1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "memory/padded.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "oops/markOop.hpp"
  30 #include "oops/oop.inline.hpp"
  31 #include "runtime/atomic.inline.hpp"
  32 #include "runtime/biasedLocking.hpp"
  33 #include "runtime/handles.inline.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/mutexLocker.hpp"
  36 #include "runtime/objectMonitor.hpp"
  37 #include "runtime/objectMonitor.inline.hpp"
  38 #include "runtime/osThread.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "runtime/synchronizer.hpp"
  41 #include "runtime/thread.inline.hpp"
  42 #include "utilities/dtrace.hpp"
  43 #include "utilities/events.hpp"
  44 #include "utilities/preserveException.hpp"
  45 
  46 #if defined(__GNUC__) && !defined(PPC64)
  47 // Need to inhibit inlining for older versions of GCC to avoid build-time failures
  48   #define NOINLINE __attribute__((noinline))
  49 #else
  50   #define NOINLINE
  51 #endif
  52 
  53 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  54 
  55 // The "core" versions of monitor enter and exit reside in this file.
  56 // The interpreter and compilers contain specialized transliterated
  57 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  58 // for instance.  If you make changes here, make sure to modify the
  59 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  60 //
  61 // -----------------------------------------------------------------------------
  62 
  63 #ifdef DTRACE_ENABLED
  64 
  65 // Only bother with this argument setup if dtrace is available
  66 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  67 
  68 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  69   char* bytes = NULL;                                                      \
  70   int len = 0;                                                             \
  71   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  72   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  73   if (klassname != NULL) {                                                 \
  74     bytes = (char*)klassname->bytes();                                     \
  75     len = klassname->utf8_length();                                        \
  76   }
  77 
  78 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  79   {                                                                        \
  80     if (DTraceMonitorProbes) {                                             \
  81       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  82       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  83                            (uintptr_t)(monitor), bytes, len, (millis));    \
  84     }                                                                      \
  85   }
  86 
  87 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
  88 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  89 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
  90 
  91 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  92   {                                                                        \
  93     if (DTraceMonitorProbes) {                                             \
  94       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  95       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
  96                                     (uintptr_t)(monitor), bytes, len);     \
  97     }                                                                      \
  98   }
  99 
 100 #else //  ndef DTRACE_ENABLED
 101 
 102 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 103 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 104 
 105 #endif // ndef DTRACE_ENABLED
 106 
 107 // This exists only as a workaround of dtrace bug 6254741
 108 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 109   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 110   return 0;
 111 }
 112 
 113 #define NINFLATIONLOCKS 256
 114 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 115 
 116 // global list of blocks of monitors
 117 // gBlockList is really PaddedEnd<ObjectMonitor> *, but we don't
 118 // want to expose the PaddedEnd template more than necessary.
 119 ObjectMonitor * ObjectSynchronizer::gBlockList = NULL;
 120 // global monitor free list
 121 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL;
 122 // global monitor in-use list, for moribund threads,
 123 // monitors they inflated need to be scanned for deflation
 124 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL;
 125 // count of entries in gOmInUseList
 126 int ObjectSynchronizer::gOmInUseCount = 0;
 127 
 128 static volatile intptr_t gListLock = 0;      // protects global monitor lists
 129 static volatile int gMonitorFreeCount  = 0;  // # on gFreeList
 130 static volatile int gMonitorPopulation = 0;  // # Extant -- in circulation
 131 
 132 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 133 
 134 
 135 // =====================> Quick functions
 136 
 137 // The quick_* forms are special fast-path variants used to improve
 138 // performance.  In the simplest case, a "quick_*" implementation could
 139 // simply return false, in which case the caller will perform the necessary
 140 // state transitions and call the slow-path form.
 141 // The fast-path is designed to handle frequently arising cases in an efficient
 142 // manner and is just a degenerate "optimistic" variant of the slow-path.
 143 // returns true  -- to indicate the call was satisfied.
 144 // returns false -- to indicate the call needs the services of the slow-path.
 145 // A no-loitering ordinance is in effect for code in the quick_* family
 146 // operators: safepoints or indefinite blocking (blocking that might span a
 147 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 148 // entry.
 149 //
 150 // An interesting optimization is to have the JIT recognize the following
 151 // common idiom:
 152 //   synchronized (someobj) { .... ; notify(); }
 153 // That is, we find a notify() or notifyAll() call that immediately precedes
 154 // the monitorexit operation.  In that case the JIT could fuse the operations
 155 // into a single notifyAndExit() runtime primitive.
 156 
 157 bool ObjectSynchronizer::quick_notify(oopDesc * obj, Thread * Self, bool All) {
 158   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 159   assert(Self->is_Java_thread(), "invariant");
 160   assert(((JavaThread *) Self)->thread_state() == _thread_in_Java, "invariant");
 161   No_Safepoint_Verifier nsv;
 162   if (obj == NULL) return false;
 163   const markOop mark = obj->mark();
 164 
 165   if (mark->has_locker() && Self->is_lock_owned((address)mark->locker())) {
 166     // Degenerate notify
 167     // stack-locked by caller so by definition the implied waitset is empty.
 168     return true;
 169   }
 170 
 171   if (mark->has_monitor()) {
 172     ObjectMonitor * const mon = mark->monitor();
 173     assert(mon->object() == obj, "invariant");
 174     if (mon->owner() != Self) return false;
 175 
 176     // As long as the object is unbiased and doesn't require safepoint revocation
 177     // and is owned by the caller we can transfer a thread or threads from
 178     // the waitset to the entrylist here and now, avoiding the slow-path.
 179     // That is, the only case where the slow-path is mandatory is
 180     // when the object is biased or we need to throw IMSX exceptions.
 181     if (mon->first_waiter() != NULL) {
 182       if (All) {
 183         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, Self);
 184       } else {
 185         DTRACE_MONITOR_PROBE(notify, mon, obj, Self);
 186       }
 187       int tally = 0;
 188       for (;;) {
 189         if (mon->first_waiter() == NULL) break;
 190         mon->INotify(Self);
 191         ++tally;
 192         if (!All) break;
 193       }
 194       if (ObjectMonitor::_sync_Notifications != NULL) {
 195         ObjectMonitor::_sync_Notifications->inc(tally);
 196       }
 197     }
 198     return true;
 199   }
 200 
 201   return false;  // revert to slow-path
 202 }
 203 
 204 
 205 // The LockNode emitted directly at the synchronization site would have
 206 // been too big if it were to have included support for the cases of inflated
 207 // recursive enter and exit, so they go here instead.
 208 // Note that we can't safely call AsyncPrintJavaStack() from within
 209 // quick_enter() as our thread state remains _in_Java.
 210 
 211 bool ObjectSynchronizer::quick_enter(oop obj, Thread * Self,
 212                                      BasicLock * Lock) {
 213   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 214   assert(Self->is_Java_thread(), "invariant");
 215   assert(((JavaThread *) Self)->thread_state() == _thread_in_Java, "invariant");
 216   No_Safepoint_Verifier nsv;
 217   if (obj == NULL) return false;       // Need to throw NPE
 218   const markOop mark = obj->mark();
 219 
 220   if (mark->has_monitor()) {
 221     ObjectMonitor * const m = mark->monitor();
 222     assert(m->object() == obj, "invariant");
 223     Thread * const owner = (Thread *) m->_owner;
 224 
 225     // Lock contention and Transactional Lock Elision (TLE) diagnostics
 226     // and observability
 227     // Case: light contention possibly amenable to TLE
 228     // Case: TLE inimical operations such as nested/recursive synchronization
 229 
 230     if (owner == Self) {
 231       m->_recursions++;
 232       return true;
 233     }
 234 
 235     if (owner == NULL &&
 236         Atomic::cmpxchg_ptr(Self, &(m->_owner), NULL) == NULL) {
 237       assert(m->_recursions == 0, "invariant");
 238       assert(m->_owner == Self, "invariant");
 239       return true;
 240     }
 241   }
 242 
 243   // Note that we could inflate in quick_enter.
 244   // This is likely a useful optimization
 245   // Critically, in quick_enter() we must not:
 246   // -- perform bias revocation, or
 247   // -- block indefinitely, or
 248   // -- reach a safepoint
 249 
 250   return false;        // revert to slow-path
 251 }
 252 
 253 // -----------------------------------------------------------------------------
 254 //  Fast Monitor Enter/Exit
 255 // This the fast monitor enter. The interpreter and compiler use
 256 // some assembly copies of this code. Make sure update those code
 257 // if the following function is changed. The implementation is
 258 // extremely sensitive to race condition. Be careful.
 259 
 260 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock,
 261                                     bool attempt_rebias, TRAPS) {
 262   if (UseBiasedLocking) {
 263     if (!SafepointSynchronize::is_at_safepoint()) {
 264       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
 265       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
 266         return;
 267       }
 268     } else {
 269       assert(!attempt_rebias, "can not rebias toward VM thread");
 270       BiasedLocking::revoke_at_safepoint(obj);
 271     }
 272     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 273   }
 274 
 275   slow_enter(obj, lock, THREAD);
 276 }
 277 
 278 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
 279   assert(!object->mark()->has_bias_pattern(), "should not see bias pattern here");
 280   // if displaced header is null, the previous enter is recursive enter, no-op
 281   markOop dhw = lock->displaced_header();
 282   markOop mark;
 283   if (dhw == NULL) {
 284     // Recursive stack-lock.
 285     // Diagnostics -- Could be: stack-locked, inflating, inflated.
 286     mark = object->mark();
 287     assert(!mark->is_neutral(), "invariant");
 288     if (mark->has_locker() && mark != markOopDesc::INFLATING()) {
 289       assert(THREAD->is_lock_owned((address)mark->locker()), "invariant");
 290     }
 291     if (mark->has_monitor()) {
 292       ObjectMonitor * m = mark->monitor();
 293       assert(((oop)(m->object()))->mark() == mark, "invariant");
 294       assert(m->is_entered(THREAD), "invariant");
 295     }
 296     return;
 297   }
 298 
 299   mark = object->mark();
 300 
 301   // If the object is stack-locked by the current thread, try to
 302   // swing the displaced header from the box back to the mark.
 303   if (mark == (markOop) lock) {
 304     assert(dhw->is_neutral(), "invariant");
 305     if ((markOop) Atomic::cmpxchg_ptr (dhw, object->mark_addr(), mark) == mark) {
 306       TEVENT(fast_exit: release stacklock);
 307       return;
 308     }
 309   }
 310 
 311   ObjectSynchronizer::inflate(THREAD, object)->exit(true, THREAD);
 312 }
 313 
 314 // -----------------------------------------------------------------------------
 315 // Interpreter/Compiler Slow Case
 316 // This routine is used to handle interpreter/compiler slow case
 317 // We don't need to use fast path here, because it must have been
 318 // failed in the interpreter/compiler code.
 319 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
 320   markOop mark = obj->mark();
 321   assert(!mark->has_bias_pattern(), "should not see bias pattern here");
 322 
 323   if (mark->is_neutral()) {
 324     // Anticipate successful CAS -- the ST of the displaced mark must
 325     // be visible <= the ST performed by the CAS.
 326     lock->set_displaced_header(mark);
 327     if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
 328       TEVENT(slow_enter: release stacklock);
 329       return;
 330     }
 331     // Fall through to inflate() ...
 332   } else if (mark->has_locker() &&
 333              THREAD->is_lock_owned((address)mark->locker())) {
 334     assert(lock != mark->locker(), "must not re-lock the same lock");
 335     assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
 336     lock->set_displaced_header(NULL);
 337     return;
 338   }
 339 
 340   // The object header will never be displaced to this lock,
 341   // so it does not matter what the value is, except that it
 342   // must be non-zero to avoid looking like a re-entrant lock,
 343   // and must not look locked either.
 344   lock->set_displaced_header(markOopDesc::unused_mark());
 345   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
 346 }
 347 
 348 // This routine is used to handle interpreter/compiler slow case
 349 // We don't need to use fast path here, because it must have
 350 // failed in the interpreter/compiler code. Simply use the heavy
 351 // weight monitor should be ok, unless someone find otherwise.
 352 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
 353   fast_exit(object, lock, THREAD);
 354 }
 355 
 356 // -----------------------------------------------------------------------------
 357 // Class Loader  support to workaround deadlocks on the class loader lock objects
 358 // Also used by GC
 359 // complete_exit()/reenter() are used to wait on a nested lock
 360 // i.e. to give up an outer lock completely and then re-enter
 361 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 362 //  1) complete_exit lock1 - saving recursion count
 363 //  2) wait on lock2
 364 //  3) when notified on lock2, unlock lock2
 365 //  4) reenter lock1 with original recursion count
 366 //  5) lock lock2
 367 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 368 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 369   TEVENT(complete_exit);
 370   if (UseBiasedLocking) {
 371     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 372     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 373   }
 374 
 375   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
 376 
 377   return monitor->complete_exit(THREAD);
 378 }
 379 
 380 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 381 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
 382   TEVENT(reenter);
 383   if (UseBiasedLocking) {
 384     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 385     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 386   }
 387 
 388   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
 389 
 390   monitor->reenter(recursion, THREAD);
 391 }
 392 // -----------------------------------------------------------------------------
 393 // JNI locks on java objects
 394 // NOTE: must use heavy weight monitor to handle jni monitor enter
 395 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) {
 396   // the current locking is from JNI instead of Java code
 397   TEVENT(jni_enter);
 398   if (UseBiasedLocking) {
 399     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 400     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 401   }
 402   THREAD->set_current_pending_monitor_is_from_java(false);
 403   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
 404   THREAD->set_current_pending_monitor_is_from_java(true);
 405 }
 406 
 407 // NOTE: must use heavy weight monitor to handle jni monitor exit
 408 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 409   TEVENT(jni_exit);
 410   if (UseBiasedLocking) {
 411     Handle h_obj(THREAD, obj);
 412     BiasedLocking::revoke_and_rebias(h_obj, false, THREAD);
 413     obj = h_obj();
 414   }
 415   assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 416 
 417   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj);
 418   // If this thread has locked the object, exit the monitor.  Note:  can't use
 419   // monitor->check(CHECK); must exit even if an exception is pending.
 420   if (monitor->check(THREAD)) {
 421     monitor->exit(true, THREAD);
 422   }
 423 }
 424 
 425 // -----------------------------------------------------------------------------
 426 // Internal VM locks on java objects
 427 // standard constructor, allows locking failures
 428 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
 429   _dolock = doLock;
 430   _thread = thread;
 431   debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
 432   _obj = obj;
 433 
 434   if (_dolock) {
 435     TEVENT(ObjectLocker);
 436 
 437     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
 438   }
 439 }
 440 
 441 ObjectLocker::~ObjectLocker() {
 442   if (_dolock) {
 443     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
 444   }
 445 }
 446 
 447 
 448 // -----------------------------------------------------------------------------
 449 //  Wait/Notify/NotifyAll
 450 // NOTE: must use heavy weight monitor to handle wait()
 451 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 452   if (UseBiasedLocking) {
 453     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 454     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 455   }
 456   if (millis < 0) {
 457     TEVENT(wait - throw IAX);
 458     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 459   }
 460   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
 461   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 462   monitor->wait(millis, true, THREAD);
 463 
 464   // This dummy call is in place to get around dtrace bug 6254741.  Once
 465   // that's fixed we can uncomment the following line, remove the call
 466   // and change this function back into a "void" func.
 467   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 468   return dtrace_waited_probe(monitor, obj, THREAD);
 469 }
 470 
 471 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) {
 472   if (UseBiasedLocking) {
 473     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 474     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 475   }
 476   if (millis < 0) {
 477     TEVENT(wait - throw IAX);
 478     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 479   }
 480   ObjectSynchronizer::inflate(THREAD, obj()) -> wait(millis, false, THREAD);
 481 }
 482 
 483 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 484   if (UseBiasedLocking) {
 485     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 486     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 487   }
 488 
 489   markOop mark = obj->mark();
 490   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 491     return;
 492   }
 493   ObjectSynchronizer::inflate(THREAD, obj())->notify(THREAD);
 494 }
 495 
 496 // NOTE: see comment of notify()
 497 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 498   if (UseBiasedLocking) {
 499     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 500     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 501   }
 502 
 503   markOop mark = obj->mark();
 504   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 505     return;
 506   }
 507   ObjectSynchronizer::inflate(THREAD, obj())->notifyAll(THREAD);
 508 }
 509 
 510 // -----------------------------------------------------------------------------
 511 // Hash Code handling
 512 //
 513 // Performance concern:
 514 // OrderAccess::storestore() calls release() which at one time stored 0
 515 // into the global volatile OrderAccess::dummy variable. This store was
 516 // unnecessary for correctness. Many threads storing into a common location
 517 // causes considerable cache migration or "sloshing" on large SMP systems.
 518 // As such, I avoided using OrderAccess::storestore(). In some cases
 519 // OrderAccess::fence() -- which incurs local latency on the executing
 520 // processor -- is a better choice as it scales on SMP systems.
 521 //
 522 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 523 // a discussion of coherency costs. Note that all our current reference
 524 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 525 // x64, and SPARC.
 526 //
 527 // As a general policy we use "volatile" to control compiler-based reordering
 528 // and explicit fences (barriers) to control for architectural reordering
 529 // performed by the CPU(s) or platform.
 530 
 531 struct SharedGlobals {
 532   char         _pad_prefix[DEFAULT_CACHE_LINE_SIZE];
 533   // These are highly shared mostly-read variables.
 534   // To avoid false-sharing they need to be the sole occupants of a cache line.
 535   volatile int stwRandom;
 536   volatile int stwCycle;
 537   DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int) * 2);
 538   // Hot RW variable -- Sequester to avoid false-sharing
 539   volatile int hcSequence;
 540   DEFINE_PAD_MINUS_SIZE(2, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int));
 541 };
 542 
 543 static SharedGlobals GVars;
 544 static int MonitorScavengeThreshold = 1000000;
 545 static volatile int ForceMonitorScavenge = 0; // Scavenge required and pending
 546 
 547 static markOop ReadStableMark(oop obj) {
 548   markOop mark = obj->mark();
 549   if (!mark->is_being_inflated()) {
 550     return mark;       // normal fast-path return
 551   }
 552 
 553   int its = 0;
 554   for (;;) {
 555     markOop mark = obj->mark();
 556     if (!mark->is_being_inflated()) {
 557       return mark;    // normal fast-path return
 558     }
 559 
 560     // The object is being inflated by some other thread.
 561     // The caller of ReadStableMark() must wait for inflation to complete.
 562     // Avoid live-lock
 563     // TODO: consider calling SafepointSynchronize::do_call_back() while
 564     // spinning to see if there's a safepoint pending.  If so, immediately
 565     // yielding or blocking would be appropriate.  Avoid spinning while
 566     // there is a safepoint pending.
 567     // TODO: add inflation contention performance counters.
 568     // TODO: restrict the aggregate number of spinners.
 569 
 570     ++its;
 571     if (its > 10000 || !os::is_MP()) {
 572       if (its & 1) {
 573         os::naked_yield();
 574         TEVENT(Inflate: INFLATING - yield);
 575       } else {
 576         // Note that the following code attenuates the livelock problem but is not
 577         // a complete remedy.  A more complete solution would require that the inflating
 578         // thread hold the associated inflation lock.  The following code simply restricts
 579         // the number of spinners to at most one.  We'll have N-2 threads blocked
 580         // on the inflationlock, 1 thread holding the inflation lock and using
 581         // a yield/park strategy, and 1 thread in the midst of inflation.
 582         // A more refined approach would be to change the encoding of INFLATING
 583         // to allow encapsulation of a native thread pointer.  Threads waiting for
 584         // inflation to complete would use CAS to push themselves onto a singly linked
 585         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 586         // and calling park().  When inflation was complete the thread that accomplished inflation
 587         // would detach the list and set the markword to inflated with a single CAS and
 588         // then for each thread on the list, set the flag and unpark() the thread.
 589         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 590         // wakes at most one thread whereas we need to wake the entire list.
 591         int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
 592         int YieldThenBlock = 0;
 593         assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
 594         assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant");
 595         Thread::muxAcquire(gInflationLocks + ix, "gInflationLock");
 596         while (obj->mark() == markOopDesc::INFLATING()) {
 597           // Beware: NakedYield() is advisory and has almost no effect on some platforms
 598           // so we periodically call Self->_ParkEvent->park(1).
 599           // We use a mixed spin/yield/block mechanism.
 600           if ((YieldThenBlock++) >= 16) {
 601             Thread::current()->_ParkEvent->park(1);
 602           } else {
 603             os::naked_yield();
 604           }
 605         }
 606         Thread::muxRelease(gInflationLocks + ix);
 607         TEVENT(Inflate: INFLATING - yield/park);
 608       }
 609     } else {
 610       SpinPause();       // SMP-polite spinning
 611     }
 612   }
 613 }
 614 
 615 // hashCode() generation :
 616 //
 617 // Possibilities:
 618 // * MD5Digest of {obj,stwRandom}
 619 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
 620 // * A DES- or AES-style SBox[] mechanism
 621 // * One of the Phi-based schemes, such as:
 622 //   2654435761 = 2^32 * Phi (golden ratio)
 623 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
 624 // * A variation of Marsaglia's shift-xor RNG scheme.
 625 // * (obj ^ stwRandom) is appealing, but can result
 626 //   in undesirable regularity in the hashCode values of adjacent objects
 627 //   (objects allocated back-to-back, in particular).  This could potentially
 628 //   result in hashtable collisions and reduced hashtable efficiency.
 629 //   There are simple ways to "diffuse" the middle address bits over the
 630 //   generated hashCode values:
 631 
 632 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
 633   intptr_t value = 0;
 634   if (hashCode == 0) {
 635     // This form uses an unguarded global Park-Miller RNG,
 636     // so it's possible for two threads to race and generate the same RNG.
 637     // On MP system we'll have lots of RW access to a global, so the
 638     // mechanism induces lots of coherency traffic.
 639     value = os::random();
 640   } else if (hashCode == 1) {
 641     // This variation has the property of being stable (idempotent)
 642     // between STW operations.  This can be useful in some of the 1-0
 643     // synchronization schemes.
 644     intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3;
 645     value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom;
 646   } else if (hashCode == 2) {
 647     value = 1;            // for sensitivity testing
 648   } else if (hashCode == 3) {
 649     value = ++GVars.hcSequence;
 650   } else if (hashCode == 4) {
 651     value = cast_from_oop<intptr_t>(obj);
 652   } else {
 653     // Marsaglia's xor-shift scheme with thread-specific state
 654     // This is probably the best overall implementation -- we'll
 655     // likely make this the default in future releases.
 656     unsigned t = Self->_hashStateX;
 657     t ^= (t << 11);
 658     Self->_hashStateX = Self->_hashStateY;
 659     Self->_hashStateY = Self->_hashStateZ;
 660     Self->_hashStateZ = Self->_hashStateW;
 661     unsigned v = Self->_hashStateW;
 662     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 663     Self->_hashStateW = v;
 664     value = v;
 665   }
 666 
 667   value &= markOopDesc::hash_mask;
 668   if (value == 0) value = 0xBAD;
 669   assert(value != markOopDesc::no_hash, "invariant");
 670   TEVENT(hashCode: GENERATE);
 671   return value;
 672 }
 673 
 674 intptr_t ObjectSynchronizer::FastHashCode(Thread * Self, oop obj) {
 675   if (UseBiasedLocking) {
 676     // NOTE: many places throughout the JVM do not expect a safepoint
 677     // to be taken here, in particular most operations on perm gen
 678     // objects. However, we only ever bias Java instances and all of
 679     // the call sites of identity_hash that might revoke biases have
 680     // been checked to make sure they can handle a safepoint. The
 681     // added check of the bias pattern is to avoid useless calls to
 682     // thread-local storage.
 683     if (obj->mark()->has_bias_pattern()) {
 684       // Handle for oop obj in case of STW safepoint
 685       Handle hobj(Self, obj);
 686       // Relaxing assertion for bug 6320749.
 687       assert(Universe::verify_in_progress() ||
 688              !SafepointSynchronize::is_at_safepoint(),
 689              "biases should not be seen by VM thread here");
 690       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
 691       obj = hobj();
 692       assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 693     }
 694   }
 695 
 696   // hashCode() is a heap mutator ...
 697   // Relaxing assertion for bug 6320749.
 698   assert(Universe::verify_in_progress() ||
 699          !SafepointSynchronize::is_at_safepoint(), "invariant");
 700   assert(Universe::verify_in_progress() ||
 701          Self->is_Java_thread() , "invariant");
 702   assert(Universe::verify_in_progress() ||
 703          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 704 
 705   ObjectMonitor* monitor = NULL;
 706   markOop temp, test;
 707   intptr_t hash;
 708   markOop mark = ReadStableMark(obj);
 709 
 710   // object should remain ineligible for biased locking
 711   assert(!mark->has_bias_pattern(), "invariant");
 712 
 713   if (mark->is_neutral()) {
 714     hash = mark->hash();              // this is a normal header
 715     if (hash) {                       // if it has hash, just return it
 716       return hash;
 717     }
 718     hash = get_next_hash(Self, obj);  // allocate a new hash code
 719     temp = mark->copy_set_hash(hash); // merge the hash code into header
 720     // use (machine word version) atomic operation to install the hash
 721     test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
 722     if (test == mark) {
 723       return hash;
 724     }
 725     // If atomic operation failed, we must inflate the header
 726     // into heavy weight monitor. We could add more code here
 727     // for fast path, but it does not worth the complexity.
 728   } else if (mark->has_monitor()) {
 729     monitor = mark->monitor();
 730     temp = monitor->header();
 731     assert(temp->is_neutral(), "invariant");
 732     hash = temp->hash();
 733     if (hash) {
 734       return hash;
 735     }
 736     // Skip to the following code to reduce code size
 737   } else if (Self->is_lock_owned((address)mark->locker())) {
 738     temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
 739     assert(temp->is_neutral(), "invariant");
 740     hash = temp->hash();              // by current thread, check if the displaced
 741     if (hash) {                       // header contains hash code
 742       return hash;
 743     }
 744     // WARNING:
 745     //   The displaced header is strictly immutable.
 746     // It can NOT be changed in ANY cases. So we have
 747     // to inflate the header into heavyweight monitor
 748     // even the current thread owns the lock. The reason
 749     // is the BasicLock (stack slot) will be asynchronously
 750     // read by other threads during the inflate() function.
 751     // Any change to stack may not propagate to other threads
 752     // correctly.
 753   }
 754 
 755   // Inflate the monitor to set hash code
 756   monitor = ObjectSynchronizer::inflate(Self, obj);
 757   // Load displaced header and check it has hash code
 758   mark = monitor->header();
 759   assert(mark->is_neutral(), "invariant");
 760   hash = mark->hash();
 761   if (hash == 0) {
 762     hash = get_next_hash(Self, obj);
 763     temp = mark->copy_set_hash(hash); // merge hash code into header
 764     assert(temp->is_neutral(), "invariant");
 765     test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
 766     if (test != mark) {
 767       // The only update to the header in the monitor (outside GC)
 768       // is install the hash code. If someone add new usage of
 769       // displaced header, please update this code
 770       hash = test->hash();
 771       assert(test->is_neutral(), "invariant");
 772       assert(hash != 0, "Trivial unexpected object/monitor header usage.");
 773     }
 774   }
 775   // We finally get the hash
 776   return hash;
 777 }
 778 
 779 // Deprecated -- use FastHashCode() instead.
 780 
 781 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
 782   return FastHashCode(Thread::current(), obj());
 783 }
 784 
 785 
 786 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
 787                                                    Handle h_obj) {
 788   if (UseBiasedLocking) {
 789     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
 790     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 791   }
 792 
 793   assert(thread == JavaThread::current(), "Can only be called on current thread");
 794   oop obj = h_obj();
 795 
 796   markOop mark = ReadStableMark(obj);
 797 
 798   // Uncontended case, header points to stack
 799   if (mark->has_locker()) {
 800     return thread->is_lock_owned((address)mark->locker());
 801   }
 802   // Contended case, header points to ObjectMonitor (tagged pointer)
 803   if (mark->has_monitor()) {
 804     ObjectMonitor* monitor = mark->monitor();
 805     return monitor->is_entered(thread) != 0;
 806   }
 807   // Unlocked case, header in place
 808   assert(mark->is_neutral(), "sanity check");
 809   return false;
 810 }
 811 
 812 // Be aware of this method could revoke bias of the lock object.
 813 // This method queries the ownership of the lock handle specified by 'h_obj'.
 814 // If the current thread owns the lock, it returns owner_self. If no
 815 // thread owns the lock, it returns owner_none. Otherwise, it will return
 816 // owner_other.
 817 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
 818 (JavaThread *self, Handle h_obj) {
 819   // The caller must beware this method can revoke bias, and
 820   // revocation can result in a safepoint.
 821   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 822   assert(self->thread_state() != _thread_blocked, "invariant");
 823 
 824   // Possible mark states: neutral, biased, stack-locked, inflated
 825 
 826   if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
 827     // CASE: biased
 828     BiasedLocking::revoke_and_rebias(h_obj, false, self);
 829     assert(!h_obj->mark()->has_bias_pattern(),
 830            "biases should be revoked by now");
 831   }
 832 
 833   assert(self == JavaThread::current(), "Can only be called on current thread");
 834   oop obj = h_obj();
 835   markOop mark = ReadStableMark(obj);
 836 
 837   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
 838   if (mark->has_locker()) {
 839     return self->is_lock_owned((address)mark->locker()) ?
 840       owner_self : owner_other;
 841   }
 842 
 843   // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
 844   // The Object:ObjectMonitor relationship is stable as long as we're
 845   // not at a safepoint.
 846   if (mark->has_monitor()) {
 847     void * owner = mark->monitor()->_owner;
 848     if (owner == NULL) return owner_none;
 849     return (owner == self ||
 850             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
 851   }
 852 
 853   // CASE: neutral
 854   assert(mark->is_neutral(), "sanity check");
 855   return owner_none;           // it's unlocked
 856 }
 857 
 858 // FIXME: jvmti should call this
 859 JavaThread* ObjectSynchronizer::get_lock_owner(Handle h_obj, bool doLock) {
 860   if (UseBiasedLocking) {
 861     if (SafepointSynchronize::is_at_safepoint()) {
 862       BiasedLocking::revoke_at_safepoint(h_obj);
 863     } else {
 864       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
 865     }
 866     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 867   }
 868 
 869   oop obj = h_obj();
 870   address owner = NULL;
 871 
 872   markOop mark = ReadStableMark(obj);
 873 
 874   // Uncontended case, header points to stack
 875   if (mark->has_locker()) {
 876     owner = (address) mark->locker();
 877   }
 878 
 879   // Contended case, header points to ObjectMonitor (tagged pointer)
 880   if (mark->has_monitor()) {
 881     ObjectMonitor* monitor = mark->monitor();
 882     assert(monitor != NULL, "monitor should be non-null");
 883     owner = (address) monitor->owner();
 884   }
 885 
 886   if (owner != NULL) {
 887     // owning_thread_from_monitor_owner() may also return NULL here
 888     return Threads::owning_thread_from_monitor_owner(owner, doLock);
 889   }
 890 
 891   // Unlocked case, header in place
 892   // Cannot have assertion since this object may have been
 893   // locked by another thread when reaching here.
 894   // assert(mark->is_neutral(), "sanity check");
 895 
 896   return NULL;
 897 }
 898 // Visitors ...
 899 
 900 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
 901   PaddedEnd<ObjectMonitor> * block = (PaddedEnd<ObjectMonitor> *)gBlockList;
 902   ObjectMonitor* mid;
 903   while (block) {
 904     assert(block->object() == CHAINMARKER, "must be a block header");
 905     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
 906       mid = (ObjectMonitor *)(block + i);
 907       oop object = (oop) mid->object();
 908       if (object != NULL) {
 909         closure->do_monitor(mid);
 910       }
 911     }
 912     block = (PaddedEnd<ObjectMonitor> *) block->FreeNext;
 913   }
 914 }
 915 
 916 // Get the next block in the block list.
 917 static inline ObjectMonitor* next(ObjectMonitor* block) {
 918   assert(block->object() == CHAINMARKER, "must be a block header");
 919   block = block->FreeNext;
 920   assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
 921   return block;
 922 }
 923 
 924 
 925 void ObjectSynchronizer::oops_do(OopClosure* f) {
 926   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 927   for (PaddedEnd<ObjectMonitor> * block =
 928        (PaddedEnd<ObjectMonitor> *)gBlockList; block != NULL;
 929        block = (PaddedEnd<ObjectMonitor> *)next(block)) {
 930     assert(block->object() == CHAINMARKER, "must be a block header");
 931     for (int i = 1; i < _BLOCKSIZE; i++) {
 932       ObjectMonitor* mid = (ObjectMonitor *)&block[i];
 933       if (mid->object() != NULL) {
 934         f->do_oop((oop*)mid->object_addr());
 935       }
 936     }
 937   }
 938 }
 939 
 940 
 941 // -----------------------------------------------------------------------------
 942 // ObjectMonitor Lifecycle
 943 // -----------------------
 944 // Inflation unlinks monitors from the global gFreeList and
 945 // associates them with objects.  Deflation -- which occurs at
 946 // STW-time -- disassociates idle monitors from objects.  Such
 947 // scavenged monitors are returned to the gFreeList.
 948 //
 949 // The global list is protected by gListLock.  All the critical sections
 950 // are short and operate in constant-time.
 951 //
 952 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
 953 //
 954 // Lifecycle:
 955 // --   unassigned and on the global free list
 956 // --   unassigned and on a thread's private omFreeList
 957 // --   assigned to an object.  The object is inflated and the mark refers
 958 //      to the objectmonitor.
 959 
 960 
 961 // Constraining monitor pool growth via MonitorBound ...
 962 //
 963 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
 964 // the rate of scavenging is driven primarily by GC.  As such,  we can find
 965 // an inordinate number of monitors in circulation.
 966 // To avoid that scenario we can artificially induce a STW safepoint
 967 // if the pool appears to be growing past some reasonable bound.
 968 // Generally we favor time in space-time tradeoffs, but as there's no
 969 // natural back-pressure on the # of extant monitors we need to impose some
 970 // type of limit.  Beware that if MonitorBound is set to too low a value
 971 // we could just loop. In addition, if MonitorBound is set to a low value
 972 // we'll incur more safepoints, which are harmful to performance.
 973 // See also: GuaranteedSafepointInterval
 974 //
 975 // The current implementation uses asynchronous VM operations.
 976 
 977 static void InduceScavenge(Thread * Self, const char * Whence) {
 978   // Induce STW safepoint to trim monitors
 979   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
 980   // More precisely, trigger an asynchronous STW safepoint as the number
 981   // of active monitors passes the specified threshold.
 982   // TODO: assert thread state is reasonable
 983 
 984   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
 985     if (ObjectMonitor::Knob_Verbose) {
 986       ::printf ("Monitor scavenge - Induced STW @%s (%d)\n", Whence, ForceMonitorScavenge) ;
 987       ::fflush(stdout);
 988     }
 989     // Induce a 'null' safepoint to scavenge monitors
 990     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
 991     // to the VMthread and have a lifespan longer than that of this activation record.
 992     // The VMThread will delete the op when completed.
 993     VMThread::execute(new VM_ForceAsyncSafepoint());
 994 
 995     if (ObjectMonitor::Knob_Verbose) {
 996       ::printf ("Monitor scavenge - STW posted @%s (%d)\n", Whence, ForceMonitorScavenge) ;
 997       ::fflush(stdout);
 998     }
 999   }
1000 }
1001 
1002 void ObjectSynchronizer::verifyInUse(Thread *Self) {
1003   ObjectMonitor* mid;
1004   int in_use_tally = 0;
1005   for (mid = Self->omInUseList; mid != NULL; mid = mid->FreeNext) {
1006     in_use_tally++;
1007   }
1008   assert(in_use_tally == Self->omInUseCount, "in-use count off");
1009 
1010   int free_tally = 0;
1011   for (mid = Self->omFreeList; mid != NULL; mid = mid->FreeNext) {
1012     free_tally++;
1013   }
1014   assert(free_tally == Self->omFreeCount, "free count off");
1015 }
1016 
1017 ObjectMonitor * NOINLINE ObjectSynchronizer::omAlloc(Thread * Self) {
1018   // A large MAXPRIVATE value reduces both list lock contention
1019   // and list coherency traffic, but also tends to increase the
1020   // number of objectMonitors in circulation as well as the STW
1021   // scavenge costs.  As usual, we lean toward time in space-time
1022   // tradeoffs.
1023   const int MAXPRIVATE = 1024;
1024   for (;;) {
1025     ObjectMonitor * m;
1026 
1027     // 1: try to allocate from the thread's local omFreeList.
1028     // Threads will attempt to allocate first from their local list, then
1029     // from the global list, and only after those attempts fail will the thread
1030     // attempt to instantiate new monitors.   Thread-local free lists take
1031     // heat off the gListLock and improve allocation latency, as well as reducing
1032     // coherency traffic on the shared global list.
1033     m = Self->omFreeList;
1034     if (m != NULL) {
1035       Self->omFreeList = m->FreeNext;
1036       Self->omFreeCount--;
1037       // CONSIDER: set m->FreeNext = BAD -- diagnostic hygiene
1038       guarantee(m->object() == NULL, "invariant");
1039       if (MonitorInUseLists) {
1040         m->FreeNext = Self->omInUseList;
1041         Self->omInUseList = m;
1042         Self->omInUseCount++;
1043         if (ObjectMonitor::Knob_VerifyInUse) {
1044           verifyInUse(Self);
1045         }
1046       } else {
1047         m->FreeNext = NULL;
1048       }
1049       return m;
1050     }
1051 
1052     // 2: try to allocate from the global gFreeList
1053     // CONSIDER: use muxTry() instead of muxAcquire().
1054     // If the muxTry() fails then drop immediately into case 3.
1055     // If we're using thread-local free lists then try
1056     // to reprovision the caller's free list.
1057     if (gFreeList != NULL) {
1058       // Reprovision the thread's omFreeList.
1059       // Use bulk transfers to reduce the allocation rate and heat
1060       // on various locks.
1061       Thread::muxAcquire(&gListLock, "omAlloc");
1062       for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL;) {
1063         gMonitorFreeCount--;
1064         ObjectMonitor * take = gFreeList;
1065         gFreeList = take->FreeNext;
1066         guarantee(take->object() == NULL, "invariant");
1067         guarantee(!take->is_busy(), "invariant");
1068         take->Recycle();
1069         omRelease(Self, take, false);
1070       }
1071       Thread::muxRelease(&gListLock);
1072       Self->omFreeProvision += 1 + (Self->omFreeProvision/2);
1073       if (Self->omFreeProvision > MAXPRIVATE) Self->omFreeProvision = MAXPRIVATE;
1074       TEVENT(omFirst - reprovision);
1075 
1076       const int mx = MonitorBound;
1077       if (mx > 0 && (gMonitorPopulation-gMonitorFreeCount) > mx) {
1078         // We can't safely induce a STW safepoint from omAlloc() as our thread
1079         // state may not be appropriate for such activities and callers may hold
1080         // naked oops, so instead we defer the action.
1081         InduceScavenge(Self, "omAlloc");
1082       }
1083       continue;
1084     }
1085 
1086     // 3: allocate a block of new ObjectMonitors
1087     // Both the local and global free lists are empty -- resort to malloc().
1088     // In the current implementation objectMonitors are TSM - immortal.
1089     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1090     // each ObjectMonitor to start at the beginning of a cache line,
1091     // so we use align_size_up().
1092     // A better solution would be to use C++ placement-new.
1093     // BEWARE: As it stands currently, we don't run the ctors!
1094     assert(_BLOCKSIZE > 1, "invariant");
1095     size_t neededsize = sizeof(PaddedEnd<ObjectMonitor>) * _BLOCKSIZE;
1096     PaddedEnd<ObjectMonitor> * temp;
1097     size_t aligned_size = neededsize + (DEFAULT_CACHE_LINE_SIZE - 1);
1098     void* real_malloc_addr = (void *)NEW_C_HEAP_ARRAY(char, aligned_size,
1099                                                       mtInternal);
1100     temp = (PaddedEnd<ObjectMonitor> *)
1101              align_size_up((intptr_t)real_malloc_addr,
1102                            DEFAULT_CACHE_LINE_SIZE);
1103 
1104     // NOTE: (almost) no way to recover if allocation failed.
1105     // We might be able to induce a STW safepoint and scavenge enough
1106     // objectMonitors to permit progress.
1107     if (temp == NULL) {
1108       vm_exit_out_of_memory(neededsize, OOM_MALLOC_ERROR,
1109                             "Allocate ObjectMonitors");
1110     }
1111     (void)memset((void *) temp, 0, neededsize);
1112 
1113     // Format the block.
1114     // initialize the linked list, each monitor points to its next
1115     // forming the single linked free list, the very first monitor
1116     // will points to next block, which forms the block list.
1117     // The trick of using the 1st element in the block as gBlockList
1118     // linkage should be reconsidered.  A better implementation would
1119     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1120 
1121     for (int i = 1; i < _BLOCKSIZE; i++) {
1122       temp[i].FreeNext = (ObjectMonitor *)&temp[i+1];
1123     }
1124 
1125     // terminate the last monitor as the end of list
1126     temp[_BLOCKSIZE - 1].FreeNext = NULL;
1127 
1128     // Element [0] is reserved for global list linkage
1129     temp[0].set_object(CHAINMARKER);
1130 
1131     // Consider carving out this thread's current request from the
1132     // block in hand.  This avoids some lock traffic and redundant
1133     // list activity.
1134 
1135     // Acquire the gListLock to manipulate gBlockList and gFreeList.
1136     // An Oyama-Taura-Yonezawa scheme might be more efficient.
1137     Thread::muxAcquire(&gListLock, "omAlloc [2]");
1138     gMonitorPopulation += _BLOCKSIZE-1;
1139     gMonitorFreeCount += _BLOCKSIZE-1;
1140 
1141     // Add the new block to the list of extant blocks (gBlockList).
1142     // The very first objectMonitor in a block is reserved and dedicated.
1143     // It serves as blocklist "next" linkage.
1144     temp[0].FreeNext = gBlockList;
1145     gBlockList = temp;
1146 
1147     // Add the new string of objectMonitors to the global free list
1148     temp[_BLOCKSIZE - 1].FreeNext = gFreeList;
1149     gFreeList = temp + 1;
1150     Thread::muxRelease(&gListLock);
1151     TEVENT(Allocate block of monitors);
1152   }
1153 }
1154 
1155 // Place "m" on the caller's private per-thread omFreeList.
1156 // In practice there's no need to clamp or limit the number of
1157 // monitors on a thread's omFreeList as the only time we'll call
1158 // omRelease is to return a monitor to the free list after a CAS
1159 // attempt failed.  This doesn't allow unbounded #s of monitors to
1160 // accumulate on a thread's free list.
1161 //
1162 // Key constraint: all ObjectMonitors on a thread's free list and the global
1163 // free list must have their object field set to null. This prevents the
1164 // scavenger -- deflate_idle_monitors -- from reclaiming them.
1165 
1166 void ObjectSynchronizer::omRelease(Thread * Self, ObjectMonitor * m,
1167                                    bool fromPerThreadAlloc) {
1168   guarantee(m->object() == NULL, "invariant");
1169   guarantee(((m->is_busy()|m->_recursions) == 0), "freeing in-use monitor");
1170   // Remove from omInUseList
1171   if (MonitorInUseLists && fromPerThreadAlloc) {
1172     ObjectMonitor* cur_mid_in_use = NULL;
1173     bool extracted = false;
1174     for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; cur_mid_in_use = mid, mid = mid->FreeNext) {
1175       if (m == mid) {
1176         // extract from per-thread in-use list
1177         if (mid == Self->omInUseList) {
1178           Self->omInUseList = mid->FreeNext;
1179         } else if (cur_mid_in_use != NULL) {
1180           cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1181         }
1182         extracted = true;
1183         Self->omInUseCount--;
1184         if (ObjectMonitor::Knob_VerifyInUse) {
1185           verifyInUse(Self);
1186         }
1187         break;
1188       }
1189     }
1190     assert(extracted, "Should have extracted from in-use list");
1191   }
1192 
1193   // FreeNext is used for both omInUseList and omFreeList, so clear old before setting new
1194   m->FreeNext = Self->omFreeList;
1195   Self->omFreeList = m;
1196   Self->omFreeCount++;
1197 }
1198 
1199 // Return the monitors of a moribund thread's local free list to
1200 // the global free list.  Typically a thread calls omFlush() when
1201 // it's dying.  We could also consider having the VM thread steal
1202 // monitors from threads that have not run java code over a few
1203 // consecutive STW safepoints.  Relatedly, we might decay
1204 // omFreeProvision at STW safepoints.
1205 //
1206 // Also return the monitors of a moribund thread's omInUseList to
1207 // a global gOmInUseList under the global list lock so these
1208 // will continue to be scanned.
1209 //
1210 // We currently call omFlush() from the Thread:: dtor _after the thread
1211 // has been excised from the thread list and is no longer a mutator.
1212 // That means that omFlush() can run concurrently with a safepoint and
1213 // the scavenge operator.  Calling omFlush() from JavaThread::exit() might
1214 // be a better choice as we could safely reason that that the JVM is
1215 // not at a safepoint at the time of the call, and thus there could
1216 // be not inopportune interleavings between omFlush() and the scavenge
1217 // operator.
1218 
1219 void ObjectSynchronizer::omFlush(Thread * Self) {
1220   ObjectMonitor * list = Self->omFreeList;  // Null-terminated SLL
1221   Self->omFreeList = NULL;
1222   ObjectMonitor * tail = NULL;
1223   int tally = 0;
1224   if (list != NULL) {
1225     ObjectMonitor * s;
1226     // The thread is going away, the per-thread free monitors
1227     // are freed via set_owner(NULL)
1228     // Link them to tail, which will be linked into the global free list
1229     // gFreeList below, under the gListLock
1230     for (s = list; s != NULL; s = s->FreeNext) {
1231       tally++;
1232       tail = s;
1233       guarantee(s->object() == NULL, "invariant");
1234       guarantee(!s->is_busy(), "invariant");
1235       s->set_owner(NULL);   // redundant but good hygiene
1236       TEVENT(omFlush - Move one);
1237     }
1238     guarantee(tail != NULL && list != NULL, "invariant");
1239   }
1240 
1241   ObjectMonitor * inUseList = Self->omInUseList;
1242   ObjectMonitor * inUseTail = NULL;
1243   int inUseTally = 0;
1244   if (inUseList != NULL) {
1245     Self->omInUseList = NULL;
1246     ObjectMonitor *cur_om;
1247     // The thread is going away, however the omInUseList inflated
1248     // monitors may still be in-use by other threads.
1249     // Link them to inUseTail, which will be linked into the global in-use list
1250     // gOmInUseList below, under the gListLock
1251     for (cur_om = inUseList; cur_om != NULL; cur_om = cur_om->FreeNext) {
1252       inUseTail = cur_om;
1253       inUseTally++;
1254     }
1255     assert(Self->omInUseCount == inUseTally, "in-use count off");
1256     Self->omInUseCount = 0;
1257     guarantee(inUseTail != NULL && inUseList != NULL, "invariant");
1258   }
1259 
1260   Thread::muxAcquire(&gListLock, "omFlush");
1261   if (tail != NULL) {
1262     tail->FreeNext = gFreeList;
1263     gFreeList = list;
1264     gMonitorFreeCount += tally;
1265   }
1266 
1267   if (inUseTail != NULL) {
1268     inUseTail->FreeNext = gOmInUseList;
1269     gOmInUseList = inUseList;
1270     gOmInUseCount += inUseTally;
1271   }
1272 
1273   Thread::muxRelease(&gListLock);
1274   TEVENT(omFlush);
1275 }
1276 
1277 // Fast path code shared by multiple functions
1278 ObjectMonitor* ObjectSynchronizer::inflate_helper(oop obj) {
1279   markOop mark = obj->mark();
1280   if (mark->has_monitor()) {
1281     assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid");
1282     assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header");
1283     return mark->monitor();
1284   }
1285   return ObjectSynchronizer::inflate(Thread::current(), obj);
1286 }
1287 
1288 
1289 ObjectMonitor * NOINLINE ObjectSynchronizer::inflate(Thread * Self,
1290                                                      oop object) {
1291   // Inflate mutates the heap ...
1292   // Relaxing assertion for bug 6320749.
1293   assert(Universe::verify_in_progress() ||
1294          !SafepointSynchronize::is_at_safepoint(), "invariant");
1295 
1296   for (;;) {
1297     const markOop mark = object->mark();
1298     assert(!mark->has_bias_pattern(), "invariant");
1299 
1300     // The mark can be in one of the following states:
1301     // *  Inflated     - just return
1302     // *  Stack-locked - coerce it to inflated
1303     // *  INFLATING    - busy wait for conversion to complete
1304     // *  Neutral      - aggressively inflate the object.
1305     // *  BIASED       - Illegal.  We should never see this
1306 
1307     // CASE: inflated
1308     if (mark->has_monitor()) {
1309       ObjectMonitor * inf = mark->monitor();
1310       assert(inf->header()->is_neutral(), "invariant");
1311       assert(inf->object() == object, "invariant");
1312       assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1313       return inf;
1314     }
1315 
1316     // CASE: inflation in progress - inflating over a stack-lock.
1317     // Some other thread is converting from stack-locked to inflated.
1318     // Only that thread can complete inflation -- other threads must wait.
1319     // The INFLATING value is transient.
1320     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1321     // We could always eliminate polling by parking the thread on some auxiliary list.
1322     if (mark == markOopDesc::INFLATING()) {
1323       TEVENT(Inflate: spin while INFLATING);
1324       ReadStableMark(object);
1325       continue;
1326     }
1327 
1328     // CASE: stack-locked
1329     // Could be stack-locked either by this thread or by some other thread.
1330     //
1331     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1332     // to install INFLATING into the mark word.  We originally installed INFLATING,
1333     // allocated the objectmonitor, and then finally STed the address of the
1334     // objectmonitor into the mark.  This was correct, but artificially lengthened
1335     // the interval in which INFLATED appeared in the mark, thus increasing
1336     // the odds of inflation contention.
1337     //
1338     // We now use per-thread private objectmonitor free lists.
1339     // These list are reprovisioned from the global free list outside the
1340     // critical INFLATING...ST interval.  A thread can transfer
1341     // multiple objectmonitors en-mass from the global free list to its local free list.
1342     // This reduces coherency traffic and lock contention on the global free list.
1343     // Using such local free lists, it doesn't matter if the omAlloc() call appears
1344     // before or after the CAS(INFLATING) operation.
1345     // See the comments in omAlloc().
1346 
1347     if (mark->has_locker()) {
1348       ObjectMonitor * m = omAlloc(Self);
1349       // Optimistically prepare the objectmonitor - anticipate successful CAS
1350       // We do this before the CAS in order to minimize the length of time
1351       // in which INFLATING appears in the mark.
1352       m->Recycle();
1353       m->_Responsible  = NULL;
1354       m->_recursions   = 0;
1355       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1356 
1357       markOop cmp = (markOop) Atomic::cmpxchg_ptr(markOopDesc::INFLATING(), object->mark_addr(), mark);
1358       if (cmp != mark) {
1359         omRelease(Self, m, true);
1360         continue;       // Interference -- just retry
1361       }
1362 
1363       // We've successfully installed INFLATING (0) into the mark-word.
1364       // This is the only case where 0 will appear in a mark-work.
1365       // Only the singular thread that successfully swings the mark-word
1366       // to 0 can perform (or more precisely, complete) inflation.
1367       //
1368       // Why do we CAS a 0 into the mark-word instead of just CASing the
1369       // mark-word from the stack-locked value directly to the new inflated state?
1370       // Consider what happens when a thread unlocks a stack-locked object.
1371       // It attempts to use CAS to swing the displaced header value from the
1372       // on-stack basiclock back into the object header.  Recall also that the
1373       // header value (hashcode, etc) can reside in (a) the object header, or
1374       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1375       // header in an objectMonitor.  The inflate() routine must copy the header
1376       // value from the basiclock on the owner's stack to the objectMonitor, all
1377       // the while preserving the hashCode stability invariants.  If the owner
1378       // decides to release the lock while the value is 0, the unlock will fail
1379       // and control will eventually pass from slow_exit() to inflate.  The owner
1380       // will then spin, waiting for the 0 value to disappear.   Put another way,
1381       // the 0 causes the owner to stall if the owner happens to try to
1382       // drop the lock (restoring the header from the basiclock to the object)
1383       // while inflation is in-progress.  This protocol avoids races that might
1384       // would otherwise permit hashCode values to change or "flicker" for an object.
1385       // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
1386       // 0 serves as a "BUSY" inflate-in-progress indicator.
1387 
1388 
1389       // fetch the displaced mark from the owner's stack.
1390       // The owner can't die or unwind past the lock while our INFLATING
1391       // object is in the mark.  Furthermore the owner can't complete
1392       // an unlock on the object, either.
1393       markOop dmw = mark->displaced_mark_helper();
1394       assert(dmw->is_neutral(), "invariant");
1395 
1396       // Setup monitor fields to proper values -- prepare the monitor
1397       m->set_header(dmw);
1398 
1399       // Optimization: if the mark->locker stack address is associated
1400       // with this thread we could simply set m->_owner = Self.
1401       // Note that a thread can inflate an object
1402       // that it has stack-locked -- as might happen in wait() -- directly
1403       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1404       m->set_owner(mark->locker());
1405       m->set_object(object);
1406       // TODO-FIXME: assert BasicLock->dhw != 0.
1407 
1408       // Must preserve store ordering. The monitor state must
1409       // be stable at the time of publishing the monitor address.
1410       guarantee(object->mark() == markOopDesc::INFLATING(), "invariant");
1411       object->release_set_mark(markOopDesc::encode(m));
1412 
1413       // Hopefully the performance counters are allocated on distinct cache lines
1414       // to avoid false sharing on MP systems ...
1415       if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc();
1416       TEVENT(Inflate: overwrite stacklock);
1417       if (TraceMonitorInflation) {
1418         if (object->is_instance()) {
1419           ResourceMark rm;
1420           tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1421                         (void *) object, (intptr_t) object->mark(),
1422                         object->klass()->external_name());
1423         }
1424       }
1425       return m;
1426     }
1427 
1428     // CASE: neutral
1429     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1430     // If we know we're inflating for entry it's better to inflate by swinging a
1431     // pre-locked objectMonitor pointer into the object header.   A successful
1432     // CAS inflates the object *and* confers ownership to the inflating thread.
1433     // In the current implementation we use a 2-step mechanism where we CAS()
1434     // to inflate and then CAS() again to try to swing _owner from NULL to Self.
1435     // An inflateTry() method that we could call from fast_enter() and slow_enter()
1436     // would be useful.
1437 
1438     assert(mark->is_neutral(), "invariant");
1439     ObjectMonitor * m = omAlloc(Self);
1440     // prepare m for installation - set monitor to initial state
1441     m->Recycle();
1442     m->set_header(mark);
1443     m->set_owner(NULL);
1444     m->set_object(object);
1445     m->_recursions   = 0;
1446     m->_Responsible  = NULL;
1447     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
1448 
1449     if (Atomic::cmpxchg_ptr (markOopDesc::encode(m), object->mark_addr(), mark) != mark) {
1450       m->set_object(NULL);
1451       m->set_owner(NULL);
1452       m->Recycle();
1453       omRelease(Self, m, true);
1454       m = NULL;
1455       continue;
1456       // interference - the markword changed - just retry.
1457       // The state-transitions are one-way, so there's no chance of
1458       // live-lock -- "Inflated" is an absorbing state.
1459     }
1460 
1461     // Hopefully the performance counters are allocated on distinct
1462     // cache lines to avoid false sharing on MP systems ...
1463     if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc();
1464     TEVENT(Inflate: overwrite neutral);
1465     if (TraceMonitorInflation) {
1466       if (object->is_instance()) {
1467         ResourceMark rm;
1468         tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1469                       (void *) object, (intptr_t) object->mark(),
1470                       object->klass()->external_name());
1471       }
1472     }
1473     return m;
1474   }
1475 }
1476 
1477 
1478 // Deflate_idle_monitors() is called at all safepoints, immediately
1479 // after all mutators are stopped, but before any objects have moved.
1480 // It traverses the list of known monitors, deflating where possible.
1481 // The scavenged monitor are returned to the monitor free list.
1482 //
1483 // Beware that we scavenge at *every* stop-the-world point.
1484 // Having a large number of monitors in-circulation negatively
1485 // impacts the performance of some applications (e.g., PointBase).
1486 // Broadly, we want to minimize the # of monitors in circulation.
1487 //
1488 // We have added a flag, MonitorInUseLists, which creates a list
1489 // of active monitors for each thread. deflate_idle_monitors()
1490 // only scans the per-thread in-use lists. omAlloc() puts all
1491 // assigned monitors on the per-thread list. deflate_idle_monitors()
1492 // returns the non-busy monitors to the global free list.
1493 // When a thread dies, omFlush() adds the list of active monitors for
1494 // that thread to a global gOmInUseList acquiring the
1495 // global list lock. deflate_idle_monitors() acquires the global
1496 // list lock to scan for non-busy monitors to the global free list.
1497 // An alternative could have used a single global in-use list. The
1498 // downside would have been the additional cost of acquiring the global list lock
1499 // for every omAlloc().
1500 //
1501 // Perversely, the heap size -- and thus the STW safepoint rate --
1502 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1503 // which in turn can mean large(r) numbers of objectmonitors in circulation.
1504 // This is an unfortunate aspect of this design.
1505 
1506 enum ManifestConstants {
1507   ClearResponsibleAtSTW   = 0,
1508   MaximumRecheckInterval  = 1000
1509 };
1510 
1511 // Deflate a single monitor if not in-use
1512 // Return true if deflated, false if in-use
1513 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1514                                          ObjectMonitor** freeHeadp,
1515                                          ObjectMonitor** freeTailp) {
1516   bool deflated;
1517   // Normal case ... The monitor is associated with obj.
1518   guarantee(obj->mark() == markOopDesc::encode(mid), "invariant");
1519   guarantee(mid == obj->mark()->monitor(), "invariant");
1520   guarantee(mid->header()->is_neutral(), "invariant");
1521 
1522   if (mid->is_busy()) {
1523     if (ClearResponsibleAtSTW) mid->_Responsible = NULL;
1524     deflated = false;
1525   } else {
1526     // Deflate the monitor if it is no longer being used
1527     // It's idle - scavenge and return to the global free list
1528     // plain old deflation ...
1529     TEVENT(deflate_idle_monitors - scavenge1);
1530     if (TraceMonitorInflation) {
1531       if (obj->is_instance()) {
1532         ResourceMark rm;
1533         tty->print_cr("Deflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1534                       (void *) obj, (intptr_t) obj->mark(), obj->klass()->external_name());
1535       }
1536     }
1537 
1538     // Restore the header back to obj
1539     obj->release_set_mark(mid->header());
1540     mid->clear();
1541 
1542     assert(mid->object() == NULL, "invariant");
1543 
1544     // Move the object to the working free list defined by freeHeadp, freeTailp
1545     if (*freeHeadp == NULL) *freeHeadp = mid;
1546     if (*freeTailp != NULL) {
1547       ObjectMonitor * prevtail = *freeTailp;
1548       assert(prevtail->FreeNext == NULL, "cleaned up deflated?");
1549       prevtail->FreeNext = mid;
1550     }
1551     *freeTailp = mid;
1552     deflated = true;
1553   }
1554   return deflated;
1555 }
1556 
1557 // Walk a given monitor list, and deflate idle monitors
1558 // The given list could be a per-thread list or a global list
1559 // Caller acquires gListLock
1560 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** listHeadp,
1561                                              ObjectMonitor** freeHeadp,
1562                                              ObjectMonitor** freeTailp) {
1563   ObjectMonitor* mid;
1564   ObjectMonitor* next;
1565   ObjectMonitor* cur_mid_in_use = NULL;
1566   int deflated_count = 0;
1567 
1568   for (mid = *listHeadp; mid != NULL;) {
1569     oop obj = (oop) mid->object();
1570     if (obj != NULL && deflate_monitor(mid, obj, freeHeadp, freeTailp)) {
1571       // if deflate_monitor succeeded,
1572       // extract from per-thread in-use list
1573       if (mid == *listHeadp) {
1574         *listHeadp = mid->FreeNext;
1575       } else if (cur_mid_in_use != NULL) {
1576         cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1577       }
1578       next = mid->FreeNext;
1579       mid->FreeNext = NULL;  // This mid is current tail in the freeHeadp list
1580       mid = next;
1581       deflated_count++;
1582     } else {
1583       cur_mid_in_use = mid;
1584       mid = mid->FreeNext;
1585     }
1586   }
1587   return deflated_count;
1588 }
1589 
1590 void ObjectSynchronizer::deflate_idle_monitors() {
1591   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1592   int nInuse = 0;              // currently associated with objects
1593   int nInCirculation = 0;      // extant
1594   int nScavenged = 0;          // reclaimed
1595   bool deflated = false;
1596 
1597   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
1598   ObjectMonitor * freeTailp = NULL;
1599 
1600   TEVENT(deflate_idle_monitors);
1601   // Prevent omFlush from changing mids in Thread dtor's during deflation
1602   // And in case the vm thread is acquiring a lock during a safepoint
1603   // See e.g. 6320749
1604   Thread::muxAcquire(&gListLock, "scavenge - return");
1605 
1606   if (MonitorInUseLists) {
1607     int inUse = 0;
1608     for (JavaThread* cur = Threads::first(); cur != NULL; cur = cur->next()) {
1609       nInCirculation+= cur->omInUseCount;
1610       int deflated_count = deflate_monitor_list(cur->omInUseList_addr(), &freeHeadp, &freeTailp);
1611       cur->omInUseCount-= deflated_count;
1612       if (ObjectMonitor::Knob_VerifyInUse) {
1613         verifyInUse(cur);
1614       }
1615       nScavenged += deflated_count;
1616       nInuse += cur->omInUseCount;
1617     }
1618 
1619     // For moribund threads, scan gOmInUseList
1620     if (gOmInUseList) {
1621       nInCirculation += gOmInUseCount;
1622       int deflated_count = deflate_monitor_list((ObjectMonitor **)&gOmInUseList, &freeHeadp, &freeTailp);
1623       gOmInUseCount-= deflated_count;
1624       nScavenged += deflated_count;
1625       nInuse += gOmInUseCount;
1626     }
1627 
1628   } else for (PaddedEnd<ObjectMonitor> * block =
1629               (PaddedEnd<ObjectMonitor> *)gBlockList; block != NULL;
1630               block = (PaddedEnd<ObjectMonitor> *)next(block)) {
1631     // Iterate over all extant monitors - Scavenge all idle monitors.
1632     assert(block->object() == CHAINMARKER, "must be a block header");
1633     nInCirculation += _BLOCKSIZE;
1634     for (int i = 1; i < _BLOCKSIZE; i++) {
1635       ObjectMonitor* mid = (ObjectMonitor*)&block[i];
1636       oop obj = (oop) mid->object();
1637 
1638       if (obj == NULL) {
1639         // The monitor is not associated with an object.
1640         // The monitor should either be a thread-specific private
1641         // free list or the global free list.
1642         // obj == NULL IMPLIES mid->is_busy() == 0
1643         guarantee(!mid->is_busy(), "invariant");
1644         continue;
1645       }
1646       deflated = deflate_monitor(mid, obj, &freeHeadp, &freeTailp);
1647 
1648       if (deflated) {
1649         mid->FreeNext = NULL;
1650         nScavenged++;
1651       } else {
1652         nInuse++;
1653       }
1654     }
1655   }
1656 
1657   gMonitorFreeCount += nScavenged;
1658 
1659   // Consider: audit gFreeList to ensure that gMonitorFreeCount and list agree.
1660 
1661   if (ObjectMonitor::Knob_Verbose) {
1662     ::printf("Deflate: InCirc=%d InUse=%d Scavenged=%d ForceMonitorScavenge=%d : pop=%d free=%d\n",
1663              nInCirculation, nInuse, nScavenged, ForceMonitorScavenge,
1664              gMonitorPopulation, gMonitorFreeCount);
1665     ::fflush(stdout);
1666   }
1667 
1668   ForceMonitorScavenge = 0;    // Reset
1669 
1670   // Move the scavenged monitors back to the global free list.
1671   if (freeHeadp != NULL) {
1672     guarantee(freeTailp != NULL && nScavenged > 0, "invariant");
1673     assert(freeTailp->FreeNext == NULL, "invariant");
1674     // constant-time list splice - prepend scavenged segment to gFreeList
1675     freeTailp->FreeNext = gFreeList;
1676     gFreeList = freeHeadp;
1677   }
1678   Thread::muxRelease(&gListLock);
1679 
1680   if (ObjectMonitor::_sync_Deflations != NULL) ObjectMonitor::_sync_Deflations->inc(nScavenged);
1681   if (ObjectMonitor::_sync_MonExtant  != NULL) ObjectMonitor::_sync_MonExtant ->set_value(nInCirculation);
1682 
1683   // TODO: Add objectMonitor leak detection.
1684   // Audit/inventory the objectMonitors -- make sure they're all accounted for.
1685   GVars.stwRandom = os::random();
1686   GVars.stwCycle++;
1687 }
1688 
1689 // Monitor cleanup on JavaThread::exit
1690 
1691 // Iterate through monitor cache and attempt to release thread's monitors
1692 // Gives up on a particular monitor if an exception occurs, but continues
1693 // the overall iteration, swallowing the exception.
1694 class ReleaseJavaMonitorsClosure: public MonitorClosure {
1695  private:
1696   TRAPS;
1697 
1698  public:
1699   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
1700   void do_monitor(ObjectMonitor* mid) {
1701     if (mid->owner() == THREAD) {
1702       (void)mid->complete_exit(CHECK);
1703     }
1704   }
1705 };
1706 
1707 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
1708 // ignored.  This is meant to be called during JNI thread detach which assumes
1709 // all remaining monitors are heavyweight.  All exceptions are swallowed.
1710 // Scanning the extant monitor list can be time consuming.
1711 // A simple optimization is to add a per-thread flag that indicates a thread
1712 // called jni_monitorenter() during its lifetime.
1713 //
1714 // Instead of No_Savepoint_Verifier it might be cheaper to
1715 // use an idiom of the form:
1716 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1717 //   <code that must not run at safepoint>
1718 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1719 // Since the tests are extremely cheap we could leave them enabled
1720 // for normal product builds.
1721 
1722 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
1723   assert(THREAD == JavaThread::current(), "must be current Java thread");
1724   No_Safepoint_Verifier nsv;
1725   ReleaseJavaMonitorsClosure rjmc(THREAD);
1726   Thread::muxAcquire(&gListLock, "release_monitors_owned_by_thread");
1727   ObjectSynchronizer::monitors_iterate(&rjmc);
1728   Thread::muxRelease(&gListLock);
1729   THREAD->clear_pending_exception();
1730 }
1731 
1732 //------------------------------------------------------------------------------
1733 // Debugging code
1734 
1735 void ObjectSynchronizer::sanity_checks(const bool verbose,
1736                                        const uint cache_line_size,
1737                                        int *error_cnt_ptr,
1738                                        int *warning_cnt_ptr) {
1739   u_char *addr_begin      = (u_char*)&GVars;
1740   u_char *addr_stwRandom  = (u_char*)&GVars.stwRandom;
1741   u_char *addr_hcSequence = (u_char*)&GVars.hcSequence;
1742 
1743   if (verbose) {
1744     tty->print_cr("INFO: sizeof(SharedGlobals)=" SIZE_FORMAT,
1745                   sizeof(SharedGlobals));
1746   }
1747 
1748   uint offset_stwRandom = (uint)(addr_stwRandom - addr_begin);
1749   if (verbose) tty->print_cr("INFO: offset(stwRandom)=%u", offset_stwRandom);
1750 
1751   uint offset_hcSequence = (uint)(addr_hcSequence - addr_begin);
1752   if (verbose) {
1753     tty->print_cr("INFO: offset(_hcSequence)=%u", offset_hcSequence);
1754   }
1755 
1756   if (cache_line_size != 0) {
1757     // We were able to determine the L1 data cache line size so
1758     // do some cache line specific sanity checks
1759 
1760     if (offset_stwRandom < cache_line_size) {
1761       tty->print_cr("WARNING: the SharedGlobals.stwRandom field is closer "
1762                     "to the struct beginning than a cache line which permits "
1763                     "false sharing.");
1764       (*warning_cnt_ptr)++;
1765     }
1766 
1767     if ((offset_hcSequence - offset_stwRandom) < cache_line_size) {
1768       tty->print_cr("WARNING: the SharedGlobals.stwRandom and "
1769                     "SharedGlobals.hcSequence fields are closer than a cache "
1770                     "line which permits false sharing.");
1771       (*warning_cnt_ptr)++;
1772     }
1773 
1774     if ((sizeof(SharedGlobals) - offset_hcSequence) < cache_line_size) {
1775       tty->print_cr("WARNING: the SharedGlobals.hcSequence field is closer "
1776                     "to the struct end than a cache line which permits false "
1777                     "sharing.");
1778       (*warning_cnt_ptr)++;
1779     }
1780   }
1781 }
1782 
1783 #ifndef PRODUCT
1784 
1785 // Verify all monitors in the monitor cache, the verification is weak.
1786 void ObjectSynchronizer::verify() {
1787   PaddedEnd<ObjectMonitor> * block = (PaddedEnd<ObjectMonitor> *)gBlockList;
1788   ObjectMonitor* mid;
1789   while (block) {
1790     assert(block->object() == CHAINMARKER, "must be a block header");
1791     for (int i = 1; i < _BLOCKSIZE; i++) {
1792       mid = (ObjectMonitor *)(block + i);
1793       oop object = (oop) mid->object();
1794       if (object != NULL) {
1795         mid->verify();
1796       }
1797     }
1798     block = (PaddedEnd<ObjectMonitor> *) block->FreeNext;
1799   }
1800 }
1801 
1802 // Check if monitor belongs to the monitor cache
1803 // The list is grow-only so it's *relatively* safe to traverse
1804 // the list of extant blocks without taking a lock.
1805 
1806 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
1807   PaddedEnd<ObjectMonitor> * block = (PaddedEnd<ObjectMonitor> *)gBlockList;
1808 
1809   while (block) {
1810     assert(block->object() == CHAINMARKER, "must be a block header");
1811     if (monitor > (ObjectMonitor *)&block[0] &&
1812         monitor < (ObjectMonitor *)&block[_BLOCKSIZE]) {
1813       address mon = (address) monitor;
1814       address blk = (address) block;
1815       size_t diff = mon - blk;
1816       assert((diff % sizeof(PaddedEnd<ObjectMonitor>)) == 0, "check");
1817       return 1;
1818     }
1819     block = (PaddedEnd<ObjectMonitor> *) block->FreeNext;
1820   }
1821   return 0;
1822 }
1823 
1824 #endif