1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/compilerOracle.hpp"
  37 #include "compiler/oopMap.hpp"
  38 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  39 #include "gc/g1/heapRegion.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/collectedHeap.hpp"
  42 #include "gc/shared/gcLocker.inline.hpp"
  43 #include "interpreter/bytecode.hpp"
  44 #include "interpreter/interpreter.hpp"
  45 #include "interpreter/linkResolver.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "oops/objArrayKlass.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "opto/ad.hpp"
  50 #include "opto/addnode.hpp"
  51 #include "opto/callnode.hpp"
  52 #include "opto/cfgnode.hpp"
  53 #include "opto/graphKit.hpp"
  54 #include "opto/machnode.hpp"
  55 #include "opto/matcher.hpp"
  56 #include "opto/memnode.hpp"
  57 #include "opto/mulnode.hpp"
  58 #include "opto/runtime.hpp"
  59 #include "opto/subnode.hpp"
  60 #include "runtime/atomic.inline.hpp"
  61 #include "runtime/fprofiler.hpp"
  62 #include "runtime/handles.inline.hpp"
  63 #include "runtime/interfaceSupport.hpp"
  64 #include "runtime/javaCalls.hpp"
  65 #include "runtime/sharedRuntime.hpp"
  66 #include "runtime/signature.hpp"
  67 #include "runtime/threadCritical.hpp"
  68 #include "runtime/vframe.hpp"
  69 #include "runtime/vframeArray.hpp"
  70 #include "runtime/vframe_hp.hpp"
  71 #include "utilities/copy.hpp"
  72 #include "utilities/preserveException.hpp"
  73 
  74 
  75 // For debugging purposes:
  76 //  To force FullGCALot inside a runtime function, add the following two lines
  77 //
  78 //  Universe::release_fullgc_alot_dummy();
  79 //  MarkSweep::invoke(0, "Debugging");
  80 //
  81 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  82 
  83 
  84 
  85 
  86 // Compiled code entry points
  87 address OptoRuntime::_new_instance_Java                           = NULL;
  88 address OptoRuntime::_new_array_Java                              = NULL;
  89 address OptoRuntime::_new_array_nozero_Java                       = NULL;
  90 address OptoRuntime::_multianewarray2_Java                        = NULL;
  91 address OptoRuntime::_multianewarray3_Java                        = NULL;
  92 address OptoRuntime::_multianewarray4_Java                        = NULL;
  93 address OptoRuntime::_multianewarray5_Java                        = NULL;
  94 address OptoRuntime::_multianewarrayN_Java                        = NULL;
  95 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
  96 address OptoRuntime::_g1_wb_post_Java                             = NULL;
  97 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
  98 address OptoRuntime::_complete_monitor_locking_Java               = NULL;


  99 address OptoRuntime::_rethrow_Java                                = NULL;
 100 
 101 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 102 address OptoRuntime::_register_finalizer_Java                     = NULL;
 103 
 104 # ifdef ENABLE_ZAP_DEAD_LOCALS
 105 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
 106 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
 107 # endif
 108 
 109 ExceptionBlob* OptoRuntime::_exception_blob;
 110 
 111 // This should be called in an assertion at the start of OptoRuntime routines
 112 // which are entered from compiled code (all of them)
 113 #ifdef ASSERT
 114 static bool check_compiled_frame(JavaThread* thread) {
 115   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 116   RegisterMap map(thread, false);
 117   frame caller = thread->last_frame().sender(&map);
 118   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 119   return true;
 120 }
 121 #endif // ASSERT
 122 
 123 
 124 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 125   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 126   if (var == NULL) { return false; }
 127 
 128 bool OptoRuntime::generate(ciEnv* env) {
 129 
 130   generate_exception_blob();
 131 
 132   // Note: tls: Means fetching the return oop out of the thread-local storage
 133   //
 134   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 135   // -------------------------------------------------------------------------------------------------------------------------------
 136   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 137   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 138   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 139   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 140   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 141   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 142   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 143   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 144   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 145   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 146   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);


 147   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 148 
 149   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 150   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 151 
 152 # ifdef ENABLE_ZAP_DEAD_LOCALS
 153   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
 154   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
 155 # endif
 156   return true;
 157 }
 158 
 159 #undef gen
 160 
 161 
 162 // Helper method to do generation of RunTimeStub's
 163 address OptoRuntime::generate_stub( ciEnv* env,
 164                                     TypeFunc_generator gen, address C_function,
 165                                     const char *name, int is_fancy_jump,
 166                                     bool pass_tls,
 167                                     bool save_argument_registers,
 168                                     bool return_pc ) {
 169   ResourceMark rm;
 170   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
 171   return  C.stub_entry_point();
 172 }
 173 
 174 const char* OptoRuntime::stub_name(address entry) {
 175 #ifndef PRODUCT
 176   CodeBlob* cb = CodeCache::find_blob(entry);
 177   RuntimeStub* rs =(RuntimeStub *)cb;
 178   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 179   return rs->name();
 180 #else
 181   // Fast implementation for product mode (maybe it should be inlined too)
 182   return "runtime stub";
 183 #endif
 184 }
 185 
 186 
 187 //=============================================================================
 188 // Opto compiler runtime routines
 189 //=============================================================================
 190 
 191 
 192 //=============================allocation======================================
 193 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 194 // and try allocation again.
 195 
 196 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
 197   // After any safepoint, just before going back to compiled code,
 198   // we inform the GC that we will be doing initializing writes to
 199   // this object in the future without emitting card-marks, so
 200   // GC may take any compensating steps.
 201   // NOTE: Keep this code consistent with GraphKit::store_barrier.
 202 
 203   oop new_obj = thread->vm_result();
 204   if (new_obj == NULL)  return;
 205 
 206   assert(Universe::heap()->can_elide_tlab_store_barriers(),
 207          "compiler must check this first");
 208   // GC may decide to give back a safer copy of new_obj.
 209   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
 210   thread->set_vm_result(new_obj);
 211 }
 212 
 213 // object allocation
 214 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 215   JRT_BLOCK;
 216 #ifndef PRODUCT
 217   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 218 #endif
 219   assert(check_compiled_frame(thread), "incorrect caller");
 220 
 221   // These checks are cheap to make and support reflective allocation.
 222   int lh = klass->layout_helper();
 223   if (Klass::layout_helper_needs_slow_path(lh)
 224       || !InstanceKlass::cast(klass)->is_initialized()) {
 225     KlassHandle kh(THREAD, klass);
 226     kh->check_valid_for_instantiation(false, THREAD);
 227     if (!HAS_PENDING_EXCEPTION) {
 228       InstanceKlass::cast(kh())->initialize(THREAD);
 229     }
 230     if (!HAS_PENDING_EXCEPTION) {
 231       klass = kh();
 232     } else {
 233       klass = NULL;
 234     }
 235   }
 236 
 237   if (klass != NULL) {
 238     // Scavenge and allocate an instance.
 239     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 240     thread->set_vm_result(result);
 241 
 242     // Pass oops back through thread local storage.  Our apparent type to Java
 243     // is that we return an oop, but we can block on exit from this routine and
 244     // a GC can trash the oop in C's return register.  The generated stub will
 245     // fetch the oop from TLS after any possible GC.
 246   }
 247 
 248   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 249   JRT_BLOCK_END;
 250 
 251   if (GraphKit::use_ReduceInitialCardMarks()) {
 252     // inform GC that we won't do card marks for initializing writes.
 253     new_store_pre_barrier(thread);
 254   }
 255 JRT_END
 256 
 257 
 258 // array allocation
 259 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 260   JRT_BLOCK;
 261 #ifndef PRODUCT
 262   SharedRuntime::_new_array_ctr++;            // new array requires GC
 263 #endif
 264   assert(check_compiled_frame(thread), "incorrect caller");
 265 
 266   // Scavenge and allocate an instance.
 267   oop result;
 268 
 269   if (array_type->oop_is_typeArray()) {
 270     // The oopFactory likes to work with the element type.
 271     // (We could bypass the oopFactory, since it doesn't add much value.)
 272     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 273     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 274   } else {
 275     // Although the oopFactory likes to work with the elem_type,
 276     // the compiler prefers the array_type, since it must already have
 277     // that latter value in hand for the fast path.
 278     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 279     result = oopFactory::new_objArray(elem_type, len, THREAD);
 280   }
 281 
 282   // Pass oops back through thread local storage.  Our apparent type to Java
 283   // is that we return an oop, but we can block on exit from this routine and
 284   // a GC can trash the oop in C's return register.  The generated stub will
 285   // fetch the oop from TLS after any possible GC.
 286   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 287   thread->set_vm_result(result);
 288   JRT_BLOCK_END;
 289 
 290   if (GraphKit::use_ReduceInitialCardMarks()) {
 291     // inform GC that we won't do card marks for initializing writes.
 292     new_store_pre_barrier(thread);
 293   }
 294 JRT_END
 295 
 296 // array allocation without zeroing
 297 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 298   JRT_BLOCK;
 299 #ifndef PRODUCT
 300   SharedRuntime::_new_array_ctr++;            // new array requires GC
 301 #endif
 302   assert(check_compiled_frame(thread), "incorrect caller");
 303 
 304   // Scavenge and allocate an instance.
 305   oop result;
 306 
 307   assert(array_type->oop_is_typeArray(), "should be called only for type array");
 308   // The oopFactory likes to work with the element type.
 309   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 310   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 311 
 312   // Pass oops back through thread local storage.  Our apparent type to Java
 313   // is that we return an oop, but we can block on exit from this routine and
 314   // a GC can trash the oop in C's return register.  The generated stub will
 315   // fetch the oop from TLS after any possible GC.
 316   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 317   thread->set_vm_result(result);
 318   JRT_BLOCK_END;
 319 
 320   if (GraphKit::use_ReduceInitialCardMarks()) {
 321     // inform GC that we won't do card marks for initializing writes.
 322     new_store_pre_barrier(thread);
 323   }
 324 
 325   oop result = thread->vm_result();
 326   if ((len > 0) && (result != NULL) &&
 327       is_deoptimized_caller_frame(thread)) {
 328     // Zero array here if the caller is deoptimized.
 329     int size = ((typeArrayOop)result)->object_size();
 330     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 331     const size_t hs = arrayOopDesc::header_size(elem_type);
 332     // Align to next 8 bytes to avoid trashing arrays's length.
 333     const size_t aligned_hs = align_object_offset(hs);
 334     HeapWord* obj = (HeapWord*)result;
 335     if (aligned_hs > hs) {
 336       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 337     }
 338     // Optimized zeroing.
 339     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 340   }
 341 
 342 JRT_END
 343 
 344 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 345 
 346 // multianewarray for 2 dimensions
 347 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 348 #ifndef PRODUCT
 349   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 350 #endif
 351   assert(check_compiled_frame(thread), "incorrect caller");
 352   assert(elem_type->is_klass(), "not a class");
 353   jint dims[2];
 354   dims[0] = len1;
 355   dims[1] = len2;
 356   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 357   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 358   thread->set_vm_result(obj);
 359 JRT_END
 360 
 361 // multianewarray for 3 dimensions
 362 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 363 #ifndef PRODUCT
 364   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 365 #endif
 366   assert(check_compiled_frame(thread), "incorrect caller");
 367   assert(elem_type->is_klass(), "not a class");
 368   jint dims[3];
 369   dims[0] = len1;
 370   dims[1] = len2;
 371   dims[2] = len3;
 372   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 373   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 374   thread->set_vm_result(obj);
 375 JRT_END
 376 
 377 // multianewarray for 4 dimensions
 378 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 379 #ifndef PRODUCT
 380   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 381 #endif
 382   assert(check_compiled_frame(thread), "incorrect caller");
 383   assert(elem_type->is_klass(), "not a class");
 384   jint dims[4];
 385   dims[0] = len1;
 386   dims[1] = len2;
 387   dims[2] = len3;
 388   dims[3] = len4;
 389   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 390   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 391   thread->set_vm_result(obj);
 392 JRT_END
 393 
 394 // multianewarray for 5 dimensions
 395 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 396 #ifndef PRODUCT
 397   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 398 #endif
 399   assert(check_compiled_frame(thread), "incorrect caller");
 400   assert(elem_type->is_klass(), "not a class");
 401   jint dims[5];
 402   dims[0] = len1;
 403   dims[1] = len2;
 404   dims[2] = len3;
 405   dims[3] = len4;
 406   dims[4] = len5;
 407   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 408   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 409   thread->set_vm_result(obj);
 410 JRT_END
 411 
 412 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 413   assert(check_compiled_frame(thread), "incorrect caller");
 414   assert(elem_type->is_klass(), "not a class");
 415   assert(oop(dims)->is_typeArray(), "not an array");
 416 
 417   ResourceMark rm;
 418   jint len = dims->length();
 419   assert(len > 0, "Dimensions array should contain data");
 420   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
 421   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 422   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 423 
 424   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 425   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 426   thread->set_vm_result(obj);
 427 JRT_END
 428 

 429 






































 430 const TypeFunc *OptoRuntime::new_instance_Type() {
 431   // create input type (domain)
 432   const Type **fields = TypeTuple::fields(1);
 433   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 434   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 435 
 436   // create result type (range)
 437   fields = TypeTuple::fields(1);
 438   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 439 
 440   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 441 
 442   return TypeFunc::make(domain, range);
 443 }
 444 
 445 
 446 const TypeFunc *OptoRuntime::athrow_Type() {
 447   // create input type (domain)
 448   const Type **fields = TypeTuple::fields(1);
 449   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 450   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 451 
 452   // create result type (range)
 453   fields = TypeTuple::fields(0);
 454 
 455   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 456 
 457   return TypeFunc::make(domain, range);
 458 }
 459 
 460 
 461 const TypeFunc *OptoRuntime::new_array_Type() {
 462   // create input type (domain)
 463   const Type **fields = TypeTuple::fields(2);
 464   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 465   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 466   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 467 
 468   // create result type (range)
 469   fields = TypeTuple::fields(1);
 470   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 471 
 472   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 473 
 474   return TypeFunc::make(domain, range);
 475 }
 476 
 477 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 478   // create input type (domain)
 479   const int nargs = ndim + 1;
 480   const Type **fields = TypeTuple::fields(nargs);
 481   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 482   for( int i = 1; i < nargs; i++ )
 483     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 484   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 485 
 486   // create result type (range)
 487   fields = TypeTuple::fields(1);
 488   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 489   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 490 
 491   return TypeFunc::make(domain, range);
 492 }
 493 
 494 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 495   return multianewarray_Type(2);
 496 }
 497 
 498 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 499   return multianewarray_Type(3);
 500 }
 501 
 502 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 503   return multianewarray_Type(4);
 504 }
 505 
 506 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 507   return multianewarray_Type(5);
 508 }
 509 
 510 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 511   // create input type (domain)
 512   const Type **fields = TypeTuple::fields(2);
 513   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 514   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 515   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 516 
 517   // create result type (range)
 518   fields = TypeTuple::fields(1);
 519   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 520   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 521 
 522   return TypeFunc::make(domain, range);
 523 }
 524 
 525 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 526   const Type **fields = TypeTuple::fields(2);
 527   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 528   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 529   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 530 
 531   // create result type (range)
 532   fields = TypeTuple::fields(0);
 533   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 534 
 535   return TypeFunc::make(domain, range);
 536 }
 537 
 538 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 539 
 540   const Type **fields = TypeTuple::fields(2);
 541   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 542   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 543   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 544 
 545   // create result type (range)
 546   fields = TypeTuple::fields(0);
 547   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 548 
 549   return TypeFunc::make(domain, range);
 550 }
 551 
 552 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 553   // create input type (domain)
 554   const Type **fields = TypeTuple::fields(1);
 555   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 556   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 557 
 558   // create result type (range)
 559   fields = TypeTuple::fields(0);
 560   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 561 
 562   return TypeFunc::make(domain, range);
 563 }
 564 
 565 # ifdef ENABLE_ZAP_DEAD_LOCALS
 566 // Type used for stub generation for zap_dead_locals.
 567 // No inputs or outputs
 568 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
 569   // create input type (domain)
 570   const Type **fields = TypeTuple::fields(0);
 571   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
 572 
 573   // create result type (range)
 574   fields = TypeTuple::fields(0);
 575   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
 576 
 577   return TypeFunc::make(domain,range);
 578 }
 579 # endif
 580 
 581 
 582 //-----------------------------------------------------------------------------
 583 // Monitor Handling
 584 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 585   // create input type (domain)
 586   const Type **fields = TypeTuple::fields(2);
 587   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 588   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 589   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 590 
 591   // create result type (range)
 592   fields = TypeTuple::fields(0);
 593 
 594   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 595 
 596   return TypeFunc::make(domain,range);
 597 }
 598 
 599 
 600 //-----------------------------------------------------------------------------
 601 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 602   // create input type (domain)
 603   const Type **fields = TypeTuple::fields(3);
 604   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 605   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 606   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 607   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
 608 
 609   // create result type (range)
 610   fields = TypeTuple::fields(0);
 611 
 612   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 613 
 614   return TypeFunc::make(domain,range);
 615 }
 616 












 617 const TypeFunc* OptoRuntime::flush_windows_Type() {
 618   // create input type (domain)
 619   const Type** fields = TypeTuple::fields(1);
 620   fields[TypeFunc::Parms+0] = NULL; // void
 621   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 622 
 623   // create result type
 624   fields = TypeTuple::fields(1);
 625   fields[TypeFunc::Parms+0] = NULL; // void
 626   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 627 
 628   return TypeFunc::make(domain, range);
 629 }
 630 
 631 const TypeFunc* OptoRuntime::l2f_Type() {
 632   // create input type (domain)
 633   const Type **fields = TypeTuple::fields(2);
 634   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 635   fields[TypeFunc::Parms+1] = Type::HALF;
 636   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 637 
 638   // create result type (range)
 639   fields = TypeTuple::fields(1);
 640   fields[TypeFunc::Parms+0] = Type::FLOAT;
 641   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 642 
 643   return TypeFunc::make(domain, range);
 644 }
 645 
 646 const TypeFunc* OptoRuntime::modf_Type() {
 647   const Type **fields = TypeTuple::fields(2);
 648   fields[TypeFunc::Parms+0] = Type::FLOAT;
 649   fields[TypeFunc::Parms+1] = Type::FLOAT;
 650   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 651 
 652   // create result type (range)
 653   fields = TypeTuple::fields(1);
 654   fields[TypeFunc::Parms+0] = Type::FLOAT;
 655 
 656   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 657 
 658   return TypeFunc::make(domain, range);
 659 }
 660 
 661 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 662   // create input type (domain)
 663   const Type **fields = TypeTuple::fields(2);
 664   // Symbol* name of class to be loaded
 665   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 666   fields[TypeFunc::Parms+1] = Type::HALF;
 667   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 668 
 669   // create result type (range)
 670   fields = TypeTuple::fields(2);
 671   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 672   fields[TypeFunc::Parms+1] = Type::HALF;
 673   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 674 
 675   return TypeFunc::make(domain, range);
 676 }
 677 
 678 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 679   const Type **fields = TypeTuple::fields(4);
 680   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 681   fields[TypeFunc::Parms+1] = Type::HALF;
 682   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 683   fields[TypeFunc::Parms+3] = Type::HALF;
 684   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 685 
 686   // create result type (range)
 687   fields = TypeTuple::fields(2);
 688   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 689   fields[TypeFunc::Parms+1] = Type::HALF;
 690   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 691 
 692   return TypeFunc::make(domain, range);
 693 }
 694 
 695 //-------------- currentTimeMillis, currentTimeNanos, etc
 696 
 697 const TypeFunc* OptoRuntime::void_long_Type() {
 698   // create input type (domain)
 699   const Type **fields = TypeTuple::fields(0);
 700   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 701 
 702   // create result type (range)
 703   fields = TypeTuple::fields(2);
 704   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 705   fields[TypeFunc::Parms+1] = Type::HALF;
 706   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 707 
 708   return TypeFunc::make(domain, range);
 709 }
 710 
 711 // arraycopy stub variations:
 712 enum ArrayCopyType {
 713   ac_fast,                      // void(ptr, ptr, size_t)
 714   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 715   ac_slow,                      // void(ptr, int, ptr, int, int)
 716   ac_generic                    //  int(ptr, int, ptr, int, int)
 717 };
 718 
 719 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 720   // create input type (domain)
 721   int num_args      = (act == ac_fast ? 3 : 5);
 722   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 723   int argcnt = num_args;
 724   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 725   const Type** fields = TypeTuple::fields(argcnt);
 726   int argp = TypeFunc::Parms;
 727   fields[argp++] = TypePtr::NOTNULL;    // src
 728   if (num_size_args == 0) {
 729     fields[argp++] = TypeInt::INT;      // src_pos
 730   }
 731   fields[argp++] = TypePtr::NOTNULL;    // dest
 732   if (num_size_args == 0) {
 733     fields[argp++] = TypeInt::INT;      // dest_pos
 734     fields[argp++] = TypeInt::INT;      // length
 735   }
 736   while (num_size_args-- > 0) {
 737     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 738     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 739   }
 740   if (act == ac_checkcast) {
 741     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 742   }
 743   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 744   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 745 
 746   // create result type if needed
 747   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 748   fields = TypeTuple::fields(1);
 749   if (retcnt == 0)
 750     fields[TypeFunc::Parms+0] = NULL; // void
 751   else
 752     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 753   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 754   return TypeFunc::make(domain, range);
 755 }
 756 
 757 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 758   // This signature is simple:  Two base pointers and a size_t.
 759   return make_arraycopy_Type(ac_fast);
 760 }
 761 
 762 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 763   // An extension of fast_arraycopy_Type which adds type checking.
 764   return make_arraycopy_Type(ac_checkcast);
 765 }
 766 
 767 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 768   // This signature is exactly the same as System.arraycopy.
 769   // There are no intptr_t (int/long) arguments.
 770   return make_arraycopy_Type(ac_slow);
 771 }
 772 
 773 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 774   // This signature is like System.arraycopy, except that it returns status.
 775   return make_arraycopy_Type(ac_generic);
 776 }
 777 
 778 
 779 const TypeFunc* OptoRuntime::array_fill_Type() {
 780   const Type** fields;
 781   int argp = TypeFunc::Parms;
 782   if (CCallingConventionRequiresIntsAsLongs) {
 783   // create input type (domain): pointer, int, size_t
 784     fields = TypeTuple::fields(3 LP64_ONLY( + 2));
 785     fields[argp++] = TypePtr::NOTNULL;
 786     fields[argp++] = TypeLong::LONG;
 787     fields[argp++] = Type::HALF;
 788   } else {
 789     // create input type (domain): pointer, int, size_t
 790     fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 791     fields[argp++] = TypePtr::NOTNULL;
 792     fields[argp++] = TypeInt::INT;
 793   }
 794   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 795   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 796   const TypeTuple *domain = TypeTuple::make(argp, fields);
 797 
 798   // create result type
 799   fields = TypeTuple::fields(1);
 800   fields[TypeFunc::Parms+0] = NULL; // void
 801   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 802 
 803   return TypeFunc::make(domain, range);
 804 }
 805 
 806 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 807 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 808   // create input type (domain)
 809   int num_args      = 3;
 810   if (Matcher::pass_original_key_for_aes()) {
 811     num_args = 4;
 812   }
 813   int argcnt = num_args;
 814   const Type** fields = TypeTuple::fields(argcnt);
 815   int argp = TypeFunc::Parms;
 816   fields[argp++] = TypePtr::NOTNULL;    // src
 817   fields[argp++] = TypePtr::NOTNULL;    // dest
 818   fields[argp++] = TypePtr::NOTNULL;    // k array
 819   if (Matcher::pass_original_key_for_aes()) {
 820     fields[argp++] = TypePtr::NOTNULL;    // original k array
 821   }
 822   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 823   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 824 
 825   // no result type needed
 826   fields = TypeTuple::fields(1);
 827   fields[TypeFunc::Parms+0] = NULL; // void
 828   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 829   return TypeFunc::make(domain, range);
 830 }
 831 
 832 /**
 833  * int updateBytesCRC32(int crc, byte* b, int len)
 834  */
 835 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 836   // create input type (domain)
 837   int num_args      = 3;
 838   int argcnt = num_args;
 839   const Type** fields = TypeTuple::fields(argcnt);
 840   int argp = TypeFunc::Parms;
 841   fields[argp++] = TypeInt::INT;        // crc
 842   fields[argp++] = TypePtr::NOTNULL;    // src
 843   fields[argp++] = TypeInt::INT;        // len
 844   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 845   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 846 
 847   // result type needed
 848   fields = TypeTuple::fields(1);
 849   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 850   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 851   return TypeFunc::make(domain, range);
 852 }
 853 
 854 /**
 855  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
 856  */
 857 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
 858   // create input type (domain)
 859   int num_args      = 4;
 860   int argcnt = num_args;
 861   const Type** fields = TypeTuple::fields(argcnt);
 862   int argp = TypeFunc::Parms;
 863   fields[argp++] = TypeInt::INT;        // crc
 864   fields[argp++] = TypePtr::NOTNULL;    // buf
 865   fields[argp++] = TypeInt::INT;        // len
 866   fields[argp++] = TypePtr::NOTNULL;    // table
 867   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 868   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 869 
 870   // result type needed
 871   fields = TypeTuple::fields(1);
 872   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 873   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 874   return TypeFunc::make(domain, range);
 875 }
 876 
 877 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 878 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 879   // create input type (domain)
 880   int num_args      = 5;
 881   if (Matcher::pass_original_key_for_aes()) {
 882     num_args = 6;
 883   }
 884   int argcnt = num_args;
 885   const Type** fields = TypeTuple::fields(argcnt);
 886   int argp = TypeFunc::Parms;
 887   fields[argp++] = TypePtr::NOTNULL;    // src
 888   fields[argp++] = TypePtr::NOTNULL;    // dest
 889   fields[argp++] = TypePtr::NOTNULL;    // k array
 890   fields[argp++] = TypePtr::NOTNULL;    // r array
 891   fields[argp++] = TypeInt::INT;        // src len
 892   if (Matcher::pass_original_key_for_aes()) {
 893     fields[argp++] = TypePtr::NOTNULL;    // original k array
 894   }
 895   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 896   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 897 
 898   // returning cipher len (int)
 899   fields = TypeTuple::fields(1);
 900   fields[TypeFunc::Parms+0] = TypeInt::INT;
 901   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 902   return TypeFunc::make(domain, range);
 903 }
 904 
 905 /*
 906  * void implCompress(byte[] buf, int ofs)
 907  */
 908 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
 909   // create input type (domain)
 910   int num_args = 2;
 911   int argcnt = num_args;
 912   const Type** fields = TypeTuple::fields(argcnt);
 913   int argp = TypeFunc::Parms;
 914   fields[argp++] = TypePtr::NOTNULL; // buf
 915   fields[argp++] = TypePtr::NOTNULL; // state
 916   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 917   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 918 
 919   // no result type needed
 920   fields = TypeTuple::fields(1);
 921   fields[TypeFunc::Parms+0] = NULL; // void
 922   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 923   return TypeFunc::make(domain, range);
 924 }
 925 
 926 /*
 927  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
 928  */
 929 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
 930   // create input type (domain)
 931   int num_args = 4;
 932   int argcnt = num_args;
 933   const Type** fields = TypeTuple::fields(argcnt);
 934   int argp = TypeFunc::Parms;
 935   fields[argp++] = TypePtr::NOTNULL; // buf
 936   fields[argp++] = TypePtr::NOTNULL; // state
 937   fields[argp++] = TypeInt::INT;     // ofs
 938   fields[argp++] = TypeInt::INT;     // limit
 939   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 940   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 941 
 942   // returning ofs (int)
 943   fields = TypeTuple::fields(1);
 944   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
 945   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 946   return TypeFunc::make(domain, range);
 947 }
 948 
 949 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
 950   // create input type (domain)
 951   int num_args      = 6;
 952   int argcnt = num_args;
 953   const Type** fields = TypeTuple::fields(argcnt);
 954   int argp = TypeFunc::Parms;
 955   fields[argp++] = TypePtr::NOTNULL;    // x
 956   fields[argp++] = TypeInt::INT;        // xlen
 957   fields[argp++] = TypePtr::NOTNULL;    // y
 958   fields[argp++] = TypeInt::INT;        // ylen
 959   fields[argp++] = TypePtr::NOTNULL;    // z
 960   fields[argp++] = TypeInt::INT;        // zlen
 961   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 962   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 963 
 964   // no result type needed
 965   fields = TypeTuple::fields(1);
 966   fields[TypeFunc::Parms+0] = NULL;
 967   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 968   return TypeFunc::make(domain, range);
 969 }
 970 
 971 const TypeFunc* OptoRuntime::squareToLen_Type() {
 972   // create input type (domain)
 973   int num_args      = 4;
 974   int argcnt = num_args;
 975   const Type** fields = TypeTuple::fields(argcnt);
 976   int argp = TypeFunc::Parms;
 977   fields[argp++] = TypePtr::NOTNULL;    // x
 978   fields[argp++] = TypeInt::INT;        // len
 979   fields[argp++] = TypePtr::NOTNULL;    // z
 980   fields[argp++] = TypeInt::INT;        // zlen
 981   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 982   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 983 
 984   // no result type needed
 985   fields = TypeTuple::fields(1);
 986   fields[TypeFunc::Parms+0] = NULL;
 987   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 988   return TypeFunc::make(domain, range);
 989 }
 990 
 991 // for mulAdd calls, 2 pointers and 3 ints, returning int
 992 const TypeFunc* OptoRuntime::mulAdd_Type() {
 993   // create input type (domain)
 994   int num_args      = 5;
 995   int argcnt = num_args;
 996   const Type** fields = TypeTuple::fields(argcnt);
 997   int argp = TypeFunc::Parms;
 998   fields[argp++] = TypePtr::NOTNULL;    // out
 999   fields[argp++] = TypePtr::NOTNULL;    // in
1000   fields[argp++] = TypeInt::INT;        // offset
1001   fields[argp++] = TypeInt::INT;        // len
1002   fields[argp++] = TypeInt::INT;        // k
1003   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1004   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1005 
1006   // returning carry (int)
1007   fields = TypeTuple::fields(1);
1008   fields[TypeFunc::Parms+0] = TypeInt::INT;
1009   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1010   return TypeFunc::make(domain, range);
1011 }
1012 
1013 // GHASH block processing
1014 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1015     int argcnt = 4;
1016 
1017     const Type** fields = TypeTuple::fields(argcnt);
1018     int argp = TypeFunc::Parms;
1019     fields[argp++] = TypePtr::NOTNULL;    // state
1020     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1021     fields[argp++] = TypePtr::NOTNULL;    // data
1022     fields[argp++] = TypeInt::INT;        // blocks
1023     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1024     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1025 
1026     // result type needed
1027     fields = TypeTuple::fields(1);
1028     fields[TypeFunc::Parms+0] = NULL; // void
1029     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1030     return TypeFunc::make(domain, range);
1031 }
1032 
1033 //------------- Interpreter state access for on stack replacement
1034 const TypeFunc* OptoRuntime::osr_end_Type() {
1035   // create input type (domain)
1036   const Type **fields = TypeTuple::fields(1);
1037   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1038   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1039 
1040   // create result type
1041   fields = TypeTuple::fields(1);
1042   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1043   fields[TypeFunc::Parms+0] = NULL; // void
1044   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1045   return TypeFunc::make(domain, range);
1046 }
1047 
1048 //-------------- methodData update helpers
1049 
1050 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
1051   // create input type (domain)
1052   const Type **fields = TypeTuple::fields(2);
1053   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
1054   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
1055   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1056 
1057   // create result type
1058   fields = TypeTuple::fields(1);
1059   fields[TypeFunc::Parms+0] = NULL; // void
1060   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1061   return TypeFunc::make(domain,range);
1062 }
1063 
1064 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1065   if (receiver == NULL) return;
1066   Klass* receiver_klass = receiver->klass();
1067 
1068   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1069   int empty_row = -1;           // free row, if any is encountered
1070 
1071   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1072   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1073     // if (vc->receiver(row) == receiver_klass)
1074     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1075     intptr_t row_recv = *(mdp + receiver_off);
1076     if (row_recv == (intptr_t) receiver_klass) {
1077       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1078       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1079       *(mdp + count_off) += DataLayout::counter_increment;
1080       return;
1081     } else if (row_recv == 0) {
1082       // else if (vc->receiver(row) == NULL)
1083       empty_row = (int) row;
1084     }
1085   }
1086 
1087   if (empty_row != -1) {
1088     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1089     // vc->set_receiver(empty_row, receiver_klass);
1090     *(mdp + receiver_off) = (intptr_t) receiver_klass;
1091     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1092     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1093     *(mdp + count_off) = DataLayout::counter_increment;
1094   } else {
1095     // Receiver did not match any saved receiver and there is no empty row for it.
1096     // Increment total counter to indicate polymorphic case.
1097     intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
1098     *count_p += DataLayout::counter_increment;
1099   }
1100 JRT_END
1101 
1102 //-------------------------------------------------------------------------------------
1103 // register policy
1104 
1105 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1106   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1107   switch (register_save_policy[reg]) {
1108     case 'C': return false; //SOC
1109     case 'E': return true ; //SOE
1110     case 'N': return false; //NS
1111     case 'A': return false; //AS
1112   }
1113   ShouldNotReachHere();
1114   return false;
1115 }
1116 
1117 //-----------------------------------------------------------------------
1118 // Exceptions
1119 //
1120 
1121 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
1122 
1123 // The method is an entry that is always called by a C++ method not
1124 // directly from compiled code. Compiled code will call the C++ method following.
1125 // We can't allow async exception to be installed during  exception processing.
1126 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1127 
1128   // Do not confuse exception_oop with pending_exception. The exception_oop
1129   // is only used to pass arguments into the method. Not for general
1130   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1131   // the runtime stubs checks this on exit.
1132   assert(thread->exception_oop() != NULL, "exception oop is found");
1133   address handler_address = NULL;
1134 
1135   Handle exception(thread, thread->exception_oop());
1136   address pc = thread->exception_pc();
1137 
1138   // Clear out the exception oop and pc since looking up an
1139   // exception handler can cause class loading, which might throw an
1140   // exception and those fields are expected to be clear during
1141   // normal bytecode execution.
1142   thread->clear_exception_oop_and_pc();
1143 
1144   if (TraceExceptions) {
1145     trace_exception(exception(), pc, "");
1146   }
1147 
1148   // for AbortVMOnException flag
1149   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
1150 
1151 #ifdef ASSERT
1152   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1153     // should throw an exception here
1154     ShouldNotReachHere();
1155   }
1156 #endif
1157 
1158   // new exception handling: this method is entered only from adapters
1159   // exceptions from compiled java methods are handled in compiled code
1160   // using rethrow node
1161 
1162   nm = CodeCache::find_nmethod(pc);
1163   assert(nm != NULL, "No NMethod found");
1164   if (nm->is_native_method()) {
1165     fatal("Native method should not have path to exception handling");
1166   } else {
1167     // we are switching to old paradigm: search for exception handler in caller_frame
1168     // instead in exception handler of caller_frame.sender()
1169 
1170     if (JvmtiExport::can_post_on_exceptions()) {
1171       // "Full-speed catching" is not necessary here,
1172       // since we're notifying the VM on every catch.
1173       // Force deoptimization and the rest of the lookup
1174       // will be fine.
1175       deoptimize_caller_frame(thread);
1176     }
1177 
1178     // Check the stack guard pages.  If enabled, look for handler in this frame;
1179     // otherwise, forcibly unwind the frame.
1180     //
1181     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1182     bool force_unwind = !thread->reguard_stack();
1183     bool deopting = false;
1184     if (nm->is_deopt_pc(pc)) {
1185       deopting = true;
1186       RegisterMap map(thread, false);
1187       frame deoptee = thread->last_frame().sender(&map);
1188       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1189       // Adjust the pc back to the original throwing pc
1190       pc = deoptee.pc();
1191     }
1192 
1193     // If we are forcing an unwind because of stack overflow then deopt is
1194     // irrelevant since we are throwing the frame away anyway.
1195 
1196     if (deopting && !force_unwind) {
1197       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1198     } else {
1199 
1200       handler_address =
1201         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1202 
1203       if (handler_address == NULL) {
1204         Handle original_exception(thread, exception());
1205         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
1206         assert (handler_address != NULL, "must have compiled handler");
1207         // Update the exception cache only when the unwind was not forced
1208         // and there didn't happen another exception during the computation of the
1209         // compiled exception handler.
1210         if (!force_unwind && original_exception() == exception()) {
1211           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1212         }
1213       } else {
1214         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
1215       }
1216     }
1217 
1218     thread->set_exception_pc(pc);
1219     thread->set_exception_handler_pc(handler_address);
1220 
1221     // Check if the exception PC is a MethodHandle call site.
1222     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1223   }
1224 
1225   // Restore correct return pc.  Was saved above.
1226   thread->set_exception_oop(exception());
1227   return handler_address;
1228 
1229 JRT_END
1230 
1231 // We are entering here from exception_blob
1232 // If there is a compiled exception handler in this method, we will continue there;
1233 // otherwise we will unwind the stack and continue at the caller of top frame method
1234 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1235 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1236 // we looked up the handler for has been deoptimized in the meantime. If it has been
1237 // we must not use the handler and instead return the deopt blob.
1238 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1239 //
1240 // We are in Java not VM and in debug mode we have a NoHandleMark
1241 //
1242 #ifndef PRODUCT
1243   SharedRuntime::_find_handler_ctr++;          // find exception handler
1244 #endif
1245   debug_only(NoHandleMark __hm;)
1246   nmethod* nm = NULL;
1247   address handler_address = NULL;
1248   {
1249     // Enter the VM
1250 
1251     ResetNoHandleMark rnhm;
1252     handler_address = handle_exception_C_helper(thread, nm);
1253   }
1254 
1255   // Back in java: Use no oops, DON'T safepoint
1256 
1257   // Now check to see if the handler we are returning is in a now
1258   // deoptimized frame
1259 
1260   if (nm != NULL) {
1261     RegisterMap map(thread, false);
1262     frame caller = thread->last_frame().sender(&map);
1263 #ifdef ASSERT
1264     assert(caller.is_compiled_frame(), "must be");
1265 #endif // ASSERT
1266     if (caller.is_deoptimized_frame()) {
1267       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1268     }
1269   }
1270   return handler_address;
1271 }
1272 
1273 //------------------------------rethrow----------------------------------------
1274 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1275 // is either throwing or rethrowing an exception.  The callee-save registers
1276 // have been restored, synchronized objects have been unlocked and the callee
1277 // stack frame has been removed.  The return address was passed in.
1278 // Exception oop is passed as the 1st argument.  This routine is then called
1279 // from the stub.  On exit, we know where to jump in the caller's code.
1280 // After this C code exits, the stub will pop his frame and end in a jump
1281 // (instead of a return).  We enter the caller's default handler.
1282 //
1283 // This must be JRT_LEAF:
1284 //     - caller will not change its state as we cannot block on exit,
1285 //       therefore raw_exception_handler_for_return_address is all it takes
1286 //       to handle deoptimized blobs
1287 //
1288 // However, there needs to be a safepoint check in the middle!  So compiled
1289 // safepoints are completely watertight.
1290 //
1291 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1292 //
1293 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1294 //
1295 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1296 #ifndef PRODUCT
1297   SharedRuntime::_rethrow_ctr++;               // count rethrows
1298 #endif
1299   assert (exception != NULL, "should have thrown a NULLPointerException");
1300 #ifdef ASSERT
1301   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1302     // should throw an exception here
1303     ShouldNotReachHere();
1304   }
1305 #endif
1306 
1307   thread->set_vm_result(exception);
1308   // Frame not compiled (handles deoptimization blob)
1309   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1310 }
1311 
1312 
1313 const TypeFunc *OptoRuntime::rethrow_Type() {
1314   // create input type (domain)
1315   const Type **fields = TypeTuple::fields(1);
1316   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1317   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1318 
1319   // create result type (range)
1320   fields = TypeTuple::fields(1);
1321   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1322   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1323 
1324   return TypeFunc::make(domain, range);
1325 }
1326 
1327 
1328 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1329   // Deoptimize the caller before continuing, as the compiled
1330   // exception handler table may not be valid.
1331   if (!StressCompiledExceptionHandlers && doit) {
1332     deoptimize_caller_frame(thread);
1333   }
1334 }
1335 
1336 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1337   // Called from within the owner thread, so no need for safepoint
1338   RegisterMap reg_map(thread);
1339   frame stub_frame = thread->last_frame();
1340   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1341   frame caller_frame = stub_frame.sender(&reg_map);
1342 
1343   // Deoptimize the caller frame.
1344   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1345 }
1346 
1347 
1348 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1349   // Called from within the owner thread, so no need for safepoint
1350   RegisterMap reg_map(thread);
1351   frame stub_frame = thread->last_frame();
1352   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1353   frame caller_frame = stub_frame.sender(&reg_map);
1354   return caller_frame.is_deoptimized_frame();
1355 }
1356 
1357 
1358 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1359   // create input type (domain)
1360   const Type **fields = TypeTuple::fields(1);
1361   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1362   // // The JavaThread* is passed to each routine as the last argument
1363   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1364   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1365 
1366   // create result type (range)
1367   fields = TypeTuple::fields(0);
1368 
1369   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1370 
1371   return TypeFunc::make(domain,range);
1372 }
1373 
1374 
1375 //-----------------------------------------------------------------------------
1376 // Dtrace support.  entry and exit probes have the same signature
1377 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1378   // create input type (domain)
1379   const Type **fields = TypeTuple::fields(2);
1380   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1381   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1382   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1383 
1384   // create result type (range)
1385   fields = TypeTuple::fields(0);
1386 
1387   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1388 
1389   return TypeFunc::make(domain,range);
1390 }
1391 
1392 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1393   // create input type (domain)
1394   const Type **fields = TypeTuple::fields(2);
1395   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1396   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1397 
1398   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1399 
1400   // create result type (range)
1401   fields = TypeTuple::fields(0);
1402 
1403   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1404 
1405   return TypeFunc::make(domain,range);
1406 }
1407 
1408 
1409 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1410   assert(obj->is_oop(), "must be a valid oop");
1411   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1412   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1413 JRT_END
1414 
1415 //-----------------------------------------------------------------------------
1416 
1417 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1418 
1419 //
1420 // dump the collected NamedCounters.
1421 //
1422 void OptoRuntime::print_named_counters() {
1423   int total_lock_count = 0;
1424   int eliminated_lock_count = 0;
1425 
1426   NamedCounter* c = _named_counters;
1427   while (c) {
1428     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1429       int count = c->count();
1430       if (count > 0) {
1431         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1432         if (Verbose) {
1433           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1434         }
1435         total_lock_count += count;
1436         if (eliminated) {
1437           eliminated_lock_count += count;
1438         }
1439       }
1440     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1441       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1442       if (blc->nonzero()) {
1443         tty->print_cr("%s", c->name());
1444         blc->print_on(tty);
1445       }
1446 #if INCLUDE_RTM_OPT
1447     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1448       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1449       if (rlc->nonzero()) {
1450         tty->print_cr("%s", c->name());
1451         rlc->print_on(tty);
1452       }
1453 #endif
1454     }
1455     c = c->next();
1456   }
1457   if (total_lock_count > 0) {
1458     tty->print_cr("dynamic locks: %d", total_lock_count);
1459     if (eliminated_lock_count) {
1460       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1461                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1462     }
1463   }
1464 }
1465 
1466 //
1467 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1468 //  name which consists of method@line for the inlining tree.
1469 //
1470 
1471 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1472   int max_depth = youngest_jvms->depth();
1473 
1474   // Visit scopes from youngest to oldest.
1475   bool first = true;
1476   stringStream st;
1477   for (int depth = max_depth; depth >= 1; depth--) {
1478     JVMState* jvms = youngest_jvms->of_depth(depth);
1479     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1480     if (!first) {
1481       st.print(" ");
1482     } else {
1483       first = false;
1484     }
1485     int bci = jvms->bci();
1486     if (bci < 0) bci = 0;
1487     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1488     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1489   }
1490   NamedCounter* c;
1491   if (tag == NamedCounter::BiasedLockingCounter) {
1492     c = new BiasedLockingNamedCounter(st.as_string());
1493   } else if (tag == NamedCounter::RTMLockingCounter) {
1494     c = new RTMLockingNamedCounter(st.as_string());
1495   } else {
1496     c = new NamedCounter(st.as_string(), tag);
1497   }
1498 
1499   // atomically add the new counter to the head of the list.  We only
1500   // add counters so this is safe.
1501   NamedCounter* head;
1502   do {
1503     c->set_next(NULL);
1504     head = _named_counters;
1505     c->set_next(head);
1506   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1507   return c;
1508 }
1509 
1510 //-----------------------------------------------------------------------------
1511 // Non-product code
1512 #ifndef PRODUCT
1513 
1514 int trace_exception_counter = 0;
1515 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1516   ttyLocker ttyl;
1517   trace_exception_counter++;
1518   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1519   exception_oop->print_value();
1520   tty->print(" in ");
1521   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1522   if (blob->is_nmethod()) {
1523     nmethod* nm = blob->as_nmethod_or_null();
1524     nm->method()->print_value();
1525   } else if (blob->is_runtime_stub()) {
1526     tty->print("<runtime-stub>");
1527   } else {
1528     tty->print("<unknown>");
1529   }
1530   tty->print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1531   tty->print_cr("]");
1532 }
1533 
1534 #endif  // PRODUCT
1535 
1536 
1537 # ifdef ENABLE_ZAP_DEAD_LOCALS
1538 // Called from call sites in compiled code with oop maps (actually safepoints)
1539 // Zaps dead locals in first java frame.
1540 // Is entry because may need to lock to generate oop maps
1541 // Currently, only used for compiler frames, but someday may be used
1542 // for interpreter frames, too.
1543 
1544 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
1545 
1546 // avoid pointers to member funcs with these helpers
1547 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
1548 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
1549 
1550 
1551 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
1552                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
1553   assert(JavaThread::current() == thread, "is this needed?");
1554 
1555   if ( !ZapDeadCompiledLocals )  return;
1556 
1557   bool skip = false;
1558 
1559        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
1560   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
1561   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
1562     warning("starting zapping after skipping");
1563 
1564        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
1565   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
1566   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
1567     warning("about to zap last zap");
1568 
1569   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
1570 
1571   if ( skip )  return;
1572 
1573   // find java frame and zap it
1574 
1575   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
1576     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
1577       sfs.current()->zap_dead_locals(thread, sfs.register_map());
1578       return;
1579     }
1580   }
1581   warning("no frame found to zap in zap_dead_Java_locals_C");
1582 }
1583 
1584 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
1585   zap_dead_java_or_native_locals(thread, is_java_frame);
1586 JRT_END
1587 
1588 // The following does not work because for one thing, the
1589 // thread state is wrong; it expects java, but it is native.
1590 // Also, the invariants in a native stub are different and
1591 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
1592 // in there.
1593 // So for now, we do not zap in native stubs.
1594 
1595 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
1596   zap_dead_java_or_native_locals(thread, is_native_frame);
1597 JRT_END
1598 
1599 # endif
--- EOF ---