1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/callGenerator.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/convertnode.hpp"
  38 #include "opto/countbitsnode.hpp"
  39 #include "opto/intrinsicnode.hpp"
  40 #include "opto/idealKit.hpp"
  41 #include "opto/mathexactnode.hpp"
  42 #include "opto/movenode.hpp"
  43 #include "opto/mulnode.hpp"
  44 #include "opto/narrowptrnode.hpp"
  45 #include "opto/opaquenode.hpp"
  46 #include "opto/parse.hpp"
  47 #include "opto/runtime.hpp"
  48 #include "opto/subnode.hpp"
  49 #include "prims/nativeLookup.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "trace/traceMacros.hpp"
  52 
  53 class LibraryIntrinsic : public InlineCallGenerator {
  54   // Extend the set of intrinsics known to the runtime:
  55  public:
  56  private:
  57   bool             _is_virtual;
  58   bool             _does_virtual_dispatch;
  59   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  60   int8_t           _last_predicate; // Last generated predicate
  61   vmIntrinsics::ID _intrinsic_id;
  62 
  63  public:
  64   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  65     : InlineCallGenerator(m),
  66       _is_virtual(is_virtual),
  67       _does_virtual_dispatch(does_virtual_dispatch),
  68       _predicates_count((int8_t)predicates_count),
  69       _last_predicate((int8_t)-1),
  70       _intrinsic_id(id)
  71   {
  72   }
  73   virtual bool is_intrinsic() const { return true; }
  74   virtual bool is_virtual()   const { return _is_virtual; }
  75   virtual bool is_predicated() const { return _predicates_count > 0; }
  76   virtual int  predicates_count() const { return _predicates_count; }
  77   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  78   virtual JVMState* generate(JVMState* jvms);
  79   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  80   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  81 };
  82 
  83 
  84 // Local helper class for LibraryIntrinsic:
  85 class LibraryCallKit : public GraphKit {
  86  private:
  87   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  88   Node*             _result;        // the result node, if any
  89   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  90 
  91   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  92 
  93  public:
  94   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  95     : GraphKit(jvms),
  96       _intrinsic(intrinsic),
  97       _result(NULL)
  98   {
  99     // Check if this is a root compile.  In that case we don't have a caller.
 100     if (!jvms->has_method()) {
 101       _reexecute_sp = sp();
 102     } else {
 103       // Find out how many arguments the interpreter needs when deoptimizing
 104       // and save the stack pointer value so it can used by uncommon_trap.
 105       // We find the argument count by looking at the declared signature.
 106       bool ignored_will_link;
 107       ciSignature* declared_signature = NULL;
 108       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 109       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 110       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 111     }
 112   }
 113 
 114   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 115 
 116   ciMethod*         caller()    const    { return jvms()->method(); }
 117   int               bci()       const    { return jvms()->bci(); }
 118   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 119   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 120   ciMethod*         callee()    const    { return _intrinsic->method(); }
 121 
 122   bool  try_to_inline(int predicate);
 123   Node* try_to_predicate(int predicate);
 124 
 125   void push_result() {
 126     // Push the result onto the stack.
 127     if (!stopped() && result() != NULL) {
 128       BasicType bt = result()->bottom_type()->basic_type();
 129       push_node(bt, result());
 130     }
 131   }
 132 
 133  private:
 134   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 135     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 136   }
 137 
 138   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 139   void  set_result(RegionNode* region, PhiNode* value);
 140   Node*     result() { return _result; }
 141 
 142   virtual int reexecute_sp() { return _reexecute_sp; }
 143 
 144   // Helper functions to inline natives
 145   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 146   Node* generate_slow_guard(Node* test, RegionNode* region);
 147   Node* generate_fair_guard(Node* test, RegionNode* region);
 148   Node* generate_negative_guard(Node* index, RegionNode* region,
 149                                 // resulting CastII of index:
 150                                 Node* *pos_index = NULL);
 151   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 152                              Node* array_length,
 153                              RegionNode* region);
 154   Node* generate_current_thread(Node* &tls_output);
 155   Node* load_mirror_from_klass(Node* klass);
 156   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 157                                       RegionNode* region, int null_path,
 158                                       int offset);
 159   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 160                                RegionNode* region, int null_path) {
 161     int offset = java_lang_Class::klass_offset_in_bytes();
 162     return load_klass_from_mirror_common(mirror, never_see_null,
 163                                          region, null_path,
 164                                          offset);
 165   }
 166   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 167                                      RegionNode* region, int null_path) {
 168     int offset = java_lang_Class::array_klass_offset_in_bytes();
 169     return load_klass_from_mirror_common(mirror, never_see_null,
 170                                          region, null_path,
 171                                          offset);
 172   }
 173   Node* generate_access_flags_guard(Node* kls,
 174                                     int modifier_mask, int modifier_bits,
 175                                     RegionNode* region);
 176   Node* generate_interface_guard(Node* kls, RegionNode* region);
 177   Node* generate_array_guard(Node* kls, RegionNode* region) {
 178     return generate_array_guard_common(kls, region, false, false);
 179   }
 180   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 181     return generate_array_guard_common(kls, region, false, true);
 182   }
 183   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 184     return generate_array_guard_common(kls, region, true, false);
 185   }
 186   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 187     return generate_array_guard_common(kls, region, true, true);
 188   }
 189   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 190                                     bool obj_array, bool not_array);
 191   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 192   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 193                                      bool is_virtual = false, bool is_static = false);
 194   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 195     return generate_method_call(method_id, false, true);
 196   }
 197   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 198     return generate_method_call(method_id, true, false);
 199   }
 200   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 201 
 202   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 203   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 204   bool inline_string_compareTo();
 205   bool inline_string_indexOf();
 206   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 207   bool inline_string_equals();
 208   Node* round_double_node(Node* n);
 209   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 210   bool inline_math_native(vmIntrinsics::ID id);
 211   bool inline_trig(vmIntrinsics::ID id);
 212   bool inline_math(vmIntrinsics::ID id);
 213   template <typename OverflowOp>
 214   bool inline_math_overflow(Node* arg1, Node* arg2);
 215   void inline_math_mathExact(Node* math, Node* test);
 216   bool inline_math_addExactI(bool is_increment);
 217   bool inline_math_addExactL(bool is_increment);
 218   bool inline_math_multiplyExactI();
 219   bool inline_math_multiplyExactL();
 220   bool inline_math_negateExactI();
 221   bool inline_math_negateExactL();
 222   bool inline_math_subtractExactI(bool is_decrement);
 223   bool inline_math_subtractExactL(bool is_decrement);
 224   bool inline_exp();
 225   bool inline_pow();
 226   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 227   bool inline_min_max(vmIntrinsics::ID id);
 228   bool inline_notify(vmIntrinsics::ID id);
 229   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 230   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 231   int classify_unsafe_addr(Node* &base, Node* &offset);
 232   Node* make_unsafe_address(Node* base, Node* offset);
 233   // Helper for inline_unsafe_access.
 234   // Generates the guards that check whether the result of
 235   // Unsafe.getObject should be recorded in an SATB log buffer.
 236   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 237   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 238   static bool klass_needs_init_guard(Node* kls);
 239   bool inline_unsafe_allocate();
 240   bool inline_unsafe_copyMemory();
 241   bool inline_native_currentThread();
 242 #ifdef TRACE_HAVE_INTRINSICS
 243   bool inline_native_classID();
 244   bool inline_native_threadID();
 245 #endif
 246   bool inline_native_time_funcs(address method, const char* funcName);
 247   bool inline_native_isInterrupted();
 248   bool inline_native_Class_query(vmIntrinsics::ID id);
 249   bool inline_native_subtype_check();
 250 
 251   bool inline_native_newArray();
 252   bool inline_native_getLength();
 253   bool inline_array_copyOf(bool is_copyOfRange);
 254   bool inline_array_equals();
 255   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 256   bool inline_native_clone(bool is_virtual);
 257   bool inline_native_Reflection_getCallerClass();
 258   // Helper function for inlining native object hash method
 259   bool inline_native_hashcode(bool is_virtual, bool is_static);
 260   bool inline_native_getClass();
 261 
 262   // Helper functions for inlining arraycopy
 263   bool inline_arraycopy();
 264   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 265                                                 RegionNode* slow_region);
 266   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 267   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp);
 268 
 269   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 270   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 271   bool inline_unsafe_ordered_store(BasicType type);
 272   bool inline_unsafe_fence(vmIntrinsics::ID id);
 273   bool inline_fp_conversions(vmIntrinsics::ID id);
 274   bool inline_number_methods(vmIntrinsics::ID id);
 275   bool inline_reference_get();
 276   bool inline_Class_cast();
 277   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 278   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 279   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 280   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 281   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 282   bool inline_ghash_processBlocks();
 283   bool inline_sha_implCompress(vmIntrinsics::ID id);
 284   bool inline_digestBase_implCompressMB(int predicate);
 285   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 286                                  bool long_state, address stubAddr, const char *stubName,
 287                                  Node* src_start, Node* ofs, Node* limit);
 288   Node* get_state_from_sha_object(Node *sha_object);
 289   Node* get_state_from_sha5_object(Node *sha_object);
 290   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 291   bool inline_encodeISOArray();
 292   bool inline_updateCRC32();
 293   bool inline_updateBytesCRC32();
 294   bool inline_updateByteBufferCRC32();
 295   Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
 296   bool inline_updateBytesCRC32C();
 297   bool inline_updateDirectByteBufferCRC32C();
 298   bool inline_multiplyToLen();
 299   bool inline_squareToLen();
 300   bool inline_mulAdd();
 301 
 302   bool inline_profileBoolean();
 303   bool inline_isCompileConstant();
 304 };
 305 
 306 
 307 //---------------------------make_vm_intrinsic----------------------------
 308 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 309   vmIntrinsics::ID id = m->intrinsic_id();
 310   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 311 
 312   ccstr disable_intr = NULL;
 313 
 314   if ((DisableIntrinsic[0] != '\0'
 315        && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) ||
 316       (method_has_option_value("DisableIntrinsic", disable_intr)
 317        && strstr(disable_intr, vmIntrinsics::name_at(id)) != NULL)) {
 318     // disabled by a user request on the command line:
 319     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 320     return NULL;
 321   }
 322 
 323   if (!m->is_loaded()) {
 324     // do not attempt to inline unloaded methods
 325     return NULL;
 326   }
 327 
 328   // Only a few intrinsics implement a virtual dispatch.
 329   // They are expensive calls which are also frequently overridden.
 330   if (is_virtual) {
 331     switch (id) {
 332     case vmIntrinsics::_hashCode:
 333     case vmIntrinsics::_clone:
 334       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 335       break;
 336     default:
 337       return NULL;
 338     }
 339   }
 340 
 341   // -XX:-InlineNatives disables nearly all intrinsics:
 342   if (!InlineNatives) {
 343     switch (id) {
 344     case vmIntrinsics::_indexOf:
 345     case vmIntrinsics::_compareTo:
 346     case vmIntrinsics::_equals:
 347     case vmIntrinsics::_equalsC:
 348     case vmIntrinsics::_getAndAddInt:
 349     case vmIntrinsics::_getAndAddLong:
 350     case vmIntrinsics::_getAndSetInt:
 351     case vmIntrinsics::_getAndSetLong:
 352     case vmIntrinsics::_getAndSetObject:
 353     case vmIntrinsics::_loadFence:
 354     case vmIntrinsics::_storeFence:
 355     case vmIntrinsics::_fullFence:
 356       break;  // InlineNatives does not control String.compareTo
 357     case vmIntrinsics::_Reference_get:
 358       break;  // InlineNatives does not control Reference.get
 359     default:
 360       return NULL;
 361     }
 362   }
 363 
 364   int predicates = 0;
 365   bool does_virtual_dispatch = false;
 366 
 367   switch (id) {
 368   case vmIntrinsics::_compareTo:
 369     if (!SpecialStringCompareTo)  return NULL;
 370     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 371     break;
 372   case vmIntrinsics::_indexOf:
 373     if (!SpecialStringIndexOf)  return NULL;
 374     break;
 375   case vmIntrinsics::_equals:
 376     if (!SpecialStringEquals)  return NULL;
 377     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 378     break;
 379   case vmIntrinsics::_equalsC:
 380     if (!SpecialArraysEquals)  return NULL;
 381     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 382     break;
 383   case vmIntrinsics::_arraycopy:
 384     if (!InlineArrayCopy)  return NULL;
 385     break;
 386   case vmIntrinsics::_copyMemory:
 387     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 388     if (!InlineArrayCopy)  return NULL;
 389     break;
 390   case vmIntrinsics::_hashCode:
 391     if (!InlineObjectHash)  return NULL;
 392     does_virtual_dispatch = true;
 393     break;
 394   case vmIntrinsics::_clone:
 395     does_virtual_dispatch = true;
 396   case vmIntrinsics::_copyOf:
 397   case vmIntrinsics::_copyOfRange:
 398     if (!InlineObjectCopy)  return NULL;
 399     // These also use the arraycopy intrinsic mechanism:
 400     if (!InlineArrayCopy)  return NULL;
 401     break;
 402   case vmIntrinsics::_encodeISOArray:
 403     if (!SpecialEncodeISOArray)  return NULL;
 404     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 405     break;
 406   case vmIntrinsics::_checkIndex:
 407     // We do not intrinsify this.  The optimizer does fine with it.
 408     return NULL;
 409 
 410   case vmIntrinsics::_getCallerClass:
 411     if (!InlineReflectionGetCallerClass)  return NULL;
 412     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 413     break;
 414 
 415   case vmIntrinsics::_bitCount_i:
 416     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 417     break;
 418 
 419   case vmIntrinsics::_bitCount_l:
 420     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 421     break;
 422 
 423   case vmIntrinsics::_numberOfLeadingZeros_i:
 424     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 425     break;
 426 
 427   case vmIntrinsics::_numberOfLeadingZeros_l:
 428     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 429     break;
 430 
 431   case vmIntrinsics::_numberOfTrailingZeros_i:
 432     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 433     break;
 434 
 435   case vmIntrinsics::_numberOfTrailingZeros_l:
 436     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 437     break;
 438 
 439   case vmIntrinsics::_reverseBytes_c:
 440     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 441     break;
 442   case vmIntrinsics::_reverseBytes_s:
 443     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 444     break;
 445   case vmIntrinsics::_reverseBytes_i:
 446     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 447     break;
 448   case vmIntrinsics::_reverseBytes_l:
 449     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 450     break;
 451 
 452   case vmIntrinsics::_Reference_get:
 453     // Use the intrinsic version of Reference.get() so that the value in
 454     // the referent field can be registered by the G1 pre-barrier code.
 455     // Also add memory barrier to prevent commoning reads from this field
 456     // across safepoint since GC can change it value.
 457     break;
 458 
 459   case vmIntrinsics::_compareAndSwapObject:
 460 #ifdef _LP64
 461     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 462 #endif
 463     break;
 464 
 465   case vmIntrinsics::_compareAndSwapLong:
 466     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 467     break;
 468 
 469   case vmIntrinsics::_getAndAddInt:
 470     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 471     break;
 472 
 473   case vmIntrinsics::_getAndAddLong:
 474     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 475     break;
 476 
 477   case vmIntrinsics::_getAndSetInt:
 478     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 479     break;
 480 
 481   case vmIntrinsics::_getAndSetLong:
 482     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 483     break;
 484 
 485   case vmIntrinsics::_getAndSetObject:
 486 #ifdef _LP64
 487     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 488     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 489     break;
 490 #else
 491     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 492     break;
 493 #endif
 494 
 495   case vmIntrinsics::_aescrypt_encryptBlock:
 496   case vmIntrinsics::_aescrypt_decryptBlock:
 497     if (!UseAESIntrinsics) return NULL;
 498     break;
 499 
 500   case vmIntrinsics::_multiplyToLen:
 501     if (!UseMultiplyToLenIntrinsic) return NULL;
 502     break;
 503 
 504   case vmIntrinsics::_squareToLen:
 505     if (!UseSquareToLenIntrinsic) return NULL;
 506     break;
 507 
 508   case vmIntrinsics::_mulAdd:
 509     if (!UseMulAddIntrinsic) return NULL;
 510     break;
 511 
 512   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 513   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 514     if (!UseAESIntrinsics) return NULL;
 515     // these two require the predicated logic
 516     predicates = 1;
 517     break;
 518 
 519   case vmIntrinsics::_sha_implCompress:
 520     if (!UseSHA1Intrinsics) return NULL;
 521     break;
 522 
 523   case vmIntrinsics::_sha2_implCompress:
 524     if (!UseSHA256Intrinsics) return NULL;
 525     break;
 526 
 527   case vmIntrinsics::_sha5_implCompress:
 528     if (!UseSHA512Intrinsics) return NULL;
 529     break;
 530 
 531   case vmIntrinsics::_digestBase_implCompressMB:
 532     if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return NULL;
 533     predicates = 3;
 534     break;
 535 
 536   case vmIntrinsics::_ghash_processBlocks:
 537     if (!UseGHASHIntrinsics) return NULL;
 538     break;
 539 
 540   case vmIntrinsics::_updateCRC32:
 541   case vmIntrinsics::_updateBytesCRC32:
 542   case vmIntrinsics::_updateByteBufferCRC32:
 543     if (!UseCRC32Intrinsics) return NULL;
 544     break;
 545 
 546   case vmIntrinsics::_updateBytesCRC32C:
 547   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 548     if (!UseCRC32CIntrinsics) return NULL;
 549     break;
 550 
 551   case vmIntrinsics::_incrementExactI:
 552   case vmIntrinsics::_addExactI:
 553     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 554     break;
 555   case vmIntrinsics::_incrementExactL:
 556   case vmIntrinsics::_addExactL:
 557     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 558     break;
 559   case vmIntrinsics::_decrementExactI:
 560   case vmIntrinsics::_subtractExactI:
 561     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 562     break;
 563   case vmIntrinsics::_decrementExactL:
 564   case vmIntrinsics::_subtractExactL:
 565     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 566     break;
 567   case vmIntrinsics::_negateExactI:
 568     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 569     break;
 570   case vmIntrinsics::_negateExactL:
 571     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 572     break;
 573   case vmIntrinsics::_multiplyExactI:
 574     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 575     break;
 576   case vmIntrinsics::_multiplyExactL:
 577     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 578     break;
 579 
 580   case vmIntrinsics::_getShortUnaligned:
 581   case vmIntrinsics::_getCharUnaligned:
 582   case vmIntrinsics::_getIntUnaligned:
 583   case vmIntrinsics::_getLongUnaligned:
 584   case vmIntrinsics::_putShortUnaligned:
 585   case vmIntrinsics::_putCharUnaligned:
 586   case vmIntrinsics::_putIntUnaligned:
 587   case vmIntrinsics::_putLongUnaligned:
 588     if (!UseUnalignedAccesses) return NULL;
 589     break;
 590 
 591  default:
 592     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 593     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 594     break;
 595   }
 596 
 597   // -XX:-InlineClassNatives disables natives from the Class class.
 598   // The flag applies to all reflective calls, notably Array.newArray
 599   // (visible to Java programmers as Array.newInstance).
 600   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 601       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 602     if (!InlineClassNatives)  return NULL;
 603   }
 604 
 605   // -XX:-InlineThreadNatives disables natives from the Thread class.
 606   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 607     if (!InlineThreadNatives)  return NULL;
 608   }
 609 
 610   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 611   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 612       m->holder()->name() == ciSymbol::java_lang_Float() ||
 613       m->holder()->name() == ciSymbol::java_lang_Double()) {
 614     if (!InlineMathNatives)  return NULL;
 615   }
 616 
 617   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 618   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 619     if (!InlineUnsafeOps)  return NULL;
 620   }
 621 
 622   return new LibraryIntrinsic(m, is_virtual, predicates, does_virtual_dispatch, (vmIntrinsics::ID) id);
 623 }
 624 
 625 //----------------------register_library_intrinsics-----------------------
 626 // Initialize this file's data structures, for each Compile instance.
 627 void Compile::register_library_intrinsics() {
 628   // Nothing to do here.
 629 }
 630 
 631 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 632   LibraryCallKit kit(jvms, this);
 633   Compile* C = kit.C;
 634   int nodes = C->unique();
 635 #ifndef PRODUCT
 636   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 637     char buf[1000];
 638     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 639     tty->print_cr("Intrinsic %s", str);
 640   }
 641 #endif
 642   ciMethod* callee = kit.callee();
 643   const int bci    = kit.bci();
 644 
 645   // Try to inline the intrinsic.
 646   if (kit.try_to_inline(_last_predicate)) {
 647     if (C->print_intrinsics() || C->print_inlining()) {
 648       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 649     }
 650     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 651     if (C->log()) {
 652       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 653                      vmIntrinsics::name_at(intrinsic_id()),
 654                      (is_virtual() ? " virtual='1'" : ""),
 655                      C->unique() - nodes);
 656     }
 657     // Push the result from the inlined method onto the stack.
 658     kit.push_result();
 659     C->print_inlining_update(this);
 660     return kit.transfer_exceptions_into_jvms();
 661   }
 662 
 663   // The intrinsic bailed out
 664   if (C->print_intrinsics() || C->print_inlining()) {
 665     if (jvms->has_method()) {
 666       // Not a root compile.
 667       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 668       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 669     } else {
 670       // Root compile
 671       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 672                vmIntrinsics::name_at(intrinsic_id()),
 673                (is_virtual() ? " (virtual)" : ""), bci);
 674     }
 675   }
 676   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 677   C->print_inlining_update(this);
 678   return NULL;
 679 }
 680 
 681 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 682   LibraryCallKit kit(jvms, this);
 683   Compile* C = kit.C;
 684   int nodes = C->unique();
 685   _last_predicate = predicate;
 686 #ifndef PRODUCT
 687   assert(is_predicated() && predicate < predicates_count(), "sanity");
 688   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 689     char buf[1000];
 690     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 691     tty->print_cr("Predicate for intrinsic %s", str);
 692   }
 693 #endif
 694   ciMethod* callee = kit.callee();
 695   const int bci    = kit.bci();
 696 
 697   Node* slow_ctl = kit.try_to_predicate(predicate);
 698   if (!kit.failing()) {
 699     if (C->print_intrinsics() || C->print_inlining()) {
 700       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 701     }
 702     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 703     if (C->log()) {
 704       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 705                      vmIntrinsics::name_at(intrinsic_id()),
 706                      (is_virtual() ? " virtual='1'" : ""),
 707                      C->unique() - nodes);
 708     }
 709     return slow_ctl; // Could be NULL if the check folds.
 710   }
 711 
 712   // The intrinsic bailed out
 713   if (C->print_intrinsics() || C->print_inlining()) {
 714     if (jvms->has_method()) {
 715       // Not a root compile.
 716       const char* msg = "failed to generate predicate for intrinsic";
 717       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 718     } else {
 719       // Root compile
 720       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 721                                         vmIntrinsics::name_at(intrinsic_id()),
 722                                         (is_virtual() ? " (virtual)" : ""), bci);
 723     }
 724   }
 725   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 726   return NULL;
 727 }
 728 
 729 bool LibraryCallKit::try_to_inline(int predicate) {
 730   // Handle symbolic names for otherwise undistinguished boolean switches:
 731   const bool is_store       = true;
 732   const bool is_native_ptr  = true;
 733   const bool is_static      = true;
 734   const bool is_volatile    = true;
 735 
 736   if (!jvms()->has_method()) {
 737     // Root JVMState has a null method.
 738     assert(map()->memory()->Opcode() == Op_Parm, "");
 739     // Insert the memory aliasing node
 740     set_all_memory(reset_memory());
 741   }
 742   assert(merged_memory(), "");
 743 
 744 
 745   switch (intrinsic_id()) {
 746   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 747   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 748   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 749 
 750   case vmIntrinsics::_dsin:
 751   case vmIntrinsics::_dcos:
 752   case vmIntrinsics::_dtan:
 753   case vmIntrinsics::_dabs:
 754   case vmIntrinsics::_datan2:
 755   case vmIntrinsics::_dsqrt:
 756   case vmIntrinsics::_dexp:
 757   case vmIntrinsics::_dlog:
 758   case vmIntrinsics::_dlog10:
 759   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 760 
 761   case vmIntrinsics::_min:
 762   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 763 
 764   case vmIntrinsics::_notify:
 765   case vmIntrinsics::_notifyAll:
 766     if (InlineNotify) {
 767       return inline_notify(intrinsic_id());
 768     }
 769     return false;
 770 
 771   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 772   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 773   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 774   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 775   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 776   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 777   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 778   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 779   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 780   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 781   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 782   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 783 
 784   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 785 
 786   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 787   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 788   case vmIntrinsics::_equals:                   return inline_string_equals();
 789 
 790   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 791   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 792   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 793   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 794   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 795   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 796   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 797   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 798   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 799 
 800   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 801   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 802   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 803   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 804   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 805   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 806   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 807   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 808   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 809 
 810   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 811   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 812   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 813   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 814   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 815   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 816   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 817   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 818 
 819   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 820   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 821   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 822   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 823   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 824   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 825   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 826   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 827 
 828   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 829   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 830   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 831   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 832   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 833   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 834   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 835   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 836   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 837 
 838   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 839   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 840   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 841   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 842   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 843   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 844   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 845   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 846   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 847 
 848   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 849   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 850   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 851   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 852 
 853   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 854   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 855   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 856   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 857 
 858   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 859   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 860   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 861 
 862   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 863   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 864   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 865 
 866   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 867   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 868   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 869   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 870   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 871 
 872   case vmIntrinsics::_loadFence:
 873   case vmIntrinsics::_storeFence:
 874   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 875 
 876   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 877   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 878 
 879 #ifdef TRACE_HAVE_INTRINSICS
 880   case vmIntrinsics::_classID:                  return inline_native_classID();
 881   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 882   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 883 #endif
 884   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 885   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 886   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 887   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 888   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 889   case vmIntrinsics::_getLength:                return inline_native_getLength();
 890   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 891   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 892   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 893   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 894 
 895   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 896 
 897   case vmIntrinsics::_isInstance:
 898   case vmIntrinsics::_getModifiers:
 899   case vmIntrinsics::_isInterface:
 900   case vmIntrinsics::_isArray:
 901   case vmIntrinsics::_isPrimitive:
 902   case vmIntrinsics::_getSuperclass:
 903   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 904 
 905   case vmIntrinsics::_floatToRawIntBits:
 906   case vmIntrinsics::_floatToIntBits:
 907   case vmIntrinsics::_intBitsToFloat:
 908   case vmIntrinsics::_doubleToRawLongBits:
 909   case vmIntrinsics::_doubleToLongBits:
 910   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 911 
 912   case vmIntrinsics::_numberOfLeadingZeros_i:
 913   case vmIntrinsics::_numberOfLeadingZeros_l:
 914   case vmIntrinsics::_numberOfTrailingZeros_i:
 915   case vmIntrinsics::_numberOfTrailingZeros_l:
 916   case vmIntrinsics::_bitCount_i:
 917   case vmIntrinsics::_bitCount_l:
 918   case vmIntrinsics::_reverseBytes_i:
 919   case vmIntrinsics::_reverseBytes_l:
 920   case vmIntrinsics::_reverseBytes_s:
 921   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 922 
 923   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 924 
 925   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 926 
 927   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 928 
 929   case vmIntrinsics::_aescrypt_encryptBlock:
 930   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 931 
 932   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 933   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 934     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 935 
 936   case vmIntrinsics::_sha_implCompress:
 937   case vmIntrinsics::_sha2_implCompress:
 938   case vmIntrinsics::_sha5_implCompress:
 939     return inline_sha_implCompress(intrinsic_id());
 940 
 941   case vmIntrinsics::_digestBase_implCompressMB:
 942     return inline_digestBase_implCompressMB(predicate);
 943 
 944   case vmIntrinsics::_multiplyToLen:
 945     return inline_multiplyToLen();
 946 
 947   case vmIntrinsics::_squareToLen:
 948     return inline_squareToLen();
 949 
 950   case vmIntrinsics::_mulAdd:
 951     return inline_mulAdd();
 952 
 953   case vmIntrinsics::_ghash_processBlocks:
 954     return inline_ghash_processBlocks();
 955 
 956   case vmIntrinsics::_encodeISOArray:
 957     return inline_encodeISOArray();
 958 
 959   case vmIntrinsics::_updateCRC32:
 960     return inline_updateCRC32();
 961   case vmIntrinsics::_updateBytesCRC32:
 962     return inline_updateBytesCRC32();
 963   case vmIntrinsics::_updateByteBufferCRC32:
 964     return inline_updateByteBufferCRC32();
 965 
 966   case vmIntrinsics::_updateBytesCRC32C:
 967     return inline_updateBytesCRC32C();
 968   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 969     return inline_updateDirectByteBufferCRC32C();
 970 
 971   case vmIntrinsics::_profileBoolean:
 972     return inline_profileBoolean();
 973   case vmIntrinsics::_isCompileConstant:
 974     return inline_isCompileConstant();
 975 
 976   default:
 977     // If you get here, it may be that someone has added a new intrinsic
 978     // to the list in vmSymbols.hpp without implementing it here.
 979 #ifndef PRODUCT
 980     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 981       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 982                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 983     }
 984 #endif
 985     return false;
 986   }
 987 }
 988 
 989 Node* LibraryCallKit::try_to_predicate(int predicate) {
 990   if (!jvms()->has_method()) {
 991     // Root JVMState has a null method.
 992     assert(map()->memory()->Opcode() == Op_Parm, "");
 993     // Insert the memory aliasing node
 994     set_all_memory(reset_memory());
 995   }
 996   assert(merged_memory(), "");
 997 
 998   switch (intrinsic_id()) {
 999   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
1000     return inline_cipherBlockChaining_AESCrypt_predicate(false);
1001   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
1002     return inline_cipherBlockChaining_AESCrypt_predicate(true);
1003   case vmIntrinsics::_digestBase_implCompressMB:
1004     return inline_digestBase_implCompressMB_predicate(predicate);
1005 
1006   default:
1007     // If you get here, it may be that someone has added a new intrinsic
1008     // to the list in vmSymbols.hpp without implementing it here.
1009 #ifndef PRODUCT
1010     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
1011       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
1012                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
1013     }
1014 #endif
1015     Node* slow_ctl = control();
1016     set_control(top()); // No fast path instrinsic
1017     return slow_ctl;
1018   }
1019 }
1020 
1021 //------------------------------set_result-------------------------------
1022 // Helper function for finishing intrinsics.
1023 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
1024   record_for_igvn(region);
1025   set_control(_gvn.transform(region));
1026   set_result( _gvn.transform(value));
1027   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
1028 }
1029 
1030 //------------------------------generate_guard---------------------------
1031 // Helper function for generating guarded fast-slow graph structures.
1032 // The given 'test', if true, guards a slow path.  If the test fails
1033 // then a fast path can be taken.  (We generally hope it fails.)
1034 // In all cases, GraphKit::control() is updated to the fast path.
1035 // The returned value represents the control for the slow path.
1036 // The return value is never 'top'; it is either a valid control
1037 // or NULL if it is obvious that the slow path can never be taken.
1038 // Also, if region and the slow control are not NULL, the slow edge
1039 // is appended to the region.
1040 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
1041   if (stopped()) {
1042     // Already short circuited.
1043     return NULL;
1044   }
1045 
1046   // Build an if node and its projections.
1047   // If test is true we take the slow path, which we assume is uncommon.
1048   if (_gvn.type(test) == TypeInt::ZERO) {
1049     // The slow branch is never taken.  No need to build this guard.
1050     return NULL;
1051   }
1052 
1053   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
1054 
1055   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
1056   if (if_slow == top()) {
1057     // The slow branch is never taken.  No need to build this guard.
1058     return NULL;
1059   }
1060 
1061   if (region != NULL)
1062     region->add_req(if_slow);
1063 
1064   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
1065   set_control(if_fast);
1066 
1067   return if_slow;
1068 }
1069 
1070 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
1071   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
1072 }
1073 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
1074   return generate_guard(test, region, PROB_FAIR);
1075 }
1076 
1077 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
1078                                                      Node* *pos_index) {
1079   if (stopped())
1080     return NULL;                // already stopped
1081   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
1082     return NULL;                // index is already adequately typed
1083   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
1084   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1085   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1086   if (is_neg != NULL && pos_index != NULL) {
1087     // Emulate effect of Parse::adjust_map_after_if.
1088     Node* ccast = new CastIINode(index, TypeInt::POS);
1089     ccast->set_req(0, control());
1090     (*pos_index) = _gvn.transform(ccast);
1091   }
1092   return is_neg;
1093 }
1094 
1095 // Make sure that 'position' is a valid limit index, in [0..length].
1096 // There are two equivalent plans for checking this:
1097 //   A. (offset + copyLength)  unsigned<=  arrayLength
1098 //   B. offset  <=  (arrayLength - copyLength)
1099 // We require that all of the values above, except for the sum and
1100 // difference, are already known to be non-negative.
1101 // Plan A is robust in the face of overflow, if offset and copyLength
1102 // are both hugely positive.
1103 //
1104 // Plan B is less direct and intuitive, but it does not overflow at
1105 // all, since the difference of two non-negatives is always
1106 // representable.  Whenever Java methods must perform the equivalent
1107 // check they generally use Plan B instead of Plan A.
1108 // For the moment we use Plan A.
1109 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1110                                                   Node* subseq_length,
1111                                                   Node* array_length,
1112                                                   RegionNode* region) {
1113   if (stopped())
1114     return NULL;                // already stopped
1115   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1116   if (zero_offset && subseq_length->eqv_uncast(array_length))
1117     return NULL;                // common case of whole-array copy
1118   Node* last = subseq_length;
1119   if (!zero_offset)             // last += offset
1120     last = _gvn.transform(new AddINode(last, offset));
1121   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1122   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1123   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1124   return is_over;
1125 }
1126 
1127 
1128 //--------------------------generate_current_thread--------------------
1129 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1130   ciKlass*    thread_klass = env()->Thread_klass();
1131   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1132   Node* thread = _gvn.transform(new ThreadLocalNode());
1133   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1134   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1135   tls_output = thread;
1136   return threadObj;
1137 }
1138 
1139 
1140 //------------------------------make_string_method_node------------------------
1141 // Helper method for String intrinsic functions. This version is called
1142 // with str1 and str2 pointing to String object nodes.
1143 //
1144 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1145   Node* no_ctrl = NULL;
1146 
1147   // Get start addr of string
1148   Node* str1_value   = load_String_value(no_ctrl, str1);
1149   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1150   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1151 
1152   // Get length of string 1
1153   Node* str1_len  = load_String_length(no_ctrl, str1);
1154 
1155   Node* str2_value   = load_String_value(no_ctrl, str2);
1156   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1157   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1158 
1159   Node* str2_len = NULL;
1160   Node* result = NULL;
1161 
1162   switch (opcode) {
1163   case Op_StrIndexOf:
1164     // Get length of string 2
1165     str2_len = load_String_length(no_ctrl, str2);
1166 
1167     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1168                                 str1_start, str1_len, str2_start, str2_len);
1169     break;
1170   case Op_StrComp:
1171     // Get length of string 2
1172     str2_len = load_String_length(no_ctrl, str2);
1173 
1174     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1175                              str1_start, str1_len, str2_start, str2_len);
1176     break;
1177   case Op_StrEquals:
1178     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1179                                str1_start, str2_start, str1_len);
1180     break;
1181   default:
1182     ShouldNotReachHere();
1183     return NULL;
1184   }
1185 
1186   // All these intrinsics have checks.
1187   C->set_has_split_ifs(true); // Has chance for split-if optimization
1188 
1189   return _gvn.transform(result);
1190 }
1191 
1192 // Helper method for String intrinsic functions. This version is called
1193 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1194 // to Int nodes containing the lenghts of str1 and str2.
1195 //
1196 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1197   Node* result = NULL;
1198   switch (opcode) {
1199   case Op_StrIndexOf:
1200     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1201                                 str1_start, cnt1, str2_start, cnt2);
1202     break;
1203   case Op_StrComp:
1204     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1205                              str1_start, cnt1, str2_start, cnt2);
1206     break;
1207   case Op_StrEquals:
1208     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1209                                str1_start, str2_start, cnt1);
1210     break;
1211   default:
1212     ShouldNotReachHere();
1213     return NULL;
1214   }
1215 
1216   // All these intrinsics have checks.
1217   C->set_has_split_ifs(true); // Has chance for split-if optimization
1218 
1219   return _gvn.transform(result);
1220 }
1221 
1222 //------------------------------inline_string_compareTo------------------------
1223 // public int java.lang.String.compareTo(String anotherString);
1224 bool LibraryCallKit::inline_string_compareTo() {
1225   Node* receiver = null_check(argument(0));
1226   Node* arg      = null_check(argument(1));
1227   if (stopped()) {
1228     return true;
1229   }
1230   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1231   return true;
1232 }
1233 
1234 //------------------------------inline_string_equals------------------------
1235 bool LibraryCallKit::inline_string_equals() {
1236   Node* receiver = null_check_receiver();
1237   // NOTE: Do not null check argument for String.equals() because spec
1238   // allows to specify NULL as argument.
1239   Node* argument = this->argument(1);
1240   if (stopped()) {
1241     return true;
1242   }
1243 
1244   // paths (plus control) merge
1245   RegionNode* region = new RegionNode(5);
1246   Node* phi = new PhiNode(region, TypeInt::BOOL);
1247 
1248   // does source == target string?
1249   Node* cmp = _gvn.transform(new CmpPNode(receiver, argument));
1250   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1251 
1252   Node* if_eq = generate_slow_guard(bol, NULL);
1253   if (if_eq != NULL) {
1254     // receiver == argument
1255     phi->init_req(2, intcon(1));
1256     region->init_req(2, if_eq);
1257   }
1258 
1259   // get String klass for instanceOf
1260   ciInstanceKlass* klass = env()->String_klass();
1261 
1262   if (!stopped()) {
1263     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1264     Node* cmp  = _gvn.transform(new CmpINode(inst, intcon(1)));
1265     Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1266 
1267     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1268     //instanceOf == true, fallthrough
1269 
1270     if (inst_false != NULL) {
1271       phi->init_req(3, intcon(0));
1272       region->init_req(3, inst_false);
1273     }
1274   }
1275 
1276   if (!stopped()) {
1277     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1278 
1279     // Properly cast the argument to String
1280     argument = _gvn.transform(new CheckCastPPNode(control(), argument, string_type));
1281     // This path is taken only when argument's type is String:NotNull.
1282     argument = cast_not_null(argument, false);
1283 
1284     Node* no_ctrl = NULL;
1285 
1286     // Get start addr of receiver
1287     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1288     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1289     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1290 
1291     // Get length of receiver
1292     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1293 
1294     // Get start addr of argument
1295     Node* argument_val    = load_String_value(no_ctrl, argument);
1296     Node* argument_offset = load_String_offset(no_ctrl, argument);
1297     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1298 
1299     // Get length of argument
1300     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1301 
1302     // Check for receiver count != argument count
1303     Node* cmp = _gvn.transform(new CmpINode(receiver_cnt, argument_cnt));
1304     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1305     Node* if_ne = generate_slow_guard(bol, NULL);
1306     if (if_ne != NULL) {
1307       phi->init_req(4, intcon(0));
1308       region->init_req(4, if_ne);
1309     }
1310 
1311     // Check for count == 0 is done by assembler code for StrEquals.
1312 
1313     if (!stopped()) {
1314       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1315       phi->init_req(1, equals);
1316       region->init_req(1, control());
1317     }
1318   }
1319 
1320   // post merge
1321   set_control(_gvn.transform(region));
1322   record_for_igvn(region);
1323 
1324   set_result(_gvn.transform(phi));
1325   return true;
1326 }
1327 
1328 //------------------------------inline_array_equals----------------------------
1329 bool LibraryCallKit::inline_array_equals() {
1330   Node* arg1 = argument(0);
1331   Node* arg2 = argument(1);
1332   set_result(_gvn.transform(new AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1333   return true;
1334 }
1335 
1336 // Java version of String.indexOf(constant string)
1337 // class StringDecl {
1338 //   StringDecl(char[] ca) {
1339 //     offset = 0;
1340 //     count = ca.length;
1341 //     value = ca;
1342 //   }
1343 //   int offset;
1344 //   int count;
1345 //   char[] value;
1346 // }
1347 //
1348 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1349 //                             int targetOffset, int cache_i, int md2) {
1350 //   int cache = cache_i;
1351 //   int sourceOffset = string_object.offset;
1352 //   int sourceCount = string_object.count;
1353 //   int targetCount = target_object.length;
1354 //
1355 //   int targetCountLess1 = targetCount - 1;
1356 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1357 //
1358 //   char[] source = string_object.value;
1359 //   char[] target = target_object;
1360 //   int lastChar = target[targetCountLess1];
1361 //
1362 //  outer_loop:
1363 //   for (int i = sourceOffset; i < sourceEnd; ) {
1364 //     int src = source[i + targetCountLess1];
1365 //     if (src == lastChar) {
1366 //       // With random strings and a 4-character alphabet,
1367 //       // reverse matching at this point sets up 0.8% fewer
1368 //       // frames, but (paradoxically) makes 0.3% more probes.
1369 //       // Since those probes are nearer the lastChar probe,
1370 //       // there is may be a net D$ win with reverse matching.
1371 //       // But, reversing loop inhibits unroll of inner loop
1372 //       // for unknown reason.  So, does running outer loop from
1373 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1374 //       for (int j = 0; j < targetCountLess1; j++) {
1375 //         if (target[targetOffset + j] != source[i+j]) {
1376 //           if ((cache & (1 << source[i+j])) == 0) {
1377 //             if (md2 < j+1) {
1378 //               i += j+1;
1379 //               continue outer_loop;
1380 //             }
1381 //           }
1382 //           i += md2;
1383 //           continue outer_loop;
1384 //         }
1385 //       }
1386 //       return i - sourceOffset;
1387 //     }
1388 //     if ((cache & (1 << src)) == 0) {
1389 //       i += targetCountLess1;
1390 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1391 //     i++;
1392 //   }
1393 //   return -1;
1394 // }
1395 
1396 //------------------------------string_indexOf------------------------
1397 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1398                                      jint cache_i, jint md2_i) {
1399 
1400   Node* no_ctrl  = NULL;
1401   float likely   = PROB_LIKELY(0.9);
1402   float unlikely = PROB_UNLIKELY(0.9);
1403 
1404   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1405 
1406   Node* source        = load_String_value(no_ctrl, string_object);
1407   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1408   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1409 
1410   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1411   jint target_length = target_array->length();
1412   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1413   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1414 
1415   // String.value field is known to be @Stable.
1416   if (UseImplicitStableValues) {
1417     target = cast_array_to_stable(target, target_type);
1418   }
1419 
1420   IdealKit kit(this, false, true);
1421 #define __ kit.
1422   Node* zero             = __ ConI(0);
1423   Node* one              = __ ConI(1);
1424   Node* cache            = __ ConI(cache_i);
1425   Node* md2              = __ ConI(md2_i);
1426   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1427   Node* targetCountLess1 = __ ConI(target_length - 1);
1428   Node* targetOffset     = __ ConI(targetOffset_i);
1429   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1430 
1431   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1432   Node* outer_loop = __ make_label(2 /* goto */);
1433   Node* return_    = __ make_label(1);
1434 
1435   __ set(rtn,__ ConI(-1));
1436   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1437        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1438        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1439        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1440        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1441          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1442               Node* tpj = __ AddI(targetOffset, __ value(j));
1443               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1444               Node* ipj  = __ AddI(__ value(i), __ value(j));
1445               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1446               __ if_then(targ, BoolTest::ne, src2); {
1447                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1448                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1449                     __ increment(i, __ AddI(__ value(j), one));
1450                     __ goto_(outer_loop);
1451                   } __ end_if(); __ dead(j);
1452                 }__ end_if(); __ dead(j);
1453                 __ increment(i, md2);
1454                 __ goto_(outer_loop);
1455               }__ end_if();
1456               __ increment(j, one);
1457          }__ end_loop(); __ dead(j);
1458          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1459          __ goto_(return_);
1460        }__ end_if();
1461        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1462          __ increment(i, targetCountLess1);
1463        }__ end_if();
1464        __ increment(i, one);
1465        __ bind(outer_loop);
1466   }__ end_loop(); __ dead(i);
1467   __ bind(return_);
1468 
1469   // Final sync IdealKit and GraphKit.
1470   final_sync(kit);
1471   Node* result = __ value(rtn);
1472 #undef __
1473   C->set_has_loops(true);
1474   return result;
1475 }
1476 
1477 //------------------------------inline_string_indexOf------------------------
1478 bool LibraryCallKit::inline_string_indexOf() {
1479   Node* receiver = argument(0);
1480   Node* arg      = argument(1);
1481 
1482   Node* result;
1483   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1484       UseSSE42Intrinsics) {
1485     // Generate SSE4.2 version of indexOf
1486     // We currently only have match rules that use SSE4.2
1487 
1488     receiver = null_check(receiver);
1489     arg      = null_check(arg);
1490     if (stopped()) {
1491       return true;
1492     }
1493 
1494     // Make the merge point
1495     RegionNode* result_rgn = new RegionNode(4);
1496     Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1497     Node* no_ctrl  = NULL;
1498 
1499     // Get start addr of source string
1500     Node* source = load_String_value(no_ctrl, receiver);
1501     Node* source_offset = load_String_offset(no_ctrl, receiver);
1502     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1503 
1504     // Get length of source string
1505     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1506 
1507     // Get start addr of substring
1508     Node* substr = load_String_value(no_ctrl, arg);
1509     Node* substr_offset = load_String_offset(no_ctrl, arg);
1510     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1511 
1512     // Get length of source string
1513     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1514 
1515     // Check for substr count > string count
1516     Node* cmp = _gvn.transform(new CmpINode(substr_cnt, source_cnt));
1517     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1518     Node* if_gt = generate_slow_guard(bol, NULL);
1519     if (if_gt != NULL) {
1520       result_phi->init_req(2, intcon(-1));
1521       result_rgn->init_req(2, if_gt);
1522     }
1523 
1524     if (!stopped()) {
1525       // Check for substr count == 0
1526       cmp = _gvn.transform(new CmpINode(substr_cnt, intcon(0)));
1527       bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1528       Node* if_zero = generate_slow_guard(bol, NULL);
1529       if (if_zero != NULL) {
1530         result_phi->init_req(3, intcon(0));
1531         result_rgn->init_req(3, if_zero);
1532       }
1533     }
1534 
1535     if (!stopped()) {
1536       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1537       result_phi->init_req(1, result);
1538       result_rgn->init_req(1, control());
1539     }
1540     set_control(_gvn.transform(result_rgn));
1541     record_for_igvn(result_rgn);
1542     result = _gvn.transform(result_phi);
1543 
1544   } else { // Use LibraryCallKit::string_indexOf
1545     // don't intrinsify if argument isn't a constant string.
1546     if (!arg->is_Con()) {
1547      return false;
1548     }
1549     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1550     if (str_type == NULL) {
1551       return false;
1552     }
1553     ciInstanceKlass* klass = env()->String_klass();
1554     ciObject* str_const = str_type->const_oop();
1555     if (str_const == NULL || str_const->klass() != klass) {
1556       return false;
1557     }
1558     ciInstance* str = str_const->as_instance();
1559     assert(str != NULL, "must be instance");
1560 
1561     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1562     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1563 
1564     int o;
1565     int c;
1566     if (java_lang_String::has_offset_field()) {
1567       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1568       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1569     } else {
1570       o = 0;
1571       c = pat->length();
1572     }
1573 
1574     // constant strings have no offset and count == length which
1575     // simplifies the resulting code somewhat so lets optimize for that.
1576     if (o != 0 || c != pat->length()) {
1577      return false;
1578     }
1579 
1580     receiver = null_check(receiver, T_OBJECT);
1581     // NOTE: No null check on the argument is needed since it's a constant String oop.
1582     if (stopped()) {
1583       return true;
1584     }
1585 
1586     // The null string as a pattern always returns 0 (match at beginning of string)
1587     if (c == 0) {
1588       set_result(intcon(0));
1589       return true;
1590     }
1591 
1592     // Generate default indexOf
1593     jchar lastChar = pat->char_at(o + (c - 1));
1594     int cache = 0;
1595     int i;
1596     for (i = 0; i < c - 1; i++) {
1597       assert(i < pat->length(), "out of range");
1598       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1599     }
1600 
1601     int md2 = c;
1602     for (i = 0; i < c - 1; i++) {
1603       assert(i < pat->length(), "out of range");
1604       if (pat->char_at(o + i) == lastChar) {
1605         md2 = (c - 1) - i;
1606       }
1607     }
1608 
1609     result = string_indexOf(receiver, pat, o, cache, md2);
1610   }
1611   set_result(result);
1612   return true;
1613 }
1614 
1615 //--------------------------round_double_node--------------------------------
1616 // Round a double node if necessary.
1617 Node* LibraryCallKit::round_double_node(Node* n) {
1618   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1619     n = _gvn.transform(new RoundDoubleNode(0, n));
1620   return n;
1621 }
1622 
1623 //------------------------------inline_math-----------------------------------
1624 // public static double Math.abs(double)
1625 // public static double Math.sqrt(double)
1626 // public static double Math.log(double)
1627 // public static double Math.log10(double)
1628 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1629   Node* arg = round_double_node(argument(0));
1630   Node* n;
1631   switch (id) {
1632   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1633   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1634   case vmIntrinsics::_dlog:   n = new LogDNode(C, control(),   arg);  break;
1635   case vmIntrinsics::_dlog10: n = new Log10DNode(C, control(), arg);  break;
1636   default:  fatal_unexpected_iid(id);  break;
1637   }
1638   set_result(_gvn.transform(n));
1639   return true;
1640 }
1641 
1642 //------------------------------inline_trig----------------------------------
1643 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1644 // argument reduction which will turn into a fast/slow diamond.
1645 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1646   Node* arg = round_double_node(argument(0));
1647   Node* n = NULL;
1648 
1649   switch (id) {
1650   case vmIntrinsics::_dsin:  n = new SinDNode(C, control(), arg);  break;
1651   case vmIntrinsics::_dcos:  n = new CosDNode(C, control(), arg);  break;
1652   case vmIntrinsics::_dtan:  n = new TanDNode(C, control(), arg);  break;
1653   default:  fatal_unexpected_iid(id);  break;
1654   }
1655   n = _gvn.transform(n);
1656 
1657   // Rounding required?  Check for argument reduction!
1658   if (Matcher::strict_fp_requires_explicit_rounding) {
1659     static const double     pi_4 =  0.7853981633974483;
1660     static const double neg_pi_4 = -0.7853981633974483;
1661     // pi/2 in 80-bit extended precision
1662     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1663     // -pi/2 in 80-bit extended precision
1664     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1665     // Cutoff value for using this argument reduction technique
1666     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1667     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1668 
1669     // Pseudocode for sin:
1670     // if (x <= Math.PI / 4.0) {
1671     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1672     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1673     // } else {
1674     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1675     // }
1676     // return StrictMath.sin(x);
1677 
1678     // Pseudocode for cos:
1679     // if (x <= Math.PI / 4.0) {
1680     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1681     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1682     // } else {
1683     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1684     // }
1685     // return StrictMath.cos(x);
1686 
1687     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1688     // requires a special machine instruction to load it.  Instead we'll try
1689     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1690     // probably do the math inside the SIN encoding.
1691 
1692     // Make the merge point
1693     RegionNode* r = new RegionNode(3);
1694     Node* phi = new PhiNode(r, Type::DOUBLE);
1695 
1696     // Flatten arg so we need only 1 test
1697     Node *abs = _gvn.transform(new AbsDNode(arg));
1698     // Node for PI/4 constant
1699     Node *pi4 = makecon(TypeD::make(pi_4));
1700     // Check PI/4 : abs(arg)
1701     Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
1702     // Check: If PI/4 < abs(arg) then go slow
1703     Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
1704     // Branch either way
1705     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1706     set_control(opt_iff(r,iff));
1707 
1708     // Set fast path result
1709     phi->init_req(2, n);
1710 
1711     // Slow path - non-blocking leaf call
1712     Node* call = NULL;
1713     switch (id) {
1714     case vmIntrinsics::_dsin:
1715       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1716                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1717                                "Sin", NULL, arg, top());
1718       break;
1719     case vmIntrinsics::_dcos:
1720       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1721                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1722                                "Cos", NULL, arg, top());
1723       break;
1724     case vmIntrinsics::_dtan:
1725       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1726                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1727                                "Tan", NULL, arg, top());
1728       break;
1729     }
1730     assert(control()->in(0) == call, "");
1731     Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1732     r->init_req(1, control());
1733     phi->init_req(1, slow_result);
1734 
1735     // Post-merge
1736     set_control(_gvn.transform(r));
1737     record_for_igvn(r);
1738     n = _gvn.transform(phi);
1739 
1740     C->set_has_split_ifs(true); // Has chance for split-if optimization
1741   }
1742   set_result(n);
1743   return true;
1744 }
1745 
1746 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1747   //-------------------
1748   //result=(result.isNaN())? funcAddr():result;
1749   // Check: If isNaN() by checking result!=result? then either trap
1750   // or go to runtime
1751   Node* cmpisnan = _gvn.transform(new CmpDNode(result, result));
1752   // Build the boolean node
1753   Node* bolisnum = _gvn.transform(new BoolNode(cmpisnan, BoolTest::eq));
1754 
1755   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1756     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1757       // The pow or exp intrinsic returned a NaN, which requires a call
1758       // to the runtime.  Recompile with the runtime call.
1759       uncommon_trap(Deoptimization::Reason_intrinsic,
1760                     Deoptimization::Action_make_not_entrant);
1761     }
1762     return result;
1763   } else {
1764     // If this inlining ever returned NaN in the past, we compile a call
1765     // to the runtime to properly handle corner cases
1766 
1767     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1768     Node* if_slow = _gvn.transform(new IfFalseNode(iff));
1769     Node* if_fast = _gvn.transform(new IfTrueNode(iff));
1770 
1771     if (!if_slow->is_top()) {
1772       RegionNode* result_region = new RegionNode(3);
1773       PhiNode*    result_val = new PhiNode(result_region, Type::DOUBLE);
1774 
1775       result_region->init_req(1, if_fast);
1776       result_val->init_req(1, result);
1777 
1778       set_control(if_slow);
1779 
1780       const TypePtr* no_memory_effects = NULL;
1781       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1782                                    no_memory_effects,
1783                                    x, top(), y, y ? top() : NULL);
1784       Node* value = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+0));
1785 #ifdef ASSERT
1786       Node* value_top = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+1));
1787       assert(value_top == top(), "second value must be top");
1788 #endif
1789 
1790       result_region->init_req(2, control());
1791       result_val->init_req(2, value);
1792       set_control(_gvn.transform(result_region));
1793       return _gvn.transform(result_val);
1794     } else {
1795       return result;
1796     }
1797   }
1798 }
1799 
1800 //------------------------------inline_exp-------------------------------------
1801 // Inline exp instructions, if possible.  The Intel hardware only misses
1802 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1803 bool LibraryCallKit::inline_exp() {
1804   Node* arg = round_double_node(argument(0));
1805   Node* n   = _gvn.transform(new ExpDNode(C, control(), arg));
1806 
1807   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1808   set_result(n);
1809 
1810   C->set_has_split_ifs(true); // Has chance for split-if optimization
1811   return true;
1812 }
1813 
1814 //------------------------------inline_pow-------------------------------------
1815 // Inline power instructions, if possible.
1816 bool LibraryCallKit::inline_pow() {
1817   // Pseudocode for pow
1818   // if (y == 2) {
1819   //   return x * x;
1820   // } else {
1821   //   if (x <= 0.0) {
1822   //     long longy = (long)y;
1823   //     if ((double)longy == y) { // if y is long
1824   //       if (y + 1 == y) longy = 0; // huge number: even
1825   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1826   //     } else {
1827   //       result = NaN;
1828   //     }
1829   //   } else {
1830   //     result = DPow(x,y);
1831   //   }
1832   //   if (result != result)?  {
1833   //     result = uncommon_trap() or runtime_call();
1834   //   }
1835   //   return result;
1836   // }
1837 
1838   Node* x = round_double_node(argument(0));
1839   Node* y = round_double_node(argument(2));
1840 
1841   Node* result = NULL;
1842 
1843   Node*   const_two_node = makecon(TypeD::make(2.0));
1844   Node*   cmp_node       = _gvn.transform(new CmpDNode(y, const_two_node));
1845   Node*   bool_node      = _gvn.transform(new BoolNode(cmp_node, BoolTest::eq));
1846   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1847   Node*   if_true        = _gvn.transform(new IfTrueNode(if_node));
1848   Node*   if_false       = _gvn.transform(new IfFalseNode(if_node));
1849 
1850   RegionNode* region_node = new RegionNode(3);
1851   region_node->init_req(1, if_true);
1852 
1853   Node* phi_node = new PhiNode(region_node, Type::DOUBLE);
1854   // special case for x^y where y == 2, we can convert it to x * x
1855   phi_node->init_req(1, _gvn.transform(new MulDNode(x, x)));
1856 
1857   // set control to if_false since we will now process the false branch
1858   set_control(if_false);
1859 
1860   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1861     // Short form: skip the fancy tests and just check for NaN result.
1862     result = _gvn.transform(new PowDNode(C, control(), x, y));
1863   } else {
1864     // If this inlining ever returned NaN in the past, include all
1865     // checks + call to the runtime.
1866 
1867     // Set the merge point for If node with condition of (x <= 0.0)
1868     // There are four possible paths to region node and phi node
1869     RegionNode *r = new RegionNode(4);
1870     Node *phi = new PhiNode(r, Type::DOUBLE);
1871 
1872     // Build the first if node: if (x <= 0.0)
1873     // Node for 0 constant
1874     Node *zeronode = makecon(TypeD::ZERO);
1875     // Check x:0
1876     Node *cmp = _gvn.transform(new CmpDNode(x, zeronode));
1877     // Check: If (x<=0) then go complex path
1878     Node *bol1 = _gvn.transform(new BoolNode( cmp, BoolTest::le ));
1879     // Branch either way
1880     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1881     // Fast path taken; set region slot 3
1882     Node *fast_taken = _gvn.transform(new IfFalseNode(if1));
1883     r->init_req(3,fast_taken); // Capture fast-control
1884 
1885     // Fast path not-taken, i.e. slow path
1886     Node *complex_path = _gvn.transform(new IfTrueNode(if1));
1887 
1888     // Set fast path result
1889     Node *fast_result = _gvn.transform(new PowDNode(C, control(), x, y));
1890     phi->init_req(3, fast_result);
1891 
1892     // Complex path
1893     // Build the second if node (if y is long)
1894     // Node for (long)y
1895     Node *longy = _gvn.transform(new ConvD2LNode(y));
1896     // Node for (double)((long) y)
1897     Node *doublelongy= _gvn.transform(new ConvL2DNode(longy));
1898     // Check (double)((long) y) : y
1899     Node *cmplongy= _gvn.transform(new CmpDNode(doublelongy, y));
1900     // Check if (y isn't long) then go to slow path
1901 
1902     Node *bol2 = _gvn.transform(new BoolNode( cmplongy, BoolTest::ne ));
1903     // Branch either way
1904     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1905     Node* ylong_path = _gvn.transform(new IfFalseNode(if2));
1906 
1907     Node *slow_path = _gvn.transform(new IfTrueNode(if2));
1908 
1909     // Calculate DPow(abs(x), y)*(1 & (long)y)
1910     // Node for constant 1
1911     Node *conone = longcon(1);
1912     // 1& (long)y
1913     Node *signnode= _gvn.transform(new AndLNode(conone, longy));
1914 
1915     // A huge number is always even. Detect a huge number by checking
1916     // if y + 1 == y and set integer to be tested for parity to 0.
1917     // Required for corner case:
1918     // (long)9.223372036854776E18 = max_jlong
1919     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1920     // max_jlong is odd but 9.223372036854776E18 is even
1921     Node* yplus1 = _gvn.transform(new AddDNode(y, makecon(TypeD::make(1))));
1922     Node *cmpyplus1= _gvn.transform(new CmpDNode(yplus1, y));
1923     Node *bolyplus1 = _gvn.transform(new BoolNode( cmpyplus1, BoolTest::eq ));
1924     Node* correctedsign = NULL;
1925     if (ConditionalMoveLimit != 0) {
1926       correctedsign = _gvn.transform(CMoveNode::make(NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1927     } else {
1928       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1929       RegionNode *r = new RegionNode(3);
1930       Node *phi = new PhiNode(r, TypeLong::LONG);
1931       r->init_req(1, _gvn.transform(new IfFalseNode(ifyplus1)));
1932       r->init_req(2, _gvn.transform(new IfTrueNode(ifyplus1)));
1933       phi->init_req(1, signnode);
1934       phi->init_req(2, longcon(0));
1935       correctedsign = _gvn.transform(phi);
1936       ylong_path = _gvn.transform(r);
1937       record_for_igvn(r);
1938     }
1939 
1940     // zero node
1941     Node *conzero = longcon(0);
1942     // Check (1&(long)y)==0?
1943     Node *cmpeq1 = _gvn.transform(new CmpLNode(correctedsign, conzero));
1944     // Check if (1&(long)y)!=0?, if so the result is negative
1945     Node *bol3 = _gvn.transform(new BoolNode( cmpeq1, BoolTest::ne ));
1946     // abs(x)
1947     Node *absx=_gvn.transform(new AbsDNode(x));
1948     // abs(x)^y
1949     Node *absxpowy = _gvn.transform(new PowDNode(C, control(), absx, y));
1950     // -abs(x)^y
1951     Node *negabsxpowy = _gvn.transform(new NegDNode (absxpowy));
1952     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1953     Node *signresult = NULL;
1954     if (ConditionalMoveLimit != 0) {
1955       signresult = _gvn.transform(CMoveNode::make(NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1956     } else {
1957       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1958       RegionNode *r = new RegionNode(3);
1959       Node *phi = new PhiNode(r, Type::DOUBLE);
1960       r->init_req(1, _gvn.transform(new IfFalseNode(ifyeven)));
1961       r->init_req(2, _gvn.transform(new IfTrueNode(ifyeven)));
1962       phi->init_req(1, absxpowy);
1963       phi->init_req(2, negabsxpowy);
1964       signresult = _gvn.transform(phi);
1965       ylong_path = _gvn.transform(r);
1966       record_for_igvn(r);
1967     }
1968     // Set complex path fast result
1969     r->init_req(2, ylong_path);
1970     phi->init_req(2, signresult);
1971 
1972     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1973     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1974     r->init_req(1,slow_path);
1975     phi->init_req(1,slow_result);
1976 
1977     // Post merge
1978     set_control(_gvn.transform(r));
1979     record_for_igvn(r);
1980     result = _gvn.transform(phi);
1981   }
1982 
1983   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1984 
1985   // control from finish_pow_exp is now input to the region node
1986   region_node->set_req(2, control());
1987   // the result from finish_pow_exp is now input to the phi node
1988   phi_node->init_req(2, result);
1989   set_control(_gvn.transform(region_node));
1990   record_for_igvn(region_node);
1991   set_result(_gvn.transform(phi_node));
1992 
1993   C->set_has_split_ifs(true); // Has chance for split-if optimization
1994   return true;
1995 }
1996 
1997 //------------------------------runtime_math-----------------------------
1998 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1999   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
2000          "must be (DD)D or (D)D type");
2001 
2002   // Inputs
2003   Node* a = round_double_node(argument(0));
2004   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
2005 
2006   const TypePtr* no_memory_effects = NULL;
2007   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
2008                                  no_memory_effects,
2009                                  a, top(), b, b ? top() : NULL);
2010   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
2011 #ifdef ASSERT
2012   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
2013   assert(value_top == top(), "second value must be top");
2014 #endif
2015 
2016   set_result(value);
2017   return true;
2018 }
2019 
2020 //------------------------------inline_math_native-----------------------------
2021 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
2022 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
2023   switch (id) {
2024     // These intrinsics are not properly supported on all hardware
2025   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
2026     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
2027   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
2028     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
2029   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
2030     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
2031 
2032   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
2033     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
2034   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
2035     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
2036 
2037     // These intrinsics are supported on all hardware
2038   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
2039   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
2040 
2041   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
2042     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
2043   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
2044     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
2045 #undef FN_PTR
2046 
2047    // These intrinsics are not yet correctly implemented
2048   case vmIntrinsics::_datan2:
2049     return false;
2050 
2051   default:
2052     fatal_unexpected_iid(id);
2053     return false;
2054   }
2055 }
2056 
2057 static bool is_simple_name(Node* n) {
2058   return (n->req() == 1         // constant
2059           || (n->is_Type() && n->as_Type()->type()->singleton())
2060           || n->is_Proj()       // parameter or return value
2061           || n->is_Phi()        // local of some sort
2062           );
2063 }
2064 
2065 //----------------------------inline_notify-----------------------------------*
2066 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
2067   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
2068   address func;
2069   if (id == vmIntrinsics::_notify) {
2070     func = OptoRuntime::monitor_notify_Java();
2071   } else {
2072     func = OptoRuntime::monitor_notifyAll_Java();
2073   }
2074   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
2075   make_slow_call_ex(call, env()->Throwable_klass(), false);
2076   return true;
2077 }
2078 
2079 
2080 //----------------------------inline_min_max-----------------------------------
2081 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
2082   set_result(generate_min_max(id, argument(0), argument(1)));
2083   return true;
2084 }
2085 
2086 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
2087   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
2088   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2089   Node* fast_path = _gvn.transform( new IfFalseNode(check));
2090   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
2091 
2092   {
2093     PreserveJVMState pjvms(this);
2094     PreserveReexecuteState preexecs(this);
2095     jvms()->set_should_reexecute(true);
2096 
2097     set_control(slow_path);
2098     set_i_o(i_o());
2099 
2100     uncommon_trap(Deoptimization::Reason_intrinsic,
2101                   Deoptimization::Action_none);
2102   }
2103 
2104   set_control(fast_path);
2105   set_result(math);
2106 }
2107 
2108 template <typename OverflowOp>
2109 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2110   typedef typename OverflowOp::MathOp MathOp;
2111 
2112   MathOp* mathOp = new MathOp(arg1, arg2);
2113   Node* operation = _gvn.transform( mathOp );
2114   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
2115   inline_math_mathExact(operation, ofcheck);
2116   return true;
2117 }
2118 
2119 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2120   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2121 }
2122 
2123 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2124   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2125 }
2126 
2127 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2128   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2129 }
2130 
2131 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2132   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2133 }
2134 
2135 bool LibraryCallKit::inline_math_negateExactI() {
2136   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2137 }
2138 
2139 bool LibraryCallKit::inline_math_negateExactL() {
2140   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2141 }
2142 
2143 bool LibraryCallKit::inline_math_multiplyExactI() {
2144   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2145 }
2146 
2147 bool LibraryCallKit::inline_math_multiplyExactL() {
2148   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2149 }
2150 
2151 Node*
2152 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2153   // These are the candidate return value:
2154   Node* xvalue = x0;
2155   Node* yvalue = y0;
2156 
2157   if (xvalue == yvalue) {
2158     return xvalue;
2159   }
2160 
2161   bool want_max = (id == vmIntrinsics::_max);
2162 
2163   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2164   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2165   if (txvalue == NULL || tyvalue == NULL)  return top();
2166   // This is not really necessary, but it is consistent with a
2167   // hypothetical MaxINode::Value method:
2168   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2169 
2170   // %%% This folding logic should (ideally) be in a different place.
2171   // Some should be inside IfNode, and there to be a more reliable
2172   // transformation of ?: style patterns into cmoves.  We also want
2173   // more powerful optimizations around cmove and min/max.
2174 
2175   // Try to find a dominating comparison of these guys.
2176   // It can simplify the index computation for Arrays.copyOf
2177   // and similar uses of System.arraycopy.
2178   // First, compute the normalized version of CmpI(x, y).
2179   int   cmp_op = Op_CmpI;
2180   Node* xkey = xvalue;
2181   Node* ykey = yvalue;
2182   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
2183   if (ideal_cmpxy->is_Cmp()) {
2184     // E.g., if we have CmpI(length - offset, count),
2185     // it might idealize to CmpI(length, count + offset)
2186     cmp_op = ideal_cmpxy->Opcode();
2187     xkey = ideal_cmpxy->in(1);
2188     ykey = ideal_cmpxy->in(2);
2189   }
2190 
2191   // Start by locating any relevant comparisons.
2192   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2193   Node* cmpxy = NULL;
2194   Node* cmpyx = NULL;
2195   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2196     Node* cmp = start_from->fast_out(k);
2197     if (cmp->outcnt() > 0 &&            // must have prior uses
2198         cmp->in(0) == NULL &&           // must be context-independent
2199         cmp->Opcode() == cmp_op) {      // right kind of compare
2200       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2201       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2202     }
2203   }
2204 
2205   const int NCMPS = 2;
2206   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2207   int cmpn;
2208   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2209     if (cmps[cmpn] != NULL)  break;     // find a result
2210   }
2211   if (cmpn < NCMPS) {
2212     // Look for a dominating test that tells us the min and max.
2213     int depth = 0;                // Limit search depth for speed
2214     Node* dom = control();
2215     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2216       if (++depth >= 100)  break;
2217       Node* ifproj = dom;
2218       if (!ifproj->is_Proj())  continue;
2219       Node* iff = ifproj->in(0);
2220       if (!iff->is_If())  continue;
2221       Node* bol = iff->in(1);
2222       if (!bol->is_Bool())  continue;
2223       Node* cmp = bol->in(1);
2224       if (cmp == NULL)  continue;
2225       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2226         if (cmps[cmpn] == cmp)  break;
2227       if (cmpn == NCMPS)  continue;
2228       BoolTest::mask btest = bol->as_Bool()->_test._test;
2229       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2230       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2231       // At this point, we know that 'x btest y' is true.
2232       switch (btest) {
2233       case BoolTest::eq:
2234         // They are proven equal, so we can collapse the min/max.
2235         // Either value is the answer.  Choose the simpler.
2236         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2237           return yvalue;
2238         return xvalue;
2239       case BoolTest::lt:          // x < y
2240       case BoolTest::le:          // x <= y
2241         return (want_max ? yvalue : xvalue);
2242       case BoolTest::gt:          // x > y
2243       case BoolTest::ge:          // x >= y
2244         return (want_max ? xvalue : yvalue);
2245       }
2246     }
2247   }
2248 
2249   // We failed to find a dominating test.
2250   // Let's pick a test that might GVN with prior tests.
2251   Node*          best_bol   = NULL;
2252   BoolTest::mask best_btest = BoolTest::illegal;
2253   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2254     Node* cmp = cmps[cmpn];
2255     if (cmp == NULL)  continue;
2256     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2257       Node* bol = cmp->fast_out(j);
2258       if (!bol->is_Bool())  continue;
2259       BoolTest::mask btest = bol->as_Bool()->_test._test;
2260       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2261       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2262       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2263         best_bol   = bol->as_Bool();
2264         best_btest = btest;
2265       }
2266     }
2267   }
2268 
2269   Node* answer_if_true  = NULL;
2270   Node* answer_if_false = NULL;
2271   switch (best_btest) {
2272   default:
2273     if (cmpxy == NULL)
2274       cmpxy = ideal_cmpxy;
2275     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2276     // and fall through:
2277   case BoolTest::lt:          // x < y
2278   case BoolTest::le:          // x <= y
2279     answer_if_true  = (want_max ? yvalue : xvalue);
2280     answer_if_false = (want_max ? xvalue : yvalue);
2281     break;
2282   case BoolTest::gt:          // x > y
2283   case BoolTest::ge:          // x >= y
2284     answer_if_true  = (want_max ? xvalue : yvalue);
2285     answer_if_false = (want_max ? yvalue : xvalue);
2286     break;
2287   }
2288 
2289   jint hi, lo;
2290   if (want_max) {
2291     // We can sharpen the minimum.
2292     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2293     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2294   } else {
2295     // We can sharpen the maximum.
2296     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2297     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2298   }
2299 
2300   // Use a flow-free graph structure, to avoid creating excess control edges
2301   // which could hinder other optimizations.
2302   // Since Math.min/max is often used with arraycopy, we want
2303   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2304   Node* cmov = CMoveNode::make(NULL, best_bol,
2305                                answer_if_false, answer_if_true,
2306                                TypeInt::make(lo, hi, widen));
2307 
2308   return _gvn.transform(cmov);
2309 
2310   /*
2311   // This is not as desirable as it may seem, since Min and Max
2312   // nodes do not have a full set of optimizations.
2313   // And they would interfere, anyway, with 'if' optimizations
2314   // and with CMoveI canonical forms.
2315   switch (id) {
2316   case vmIntrinsics::_min:
2317     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2318   case vmIntrinsics::_max:
2319     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2320   default:
2321     ShouldNotReachHere();
2322   }
2323   */
2324 }
2325 
2326 inline int
2327 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2328   const TypePtr* base_type = TypePtr::NULL_PTR;
2329   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2330   if (base_type == NULL) {
2331     // Unknown type.
2332     return Type::AnyPtr;
2333   } else if (base_type == TypePtr::NULL_PTR) {
2334     // Since this is a NULL+long form, we have to switch to a rawptr.
2335     base   = _gvn.transform(new CastX2PNode(offset));
2336     offset = MakeConX(0);
2337     return Type::RawPtr;
2338   } else if (base_type->base() == Type::RawPtr) {
2339     return Type::RawPtr;
2340   } else if (base_type->isa_oopptr()) {
2341     // Base is never null => always a heap address.
2342     if (base_type->ptr() == TypePtr::NotNull) {
2343       return Type::OopPtr;
2344     }
2345     // Offset is small => always a heap address.
2346     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2347     if (offset_type != NULL &&
2348         base_type->offset() == 0 &&     // (should always be?)
2349         offset_type->_lo >= 0 &&
2350         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2351       return Type::OopPtr;
2352     }
2353     // Otherwise, it might either be oop+off or NULL+addr.
2354     return Type::AnyPtr;
2355   } else {
2356     // No information:
2357     return Type::AnyPtr;
2358   }
2359 }
2360 
2361 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2362   int kind = classify_unsafe_addr(base, offset);
2363   if (kind == Type::RawPtr) {
2364     return basic_plus_adr(top(), base, offset);
2365   } else {
2366     return basic_plus_adr(base, offset);
2367   }
2368 }
2369 
2370 //--------------------------inline_number_methods-----------------------------
2371 // inline int     Integer.numberOfLeadingZeros(int)
2372 // inline int        Long.numberOfLeadingZeros(long)
2373 //
2374 // inline int     Integer.numberOfTrailingZeros(int)
2375 // inline int        Long.numberOfTrailingZeros(long)
2376 //
2377 // inline int     Integer.bitCount(int)
2378 // inline int        Long.bitCount(long)
2379 //
2380 // inline char  Character.reverseBytes(char)
2381 // inline short     Short.reverseBytes(short)
2382 // inline int     Integer.reverseBytes(int)
2383 // inline long       Long.reverseBytes(long)
2384 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2385   Node* arg = argument(0);
2386   Node* n;
2387   switch (id) {
2388   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2389   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2390   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2391   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2392   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2393   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2394   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2395   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2396   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2397   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2398   default:  fatal_unexpected_iid(id);  break;
2399   }
2400   set_result(_gvn.transform(n));
2401   return true;
2402 }
2403 
2404 //----------------------------inline_unsafe_access----------------------------
2405 
2406 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2407 
2408 // Helper that guards and inserts a pre-barrier.
2409 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2410                                         Node* pre_val, bool need_mem_bar) {
2411   // We could be accessing the referent field of a reference object. If so, when G1
2412   // is enabled, we need to log the value in the referent field in an SATB buffer.
2413   // This routine performs some compile time filters and generates suitable
2414   // runtime filters that guard the pre-barrier code.
2415   // Also add memory barrier for non volatile load from the referent field
2416   // to prevent commoning of loads across safepoint.
2417   if (!UseG1GC && !need_mem_bar)
2418     return;
2419 
2420   // Some compile time checks.
2421 
2422   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2423   const TypeX* otype = offset->find_intptr_t_type();
2424   if (otype != NULL && otype->is_con() &&
2425       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2426     // Constant offset but not the reference_offset so just return
2427     return;
2428   }
2429 
2430   // We only need to generate the runtime guards for instances.
2431   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2432   if (btype != NULL) {
2433     if (btype->isa_aryptr()) {
2434       // Array type so nothing to do
2435       return;
2436     }
2437 
2438     const TypeInstPtr* itype = btype->isa_instptr();
2439     if (itype != NULL) {
2440       // Can the klass of base_oop be statically determined to be
2441       // _not_ a sub-class of Reference and _not_ Object?
2442       ciKlass* klass = itype->klass();
2443       if ( klass->is_loaded() &&
2444           !klass->is_subtype_of(env()->Reference_klass()) &&
2445           !env()->Object_klass()->is_subtype_of(klass)) {
2446         return;
2447       }
2448     }
2449   }
2450 
2451   // The compile time filters did not reject base_oop/offset so
2452   // we need to generate the following runtime filters
2453   //
2454   // if (offset == java_lang_ref_Reference::_reference_offset) {
2455   //   if (instance_of(base, java.lang.ref.Reference)) {
2456   //     pre_barrier(_, pre_val, ...);
2457   //   }
2458   // }
2459 
2460   float likely   = PROB_LIKELY(  0.999);
2461   float unlikely = PROB_UNLIKELY(0.999);
2462 
2463   IdealKit ideal(this);
2464 #define __ ideal.
2465 
2466   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2467 
2468   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2469       // Update graphKit memory and control from IdealKit.
2470       sync_kit(ideal);
2471 
2472       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2473       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2474 
2475       // Update IdealKit memory and control from graphKit.
2476       __ sync_kit(this);
2477 
2478       Node* one = __ ConI(1);
2479       // is_instof == 0 if base_oop == NULL
2480       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2481 
2482         // Update graphKit from IdeakKit.
2483         sync_kit(ideal);
2484 
2485         // Use the pre-barrier to record the value in the referent field
2486         pre_barrier(false /* do_load */,
2487                     __ ctrl(),
2488                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2489                     pre_val /* pre_val */,
2490                     T_OBJECT);
2491         if (need_mem_bar) {
2492           // Add memory barrier to prevent commoning reads from this field
2493           // across safepoint since GC can change its value.
2494           insert_mem_bar(Op_MemBarCPUOrder);
2495         }
2496         // Update IdealKit from graphKit.
2497         __ sync_kit(this);
2498 
2499       } __ end_if(); // _ref_type != ref_none
2500   } __ end_if(); // offset == referent_offset
2501 
2502   // Final sync IdealKit and GraphKit.
2503   final_sync(ideal);
2504 #undef __
2505 }
2506 
2507 
2508 // Interpret Unsafe.fieldOffset cookies correctly:
2509 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2510 
2511 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2512   // Attempt to infer a sharper value type from the offset and base type.
2513   ciKlass* sharpened_klass = NULL;
2514 
2515   // See if it is an instance field, with an object type.
2516   if (alias_type->field() != NULL) {
2517     assert(!is_native_ptr, "native pointer op cannot use a java address");
2518     if (alias_type->field()->type()->is_klass()) {
2519       sharpened_klass = alias_type->field()->type()->as_klass();
2520     }
2521   }
2522 
2523   // See if it is a narrow oop array.
2524   if (adr_type->isa_aryptr()) {
2525     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2526       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2527       if (elem_type != NULL) {
2528         sharpened_klass = elem_type->klass();
2529       }
2530     }
2531   }
2532 
2533   // The sharpened class might be unloaded if there is no class loader
2534   // contraint in place.
2535   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2536     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2537 
2538 #ifndef PRODUCT
2539     if (C->print_intrinsics() || C->print_inlining()) {
2540       tty->print("  from base type: ");  adr_type->dump();
2541       tty->print("  sharpened value: ");  tjp->dump();
2542     }
2543 #endif
2544     // Sharpen the value type.
2545     return tjp;
2546   }
2547   return NULL;
2548 }
2549 
2550 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2551   if (callee()->is_static())  return false;  // caller must have the capability!
2552 
2553 #ifndef PRODUCT
2554   {
2555     ResourceMark rm;
2556     // Check the signatures.
2557     ciSignature* sig = callee()->signature();
2558 #ifdef ASSERT
2559     if (!is_store) {
2560       // Object getObject(Object base, int/long offset), etc.
2561       BasicType rtype = sig->return_type()->basic_type();
2562       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2563           rtype = T_ADDRESS;  // it is really a C void*
2564       assert(rtype == type, "getter must return the expected value");
2565       if (!is_native_ptr) {
2566         assert(sig->count() == 2, "oop getter has 2 arguments");
2567         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2568         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2569       } else {
2570         assert(sig->count() == 1, "native getter has 1 argument");
2571         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2572       }
2573     } else {
2574       // void putObject(Object base, int/long offset, Object x), etc.
2575       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2576       if (!is_native_ptr) {
2577         assert(sig->count() == 3, "oop putter has 3 arguments");
2578         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2579         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2580       } else {
2581         assert(sig->count() == 2, "native putter has 2 arguments");
2582         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2583       }
2584       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2585       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2586         vtype = T_ADDRESS;  // it is really a C void*
2587       assert(vtype == type, "putter must accept the expected value");
2588     }
2589 #endif // ASSERT
2590  }
2591 #endif //PRODUCT
2592 
2593   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2594 
2595   Node* receiver = argument(0);  // type: oop
2596 
2597   // Build address expression.
2598   Node* adr;
2599   Node* heap_base_oop = top();
2600   Node* offset = top();
2601   Node* val;
2602 
2603   if (!is_native_ptr) {
2604     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2605     Node* base = argument(1);  // type: oop
2606     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2607     offset = argument(2);  // type: long
2608     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2609     // to be plain byte offsets, which are also the same as those accepted
2610     // by oopDesc::field_base.
2611     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2612            "fieldOffset must be byte-scaled");
2613     // 32-bit machines ignore the high half!
2614     offset = ConvL2X(offset);
2615     adr = make_unsafe_address(base, offset);
2616     heap_base_oop = base;
2617     val = is_store ? argument(4) : NULL;
2618   } else {
2619     Node* ptr = argument(1);  // type: long
2620     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2621     adr = make_unsafe_address(NULL, ptr);
2622     val = is_store ? argument(3) : NULL;
2623   }
2624 
2625   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2626 
2627   // First guess at the value type.
2628   const Type *value_type = Type::get_const_basic_type(type);
2629 
2630   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2631   // there was not enough information to nail it down.
2632   Compile::AliasType* alias_type = C->alias_type(adr_type);
2633   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2634 
2635   // We will need memory barriers unless we can determine a unique
2636   // alias category for this reference.  (Note:  If for some reason
2637   // the barriers get omitted and the unsafe reference begins to "pollute"
2638   // the alias analysis of the rest of the graph, either Compile::can_alias
2639   // or Compile::must_alias will throw a diagnostic assert.)
2640   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2641 
2642   // If we are reading the value of the referent field of a Reference
2643   // object (either by using Unsafe directly or through reflection)
2644   // then, if G1 is enabled, we need to record the referent in an
2645   // SATB log buffer using the pre-barrier mechanism.
2646   // Also we need to add memory barrier to prevent commoning reads
2647   // from this field across safepoint since GC can change its value.
2648   bool need_read_barrier = !is_native_ptr && !is_store &&
2649                            offset != top() && heap_base_oop != top();
2650 
2651   if (!is_store && type == T_OBJECT) {
2652     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2653     if (tjp != NULL) {
2654       value_type = tjp;
2655     }
2656   }
2657 
2658   receiver = null_check(receiver);
2659   if (stopped()) {
2660     return true;
2661   }
2662   // Heap pointers get a null-check from the interpreter,
2663   // as a courtesy.  However, this is not guaranteed by Unsafe,
2664   // and it is not possible to fully distinguish unintended nulls
2665   // from intended ones in this API.
2666 
2667   if (is_volatile) {
2668     // We need to emit leading and trailing CPU membars (see below) in
2669     // addition to memory membars when is_volatile. This is a little
2670     // too strong, but avoids the need to insert per-alias-type
2671     // volatile membars (for stores; compare Parse::do_put_xxx), which
2672     // we cannot do effectively here because we probably only have a
2673     // rough approximation of type.
2674     need_mem_bar = true;
2675     // For Stores, place a memory ordering barrier now.
2676     if (is_store) {
2677       insert_mem_bar(Op_MemBarRelease);
2678     } else {
2679       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2680         insert_mem_bar(Op_MemBarVolatile);
2681       }
2682     }
2683   }
2684 
2685   // Memory barrier to prevent normal and 'unsafe' accesses from
2686   // bypassing each other.  Happens after null checks, so the
2687   // exception paths do not take memory state from the memory barrier,
2688   // so there's no problems making a strong assert about mixing users
2689   // of safe & unsafe memory.
2690   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2691 
2692   if (!is_store) {
2693     MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
2694     // To be valid, unsafe loads may depend on other conditions than
2695     // the one that guards them: pin the Load node
2696     Node* p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, is_volatile);
2697     // load value
2698     switch (type) {
2699     case T_BOOLEAN:
2700     case T_CHAR:
2701     case T_BYTE:
2702     case T_SHORT:
2703     case T_INT:
2704     case T_LONG:
2705     case T_FLOAT:
2706     case T_DOUBLE:
2707       break;
2708     case T_OBJECT:
2709       if (need_read_barrier) {
2710         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2711       }
2712       break;
2713     case T_ADDRESS:
2714       // Cast to an int type.
2715       p = _gvn.transform(new CastP2XNode(NULL, p));
2716       p = ConvX2UL(p);
2717       break;
2718     default:
2719       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2720       break;
2721     }
2722     // The load node has the control of the preceding MemBarCPUOrder.  All
2723     // following nodes will have the control of the MemBarCPUOrder inserted at
2724     // the end of this method.  So, pushing the load onto the stack at a later
2725     // point is fine.
2726     set_result(p);
2727   } else {
2728     // place effect of store into memory
2729     switch (type) {
2730     case T_DOUBLE:
2731       val = dstore_rounding(val);
2732       break;
2733     case T_ADDRESS:
2734       // Repackage the long as a pointer.
2735       val = ConvL2X(val);
2736       val = _gvn.transform(new CastX2PNode(val));
2737       break;
2738     }
2739 
2740     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2741     if (type != T_OBJECT ) {
2742       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2743     } else {
2744       // Possibly an oop being stored to Java heap or native memory
2745       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2746         // oop to Java heap.
2747         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2748       } else {
2749         // We can't tell at compile time if we are storing in the Java heap or outside
2750         // of it. So we need to emit code to conditionally do the proper type of
2751         // store.
2752 
2753         IdealKit ideal(this);
2754 #define __ ideal.
2755         // QQQ who knows what probability is here??
2756         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2757           // Sync IdealKit and graphKit.
2758           sync_kit(ideal);
2759           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2760           // Update IdealKit memory.
2761           __ sync_kit(this);
2762         } __ else_(); {
2763           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2764         } __ end_if();
2765         // Final sync IdealKit and GraphKit.
2766         final_sync(ideal);
2767 #undef __
2768       }
2769     }
2770   }
2771 
2772   if (is_volatile) {
2773     if (!is_store) {
2774       insert_mem_bar(Op_MemBarAcquire);
2775     } else {
2776       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2777         insert_mem_bar(Op_MemBarVolatile);
2778       }
2779     }
2780   }
2781 
2782   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2783 
2784   return true;
2785 }
2786 
2787 //----------------------------inline_unsafe_load_store----------------------------
2788 // This method serves a couple of different customers (depending on LoadStoreKind):
2789 //
2790 // LS_cmpxchg:
2791 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2792 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2793 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2794 //
2795 // LS_xadd:
2796 //   public int  getAndAddInt( Object o, long offset, int  delta)
2797 //   public long getAndAddLong(Object o, long offset, long delta)
2798 //
2799 // LS_xchg:
2800 //   int    getAndSet(Object o, long offset, int    newValue)
2801 //   long   getAndSet(Object o, long offset, long   newValue)
2802 //   Object getAndSet(Object o, long offset, Object newValue)
2803 //
2804 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2805   // This basic scheme here is the same as inline_unsafe_access, but
2806   // differs in enough details that combining them would make the code
2807   // overly confusing.  (This is a true fact! I originally combined
2808   // them, but even I was confused by it!) As much code/comments as
2809   // possible are retained from inline_unsafe_access though to make
2810   // the correspondences clearer. - dl
2811 
2812   if (callee()->is_static())  return false;  // caller must have the capability!
2813 
2814 #ifndef PRODUCT
2815   BasicType rtype;
2816   {
2817     ResourceMark rm;
2818     // Check the signatures.
2819     ciSignature* sig = callee()->signature();
2820     rtype = sig->return_type()->basic_type();
2821     if (kind == LS_xadd || kind == LS_xchg) {
2822       // Check the signatures.
2823 #ifdef ASSERT
2824       assert(rtype == type, "get and set must return the expected type");
2825       assert(sig->count() == 3, "get and set has 3 arguments");
2826       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2827       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2828       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2829 #endif // ASSERT
2830     } else if (kind == LS_cmpxchg) {
2831       // Check the signatures.
2832 #ifdef ASSERT
2833       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2834       assert(sig->count() == 4, "CAS has 4 arguments");
2835       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2836       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2837 #endif // ASSERT
2838     } else {
2839       ShouldNotReachHere();
2840     }
2841   }
2842 #endif //PRODUCT
2843 
2844   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2845 
2846   // Get arguments:
2847   Node* receiver = NULL;
2848   Node* base     = NULL;
2849   Node* offset   = NULL;
2850   Node* oldval   = NULL;
2851   Node* newval   = NULL;
2852   if (kind == LS_cmpxchg) {
2853     const bool two_slot_type = type2size[type] == 2;
2854     receiver = argument(0);  // type: oop
2855     base     = argument(1);  // type: oop
2856     offset   = argument(2);  // type: long
2857     oldval   = argument(4);  // type: oop, int, or long
2858     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2859   } else if (kind == LS_xadd || kind == LS_xchg){
2860     receiver = argument(0);  // type: oop
2861     base     = argument(1);  // type: oop
2862     offset   = argument(2);  // type: long
2863     oldval   = NULL;
2864     newval   = argument(4);  // type: oop, int, or long
2865   }
2866 
2867   // Null check receiver.
2868   receiver = null_check(receiver);
2869   if (stopped()) {
2870     return true;
2871   }
2872 
2873   // Build field offset expression.
2874   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2875   // to be plain byte offsets, which are also the same as those accepted
2876   // by oopDesc::field_base.
2877   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2878   // 32-bit machines ignore the high half of long offsets
2879   offset = ConvL2X(offset);
2880   Node* adr = make_unsafe_address(base, offset);
2881   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2882 
2883   // For CAS, unlike inline_unsafe_access, there seems no point in
2884   // trying to refine types. Just use the coarse types here.
2885   const Type *value_type = Type::get_const_basic_type(type);
2886   Compile::AliasType* alias_type = C->alias_type(adr_type);
2887   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2888 
2889   if (kind == LS_xchg && type == T_OBJECT) {
2890     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2891     if (tjp != NULL) {
2892       value_type = tjp;
2893     }
2894   }
2895 
2896   int alias_idx = C->get_alias_index(adr_type);
2897 
2898   // Memory-model-wise, a LoadStore acts like a little synchronized
2899   // block, so needs barriers on each side.  These don't translate
2900   // into actual barriers on most machines, but we still need rest of
2901   // compiler to respect ordering.
2902 
2903   insert_mem_bar(Op_MemBarRelease);
2904   insert_mem_bar(Op_MemBarCPUOrder);
2905 
2906   // 4984716: MemBars must be inserted before this
2907   //          memory node in order to avoid a false
2908   //          dependency which will confuse the scheduler.
2909   Node *mem = memory(alias_idx);
2910 
2911   // For now, we handle only those cases that actually exist: ints,
2912   // longs, and Object. Adding others should be straightforward.
2913   Node* load_store;
2914   switch(type) {
2915   case T_INT:
2916     if (kind == LS_xadd) {
2917       load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2918     } else if (kind == LS_xchg) {
2919       load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2920     } else if (kind == LS_cmpxchg) {
2921       load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval));
2922     } else {
2923       ShouldNotReachHere();
2924     }
2925     break;
2926   case T_LONG:
2927     if (kind == LS_xadd) {
2928       load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2929     } else if (kind == LS_xchg) {
2930       load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2931     } else if (kind == LS_cmpxchg) {
2932       load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2933     } else {
2934       ShouldNotReachHere();
2935     }
2936     break;
2937   case T_OBJECT:
2938     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2939     // could be delayed during Parse (for example, in adjust_map_after_if()).
2940     // Execute transformation here to avoid barrier generation in such case.
2941     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2942       newval = _gvn.makecon(TypePtr::NULL_PTR);
2943 
2944     // Reference stores need a store barrier.
2945     if (kind == LS_xchg) {
2946       // If pre-barrier must execute before the oop store, old value will require do_load here.
2947       if (!can_move_pre_barrier()) {
2948         pre_barrier(true /* do_load*/,
2949                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2950                     NULL /* pre_val*/,
2951                     T_OBJECT);
2952       } // Else move pre_barrier to use load_store value, see below.
2953     } else if (kind == LS_cmpxchg) {
2954       // Same as for newval above:
2955       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2956         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2957       }
2958       // The only known value which might get overwritten is oldval.
2959       pre_barrier(false /* do_load */,
2960                   control(), NULL, NULL, max_juint, NULL, NULL,
2961                   oldval /* pre_val */,
2962                   T_OBJECT);
2963     } else {
2964       ShouldNotReachHere();
2965     }
2966 
2967 #ifdef _LP64
2968     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2969       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2970       if (kind == LS_xchg) {
2971         load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr,
2972                                                        newval_enc, adr_type, value_type->make_narrowoop()));
2973       } else {
2974         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2975         Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2976         load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr,
2977                                                                 newval_enc, oldval_enc));
2978       }
2979     } else
2980 #endif
2981     {
2982       if (kind == LS_xchg) {
2983         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2984       } else {
2985         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2986         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2987       }
2988     }
2989     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2990     break;
2991   default:
2992     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2993     break;
2994   }
2995 
2996   // SCMemProjNodes represent the memory state of a LoadStore. Their
2997   // main role is to prevent LoadStore nodes from being optimized away
2998   // when their results aren't used.
2999   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
3000   set_memory(proj, alias_idx);
3001 
3002   if (type == T_OBJECT && kind == LS_xchg) {
3003 #ifdef _LP64
3004     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3005       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
3006     }
3007 #endif
3008     if (can_move_pre_barrier()) {
3009       // Don't need to load pre_val. The old value is returned by load_store.
3010       // The pre_barrier can execute after the xchg as long as no safepoint
3011       // gets inserted between them.
3012       pre_barrier(false /* do_load */,
3013                   control(), NULL, NULL, max_juint, NULL, NULL,
3014                   load_store /* pre_val */,
3015                   T_OBJECT);
3016     }
3017   }
3018 
3019   // Add the trailing membar surrounding the access
3020   insert_mem_bar(Op_MemBarCPUOrder);
3021   insert_mem_bar(Op_MemBarAcquire);
3022 
3023   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3024   set_result(load_store);
3025   return true;
3026 }
3027 
3028 //----------------------------inline_unsafe_ordered_store----------------------
3029 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
3030 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
3031 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
3032 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
3033   // This is another variant of inline_unsafe_access, differing in
3034   // that it always issues store-store ("release") barrier and ensures
3035   // store-atomicity (which only matters for "long").
3036 
3037   if (callee()->is_static())  return false;  // caller must have the capability!
3038 
3039 #ifndef PRODUCT
3040   {
3041     ResourceMark rm;
3042     // Check the signatures.
3043     ciSignature* sig = callee()->signature();
3044 #ifdef ASSERT
3045     BasicType rtype = sig->return_type()->basic_type();
3046     assert(rtype == T_VOID, "must return void");
3047     assert(sig->count() == 3, "has 3 arguments");
3048     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3049     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3050 #endif // ASSERT
3051   }
3052 #endif //PRODUCT
3053 
3054   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3055 
3056   // Get arguments:
3057   Node* receiver = argument(0);  // type: oop
3058   Node* base     = argument(1);  // type: oop
3059   Node* offset   = argument(2);  // type: long
3060   Node* val      = argument(4);  // type: oop, int, or long
3061 
3062   // Null check receiver.
3063   receiver = null_check(receiver);
3064   if (stopped()) {
3065     return true;
3066   }
3067 
3068   // Build field offset expression.
3069   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3070   // 32-bit machines ignore the high half of long offsets
3071   offset = ConvL2X(offset);
3072   Node* adr = make_unsafe_address(base, offset);
3073   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3074   const Type *value_type = Type::get_const_basic_type(type);
3075   Compile::AliasType* alias_type = C->alias_type(adr_type);
3076 
3077   insert_mem_bar(Op_MemBarRelease);
3078   insert_mem_bar(Op_MemBarCPUOrder);
3079   // Ensure that the store is atomic for longs:
3080   const bool require_atomic_access = true;
3081   Node* store;
3082   if (type == T_OBJECT) // reference stores need a store barrier.
3083     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3084   else {
3085     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3086   }
3087   insert_mem_bar(Op_MemBarCPUOrder);
3088   return true;
3089 }
3090 
3091 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3092   // Regardless of form, don't allow previous ld/st to move down,
3093   // then issue acquire, release, or volatile mem_bar.
3094   insert_mem_bar(Op_MemBarCPUOrder);
3095   switch(id) {
3096     case vmIntrinsics::_loadFence:
3097       insert_mem_bar(Op_LoadFence);
3098       return true;
3099     case vmIntrinsics::_storeFence:
3100       insert_mem_bar(Op_StoreFence);
3101       return true;
3102     case vmIntrinsics::_fullFence:
3103       insert_mem_bar(Op_MemBarVolatile);
3104       return true;
3105     default:
3106       fatal_unexpected_iid(id);
3107       return false;
3108   }
3109 }
3110 
3111 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3112   if (!kls->is_Con()) {
3113     return true;
3114   }
3115   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3116   if (klsptr == NULL) {
3117     return true;
3118   }
3119   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3120   // don't need a guard for a klass that is already initialized
3121   return !ik->is_initialized();
3122 }
3123 
3124 //----------------------------inline_unsafe_allocate---------------------------
3125 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3126 bool LibraryCallKit::inline_unsafe_allocate() {
3127   if (callee()->is_static())  return false;  // caller must have the capability!
3128 
3129   null_check_receiver();  // null-check, then ignore
3130   Node* cls = null_check(argument(1));
3131   if (stopped())  return true;
3132 
3133   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3134   kls = null_check(kls);
3135   if (stopped())  return true;  // argument was like int.class
3136 
3137   Node* test = NULL;
3138   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3139     // Note:  The argument might still be an illegal value like
3140     // Serializable.class or Object[].class.   The runtime will handle it.
3141     // But we must make an explicit check for initialization.
3142     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3143     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3144     // can generate code to load it as unsigned byte.
3145     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3146     Node* bits = intcon(InstanceKlass::fully_initialized);
3147     test = _gvn.transform(new SubINode(inst, bits));
3148     // The 'test' is non-zero if we need to take a slow path.
3149   }
3150 
3151   Node* obj = new_instance(kls, test);
3152   set_result(obj);
3153   return true;
3154 }
3155 
3156 #ifdef TRACE_HAVE_INTRINSICS
3157 /*
3158  * oop -> myklass
3159  * myklass->trace_id |= USED
3160  * return myklass->trace_id & ~0x3
3161  */
3162 bool LibraryCallKit::inline_native_classID() {
3163   null_check_receiver();  // null-check, then ignore
3164   Node* cls = null_check(argument(1), T_OBJECT);
3165   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3166   kls = null_check(kls, T_OBJECT);
3167   ByteSize offset = TRACE_ID_OFFSET;
3168   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3169   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3170   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3171   Node* andl = _gvn.transform(new AndLNode(tvalue, bits));
3172   Node* clsused = longcon(0x01l); // set the class bit
3173   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3174 
3175   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3176   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3177   set_result(andl);
3178   return true;
3179 }
3180 
3181 bool LibraryCallKit::inline_native_threadID() {
3182   Node* tls_ptr = NULL;
3183   Node* cur_thr = generate_current_thread(tls_ptr);
3184   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3185   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3186   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3187 
3188   Node* threadid = NULL;
3189   size_t thread_id_size = OSThread::thread_id_size();
3190   if (thread_id_size == (size_t) BytesPerLong) {
3191     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3192   } else if (thread_id_size == (size_t) BytesPerInt) {
3193     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3194   } else {
3195     ShouldNotReachHere();
3196   }
3197   set_result(threadid);
3198   return true;
3199 }
3200 #endif
3201 
3202 //------------------------inline_native_time_funcs--------------
3203 // inline code for System.currentTimeMillis() and System.nanoTime()
3204 // these have the same type and signature
3205 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3206   const TypeFunc* tf = OptoRuntime::void_long_Type();
3207   const TypePtr* no_memory_effects = NULL;
3208   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3209   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3210 #ifdef ASSERT
3211   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3212   assert(value_top == top(), "second value must be top");
3213 #endif
3214   set_result(value);
3215   return true;
3216 }
3217 
3218 //------------------------inline_native_currentThread------------------
3219 bool LibraryCallKit::inline_native_currentThread() {
3220   Node* junk = NULL;
3221   set_result(generate_current_thread(junk));
3222   return true;
3223 }
3224 
3225 //------------------------inline_native_isInterrupted------------------
3226 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3227 bool LibraryCallKit::inline_native_isInterrupted() {
3228   // Add a fast path to t.isInterrupted(clear_int):
3229   //   (t == Thread.current() &&
3230   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3231   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3232   // So, in the common case that the interrupt bit is false,
3233   // we avoid making a call into the VM.  Even if the interrupt bit
3234   // is true, if the clear_int argument is false, we avoid the VM call.
3235   // However, if the receiver is not currentThread, we must call the VM,
3236   // because there must be some locking done around the operation.
3237 
3238   // We only go to the fast case code if we pass two guards.
3239   // Paths which do not pass are accumulated in the slow_region.
3240 
3241   enum {
3242     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3243     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3244     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3245     PATH_LIMIT
3246   };
3247 
3248   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3249   // out of the function.
3250   insert_mem_bar(Op_MemBarCPUOrder);
3251 
3252   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3253   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3254 
3255   RegionNode* slow_region = new RegionNode(1);
3256   record_for_igvn(slow_region);
3257 
3258   // (a) Receiving thread must be the current thread.
3259   Node* rec_thr = argument(0);
3260   Node* tls_ptr = NULL;
3261   Node* cur_thr = generate_current_thread(tls_ptr);
3262   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3263   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3264 
3265   generate_slow_guard(bol_thr, slow_region);
3266 
3267   // (b) Interrupt bit on TLS must be false.
3268   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3269   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3270   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3271 
3272   // Set the control input on the field _interrupted read to prevent it floating up.
3273   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3274   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3275   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3276 
3277   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3278 
3279   // First fast path:  if (!TLS._interrupted) return false;
3280   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3281   result_rgn->init_req(no_int_result_path, false_bit);
3282   result_val->init_req(no_int_result_path, intcon(0));
3283 
3284   // drop through to next case
3285   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3286 
3287 #ifndef TARGET_OS_FAMILY_windows
3288   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3289   Node* clr_arg = argument(1);
3290   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3291   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3292   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3293 
3294   // Second fast path:  ... else if (!clear_int) return true;
3295   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3296   result_rgn->init_req(no_clear_result_path, false_arg);
3297   result_val->init_req(no_clear_result_path, intcon(1));
3298 
3299   // drop through to next case
3300   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3301 #else
3302   // To return true on Windows you must read the _interrupted field
3303   // and check the the event state i.e. take the slow path.
3304 #endif // TARGET_OS_FAMILY_windows
3305 
3306   // (d) Otherwise, go to the slow path.
3307   slow_region->add_req(control());
3308   set_control( _gvn.transform(slow_region));
3309 
3310   if (stopped()) {
3311     // There is no slow path.
3312     result_rgn->init_req(slow_result_path, top());
3313     result_val->init_req(slow_result_path, top());
3314   } else {
3315     // non-virtual because it is a private non-static
3316     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3317 
3318     Node* slow_val = set_results_for_java_call(slow_call);
3319     // this->control() comes from set_results_for_java_call
3320 
3321     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3322     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3323 
3324     // These two phis are pre-filled with copies of of the fast IO and Memory
3325     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3326     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3327 
3328     result_rgn->init_req(slow_result_path, control());
3329     result_io ->init_req(slow_result_path, i_o());
3330     result_mem->init_req(slow_result_path, reset_memory());
3331     result_val->init_req(slow_result_path, slow_val);
3332 
3333     set_all_memory(_gvn.transform(result_mem));
3334     set_i_o(       _gvn.transform(result_io));
3335   }
3336 
3337   C->set_has_split_ifs(true); // Has chance for split-if optimization
3338   set_result(result_rgn, result_val);
3339   return true;
3340 }
3341 
3342 //---------------------------load_mirror_from_klass----------------------------
3343 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3344 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3345   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3346   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3347 }
3348 
3349 //-----------------------load_klass_from_mirror_common-------------------------
3350 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3351 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3352 // and branch to the given path on the region.
3353 // If never_see_null, take an uncommon trap on null, so we can optimistically
3354 // compile for the non-null case.
3355 // If the region is NULL, force never_see_null = true.
3356 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3357                                                     bool never_see_null,
3358                                                     RegionNode* region,
3359                                                     int null_path,
3360                                                     int offset) {
3361   if (region == NULL)  never_see_null = true;
3362   Node* p = basic_plus_adr(mirror, offset);
3363   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3364   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3365   Node* null_ctl = top();
3366   kls = null_check_oop(kls, &null_ctl, never_see_null);
3367   if (region != NULL) {
3368     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3369     region->init_req(null_path, null_ctl);
3370   } else {
3371     assert(null_ctl == top(), "no loose ends");
3372   }
3373   return kls;
3374 }
3375 
3376 //--------------------(inline_native_Class_query helpers)---------------------
3377 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3378 // Fall through if (mods & mask) == bits, take the guard otherwise.
3379 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3380   // Branch around if the given klass has the given modifier bit set.
3381   // Like generate_guard, adds a new path onto the region.
3382   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3383   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3384   Node* mask = intcon(modifier_mask);
3385   Node* bits = intcon(modifier_bits);
3386   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3387   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3388   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3389   return generate_fair_guard(bol, region);
3390 }
3391 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3392   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3393 }
3394 
3395 //-------------------------inline_native_Class_query-------------------
3396 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3397   const Type* return_type = TypeInt::BOOL;
3398   Node* prim_return_value = top();  // what happens if it's a primitive class?
3399   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3400   bool expect_prim = false;     // most of these guys expect to work on refs
3401 
3402   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3403 
3404   Node* mirror = argument(0);
3405   Node* obj    = top();
3406 
3407   switch (id) {
3408   case vmIntrinsics::_isInstance:
3409     // nothing is an instance of a primitive type
3410     prim_return_value = intcon(0);
3411     obj = argument(1);
3412     break;
3413   case vmIntrinsics::_getModifiers:
3414     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3415     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3416     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3417     break;
3418   case vmIntrinsics::_isInterface:
3419     prim_return_value = intcon(0);
3420     break;
3421   case vmIntrinsics::_isArray:
3422     prim_return_value = intcon(0);
3423     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3424     break;
3425   case vmIntrinsics::_isPrimitive:
3426     prim_return_value = intcon(1);
3427     expect_prim = true;  // obviously
3428     break;
3429   case vmIntrinsics::_getSuperclass:
3430     prim_return_value = null();
3431     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3432     break;
3433   case vmIntrinsics::_getClassAccessFlags:
3434     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3435     return_type = TypeInt::INT;  // not bool!  6297094
3436     break;
3437   default:
3438     fatal_unexpected_iid(id);
3439     break;
3440   }
3441 
3442   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3443   if (mirror_con == NULL)  return false;  // cannot happen?
3444 
3445 #ifndef PRODUCT
3446   if (C->print_intrinsics() || C->print_inlining()) {
3447     ciType* k = mirror_con->java_mirror_type();
3448     if (k) {
3449       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3450       k->print_name();
3451       tty->cr();
3452     }
3453   }
3454 #endif
3455 
3456   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3457   RegionNode* region = new RegionNode(PATH_LIMIT);
3458   record_for_igvn(region);
3459   PhiNode* phi = new PhiNode(region, return_type);
3460 
3461   // The mirror will never be null of Reflection.getClassAccessFlags, however
3462   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3463   // if it is. See bug 4774291.
3464 
3465   // For Reflection.getClassAccessFlags(), the null check occurs in
3466   // the wrong place; see inline_unsafe_access(), above, for a similar
3467   // situation.
3468   mirror = null_check(mirror);
3469   // If mirror or obj is dead, only null-path is taken.
3470   if (stopped())  return true;
3471 
3472   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3473 
3474   // Now load the mirror's klass metaobject, and null-check it.
3475   // Side-effects region with the control path if the klass is null.
3476   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3477   // If kls is null, we have a primitive mirror.
3478   phi->init_req(_prim_path, prim_return_value);
3479   if (stopped()) { set_result(region, phi); return true; }
3480   bool safe_for_replace = (region->in(_prim_path) == top());
3481 
3482   Node* p;  // handy temp
3483   Node* null_ctl;
3484 
3485   // Now that we have the non-null klass, we can perform the real query.
3486   // For constant classes, the query will constant-fold in LoadNode::Value.
3487   Node* query_value = top();
3488   switch (id) {
3489   case vmIntrinsics::_isInstance:
3490     // nothing is an instance of a primitive type
3491     query_value = gen_instanceof(obj, kls, safe_for_replace);
3492     break;
3493 
3494   case vmIntrinsics::_getModifiers:
3495     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3496     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3497     break;
3498 
3499   case vmIntrinsics::_isInterface:
3500     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3501     if (generate_interface_guard(kls, region) != NULL)
3502       // A guard was added.  If the guard is taken, it was an interface.
3503       phi->add_req(intcon(1));
3504     // If we fall through, it's a plain class.
3505     query_value = intcon(0);
3506     break;
3507 
3508   case vmIntrinsics::_isArray:
3509     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3510     if (generate_array_guard(kls, region) != NULL)
3511       // A guard was added.  If the guard is taken, it was an array.
3512       phi->add_req(intcon(1));
3513     // If we fall through, it's a plain class.
3514     query_value = intcon(0);
3515     break;
3516 
3517   case vmIntrinsics::_isPrimitive:
3518     query_value = intcon(0); // "normal" path produces false
3519     break;
3520 
3521   case vmIntrinsics::_getSuperclass:
3522     // The rules here are somewhat unfortunate, but we can still do better
3523     // with random logic than with a JNI call.
3524     // Interfaces store null or Object as _super, but must report null.
3525     // Arrays store an intermediate super as _super, but must report Object.
3526     // Other types can report the actual _super.
3527     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3528     if (generate_interface_guard(kls, region) != NULL)
3529       // A guard was added.  If the guard is taken, it was an interface.
3530       phi->add_req(null());
3531     if (generate_array_guard(kls, region) != NULL)
3532       // A guard was added.  If the guard is taken, it was an array.
3533       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3534     // If we fall through, it's a plain class.  Get its _super.
3535     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3536     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3537     null_ctl = top();
3538     kls = null_check_oop(kls, &null_ctl);
3539     if (null_ctl != top()) {
3540       // If the guard is taken, Object.superClass is null (both klass and mirror).
3541       region->add_req(null_ctl);
3542       phi   ->add_req(null());
3543     }
3544     if (!stopped()) {
3545       query_value = load_mirror_from_klass(kls);
3546     }
3547     break;
3548 
3549   case vmIntrinsics::_getClassAccessFlags:
3550     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3551     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3552     break;
3553 
3554   default:
3555     fatal_unexpected_iid(id);
3556     break;
3557   }
3558 
3559   // Fall-through is the normal case of a query to a real class.
3560   phi->init_req(1, query_value);
3561   region->init_req(1, control());
3562 
3563   C->set_has_split_ifs(true); // Has chance for split-if optimization
3564   set_result(region, phi);
3565   return true;
3566 }
3567 
3568 //-------------------------inline_Class_cast-------------------
3569 bool LibraryCallKit::inline_Class_cast() {
3570   Node* mirror = argument(0); // Class
3571   Node* obj    = argument(1);
3572   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3573   if (mirror_con == NULL) {
3574     return false;  // dead path (mirror->is_top()).
3575   }
3576   if (obj == NULL || obj->is_top()) {
3577     return false;  // dead path
3578   }
3579   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3580 
3581   // First, see if Class.cast() can be folded statically.
3582   // java_mirror_type() returns non-null for compile-time Class constants.
3583   ciType* tm = mirror_con->java_mirror_type();
3584   if (tm != NULL && tm->is_klass() &&
3585       tp != NULL && tp->klass() != NULL) {
3586     if (!tp->klass()->is_loaded()) {
3587       // Don't use intrinsic when class is not loaded.
3588       return false;
3589     } else {
3590       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3591       if (static_res == Compile::SSC_always_true) {
3592         // isInstance() is true - fold the code.
3593         set_result(obj);
3594         return true;
3595       } else if (static_res == Compile::SSC_always_false) {
3596         // Don't use intrinsic, have to throw ClassCastException.
3597         // If the reference is null, the non-intrinsic bytecode will
3598         // be optimized appropriately.
3599         return false;
3600       }
3601     }
3602   }
3603 
3604   // Bailout intrinsic and do normal inlining if exception path is frequent.
3605   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3606     return false;
3607   }
3608 
3609   // Generate dynamic checks.
3610   // Class.cast() is java implementation of _checkcast bytecode.
3611   // Do checkcast (Parse::do_checkcast()) optimizations here.
3612 
3613   mirror = null_check(mirror);
3614   // If mirror is dead, only null-path is taken.
3615   if (stopped()) {
3616     return true;
3617   }
3618 
3619   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3620   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3621   RegionNode* region = new RegionNode(PATH_LIMIT);
3622   record_for_igvn(region);
3623 
3624   // Now load the mirror's klass metaobject, and null-check it.
3625   // If kls is null, we have a primitive mirror and
3626   // nothing is an instance of a primitive type.
3627   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3628 
3629   Node* res = top();
3630   if (!stopped()) {
3631     Node* bad_type_ctrl = top();
3632     // Do checkcast optimizations.
3633     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3634     region->init_req(_bad_type_path, bad_type_ctrl);
3635   }
3636   if (region->in(_prim_path) != top() ||
3637       region->in(_bad_type_path) != top()) {
3638     // Let Interpreter throw ClassCastException.
3639     PreserveJVMState pjvms(this);
3640     set_control(_gvn.transform(region));
3641     uncommon_trap(Deoptimization::Reason_intrinsic,
3642                   Deoptimization::Action_maybe_recompile);
3643   }
3644   if (!stopped()) {
3645     set_result(res);
3646   }
3647   return true;
3648 }
3649 
3650 
3651 //--------------------------inline_native_subtype_check------------------------
3652 // This intrinsic takes the JNI calls out of the heart of
3653 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3654 bool LibraryCallKit::inline_native_subtype_check() {
3655   // Pull both arguments off the stack.
3656   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3657   args[0] = argument(0);
3658   args[1] = argument(1);
3659   Node* klasses[2];             // corresponding Klasses: superk, subk
3660   klasses[0] = klasses[1] = top();
3661 
3662   enum {
3663     // A full decision tree on {superc is prim, subc is prim}:
3664     _prim_0_path = 1,           // {P,N} => false
3665                                 // {P,P} & superc!=subc => false
3666     _prim_same_path,            // {P,P} & superc==subc => true
3667     _prim_1_path,               // {N,P} => false
3668     _ref_subtype_path,          // {N,N} & subtype check wins => true
3669     _both_ref_path,             // {N,N} & subtype check loses => false
3670     PATH_LIMIT
3671   };
3672 
3673   RegionNode* region = new RegionNode(PATH_LIMIT);
3674   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3675   record_for_igvn(region);
3676 
3677   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3678   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3679   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3680 
3681   // First null-check both mirrors and load each mirror's klass metaobject.
3682   int which_arg;
3683   for (which_arg = 0; which_arg <= 1; which_arg++) {
3684     Node* arg = args[which_arg];
3685     arg = null_check(arg);
3686     if (stopped())  break;
3687     args[which_arg] = arg;
3688 
3689     Node* p = basic_plus_adr(arg, class_klass_offset);
3690     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3691     klasses[which_arg] = _gvn.transform(kls);
3692   }
3693 
3694   // Having loaded both klasses, test each for null.
3695   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3696   for (which_arg = 0; which_arg <= 1; which_arg++) {
3697     Node* kls = klasses[which_arg];
3698     Node* null_ctl = top();
3699     kls = null_check_oop(kls, &null_ctl, never_see_null);
3700     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3701     region->init_req(prim_path, null_ctl);
3702     if (stopped())  break;
3703     klasses[which_arg] = kls;
3704   }
3705 
3706   if (!stopped()) {
3707     // now we have two reference types, in klasses[0..1]
3708     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3709     Node* superk = klasses[0];  // the receiver
3710     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3711     // now we have a successful reference subtype check
3712     region->set_req(_ref_subtype_path, control());
3713   }
3714 
3715   // If both operands are primitive (both klasses null), then
3716   // we must return true when they are identical primitives.
3717   // It is convenient to test this after the first null klass check.
3718   set_control(region->in(_prim_0_path)); // go back to first null check
3719   if (!stopped()) {
3720     // Since superc is primitive, make a guard for the superc==subc case.
3721     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3722     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3723     generate_guard(bol_eq, region, PROB_FAIR);
3724     if (region->req() == PATH_LIMIT+1) {
3725       // A guard was added.  If the added guard is taken, superc==subc.
3726       region->swap_edges(PATH_LIMIT, _prim_same_path);
3727       region->del_req(PATH_LIMIT);
3728     }
3729     region->set_req(_prim_0_path, control()); // Not equal after all.
3730   }
3731 
3732   // these are the only paths that produce 'true':
3733   phi->set_req(_prim_same_path,   intcon(1));
3734   phi->set_req(_ref_subtype_path, intcon(1));
3735 
3736   // pull together the cases:
3737   assert(region->req() == PATH_LIMIT, "sane region");
3738   for (uint i = 1; i < region->req(); i++) {
3739     Node* ctl = region->in(i);
3740     if (ctl == NULL || ctl == top()) {
3741       region->set_req(i, top());
3742       phi   ->set_req(i, top());
3743     } else if (phi->in(i) == NULL) {
3744       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3745     }
3746   }
3747 
3748   set_control(_gvn.transform(region));
3749   set_result(_gvn.transform(phi));
3750   return true;
3751 }
3752 
3753 //---------------------generate_array_guard_common------------------------
3754 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3755                                                   bool obj_array, bool not_array) {
3756 
3757   if (stopped()) {
3758     return NULL;
3759   }
3760 
3761   // If obj_array/non_array==false/false:
3762   // Branch around if the given klass is in fact an array (either obj or prim).
3763   // If obj_array/non_array==false/true:
3764   // Branch around if the given klass is not an array klass of any kind.
3765   // If obj_array/non_array==true/true:
3766   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3767   // If obj_array/non_array==true/false:
3768   // Branch around if the kls is an oop array (Object[] or subtype)
3769   //
3770   // Like generate_guard, adds a new path onto the region.
3771   jint  layout_con = 0;
3772   Node* layout_val = get_layout_helper(kls, layout_con);
3773   if (layout_val == NULL) {
3774     bool query = (obj_array
3775                   ? Klass::layout_helper_is_objArray(layout_con)
3776                   : Klass::layout_helper_is_array(layout_con));
3777     if (query == not_array) {
3778       return NULL;                       // never a branch
3779     } else {                             // always a branch
3780       Node* always_branch = control();
3781       if (region != NULL)
3782         region->add_req(always_branch);
3783       set_control(top());
3784       return always_branch;
3785     }
3786   }
3787   // Now test the correct condition.
3788   jint  nval = (obj_array
3789                 ? ((jint)Klass::_lh_array_tag_type_value
3790                    <<    Klass::_lh_array_tag_shift)
3791                 : Klass::_lh_neutral_value);
3792   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3793   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3794   // invert the test if we are looking for a non-array
3795   if (not_array)  btest = BoolTest(btest).negate();
3796   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3797   return generate_fair_guard(bol, region);
3798 }
3799 
3800 
3801 //-----------------------inline_native_newArray--------------------------
3802 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3803 bool LibraryCallKit::inline_native_newArray() {
3804   Node* mirror    = argument(0);
3805   Node* count_val = argument(1);
3806 
3807   mirror = null_check(mirror);
3808   // If mirror or obj is dead, only null-path is taken.
3809   if (stopped())  return true;
3810 
3811   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3812   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3813   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3814   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3815   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3816 
3817   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3818   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3819                                                   result_reg, _slow_path);
3820   Node* normal_ctl   = control();
3821   Node* no_array_ctl = result_reg->in(_slow_path);
3822 
3823   // Generate code for the slow case.  We make a call to newArray().
3824   set_control(no_array_ctl);
3825   if (!stopped()) {
3826     // Either the input type is void.class, or else the
3827     // array klass has not yet been cached.  Either the
3828     // ensuing call will throw an exception, or else it
3829     // will cache the array klass for next time.
3830     PreserveJVMState pjvms(this);
3831     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3832     Node* slow_result = set_results_for_java_call(slow_call);
3833     // this->control() comes from set_results_for_java_call
3834     result_reg->set_req(_slow_path, control());
3835     result_val->set_req(_slow_path, slow_result);
3836     result_io ->set_req(_slow_path, i_o());
3837     result_mem->set_req(_slow_path, reset_memory());
3838   }
3839 
3840   set_control(normal_ctl);
3841   if (!stopped()) {
3842     // Normal case:  The array type has been cached in the java.lang.Class.
3843     // The following call works fine even if the array type is polymorphic.
3844     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3845     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3846     result_reg->init_req(_normal_path, control());
3847     result_val->init_req(_normal_path, obj);
3848     result_io ->init_req(_normal_path, i_o());
3849     result_mem->init_req(_normal_path, reset_memory());
3850   }
3851 
3852   // Return the combined state.
3853   set_i_o(        _gvn.transform(result_io)  );
3854   set_all_memory( _gvn.transform(result_mem));
3855 
3856   C->set_has_split_ifs(true); // Has chance for split-if optimization
3857   set_result(result_reg, result_val);
3858   return true;
3859 }
3860 
3861 //----------------------inline_native_getLength--------------------------
3862 // public static native int java.lang.reflect.Array.getLength(Object array);
3863 bool LibraryCallKit::inline_native_getLength() {
3864   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3865 
3866   Node* array = null_check(argument(0));
3867   // If array is dead, only null-path is taken.
3868   if (stopped())  return true;
3869 
3870   // Deoptimize if it is a non-array.
3871   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3872 
3873   if (non_array != NULL) {
3874     PreserveJVMState pjvms(this);
3875     set_control(non_array);
3876     uncommon_trap(Deoptimization::Reason_intrinsic,
3877                   Deoptimization::Action_maybe_recompile);
3878   }
3879 
3880   // If control is dead, only non-array-path is taken.
3881   if (stopped())  return true;
3882 
3883   // The works fine even if the array type is polymorphic.
3884   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3885   Node* result = load_array_length(array);
3886 
3887   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3888   set_result(result);
3889   return true;
3890 }
3891 
3892 //------------------------inline_array_copyOf----------------------------
3893 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3894 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3895 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3896   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3897 
3898   // Get the arguments.
3899   Node* original          = argument(0);
3900   Node* start             = is_copyOfRange? argument(1): intcon(0);
3901   Node* end               = is_copyOfRange? argument(2): argument(1);
3902   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3903 
3904   Node* newcopy;
3905 
3906   // Set the original stack and the reexecute bit for the interpreter to reexecute
3907   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3908   { PreserveReexecuteState preexecs(this);
3909     jvms()->set_should_reexecute(true);
3910 
3911     array_type_mirror = null_check(array_type_mirror);
3912     original          = null_check(original);
3913 
3914     // Check if a null path was taken unconditionally.
3915     if (stopped())  return true;
3916 
3917     Node* orig_length = load_array_length(original);
3918 
3919     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3920     klass_node = null_check(klass_node);
3921 
3922     RegionNode* bailout = new RegionNode(1);
3923     record_for_igvn(bailout);
3924 
3925     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3926     // Bail out if that is so.
3927     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3928     if (not_objArray != NULL) {
3929       // Improve the klass node's type from the new optimistic assumption:
3930       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3931       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3932       Node* cast = new CastPPNode(klass_node, akls);
3933       cast->init_req(0, control());
3934       klass_node = _gvn.transform(cast);
3935     }
3936 
3937     // Bail out if either start or end is negative.
3938     generate_negative_guard(start, bailout, &start);
3939     generate_negative_guard(end,   bailout, &end);
3940 
3941     Node* length = end;
3942     if (_gvn.type(start) != TypeInt::ZERO) {
3943       length = _gvn.transform(new SubINode(end, start));
3944     }
3945 
3946     // Bail out if length is negative.
3947     // Without this the new_array would throw
3948     // NegativeArraySizeException but IllegalArgumentException is what
3949     // should be thrown
3950     generate_negative_guard(length, bailout, &length);
3951 
3952     if (bailout->req() > 1) {
3953       PreserveJVMState pjvms(this);
3954       set_control(_gvn.transform(bailout));
3955       uncommon_trap(Deoptimization::Reason_intrinsic,
3956                     Deoptimization::Action_maybe_recompile);
3957     }
3958 
3959     if (!stopped()) {
3960       // How many elements will we copy from the original?
3961       // The answer is MinI(orig_length - start, length).
3962       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3963       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3964 
3965       // Generate a direct call to the right arraycopy function(s).
3966       // We know the copy is disjoint but we might not know if the
3967       // oop stores need checking.
3968       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3969       // This will fail a store-check if x contains any non-nulls.
3970 
3971       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
3972       // loads/stores but it is legal only if we're sure the
3973       // Arrays.copyOf would succeed. So we need all input arguments
3974       // to the copyOf to be validated, including that the copy to the
3975       // new array won't trigger an ArrayStoreException. That subtype
3976       // check can be optimized if we know something on the type of
3977       // the input array from type speculation.
3978       if (_gvn.type(klass_node)->singleton()) {
3979         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
3980         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
3981 
3982         int test = C->static_subtype_check(superk, subk);
3983         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
3984           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
3985           if (t_original->speculative_type() != NULL) {
3986             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
3987           }
3988         }
3989       }
3990 
3991       bool validated = false;
3992       // Reason_class_check rather than Reason_intrinsic because we
3993       // want to intrinsify even if this traps.
3994       if (!too_many_traps(Deoptimization::Reason_class_check)) {
3995         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
3996                                                    klass_node);
3997 
3998         if (not_subtype_ctrl != top()) {
3999           PreserveJVMState pjvms(this);
4000           set_control(not_subtype_ctrl);
4001           uncommon_trap(Deoptimization::Reason_class_check,
4002                         Deoptimization::Action_make_not_entrant);
4003           assert(stopped(), "Should be stopped");
4004         }
4005         validated = true;
4006       }
4007 
4008       if (!stopped()) {
4009         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4010 
4011         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true,
4012                                                 load_object_klass(original), klass_node);
4013         if (!is_copyOfRange) {
4014           ac->set_copyof(validated);
4015         } else {
4016           ac->set_copyofrange(validated);
4017         }
4018         Node* n = _gvn.transform(ac);
4019         if (n == ac) {
4020           ac->connect_outputs(this);
4021         } else {
4022           assert(validated, "shouldn't transform if all arguments not validated");
4023           set_all_memory(n);
4024         }
4025       }
4026     }
4027   } // original reexecute is set back here
4028 
4029   C->set_has_split_ifs(true); // Has chance for split-if optimization
4030   if (!stopped()) {
4031     set_result(newcopy);
4032   }
4033   return true;
4034 }
4035 
4036 
4037 //----------------------generate_virtual_guard---------------------------
4038 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4039 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4040                                              RegionNode* slow_region) {
4041   ciMethod* method = callee();
4042   int vtable_index = method->vtable_index();
4043   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4044          err_msg_res("bad index %d", vtable_index));
4045   // Get the Method* out of the appropriate vtable entry.
4046   int entry_offset  = (InstanceKlass::vtable_start_offset() +
4047                      vtable_index*vtableEntry::size()) * wordSize +
4048                      vtableEntry::method_offset_in_bytes();
4049   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4050   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4051 
4052   // Compare the target method with the expected method (e.g., Object.hashCode).
4053   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4054 
4055   Node* native_call = makecon(native_call_addr);
4056   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4057   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4058 
4059   return generate_slow_guard(test_native, slow_region);
4060 }
4061 
4062 //-----------------------generate_method_call----------------------------
4063 // Use generate_method_call to make a slow-call to the real
4064 // method if the fast path fails.  An alternative would be to
4065 // use a stub like OptoRuntime::slow_arraycopy_Java.
4066 // This only works for expanding the current library call,
4067 // not another intrinsic.  (E.g., don't use this for making an
4068 // arraycopy call inside of the copyOf intrinsic.)
4069 CallJavaNode*
4070 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4071   // When compiling the intrinsic method itself, do not use this technique.
4072   guarantee(callee() != C->method(), "cannot make slow-call to self");
4073 
4074   ciMethod* method = callee();
4075   // ensure the JVMS we have will be correct for this call
4076   guarantee(method_id == method->intrinsic_id(), "must match");
4077 
4078   const TypeFunc* tf = TypeFunc::make(method);
4079   CallJavaNode* slow_call;
4080   if (is_static) {
4081     assert(!is_virtual, "");
4082     slow_call = new CallStaticJavaNode(C, tf,
4083                            SharedRuntime::get_resolve_static_call_stub(),
4084                            method, bci());
4085   } else if (is_virtual) {
4086     null_check_receiver();
4087     int vtable_index = Method::invalid_vtable_index;
4088     if (UseInlineCaches) {
4089       // Suppress the vtable call
4090     } else {
4091       // hashCode and clone are not a miranda methods,
4092       // so the vtable index is fixed.
4093       // No need to use the linkResolver to get it.
4094        vtable_index = method->vtable_index();
4095        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4096               err_msg_res("bad index %d", vtable_index));
4097     }
4098     slow_call = new CallDynamicJavaNode(tf,
4099                           SharedRuntime::get_resolve_virtual_call_stub(),
4100                           method, vtable_index, bci());
4101   } else {  // neither virtual nor static:  opt_virtual
4102     null_check_receiver();
4103     slow_call = new CallStaticJavaNode(C, tf,
4104                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4105                                 method, bci());
4106     slow_call->set_optimized_virtual(true);
4107   }
4108   set_arguments_for_java_call(slow_call);
4109   set_edges_for_java_call(slow_call);
4110   return slow_call;
4111 }
4112 
4113 
4114 /**
4115  * Build special case code for calls to hashCode on an object. This call may
4116  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4117  * slightly different code.
4118  */
4119 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4120   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4121   assert(!(is_virtual && is_static), "either virtual, special, or static");
4122 
4123   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4124 
4125   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4126   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4127   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4128   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4129   Node* obj = NULL;
4130   if (!is_static) {
4131     // Check for hashing null object
4132     obj = null_check_receiver();
4133     if (stopped())  return true;        // unconditionally null
4134     result_reg->init_req(_null_path, top());
4135     result_val->init_req(_null_path, top());
4136   } else {
4137     // Do a null check, and return zero if null.
4138     // System.identityHashCode(null) == 0
4139     obj = argument(0);
4140     Node* null_ctl = top();
4141     obj = null_check_oop(obj, &null_ctl);
4142     result_reg->init_req(_null_path, null_ctl);
4143     result_val->init_req(_null_path, _gvn.intcon(0));
4144   }
4145 
4146   // Unconditionally null?  Then return right away.
4147   if (stopped()) {
4148     set_control( result_reg->in(_null_path));
4149     if (!stopped())
4150       set_result(result_val->in(_null_path));
4151     return true;
4152   }
4153 
4154   // We only go to the fast case code if we pass a number of guards.  The
4155   // paths which do not pass are accumulated in the slow_region.
4156   RegionNode* slow_region = new RegionNode(1);
4157   record_for_igvn(slow_region);
4158 
4159   // If this is a virtual call, we generate a funny guard.  We pull out
4160   // the vtable entry corresponding to hashCode() from the target object.
4161   // If the target method which we are calling happens to be the native
4162   // Object hashCode() method, we pass the guard.  We do not need this
4163   // guard for non-virtual calls -- the caller is known to be the native
4164   // Object hashCode().
4165   if (is_virtual) {
4166     // After null check, get the object's klass.
4167     Node* obj_klass = load_object_klass(obj);
4168     generate_virtual_guard(obj_klass, slow_region);
4169   }
4170 
4171   // Get the header out of the object, use LoadMarkNode when available
4172   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4173   // The control of the load must be NULL. Otherwise, the load can move before
4174   // the null check after castPP removal.
4175   Node* no_ctrl = NULL;
4176   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4177 
4178   // Test the header to see if it is unlocked.
4179   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4180   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4181   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4182   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4183   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4184 
4185   generate_slow_guard(test_unlocked, slow_region);
4186 
4187   // Get the hash value and check to see that it has been properly assigned.
4188   // We depend on hash_mask being at most 32 bits and avoid the use of
4189   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4190   // vm: see markOop.hpp.
4191   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4192   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4193   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4194   // This hack lets the hash bits live anywhere in the mark object now, as long
4195   // as the shift drops the relevant bits into the low 32 bits.  Note that
4196   // Java spec says that HashCode is an int so there's no point in capturing
4197   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4198   hshifted_header      = ConvX2I(hshifted_header);
4199   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4200 
4201   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4202   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4203   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4204 
4205   generate_slow_guard(test_assigned, slow_region);
4206 
4207   Node* init_mem = reset_memory();
4208   // fill in the rest of the null path:
4209   result_io ->init_req(_null_path, i_o());
4210   result_mem->init_req(_null_path, init_mem);
4211 
4212   result_val->init_req(_fast_path, hash_val);
4213   result_reg->init_req(_fast_path, control());
4214   result_io ->init_req(_fast_path, i_o());
4215   result_mem->init_req(_fast_path, init_mem);
4216 
4217   // Generate code for the slow case.  We make a call to hashCode().
4218   set_control(_gvn.transform(slow_region));
4219   if (!stopped()) {
4220     // No need for PreserveJVMState, because we're using up the present state.
4221     set_all_memory(init_mem);
4222     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4223     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4224     Node* slow_result = set_results_for_java_call(slow_call);
4225     // this->control() comes from set_results_for_java_call
4226     result_reg->init_req(_slow_path, control());
4227     result_val->init_req(_slow_path, slow_result);
4228     result_io  ->set_req(_slow_path, i_o());
4229     result_mem ->set_req(_slow_path, reset_memory());
4230   }
4231 
4232   // Return the combined state.
4233   set_i_o(        _gvn.transform(result_io)  );
4234   set_all_memory( _gvn.transform(result_mem));
4235 
4236   set_result(result_reg, result_val);
4237   return true;
4238 }
4239 
4240 //---------------------------inline_native_getClass----------------------------
4241 // public final native Class<?> java.lang.Object.getClass();
4242 //
4243 // Build special case code for calls to getClass on an object.
4244 bool LibraryCallKit::inline_native_getClass() {
4245   Node* obj = null_check_receiver();
4246   if (stopped())  return true;
4247   set_result(load_mirror_from_klass(load_object_klass(obj)));
4248   return true;
4249 }
4250 
4251 //-----------------inline_native_Reflection_getCallerClass---------------------
4252 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4253 //
4254 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4255 //
4256 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4257 // in that it must skip particular security frames and checks for
4258 // caller sensitive methods.
4259 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4260 #ifndef PRODUCT
4261   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4262     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4263   }
4264 #endif
4265 
4266   if (!jvms()->has_method()) {
4267 #ifndef PRODUCT
4268     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4269       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4270     }
4271 #endif
4272     return false;
4273   }
4274 
4275   // Walk back up the JVM state to find the caller at the required
4276   // depth.
4277   JVMState* caller_jvms = jvms();
4278 
4279   // Cf. JVM_GetCallerClass
4280   // NOTE: Start the loop at depth 1 because the current JVM state does
4281   // not include the Reflection.getCallerClass() frame.
4282   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4283     ciMethod* m = caller_jvms->method();
4284     switch (n) {
4285     case 0:
4286       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4287       break;
4288     case 1:
4289       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4290       if (!m->caller_sensitive()) {
4291 #ifndef PRODUCT
4292         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4293           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4294         }
4295 #endif
4296         return false;  // bail-out; let JVM_GetCallerClass do the work
4297       }
4298       break;
4299     default:
4300       if (!m->is_ignored_by_security_stack_walk()) {
4301         // We have reached the desired frame; return the holder class.
4302         // Acquire method holder as java.lang.Class and push as constant.
4303         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4304         ciInstance* caller_mirror = caller_klass->java_mirror();
4305         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4306 
4307 #ifndef PRODUCT
4308         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4309           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4310           tty->print_cr("  JVM state at this point:");
4311           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4312             ciMethod* m = jvms()->of_depth(i)->method();
4313             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4314           }
4315         }
4316 #endif
4317         return true;
4318       }
4319       break;
4320     }
4321   }
4322 
4323 #ifndef PRODUCT
4324   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4325     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4326     tty->print_cr("  JVM state at this point:");
4327     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4328       ciMethod* m = jvms()->of_depth(i)->method();
4329       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4330     }
4331   }
4332 #endif
4333 
4334   return false;  // bail-out; let JVM_GetCallerClass do the work
4335 }
4336 
4337 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4338   Node* arg = argument(0);
4339   Node* result;
4340 
4341   switch (id) {
4342   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4343   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4344   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4345   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4346 
4347   case vmIntrinsics::_doubleToLongBits: {
4348     // two paths (plus control) merge in a wood
4349     RegionNode *r = new RegionNode(3);
4350     Node *phi = new PhiNode(r, TypeLong::LONG);
4351 
4352     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4353     // Build the boolean node
4354     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4355 
4356     // Branch either way.
4357     // NaN case is less traveled, which makes all the difference.
4358     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4359     Node *opt_isnan = _gvn.transform(ifisnan);
4360     assert( opt_isnan->is_If(), "Expect an IfNode");
4361     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4362     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4363 
4364     set_control(iftrue);
4365 
4366     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4367     Node *slow_result = longcon(nan_bits); // return NaN
4368     phi->init_req(1, _gvn.transform( slow_result ));
4369     r->init_req(1, iftrue);
4370 
4371     // Else fall through
4372     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4373     set_control(iffalse);
4374 
4375     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4376     r->init_req(2, iffalse);
4377 
4378     // Post merge
4379     set_control(_gvn.transform(r));
4380     record_for_igvn(r);
4381 
4382     C->set_has_split_ifs(true); // Has chance for split-if optimization
4383     result = phi;
4384     assert(result->bottom_type()->isa_long(), "must be");
4385     break;
4386   }
4387 
4388   case vmIntrinsics::_floatToIntBits: {
4389     // two paths (plus control) merge in a wood
4390     RegionNode *r = new RegionNode(3);
4391     Node *phi = new PhiNode(r, TypeInt::INT);
4392 
4393     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4394     // Build the boolean node
4395     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4396 
4397     // Branch either way.
4398     // NaN case is less traveled, which makes all the difference.
4399     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4400     Node *opt_isnan = _gvn.transform(ifisnan);
4401     assert( opt_isnan->is_If(), "Expect an IfNode");
4402     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4403     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4404 
4405     set_control(iftrue);
4406 
4407     static const jint nan_bits = 0x7fc00000;
4408     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4409     phi->init_req(1, _gvn.transform( slow_result ));
4410     r->init_req(1, iftrue);
4411 
4412     // Else fall through
4413     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4414     set_control(iffalse);
4415 
4416     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4417     r->init_req(2, iffalse);
4418 
4419     // Post merge
4420     set_control(_gvn.transform(r));
4421     record_for_igvn(r);
4422 
4423     C->set_has_split_ifs(true); // Has chance for split-if optimization
4424     result = phi;
4425     assert(result->bottom_type()->isa_int(), "must be");
4426     break;
4427   }
4428 
4429   default:
4430     fatal_unexpected_iid(id);
4431     break;
4432   }
4433   set_result(_gvn.transform(result));
4434   return true;
4435 }
4436 
4437 #ifdef _LP64
4438 #define XTOP ,top() /*additional argument*/
4439 #else  //_LP64
4440 #define XTOP        /*no additional argument*/
4441 #endif //_LP64
4442 
4443 //----------------------inline_unsafe_copyMemory-------------------------
4444 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4445 bool LibraryCallKit::inline_unsafe_copyMemory() {
4446   if (callee()->is_static())  return false;  // caller must have the capability!
4447   null_check_receiver();  // null-check receiver
4448   if (stopped())  return true;
4449 
4450   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4451 
4452   Node* src_ptr =         argument(1);   // type: oop
4453   Node* src_off = ConvL2X(argument(2));  // type: long
4454   Node* dst_ptr =         argument(4);   // type: oop
4455   Node* dst_off = ConvL2X(argument(5));  // type: long
4456   Node* size    = ConvL2X(argument(7));  // type: long
4457 
4458   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4459          "fieldOffset must be byte-scaled");
4460 
4461   Node* src = make_unsafe_address(src_ptr, src_off);
4462   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4463 
4464   // Conservatively insert a memory barrier on all memory slices.
4465   // Do not let writes of the copy source or destination float below the copy.
4466   insert_mem_bar(Op_MemBarCPUOrder);
4467 
4468   // Call it.  Note that the length argument is not scaled.
4469   make_runtime_call(RC_LEAF|RC_NO_FP,
4470                     OptoRuntime::fast_arraycopy_Type(),
4471                     StubRoutines::unsafe_arraycopy(),
4472                     "unsafe_arraycopy",
4473                     TypeRawPtr::BOTTOM,
4474                     src, dst, size XTOP);
4475 
4476   // Do not let reads of the copy destination float above the copy.
4477   insert_mem_bar(Op_MemBarCPUOrder);
4478 
4479   return true;
4480 }
4481 
4482 //------------------------clone_coping-----------------------------------
4483 // Helper function for inline_native_clone.
4484 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4485   assert(obj_size != NULL, "");
4486   Node* raw_obj = alloc_obj->in(1);
4487   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4488 
4489   AllocateNode* alloc = NULL;
4490   if (ReduceBulkZeroing) {
4491     // We will be completely responsible for initializing this object -
4492     // mark Initialize node as complete.
4493     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4494     // The object was just allocated - there should be no any stores!
4495     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4496     // Mark as complete_with_arraycopy so that on AllocateNode
4497     // expansion, we know this AllocateNode is initialized by an array
4498     // copy and a StoreStore barrier exists after the array copy.
4499     alloc->initialization()->set_complete_with_arraycopy();
4500   }
4501 
4502   // Copy the fastest available way.
4503   // TODO: generate fields copies for small objects instead.
4504   Node* src  = obj;
4505   Node* dest = alloc_obj;
4506   Node* size = _gvn.transform(obj_size);
4507 
4508   // Exclude the header but include array length to copy by 8 bytes words.
4509   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4510   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4511                             instanceOopDesc::base_offset_in_bytes();
4512   // base_off:
4513   // 8  - 32-bit VM
4514   // 12 - 64-bit VM, compressed klass
4515   // 16 - 64-bit VM, normal klass
4516   if (base_off % BytesPerLong != 0) {
4517     assert(UseCompressedClassPointers, "");
4518     if (is_array) {
4519       // Exclude length to copy by 8 bytes words.
4520       base_off += sizeof(int);
4521     } else {
4522       // Include klass to copy by 8 bytes words.
4523       base_off = instanceOopDesc::klass_offset_in_bytes();
4524     }
4525     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4526   }
4527   src  = basic_plus_adr(src,  base_off);
4528   dest = basic_plus_adr(dest, base_off);
4529 
4530   // Compute the length also, if needed:
4531   Node* countx = size;
4532   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4533   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4534 
4535   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4536 
4537   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
4538   ac->set_clonebasic();
4539   Node* n = _gvn.transform(ac);
4540   if (n == ac) {
4541     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4542   } else {
4543     set_all_memory(n);
4544   }
4545 
4546   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4547   if (card_mark) {
4548     assert(!is_array, "");
4549     // Put in store barrier for any and all oops we are sticking
4550     // into this object.  (We could avoid this if we could prove
4551     // that the object type contains no oop fields at all.)
4552     Node* no_particular_value = NULL;
4553     Node* no_particular_field = NULL;
4554     int raw_adr_idx = Compile::AliasIdxRaw;
4555     post_barrier(control(),
4556                  memory(raw_adr_type),
4557                  alloc_obj,
4558                  no_particular_field,
4559                  raw_adr_idx,
4560                  no_particular_value,
4561                  T_OBJECT,
4562                  false);
4563   }
4564 
4565   // Do not let reads from the cloned object float above the arraycopy.
4566   if (alloc != NULL) {
4567     // Do not let stores that initialize this object be reordered with
4568     // a subsequent store that would make this object accessible by
4569     // other threads.
4570     // Record what AllocateNode this StoreStore protects so that
4571     // escape analysis can go from the MemBarStoreStoreNode to the
4572     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4573     // based on the escape status of the AllocateNode.
4574     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4575   } else {
4576     insert_mem_bar(Op_MemBarCPUOrder);
4577   }
4578 }
4579 
4580 //------------------------inline_native_clone----------------------------
4581 // protected native Object java.lang.Object.clone();
4582 //
4583 // Here are the simple edge cases:
4584 //  null receiver => normal trap
4585 //  virtual and clone was overridden => slow path to out-of-line clone
4586 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4587 //
4588 // The general case has two steps, allocation and copying.
4589 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4590 //
4591 // Copying also has two cases, oop arrays and everything else.
4592 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4593 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4594 //
4595 // These steps fold up nicely if and when the cloned object's klass
4596 // can be sharply typed as an object array, a type array, or an instance.
4597 //
4598 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4599   PhiNode* result_val;
4600 
4601   // Set the reexecute bit for the interpreter to reexecute
4602   // the bytecode that invokes Object.clone if deoptimization happens.
4603   { PreserveReexecuteState preexecs(this);
4604     jvms()->set_should_reexecute(true);
4605 
4606     Node* obj = null_check_receiver();
4607     if (stopped())  return true;
4608 
4609     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4610 
4611     // If we are going to clone an instance, we need its exact type to
4612     // know the number and types of fields to convert the clone to
4613     // loads/stores. Maybe a speculative type can help us.
4614     if (!obj_type->klass_is_exact() &&
4615         obj_type->speculative_type() != NULL &&
4616         obj_type->speculative_type()->is_instance_klass()) {
4617       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4618       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4619           !spec_ik->has_injected_fields()) {
4620         ciKlass* k = obj_type->klass();
4621         if (!k->is_instance_klass() ||
4622             k->as_instance_klass()->is_interface() ||
4623             k->as_instance_klass()->has_subklass()) {
4624           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4625         }
4626       }
4627     }
4628 
4629     Node* obj_klass = load_object_klass(obj);
4630     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4631     const TypeOopPtr*   toop   = ((tklass != NULL)
4632                                 ? tklass->as_instance_type()
4633                                 : TypeInstPtr::NOTNULL);
4634 
4635     // Conservatively insert a memory barrier on all memory slices.
4636     // Do not let writes into the original float below the clone.
4637     insert_mem_bar(Op_MemBarCPUOrder);
4638 
4639     // paths into result_reg:
4640     enum {
4641       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4642       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4643       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4644       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4645       PATH_LIMIT
4646     };
4647     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4648     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4649     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4650     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4651     record_for_igvn(result_reg);
4652 
4653     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4654     int raw_adr_idx = Compile::AliasIdxRaw;
4655 
4656     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4657     if (array_ctl != NULL) {
4658       // It's an array.
4659       PreserveJVMState pjvms(this);
4660       set_control(array_ctl);
4661       Node* obj_length = load_array_length(obj);
4662       Node* obj_size  = NULL;
4663       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4664 
4665       if (!use_ReduceInitialCardMarks()) {
4666         // If it is an oop array, it requires very special treatment,
4667         // because card marking is required on each card of the array.
4668         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4669         if (is_obja != NULL) {
4670           PreserveJVMState pjvms2(this);
4671           set_control(is_obja);
4672           // Generate a direct call to the right arraycopy function(s).
4673           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4674           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
4675           ac->set_cloneoop();
4676           Node* n = _gvn.transform(ac);
4677           assert(n == ac, "cannot disappear");
4678           ac->connect_outputs(this);
4679 
4680           result_reg->init_req(_objArray_path, control());
4681           result_val->init_req(_objArray_path, alloc_obj);
4682           result_i_o ->set_req(_objArray_path, i_o());
4683           result_mem ->set_req(_objArray_path, reset_memory());
4684         }
4685       }
4686       // Otherwise, there are no card marks to worry about.
4687       // (We can dispense with card marks if we know the allocation
4688       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4689       //  causes the non-eden paths to take compensating steps to
4690       //  simulate a fresh allocation, so that no further
4691       //  card marks are required in compiled code to initialize
4692       //  the object.)
4693 
4694       if (!stopped()) {
4695         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4696 
4697         // Present the results of the copy.
4698         result_reg->init_req(_array_path, control());
4699         result_val->init_req(_array_path, alloc_obj);
4700         result_i_o ->set_req(_array_path, i_o());
4701         result_mem ->set_req(_array_path, reset_memory());
4702       }
4703     }
4704 
4705     // We only go to the instance fast case code if we pass a number of guards.
4706     // The paths which do not pass are accumulated in the slow_region.
4707     RegionNode* slow_region = new RegionNode(1);
4708     record_for_igvn(slow_region);
4709     if (!stopped()) {
4710       // It's an instance (we did array above).  Make the slow-path tests.
4711       // If this is a virtual call, we generate a funny guard.  We grab
4712       // the vtable entry corresponding to clone() from the target object.
4713       // If the target method which we are calling happens to be the
4714       // Object clone() method, we pass the guard.  We do not need this
4715       // guard for non-virtual calls; the caller is known to be the native
4716       // Object clone().
4717       if (is_virtual) {
4718         generate_virtual_guard(obj_klass, slow_region);
4719       }
4720 
4721       // The object must be cloneable and must not have a finalizer.
4722       // Both of these conditions may be checked in a single test.
4723       // We could optimize the cloneable test further, but we don't care.
4724       generate_access_flags_guard(obj_klass,
4725                                   // Test both conditions:
4726                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4727                                   // Must be cloneable but not finalizer:
4728                                   JVM_ACC_IS_CLONEABLE,
4729                                   slow_region);
4730     }
4731 
4732     if (!stopped()) {
4733       // It's an instance, and it passed the slow-path tests.
4734       PreserveJVMState pjvms(this);
4735       Node* obj_size  = NULL;
4736       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4737       // is reexecuted if deoptimization occurs and there could be problems when merging
4738       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4739       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4740 
4741       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4742 
4743       // Present the results of the slow call.
4744       result_reg->init_req(_instance_path, control());
4745       result_val->init_req(_instance_path, alloc_obj);
4746       result_i_o ->set_req(_instance_path, i_o());
4747       result_mem ->set_req(_instance_path, reset_memory());
4748     }
4749 
4750     // Generate code for the slow case.  We make a call to clone().
4751     set_control(_gvn.transform(slow_region));
4752     if (!stopped()) {
4753       PreserveJVMState pjvms(this);
4754       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4755       Node* slow_result = set_results_for_java_call(slow_call);
4756       // this->control() comes from set_results_for_java_call
4757       result_reg->init_req(_slow_path, control());
4758       result_val->init_req(_slow_path, slow_result);
4759       result_i_o ->set_req(_slow_path, i_o());
4760       result_mem ->set_req(_slow_path, reset_memory());
4761     }
4762 
4763     // Return the combined state.
4764     set_control(    _gvn.transform(result_reg));
4765     set_i_o(        _gvn.transform(result_i_o));
4766     set_all_memory( _gvn.transform(result_mem));
4767   } // original reexecute is set back here
4768 
4769   set_result(_gvn.transform(result_val));
4770   return true;
4771 }
4772 
4773 // If we have a tighly coupled allocation, the arraycopy may take care
4774 // of the array initialization. If one of the guards we insert between
4775 // the allocation and the arraycopy causes a deoptimization, an
4776 // unitialized array will escape the compiled method. To prevent that
4777 // we set the JVM state for uncommon traps between the allocation and
4778 // the arraycopy to the state before the allocation so, in case of
4779 // deoptimization, we'll reexecute the allocation and the
4780 // initialization.
4781 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4782   if (alloc != NULL) {
4783     ciMethod* trap_method = alloc->jvms()->method();
4784     int trap_bci = alloc->jvms()->bci();
4785 
4786     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4787           !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4788       // Make sure there's no store between the allocation and the
4789       // arraycopy otherwise visible side effects could be rexecuted
4790       // in case of deoptimization and cause incorrect execution.
4791       bool no_interfering_store = true;
4792       Node* mem = alloc->in(TypeFunc::Memory);
4793       if (mem->is_MergeMem()) {
4794         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4795           Node* n = mms.memory();
4796           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4797             assert(n->is_Store(), "what else?");
4798             no_interfering_store = false;
4799             break;
4800           }
4801         }
4802       } else {
4803         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4804           Node* n = mms.memory();
4805           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4806             assert(n->is_Store(), "what else?");
4807             no_interfering_store = false;
4808             break;
4809           }
4810         }
4811       }
4812 
4813       if (no_interfering_store) {
4814         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4815         uint size = alloc->req();
4816         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4817         old_jvms->set_map(sfpt);
4818         for (uint i = 0; i < size; i++) {
4819           sfpt->init_req(i, alloc->in(i));
4820         }
4821         // re-push array length for deoptimization
4822         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4823         old_jvms->set_sp(old_jvms->sp()+1);
4824         old_jvms->set_monoff(old_jvms->monoff()+1);
4825         old_jvms->set_scloff(old_jvms->scloff()+1);
4826         old_jvms->set_endoff(old_jvms->endoff()+1);
4827         old_jvms->set_should_reexecute(true);
4828 
4829         sfpt->set_i_o(map()->i_o());
4830         sfpt->set_memory(map()->memory());
4831         sfpt->set_control(map()->control());
4832 
4833         JVMState* saved_jvms = jvms();
4834         saved_reexecute_sp = _reexecute_sp;
4835 
4836         set_jvms(sfpt->jvms());
4837         _reexecute_sp = jvms()->sp();
4838 
4839         return saved_jvms;
4840       }
4841     }
4842   }
4843   return NULL;
4844 }
4845 
4846 // In case of a deoptimization, we restart execution at the
4847 // allocation, allocating a new array. We would leave an uninitialized
4848 // array in the heap that GCs wouldn't expect. Move the allocation
4849 // after the traps so we don't allocate the array if we
4850 // deoptimize. This is possible because tightly_coupled_allocation()
4851 // guarantees there's no observer of the allocated array at this point
4852 // and the control flow is simple enough.
4853 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp) {
4854   if (saved_jvms != NULL && !stopped()) {
4855     assert(alloc != NULL, "only with a tightly coupled allocation");
4856     // restore JVM state to the state at the arraycopy
4857     saved_jvms->map()->set_control(map()->control());
4858     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4859     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4860     // If we've improved the types of some nodes (null check) while
4861     // emitting the guards, propagate them to the current state
4862     map()->replaced_nodes().apply(saved_jvms->map());
4863     set_jvms(saved_jvms);
4864     _reexecute_sp = saved_reexecute_sp;
4865 
4866     // Remove the allocation from above the guards
4867     CallProjections callprojs;
4868     alloc->extract_projections(&callprojs, true);
4869     InitializeNode* init = alloc->initialization();
4870     Node* alloc_mem = alloc->in(TypeFunc::Memory);
4871     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4872     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4873     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4874 
4875     // move the allocation here (after the guards)
4876     _gvn.hash_delete(alloc);
4877     alloc->set_req(TypeFunc::Control, control());
4878     alloc->set_req(TypeFunc::I_O, i_o());
4879     Node *mem = reset_memory();
4880     set_all_memory(mem);
4881     alloc->set_req(TypeFunc::Memory, mem);
4882     set_control(init->proj_out(TypeFunc::Control));
4883     set_i_o(callprojs.fallthrough_ioproj);
4884 
4885     // Update memory as done in GraphKit::set_output_for_allocation()
4886     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4887     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4888     if (ary_type->isa_aryptr() && length_type != NULL) {
4889       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4890     }
4891     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4892     int            elemidx  = C->get_alias_index(telemref);
4893     set_memory(init->proj_out(TypeFunc::Memory), Compile::AliasIdxRaw);
4894     set_memory(init->proj_out(TypeFunc::Memory), elemidx);
4895 
4896     Node* allocx = _gvn.transform(alloc);
4897     assert(allocx == alloc, "where has the allocation gone?");
4898     assert(dest->is_CheckCastPP(), "not an allocation result?");
4899 
4900     _gvn.hash_delete(dest);
4901     dest->set_req(0, control());
4902     Node* destx = _gvn.transform(dest);
4903     assert(destx == dest, "where has the allocation result gone?");
4904   }
4905 }
4906 
4907 
4908 //------------------------------inline_arraycopy-----------------------
4909 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4910 //                                                      Object dest, int destPos,
4911 //                                                      int length);
4912 bool LibraryCallKit::inline_arraycopy() {
4913   // Get the arguments.
4914   Node* src         = argument(0);  // type: oop
4915   Node* src_offset  = argument(1);  // type: int
4916   Node* dest        = argument(2);  // type: oop
4917   Node* dest_offset = argument(3);  // type: int
4918   Node* length      = argument(4);  // type: int
4919 
4920 
4921   // Check for allocation before we add nodes that would confuse
4922   // tightly_coupled_allocation()
4923   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4924 
4925   int saved_reexecute_sp = -1;
4926   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4927   // See arraycopy_restore_alloc_state() comment
4928   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4929   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4930   // if saved_jvms == NULL and alloc != NULL, we can’t emit any guards
4931   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4932 
4933   // The following tests must be performed
4934   // (1) src and dest are arrays.
4935   // (2) src and dest arrays must have elements of the same BasicType
4936   // (3) src and dest must not be null.
4937   // (4) src_offset must not be negative.
4938   // (5) dest_offset must not be negative.
4939   // (6) length must not be negative.
4940   // (7) src_offset + length must not exceed length of src.
4941   // (8) dest_offset + length must not exceed length of dest.
4942   // (9) each element of an oop array must be assignable
4943 
4944   // (3) src and dest must not be null.
4945   // always do this here because we need the JVM state for uncommon traps
4946   Node* null_ctl = top();
4947   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
4948   assert(null_ctl->is_top(), "no null control here");
4949   dest = null_check(dest, T_ARRAY);
4950 
4951   if (!can_emit_guards) {
4952     // if saved_jvms == NULL and alloc != NULL, we don't emit any
4953     // guards but the arraycopy node could still take advantage of a
4954     // tightly allocated allocation. tightly_coupled_allocation() is
4955     // called again to make sure it takes the null check above into
4956     // account: the null check is mandatory and if it caused an
4957     // uncommon trap to be emitted then the allocation can't be
4958     // considered tightly coupled in this context.
4959     alloc = tightly_coupled_allocation(dest, NULL);
4960   }
4961 
4962   bool validated = false;
4963 
4964   const Type* src_type  = _gvn.type(src);
4965   const Type* dest_type = _gvn.type(dest);
4966   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4967   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4968 
4969   // Do we have the type of src?
4970   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4971   // Do we have the type of dest?
4972   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4973   // Is the type for src from speculation?
4974   bool src_spec = false;
4975   // Is the type for dest from speculation?
4976   bool dest_spec = false;
4977 
4978   if ((!has_src || !has_dest) && can_emit_guards) {
4979     // We don't have sufficient type information, let's see if
4980     // speculative types can help. We need to have types for both src
4981     // and dest so that it pays off.
4982 
4983     // Do we already have or could we have type information for src
4984     bool could_have_src = has_src;
4985     // Do we already have or could we have type information for dest
4986     bool could_have_dest = has_dest;
4987 
4988     ciKlass* src_k = NULL;
4989     if (!has_src) {
4990       src_k = src_type->speculative_type_not_null();
4991       if (src_k != NULL && src_k->is_array_klass()) {
4992         could_have_src = true;
4993       }
4994     }
4995 
4996     ciKlass* dest_k = NULL;
4997     if (!has_dest) {
4998       dest_k = dest_type->speculative_type_not_null();
4999       if (dest_k != NULL && dest_k->is_array_klass()) {
5000         could_have_dest = true;
5001       }
5002     }
5003 
5004     if (could_have_src && could_have_dest) {
5005       // This is going to pay off so emit the required guards
5006       if (!has_src) {
5007         src = maybe_cast_profiled_obj(src, src_k, true);
5008         src_type  = _gvn.type(src);
5009         top_src  = src_type->isa_aryptr();
5010         has_src = (top_src != NULL && top_src->klass() != NULL);
5011         src_spec = true;
5012       }
5013       if (!has_dest) {
5014         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5015         dest_type  = _gvn.type(dest);
5016         top_dest  = dest_type->isa_aryptr();
5017         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
5018         dest_spec = true;
5019       }
5020     }
5021   }
5022 
5023   if (has_src && has_dest && can_emit_guards) {
5024     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
5025     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
5026     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
5027     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
5028 
5029     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5030       // If both arrays are object arrays then having the exact types
5031       // for both will remove the need for a subtype check at runtime
5032       // before the call and may make it possible to pick a faster copy
5033       // routine (without a subtype check on every element)
5034       // Do we have the exact type of src?
5035       bool could_have_src = src_spec;
5036       // Do we have the exact type of dest?
5037       bool could_have_dest = dest_spec;
5038       ciKlass* src_k = top_src->klass();
5039       ciKlass* dest_k = top_dest->klass();
5040       if (!src_spec) {
5041         src_k = src_type->speculative_type_not_null();
5042         if (src_k != NULL && src_k->is_array_klass()) {
5043           could_have_src = true;
5044         }
5045       }
5046       if (!dest_spec) {
5047         dest_k = dest_type->speculative_type_not_null();
5048         if (dest_k != NULL && dest_k->is_array_klass()) {
5049           could_have_dest = true;
5050         }
5051       }
5052       if (could_have_src && could_have_dest) {
5053         // If we can have both exact types, emit the missing guards
5054         if (could_have_src && !src_spec) {
5055           src = maybe_cast_profiled_obj(src, src_k, true);
5056         }
5057         if (could_have_dest && !dest_spec) {
5058           dest = maybe_cast_profiled_obj(dest, dest_k, true);
5059         }
5060       }
5061     }
5062   }
5063 
5064   ciMethod* trap_method = method();
5065   int trap_bci = bci();
5066   if (saved_jvms != NULL) {
5067     trap_method = alloc->jvms()->method();
5068     trap_bci = alloc->jvms()->bci();
5069   }
5070 
5071   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5072       can_emit_guards &&
5073       !src->is_top() && !dest->is_top()) {
5074     // validate arguments: enables transformation the ArrayCopyNode
5075     validated = true;
5076 
5077     RegionNode* slow_region = new RegionNode(1);
5078     record_for_igvn(slow_region);
5079 
5080     // (1) src and dest are arrays.
5081     generate_non_array_guard(load_object_klass(src), slow_region);
5082     generate_non_array_guard(load_object_klass(dest), slow_region);
5083 
5084     // (2) src and dest arrays must have elements of the same BasicType
5085     // done at macro expansion or at Ideal transformation time
5086 
5087     // (4) src_offset must not be negative.
5088     generate_negative_guard(src_offset, slow_region);
5089 
5090     // (5) dest_offset must not be negative.
5091     generate_negative_guard(dest_offset, slow_region);
5092 
5093     // (7) src_offset + length must not exceed length of src.
5094     generate_limit_guard(src_offset, length,
5095                          load_array_length(src),
5096                          slow_region);
5097 
5098     // (8) dest_offset + length must not exceed length of dest.
5099     generate_limit_guard(dest_offset, length,
5100                          load_array_length(dest),
5101                          slow_region);
5102 
5103     // (9) each element of an oop array must be assignable
5104     Node* src_klass  = load_object_klass(src);
5105     Node* dest_klass = load_object_klass(dest);
5106     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5107 
5108     if (not_subtype_ctrl != top()) {
5109       PreserveJVMState pjvms(this);
5110       set_control(not_subtype_ctrl);
5111       uncommon_trap(Deoptimization::Reason_intrinsic,
5112                     Deoptimization::Action_make_not_entrant);
5113       assert(stopped(), "Should be stopped");
5114     }
5115     {
5116       PreserveJVMState pjvms(this);
5117       set_control(_gvn.transform(slow_region));
5118       uncommon_trap(Deoptimization::Reason_intrinsic,
5119                     Deoptimization::Action_make_not_entrant);
5120       assert(stopped(), "Should be stopped");
5121     }
5122   }
5123 
5124   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp);
5125 
5126   if (stopped()) {
5127     return true;
5128   }
5129 
5130   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL,
5131                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5132                                           // so the compiler has a chance to eliminate them: during macro expansion,
5133                                           // we have to set their control (CastPP nodes are eliminated).
5134                                           load_object_klass(src), load_object_klass(dest),
5135                                           load_array_length(src), load_array_length(dest));
5136 
5137   ac->set_arraycopy(validated);
5138 
5139   Node* n = _gvn.transform(ac);
5140   if (n == ac) {
5141     ac->connect_outputs(this);
5142   } else {
5143     assert(validated, "shouldn't transform if all arguments not validated");
5144     set_all_memory(n);
5145   }
5146 
5147   return true;
5148 }
5149 
5150 
5151 // Helper function which determines if an arraycopy immediately follows
5152 // an allocation, with no intervening tests or other escapes for the object.
5153 AllocateArrayNode*
5154 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5155                                            RegionNode* slow_region) {
5156   if (stopped())             return NULL;  // no fast path
5157   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5158 
5159   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5160   if (alloc == NULL)  return NULL;
5161 
5162   Node* rawmem = memory(Compile::AliasIdxRaw);
5163   // Is the allocation's memory state untouched?
5164   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5165     // Bail out if there have been raw-memory effects since the allocation.
5166     // (Example:  There might have been a call or safepoint.)
5167     return NULL;
5168   }
5169   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5170   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5171     return NULL;
5172   }
5173 
5174   // There must be no unexpected observers of this allocation.
5175   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5176     Node* obs = ptr->fast_out(i);
5177     if (obs != this->map()) {
5178       return NULL;
5179     }
5180   }
5181 
5182   // This arraycopy must unconditionally follow the allocation of the ptr.
5183   Node* alloc_ctl = ptr->in(0);
5184   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5185 
5186   Node* ctl = control();
5187   while (ctl != alloc_ctl) {
5188     // There may be guards which feed into the slow_region.
5189     // Any other control flow means that we might not get a chance
5190     // to finish initializing the allocated object.
5191     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5192       IfNode* iff = ctl->in(0)->as_If();
5193       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5194       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5195       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5196         ctl = iff->in(0);       // This test feeds the known slow_region.
5197         continue;
5198       }
5199       // One more try:  Various low-level checks bottom out in
5200       // uncommon traps.  If the debug-info of the trap omits
5201       // any reference to the allocation, as we've already
5202       // observed, then there can be no objection to the trap.
5203       bool found_trap = false;
5204       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5205         Node* obs = not_ctl->fast_out(j);
5206         if (obs->in(0) == not_ctl && obs->is_Call() &&
5207             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5208           found_trap = true; break;
5209         }
5210       }
5211       if (found_trap) {
5212         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5213         continue;
5214       }
5215     }
5216     return NULL;
5217   }
5218 
5219   // If we get this far, we have an allocation which immediately
5220   // precedes the arraycopy, and we can take over zeroing the new object.
5221   // The arraycopy will finish the initialization, and provide
5222   // a new control state to which we will anchor the destination pointer.
5223 
5224   return alloc;
5225 }
5226 
5227 //-------------inline_encodeISOArray-----------------------------------
5228 // encode char[] to byte[] in ISO_8859_1
5229 bool LibraryCallKit::inline_encodeISOArray() {
5230   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5231   // no receiver since it is static method
5232   Node *src         = argument(0);
5233   Node *src_offset  = argument(1);
5234   Node *dst         = argument(2);
5235   Node *dst_offset  = argument(3);
5236   Node *length      = argument(4);
5237 
5238   const Type* src_type = src->Value(&_gvn);
5239   const Type* dst_type = dst->Value(&_gvn);
5240   const TypeAryPtr* top_src = src_type->isa_aryptr();
5241   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5242   if (top_src  == NULL || top_src->klass()  == NULL ||
5243       top_dest == NULL || top_dest->klass() == NULL) {
5244     // failed array check
5245     return false;
5246   }
5247 
5248   // Figure out the size and type of the elements we will be copying.
5249   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5250   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5251   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5252     return false;
5253   }
5254   Node* src_start = array_element_address(src, src_offset, src_elem);
5255   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5256   // 'src_start' points to src array + scaled offset
5257   // 'dst_start' points to dst array + scaled offset
5258 
5259   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5260   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5261   enc = _gvn.transform(enc);
5262   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5263   set_memory(res_mem, mtype);
5264   set_result(enc);
5265   return true;
5266 }
5267 
5268 //-------------inline_multiplyToLen-----------------------------------
5269 bool LibraryCallKit::inline_multiplyToLen() {
5270   assert(UseMultiplyToLenIntrinsic, "not implementated on this platform");
5271 
5272   address stubAddr = StubRoutines::multiplyToLen();
5273   if (stubAddr == NULL) {
5274     return false; // Intrinsic's stub is not implemented on this platform
5275   }
5276   const char* stubName = "multiplyToLen";
5277 
5278   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5279 
5280   Node* x    = argument(1);
5281   Node* xlen = argument(2);
5282   Node* y    = argument(3);
5283   Node* ylen = argument(4);
5284   Node* z    = argument(5);
5285 
5286   const Type* x_type = x->Value(&_gvn);
5287   const Type* y_type = y->Value(&_gvn);
5288   const TypeAryPtr* top_x = x_type->isa_aryptr();
5289   const TypeAryPtr* top_y = y_type->isa_aryptr();
5290   if (top_x  == NULL || top_x->klass()  == NULL ||
5291       top_y == NULL || top_y->klass() == NULL) {
5292     // failed array check
5293     return false;
5294   }
5295 
5296   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5297   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5298   if (x_elem != T_INT || y_elem != T_INT) {
5299     return false;
5300   }
5301 
5302   // Set the original stack and the reexecute bit for the interpreter to reexecute
5303   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5304   // on the return from z array allocation in runtime.
5305   { PreserveReexecuteState preexecs(this);
5306     jvms()->set_should_reexecute(true);
5307 
5308     Node* x_start = array_element_address(x, intcon(0), x_elem);
5309     Node* y_start = array_element_address(y, intcon(0), y_elem);
5310     // 'x_start' points to x array + scaled xlen
5311     // 'y_start' points to y array + scaled ylen
5312 
5313     // Allocate the result array
5314     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5315     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5316     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5317 
5318     IdealKit ideal(this);
5319 
5320 #define __ ideal.
5321      Node* one = __ ConI(1);
5322      Node* zero = __ ConI(0);
5323      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5324      __ set(need_alloc, zero);
5325      __ set(z_alloc, z);
5326      __ if_then(z, BoolTest::eq, null()); {
5327        __ increment (need_alloc, one);
5328      } __ else_(); {
5329        // Update graphKit memory and control from IdealKit.
5330        sync_kit(ideal);
5331        Node* zlen_arg = load_array_length(z);
5332        // Update IdealKit memory and control from graphKit.
5333        __ sync_kit(this);
5334        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5335          __ increment (need_alloc, one);
5336        } __ end_if();
5337      } __ end_if();
5338 
5339      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5340        // Update graphKit memory and control from IdealKit.
5341        sync_kit(ideal);
5342        Node * narr = new_array(klass_node, zlen, 1);
5343        // Update IdealKit memory and control from graphKit.
5344        __ sync_kit(this);
5345        __ set(z_alloc, narr);
5346      } __ end_if();
5347 
5348      sync_kit(ideal);
5349      z = __ value(z_alloc);
5350      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5351      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5352      // Final sync IdealKit and GraphKit.
5353      final_sync(ideal);
5354 #undef __
5355 
5356     Node* z_start = array_element_address(z, intcon(0), T_INT);
5357 
5358     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5359                                    OptoRuntime::multiplyToLen_Type(),
5360                                    stubAddr, stubName, TypePtr::BOTTOM,
5361                                    x_start, xlen, y_start, ylen, z_start, zlen);
5362   } // original reexecute is set back here
5363 
5364   C->set_has_split_ifs(true); // Has chance for split-if optimization
5365   set_result(z);
5366   return true;
5367 }
5368 
5369 //-------------inline_squareToLen------------------------------------
5370 bool LibraryCallKit::inline_squareToLen() {
5371   assert(UseSquareToLenIntrinsic, "not implementated on this platform");
5372 
5373   address stubAddr = StubRoutines::squareToLen();
5374   if (stubAddr == NULL) {
5375     return false; // Intrinsic's stub is not implemented on this platform
5376   }
5377   const char* stubName = "squareToLen";
5378 
5379   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5380 
5381   Node* x    = argument(0);
5382   Node* len  = argument(1);
5383   Node* z    = argument(2);
5384   Node* zlen = argument(3);
5385 
5386   const Type* x_type = x->Value(&_gvn);
5387   const Type* z_type = z->Value(&_gvn);
5388   const TypeAryPtr* top_x = x_type->isa_aryptr();
5389   const TypeAryPtr* top_z = z_type->isa_aryptr();
5390   if (top_x  == NULL || top_x->klass()  == NULL ||
5391       top_z  == NULL || top_z->klass()  == NULL) {
5392     // failed array check
5393     return false;
5394   }
5395 
5396   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5397   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5398   if (x_elem != T_INT || z_elem != T_INT) {
5399     return false;
5400   }
5401 
5402 
5403   Node* x_start = array_element_address(x, intcon(0), x_elem);
5404   Node* z_start = array_element_address(z, intcon(0), z_elem);
5405 
5406   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5407                                   OptoRuntime::squareToLen_Type(),
5408                                   stubAddr, stubName, TypePtr::BOTTOM,
5409                                   x_start, len, z_start, zlen);
5410 
5411   set_result(z);
5412   return true;
5413 }
5414 
5415 //-------------inline_mulAdd------------------------------------------
5416 bool LibraryCallKit::inline_mulAdd() {
5417   assert(UseMulAddIntrinsic, "not implementated on this platform");
5418 
5419   address stubAddr = StubRoutines::mulAdd();
5420   if (stubAddr == NULL) {
5421     return false; // Intrinsic's stub is not implemented on this platform
5422   }
5423   const char* stubName = "mulAdd";
5424 
5425   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5426 
5427   Node* out      = argument(0);
5428   Node* in       = argument(1);
5429   Node* offset   = argument(2);
5430   Node* len      = argument(3);
5431   Node* k        = argument(4);
5432 
5433   const Type* out_type = out->Value(&_gvn);
5434   const Type* in_type = in->Value(&_gvn);
5435   const TypeAryPtr* top_out = out_type->isa_aryptr();
5436   const TypeAryPtr* top_in = in_type->isa_aryptr();
5437   if (top_out  == NULL || top_out->klass()  == NULL ||
5438       top_in == NULL || top_in->klass() == NULL) {
5439     // failed array check
5440     return false;
5441   }
5442 
5443   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5444   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5445   if (out_elem != T_INT || in_elem != T_INT) {
5446     return false;
5447   }
5448 
5449   Node* outlen = load_array_length(out);
5450   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5451   Node* out_start = array_element_address(out, intcon(0), out_elem);
5452   Node* in_start = array_element_address(in, intcon(0), in_elem);
5453 
5454   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5455                                   OptoRuntime::mulAdd_Type(),
5456                                   stubAddr, stubName, TypePtr::BOTTOM,
5457                                   out_start,in_start, new_offset, len, k);
5458   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5459   set_result(result);
5460   return true;
5461 }
5462 
5463 
5464 /**
5465  * Calculate CRC32 for byte.
5466  * int java.util.zip.CRC32.update(int crc, int b)
5467  */
5468 bool LibraryCallKit::inline_updateCRC32() {
5469   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5470   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5471   // no receiver since it is static method
5472   Node* crc  = argument(0); // type: int
5473   Node* b    = argument(1); // type: int
5474 
5475   /*
5476    *    int c = ~ crc;
5477    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5478    *    b = b ^ (c >>> 8);
5479    *    crc = ~b;
5480    */
5481 
5482   Node* M1 = intcon(-1);
5483   crc = _gvn.transform(new XorINode(crc, M1));
5484   Node* result = _gvn.transform(new XorINode(crc, b));
5485   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5486 
5487   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5488   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5489   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5490   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5491 
5492   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5493   result = _gvn.transform(new XorINode(crc, result));
5494   result = _gvn.transform(new XorINode(result, M1));
5495   set_result(result);
5496   return true;
5497 }
5498 
5499 /**
5500  * Calculate CRC32 for byte[] array.
5501  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5502  */
5503 bool LibraryCallKit::inline_updateBytesCRC32() {
5504   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5505   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5506   // no receiver since it is static method
5507   Node* crc     = argument(0); // type: int
5508   Node* src     = argument(1); // type: oop
5509   Node* offset  = argument(2); // type: int
5510   Node* length  = argument(3); // type: int
5511 
5512   const Type* src_type = src->Value(&_gvn);
5513   const TypeAryPtr* top_src = src_type->isa_aryptr();
5514   if (top_src  == NULL || top_src->klass()  == NULL) {
5515     // failed array check
5516     return false;
5517   }
5518 
5519   // Figure out the size and type of the elements we will be copying.
5520   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5521   if (src_elem != T_BYTE) {
5522     return false;
5523   }
5524 
5525   // 'src_start' points to src array + scaled offset
5526   Node* src_start = array_element_address(src, offset, src_elem);
5527 
5528   // We assume that range check is done by caller.
5529   // TODO: generate range check (offset+length < src.length) in debug VM.
5530 
5531   // Call the stub.
5532   address stubAddr = StubRoutines::updateBytesCRC32();
5533   const char *stubName = "updateBytesCRC32";
5534 
5535   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5536                                  stubAddr, stubName, TypePtr::BOTTOM,
5537                                  crc, src_start, length);
5538   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5539   set_result(result);
5540   return true;
5541 }
5542 
5543 /**
5544  * Calculate CRC32 for ByteBuffer.
5545  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5546  */
5547 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5548   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5549   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5550   // no receiver since it is static method
5551   Node* crc     = argument(0); // type: int
5552   Node* src     = argument(1); // type: long
5553   Node* offset  = argument(3); // type: int
5554   Node* length  = argument(4); // type: int
5555 
5556   src = ConvL2X(src);  // adjust Java long to machine word
5557   Node* base = _gvn.transform(new CastX2PNode(src));
5558   offset = ConvI2X(offset);
5559 
5560   // 'src_start' points to src array + scaled offset
5561   Node* src_start = basic_plus_adr(top(), base, offset);
5562 
5563   // Call the stub.
5564   address stubAddr = StubRoutines::updateBytesCRC32();
5565   const char *stubName = "updateBytesCRC32";
5566 
5567   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5568                                  stubAddr, stubName, TypePtr::BOTTOM,
5569                                  crc, src_start, length);
5570   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5571   set_result(result);
5572   return true;
5573 }
5574 
5575 //------------------------------get_table_from_crc32c_class-----------------------
5576 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5577   Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5578   assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5579 
5580   return table;
5581 }
5582 
5583 //------------------------------inline_updateBytesCRC32C-----------------------
5584 //
5585 // Calculate CRC32C for byte[] array.
5586 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5587 //
5588 bool LibraryCallKit::inline_updateBytesCRC32C() {
5589   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5590   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5591   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5592   // no receiver since it is a static method
5593   Node* crc     = argument(0); // type: int
5594   Node* src     = argument(1); // type: oop
5595   Node* offset  = argument(2); // type: int
5596   Node* end     = argument(3); // type: int
5597 
5598   Node* length = _gvn.transform(new SubINode(end, offset));
5599 
5600   const Type* src_type = src->Value(&_gvn);
5601   const TypeAryPtr* top_src = src_type->isa_aryptr();
5602   if (top_src  == NULL || top_src->klass()  == NULL) {
5603     // failed array check
5604     return false;
5605   }
5606 
5607   // Figure out the size and type of the elements we will be copying.
5608   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5609   if (src_elem != T_BYTE) {
5610     return false;
5611   }
5612 
5613   // 'src_start' points to src array + scaled offset
5614   Node* src_start = array_element_address(src, offset, src_elem);
5615 
5616   // static final int[] byteTable in class CRC32C
5617   Node* table = get_table_from_crc32c_class(callee()->holder());
5618   Node* table_start = array_element_address(table, intcon(0), T_INT);
5619 
5620   // We assume that range check is done by caller.
5621   // TODO: generate range check (offset+length < src.length) in debug VM.
5622 
5623   // Call the stub.
5624   address stubAddr = StubRoutines::updateBytesCRC32C();
5625   const char *stubName = "updateBytesCRC32C";
5626 
5627   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5628                                  stubAddr, stubName, TypePtr::BOTTOM,
5629                                  crc, src_start, length, table_start);
5630   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5631   set_result(result);
5632   return true;
5633 }
5634 
5635 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5636 //
5637 // Calculate CRC32C for DirectByteBuffer.
5638 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5639 //
5640 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5641   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5642   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5643   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5644   // no receiver since it is a static method
5645   Node* crc     = argument(0); // type: int
5646   Node* src     = argument(1); // type: long
5647   Node* offset  = argument(3); // type: int
5648   Node* end     = argument(4); // type: int
5649 
5650   Node* length = _gvn.transform(new SubINode(end, offset));
5651 
5652   src = ConvL2X(src);  // adjust Java long to machine word
5653   Node* base = _gvn.transform(new CastX2PNode(src));
5654   offset = ConvI2X(offset);
5655 
5656   // 'src_start' points to src array + scaled offset
5657   Node* src_start = basic_plus_adr(top(), base, offset);
5658 
5659   // static final int[] byteTable in class CRC32C
5660   Node* table = get_table_from_crc32c_class(callee()->holder());
5661   Node* table_start = array_element_address(table, intcon(0), T_INT);
5662 
5663   // Call the stub.
5664   address stubAddr = StubRoutines::updateBytesCRC32C();
5665   const char *stubName = "updateBytesCRC32C";
5666 
5667   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5668                                  stubAddr, stubName, TypePtr::BOTTOM,
5669                                  crc, src_start, length, table_start);
5670   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5671   set_result(result);
5672   return true;
5673 }
5674 
5675 //----------------------------inline_reference_get----------------------------
5676 // public T java.lang.ref.Reference.get();
5677 bool LibraryCallKit::inline_reference_get() {
5678   const int referent_offset = java_lang_ref_Reference::referent_offset;
5679   guarantee(referent_offset > 0, "should have already been set");
5680 
5681   // Get the argument:
5682   Node* reference_obj = null_check_receiver();
5683   if (stopped()) return true;
5684 
5685   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5686 
5687   ciInstanceKlass* klass = env()->Object_klass();
5688   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5689 
5690   Node* no_ctrl = NULL;
5691   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5692 
5693   // Use the pre-barrier to record the value in the referent field
5694   pre_barrier(false /* do_load */,
5695               control(),
5696               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5697               result /* pre_val */,
5698               T_OBJECT);
5699 
5700   // Add memory barrier to prevent commoning reads from this field
5701   // across safepoint since GC can change its value.
5702   insert_mem_bar(Op_MemBarCPUOrder);
5703 
5704   set_result(result);
5705   return true;
5706 }
5707 
5708 
5709 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5710                                               bool is_exact=true, bool is_static=false,
5711                                               ciInstanceKlass * fromKls=NULL) {
5712   if (fromKls == NULL) {
5713     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5714     assert(tinst != NULL, "obj is null");
5715     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5716     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5717     fromKls = tinst->klass()->as_instance_klass();
5718   } else {
5719     assert(is_static, "only for static field access");
5720   }
5721   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5722                                               ciSymbol::make(fieldTypeString),
5723                                               is_static);
5724 
5725   assert (field != NULL, "undefined field");
5726   if (field == NULL) return (Node *) NULL;
5727 
5728   if (is_static) {
5729     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5730     fromObj = makecon(tip);
5731   }
5732 
5733   // Next code  copied from Parse::do_get_xxx():
5734 
5735   // Compute address and memory type.
5736   int offset  = field->offset_in_bytes();
5737   bool is_vol = field->is_volatile();
5738   ciType* field_klass = field->type();
5739   assert(field_klass->is_loaded(), "should be loaded");
5740   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5741   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5742   BasicType bt = field->layout_type();
5743 
5744   // Build the resultant type of the load
5745   const Type *type;
5746   if (bt == T_OBJECT) {
5747     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5748   } else {
5749     type = Type::get_const_basic_type(bt);
5750   }
5751 
5752   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
5753     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
5754   }
5755   // Build the load.
5756   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
5757   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
5758   // If reference is volatile, prevent following memory ops from
5759   // floating up past the volatile read.  Also prevents commoning
5760   // another volatile read.
5761   if (is_vol) {
5762     // Memory barrier includes bogus read of value to force load BEFORE membar
5763     insert_mem_bar(Op_MemBarAcquire, loadedField);
5764   }
5765   return loadedField;
5766 }
5767 
5768 
5769 //------------------------------inline_aescrypt_Block-----------------------
5770 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5771   address stubAddr;
5772   const char *stubName;
5773   assert(UseAES, "need AES instruction support");
5774 
5775   switch(id) {
5776   case vmIntrinsics::_aescrypt_encryptBlock:
5777     stubAddr = StubRoutines::aescrypt_encryptBlock();
5778     stubName = "aescrypt_encryptBlock";
5779     break;
5780   case vmIntrinsics::_aescrypt_decryptBlock:
5781     stubAddr = StubRoutines::aescrypt_decryptBlock();
5782     stubName = "aescrypt_decryptBlock";
5783     break;
5784   }
5785   if (stubAddr == NULL) return false;
5786 
5787   Node* aescrypt_object = argument(0);
5788   Node* src             = argument(1);
5789   Node* src_offset      = argument(2);
5790   Node* dest            = argument(3);
5791   Node* dest_offset     = argument(4);
5792 
5793   // (1) src and dest are arrays.
5794   const Type* src_type = src->Value(&_gvn);
5795   const Type* dest_type = dest->Value(&_gvn);
5796   const TypeAryPtr* top_src = src_type->isa_aryptr();
5797   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5798   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5799 
5800   // for the quick and dirty code we will skip all the checks.
5801   // we are just trying to get the call to be generated.
5802   Node* src_start  = src;
5803   Node* dest_start = dest;
5804   if (src_offset != NULL || dest_offset != NULL) {
5805     assert(src_offset != NULL && dest_offset != NULL, "");
5806     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5807     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5808   }
5809 
5810   // now need to get the start of its expanded key array
5811   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5812   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5813   if (k_start == NULL) return false;
5814 
5815   if (Matcher::pass_original_key_for_aes()) {
5816     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5817     // compatibility issues between Java key expansion and SPARC crypto instructions
5818     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5819     if (original_k_start == NULL) return false;
5820 
5821     // Call the stub.
5822     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5823                       stubAddr, stubName, TypePtr::BOTTOM,
5824                       src_start, dest_start, k_start, original_k_start);
5825   } else {
5826     // Call the stub.
5827     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5828                       stubAddr, stubName, TypePtr::BOTTOM,
5829                       src_start, dest_start, k_start);
5830   }
5831 
5832   return true;
5833 }
5834 
5835 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5836 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5837   address stubAddr;
5838   const char *stubName;
5839 
5840   assert(UseAES, "need AES instruction support");
5841 
5842   switch(id) {
5843   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5844     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5845     stubName = "cipherBlockChaining_encryptAESCrypt";
5846     break;
5847   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5848     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5849     stubName = "cipherBlockChaining_decryptAESCrypt";
5850     break;
5851   }
5852   if (stubAddr == NULL) return false;
5853 
5854   Node* cipherBlockChaining_object = argument(0);
5855   Node* src                        = argument(1);
5856   Node* src_offset                 = argument(2);
5857   Node* len                        = argument(3);
5858   Node* dest                       = argument(4);
5859   Node* dest_offset                = argument(5);
5860 
5861   // (1) src and dest are arrays.
5862   const Type* src_type = src->Value(&_gvn);
5863   const Type* dest_type = dest->Value(&_gvn);
5864   const TypeAryPtr* top_src = src_type->isa_aryptr();
5865   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5866   assert (top_src  != NULL && top_src->klass()  != NULL
5867           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5868 
5869   // checks are the responsibility of the caller
5870   Node* src_start  = src;
5871   Node* dest_start = dest;
5872   if (src_offset != NULL || dest_offset != NULL) {
5873     assert(src_offset != NULL && dest_offset != NULL, "");
5874     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5875     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5876   }
5877 
5878   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5879   // (because of the predicated logic executed earlier).
5880   // so we cast it here safely.
5881   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5882 
5883   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5884   if (embeddedCipherObj == NULL) return false;
5885 
5886   // cast it to what we know it will be at runtime
5887   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5888   assert(tinst != NULL, "CBC obj is null");
5889   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5890   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5891   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
5892 
5893   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5894   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5895   const TypeOopPtr* xtype = aklass->as_instance_type();
5896   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
5897   aescrypt_object = _gvn.transform(aescrypt_object);
5898 
5899   // we need to get the start of the aescrypt_object's expanded key array
5900   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5901   if (k_start == NULL) return false;
5902 
5903   // similarly, get the start address of the r vector
5904   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5905   if (objRvec == NULL) return false;
5906   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5907 
5908   Node* cbcCrypt;
5909   if (Matcher::pass_original_key_for_aes()) {
5910     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5911     // compatibility issues between Java key expansion and SPARC crypto instructions
5912     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5913     if (original_k_start == NULL) return false;
5914 
5915     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
5916     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5917                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5918                                  stubAddr, stubName, TypePtr::BOTTOM,
5919                                  src_start, dest_start, k_start, r_start, len, original_k_start);
5920   } else {
5921     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5922     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5923                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5924                                  stubAddr, stubName, TypePtr::BOTTOM,
5925                                  src_start, dest_start, k_start, r_start, len);
5926   }
5927 
5928   // return cipher length (int)
5929   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
5930   set_result(retvalue);
5931   return true;
5932 }
5933 
5934 //------------------------------get_key_start_from_aescrypt_object-----------------------
5935 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
5936   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
5937   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5938   if (objAESCryptKey == NULL) return (Node *) NULL;
5939 
5940   // now have the array, need to get the start address of the K array
5941   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
5942   return k_start;
5943 }
5944 
5945 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
5946 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
5947   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
5948   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5949   if (objAESCryptKey == NULL) return (Node *) NULL;
5950 
5951   // now have the array, need to get the start address of the lastKey array
5952   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
5953   return original_k_start;
5954 }
5955 
5956 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
5957 // Return node representing slow path of predicate check.
5958 // the pseudo code we want to emulate with this predicate is:
5959 // for encryption:
5960 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
5961 // for decryption:
5962 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
5963 //    note cipher==plain is more conservative than the original java code but that's OK
5964 //
5965 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
5966   // The receiver was checked for NULL already.
5967   Node* objCBC = argument(0);
5968 
5969   // Load embeddedCipher field of CipherBlockChaining object.
5970   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5971 
5972   // get AESCrypt klass for instanceOf check
5973   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
5974   // will have same classloader as CipherBlockChaining object
5975   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
5976   assert(tinst != NULL, "CBCobj is null");
5977   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
5978 
5979   // we want to do an instanceof comparison against the AESCrypt class
5980   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5981   if (!klass_AESCrypt->is_loaded()) {
5982     // if AESCrypt is not even loaded, we never take the intrinsic fast path
5983     Node* ctrl = control();
5984     set_control(top()); // no regular fast path
5985     return ctrl;
5986   }
5987   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5988 
5989   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
5990   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
5991   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
5992 
5993   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5994 
5995   // for encryption, we are done
5996   if (!decrypting)
5997     return instof_false;  // even if it is NULL
5998 
5999   // for decryption, we need to add a further check to avoid
6000   // taking the intrinsic path when cipher and plain are the same
6001   // see the original java code for why.
6002   RegionNode* region = new RegionNode(3);
6003   region->init_req(1, instof_false);
6004   Node* src = argument(1);
6005   Node* dest = argument(4);
6006   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6007   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6008   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6009   region->init_req(2, src_dest_conjoint);
6010 
6011   record_for_igvn(region);
6012   return _gvn.transform(region);
6013 }
6014 
6015 //------------------------------inline_ghash_processBlocks
6016 bool LibraryCallKit::inline_ghash_processBlocks() {
6017   address stubAddr;
6018   const char *stubName;
6019   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6020 
6021   stubAddr = StubRoutines::ghash_processBlocks();
6022   stubName = "ghash_processBlocks";
6023 
6024   Node* data           = argument(0);
6025   Node* offset         = argument(1);
6026   Node* len            = argument(2);
6027   Node* state          = argument(3);
6028   Node* subkeyH        = argument(4);
6029 
6030   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6031   assert(state_start, "state is NULL");
6032   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6033   assert(subkeyH_start, "subkeyH is NULL");
6034   Node* data_start  = array_element_address(data, offset, T_BYTE);
6035   assert(data_start, "data is NULL");
6036 
6037   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6038                                   OptoRuntime::ghash_processBlocks_Type(),
6039                                   stubAddr, stubName, TypePtr::BOTTOM,
6040                                   state_start, subkeyH_start, data_start, len);
6041   return true;
6042 }
6043 
6044 //------------------------------inline_sha_implCompress-----------------------
6045 //
6046 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6047 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6048 //
6049 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6050 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6051 //
6052 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6053 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6054 //
6055 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6056   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6057 
6058   Node* sha_obj = argument(0);
6059   Node* src     = argument(1); // type oop
6060   Node* ofs     = argument(2); // type int
6061 
6062   const Type* src_type = src->Value(&_gvn);
6063   const TypeAryPtr* top_src = src_type->isa_aryptr();
6064   if (top_src  == NULL || top_src->klass()  == NULL) {
6065     // failed array check
6066     return false;
6067   }
6068   // Figure out the size and type of the elements we will be copying.
6069   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6070   if (src_elem != T_BYTE) {
6071     return false;
6072   }
6073   // 'src_start' points to src array + offset
6074   Node* src_start = array_element_address(src, ofs, src_elem);
6075   Node* state = NULL;
6076   address stubAddr;
6077   const char *stubName;
6078 
6079   switch(id) {
6080   case vmIntrinsics::_sha_implCompress:
6081     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6082     state = get_state_from_sha_object(sha_obj);
6083     stubAddr = StubRoutines::sha1_implCompress();
6084     stubName = "sha1_implCompress";
6085     break;
6086   case vmIntrinsics::_sha2_implCompress:
6087     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6088     state = get_state_from_sha_object(sha_obj);
6089     stubAddr = StubRoutines::sha256_implCompress();
6090     stubName = "sha256_implCompress";
6091     break;
6092   case vmIntrinsics::_sha5_implCompress:
6093     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6094     state = get_state_from_sha5_object(sha_obj);
6095     stubAddr = StubRoutines::sha512_implCompress();
6096     stubName = "sha512_implCompress";
6097     break;
6098   default:
6099     fatal_unexpected_iid(id);
6100     return false;
6101   }
6102   if (state == NULL) return false;
6103 
6104   // Call the stub.
6105   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6106                                  stubAddr, stubName, TypePtr::BOTTOM,
6107                                  src_start, state);
6108 
6109   return true;
6110 }
6111 
6112 //------------------------------inline_digestBase_implCompressMB-----------------------
6113 //
6114 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6115 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6116 //
6117 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6118   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6119          "need SHA1/SHA256/SHA512 instruction support");
6120   assert((uint)predicate < 3, "sanity");
6121   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6122 
6123   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6124   Node* src            = argument(1); // byte[] array
6125   Node* ofs            = argument(2); // type int
6126   Node* limit          = argument(3); // type int
6127 
6128   const Type* src_type = src->Value(&_gvn);
6129   const TypeAryPtr* top_src = src_type->isa_aryptr();
6130   if (top_src  == NULL || top_src->klass()  == NULL) {
6131     // failed array check
6132     return false;
6133   }
6134   // Figure out the size and type of the elements we will be copying.
6135   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6136   if (src_elem != T_BYTE) {
6137     return false;
6138   }
6139   // 'src_start' points to src array + offset
6140   Node* src_start = array_element_address(src, ofs, src_elem);
6141 
6142   const char* klass_SHA_name = NULL;
6143   const char* stub_name = NULL;
6144   address     stub_addr = NULL;
6145   bool        long_state = false;
6146 
6147   switch (predicate) {
6148   case 0:
6149     if (UseSHA1Intrinsics) {
6150       klass_SHA_name = "sun/security/provider/SHA";
6151       stub_name = "sha1_implCompressMB";
6152       stub_addr = StubRoutines::sha1_implCompressMB();
6153     }
6154     break;
6155   case 1:
6156     if (UseSHA256Intrinsics) {
6157       klass_SHA_name = "sun/security/provider/SHA2";
6158       stub_name = "sha256_implCompressMB";
6159       stub_addr = StubRoutines::sha256_implCompressMB();
6160     }
6161     break;
6162   case 2:
6163     if (UseSHA512Intrinsics) {
6164       klass_SHA_name = "sun/security/provider/SHA5";
6165       stub_name = "sha512_implCompressMB";
6166       stub_addr = StubRoutines::sha512_implCompressMB();
6167       long_state = true;
6168     }
6169     break;
6170   default:
6171     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
6172   }
6173   if (klass_SHA_name != NULL) {
6174     // get DigestBase klass to lookup for SHA klass
6175     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6176     assert(tinst != NULL, "digestBase_obj is not instance???");
6177     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6178 
6179     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6180     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6181     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6182     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6183   }
6184   return false;
6185 }
6186 //------------------------------inline_sha_implCompressMB-----------------------
6187 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6188                                                bool long_state, address stubAddr, const char *stubName,
6189                                                Node* src_start, Node* ofs, Node* limit) {
6190   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6191   const TypeOopPtr* xtype = aklass->as_instance_type();
6192   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6193   sha_obj = _gvn.transform(sha_obj);
6194 
6195   Node* state;
6196   if (long_state) {
6197     state = get_state_from_sha5_object(sha_obj);
6198   } else {
6199     state = get_state_from_sha_object(sha_obj);
6200   }
6201   if (state == NULL) return false;
6202 
6203   // Call the stub.
6204   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6205                                  OptoRuntime::digestBase_implCompressMB_Type(),
6206                                  stubAddr, stubName, TypePtr::BOTTOM,
6207                                  src_start, state, ofs, limit);
6208   // return ofs (int)
6209   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6210   set_result(result);
6211 
6212   return true;
6213 }
6214 
6215 //------------------------------get_state_from_sha_object-----------------------
6216 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6217   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6218   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6219   if (sha_state == NULL) return (Node *) NULL;
6220 
6221   // now have the array, need to get the start address of the state array
6222   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6223   return state;
6224 }
6225 
6226 //------------------------------get_state_from_sha5_object-----------------------
6227 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6228   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6229   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6230   if (sha_state == NULL) return (Node *) NULL;
6231 
6232   // now have the array, need to get the start address of the state array
6233   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6234   return state;
6235 }
6236 
6237 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6238 // Return node representing slow path of predicate check.
6239 // the pseudo code we want to emulate with this predicate is:
6240 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6241 //
6242 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6243   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6244          "need SHA1/SHA256/SHA512 instruction support");
6245   assert((uint)predicate < 3, "sanity");
6246 
6247   // The receiver was checked for NULL already.
6248   Node* digestBaseObj = argument(0);
6249 
6250   // get DigestBase klass for instanceOf check
6251   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6252   assert(tinst != NULL, "digestBaseObj is null");
6253   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6254 
6255   const char* klass_SHA_name = NULL;
6256   switch (predicate) {
6257   case 0:
6258     if (UseSHA1Intrinsics) {
6259       // we want to do an instanceof comparison against the SHA class
6260       klass_SHA_name = "sun/security/provider/SHA";
6261     }
6262     break;
6263   case 1:
6264     if (UseSHA256Intrinsics) {
6265       // we want to do an instanceof comparison against the SHA2 class
6266       klass_SHA_name = "sun/security/provider/SHA2";
6267     }
6268     break;
6269   case 2:
6270     if (UseSHA512Intrinsics) {
6271       // we want to do an instanceof comparison against the SHA5 class
6272       klass_SHA_name = "sun/security/provider/SHA5";
6273     }
6274     break;
6275   default:
6276     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
6277   }
6278 
6279   ciKlass* klass_SHA = NULL;
6280   if (klass_SHA_name != NULL) {
6281     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6282   }
6283   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6284     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6285     Node* ctrl = control();
6286     set_control(top()); // no intrinsic path
6287     return ctrl;
6288   }
6289   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6290 
6291   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6292   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6293   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6294   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6295 
6296   return instof_false;  // even if it is NULL
6297 }
6298 
6299 bool LibraryCallKit::inline_profileBoolean() {
6300   Node* counts = argument(1);
6301   const TypeAryPtr* ary = NULL;
6302   ciArray* aobj = NULL;
6303   if (counts->is_Con()
6304       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6305       && (aobj = ary->const_oop()->as_array()) != NULL
6306       && (aobj->length() == 2)) {
6307     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6308     jint false_cnt = aobj->element_value(0).as_int();
6309     jint  true_cnt = aobj->element_value(1).as_int();
6310 
6311     if (C->log() != NULL) {
6312       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6313                      false_cnt, true_cnt);
6314     }
6315 
6316     if (false_cnt + true_cnt == 0) {
6317       // According to profile, never executed.
6318       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6319                           Deoptimization::Action_reinterpret);
6320       return true;
6321     }
6322 
6323     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6324     // is a number of each value occurrences.
6325     Node* result = argument(0);
6326     if (false_cnt == 0 || true_cnt == 0) {
6327       // According to profile, one value has been never seen.
6328       int expected_val = (false_cnt == 0) ? 1 : 0;
6329 
6330       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6331       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6332 
6333       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6334       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6335       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6336 
6337       { // Slow path: uncommon trap for never seen value and then reexecute
6338         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6339         // the value has been seen at least once.
6340         PreserveJVMState pjvms(this);
6341         PreserveReexecuteState preexecs(this);
6342         jvms()->set_should_reexecute(true);
6343 
6344         set_control(slow_path);
6345         set_i_o(i_o());
6346 
6347         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6348                             Deoptimization::Action_reinterpret);
6349       }
6350       // The guard for never seen value enables sharpening of the result and
6351       // returning a constant. It allows to eliminate branches on the same value
6352       // later on.
6353       set_control(fast_path);
6354       result = intcon(expected_val);
6355     }
6356     // Stop profiling.
6357     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6358     // By replacing method body with profile data (represented as ProfileBooleanNode
6359     // on IR level) we effectively disable profiling.
6360     // It enables full speed execution once optimized code is generated.
6361     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6362     C->record_for_igvn(profile);
6363     set_result(profile);
6364     return true;
6365   } else {
6366     // Continue profiling.
6367     // Profile data isn't available at the moment. So, execute method's bytecode version.
6368     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6369     // is compiled and counters aren't available since corresponding MethodHandle
6370     // isn't a compile-time constant.
6371     return false;
6372   }
6373 }
6374 
6375 bool LibraryCallKit::inline_isCompileConstant() {
6376   Node* n = argument(0);
6377   set_result(n->is_Con() ? intcon(1) : intcon(0));
6378   return true;
6379 }