1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/compilerOracle.hpp"
  37 #include "compiler/oopMap.hpp"
  38 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  39 #include "gc/g1/heapRegion.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/collectedHeap.hpp"
  42 #include "gc/shared/gcLocker.inline.hpp"
  43 #include "interpreter/bytecode.hpp"
  44 #include "interpreter/interpreter.hpp"
  45 #include "interpreter/linkResolver.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "oops/objArrayKlass.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "opto/ad.hpp"
  50 #include "opto/addnode.hpp"
  51 #include "opto/callnode.hpp"
  52 #include "opto/cfgnode.hpp"
  53 #include "opto/graphKit.hpp"
  54 #include "opto/machnode.hpp"
  55 #include "opto/matcher.hpp"
  56 #include "opto/memnode.hpp"
  57 #include "opto/mulnode.hpp"
  58 #include "opto/runtime.hpp"
  59 #include "opto/subnode.hpp"
  60 #include "runtime/atomic.inline.hpp"
  61 #include "runtime/fprofiler.hpp"
  62 #include "runtime/handles.inline.hpp"
  63 #include "runtime/interfaceSupport.hpp"
  64 #include "runtime/javaCalls.hpp"
  65 #include "runtime/sharedRuntime.hpp"
  66 #include "runtime/signature.hpp"
  67 #include "runtime/threadCritical.hpp"
  68 #include "runtime/vframe.hpp"
  69 #include "runtime/vframeArray.hpp"
  70 #include "runtime/vframe_hp.hpp"
  71 #include "utilities/copy.hpp"
  72 #include "utilities/preserveException.hpp"
  73 
  74 
  75 // For debugging purposes:
  76 //  To force FullGCALot inside a runtime function, add the following two lines
  77 //
  78 //  Universe::release_fullgc_alot_dummy();
  79 //  MarkSweep::invoke(0, "Debugging");
  80 //
  81 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  82 
  83 
  84 
  85 
  86 // Compiled code entry points
  87 address OptoRuntime::_new_instance_Java                           = NULL;
  88 address OptoRuntime::_new_array_Java                              = NULL;
  89 address OptoRuntime::_new_array_nozero_Java                       = NULL;
  90 address OptoRuntime::_multianewarray2_Java                        = NULL;
  91 address OptoRuntime::_multianewarray3_Java                        = NULL;
  92 address OptoRuntime::_multianewarray4_Java                        = NULL;
  93 address OptoRuntime::_multianewarray5_Java                        = NULL;
  94 address OptoRuntime::_multianewarrayN_Java                        = NULL;
  95 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
  96 address OptoRuntime::_g1_wb_post_Java                             = NULL;
  97 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
  98 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
  99 address OptoRuntime::_monitor_notify_Java                         = NULL;
 100 address OptoRuntime::_monitor_notifyAll_Java                      = NULL;
 101 address OptoRuntime::_rethrow_Java                                = NULL;
 102 
 103 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 104 address OptoRuntime::_register_finalizer_Java                     = NULL;
 105 
 106 # ifdef ENABLE_ZAP_DEAD_LOCALS
 107 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
 108 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
 109 # endif
 110 
 111 ExceptionBlob* OptoRuntime::_exception_blob;
 112 
 113 // This should be called in an assertion at the start of OptoRuntime routines
 114 // which are entered from compiled code (all of them)
 115 #ifdef ASSERT
 116 static bool check_compiled_frame(JavaThread* thread) {
 117   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 118   RegisterMap map(thread, false);
 119   frame caller = thread->last_frame().sender(&map);
 120   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 121   return true;
 122 }
 123 #endif // ASSERT
 124 
 125 
 126 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 127   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 128   if (var == NULL) { return false; }
 129 
 130 bool OptoRuntime::generate(ciEnv* env) {
 131 
 132   generate_exception_blob();
 133 
 134   // Note: tls: Means fetching the return oop out of the thread-local storage
 135   //
 136   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 137   // -------------------------------------------------------------------------------------------------------------------------------
 138   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 139   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 140   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 141   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 142   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 143   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 144   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 145   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 146   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 147   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 148   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 149   gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false, false);
 150   gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false, false);
 151   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 152 
 153   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 154   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 155 
 156 # ifdef ENABLE_ZAP_DEAD_LOCALS
 157   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
 158   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
 159 # endif
 160   return true;
 161 }
 162 
 163 #undef gen
 164 
 165 
 166 // Helper method to do generation of RunTimeStub's
 167 address OptoRuntime::generate_stub( ciEnv* env,
 168                                     TypeFunc_generator gen, address C_function,
 169                                     const char *name, int is_fancy_jump,
 170                                     bool pass_tls,
 171                                     bool save_argument_registers,
 172                                     bool return_pc ) {
 173   ResourceMark rm;
 174   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
 175   return  C.stub_entry_point();
 176 }
 177 
 178 const char* OptoRuntime::stub_name(address entry) {
 179 #ifndef PRODUCT
 180   CodeBlob* cb = CodeCache::find_blob(entry);
 181   RuntimeStub* rs =(RuntimeStub *)cb;
 182   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 183   return rs->name();
 184 #else
 185   // Fast implementation for product mode (maybe it should be inlined too)
 186   return "runtime stub";
 187 #endif
 188 }
 189 
 190 
 191 //=============================================================================
 192 // Opto compiler runtime routines
 193 //=============================================================================
 194 
 195 
 196 //=============================allocation======================================
 197 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 198 // and try allocation again.
 199 
 200 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
 201   // After any safepoint, just before going back to compiled code,
 202   // we inform the GC that we will be doing initializing writes to
 203   // this object in the future without emitting card-marks, so
 204   // GC may take any compensating steps.
 205   // NOTE: Keep this code consistent with GraphKit::store_barrier.
 206 
 207   oop new_obj = thread->vm_result();
 208   if (new_obj == NULL)  return;
 209 
 210   assert(Universe::heap()->can_elide_tlab_store_barriers(),
 211          "compiler must check this first");
 212   // GC may decide to give back a safer copy of new_obj.
 213   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
 214   thread->set_vm_result(new_obj);
 215 }
 216 
 217 // object allocation
 218 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 219   JRT_BLOCK;
 220 #ifndef PRODUCT
 221   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 222 #endif
 223   assert(check_compiled_frame(thread), "incorrect caller");
 224 
 225   // These checks are cheap to make and support reflective allocation.
 226   int lh = klass->layout_helper();
 227   if (Klass::layout_helper_needs_slow_path(lh)
 228       || !InstanceKlass::cast(klass)->is_initialized()) {
 229     KlassHandle kh(THREAD, klass);
 230     kh->check_valid_for_instantiation(false, THREAD);
 231     if (!HAS_PENDING_EXCEPTION) {
 232       InstanceKlass::cast(kh())->initialize(THREAD);
 233     }
 234     if (!HAS_PENDING_EXCEPTION) {
 235       klass = kh();
 236     } else {
 237       klass = NULL;
 238     }
 239   }
 240 
 241   if (klass != NULL) {
 242     // Scavenge and allocate an instance.
 243     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 244     thread->set_vm_result(result);
 245 
 246     // Pass oops back through thread local storage.  Our apparent type to Java
 247     // is that we return an oop, but we can block on exit from this routine and
 248     // a GC can trash the oop in C's return register.  The generated stub will
 249     // fetch the oop from TLS after any possible GC.
 250   }
 251 
 252   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 253   JRT_BLOCK_END;
 254 
 255   if (GraphKit::use_ReduceInitialCardMarks()) {
 256     // inform GC that we won't do card marks for initializing writes.
 257     new_store_pre_barrier(thread);
 258   }
 259 JRT_END
 260 
 261 
 262 // array allocation
 263 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 264   JRT_BLOCK;
 265 #ifndef PRODUCT
 266   SharedRuntime::_new_array_ctr++;            // new array requires GC
 267 #endif
 268   assert(check_compiled_frame(thread), "incorrect caller");
 269 
 270   // Scavenge and allocate an instance.
 271   oop result;
 272 
 273   if (array_type->oop_is_typeArray()) {
 274     // The oopFactory likes to work with the element type.
 275     // (We could bypass the oopFactory, since it doesn't add much value.)
 276     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 277     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 278   } else {
 279     // Although the oopFactory likes to work with the elem_type,
 280     // the compiler prefers the array_type, since it must already have
 281     // that latter value in hand for the fast path.
 282     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 283     result = oopFactory::new_objArray(elem_type, len, THREAD);
 284   }
 285 
 286   // Pass oops back through thread local storage.  Our apparent type to Java
 287   // is that we return an oop, but we can block on exit from this routine and
 288   // a GC can trash the oop in C's return register.  The generated stub will
 289   // fetch the oop from TLS after any possible GC.
 290   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 291   thread->set_vm_result(result);
 292   JRT_BLOCK_END;
 293 
 294   if (GraphKit::use_ReduceInitialCardMarks()) {
 295     // inform GC that we won't do card marks for initializing writes.
 296     new_store_pre_barrier(thread);
 297   }
 298 JRT_END
 299 
 300 // array allocation without zeroing
 301 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 302   JRT_BLOCK;
 303 #ifndef PRODUCT
 304   SharedRuntime::_new_array_ctr++;            // new array requires GC
 305 #endif
 306   assert(check_compiled_frame(thread), "incorrect caller");
 307 
 308   // Scavenge and allocate an instance.
 309   oop result;
 310 
 311   assert(array_type->oop_is_typeArray(), "should be called only for type array");
 312   // The oopFactory likes to work with the element type.
 313   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 314   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 315 
 316   // Pass oops back through thread local storage.  Our apparent type to Java
 317   // is that we return an oop, but we can block on exit from this routine and
 318   // a GC can trash the oop in C's return register.  The generated stub will
 319   // fetch the oop from TLS after any possible GC.
 320   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 321   thread->set_vm_result(result);
 322   JRT_BLOCK_END;
 323 
 324   if (GraphKit::use_ReduceInitialCardMarks()) {
 325     // inform GC that we won't do card marks for initializing writes.
 326     new_store_pre_barrier(thread);
 327   }
 328 
 329   oop result = thread->vm_result();
 330   if ((len > 0) && (result != NULL) &&
 331       is_deoptimized_caller_frame(thread)) {
 332     // Zero array here if the caller is deoptimized.
 333     int size = ((typeArrayOop)result)->object_size();
 334     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 335     const size_t hs = arrayOopDesc::header_size(elem_type);
 336     // Align to next 8 bytes to avoid trashing arrays's length.
 337     const size_t aligned_hs = align_object_offset(hs);
 338     HeapWord* obj = (HeapWord*)result;
 339     if (aligned_hs > hs) {
 340       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 341     }
 342     // Optimized zeroing.
 343     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 344   }
 345 
 346 JRT_END
 347 
 348 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 349 
 350 // multianewarray for 2 dimensions
 351 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 352 #ifndef PRODUCT
 353   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 354 #endif
 355   assert(check_compiled_frame(thread), "incorrect caller");
 356   assert(elem_type->is_klass(), "not a class");
 357   jint dims[2];
 358   dims[0] = len1;
 359   dims[1] = len2;
 360   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 361   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 362   thread->set_vm_result(obj);
 363 JRT_END
 364 
 365 // multianewarray for 3 dimensions
 366 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 367 #ifndef PRODUCT
 368   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 369 #endif
 370   assert(check_compiled_frame(thread), "incorrect caller");
 371   assert(elem_type->is_klass(), "not a class");
 372   jint dims[3];
 373   dims[0] = len1;
 374   dims[1] = len2;
 375   dims[2] = len3;
 376   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 377   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 378   thread->set_vm_result(obj);
 379 JRT_END
 380 
 381 // multianewarray for 4 dimensions
 382 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 383 #ifndef PRODUCT
 384   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 385 #endif
 386   assert(check_compiled_frame(thread), "incorrect caller");
 387   assert(elem_type->is_klass(), "not a class");
 388   jint dims[4];
 389   dims[0] = len1;
 390   dims[1] = len2;
 391   dims[2] = len3;
 392   dims[3] = len4;
 393   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 394   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 395   thread->set_vm_result(obj);
 396 JRT_END
 397 
 398 // multianewarray for 5 dimensions
 399 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 400 #ifndef PRODUCT
 401   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 402 #endif
 403   assert(check_compiled_frame(thread), "incorrect caller");
 404   assert(elem_type->is_klass(), "not a class");
 405   jint dims[5];
 406   dims[0] = len1;
 407   dims[1] = len2;
 408   dims[2] = len3;
 409   dims[3] = len4;
 410   dims[4] = len5;
 411   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 412   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 413   thread->set_vm_result(obj);
 414 JRT_END
 415 
 416 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 417   assert(check_compiled_frame(thread), "incorrect caller");
 418   assert(elem_type->is_klass(), "not a class");
 419   assert(oop(dims)->is_typeArray(), "not an array");
 420 
 421   ResourceMark rm;
 422   jint len = dims->length();
 423   assert(len > 0, "Dimensions array should contain data");
 424   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
 425   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 426   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 427 
 428   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 429   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 430   thread->set_vm_result(obj);
 431 JRT_END
 432 
 433 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread))
 434 
 435   // Very few notify/notifyAll operations find any threads on the waitset, so
 436   // the dominant fast-path is to simply return.
 437   // Relatedly, it's critical that notify/notifyAll be fast in order to
 438   // reduce lock hold times.
 439   if (!SafepointSynchronize::is_synchronizing()) {
 440     if (ObjectSynchronizer::quick_notify(obj, thread, false)) {
 441       return;
 442     }
 443   }
 444 
 445   // This is the case the fast-path above isn't provisioned to handle.
 446   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 447   // (The fast-path is just a degenerate variant of the slow-path).
 448   // Perform the dreaded state transition and pass control into the slow-path.
 449   JRT_BLOCK;
 450   Handle h_obj(THREAD, obj);
 451   ObjectSynchronizer::notify(h_obj, CHECK);
 452   JRT_BLOCK_END;
 453 JRT_END
 454 
 455 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread))
 456 
 457   if (!SafepointSynchronize::is_synchronizing() ) {
 458     if (ObjectSynchronizer::quick_notify(obj, thread, true)) {
 459       return;
 460     }
 461   }
 462 
 463   // This is the case the fast-path above isn't provisioned to handle.
 464   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 465   // (The fast-path is just a degenerate variant of the slow-path).
 466   // Perform the dreaded state transition and pass control into the slow-path.
 467   JRT_BLOCK;
 468   Handle h_obj(THREAD, obj);
 469   ObjectSynchronizer::notifyall(h_obj, CHECK);
 470   JRT_BLOCK_END;
 471 JRT_END
 472 
 473 const TypeFunc *OptoRuntime::new_instance_Type() {
 474   // create input type (domain)
 475   const Type **fields = TypeTuple::fields(1);
 476   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 477   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 478 
 479   // create result type (range)
 480   fields = TypeTuple::fields(1);
 481   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 482 
 483   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 484 
 485   return TypeFunc::make(domain, range);
 486 }
 487 
 488 
 489 const TypeFunc *OptoRuntime::athrow_Type() {
 490   // create input type (domain)
 491   const Type **fields = TypeTuple::fields(1);
 492   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 493   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 494 
 495   // create result type (range)
 496   fields = TypeTuple::fields(0);
 497 
 498   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 499 
 500   return TypeFunc::make(domain, range);
 501 }
 502 
 503 
 504 const TypeFunc *OptoRuntime::new_array_Type() {
 505   // create input type (domain)
 506   const Type **fields = TypeTuple::fields(2);
 507   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 508   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 509   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 510 
 511   // create result type (range)
 512   fields = TypeTuple::fields(1);
 513   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 514 
 515   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 516 
 517   return TypeFunc::make(domain, range);
 518 }
 519 
 520 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 521   // create input type (domain)
 522   const int nargs = ndim + 1;
 523   const Type **fields = TypeTuple::fields(nargs);
 524   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 525   for( int i = 1; i < nargs; i++ )
 526     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 527   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 528 
 529   // create result type (range)
 530   fields = TypeTuple::fields(1);
 531   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 532   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 533 
 534   return TypeFunc::make(domain, range);
 535 }
 536 
 537 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 538   return multianewarray_Type(2);
 539 }
 540 
 541 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 542   return multianewarray_Type(3);
 543 }
 544 
 545 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 546   return multianewarray_Type(4);
 547 }
 548 
 549 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 550   return multianewarray_Type(5);
 551 }
 552 
 553 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 554   // create input type (domain)
 555   const Type **fields = TypeTuple::fields(2);
 556   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 557   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 558   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 559 
 560   // create result type (range)
 561   fields = TypeTuple::fields(1);
 562   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 563   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 564 
 565   return TypeFunc::make(domain, range);
 566 }
 567 
 568 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 569   const Type **fields = TypeTuple::fields(2);
 570   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 571   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 572   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 573 
 574   // create result type (range)
 575   fields = TypeTuple::fields(0);
 576   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 577 
 578   return TypeFunc::make(domain, range);
 579 }
 580 
 581 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 582 
 583   const Type **fields = TypeTuple::fields(2);
 584   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 585   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 586   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 587 
 588   // create result type (range)
 589   fields = TypeTuple::fields(0);
 590   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 591 
 592   return TypeFunc::make(domain, range);
 593 }
 594 
 595 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 596   // create input type (domain)
 597   const Type **fields = TypeTuple::fields(1);
 598   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 599   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 600 
 601   // create result type (range)
 602   fields = TypeTuple::fields(0);
 603   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 604 
 605   return TypeFunc::make(domain, range);
 606 }
 607 
 608 # ifdef ENABLE_ZAP_DEAD_LOCALS
 609 // Type used for stub generation for zap_dead_locals.
 610 // No inputs or outputs
 611 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
 612   // create input type (domain)
 613   const Type **fields = TypeTuple::fields(0);
 614   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
 615 
 616   // create result type (range)
 617   fields = TypeTuple::fields(0);
 618   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
 619 
 620   return TypeFunc::make(domain,range);
 621 }
 622 # endif
 623 
 624 
 625 //-----------------------------------------------------------------------------
 626 // Monitor Handling
 627 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 628   // create input type (domain)
 629   const Type **fields = TypeTuple::fields(2);
 630   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 631   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 632   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 633 
 634   // create result type (range)
 635   fields = TypeTuple::fields(0);
 636 
 637   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 638 
 639   return TypeFunc::make(domain,range);
 640 }
 641 
 642 
 643 //-----------------------------------------------------------------------------
 644 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 645   // create input type (domain)
 646   const Type **fields = TypeTuple::fields(3);
 647   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 648   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 649   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 650   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 651 
 652   // create result type (range)
 653   fields = TypeTuple::fields(0);
 654 
 655   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 656 
 657   return TypeFunc::make(domain, range);
 658 }
 659 
 660 const TypeFunc *OptoRuntime::monitor_notify_Type() {
 661   // create input type (domain)
 662   const Type **fields = TypeTuple::fields(1);
 663   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 664   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 665 
 666   // create result type (range)
 667   fields = TypeTuple::fields(0);
 668   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 669   return TypeFunc::make(domain, range);
 670 }
 671 
 672 const TypeFunc* OptoRuntime::flush_windows_Type() {
 673   // create input type (domain)
 674   const Type** fields = TypeTuple::fields(1);
 675   fields[TypeFunc::Parms+0] = NULL; // void
 676   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 677 
 678   // create result type
 679   fields = TypeTuple::fields(1);
 680   fields[TypeFunc::Parms+0] = NULL; // void
 681   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 682 
 683   return TypeFunc::make(domain, range);
 684 }
 685 
 686 const TypeFunc* OptoRuntime::l2f_Type() {
 687   // create input type (domain)
 688   const Type **fields = TypeTuple::fields(2);
 689   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 690   fields[TypeFunc::Parms+1] = Type::HALF;
 691   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 692 
 693   // create result type (range)
 694   fields = TypeTuple::fields(1);
 695   fields[TypeFunc::Parms+0] = Type::FLOAT;
 696   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 697 
 698   return TypeFunc::make(domain, range);
 699 }
 700 
 701 const TypeFunc* OptoRuntime::modf_Type() {
 702   const Type **fields = TypeTuple::fields(2);
 703   fields[TypeFunc::Parms+0] = Type::FLOAT;
 704   fields[TypeFunc::Parms+1] = Type::FLOAT;
 705   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 706 
 707   // create result type (range)
 708   fields = TypeTuple::fields(1);
 709   fields[TypeFunc::Parms+0] = Type::FLOAT;
 710 
 711   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 712 
 713   return TypeFunc::make(domain, range);
 714 }
 715 
 716 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 717   // create input type (domain)
 718   const Type **fields = TypeTuple::fields(2);
 719   // Symbol* name of class to be loaded
 720   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 721   fields[TypeFunc::Parms+1] = Type::HALF;
 722   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 723 
 724   // create result type (range)
 725   fields = TypeTuple::fields(2);
 726   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 727   fields[TypeFunc::Parms+1] = Type::HALF;
 728   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 729 
 730   return TypeFunc::make(domain, range);
 731 }
 732 
 733 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 734   const Type **fields = TypeTuple::fields(4);
 735   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 736   fields[TypeFunc::Parms+1] = Type::HALF;
 737   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 738   fields[TypeFunc::Parms+3] = Type::HALF;
 739   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 740 
 741   // create result type (range)
 742   fields = TypeTuple::fields(2);
 743   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 744   fields[TypeFunc::Parms+1] = Type::HALF;
 745   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 746 
 747   return TypeFunc::make(domain, range);
 748 }
 749 
 750 //-------------- currentTimeMillis, currentTimeNanos, etc
 751 
 752 const TypeFunc* OptoRuntime::void_long_Type() {
 753   // create input type (domain)
 754   const Type **fields = TypeTuple::fields(0);
 755   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 756 
 757   // create result type (range)
 758   fields = TypeTuple::fields(2);
 759   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 760   fields[TypeFunc::Parms+1] = Type::HALF;
 761   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 762 
 763   return TypeFunc::make(domain, range);
 764 }
 765 
 766 // arraycopy stub variations:
 767 enum ArrayCopyType {
 768   ac_fast,                      // void(ptr, ptr, size_t)
 769   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 770   ac_slow,                      // void(ptr, int, ptr, int, int)
 771   ac_generic                    //  int(ptr, int, ptr, int, int)
 772 };
 773 
 774 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 775   // create input type (domain)
 776   int num_args      = (act == ac_fast ? 3 : 5);
 777   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 778   int argcnt = num_args;
 779   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 780   const Type** fields = TypeTuple::fields(argcnt);
 781   int argp = TypeFunc::Parms;
 782   fields[argp++] = TypePtr::NOTNULL;    // src
 783   if (num_size_args == 0) {
 784     fields[argp++] = TypeInt::INT;      // src_pos
 785   }
 786   fields[argp++] = TypePtr::NOTNULL;    // dest
 787   if (num_size_args == 0) {
 788     fields[argp++] = TypeInt::INT;      // dest_pos
 789     fields[argp++] = TypeInt::INT;      // length
 790   }
 791   while (num_size_args-- > 0) {
 792     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 793     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 794   }
 795   if (act == ac_checkcast) {
 796     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 797   }
 798   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 799   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 800 
 801   // create result type if needed
 802   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 803   fields = TypeTuple::fields(1);
 804   if (retcnt == 0)
 805     fields[TypeFunc::Parms+0] = NULL; // void
 806   else
 807     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 808   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 809   return TypeFunc::make(domain, range);
 810 }
 811 
 812 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 813   // This signature is simple:  Two base pointers and a size_t.
 814   return make_arraycopy_Type(ac_fast);
 815 }
 816 
 817 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 818   // An extension of fast_arraycopy_Type which adds type checking.
 819   return make_arraycopy_Type(ac_checkcast);
 820 }
 821 
 822 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 823   // This signature is exactly the same as System.arraycopy.
 824   // There are no intptr_t (int/long) arguments.
 825   return make_arraycopy_Type(ac_slow);
 826 }
 827 
 828 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 829   // This signature is like System.arraycopy, except that it returns status.
 830   return make_arraycopy_Type(ac_generic);
 831 }
 832 
 833 
 834 const TypeFunc* OptoRuntime::array_fill_Type() {
 835   const Type** fields;
 836   int argp = TypeFunc::Parms;
 837   if (CCallingConventionRequiresIntsAsLongs) {
 838   // create input type (domain): pointer, int, size_t
 839     fields = TypeTuple::fields(3 LP64_ONLY( + 2));
 840     fields[argp++] = TypePtr::NOTNULL;
 841     fields[argp++] = TypeLong::LONG;
 842     fields[argp++] = Type::HALF;
 843   } else {
 844     // create input type (domain): pointer, int, size_t
 845     fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 846     fields[argp++] = TypePtr::NOTNULL;
 847     fields[argp++] = TypeInt::INT;
 848   }
 849   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 850   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 851   const TypeTuple *domain = TypeTuple::make(argp, fields);
 852 
 853   // create result type
 854   fields = TypeTuple::fields(1);
 855   fields[TypeFunc::Parms+0] = NULL; // void
 856   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 857 
 858   return TypeFunc::make(domain, range);
 859 }
 860 
 861 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 862 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 863   // create input type (domain)
 864   int num_args      = 3;
 865   if (Matcher::pass_original_key_for_aes()) {
 866     num_args = 4;
 867   }
 868   int argcnt = num_args;
 869   const Type** fields = TypeTuple::fields(argcnt);
 870   int argp = TypeFunc::Parms;
 871   fields[argp++] = TypePtr::NOTNULL;    // src
 872   fields[argp++] = TypePtr::NOTNULL;    // dest
 873   fields[argp++] = TypePtr::NOTNULL;    // k array
 874   if (Matcher::pass_original_key_for_aes()) {
 875     fields[argp++] = TypePtr::NOTNULL;    // original k array
 876   }
 877   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 878   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 879 
 880   // no result type needed
 881   fields = TypeTuple::fields(1);
 882   fields[TypeFunc::Parms+0] = NULL; // void
 883   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 884   return TypeFunc::make(domain, range);
 885 }
 886 
 887 /**
 888  * int updateBytesCRC32(int crc, byte* b, int len)
 889  */
 890 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 891   // create input type (domain)
 892   int num_args      = 3;
 893   int argcnt = num_args;
 894   const Type** fields = TypeTuple::fields(argcnt);
 895   int argp = TypeFunc::Parms;
 896   fields[argp++] = TypeInt::INT;        // crc
 897   fields[argp++] = TypePtr::NOTNULL;    // src
 898   fields[argp++] = TypeInt::INT;        // len
 899   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 900   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 901 
 902   // result type needed
 903   fields = TypeTuple::fields(1);
 904   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 905   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 906   return TypeFunc::make(domain, range);
 907 }
 908 
 909 /**
 910  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
 911  */
 912 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
 913   // create input type (domain)
 914   int num_args      = 4;
 915   int argcnt = num_args;
 916   const Type** fields = TypeTuple::fields(argcnt);
 917   int argp = TypeFunc::Parms;
 918   fields[argp++] = TypeInt::INT;        // crc
 919   fields[argp++] = TypePtr::NOTNULL;    // buf
 920   fields[argp++] = TypeInt::INT;        // len
 921   fields[argp++] = TypePtr::NOTNULL;    // table
 922   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 923   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 924 
 925   // result type needed
 926   fields = TypeTuple::fields(1);
 927   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 928   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 929   return TypeFunc::make(domain, range);
 930 }
 931 
 932 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 933 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 934   // create input type (domain)
 935   int num_args      = 5;
 936   if (Matcher::pass_original_key_for_aes()) {
 937     num_args = 6;
 938   }
 939   int argcnt = num_args;
 940   const Type** fields = TypeTuple::fields(argcnt);
 941   int argp = TypeFunc::Parms;
 942   fields[argp++] = TypePtr::NOTNULL;    // src
 943   fields[argp++] = TypePtr::NOTNULL;    // dest
 944   fields[argp++] = TypePtr::NOTNULL;    // k array
 945   fields[argp++] = TypePtr::NOTNULL;    // r array
 946   fields[argp++] = TypeInt::INT;        // src len
 947   if (Matcher::pass_original_key_for_aes()) {
 948     fields[argp++] = TypePtr::NOTNULL;    // original k array
 949   }
 950   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 951   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 952 
 953   // returning cipher len (int)
 954   fields = TypeTuple::fields(1);
 955   fields[TypeFunc::Parms+0] = TypeInt::INT;
 956   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 957   return TypeFunc::make(domain, range);
 958 }
 959 
 960 /*
 961  * void implCompress(byte[] buf, int ofs)
 962  */
 963 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
 964   // create input type (domain)
 965   int num_args = 2;
 966   int argcnt = num_args;
 967   const Type** fields = TypeTuple::fields(argcnt);
 968   int argp = TypeFunc::Parms;
 969   fields[argp++] = TypePtr::NOTNULL; // buf
 970   fields[argp++] = TypePtr::NOTNULL; // state
 971   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 972   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 973 
 974   // no result type needed
 975   fields = TypeTuple::fields(1);
 976   fields[TypeFunc::Parms+0] = NULL; // void
 977   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 978   return TypeFunc::make(domain, range);
 979 }
 980 
 981 /*
 982  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
 983  */
 984 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
 985   // create input type (domain)
 986   int num_args = 4;
 987   int argcnt = num_args;
 988   const Type** fields = TypeTuple::fields(argcnt);
 989   int argp = TypeFunc::Parms;
 990   fields[argp++] = TypePtr::NOTNULL; // buf
 991   fields[argp++] = TypePtr::NOTNULL; // state
 992   fields[argp++] = TypeInt::INT;     // ofs
 993   fields[argp++] = TypeInt::INT;     // limit
 994   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 995   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 996 
 997   // returning ofs (int)
 998   fields = TypeTuple::fields(1);
 999   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1000   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1001   return TypeFunc::make(domain, range);
1002 }
1003 
1004 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
1005   // create input type (domain)
1006   int num_args      = 6;
1007   int argcnt = num_args;
1008   const Type** fields = TypeTuple::fields(argcnt);
1009   int argp = TypeFunc::Parms;
1010   fields[argp++] = TypePtr::NOTNULL;    // x
1011   fields[argp++] = TypeInt::INT;        // xlen
1012   fields[argp++] = TypePtr::NOTNULL;    // y
1013   fields[argp++] = TypeInt::INT;        // ylen
1014   fields[argp++] = TypePtr::NOTNULL;    // z
1015   fields[argp++] = TypeInt::INT;        // zlen
1016   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1017   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1018 
1019   // no result type needed
1020   fields = TypeTuple::fields(1);
1021   fields[TypeFunc::Parms+0] = NULL;
1022   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1023   return TypeFunc::make(domain, range);
1024 }
1025 
1026 const TypeFunc* OptoRuntime::squareToLen_Type() {
1027   // create input type (domain)
1028   int num_args      = 4;
1029   int argcnt = num_args;
1030   const Type** fields = TypeTuple::fields(argcnt);
1031   int argp = TypeFunc::Parms;
1032   fields[argp++] = TypePtr::NOTNULL;    // x
1033   fields[argp++] = TypeInt::INT;        // len
1034   fields[argp++] = TypePtr::NOTNULL;    // z
1035   fields[argp++] = TypeInt::INT;        // zlen
1036   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1037   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1038 
1039   // no result type needed
1040   fields = TypeTuple::fields(1);
1041   fields[TypeFunc::Parms+0] = NULL;
1042   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1043   return TypeFunc::make(domain, range);
1044 }
1045 
1046 // for mulAdd calls, 2 pointers and 3 ints, returning int
1047 const TypeFunc* OptoRuntime::mulAdd_Type() {
1048   // create input type (domain)
1049   int num_args      = 5;
1050   int argcnt = num_args;
1051   const Type** fields = TypeTuple::fields(argcnt);
1052   int argp = TypeFunc::Parms;
1053   fields[argp++] = TypePtr::NOTNULL;    // out
1054   fields[argp++] = TypePtr::NOTNULL;    // in
1055   fields[argp++] = TypeInt::INT;        // offset
1056   fields[argp++] = TypeInt::INT;        // len
1057   fields[argp++] = TypeInt::INT;        // k
1058   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1059   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1060 
1061   // returning carry (int)
1062   fields = TypeTuple::fields(1);
1063   fields[TypeFunc::Parms+0] = TypeInt::INT;
1064   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1065   return TypeFunc::make(domain, range);
1066 }
1067 
1068 // GHASH block processing
1069 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1070     int argcnt = 4;
1071 
1072     const Type** fields = TypeTuple::fields(argcnt);
1073     int argp = TypeFunc::Parms;
1074     fields[argp++] = TypePtr::NOTNULL;    // state
1075     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1076     fields[argp++] = TypePtr::NOTNULL;    // data
1077     fields[argp++] = TypeInt::INT;        // blocks
1078     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1079     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1080 
1081     // result type needed
1082     fields = TypeTuple::fields(1);
1083     fields[TypeFunc::Parms+0] = NULL; // void
1084     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1085     return TypeFunc::make(domain, range);
1086 }
1087 
1088 //------------- Interpreter state access for on stack replacement
1089 const TypeFunc* OptoRuntime::osr_end_Type() {
1090   // create input type (domain)
1091   const Type **fields = TypeTuple::fields(1);
1092   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1093   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1094 
1095   // create result type
1096   fields = TypeTuple::fields(1);
1097   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1098   fields[TypeFunc::Parms+0] = NULL; // void
1099   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1100   return TypeFunc::make(domain, range);
1101 }
1102 
1103 //-------------- methodData update helpers
1104 
1105 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
1106   // create input type (domain)
1107   const Type **fields = TypeTuple::fields(2);
1108   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
1109   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
1110   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1111 
1112   // create result type
1113   fields = TypeTuple::fields(1);
1114   fields[TypeFunc::Parms+0] = NULL; // void
1115   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1116   return TypeFunc::make(domain,range);
1117 }
1118 
1119 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1120   if (receiver == NULL) return;
1121   Klass* receiver_klass = receiver->klass();
1122 
1123   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1124   int empty_row = -1;           // free row, if any is encountered
1125 
1126   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1127   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1128     // if (vc->receiver(row) == receiver_klass)
1129     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1130     intptr_t row_recv = *(mdp + receiver_off);
1131     if (row_recv == (intptr_t) receiver_klass) {
1132       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1133       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1134       *(mdp + count_off) += DataLayout::counter_increment;
1135       return;
1136     } else if (row_recv == 0) {
1137       // else if (vc->receiver(row) == NULL)
1138       empty_row = (int) row;
1139     }
1140   }
1141 
1142   if (empty_row != -1) {
1143     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1144     // vc->set_receiver(empty_row, receiver_klass);
1145     *(mdp + receiver_off) = (intptr_t) receiver_klass;
1146     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1147     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1148     *(mdp + count_off) = DataLayout::counter_increment;
1149   } else {
1150     // Receiver did not match any saved receiver and there is no empty row for it.
1151     // Increment total counter to indicate polymorphic case.
1152     intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
1153     *count_p += DataLayout::counter_increment;
1154   }
1155 JRT_END
1156 
1157 //-------------------------------------------------------------------------------------
1158 // register policy
1159 
1160 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1161   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1162   switch (register_save_policy[reg]) {
1163     case 'C': return false; //SOC
1164     case 'E': return true ; //SOE
1165     case 'N': return false; //NS
1166     case 'A': return false; //AS
1167   }
1168   ShouldNotReachHere();
1169   return false;
1170 }
1171 
1172 //-----------------------------------------------------------------------
1173 // Exceptions
1174 //
1175 
1176 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
1177 
1178 // The method is an entry that is always called by a C++ method not
1179 // directly from compiled code. Compiled code will call the C++ method following.
1180 // We can't allow async exception to be installed during  exception processing.
1181 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1182 
1183   // Do not confuse exception_oop with pending_exception. The exception_oop
1184   // is only used to pass arguments into the method. Not for general
1185   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1186   // the runtime stubs checks this on exit.
1187   assert(thread->exception_oop() != NULL, "exception oop is found");
1188   address handler_address = NULL;
1189 
1190   Handle exception(thread, thread->exception_oop());
1191   address pc = thread->exception_pc();
1192 
1193   // Clear out the exception oop and pc since looking up an
1194   // exception handler can cause class loading, which might throw an
1195   // exception and those fields are expected to be clear during
1196   // normal bytecode execution.
1197   thread->clear_exception_oop_and_pc();
1198 
1199   if (TraceExceptions) {
1200     trace_exception(exception(), pc, "");
1201   }
1202 
1203   // for AbortVMOnException flag
1204   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
1205 
1206 #ifdef ASSERT
1207   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1208     // should throw an exception here
1209     ShouldNotReachHere();
1210   }
1211 #endif
1212 
1213   // new exception handling: this method is entered only from adapters
1214   // exceptions from compiled java methods are handled in compiled code
1215   // using rethrow node
1216 
1217   nm = CodeCache::find_nmethod(pc);
1218   assert(nm != NULL, "No NMethod found");
1219   if (nm->is_native_method()) {
1220     fatal("Native method should not have path to exception handling");
1221   } else {
1222     // we are switching to old paradigm: search for exception handler in caller_frame
1223     // instead in exception handler of caller_frame.sender()
1224 
1225     if (JvmtiExport::can_post_on_exceptions()) {
1226       // "Full-speed catching" is not necessary here,
1227       // since we're notifying the VM on every catch.
1228       // Force deoptimization and the rest of the lookup
1229       // will be fine.
1230       deoptimize_caller_frame(thread);
1231     }
1232 
1233     // Check the stack guard pages.  If enabled, look for handler in this frame;
1234     // otherwise, forcibly unwind the frame.
1235     //
1236     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1237     bool force_unwind = !thread->reguard_stack();
1238     bool deopting = false;
1239     if (nm->is_deopt_pc(pc)) {
1240       deopting = true;
1241       RegisterMap map(thread, false);
1242       frame deoptee = thread->last_frame().sender(&map);
1243       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1244       // Adjust the pc back to the original throwing pc
1245       pc = deoptee.pc();
1246     }
1247 
1248     // If we are forcing an unwind because of stack overflow then deopt is
1249     // irrelevant since we are throwing the frame away anyway.
1250 
1251     if (deopting && !force_unwind) {
1252       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1253     } else {
1254 
1255       handler_address =
1256         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1257 
1258       if (handler_address == NULL) {
1259         Handle original_exception(thread, exception());
1260         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
1261         assert (handler_address != NULL, "must have compiled handler");
1262         // Update the exception cache only when the unwind was not forced
1263         // and there didn't happen another exception during the computation of the
1264         // compiled exception handler.
1265         if (!force_unwind && original_exception() == exception()) {
1266           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1267         }
1268       } else {
1269         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
1270       }
1271     }
1272 
1273     thread->set_exception_pc(pc);
1274     thread->set_exception_handler_pc(handler_address);
1275 
1276     // Check if the exception PC is a MethodHandle call site.
1277     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1278   }
1279 
1280   // Restore correct return pc.  Was saved above.
1281   thread->set_exception_oop(exception());
1282   return handler_address;
1283 
1284 JRT_END
1285 
1286 // We are entering here from exception_blob
1287 // If there is a compiled exception handler in this method, we will continue there;
1288 // otherwise we will unwind the stack and continue at the caller of top frame method
1289 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1290 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1291 // we looked up the handler for has been deoptimized in the meantime. If it has been
1292 // we must not use the handler and instead return the deopt blob.
1293 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1294 //
1295 // We are in Java not VM and in debug mode we have a NoHandleMark
1296 //
1297 #ifndef PRODUCT
1298   SharedRuntime::_find_handler_ctr++;          // find exception handler
1299 #endif
1300   debug_only(NoHandleMark __hm;)
1301   nmethod* nm = NULL;
1302   address handler_address = NULL;
1303   {
1304     // Enter the VM
1305 
1306     ResetNoHandleMark rnhm;
1307     handler_address = handle_exception_C_helper(thread, nm);
1308   }
1309 
1310   // Back in java: Use no oops, DON'T safepoint
1311 
1312   // Now check to see if the handler we are returning is in a now
1313   // deoptimized frame
1314 
1315   if (nm != NULL) {
1316     RegisterMap map(thread, false);
1317     frame caller = thread->last_frame().sender(&map);
1318 #ifdef ASSERT
1319     assert(caller.is_compiled_frame(), "must be");
1320 #endif // ASSERT
1321     if (caller.is_deoptimized_frame()) {
1322       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1323     }
1324   }
1325   return handler_address;
1326 }
1327 
1328 //------------------------------rethrow----------------------------------------
1329 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1330 // is either throwing or rethrowing an exception.  The callee-save registers
1331 // have been restored, synchronized objects have been unlocked and the callee
1332 // stack frame has been removed.  The return address was passed in.
1333 // Exception oop is passed as the 1st argument.  This routine is then called
1334 // from the stub.  On exit, we know where to jump in the caller's code.
1335 // After this C code exits, the stub will pop his frame and end in a jump
1336 // (instead of a return).  We enter the caller's default handler.
1337 //
1338 // This must be JRT_LEAF:
1339 //     - caller will not change its state as we cannot block on exit,
1340 //       therefore raw_exception_handler_for_return_address is all it takes
1341 //       to handle deoptimized blobs
1342 //
1343 // However, there needs to be a safepoint check in the middle!  So compiled
1344 // safepoints are completely watertight.
1345 //
1346 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1347 //
1348 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1349 //
1350 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1351 #ifndef PRODUCT
1352   SharedRuntime::_rethrow_ctr++;               // count rethrows
1353 #endif
1354   assert (exception != NULL, "should have thrown a NULLPointerException");
1355 #ifdef ASSERT
1356   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1357     // should throw an exception here
1358     ShouldNotReachHere();
1359   }
1360 #endif
1361 
1362   thread->set_vm_result(exception);
1363   // Frame not compiled (handles deoptimization blob)
1364   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1365 }
1366 
1367 
1368 const TypeFunc *OptoRuntime::rethrow_Type() {
1369   // create input type (domain)
1370   const Type **fields = TypeTuple::fields(1);
1371   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1372   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1373 
1374   // create result type (range)
1375   fields = TypeTuple::fields(1);
1376   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1377   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1378 
1379   return TypeFunc::make(domain, range);
1380 }
1381 
1382 
1383 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1384   // Deoptimize the caller before continuing, as the compiled
1385   // exception handler table may not be valid.
1386   if (!StressCompiledExceptionHandlers && doit) {
1387     deoptimize_caller_frame(thread);
1388   }
1389 }
1390 
1391 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1392   // Called from within the owner thread, so no need for safepoint
1393   RegisterMap reg_map(thread);
1394   frame stub_frame = thread->last_frame();
1395   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1396   frame caller_frame = stub_frame.sender(&reg_map);
1397 
1398   // Deoptimize the caller frame.
1399   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1400 }
1401 
1402 
1403 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1404   // Called from within the owner thread, so no need for safepoint
1405   RegisterMap reg_map(thread);
1406   frame stub_frame = thread->last_frame();
1407   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1408   frame caller_frame = stub_frame.sender(&reg_map);
1409   return caller_frame.is_deoptimized_frame();
1410 }
1411 
1412 
1413 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1414   // create input type (domain)
1415   const Type **fields = TypeTuple::fields(1);
1416   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1417   // // The JavaThread* is passed to each routine as the last argument
1418   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1419   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1420 
1421   // create result type (range)
1422   fields = TypeTuple::fields(0);
1423 
1424   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1425 
1426   return TypeFunc::make(domain,range);
1427 }
1428 
1429 
1430 //-----------------------------------------------------------------------------
1431 // Dtrace support.  entry and exit probes have the same signature
1432 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1433   // create input type (domain)
1434   const Type **fields = TypeTuple::fields(2);
1435   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1436   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1437   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1438 
1439   // create result type (range)
1440   fields = TypeTuple::fields(0);
1441 
1442   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1443 
1444   return TypeFunc::make(domain,range);
1445 }
1446 
1447 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1448   // create input type (domain)
1449   const Type **fields = TypeTuple::fields(2);
1450   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1451   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1452 
1453   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1454 
1455   // create result type (range)
1456   fields = TypeTuple::fields(0);
1457 
1458   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1459 
1460   return TypeFunc::make(domain,range);
1461 }
1462 
1463 
1464 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1465   assert(obj->is_oop(), "must be a valid oop");
1466   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1467   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1468 JRT_END
1469 
1470 //-----------------------------------------------------------------------------
1471 
1472 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1473 
1474 //
1475 // dump the collected NamedCounters.
1476 //
1477 void OptoRuntime::print_named_counters() {
1478   int total_lock_count = 0;
1479   int eliminated_lock_count = 0;
1480 
1481   NamedCounter* c = _named_counters;
1482   while (c) {
1483     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1484       int count = c->count();
1485       if (count > 0) {
1486         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1487         if (Verbose) {
1488           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1489         }
1490         total_lock_count += count;
1491         if (eliminated) {
1492           eliminated_lock_count += count;
1493         }
1494       }
1495     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1496       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1497       if (blc->nonzero()) {
1498         tty->print_cr("%s", c->name());
1499         blc->print_on(tty);
1500       }
1501 #if INCLUDE_RTM_OPT
1502     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1503       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1504       if (rlc->nonzero()) {
1505         tty->print_cr("%s", c->name());
1506         rlc->print_on(tty);
1507       }
1508 #endif
1509     }
1510     c = c->next();
1511   }
1512   if (total_lock_count > 0) {
1513     tty->print_cr("dynamic locks: %d", total_lock_count);
1514     if (eliminated_lock_count) {
1515       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1516                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1517     }
1518   }
1519 }
1520 
1521 //
1522 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1523 //  name which consists of method@line for the inlining tree.
1524 //
1525 
1526 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1527   int max_depth = youngest_jvms->depth();
1528 
1529   // Visit scopes from youngest to oldest.
1530   bool first = true;
1531   stringStream st;
1532   for (int depth = max_depth; depth >= 1; depth--) {
1533     JVMState* jvms = youngest_jvms->of_depth(depth);
1534     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1535     if (!first) {
1536       st.print(" ");
1537     } else {
1538       first = false;
1539     }
1540     int bci = jvms->bci();
1541     if (bci < 0) bci = 0;
1542     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1543     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1544   }
1545   NamedCounter* c;
1546   if (tag == NamedCounter::BiasedLockingCounter) {
1547     c = new BiasedLockingNamedCounter(st.as_string());
1548   } else if (tag == NamedCounter::RTMLockingCounter) {
1549     c = new RTMLockingNamedCounter(st.as_string());
1550   } else {
1551     c = new NamedCounter(st.as_string(), tag);
1552   }
1553 
1554   // atomically add the new counter to the head of the list.  We only
1555   // add counters so this is safe.
1556   NamedCounter* head;
1557   do {
1558     c->set_next(NULL);
1559     head = _named_counters;
1560     c->set_next(head);
1561   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1562   return c;
1563 }
1564 
1565 //-----------------------------------------------------------------------------
1566 // Non-product code
1567 #ifndef PRODUCT
1568 
1569 int trace_exception_counter = 0;
1570 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1571   ttyLocker ttyl;
1572   trace_exception_counter++;
1573   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1574   exception_oop->print_value();
1575   tty->print(" in ");
1576   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1577   if (blob->is_nmethod()) {
1578     nmethod* nm = blob->as_nmethod_or_null();
1579     nm->method()->print_value();
1580   } else if (blob->is_runtime_stub()) {
1581     tty->print("<runtime-stub>");
1582   } else {
1583     tty->print("<unknown>");
1584   }
1585   tty->print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1586   tty->print_cr("]");
1587 }
1588 
1589 #endif  // PRODUCT
1590 
1591 
1592 # ifdef ENABLE_ZAP_DEAD_LOCALS
1593 // Called from call sites in compiled code with oop maps (actually safepoints)
1594 // Zaps dead locals in first java frame.
1595 // Is entry because may need to lock to generate oop maps
1596 // Currently, only used for compiler frames, but someday may be used
1597 // for interpreter frames, too.
1598 
1599 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
1600 
1601 // avoid pointers to member funcs with these helpers
1602 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
1603 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
1604 
1605 
1606 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
1607                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
1608   assert(JavaThread::current() == thread, "is this needed?");
1609 
1610   if ( !ZapDeadCompiledLocals )  return;
1611 
1612   bool skip = false;
1613 
1614        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
1615   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
1616   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
1617     warning("starting zapping after skipping");
1618 
1619        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
1620   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
1621   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
1622     warning("about to zap last zap");
1623 
1624   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
1625 
1626   if ( skip )  return;
1627 
1628   // find java frame and zap it
1629 
1630   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
1631     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
1632       sfs.current()->zap_dead_locals(thread, sfs.register_map());
1633       return;
1634     }
1635   }
1636   warning("no frame found to zap in zap_dead_Java_locals_C");
1637 }
1638 
1639 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
1640   zap_dead_java_or_native_locals(thread, is_java_frame);
1641 JRT_END
1642 
1643 // The following does not work because for one thing, the
1644 // thread state is wrong; it expects java, but it is native.
1645 // Also, the invariants in a native stub are different and
1646 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
1647 // in there.
1648 // So for now, we do not zap in native stubs.
1649 
1650 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
1651   zap_dead_java_or_native_locals(thread, is_native_frame);
1652 JRT_END
1653 
1654 # endif
--- EOF ---