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 369 #endif
 370   assert(check_compiled_frame(thread), "incorrect caller");
 371   assert(elem_type->is_klass(), "not a class");
 372   jint dims[3];
 373   dims[0] = len1;
 374   dims[1] = len2;
 375   dims[2] = len3;
 376   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 377   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 378   thread->set_vm_result(obj);
 379 JRT_END
 380 
 381 // multianewarray for 4 dimensions
 382 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 383 #ifndef PRODUCT
 384   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 385 #endif
 386   assert(check_compiled_frame(thread), "incorrect caller");
 387   assert(elem_type->is_klass(), "not a class");
 388   jint dims[4];
 389   dims[0] = len1;
 390   dims[1] = len2;
 391   dims[2] = len3;
 392   dims[3] = len4;
 393   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 394   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 395   thread->set_vm_result(obj);
 396 JRT_END
 397 
 398 // multianewarray for 5 dimensions
 399 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 400 #ifndef PRODUCT
 401   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 402 #endif
 403   assert(check_compiled_frame(thread), "incorrect caller");
 404   assert(elem_type->is_klass(), "not a class");
 405   jint dims[5];
 406   dims[0] = len1;
 407   dims[1] = len2;
 408   dims[2] = len3;
 409   dims[3] = len4;
 410   dims[4] = len5;
 411   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 412   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 413   thread->set_vm_result(obj);
 414 JRT_END
 415 
 416 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 417   assert(check_compiled_frame(thread), "incorrect caller");
 418   assert(elem_type->is_klass(), "not a class");
 419   assert(oop(dims)->is_typeArray(), "not an array");
 420 
 421   ResourceMark rm;
 422   jint len = dims->length();
 423   assert(len > 0, "Dimensions array should contain data");
 424   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
 425   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 426   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 427 
 428   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 429   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 430   thread->set_vm_result(obj);
 431 JRT_END
 432 
 433 // Note that hashCode() deserves the same treatment as notify/notifyAll.
 434 // The situation is slightly more complicated since hashCode() is virtual,
 435 // requiring guards, whereas notify/notifyAll are final
 436 
 437 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread))
 438 
 439   // Very few notify/notifyAll operations find any threads on the waitset, so
 440   // the dominant fast-path is to simply return.
 441   // Relatedly, it's critical that notify/notifyAll be fast in order to
 442   // reduce lock hold times.
 443   if (!SafepointSynchronize::is_synchronizing()) {
 444     if (ObjectSynchronizer::quick_notify(obj, thread, false)) {
 445       return;
 446     }
 447   }
 448 
 449   // This is the case the fast-path above isn't provisioned to handle.
 450   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 451   // (The fast-path is just a degenerate variant of the slow-path).
 452   // Perform the dreaded state transition and pass control into the slow-path.
 453   JRT_BLOCK;
 454   Handle h_obj(THREAD, obj);
 455   ObjectSynchronizer::notify(h_obj, CHECK);
 456   JRT_BLOCK_END;
 457 JRT_END
 458 
 459 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread))
 460 
 461   if (!SafepointSynchronize::is_synchronizing() ) {
 462     if (ObjectSynchronizer::quick_notify(obj, thread, true)) {
 463       return;
 464     }
 465   }
 466 
 467   // This is the case the fast-path above isn't provisioned to handle.
 468   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 469   // (The fast-path is just a degenerate variant of the slow-path).
 470   // Perform the dreaded state transition and pass control into the slow-path.
 471   JRT_BLOCK;
 472   Handle h_obj(THREAD, obj);
 473   ObjectSynchronizer::notifyall(h_obj, CHECK);
 474   JRT_BLOCK_END;
 475 JRT_END
 476 
 477 const TypeFunc *OptoRuntime::new_instance_Type() {
 478   // create input type (domain)
 479   const Type **fields = TypeTuple::fields(1);
 480   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 481   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 482 
 483   // create result type (range)
 484   fields = TypeTuple::fields(1);
 485   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 486 
 487   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 488 
 489   return TypeFunc::make(domain, range);
 490 }
 491 
 492 
 493 const TypeFunc *OptoRuntime::athrow_Type() {
 494   // create input type (domain)
 495   const Type **fields = TypeTuple::fields(1);
 496   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 497   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 498 
 499   // create result type (range)
 500   fields = TypeTuple::fields(0);
 501 
 502   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 503 
 504   return TypeFunc::make(domain, range);
 505 }
 506 
 507 
 508 const TypeFunc *OptoRuntime::new_array_Type() {
 509   // create input type (domain)
 510   const Type **fields = TypeTuple::fields(2);
 511   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 512   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 513   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 514 
 515   // create result type (range)
 516   fields = TypeTuple::fields(1);
 517   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 518 
 519   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 520 
 521   return TypeFunc::make(domain, range);
 522 }
 523 
 524 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 525   // create input type (domain)
 526   const int nargs = ndim + 1;
 527   const Type **fields = TypeTuple::fields(nargs);
 528   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 529   for( int i = 1; i < nargs; i++ )
 530     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 531   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 532 
 533   // create result type (range)
 534   fields = TypeTuple::fields(1);
 535   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 536   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 537 
 538   return TypeFunc::make(domain, range);
 539 }
 540 
 541 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 542   return multianewarray_Type(2);
 543 }
 544 
 545 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 546   return multianewarray_Type(3);
 547 }
 548 
 549 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 550   return multianewarray_Type(4);
 551 }
 552 
 553 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 554   return multianewarray_Type(5);
 555 }
 556 
 557 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 558   // create input type (domain)
 559   const Type **fields = TypeTuple::fields(2);
 560   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 561   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 562   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 563 
 564   // create result type (range)
 565   fields = TypeTuple::fields(1);
 566   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 567   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 568 
 569   return TypeFunc::make(domain, range);
 570 }
 571 
 572 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 573   const Type **fields = TypeTuple::fields(2);
 574   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 575   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 576   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 577 
 578   // create result type (range)
 579   fields = TypeTuple::fields(0);
 580   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 581 
 582   return TypeFunc::make(domain, range);
 583 }
 584 
 585 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 586 
 587   const Type **fields = TypeTuple::fields(2);
 588   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 589   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 590   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 591 
 592   // create result type (range)
 593   fields = TypeTuple::fields(0);
 594   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 595 
 596   return TypeFunc::make(domain, range);
 597 }
 598 
 599 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 600   // create input type (domain)
 601   const Type **fields = TypeTuple::fields(1);
 602   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 603   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 604 
 605   // create result type (range)
 606   fields = TypeTuple::fields(0);
 607   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 608 
 609   return TypeFunc::make(domain, range);
 610 }
 611 
 612 # ifdef ENABLE_ZAP_DEAD_LOCALS
 613 // Type used for stub generation for zap_dead_locals.
 614 // No inputs or outputs
 615 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
 616   // create input type (domain)
 617   const Type **fields = TypeTuple::fields(0);
 618   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
 619 
 620   // create result type (range)
 621   fields = TypeTuple::fields(0);
 622   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
 623 
 624   return TypeFunc::make(domain,range);
 625 }
 626 # endif
 627 
 628 
 629 //-----------------------------------------------------------------------------
 630 // Monitor Handling
 631 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 632   // create input type (domain)
 633   const Type **fields = TypeTuple::fields(2);
 634   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 635   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 636   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 637 
 638   // create result type (range)
 639   fields = TypeTuple::fields(0);
 640 
 641   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 642 
 643   return TypeFunc::make(domain,range);
 644 }
 645 
 646 
 647 //-----------------------------------------------------------------------------
 648 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 649   // create input type (domain)
 650   const Type **fields = TypeTuple::fields(3);
 651   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 652   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 653   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 654   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 655 
 656   // create result type (range)
 657   fields = TypeTuple::fields(0);
 658 
 659   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 660 
 661   return TypeFunc::make(domain, range);
 662 }
 663 
 664 const TypeFunc *OptoRuntime::monitor_notify_Type() {
 665   // create input type (domain)
 666   const Type **fields = TypeTuple::fields(1);
 667   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 668   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 669 
 670   // create result type (range)
 671   fields = TypeTuple::fields(0);
 672   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 673   return TypeFunc::make(domain, range);
 674 }
 675 
 676 const TypeFunc* OptoRuntime::flush_windows_Type() {
 677   // create input type (domain)
 678   const Type** fields = TypeTuple::fields(1);
 679   fields[TypeFunc::Parms+0] = NULL; // void
 680   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 681 
 682   // create result type
 683   fields = TypeTuple::fields(1);
 684   fields[TypeFunc::Parms+0] = NULL; // void
 685   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 686 
 687   return TypeFunc::make(domain, range);
 688 }
 689 
 690 const TypeFunc* OptoRuntime::l2f_Type() {
 691   // create input type (domain)
 692   const Type **fields = TypeTuple::fields(2);
 693   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 694   fields[TypeFunc::Parms+1] = Type::HALF;
 695   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 696 
 697   // create result type (range)
 698   fields = TypeTuple::fields(1);
 699   fields[TypeFunc::Parms+0] = Type::FLOAT;
 700   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 701 
 702   return TypeFunc::make(domain, range);
 703 }
 704 
 705 const TypeFunc* OptoRuntime::modf_Type() {
 706   const Type **fields = TypeTuple::fields(2);
 707   fields[TypeFunc::Parms+0] = Type::FLOAT;
 708   fields[TypeFunc::Parms+1] = Type::FLOAT;
 709   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 710 
 711   // create result type (range)
 712   fields = TypeTuple::fields(1);
 713   fields[TypeFunc::Parms+0] = Type::FLOAT;
 714 
 715   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 716 
 717   return TypeFunc::make(domain, range);
 718 }
 719 
 720 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 721   // create input type (domain)
 722   const Type **fields = TypeTuple::fields(2);
 723   // Symbol* name of class to be loaded
 724   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 725   fields[TypeFunc::Parms+1] = Type::HALF;
 726   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 727 
 728   // create result type (range)
 729   fields = TypeTuple::fields(2);
 730   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 731   fields[TypeFunc::Parms+1] = Type::HALF;
 732   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 733 
 734   return TypeFunc::make(domain, range);
 735 }
 736 
 737 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 738   const Type **fields = TypeTuple::fields(4);
 739   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 740   fields[TypeFunc::Parms+1] = Type::HALF;
 741   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 742   fields[TypeFunc::Parms+3] = Type::HALF;
 743   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 744 
 745   // create result type (range)
 746   fields = TypeTuple::fields(2);
 747   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 748   fields[TypeFunc::Parms+1] = Type::HALF;
 749   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 750 
 751   return TypeFunc::make(domain, range);
 752 }
 753 
 754 //-------------- currentTimeMillis, currentTimeNanos, etc
 755 
 756 const TypeFunc* OptoRuntime::void_long_Type() {
 757   // create input type (domain)
 758   const Type **fields = TypeTuple::fields(0);
 759   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 760 
 761   // create result type (range)
 762   fields = TypeTuple::fields(2);
 763   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 764   fields[TypeFunc::Parms+1] = Type::HALF;
 765   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 766 
 767   return TypeFunc::make(domain, range);
 768 }
 769 
 770 // arraycopy stub variations:
 771 enum ArrayCopyType {
 772   ac_fast,                      // void(ptr, ptr, size_t)
 773   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 774   ac_slow,                      // void(ptr, int, ptr, int, int)
 775   ac_generic                    //  int(ptr, int, ptr, int, int)
 776 };
 777 
 778 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 779   // create input type (domain)
 780   int num_args      = (act == ac_fast ? 3 : 5);
 781   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 782   int argcnt = num_args;
 783   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 784   const Type** fields = TypeTuple::fields(argcnt);
 785   int argp = TypeFunc::Parms;
 786   fields[argp++] = TypePtr::NOTNULL;    // src
 787   if (num_size_args == 0) {
 788     fields[argp++] = TypeInt::INT;      // src_pos
 789   }
 790   fields[argp++] = TypePtr::NOTNULL;    // dest
 791   if (num_size_args == 0) {
 792     fields[argp++] = TypeInt::INT;      // dest_pos
 793     fields[argp++] = TypeInt::INT;      // length
 794   }
 795   while (num_size_args-- > 0) {
 796     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 797     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 798   }
 799   if (act == ac_checkcast) {
 800     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 801   }
 802   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 803   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 804 
 805   // create result type if needed
 806   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 807   fields = TypeTuple::fields(1);
 808   if (retcnt == 0)
 809     fields[TypeFunc::Parms+0] = NULL; // void
 810   else
 811     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 812   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 813   return TypeFunc::make(domain, range);
 814 }
 815 
 816 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 817   // This signature is simple:  Two base pointers and a size_t.
 818   return make_arraycopy_Type(ac_fast);
 819 }
 820 
 821 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 822   // An extension of fast_arraycopy_Type which adds type checking.
 823   return make_arraycopy_Type(ac_checkcast);
 824 }
 825 
 826 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 827   // This signature is exactly the same as System.arraycopy.
 828   // There are no intptr_t (int/long) arguments.
 829   return make_arraycopy_Type(ac_slow);
 830 }
 831 
 832 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 833   // This signature is like System.arraycopy, except that it returns status.
 834   return make_arraycopy_Type(ac_generic);
 835 }
 836 
 837 
 838 const TypeFunc* OptoRuntime::array_fill_Type() {
 839   const Type** fields;
 840   int argp = TypeFunc::Parms;
 841   if (CCallingConventionRequiresIntsAsLongs) {
 842   // create input type (domain): pointer, int, size_t
 843     fields = TypeTuple::fields(3 LP64_ONLY( + 2));
 844     fields[argp++] = TypePtr::NOTNULL;
 845     fields[argp++] = TypeLong::LONG;
 846     fields[argp++] = Type::HALF;
 847   } else {
 848     // create input type (domain): pointer, int, size_t
 849     fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 850     fields[argp++] = TypePtr::NOTNULL;
 851     fields[argp++] = TypeInt::INT;
 852   }
 853   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 854   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 855   const TypeTuple *domain = TypeTuple::make(argp, fields);
 856 
 857   // create result type
 858   fields = TypeTuple::fields(1);
 859   fields[TypeFunc::Parms+0] = NULL; // void
 860   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 861 
 862   return TypeFunc::make(domain, range);
 863 }
 864 
 865 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 866 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 867   // create input type (domain)
 868   int num_args      = 3;
 869   if (Matcher::pass_original_key_for_aes()) {
 870     num_args = 4;
 871   }
 872   int argcnt = num_args;
 873   const Type** fields = TypeTuple::fields(argcnt);
 874   int argp = TypeFunc::Parms;
 875   fields[argp++] = TypePtr::NOTNULL;    // src
 876   fields[argp++] = TypePtr::NOTNULL;    // dest
 877   fields[argp++] = TypePtr::NOTNULL;    // k array
 878   if (Matcher::pass_original_key_for_aes()) {
 879     fields[argp++] = TypePtr::NOTNULL;    // original k array
 880   }
 881   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 882   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 883 
 884   // no result type needed
 885   fields = TypeTuple::fields(1);
 886   fields[TypeFunc::Parms+0] = NULL; // void
 887   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 888   return TypeFunc::make(domain, range);
 889 }
 890 
 891 /**
 892  * int updateBytesCRC32(int crc, byte* b, int len)
 893  */
 894 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 895   // create input type (domain)
 896   int num_args      = 3;
 897   int argcnt = num_args;
 898   const Type** fields = TypeTuple::fields(argcnt);
 899   int argp = TypeFunc::Parms;
 900   fields[argp++] = TypeInt::INT;        // crc
 901   fields[argp++] = TypePtr::NOTNULL;    // src
 902   fields[argp++] = TypeInt::INT;        // len
 903   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 904   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 905 
 906   // result type needed
 907   fields = TypeTuple::fields(1);
 908   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 909   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 910   return TypeFunc::make(domain, range);
 911 }
 912 
 913 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 914 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 915   // create input type (domain)
 916   int num_args      = 5;
 917   if (Matcher::pass_original_key_for_aes()) {
 918     num_args = 6;
 919   }
 920   int argcnt = num_args;
 921   const Type** fields = TypeTuple::fields(argcnt);
 922   int argp = TypeFunc::Parms;
 923   fields[argp++] = TypePtr::NOTNULL;    // src
 924   fields[argp++] = TypePtr::NOTNULL;    // dest
 925   fields[argp++] = TypePtr::NOTNULL;    // k array
 926   fields[argp++] = TypePtr::NOTNULL;    // r array
 927   fields[argp++] = TypeInt::INT;        // src len
 928   if (Matcher::pass_original_key_for_aes()) {
 929     fields[argp++] = TypePtr::NOTNULL;    // original k array
 930   }
 931   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 932   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 933 
 934   // returning cipher len (int)
 935   fields = TypeTuple::fields(1);
 936   fields[TypeFunc::Parms+0] = TypeInt::INT;
 937   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 938   return TypeFunc::make(domain, range);
 939 }
 940 
 941 /*
 942  * void implCompress(byte[] buf, int ofs)
 943  */
 944 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
 945   // create input type (domain)
 946   int num_args = 2;
 947   int argcnt = num_args;
 948   const Type** fields = TypeTuple::fields(argcnt);
 949   int argp = TypeFunc::Parms;
 950   fields[argp++] = TypePtr::NOTNULL; // buf
 951   fields[argp++] = TypePtr::NOTNULL; // state
 952   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 953   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 954 
 955   // no result type needed
 956   fields = TypeTuple::fields(1);
 957   fields[TypeFunc::Parms+0] = NULL; // void
 958   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 959   return TypeFunc::make(domain, range);
 960 }
 961 
 962 /*
 963  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
 964  */
 965 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
 966   // create input type (domain)
 967   int num_args = 4;
 968   int argcnt = num_args;
 969   const Type** fields = TypeTuple::fields(argcnt);
 970   int argp = TypeFunc::Parms;
 971   fields[argp++] = TypePtr::NOTNULL; // buf
 972   fields[argp++] = TypePtr::NOTNULL; // state
 973   fields[argp++] = TypeInt::INT;     // ofs
 974   fields[argp++] = TypeInt::INT;     // limit
 975   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 976   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 977 
 978   // returning ofs (int)
 979   fields = TypeTuple::fields(1);
 980   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
 981   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 982   return TypeFunc::make(domain, range);
 983 }
 984 
 985 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
 986   // create input type (domain)
 987   int num_args      = 6;
 988   int argcnt = num_args;
 989   const Type** fields = TypeTuple::fields(argcnt);
 990   int argp = TypeFunc::Parms;
 991   fields[argp++] = TypePtr::NOTNULL;    // x
 992   fields[argp++] = TypeInt::INT;        // xlen
 993   fields[argp++] = TypePtr::NOTNULL;    // y
 994   fields[argp++] = TypeInt::INT;        // ylen
 995   fields[argp++] = TypePtr::NOTNULL;    // z
 996   fields[argp++] = TypeInt::INT;        // zlen
 997   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 998   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 999 
1000   // no result type needed
1001   fields = TypeTuple::fields(1);
1002   fields[TypeFunc::Parms+0] = NULL;
1003   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1004   return TypeFunc::make(domain, range);
1005 }
1006 
1007 
1008 
1009 //------------- Interpreter state access for on stack replacement
1010 const TypeFunc* OptoRuntime::osr_end_Type() {
1011   // create input type (domain)
1012   const Type **fields = TypeTuple::fields(1);
1013   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1014   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1015 
1016   // create result type
1017   fields = TypeTuple::fields(1);
1018   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1019   fields[TypeFunc::Parms+0] = NULL; // void
1020   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1021   return TypeFunc::make(domain, range);
1022 }
1023 
1024 //-------------- methodData update helpers
1025 
1026 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
1027   // create input type (domain)
1028   const Type **fields = TypeTuple::fields(2);
1029   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
1030   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
1031   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1032 
1033   // create result type
1034   fields = TypeTuple::fields(1);
1035   fields[TypeFunc::Parms+0] = NULL; // void
1036   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1037   return TypeFunc::make(domain,range);
1038 }
1039 
1040 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1041   if (receiver == NULL) return;
1042   Klass* receiver_klass = receiver->klass();
1043 
1044   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1045   int empty_row = -1;           // free row, if any is encountered
1046 
1047   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1048   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1049     // if (vc->receiver(row) == receiver_klass)
1050     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1051     intptr_t row_recv = *(mdp + receiver_off);
1052     if (row_recv == (intptr_t) receiver_klass) {
1053       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1054       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1055       *(mdp + count_off) += DataLayout::counter_increment;
1056       return;
1057     } else if (row_recv == 0) {
1058       // else if (vc->receiver(row) == NULL)
1059       empty_row = (int) row;
1060     }
1061   }
1062 
1063   if (empty_row != -1) {
1064     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1065     // vc->set_receiver(empty_row, receiver_klass);
1066     *(mdp + receiver_off) = (intptr_t) receiver_klass;
1067     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1068     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1069     *(mdp + count_off) = DataLayout::counter_increment;
1070   } else {
1071     // Receiver did not match any saved receiver and there is no empty row for it.
1072     // Increment total counter to indicate polymorphic case.
1073     intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
1074     *count_p += DataLayout::counter_increment;
1075   }
1076 JRT_END
1077 
1078 //-------------------------------------------------------------------------------------
1079 // register policy
1080 
1081 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1082   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1083   switch (register_save_policy[reg]) {
1084     case 'C': return false; //SOC
1085     case 'E': return true ; //SOE
1086     case 'N': return false; //NS
1087     case 'A': return false; //AS
1088   }
1089   ShouldNotReachHere();
1090   return false;
1091 }
1092 
1093 //-----------------------------------------------------------------------
1094 // Exceptions
1095 //
1096 
1097 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
1098 
1099 // The method is an entry that is always called by a C++ method not
1100 // directly from compiled code. Compiled code will call the C++ method following.
1101 // We can't allow async exception to be installed during  exception processing.
1102 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1103 
1104   // Do not confuse exception_oop with pending_exception. The exception_oop
1105   // is only used to pass arguments into the method. Not for general
1106   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1107   // the runtime stubs checks this on exit.
1108   assert(thread->exception_oop() != NULL, "exception oop is found");
1109   address handler_address = NULL;
1110 
1111   Handle exception(thread, thread->exception_oop());
1112   address pc = thread->exception_pc();
1113 
1114   // Clear out the exception oop and pc since looking up an
1115   // exception handler can cause class loading, which might throw an
1116   // exception and those fields are expected to be clear during
1117   // normal bytecode execution.
1118   thread->clear_exception_oop_and_pc();
1119 
1120   if (TraceExceptions) {
1121     trace_exception(exception(), pc, "");
1122   }
1123 
1124   // for AbortVMOnException flag
1125   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
1126 
1127 #ifdef ASSERT
1128   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1129     // should throw an exception here
1130     ShouldNotReachHere();
1131   }
1132 #endif
1133 
1134   // new exception handling: this method is entered only from adapters
1135   // exceptions from compiled java methods are handled in compiled code
1136   // using rethrow node
1137 
1138   nm = CodeCache::find_nmethod(pc);
1139   assert(nm != NULL, "No NMethod found");
1140   if (nm->is_native_method()) {
1141     fatal("Native method should not have path to exception handling");
1142   } else {
1143     // we are switching to old paradigm: search for exception handler in caller_frame
1144     // instead in exception handler of caller_frame.sender()
1145 
1146     if (JvmtiExport::can_post_on_exceptions()) {
1147       // "Full-speed catching" is not necessary here,
1148       // since we're notifying the VM on every catch.
1149       // Force deoptimization and the rest of the lookup
1150       // will be fine.
1151       deoptimize_caller_frame(thread);
1152     }
1153 
1154     // Check the stack guard pages.  If enabled, look for handler in this frame;
1155     // otherwise, forcibly unwind the frame.
1156     //
1157     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1158     bool force_unwind = !thread->reguard_stack();
1159     bool deopting = false;
1160     if (nm->is_deopt_pc(pc)) {
1161       deopting = true;
1162       RegisterMap map(thread, false);
1163       frame deoptee = thread->last_frame().sender(&map);
1164       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1165       // Adjust the pc back to the original throwing pc
1166       pc = deoptee.pc();
1167     }
1168 
1169     // If we are forcing an unwind because of stack overflow then deopt is
1170     // irrelevant since we are throwing the frame away anyway.
1171 
1172     if (deopting && !force_unwind) {
1173       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1174     } else {
1175 
1176       handler_address =
1177         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1178 
1179       if (handler_address == NULL) {
1180         Handle original_exception(thread, exception());
1181         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
1182         assert (handler_address != NULL, "must have compiled handler");
1183         // Update the exception cache only when the unwind was not forced
1184         // and there didn't happen another exception during the computation of the
1185         // compiled exception handler.
1186         if (!force_unwind && original_exception() == exception()) {
1187           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1188         }
1189       } else {
1190         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
1191       }
1192     }
1193 
1194     thread->set_exception_pc(pc);
1195     thread->set_exception_handler_pc(handler_address);
1196 
1197     // Check if the exception PC is a MethodHandle call site.
1198     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1199   }
1200 
1201   // Restore correct return pc.  Was saved above.
1202   thread->set_exception_oop(exception());
1203   return handler_address;
1204 
1205 JRT_END
1206 
1207 // We are entering here from exception_blob
1208 // If there is a compiled exception handler in this method, we will continue there;
1209 // otherwise we will unwind the stack and continue at the caller of top frame method
1210 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1211 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1212 // we looked up the handler for has been deoptimized in the meantime. If it has been
1213 // we must not use the handler and instead return the deopt blob.
1214 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1215 //
1216 // We are in Java not VM and in debug mode we have a NoHandleMark
1217 //
1218 #ifndef PRODUCT
1219   SharedRuntime::_find_handler_ctr++;          // find exception handler
1220 #endif
1221   debug_only(NoHandleMark __hm;)
1222   nmethod* nm = NULL;
1223   address handler_address = NULL;
1224   {
1225     // Enter the VM
1226 
1227     ResetNoHandleMark rnhm;
1228     handler_address = handle_exception_C_helper(thread, nm);
1229   }
1230 
1231   // Back in java: Use no oops, DON'T safepoint
1232 
1233   // Now check to see if the handler we are returning is in a now
1234   // deoptimized frame
1235 
1236   if (nm != NULL) {
1237     RegisterMap map(thread, false);
1238     frame caller = thread->last_frame().sender(&map);
1239 #ifdef ASSERT
1240     assert(caller.is_compiled_frame(), "must be");
1241 #endif // ASSERT
1242     if (caller.is_deoptimized_frame()) {
1243       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1244     }
1245   }
1246   return handler_address;
1247 }
1248 
1249 //------------------------------rethrow----------------------------------------
1250 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1251 // is either throwing or rethrowing an exception.  The callee-save registers
1252 // have been restored, synchronized objects have been unlocked and the callee
1253 // stack frame has been removed.  The return address was passed in.
1254 // Exception oop is passed as the 1st argument.  This routine is then called
1255 // from the stub.  On exit, we know where to jump in the caller's code.
1256 // After this C code exits, the stub will pop his frame and end in a jump
1257 // (instead of a return).  We enter the caller's default handler.
1258 //
1259 // This must be JRT_LEAF:
1260 //     - caller will not change its state as we cannot block on exit,
1261 //       therefore raw_exception_handler_for_return_address is all it takes
1262 //       to handle deoptimized blobs
1263 //
1264 // However, there needs to be a safepoint check in the middle!  So compiled
1265 // safepoints are completely watertight.
1266 //
1267 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1268 //
1269 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1270 //
1271 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1272 #ifndef PRODUCT
1273   SharedRuntime::_rethrow_ctr++;               // count rethrows
1274 #endif
1275   assert (exception != NULL, "should have thrown a NULLPointerException");
1276 #ifdef ASSERT
1277   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1278     // should throw an exception here
1279     ShouldNotReachHere();
1280   }
1281 #endif
1282 
1283   thread->set_vm_result(exception);
1284   // Frame not compiled (handles deoptimization blob)
1285   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1286 }
1287 
1288 
1289 const TypeFunc *OptoRuntime::rethrow_Type() {
1290   // create input type (domain)
1291   const Type **fields = TypeTuple::fields(1);
1292   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1293   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1294 
1295   // create result type (range)
1296   fields = TypeTuple::fields(1);
1297   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1298   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1299 
1300   return TypeFunc::make(domain, range);
1301 }
1302 
1303 
1304 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1305   // Deoptimize the caller before continuing, as the compiled
1306   // exception handler table may not be valid.
1307   if (!StressCompiledExceptionHandlers && doit) {
1308     deoptimize_caller_frame(thread);
1309   }
1310 }
1311 
1312 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1313   // Called from within the owner thread, so no need for safepoint
1314   RegisterMap reg_map(thread);
1315   frame stub_frame = thread->last_frame();
1316   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1317   frame caller_frame = stub_frame.sender(&reg_map);
1318 
1319   // Deoptimize the caller frame.
1320   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1321 }
1322 
1323 
1324 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1325   // Called from within the owner thread, so no need for safepoint
1326   RegisterMap reg_map(thread);
1327   frame stub_frame = thread->last_frame();
1328   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1329   frame caller_frame = stub_frame.sender(&reg_map);
1330   return caller_frame.is_deoptimized_frame();
1331 }
1332 
1333 
1334 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1335   // create input type (domain)
1336   const Type **fields = TypeTuple::fields(1);
1337   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1338   // // The JavaThread* is passed to each routine as the last argument
1339   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1340   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1341 
1342   // create result type (range)
1343   fields = TypeTuple::fields(0);
1344 
1345   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1346 
1347   return TypeFunc::make(domain,range);
1348 }
1349 
1350 
1351 //-----------------------------------------------------------------------------
1352 // Dtrace support.  entry and exit probes have the same signature
1353 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1354   // create input type (domain)
1355   const Type **fields = TypeTuple::fields(2);
1356   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1357   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1358   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1359 
1360   // create result type (range)
1361   fields = TypeTuple::fields(0);
1362 
1363   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1364 
1365   return TypeFunc::make(domain,range);
1366 }
1367 
1368 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1369   // create input type (domain)
1370   const Type **fields = TypeTuple::fields(2);
1371   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1372   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1373 
1374   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1375 
1376   // create result type (range)
1377   fields = TypeTuple::fields(0);
1378 
1379   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1380 
1381   return TypeFunc::make(domain,range);
1382 }
1383 
1384 
1385 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1386   assert(obj->is_oop(), "must be a valid oop");
1387   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1388   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1389 JRT_END
1390 
1391 //-----------------------------------------------------------------------------
1392 
1393 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1394 
1395 //
1396 // dump the collected NamedCounters.
1397 //
1398 void OptoRuntime::print_named_counters() {
1399   int total_lock_count = 0;
1400   int eliminated_lock_count = 0;
1401 
1402   NamedCounter* c = _named_counters;
1403   while (c) {
1404     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1405       int count = c->count();
1406       if (count > 0) {
1407         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1408         if (Verbose) {
1409           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1410         }
1411         total_lock_count += count;
1412         if (eliminated) {
1413           eliminated_lock_count += count;
1414         }
1415       }
1416     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1417       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1418       if (blc->nonzero()) {
1419         tty->print_cr("%s", c->name());
1420         blc->print_on(tty);
1421       }
1422 #if INCLUDE_RTM_OPT
1423     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1424       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1425       if (rlc->nonzero()) {
1426         tty->print_cr("%s", c->name());
1427         rlc->print_on(tty);
1428       }
1429 #endif
1430     }
1431     c = c->next();
1432   }
1433   if (total_lock_count > 0) {
1434     tty->print_cr("dynamic locks: %d", total_lock_count);
1435     if (eliminated_lock_count) {
1436       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1437                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1438     }
1439   }
1440 }
1441 
1442 //
1443 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1444 //  name which consists of method@line for the inlining tree.
1445 //
1446 
1447 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1448   int max_depth = youngest_jvms->depth();
1449 
1450   // Visit scopes from youngest to oldest.
1451   bool first = true;
1452   stringStream st;
1453   for (int depth = max_depth; depth >= 1; depth--) {
1454     JVMState* jvms = youngest_jvms->of_depth(depth);
1455     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1456     if (!first) {
1457       st.print(" ");
1458     } else {
1459       first = false;
1460     }
1461     int bci = jvms->bci();
1462     if (bci < 0) bci = 0;
1463     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1464     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1465   }
1466   NamedCounter* c;
1467   if (tag == NamedCounter::BiasedLockingCounter) {
1468     c = new BiasedLockingNamedCounter(st.as_string());
1469   } else if (tag == NamedCounter::RTMLockingCounter) {
1470     c = new RTMLockingNamedCounter(st.as_string());
1471   } else {
1472     c = new NamedCounter(st.as_string(), tag);
1473   }
1474 
1475   // atomically add the new counter to the head of the list.  We only
1476   // add counters so this is safe.
1477   NamedCounter* head;
1478   do {
1479     c->set_next(NULL);
1480     head = _named_counters;
1481     c->set_next(head);
1482   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1483   return c;
1484 }
1485 
1486 //-----------------------------------------------------------------------------
1487 // Non-product code
1488 #ifndef PRODUCT
1489 
1490 int trace_exception_counter = 0;
1491 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1492   ttyLocker ttyl;
1493   trace_exception_counter++;
1494   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1495   exception_oop->print_value();
1496   tty->print(" in ");
1497   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1498   if (blob->is_nmethod()) {
1499     nmethod* nm = blob->as_nmethod_or_null();
1500     nm->method()->print_value();
1501   } else if (blob->is_runtime_stub()) {
1502     tty->print("<runtime-stub>");
1503   } else {
1504     tty->print("<unknown>");
1505   }
1506   tty->print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1507   tty->print_cr("]");
1508 }
1509 
1510 #endif  // PRODUCT
1511 
1512 
1513 # ifdef ENABLE_ZAP_DEAD_LOCALS
1514 // Called from call sites in compiled code with oop maps (actually safepoints)
1515 // Zaps dead locals in first java frame.
1516 // Is entry because may need to lock to generate oop maps
1517 // Currently, only used for compiler frames, but someday may be used
1518 // for interpreter frames, too.
1519 
1520 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
1521 
1522 // avoid pointers to member funcs with these helpers
1523 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
1524 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
1525 
1526 
1527 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
1528                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
1529   assert(JavaThread::current() == thread, "is this needed?");
1530 
1531   if ( !ZapDeadCompiledLocals )  return;
1532 
1533   bool skip = false;
1534 
1535        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
1536   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
1537   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
1538     warning("starting zapping after skipping");
1539 
1540        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
1541   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
1542   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
1543     warning("about to zap last zap");
1544 
1545   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
1546 
1547   if ( skip )  return;
1548 
1549   // find java frame and zap it
1550 
1551   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
1552     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
1553       sfs.current()->zap_dead_locals(thread, sfs.register_map());
1554       return;
1555     }
1556   }
1557   warning("no frame found to zap in zap_dead_Java_locals_C");
1558 }
1559 
1560 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
1561   zap_dead_java_or_native_locals(thread, is_java_frame);
1562 JRT_END
1563 
1564 // The following does not work because for one thing, the
1565 // thread state is wrong; it expects java, but it is native.
1566 // Also, the invariants in a native stub are different and
1567 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
1568 // in there.
1569 // So for now, we do not zap in native stubs.
1570 
1571 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
1572   zap_dead_java_or_native_locals(thread, is_native_frame);
1573 JRT_END
1574 
1575 # endif