1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/codeCacheExtensions.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "gc/shared/gcLocker.inline.hpp"
  35 #include "gc/shared/workgroup.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "interpreter/linkResolver.hpp"
  38 #include "interpreter/oopMapCache.hpp"
  39 #include "jvmtifiles/jvmtiEnv.hpp"
  40 #include "memory/metaspaceShared.hpp"
  41 #include "memory/oopFactory.hpp"
  42 #include "memory/universe.inline.hpp"
  43 #include "oops/instanceKlass.hpp"
  44 #include "oops/objArrayOop.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "oops/symbol.hpp"
  47 #include "oops/verifyOopClosure.hpp"
  48 #include "prims/jvm_misc.hpp"
  49 #include "prims/jvmtiExport.hpp"
  50 #include "prims/jvmtiThreadState.hpp"
  51 #include "prims/privilegedStack.hpp"
  52 #include "runtime/arguments.hpp"
  53 #include "runtime/atomic.inline.hpp"
  54 #include "runtime/biasedLocking.hpp"
  55 #include "runtime/deoptimization.hpp"
  56 #include "runtime/fprofiler.hpp"
  57 #include "runtime/frame.inline.hpp"
  58 #include "runtime/globals.hpp"
  59 #include "runtime/init.hpp"
  60 #include "runtime/interfaceSupport.hpp"
  61 #include "runtime/java.hpp"
  62 #include "runtime/javaCalls.hpp"
  63 #include "runtime/jniPeriodicChecker.hpp"
  64 #include "runtime/memprofiler.hpp"
  65 #include "runtime/mutexLocker.hpp"
  66 #include "runtime/objectMonitor.hpp"
  67 #include "runtime/orderAccess.inline.hpp"
  68 #include "runtime/osThread.hpp"
  69 #include "runtime/safepoint.hpp"
  70 #include "runtime/sharedRuntime.hpp"
  71 #include "runtime/statSampler.hpp"
  72 #include "runtime/stubRoutines.hpp"
  73 #include "runtime/sweeper.hpp"
  74 #include "runtime/task.hpp"
  75 #include "runtime/thread.inline.hpp"
  76 #include "runtime/threadCritical.hpp"
  77 #include "runtime/threadLocalStorage.hpp"
  78 #include "runtime/vframe.hpp"
  79 #include "runtime/vframeArray.hpp"
  80 #include "runtime/vframe_hp.hpp"
  81 #include "runtime/vmThread.hpp"
  82 #include "runtime/vm_operations.hpp"
  83 #include "runtime/vm_version.hpp"
  84 #include "services/attachListener.hpp"
  85 #include "services/management.hpp"
  86 #include "services/memTracker.hpp"
  87 #include "services/threadService.hpp"
  88 #include "trace/traceMacros.hpp"
  89 #include "trace/tracing.hpp"
  90 #include "utilities/defaultStream.hpp"
  91 #include "utilities/dtrace.hpp"
  92 #include "utilities/events.hpp"
  93 #include "utilities/macros.hpp"
  94 #include "utilities/preserveException.hpp"
  95 #if INCLUDE_ALL_GCS
  96 #include "gc/cms/concurrentMarkSweepThread.hpp"
  97 #include "gc/g1/concurrentMarkThread.inline.hpp"
  98 #include "gc/parallel/pcTasks.hpp"
  99 #endif // INCLUDE_ALL_GCS
 100 #ifdef COMPILER1
 101 #include "c1/c1_Compiler.hpp"
 102 #endif
 103 #ifdef COMPILER2
 104 #include "opto/c2compiler.hpp"
 105 #include "opto/idealGraphPrinter.hpp"
 106 #endif
 107 #if INCLUDE_RTM_OPT
 108 #include "runtime/rtmLocking.hpp"
 109 #endif
 110 
 111 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 112 
 113 #ifdef DTRACE_ENABLED
 114 
 115 // Only bother with this argument setup if dtrace is available
 116 
 117   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 118   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 119 
 120   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 121     {                                                                      \
 122       ResourceMark rm(this);                                               \
 123       int len = 0;                                                         \
 124       const char* name = (javathread)->get_thread_name();                  \
 125       len = strlen(name);                                                  \
 126       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 127         (char *) name, len,                                                \
 128         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 129         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 130         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 131     }
 132 
 133 #else //  ndef DTRACE_ENABLED
 134 
 135   #define DTRACE_THREAD_PROBE(probe, javathread)
 136 
 137 #endif // ndef DTRACE_ENABLED
 138 
 139 
 140 // Class hierarchy
 141 // - Thread
 142 //   - VMThread
 143 //   - WatcherThread
 144 //   - ConcurrentMarkSweepThread
 145 //   - JavaThread
 146 //     - CompilerThread
 147 
 148 // ======= Thread ========
 149 // Support for forcing alignment of thread objects for biased locking
 150 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 151   if (UseBiasedLocking) {
 152     const int alignment = markOopDesc::biased_lock_alignment;
 153     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 154     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 155                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 156                                                          AllocFailStrategy::RETURN_NULL);
 157     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 158     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 159            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 160            "JavaThread alignment code overflowed allocated storage");
 161     if (TraceBiasedLocking) {
 162       if (aligned_addr != real_malloc_addr) {
 163         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 164                       real_malloc_addr, aligned_addr);
 165       }
 166     }
 167     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 168     return aligned_addr;
 169   } else {
 170     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 171                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 172   }
 173 }
 174 
 175 void Thread::operator delete(void* p) {
 176   if (UseBiasedLocking) {
 177     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 178     FreeHeap(real_malloc_addr);
 179   } else {
 180     FreeHeap(p);
 181   }
 182 }
 183 
 184 
 185 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 186 // JavaThread
 187 
 188 
 189 Thread::Thread() {
 190   // stack and get_thread
 191   set_stack_base(NULL);
 192   set_stack_size(0);
 193   set_self_raw_id(0);
 194   set_lgrp_id(-1);
 195   DEBUG_ONLY(clear_suspendible_thread();)
 196 
 197   // allocated data structures
 198   set_osthread(NULL);
 199   set_resource_area(new (mtThread)ResourceArea());
 200   DEBUG_ONLY(_current_resource_mark = NULL;)
 201   set_handle_area(new (mtThread) HandleArea(NULL));
 202   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 203   set_active_handles(NULL);
 204   set_free_handle_block(NULL);
 205   set_last_handle_mark(NULL);
 206 
 207   // This initial value ==> never claimed.
 208   _oops_do_parity = 0;
 209 
 210   // the handle mark links itself to last_handle_mark
 211   new HandleMark(this);
 212 
 213   // plain initialization
 214   debug_only(_owned_locks = NULL;)
 215   debug_only(_allow_allocation_count = 0;)
 216   NOT_PRODUCT(_allow_safepoint_count = 0;)
 217   NOT_PRODUCT(_skip_gcalot = false;)
 218   _jvmti_env_iteration_count = 0;
 219   set_allocated_bytes(0);
 220   _vm_operation_started_count = 0;
 221   _vm_operation_completed_count = 0;
 222   _current_pending_monitor = NULL;
 223   _current_pending_monitor_is_from_java = true;
 224   _current_waiting_monitor = NULL;
 225   _num_nested_signal = 0;
 226   omFreeList = NULL;
 227   omFreeCount = 0;
 228   omFreeProvision = 32;
 229   omInUseList = NULL;
 230   omInUseCount = 0;
 231 
 232 #ifdef ASSERT
 233   _visited_for_critical_count = false;
 234 #endif
 235 
 236   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 237                          Monitor::_safepoint_check_sometimes);
 238   _suspend_flags = 0;
 239 
 240   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 241   _hashStateX = os::random();
 242   _hashStateY = 842502087;
 243   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 244   _hashStateW = 273326509;
 245 
 246   _OnTrap   = 0;
 247   _schedctl = NULL;
 248   _Stalled  = 0;
 249   _TypeTag  = 0x2BAD;
 250 
 251   // Many of the following fields are effectively final - immutable
 252   // Note that nascent threads can't use the Native Monitor-Mutex
 253   // construct until the _MutexEvent is initialized ...
 254   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 255   // we might instead use a stack of ParkEvents that we could provision on-demand.
 256   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 257   // and ::Release()
 258   _ParkEvent   = ParkEvent::Allocate(this);
 259   _SleepEvent  = ParkEvent::Allocate(this);
 260   _MutexEvent  = ParkEvent::Allocate(this);
 261   _MuxEvent    = ParkEvent::Allocate(this);
 262 
 263 #ifdef CHECK_UNHANDLED_OOPS
 264   if (CheckUnhandledOops) {
 265     _unhandled_oops = new UnhandledOops(this);
 266   }
 267 #endif // CHECK_UNHANDLED_OOPS
 268 #ifdef ASSERT
 269   if (UseBiasedLocking) {
 270     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 271     assert(this == _real_malloc_address ||
 272            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 273            "bug in forced alignment of thread objects");
 274   }
 275 #endif // ASSERT
 276 }
 277 
 278 // Non-inlined version to be used where thread.inline.hpp shouldn't be included.
 279 Thread* Thread::current_noinline() {
 280   return Thread::current();
 281 }
 282 
 283 void Thread::initialize_thread_local_storage() {
 284   // Note: Make sure this method only calls
 285   // non-blocking operations. Otherwise, it might not work
 286   // with the thread-startup/safepoint interaction.
 287 
 288   // During Java thread startup, safepoint code should allow this
 289   // method to complete because it may need to allocate memory to
 290   // store information for the new thread.
 291 
 292   // initialize structure dependent on thread local storage
 293   ThreadLocalStorage::set_thread(this);
 294 }
 295 
 296 void Thread::record_stack_base_and_size() {
 297   set_stack_base(os::current_stack_base());
 298   set_stack_size(os::current_stack_size());
 299   if (is_Java_thread()) {
 300     ((JavaThread*) this)->set_stack_overflow_limit();
 301   }
 302   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 303   // in initialize_thread(). Without the adjustment, stack size is
 304   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 305   // So far, only Solaris has real implementation of initialize_thread().
 306   //
 307   // set up any platform-specific state.
 308   os::initialize_thread(this);
 309 
 310 #if INCLUDE_NMT
 311   // record thread's native stack, stack grows downward
 312   address stack_low_addr = stack_base() - stack_size();
 313   MemTracker::record_thread_stack(stack_low_addr, stack_size());
 314 #endif // INCLUDE_NMT
 315 }
 316 
 317 
 318 Thread::~Thread() {
 319   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 320   ObjectSynchronizer::omFlush(this);
 321 
 322   EVENT_THREAD_DESTRUCT(this);
 323 
 324   // stack_base can be NULL if the thread is never started or exited before
 325   // record_stack_base_and_size called. Although, we would like to ensure
 326   // that all started threads do call record_stack_base_and_size(), there is
 327   // not proper way to enforce that.
 328 #if INCLUDE_NMT
 329   if (_stack_base != NULL) {
 330     address low_stack_addr = stack_base() - stack_size();
 331     MemTracker::release_thread_stack(low_stack_addr, stack_size());
 332 #ifdef ASSERT
 333     set_stack_base(NULL);
 334 #endif
 335   }
 336 #endif // INCLUDE_NMT
 337 
 338   // deallocate data structures
 339   delete resource_area();
 340   // since the handle marks are using the handle area, we have to deallocated the root
 341   // handle mark before deallocating the thread's handle area,
 342   assert(last_handle_mark() != NULL, "check we have an element");
 343   delete last_handle_mark();
 344   assert(last_handle_mark() == NULL, "check we have reached the end");
 345 
 346   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 347   // We NULL out the fields for good hygiene.
 348   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 349   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 350   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 351   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 352 
 353   delete handle_area();
 354   delete metadata_handles();
 355 
 356   // osthread() can be NULL, if creation of thread failed.
 357   if (osthread() != NULL) os::free_thread(osthread());
 358 
 359   delete _SR_lock;
 360 
 361   // clear thread local storage if the Thread is deleting itself
 362   if (this == Thread::current()) {
 363     ThreadLocalStorage::set_thread(NULL);
 364   } else {
 365     // In the case where we're not the current thread, invalidate all the
 366     // caches in case some code tries to get the current thread or the
 367     // thread that was destroyed, and gets stale information.
 368     ThreadLocalStorage::invalidate_all();
 369   }
 370   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 371 }
 372 
 373 // NOTE: dummy function for assertion purpose.
 374 void Thread::run() {
 375   ShouldNotReachHere();
 376 }
 377 
 378 #ifdef ASSERT
 379 // Private method to check for dangling thread pointer
 380 void check_for_dangling_thread_pointer(Thread *thread) {
 381   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 382          "possibility of dangling Thread pointer");
 383 }
 384 #endif
 385 
 386 ThreadPriority Thread::get_priority(const Thread* const thread) {
 387   ThreadPriority priority;
 388   // Can return an error!
 389   (void)os::get_priority(thread, priority);
 390   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 391   return priority;
 392 }
 393 
 394 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 395   debug_only(check_for_dangling_thread_pointer(thread);)
 396   // Can return an error!
 397   (void)os::set_priority(thread, priority);
 398 }
 399 
 400 
 401 void Thread::start(Thread* thread) {
 402   // Start is different from resume in that its safety is guaranteed by context or
 403   // being called from a Java method synchronized on the Thread object.
 404   if (!DisableStartThread) {
 405     if (thread->is_Java_thread()) {
 406       // Initialize the thread state to RUNNABLE before starting this thread.
 407       // Can not set it after the thread started because we do not know the
 408       // exact thread state at that time. It could be in MONITOR_WAIT or
 409       // in SLEEPING or some other state.
 410       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 411                                           java_lang_Thread::RUNNABLE);
 412     }
 413     os::start_thread(thread);
 414   }
 415 }
 416 
 417 // Enqueue a VM_Operation to do the job for us - sometime later
 418 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 419   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 420   VMThread::execute(vm_stop);
 421 }
 422 
 423 
 424 // Check if an external suspend request has completed (or has been
 425 // cancelled). Returns true if the thread is externally suspended and
 426 // false otherwise.
 427 //
 428 // The bits parameter returns information about the code path through
 429 // the routine. Useful for debugging:
 430 //
 431 // set in is_ext_suspend_completed():
 432 // 0x00000001 - routine was entered
 433 // 0x00000010 - routine return false at end
 434 // 0x00000100 - thread exited (return false)
 435 // 0x00000200 - suspend request cancelled (return false)
 436 // 0x00000400 - thread suspended (return true)
 437 // 0x00001000 - thread is in a suspend equivalent state (return true)
 438 // 0x00002000 - thread is native and walkable (return true)
 439 // 0x00004000 - thread is native_trans and walkable (needed retry)
 440 //
 441 // set in wait_for_ext_suspend_completion():
 442 // 0x00010000 - routine was entered
 443 // 0x00020000 - suspend request cancelled before loop (return false)
 444 // 0x00040000 - thread suspended before loop (return true)
 445 // 0x00080000 - suspend request cancelled in loop (return false)
 446 // 0x00100000 - thread suspended in loop (return true)
 447 // 0x00200000 - suspend not completed during retry loop (return false)
 448 
 449 // Helper class for tracing suspend wait debug bits.
 450 //
 451 // 0x00000100 indicates that the target thread exited before it could
 452 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 453 // 0x00080000 each indicate a cancelled suspend request so they don't
 454 // count as wait failures either.
 455 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 456 
 457 class TraceSuspendDebugBits : public StackObj {
 458  private:
 459   JavaThread * jt;
 460   bool         is_wait;
 461   bool         called_by_wait;  // meaningful when !is_wait
 462   uint32_t *   bits;
 463 
 464  public:
 465   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 466                         uint32_t *_bits) {
 467     jt             = _jt;
 468     is_wait        = _is_wait;
 469     called_by_wait = _called_by_wait;
 470     bits           = _bits;
 471   }
 472 
 473   ~TraceSuspendDebugBits() {
 474     if (!is_wait) {
 475 #if 1
 476       // By default, don't trace bits for is_ext_suspend_completed() calls.
 477       // That trace is very chatty.
 478       return;
 479 #else
 480       if (!called_by_wait) {
 481         // If tracing for is_ext_suspend_completed() is enabled, then only
 482         // trace calls to it from wait_for_ext_suspend_completion()
 483         return;
 484       }
 485 #endif
 486     }
 487 
 488     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 489       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 490         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 491         ResourceMark rm;
 492 
 493         tty->print_cr(
 494                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 495                       jt->get_thread_name(), *bits);
 496 
 497         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 498       }
 499     }
 500   }
 501 };
 502 #undef DEBUG_FALSE_BITS
 503 
 504 
 505 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 506                                           uint32_t *bits) {
 507   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 508 
 509   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 510   bool do_trans_retry;           // flag to force the retry
 511 
 512   *bits |= 0x00000001;
 513 
 514   do {
 515     do_trans_retry = false;
 516 
 517     if (is_exiting()) {
 518       // Thread is in the process of exiting. This is always checked
 519       // first to reduce the risk of dereferencing a freed JavaThread.
 520       *bits |= 0x00000100;
 521       return false;
 522     }
 523 
 524     if (!is_external_suspend()) {
 525       // Suspend request is cancelled. This is always checked before
 526       // is_ext_suspended() to reduce the risk of a rogue resume
 527       // confusing the thread that made the suspend request.
 528       *bits |= 0x00000200;
 529       return false;
 530     }
 531 
 532     if (is_ext_suspended()) {
 533       // thread is suspended
 534       *bits |= 0x00000400;
 535       return true;
 536     }
 537 
 538     // Now that we no longer do hard suspends of threads running
 539     // native code, the target thread can be changing thread state
 540     // while we are in this routine:
 541     //
 542     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 543     //
 544     // We save a copy of the thread state as observed at this moment
 545     // and make our decision about suspend completeness based on the
 546     // copy. This closes the race where the thread state is seen as
 547     // _thread_in_native_trans in the if-thread_blocked check, but is
 548     // seen as _thread_blocked in if-thread_in_native_trans check.
 549     JavaThreadState save_state = thread_state();
 550 
 551     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 552       // If the thread's state is _thread_blocked and this blocking
 553       // condition is known to be equivalent to a suspend, then we can
 554       // consider the thread to be externally suspended. This means that
 555       // the code that sets _thread_blocked has been modified to do
 556       // self-suspension if the blocking condition releases. We also
 557       // used to check for CONDVAR_WAIT here, but that is now covered by
 558       // the _thread_blocked with self-suspension check.
 559       //
 560       // Return true since we wouldn't be here unless there was still an
 561       // external suspend request.
 562       *bits |= 0x00001000;
 563       return true;
 564     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 565       // Threads running native code will self-suspend on native==>VM/Java
 566       // transitions. If its stack is walkable (should always be the case
 567       // unless this function is called before the actual java_suspend()
 568       // call), then the wait is done.
 569       *bits |= 0x00002000;
 570       return true;
 571     } else if (!called_by_wait && !did_trans_retry &&
 572                save_state == _thread_in_native_trans &&
 573                frame_anchor()->walkable()) {
 574       // The thread is transitioning from thread_in_native to another
 575       // thread state. check_safepoint_and_suspend_for_native_trans()
 576       // will force the thread to self-suspend. If it hasn't gotten
 577       // there yet we may have caught the thread in-between the native
 578       // code check above and the self-suspend. Lucky us. If we were
 579       // called by wait_for_ext_suspend_completion(), then it
 580       // will be doing the retries so we don't have to.
 581       //
 582       // Since we use the saved thread state in the if-statement above,
 583       // there is a chance that the thread has already transitioned to
 584       // _thread_blocked by the time we get here. In that case, we will
 585       // make a single unnecessary pass through the logic below. This
 586       // doesn't hurt anything since we still do the trans retry.
 587 
 588       *bits |= 0x00004000;
 589 
 590       // Once the thread leaves thread_in_native_trans for another
 591       // thread state, we break out of this retry loop. We shouldn't
 592       // need this flag to prevent us from getting back here, but
 593       // sometimes paranoia is good.
 594       did_trans_retry = true;
 595 
 596       // We wait for the thread to transition to a more usable state.
 597       for (int i = 1; i <= SuspendRetryCount; i++) {
 598         // We used to do an "os::yield_all(i)" call here with the intention
 599         // that yielding would increase on each retry. However, the parameter
 600         // is ignored on Linux which means the yield didn't scale up. Waiting
 601         // on the SR_lock below provides a much more predictable scale up for
 602         // the delay. It also provides a simple/direct point to check for any
 603         // safepoint requests from the VMThread
 604 
 605         // temporarily drops SR_lock while doing wait with safepoint check
 606         // (if we're a JavaThread - the WatcherThread can also call this)
 607         // and increase delay with each retry
 608         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 609 
 610         // check the actual thread state instead of what we saved above
 611         if (thread_state() != _thread_in_native_trans) {
 612           // the thread has transitioned to another thread state so
 613           // try all the checks (except this one) one more time.
 614           do_trans_retry = true;
 615           break;
 616         }
 617       } // end retry loop
 618 
 619 
 620     }
 621   } while (do_trans_retry);
 622 
 623   *bits |= 0x00000010;
 624   return false;
 625 }
 626 
 627 // Wait for an external suspend request to complete (or be cancelled).
 628 // Returns true if the thread is externally suspended and false otherwise.
 629 //
 630 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 631                                                  uint32_t *bits) {
 632   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 633                              false /* !called_by_wait */, bits);
 634 
 635   // local flag copies to minimize SR_lock hold time
 636   bool is_suspended;
 637   bool pending;
 638   uint32_t reset_bits;
 639 
 640   // set a marker so is_ext_suspend_completed() knows we are the caller
 641   *bits |= 0x00010000;
 642 
 643   // We use reset_bits to reinitialize the bits value at the top of
 644   // each retry loop. This allows the caller to make use of any
 645   // unused bits for their own marking purposes.
 646   reset_bits = *bits;
 647 
 648   {
 649     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 650     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 651                                             delay, bits);
 652     pending = is_external_suspend();
 653   }
 654   // must release SR_lock to allow suspension to complete
 655 
 656   if (!pending) {
 657     // A cancelled suspend request is the only false return from
 658     // is_ext_suspend_completed() that keeps us from entering the
 659     // retry loop.
 660     *bits |= 0x00020000;
 661     return false;
 662   }
 663 
 664   if (is_suspended) {
 665     *bits |= 0x00040000;
 666     return true;
 667   }
 668 
 669   for (int i = 1; i <= retries; i++) {
 670     *bits = reset_bits;  // reinit to only track last retry
 671 
 672     // We used to do an "os::yield_all(i)" call here with the intention
 673     // that yielding would increase on each retry. However, the parameter
 674     // is ignored on Linux which means the yield didn't scale up. Waiting
 675     // on the SR_lock below provides a much more predictable scale up for
 676     // the delay. It also provides a simple/direct point to check for any
 677     // safepoint requests from the VMThread
 678 
 679     {
 680       MutexLocker ml(SR_lock());
 681       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 682       // can also call this)  and increase delay with each retry
 683       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 684 
 685       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 686                                               delay, bits);
 687 
 688       // It is possible for the external suspend request to be cancelled
 689       // (by a resume) before the actual suspend operation is completed.
 690       // Refresh our local copy to see if we still need to wait.
 691       pending = is_external_suspend();
 692     }
 693 
 694     if (!pending) {
 695       // A cancelled suspend request is the only false return from
 696       // is_ext_suspend_completed() that keeps us from staying in the
 697       // retry loop.
 698       *bits |= 0x00080000;
 699       return false;
 700     }
 701 
 702     if (is_suspended) {
 703       *bits |= 0x00100000;
 704       return true;
 705     }
 706   } // end retry loop
 707 
 708   // thread did not suspend after all our retries
 709   *bits |= 0x00200000;
 710   return false;
 711 }
 712 
 713 #ifndef PRODUCT
 714 void JavaThread::record_jump(address target, address instr, const char* file,
 715                              int line) {
 716 
 717   // This should not need to be atomic as the only way for simultaneous
 718   // updates is via interrupts. Even then this should be rare or non-existent
 719   // and we don't care that much anyway.
 720 
 721   int index = _jmp_ring_index;
 722   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 723   _jmp_ring[index]._target = (intptr_t) target;
 724   _jmp_ring[index]._instruction = (intptr_t) instr;
 725   _jmp_ring[index]._file = file;
 726   _jmp_ring[index]._line = line;
 727 }
 728 #endif // PRODUCT
 729 
 730 // Called by flat profiler
 731 // Callers have already called wait_for_ext_suspend_completion
 732 // The assertion for that is currently too complex to put here:
 733 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 734   bool gotframe = false;
 735   // self suspension saves needed state.
 736   if (has_last_Java_frame() && _anchor.walkable()) {
 737     *_fr = pd_last_frame();
 738     gotframe = true;
 739   }
 740   return gotframe;
 741 }
 742 
 743 void Thread::interrupt(Thread* thread) {
 744   debug_only(check_for_dangling_thread_pointer(thread);)
 745   os::interrupt(thread);
 746 }
 747 
 748 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 749   debug_only(check_for_dangling_thread_pointer(thread);)
 750   // Note:  If clear_interrupted==false, this simply fetches and
 751   // returns the value of the field osthread()->interrupted().
 752   return os::is_interrupted(thread, clear_interrupted);
 753 }
 754 
 755 
 756 // GC Support
 757 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 758   jint thread_parity = _oops_do_parity;
 759   if (thread_parity != strong_roots_parity) {
 760     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 761     if (res == thread_parity) {
 762       return true;
 763     } else {
 764       guarantee(res == strong_roots_parity, "Or else what?");
 765       return false;
 766     }
 767   }
 768   return false;
 769 }
 770 
 771 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 772   active_handles()->oops_do(f);
 773   // Do oop for ThreadShadow
 774   f->do_oop((oop*)&_pending_exception);
 775   handle_area()->oops_do(f);
 776 }
 777 
 778 void Thread::nmethods_do(CodeBlobClosure* cf) {
 779   // no nmethods in a generic thread...
 780 }
 781 
 782 void Thread::metadata_handles_do(void f(Metadata*)) {
 783   // Only walk the Handles in Thread.
 784   if (metadata_handles() != NULL) {
 785     for (int i = 0; i< metadata_handles()->length(); i++) {
 786       f(metadata_handles()->at(i));
 787     }
 788   }
 789 }
 790 
 791 void Thread::print_on(outputStream* st) const {
 792   // get_priority assumes osthread initialized
 793   if (osthread() != NULL) {
 794     int os_prio;
 795     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 796       st->print("os_prio=%d ", os_prio);
 797     }
 798     st->print("tid=" INTPTR_FORMAT " ", this);
 799     ext().print_on(st);
 800     osthread()->print_on(st);
 801   }
 802   debug_only(if (WizardMode) print_owned_locks_on(st);)
 803 }
 804 
 805 // Thread::print_on_error() is called by fatal error handler. Don't use
 806 // any lock or allocate memory.
 807 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 808   if (is_VM_thread())                 st->print("VMThread");
 809   else if (is_Compiler_thread())      st->print("CompilerThread");
 810   else if (is_Java_thread())          st->print("JavaThread");
 811   else if (is_GC_task_thread())       st->print("GCTaskThread");
 812   else if (is_Watcher_thread())       st->print("WatcherThread");
 813   else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
 814   else                                st->print("Thread");
 815 
 816   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 817             _stack_base - _stack_size, _stack_base);
 818 
 819   if (osthread()) {
 820     st->print(" [id=%d]", osthread()->thread_id());
 821   }
 822 }
 823 
 824 #ifdef ASSERT
 825 void Thread::print_owned_locks_on(outputStream* st) const {
 826   Monitor *cur = _owned_locks;
 827   if (cur == NULL) {
 828     st->print(" (no locks) ");
 829   } else {
 830     st->print_cr(" Locks owned:");
 831     while (cur) {
 832       cur->print_on(st);
 833       cur = cur->next();
 834     }
 835   }
 836 }
 837 
 838 static int ref_use_count  = 0;
 839 
 840 bool Thread::owns_locks_but_compiled_lock() const {
 841   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 842     if (cur != Compile_lock) return true;
 843   }
 844   return false;
 845 }
 846 
 847 
 848 #endif
 849 
 850 #ifndef PRODUCT
 851 
 852 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 853 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 854 // no threads which allow_vm_block's are held
 855 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 856   // Check if current thread is allowed to block at a safepoint
 857   if (!(_allow_safepoint_count == 0)) {
 858     fatal("Possible safepoint reached by thread that does not allow it");
 859   }
 860   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 861     fatal("LEAF method calling lock?");
 862   }
 863 
 864 #ifdef ASSERT
 865   if (potential_vm_operation && is_Java_thread()
 866       && !Universe::is_bootstrapping()) {
 867     // Make sure we do not hold any locks that the VM thread also uses.
 868     // This could potentially lead to deadlocks
 869     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 870       // Threads_lock is special, since the safepoint synchronization will not start before this is
 871       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 872       // since it is used to transfer control between JavaThreads and the VMThread
 873       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 874       if ((cur->allow_vm_block() &&
 875            cur != Threads_lock &&
 876            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 877            cur != VMOperationRequest_lock &&
 878            cur != VMOperationQueue_lock) ||
 879            cur->rank() == Mutex::special) {
 880         fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
 881       }
 882     }
 883   }
 884 
 885   if (GCALotAtAllSafepoints) {
 886     // We could enter a safepoint here and thus have a gc
 887     InterfaceSupport::check_gc_alot();
 888   }
 889 #endif
 890 }
 891 #endif
 892 
 893 bool Thread::is_in_stack(address adr) const {
 894   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 895   address end = os::current_stack_pointer();
 896   // Allow non Java threads to call this without stack_base
 897   if (_stack_base == NULL) return true;
 898   if (stack_base() >= adr && adr >= end) return true;
 899 
 900   return false;
 901 }
 902 
 903 
 904 bool Thread::is_in_usable_stack(address adr) const {
 905   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
 906   size_t usable_stack_size = _stack_size - stack_guard_size;
 907 
 908   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 909 }
 910 
 911 
 912 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 913 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 914 // used for compilation in the future. If that change is made, the need for these methods
 915 // should be revisited, and they should be removed if possible.
 916 
 917 bool Thread::is_lock_owned(address adr) const {
 918   return on_local_stack(adr);
 919 }
 920 
 921 bool Thread::set_as_starting_thread() {
 922   // NOTE: this must be called inside the main thread.
 923   return os::create_main_thread((JavaThread*)this);
 924 }
 925 
 926 static void initialize_class(Symbol* class_name, TRAPS) {
 927   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 928   InstanceKlass::cast(klass)->initialize(CHECK);
 929 }
 930 
 931 
 932 // Creates the initial ThreadGroup
 933 static Handle create_initial_thread_group(TRAPS) {
 934   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 935   instanceKlassHandle klass (THREAD, k);
 936 
 937   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 938   {
 939     JavaValue result(T_VOID);
 940     JavaCalls::call_special(&result,
 941                             system_instance,
 942                             klass,
 943                             vmSymbols::object_initializer_name(),
 944                             vmSymbols::void_method_signature(),
 945                             CHECK_NH);
 946   }
 947   Universe::set_system_thread_group(system_instance());
 948 
 949   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 950   {
 951     JavaValue result(T_VOID);
 952     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 953     JavaCalls::call_special(&result,
 954                             main_instance,
 955                             klass,
 956                             vmSymbols::object_initializer_name(),
 957                             vmSymbols::threadgroup_string_void_signature(),
 958                             system_instance,
 959                             string,
 960                             CHECK_NH);
 961   }
 962   return main_instance;
 963 }
 964 
 965 // Creates the initial Thread
 966 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 967                                  TRAPS) {
 968   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 969   instanceKlassHandle klass (THREAD, k);
 970   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 971 
 972   java_lang_Thread::set_thread(thread_oop(), thread);
 973   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 974   thread->set_threadObj(thread_oop());
 975 
 976   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 977 
 978   JavaValue result(T_VOID);
 979   JavaCalls::call_special(&result, thread_oop,
 980                           klass,
 981                           vmSymbols::object_initializer_name(),
 982                           vmSymbols::threadgroup_string_void_signature(),
 983                           thread_group,
 984                           string,
 985                           CHECK_NULL);
 986   return thread_oop();
 987 }
 988 
 989 static void call_initializeSystemClass(TRAPS) {
 990   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
 991   instanceKlassHandle klass (THREAD, k);
 992 
 993   JavaValue result(T_VOID);
 994   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
 995                          vmSymbols::void_method_signature(), CHECK);
 996 }
 997 
 998 char java_runtime_name[128] = "";
 999 char java_runtime_version[128] = "";
1000 
1001 // extract the JRE name from sun.misc.Version.java_runtime_name
1002 static const char* get_java_runtime_name(TRAPS) {
1003   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1004                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1005   fieldDescriptor fd;
1006   bool found = k != NULL &&
1007                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1008                                                         vmSymbols::string_signature(), &fd);
1009   if (found) {
1010     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1011     if (name_oop == NULL) {
1012       return NULL;
1013     }
1014     const char* name = java_lang_String::as_utf8_string(name_oop,
1015                                                         java_runtime_name,
1016                                                         sizeof(java_runtime_name));
1017     return name;
1018   } else {
1019     return NULL;
1020   }
1021 }
1022 
1023 // extract the JRE version from sun.misc.Version.java_runtime_version
1024 static const char* get_java_runtime_version(TRAPS) {
1025   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1026                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1027   fieldDescriptor fd;
1028   bool found = k != NULL &&
1029                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1030                                                         vmSymbols::string_signature(), &fd);
1031   if (found) {
1032     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1033     if (name_oop == NULL) {
1034       return NULL;
1035     }
1036     const char* name = java_lang_String::as_utf8_string(name_oop,
1037                                                         java_runtime_version,
1038                                                         sizeof(java_runtime_version));
1039     return name;
1040   } else {
1041     return NULL;
1042   }
1043 }
1044 
1045 // General purpose hook into Java code, run once when the VM is initialized.
1046 // The Java library method itself may be changed independently from the VM.
1047 static void call_postVMInitHook(TRAPS) {
1048   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1049   instanceKlassHandle klass (THREAD, k);
1050   if (klass.not_null()) {
1051     JavaValue result(T_VOID);
1052     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1053                            vmSymbols::void_method_signature(),
1054                            CHECK);
1055   }
1056 }
1057 
1058 static void reset_vm_info_property(TRAPS) {
1059   // the vm info string
1060   ResourceMark rm(THREAD);
1061   const char *vm_info = VM_Version::vm_info_string();
1062 
1063   // java.lang.System class
1064   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1065   instanceKlassHandle klass (THREAD, k);
1066 
1067   // setProperty arguments
1068   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1069   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1070 
1071   // return value
1072   JavaValue r(T_OBJECT);
1073 
1074   // public static String setProperty(String key, String value);
1075   JavaCalls::call_static(&r,
1076                          klass,
1077                          vmSymbols::setProperty_name(),
1078                          vmSymbols::string_string_string_signature(),
1079                          key_str,
1080                          value_str,
1081                          CHECK);
1082 }
1083 
1084 
1085 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1086                                     bool daemon, TRAPS) {
1087   assert(thread_group.not_null(), "thread group should be specified");
1088   assert(threadObj() == NULL, "should only create Java thread object once");
1089 
1090   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1091   instanceKlassHandle klass (THREAD, k);
1092   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1093 
1094   java_lang_Thread::set_thread(thread_oop(), this);
1095   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1096   set_threadObj(thread_oop());
1097 
1098   JavaValue result(T_VOID);
1099   if (thread_name != NULL) {
1100     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1101     // Thread gets assigned specified name and null target
1102     JavaCalls::call_special(&result,
1103                             thread_oop,
1104                             klass,
1105                             vmSymbols::object_initializer_name(),
1106                             vmSymbols::threadgroup_string_void_signature(),
1107                             thread_group, // Argument 1
1108                             name,         // Argument 2
1109                             THREAD);
1110   } else {
1111     // Thread gets assigned name "Thread-nnn" and null target
1112     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1113     JavaCalls::call_special(&result,
1114                             thread_oop,
1115                             klass,
1116                             vmSymbols::object_initializer_name(),
1117                             vmSymbols::threadgroup_runnable_void_signature(),
1118                             thread_group, // Argument 1
1119                             Handle(),     // Argument 2
1120                             THREAD);
1121   }
1122 
1123 
1124   if (daemon) {
1125     java_lang_Thread::set_daemon(thread_oop());
1126   }
1127 
1128   if (HAS_PENDING_EXCEPTION) {
1129     return;
1130   }
1131 
1132   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1133   Handle threadObj(THREAD, this->threadObj());
1134 
1135   JavaCalls::call_special(&result,
1136                           thread_group,
1137                           group,
1138                           vmSymbols::add_method_name(),
1139                           vmSymbols::thread_void_signature(),
1140                           threadObj,          // Arg 1
1141                           THREAD);
1142 }
1143 
1144 // NamedThread --  non-JavaThread subclasses with multiple
1145 // uniquely named instances should derive from this.
1146 NamedThread::NamedThread() : Thread() {
1147   _name = NULL;
1148   _processed_thread = NULL;
1149 }
1150 
1151 NamedThread::~NamedThread() {
1152   if (_name != NULL) {
1153     FREE_C_HEAP_ARRAY(char, _name);
1154     _name = NULL;
1155   }
1156 }
1157 
1158 void NamedThread::set_name(const char* format, ...) {
1159   guarantee(_name == NULL, "Only get to set name once.");
1160   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1161   guarantee(_name != NULL, "alloc failure");
1162   va_list ap;
1163   va_start(ap, format);
1164   jio_vsnprintf(_name, max_name_len, format, ap);
1165   va_end(ap);
1166 }
1167 
1168 void NamedThread::initialize_named_thread() {
1169   set_native_thread_name(name());
1170 }
1171 
1172 void NamedThread::print_on(outputStream* st) const {
1173   st->print("\"%s\" ", name());
1174   Thread::print_on(st);
1175   st->cr();
1176 }
1177 
1178 
1179 // ======= WatcherThread ========
1180 
1181 // The watcher thread exists to simulate timer interrupts.  It should
1182 // be replaced by an abstraction over whatever native support for
1183 // timer interrupts exists on the platform.
1184 
1185 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1186 bool WatcherThread::_startable = false;
1187 volatile bool  WatcherThread::_should_terminate = false;
1188 
1189 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1190   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1191   if (os::create_thread(this, os::watcher_thread)) {
1192     _watcher_thread = this;
1193 
1194     // Set the watcher thread to the highest OS priority which should not be
1195     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1196     // is created. The only normal thread using this priority is the reference
1197     // handler thread, which runs for very short intervals only.
1198     // If the VMThread's priority is not lower than the WatcherThread profiling
1199     // will be inaccurate.
1200     os::set_priority(this, MaxPriority);
1201     if (!DisableStartThread) {
1202       os::start_thread(this);
1203     }
1204   }
1205 }
1206 
1207 int WatcherThread::sleep() const {
1208   // The WatcherThread does not participate in the safepoint protocol
1209   // for the PeriodicTask_lock because it is not a JavaThread.
1210   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1211 
1212   if (_should_terminate) {
1213     // check for termination before we do any housekeeping or wait
1214     return 0;  // we did not sleep.
1215   }
1216 
1217   // remaining will be zero if there are no tasks,
1218   // causing the WatcherThread to sleep until a task is
1219   // enrolled
1220   int remaining = PeriodicTask::time_to_wait();
1221   int time_slept = 0;
1222 
1223   // we expect this to timeout - we only ever get unparked when
1224   // we should terminate or when a new task has been enrolled
1225   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1226 
1227   jlong time_before_loop = os::javaTimeNanos();
1228 
1229   while (true) {
1230     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1231                                             remaining);
1232     jlong now = os::javaTimeNanos();
1233 
1234     if (remaining == 0) {
1235       // if we didn't have any tasks we could have waited for a long time
1236       // consider the time_slept zero and reset time_before_loop
1237       time_slept = 0;
1238       time_before_loop = now;
1239     } else {
1240       // need to recalculate since we might have new tasks in _tasks
1241       time_slept = (int) ((now - time_before_loop) / 1000000);
1242     }
1243 
1244     // Change to task list or spurious wakeup of some kind
1245     if (timedout || _should_terminate) {
1246       break;
1247     }
1248 
1249     remaining = PeriodicTask::time_to_wait();
1250     if (remaining == 0) {
1251       // Last task was just disenrolled so loop around and wait until
1252       // another task gets enrolled
1253       continue;
1254     }
1255 
1256     remaining -= time_slept;
1257     if (remaining <= 0) {
1258       break;
1259     }
1260   }
1261 
1262   return time_slept;
1263 }
1264 
1265 void WatcherThread::run() {
1266   assert(this == watcher_thread(), "just checking");
1267 
1268   this->record_stack_base_and_size();
1269   this->initialize_thread_local_storage();
1270   this->set_native_thread_name(this->name());
1271   this->set_active_handles(JNIHandleBlock::allocate_block());
1272   while (true) {
1273     assert(watcher_thread() == Thread::current(), "thread consistency check");
1274     assert(watcher_thread() == this, "thread consistency check");
1275 
1276     // Calculate how long it'll be until the next PeriodicTask work
1277     // should be done, and sleep that amount of time.
1278     int time_waited = sleep();
1279 
1280     if (is_error_reported()) {
1281       // A fatal error has happened, the error handler(VMError::report_and_die)
1282       // should abort JVM after creating an error log file. However in some
1283       // rare cases, the error handler itself might deadlock. Here we try to
1284       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1285       //
1286       // This code is in WatcherThread because WatcherThread wakes up
1287       // periodically so the fatal error handler doesn't need to do anything;
1288       // also because the WatcherThread is less likely to crash than other
1289       // threads.
1290 
1291       for (;;) {
1292         if (!ShowMessageBoxOnError
1293             && (OnError == NULL || OnError[0] == '\0')
1294             && Arguments::abort_hook() == NULL) {
1295           os::sleep(this, ErrorLogTimeout * 60 * 1000, false);
1296           fdStream err(defaultStream::output_fd());
1297           err.print_raw_cr("# [ timer expired, abort... ]");
1298           // skip atexit/vm_exit/vm_abort hooks
1299           os::die();
1300         }
1301 
1302         // Wake up 5 seconds later, the fatal handler may reset OnError or
1303         // ShowMessageBoxOnError when it is ready to abort.
1304         os::sleep(this, 5 * 1000, false);
1305       }
1306     }
1307 
1308     if (_should_terminate) {
1309       // check for termination before posting the next tick
1310       break;
1311     }
1312 
1313     PeriodicTask::real_time_tick(time_waited);
1314   }
1315 
1316   // Signal that it is terminated
1317   {
1318     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1319     _watcher_thread = NULL;
1320     Terminator_lock->notify();
1321   }
1322 
1323   // Thread destructor usually does this..
1324   ThreadLocalStorage::set_thread(NULL);
1325 }
1326 
1327 void WatcherThread::start() {
1328   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1329 
1330   if (watcher_thread() == NULL && _startable) {
1331     _should_terminate = false;
1332     // Create the single instance of WatcherThread
1333     new WatcherThread();
1334   }
1335 }
1336 
1337 void WatcherThread::make_startable() {
1338   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1339   _startable = true;
1340 }
1341 
1342 void WatcherThread::stop() {
1343   {
1344     // Follow normal safepoint aware lock enter protocol since the
1345     // WatcherThread is stopped by another JavaThread.
1346     MutexLocker ml(PeriodicTask_lock);
1347     _should_terminate = true;
1348 
1349     WatcherThread* watcher = watcher_thread();
1350     if (watcher != NULL) {
1351       // unpark the WatcherThread so it can see that it should terminate
1352       watcher->unpark();
1353     }
1354   }
1355 
1356   MutexLocker mu(Terminator_lock);
1357 
1358   while (watcher_thread() != NULL) {
1359     // This wait should make safepoint checks, wait without a timeout,
1360     // and wait as a suspend-equivalent condition.
1361     //
1362     // Note: If the FlatProfiler is running, then this thread is waiting
1363     // for the WatcherThread to terminate and the WatcherThread, via the
1364     // FlatProfiler task, is waiting for the external suspend request on
1365     // this thread to complete. wait_for_ext_suspend_completion() will
1366     // eventually timeout, but that takes time. Making this wait a
1367     // suspend-equivalent condition solves that timeout problem.
1368     //
1369     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1370                           Mutex::_as_suspend_equivalent_flag);
1371   }
1372 }
1373 
1374 void WatcherThread::unpark() {
1375   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1376   PeriodicTask_lock->notify();
1377 }
1378 
1379 void WatcherThread::print_on(outputStream* st) const {
1380   st->print("\"%s\" ", name());
1381   Thread::print_on(st);
1382   st->cr();
1383 }
1384 
1385 // ======= JavaThread ========
1386 
1387 // A JavaThread is a normal Java thread
1388 
1389 void JavaThread::initialize() {
1390   // Initialize fields
1391 
1392   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1393   set_claimed_par_id(UINT_MAX);
1394 
1395   set_saved_exception_pc(NULL);
1396   set_threadObj(NULL);
1397   _anchor.clear();
1398   set_entry_point(NULL);
1399   set_jni_functions(jni_functions());
1400   set_callee_target(NULL);
1401   set_vm_result(NULL);
1402   set_vm_result_2(NULL);
1403   set_vframe_array_head(NULL);
1404   set_vframe_array_last(NULL);
1405   set_deferred_locals(NULL);
1406   set_deopt_mark(NULL);
1407   set_deopt_nmethod(NULL);
1408   clear_must_deopt_id();
1409   set_monitor_chunks(NULL);
1410   set_next(NULL);
1411   set_thread_state(_thread_new);
1412   _terminated = _not_terminated;
1413   _privileged_stack_top = NULL;
1414   _array_for_gc = NULL;
1415   _suspend_equivalent = false;
1416   _in_deopt_handler = 0;
1417   _doing_unsafe_access = false;
1418   _stack_guard_state = stack_guard_unused;
1419   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1420   _exception_pc  = 0;
1421   _exception_handler_pc = 0;
1422   _is_method_handle_return = 0;
1423   _jvmti_thread_state= NULL;
1424   _should_post_on_exceptions_flag = JNI_FALSE;
1425   _jvmti_get_loaded_classes_closure = NULL;
1426   _interp_only_mode    = 0;
1427   _special_runtime_exit_condition = _no_async_condition;
1428   _pending_async_exception = NULL;
1429   _thread_stat = NULL;
1430   _thread_stat = new ThreadStatistics();
1431   _blocked_on_compilation = false;
1432   _jni_active_critical = 0;
1433   _pending_jni_exception_check_fn = NULL;
1434   _do_not_unlock_if_synchronized = false;
1435   _cached_monitor_info = NULL;
1436   _parker = Parker::Allocate(this);
1437 
1438 #ifndef PRODUCT
1439   _jmp_ring_index = 0;
1440   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1441     record_jump(NULL, NULL, NULL, 0);
1442   }
1443 #endif // PRODUCT
1444 
1445   set_thread_profiler(NULL);
1446   if (FlatProfiler::is_active()) {
1447     // This is where we would decide to either give each thread it's own profiler
1448     // or use one global one from FlatProfiler,
1449     // or up to some count of the number of profiled threads, etc.
1450     ThreadProfiler* pp = new ThreadProfiler();
1451     pp->engage();
1452     set_thread_profiler(pp);
1453   }
1454 
1455   // Setup safepoint state info for this thread
1456   ThreadSafepointState::create(this);
1457 
1458   debug_only(_java_call_counter = 0);
1459 
1460   // JVMTI PopFrame support
1461   _popframe_condition = popframe_inactive;
1462   _popframe_preserved_args = NULL;
1463   _popframe_preserved_args_size = 0;
1464   _frames_to_pop_failed_realloc = 0;
1465 
1466   pd_initialize();
1467 }
1468 
1469 #if INCLUDE_ALL_GCS
1470 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1471 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1472 #endif // INCLUDE_ALL_GCS
1473 
1474 JavaThread::JavaThread(bool is_attaching_via_jni) :
1475                        Thread()
1476 #if INCLUDE_ALL_GCS
1477                        , _satb_mark_queue(&_satb_mark_queue_set),
1478                        _dirty_card_queue(&_dirty_card_queue_set)
1479 #endif // INCLUDE_ALL_GCS
1480 {
1481   initialize();
1482   if (is_attaching_via_jni) {
1483     _jni_attach_state = _attaching_via_jni;
1484   } else {
1485     _jni_attach_state = _not_attaching_via_jni;
1486   }
1487   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1488 }
1489 
1490 bool JavaThread::reguard_stack(address cur_sp) {
1491   if (_stack_guard_state != stack_guard_yellow_disabled) {
1492     return true; // Stack already guarded or guard pages not needed.
1493   }
1494 
1495   if (register_stack_overflow()) {
1496     // For those architectures which have separate register and
1497     // memory stacks, we must check the register stack to see if
1498     // it has overflowed.
1499     return false;
1500   }
1501 
1502   // Java code never executes within the yellow zone: the latter is only
1503   // there to provoke an exception during stack banging.  If java code
1504   // is executing there, either StackShadowPages should be larger, or
1505   // some exception code in c1, c2 or the interpreter isn't unwinding
1506   // when it should.
1507   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1508 
1509   enable_stack_yellow_zone();
1510   return true;
1511 }
1512 
1513 bool JavaThread::reguard_stack(void) {
1514   return reguard_stack(os::current_stack_pointer());
1515 }
1516 
1517 
1518 void JavaThread::block_if_vm_exited() {
1519   if (_terminated == _vm_exited) {
1520     // _vm_exited is set at safepoint, and Threads_lock is never released
1521     // we will block here forever
1522     Threads_lock->lock_without_safepoint_check();
1523     ShouldNotReachHere();
1524   }
1525 }
1526 
1527 
1528 // Remove this ifdef when C1 is ported to the compiler interface.
1529 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1530 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1531 
1532 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1533                        Thread()
1534 #if INCLUDE_ALL_GCS
1535                        , _satb_mark_queue(&_satb_mark_queue_set),
1536                        _dirty_card_queue(&_dirty_card_queue_set)
1537 #endif // INCLUDE_ALL_GCS
1538 {
1539   initialize();
1540   _jni_attach_state = _not_attaching_via_jni;
1541   set_entry_point(entry_point);
1542   // Create the native thread itself.
1543   // %note runtime_23
1544   os::ThreadType thr_type = os::java_thread;
1545   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1546                                                      os::java_thread;
1547   os::create_thread(this, thr_type, stack_sz);
1548   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1549   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1550   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1551   // the exception consists of creating the exception object & initializing it, initialization
1552   // will leave the VM via a JavaCall and then all locks must be unlocked).
1553   //
1554   // The thread is still suspended when we reach here. Thread must be explicit started
1555   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1556   // by calling Threads:add. The reason why this is not done here, is because the thread
1557   // object must be fully initialized (take a look at JVM_Start)
1558 }
1559 
1560 JavaThread::~JavaThread() {
1561 
1562   // JSR166 -- return the parker to the free list
1563   Parker::Release(_parker);
1564   _parker = NULL;
1565 
1566   // Free any remaining  previous UnrollBlock
1567   vframeArray* old_array = vframe_array_last();
1568 
1569   if (old_array != NULL) {
1570     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1571     old_array->set_unroll_block(NULL);
1572     delete old_info;
1573     delete old_array;
1574   }
1575 
1576   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1577   if (deferred != NULL) {
1578     // This can only happen if thread is destroyed before deoptimization occurs.
1579     assert(deferred->length() != 0, "empty array!");
1580     do {
1581       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1582       deferred->remove_at(0);
1583       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1584       delete dlv;
1585     } while (deferred->length() != 0);
1586     delete deferred;
1587   }
1588 
1589   // All Java related clean up happens in exit
1590   ThreadSafepointState::destroy(this);
1591   if (_thread_profiler != NULL) delete _thread_profiler;
1592   if (_thread_stat != NULL) delete _thread_stat;
1593 }
1594 
1595 
1596 // The first routine called by a new Java thread
1597 void JavaThread::run() {
1598   // initialize thread-local alloc buffer related fields
1599   this->initialize_tlab();
1600 
1601   // used to test validity of stack trace backs
1602   this->record_base_of_stack_pointer();
1603 
1604   // Record real stack base and size.
1605   this->record_stack_base_and_size();
1606 
1607   // Initialize thread local storage; set before calling MutexLocker
1608   this->initialize_thread_local_storage();
1609 
1610   this->create_stack_guard_pages();
1611 
1612   this->cache_global_variables();
1613 
1614   // Thread is now sufficient initialized to be handled by the safepoint code as being
1615   // in the VM. Change thread state from _thread_new to _thread_in_vm
1616   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1617 
1618   assert(JavaThread::current() == this, "sanity check");
1619   assert(!Thread::current()->owns_locks(), "sanity check");
1620 
1621   DTRACE_THREAD_PROBE(start, this);
1622 
1623   // This operation might block. We call that after all safepoint checks for a new thread has
1624   // been completed.
1625   this->set_active_handles(JNIHandleBlock::allocate_block());
1626 
1627   if (JvmtiExport::should_post_thread_life()) {
1628     JvmtiExport::post_thread_start(this);
1629   }
1630 
1631   EventThreadStart event;
1632   if (event.should_commit()) {
1633     event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1634     event.commit();
1635   }
1636 
1637   // We call another function to do the rest so we are sure that the stack addresses used
1638   // from there will be lower than the stack base just computed
1639   thread_main_inner();
1640 
1641   // Note, thread is no longer valid at this point!
1642 }
1643 
1644 
1645 void JavaThread::thread_main_inner() {
1646   assert(JavaThread::current() == this, "sanity check");
1647   assert(this->threadObj() != NULL, "just checking");
1648 
1649   // Execute thread entry point unless this thread has a pending exception
1650   // or has been stopped before starting.
1651   // Note: Due to JVM_StopThread we can have pending exceptions already!
1652   if (!this->has_pending_exception() &&
1653       !java_lang_Thread::is_stillborn(this->threadObj())) {
1654     {
1655       ResourceMark rm(this);
1656       this->set_native_thread_name(this->get_thread_name());
1657     }
1658     HandleMark hm(this);
1659     this->entry_point()(this, this);
1660   }
1661 
1662   DTRACE_THREAD_PROBE(stop, this);
1663 
1664   this->exit(false);
1665   delete this;
1666 }
1667 
1668 
1669 static void ensure_join(JavaThread* thread) {
1670   // We do not need to grap the Threads_lock, since we are operating on ourself.
1671   Handle threadObj(thread, thread->threadObj());
1672   assert(threadObj.not_null(), "java thread object must exist");
1673   ObjectLocker lock(threadObj, thread);
1674   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1675   thread->clear_pending_exception();
1676   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1677   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1678   // Clear the native thread instance - this makes isAlive return false and allows the join()
1679   // to complete once we've done the notify_all below
1680   java_lang_Thread::set_thread(threadObj(), NULL);
1681   lock.notify_all(thread);
1682   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1683   thread->clear_pending_exception();
1684 }
1685 
1686 
1687 // For any new cleanup additions, please check to see if they need to be applied to
1688 // cleanup_failed_attach_current_thread as well.
1689 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1690   assert(this == JavaThread::current(), "thread consistency check");
1691 
1692   HandleMark hm(this);
1693   Handle uncaught_exception(this, this->pending_exception());
1694   this->clear_pending_exception();
1695   Handle threadObj(this, this->threadObj());
1696   assert(threadObj.not_null(), "Java thread object should be created");
1697 
1698   if (get_thread_profiler() != NULL) {
1699     get_thread_profiler()->disengage();
1700     ResourceMark rm;
1701     get_thread_profiler()->print(get_thread_name());
1702   }
1703 
1704 
1705   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1706   {
1707     EXCEPTION_MARK;
1708 
1709     CLEAR_PENDING_EXCEPTION;
1710   }
1711   if (!destroy_vm) {
1712     if (uncaught_exception.not_null()) {
1713       EXCEPTION_MARK;
1714       // Call method Thread.dispatchUncaughtException().
1715       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1716       JavaValue result(T_VOID);
1717       JavaCalls::call_virtual(&result,
1718                               threadObj, thread_klass,
1719                               vmSymbols::dispatchUncaughtException_name(),
1720                               vmSymbols::throwable_void_signature(),
1721                               uncaught_exception,
1722                               THREAD);
1723       if (HAS_PENDING_EXCEPTION) {
1724         ResourceMark rm(this);
1725         jio_fprintf(defaultStream::error_stream(),
1726                     "\nException: %s thrown from the UncaughtExceptionHandler"
1727                     " in thread \"%s\"\n",
1728                     pending_exception()->klass()->external_name(),
1729                     get_thread_name());
1730         CLEAR_PENDING_EXCEPTION;
1731       }
1732     }
1733 
1734     // Called before the java thread exit since we want to read info
1735     // from java_lang_Thread object
1736     EventThreadEnd event;
1737     if (event.should_commit()) {
1738       event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1739       event.commit();
1740     }
1741 
1742     // Call after last event on thread
1743     EVENT_THREAD_EXIT(this);
1744 
1745     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1746     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1747     // is deprecated anyhow.
1748     if (!is_Compiler_thread()) {
1749       int count = 3;
1750       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1751         EXCEPTION_MARK;
1752         JavaValue result(T_VOID);
1753         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1754         JavaCalls::call_virtual(&result,
1755                                 threadObj, thread_klass,
1756                                 vmSymbols::exit_method_name(),
1757                                 vmSymbols::void_method_signature(),
1758                                 THREAD);
1759         CLEAR_PENDING_EXCEPTION;
1760       }
1761     }
1762     // notify JVMTI
1763     if (JvmtiExport::should_post_thread_life()) {
1764       JvmtiExport::post_thread_end(this);
1765     }
1766 
1767     // We have notified the agents that we are exiting, before we go on,
1768     // we must check for a pending external suspend request and honor it
1769     // in order to not surprise the thread that made the suspend request.
1770     while (true) {
1771       {
1772         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1773         if (!is_external_suspend()) {
1774           set_terminated(_thread_exiting);
1775           ThreadService::current_thread_exiting(this);
1776           break;
1777         }
1778         // Implied else:
1779         // Things get a little tricky here. We have a pending external
1780         // suspend request, but we are holding the SR_lock so we
1781         // can't just self-suspend. So we temporarily drop the lock
1782         // and then self-suspend.
1783       }
1784 
1785       ThreadBlockInVM tbivm(this);
1786       java_suspend_self();
1787 
1788       // We're done with this suspend request, but we have to loop around
1789       // and check again. Eventually we will get SR_lock without a pending
1790       // external suspend request and will be able to mark ourselves as
1791       // exiting.
1792     }
1793     // no more external suspends are allowed at this point
1794   } else {
1795     // before_exit() has already posted JVMTI THREAD_END events
1796   }
1797 
1798   // Notify waiters on thread object. This has to be done after exit() is called
1799   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1800   // group should have the destroyed bit set before waiters are notified).
1801   ensure_join(this);
1802   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1803 
1804   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1805   // held by this thread must be released.  A detach operation must only
1806   // get here if there are no Java frames on the stack.  Therefore, any
1807   // owned monitors at this point MUST be JNI-acquired monitors which are
1808   // pre-inflated and in the monitor cache.
1809   //
1810   // Optionally release any monitors for regular JavaThread exits. This
1811   // is provided as a work around for any bugs in monitor enter-exit
1812   // matching. This can be expensive so it is not enabled by default.
1813   //
1814   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1815   // ObjectSynchronizer::release_monitors_owned_by_thread().
1816   if ((exit_type == jni_detach && JNIDetachReleasesMonitors) ||
1817       JavaThreadExitReleasesMonitors) {
1818     assert(!this->has_last_Java_frame(),
1819            "should not have a Java frame when detaching or exiting");
1820     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1821     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1822   }
1823 
1824   // These things needs to be done while we are still a Java Thread. Make sure that thread
1825   // is in a consistent state, in case GC happens
1826   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1827 
1828   if (active_handles() != NULL) {
1829     JNIHandleBlock* block = active_handles();
1830     set_active_handles(NULL);
1831     JNIHandleBlock::release_block(block);
1832   }
1833 
1834   if (free_handle_block() != NULL) {
1835     JNIHandleBlock* block = free_handle_block();
1836     set_free_handle_block(NULL);
1837     JNIHandleBlock::release_block(block);
1838   }
1839 
1840   // These have to be removed while this is still a valid thread.
1841   remove_stack_guard_pages();
1842 
1843   if (UseTLAB) {
1844     tlab().make_parsable(true);  // retire TLAB
1845   }
1846 
1847   if (JvmtiEnv::environments_might_exist()) {
1848     JvmtiExport::cleanup_thread(this);
1849   }
1850 
1851   // We must flush any deferred card marks before removing a thread from
1852   // the list of active threads.
1853   Universe::heap()->flush_deferred_store_barrier(this);
1854   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1855 
1856 #if INCLUDE_ALL_GCS
1857   // We must flush the G1-related buffers before removing a thread
1858   // from the list of active threads. We must do this after any deferred
1859   // card marks have been flushed (above) so that any entries that are
1860   // added to the thread's dirty card queue as a result are not lost.
1861   if (UseG1GC) {
1862     flush_barrier_queues();
1863   }
1864 #endif // INCLUDE_ALL_GCS
1865 
1866   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1867   Threads::remove(this);
1868 }
1869 
1870 #if INCLUDE_ALL_GCS
1871 // Flush G1-related queues.
1872 void JavaThread::flush_barrier_queues() {
1873   satb_mark_queue().flush();
1874   dirty_card_queue().flush();
1875 }
1876 
1877 void JavaThread::initialize_queues() {
1878   assert(!SafepointSynchronize::is_at_safepoint(),
1879          "we should not be at a safepoint");
1880 
1881   ObjPtrQueue& satb_queue = satb_mark_queue();
1882   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1883   // The SATB queue should have been constructed with its active
1884   // field set to false.
1885   assert(!satb_queue.is_active(), "SATB queue should not be active");
1886   assert(satb_queue.is_empty(), "SATB queue should be empty");
1887   // If we are creating the thread during a marking cycle, we should
1888   // set the active field of the SATB queue to true.
1889   if (satb_queue_set.is_active()) {
1890     satb_queue.set_active(true);
1891   }
1892 
1893   DirtyCardQueue& dirty_queue = dirty_card_queue();
1894   // The dirty card queue should have been constructed with its
1895   // active field set to true.
1896   assert(dirty_queue.is_active(), "dirty card queue should be active");
1897 }
1898 #endif // INCLUDE_ALL_GCS
1899 
1900 void JavaThread::cleanup_failed_attach_current_thread() {
1901   if (get_thread_profiler() != NULL) {
1902     get_thread_profiler()->disengage();
1903     ResourceMark rm;
1904     get_thread_profiler()->print(get_thread_name());
1905   }
1906 
1907   if (active_handles() != NULL) {
1908     JNIHandleBlock* block = active_handles();
1909     set_active_handles(NULL);
1910     JNIHandleBlock::release_block(block);
1911   }
1912 
1913   if (free_handle_block() != NULL) {
1914     JNIHandleBlock* block = free_handle_block();
1915     set_free_handle_block(NULL);
1916     JNIHandleBlock::release_block(block);
1917   }
1918 
1919   // These have to be removed while this is still a valid thread.
1920   remove_stack_guard_pages();
1921 
1922   if (UseTLAB) {
1923     tlab().make_parsable(true);  // retire TLAB, if any
1924   }
1925 
1926 #if INCLUDE_ALL_GCS
1927   if (UseG1GC) {
1928     flush_barrier_queues();
1929   }
1930 #endif // INCLUDE_ALL_GCS
1931 
1932   Threads::remove(this);
1933   delete this;
1934 }
1935 
1936 
1937 
1938 
1939 JavaThread* JavaThread::active() {
1940   Thread* thread = ThreadLocalStorage::thread();
1941   assert(thread != NULL, "just checking");
1942   if (thread->is_Java_thread()) {
1943     return (JavaThread*) thread;
1944   } else {
1945     assert(thread->is_VM_thread(), "this must be a vm thread");
1946     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1947     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1948     assert(ret->is_Java_thread(), "must be a Java thread");
1949     return ret;
1950   }
1951 }
1952 
1953 bool JavaThread::is_lock_owned(address adr) const {
1954   if (Thread::is_lock_owned(adr)) return true;
1955 
1956   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1957     if (chunk->contains(adr)) return true;
1958   }
1959 
1960   return false;
1961 }
1962 
1963 
1964 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1965   chunk->set_next(monitor_chunks());
1966   set_monitor_chunks(chunk);
1967 }
1968 
1969 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1970   guarantee(monitor_chunks() != NULL, "must be non empty");
1971   if (monitor_chunks() == chunk) {
1972     set_monitor_chunks(chunk->next());
1973   } else {
1974     MonitorChunk* prev = monitor_chunks();
1975     while (prev->next() != chunk) prev = prev->next();
1976     prev->set_next(chunk->next());
1977   }
1978 }
1979 
1980 // JVM support.
1981 
1982 // Note: this function shouldn't block if it's called in
1983 // _thread_in_native_trans state (such as from
1984 // check_special_condition_for_native_trans()).
1985 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1986 
1987   if (has_last_Java_frame() && has_async_condition()) {
1988     // If we are at a polling page safepoint (not a poll return)
1989     // then we must defer async exception because live registers
1990     // will be clobbered by the exception path. Poll return is
1991     // ok because the call we a returning from already collides
1992     // with exception handling registers and so there is no issue.
1993     // (The exception handling path kills call result registers but
1994     //  this is ok since the exception kills the result anyway).
1995 
1996     if (is_at_poll_safepoint()) {
1997       // if the code we are returning to has deoptimized we must defer
1998       // the exception otherwise live registers get clobbered on the
1999       // exception path before deoptimization is able to retrieve them.
2000       //
2001       RegisterMap map(this, false);
2002       frame caller_fr = last_frame().sender(&map);
2003       assert(caller_fr.is_compiled_frame(), "what?");
2004       if (caller_fr.is_deoptimized_frame()) {
2005         if (TraceExceptions) {
2006           ResourceMark rm;
2007           tty->print_cr("deferred async exception at compiled safepoint");
2008         }
2009         return;
2010       }
2011     }
2012   }
2013 
2014   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2015   if (condition == _no_async_condition) {
2016     // Conditions have changed since has_special_runtime_exit_condition()
2017     // was called:
2018     // - if we were here only because of an external suspend request,
2019     //   then that was taken care of above (or cancelled) so we are done
2020     // - if we were here because of another async request, then it has
2021     //   been cleared between the has_special_runtime_exit_condition()
2022     //   and now so again we are done
2023     return;
2024   }
2025 
2026   // Check for pending async. exception
2027   if (_pending_async_exception != NULL) {
2028     // Only overwrite an already pending exception, if it is not a threadDeath.
2029     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2030 
2031       // We cannot call Exceptions::_throw(...) here because we cannot block
2032       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2033 
2034       if (TraceExceptions) {
2035         ResourceMark rm;
2036         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2037         if (has_last_Java_frame()) {
2038           frame f = last_frame();
2039           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2040         }
2041         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2042       }
2043       _pending_async_exception = NULL;
2044       clear_has_async_exception();
2045     }
2046   }
2047 
2048   if (check_unsafe_error &&
2049       condition == _async_unsafe_access_error && !has_pending_exception()) {
2050     condition = _no_async_condition;  // done
2051     switch (thread_state()) {
2052     case _thread_in_vm: {
2053       JavaThread* THREAD = this;
2054       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2055     }
2056     case _thread_in_native: {
2057       ThreadInVMfromNative tiv(this);
2058       JavaThread* THREAD = this;
2059       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2060     }
2061     case _thread_in_Java: {
2062       ThreadInVMfromJava tiv(this);
2063       JavaThread* THREAD = this;
2064       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2065     }
2066     default:
2067       ShouldNotReachHere();
2068     }
2069   }
2070 
2071   assert(condition == _no_async_condition || has_pending_exception() ||
2072          (!check_unsafe_error && condition == _async_unsafe_access_error),
2073          "must have handled the async condition, if no exception");
2074 }
2075 
2076 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2077   //
2078   // Check for pending external suspend. Internal suspend requests do
2079   // not use handle_special_runtime_exit_condition().
2080   // If JNIEnv proxies are allowed, don't self-suspend if the target
2081   // thread is not the current thread. In older versions of jdbx, jdbx
2082   // threads could call into the VM with another thread's JNIEnv so we
2083   // can be here operating on behalf of a suspended thread (4432884).
2084   bool do_self_suspend = is_external_suspend_with_lock();
2085   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2086     //
2087     // Because thread is external suspended the safepoint code will count
2088     // thread as at a safepoint. This can be odd because we can be here
2089     // as _thread_in_Java which would normally transition to _thread_blocked
2090     // at a safepoint. We would like to mark the thread as _thread_blocked
2091     // before calling java_suspend_self like all other callers of it but
2092     // we must then observe proper safepoint protocol. (We can't leave
2093     // _thread_blocked with a safepoint in progress). However we can be
2094     // here as _thread_in_native_trans so we can't use a normal transition
2095     // constructor/destructor pair because they assert on that type of
2096     // transition. We could do something like:
2097     //
2098     // JavaThreadState state = thread_state();
2099     // set_thread_state(_thread_in_vm);
2100     // {
2101     //   ThreadBlockInVM tbivm(this);
2102     //   java_suspend_self()
2103     // }
2104     // set_thread_state(_thread_in_vm_trans);
2105     // if (safepoint) block;
2106     // set_thread_state(state);
2107     //
2108     // but that is pretty messy. Instead we just go with the way the
2109     // code has worked before and note that this is the only path to
2110     // java_suspend_self that doesn't put the thread in _thread_blocked
2111     // mode.
2112 
2113     frame_anchor()->make_walkable(this);
2114     java_suspend_self();
2115 
2116     // We might be here for reasons in addition to the self-suspend request
2117     // so check for other async requests.
2118   }
2119 
2120   if (check_asyncs) {
2121     check_and_handle_async_exceptions();
2122   }
2123 }
2124 
2125 void JavaThread::send_thread_stop(oop java_throwable)  {
2126   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2127   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2128   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2129 
2130   // Do not throw asynchronous exceptions against the compiler thread
2131   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2132   if (is_Compiler_thread()) return;
2133 
2134   {
2135     // Actually throw the Throwable against the target Thread - however
2136     // only if there is no thread death exception installed already.
2137     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2138       // If the topmost frame is a runtime stub, then we are calling into
2139       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2140       // must deoptimize the caller before continuing, as the compiled  exception handler table
2141       // may not be valid
2142       if (has_last_Java_frame()) {
2143         frame f = last_frame();
2144         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2145           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2146           RegisterMap reg_map(this, UseBiasedLocking);
2147           frame compiled_frame = f.sender(&reg_map);
2148           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2149             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2150           }
2151         }
2152       }
2153 
2154       // Set async. pending exception in thread.
2155       set_pending_async_exception(java_throwable);
2156 
2157       if (TraceExceptions) {
2158         ResourceMark rm;
2159         tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2160       }
2161       // for AbortVMOnException flag
2162       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2163     }
2164   }
2165 
2166 
2167   // Interrupt thread so it will wake up from a potential wait()
2168   Thread::interrupt(this);
2169 }
2170 
2171 // External suspension mechanism.
2172 //
2173 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2174 // to any VM_locks and it is at a transition
2175 // Self-suspension will happen on the transition out of the vm.
2176 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2177 //
2178 // Guarantees on return:
2179 //   + Target thread will not execute any new bytecode (that's why we need to
2180 //     force a safepoint)
2181 //   + Target thread will not enter any new monitors
2182 //
2183 void JavaThread::java_suspend() {
2184   { MutexLocker mu(Threads_lock);
2185     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2186       return;
2187     }
2188   }
2189 
2190   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2191     if (!is_external_suspend()) {
2192       // a racing resume has cancelled us; bail out now
2193       return;
2194     }
2195 
2196     // suspend is done
2197     uint32_t debug_bits = 0;
2198     // Warning: is_ext_suspend_completed() may temporarily drop the
2199     // SR_lock to allow the thread to reach a stable thread state if
2200     // it is currently in a transient thread state.
2201     if (is_ext_suspend_completed(false /* !called_by_wait */,
2202                                  SuspendRetryDelay, &debug_bits)) {
2203       return;
2204     }
2205   }
2206 
2207   VM_ForceSafepoint vm_suspend;
2208   VMThread::execute(&vm_suspend);
2209 }
2210 
2211 // Part II of external suspension.
2212 // A JavaThread self suspends when it detects a pending external suspend
2213 // request. This is usually on transitions. It is also done in places
2214 // where continuing to the next transition would surprise the caller,
2215 // e.g., monitor entry.
2216 //
2217 // Returns the number of times that the thread self-suspended.
2218 //
2219 // Note: DO NOT call java_suspend_self() when you just want to block current
2220 //       thread. java_suspend_self() is the second stage of cooperative
2221 //       suspension for external suspend requests and should only be used
2222 //       to complete an external suspend request.
2223 //
2224 int JavaThread::java_suspend_self() {
2225   int ret = 0;
2226 
2227   // we are in the process of exiting so don't suspend
2228   if (is_exiting()) {
2229     clear_external_suspend();
2230     return ret;
2231   }
2232 
2233   assert(_anchor.walkable() ||
2234          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2235          "must have walkable stack");
2236 
2237   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2238 
2239   assert(!this->is_ext_suspended(),
2240          "a thread trying to self-suspend should not already be suspended");
2241 
2242   if (this->is_suspend_equivalent()) {
2243     // If we are self-suspending as a result of the lifting of a
2244     // suspend equivalent condition, then the suspend_equivalent
2245     // flag is not cleared until we set the ext_suspended flag so
2246     // that wait_for_ext_suspend_completion() returns consistent
2247     // results.
2248     this->clear_suspend_equivalent();
2249   }
2250 
2251   // A racing resume may have cancelled us before we grabbed SR_lock
2252   // above. Or another external suspend request could be waiting for us
2253   // by the time we return from SR_lock()->wait(). The thread
2254   // that requested the suspension may already be trying to walk our
2255   // stack and if we return now, we can change the stack out from under
2256   // it. This would be a "bad thing (TM)" and cause the stack walker
2257   // to crash. We stay self-suspended until there are no more pending
2258   // external suspend requests.
2259   while (is_external_suspend()) {
2260     ret++;
2261     this->set_ext_suspended();
2262 
2263     // _ext_suspended flag is cleared by java_resume()
2264     while (is_ext_suspended()) {
2265       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2266     }
2267   }
2268 
2269   return ret;
2270 }
2271 
2272 #ifdef ASSERT
2273 // verify the JavaThread has not yet been published in the Threads::list, and
2274 // hence doesn't need protection from concurrent access at this stage
2275 void JavaThread::verify_not_published() {
2276   if (!Threads_lock->owned_by_self()) {
2277     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2278     assert(!Threads::includes(this),
2279            "java thread shouldn't have been published yet!");
2280   } else {
2281     assert(!Threads::includes(this),
2282            "java thread shouldn't have been published yet!");
2283   }
2284 }
2285 #endif
2286 
2287 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2288 // progress or when _suspend_flags is non-zero.
2289 // Current thread needs to self-suspend if there is a suspend request and/or
2290 // block if a safepoint is in progress.
2291 // Async exception ISN'T checked.
2292 // Note only the ThreadInVMfromNative transition can call this function
2293 // directly and when thread state is _thread_in_native_trans
2294 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2295   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2296 
2297   JavaThread *curJT = JavaThread::current();
2298   bool do_self_suspend = thread->is_external_suspend();
2299 
2300   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2301 
2302   // If JNIEnv proxies are allowed, don't self-suspend if the target
2303   // thread is not the current thread. In older versions of jdbx, jdbx
2304   // threads could call into the VM with another thread's JNIEnv so we
2305   // can be here operating on behalf of a suspended thread (4432884).
2306   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2307     JavaThreadState state = thread->thread_state();
2308 
2309     // We mark this thread_blocked state as a suspend-equivalent so
2310     // that a caller to is_ext_suspend_completed() won't be confused.
2311     // The suspend-equivalent state is cleared by java_suspend_self().
2312     thread->set_suspend_equivalent();
2313 
2314     // If the safepoint code sees the _thread_in_native_trans state, it will
2315     // wait until the thread changes to other thread state. There is no
2316     // guarantee on how soon we can obtain the SR_lock and complete the
2317     // self-suspend request. It would be a bad idea to let safepoint wait for
2318     // too long. Temporarily change the state to _thread_blocked to
2319     // let the VM thread know that this thread is ready for GC. The problem
2320     // of changing thread state is that safepoint could happen just after
2321     // java_suspend_self() returns after being resumed, and VM thread will
2322     // see the _thread_blocked state. We must check for safepoint
2323     // after restoring the state and make sure we won't leave while a safepoint
2324     // is in progress.
2325     thread->set_thread_state(_thread_blocked);
2326     thread->java_suspend_self();
2327     thread->set_thread_state(state);
2328     // Make sure new state is seen by VM thread
2329     if (os::is_MP()) {
2330       if (UseMembar) {
2331         // Force a fence between the write above and read below
2332         OrderAccess::fence();
2333       } else {
2334         // Must use this rather than serialization page in particular on Windows
2335         InterfaceSupport::serialize_memory(thread);
2336       }
2337     }
2338   }
2339 
2340   if (SafepointSynchronize::do_call_back()) {
2341     // If we are safepointing, then block the caller which may not be
2342     // the same as the target thread (see above).
2343     SafepointSynchronize::block(curJT);
2344   }
2345 
2346   if (thread->is_deopt_suspend()) {
2347     thread->clear_deopt_suspend();
2348     RegisterMap map(thread, false);
2349     frame f = thread->last_frame();
2350     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2351       f = f.sender(&map);
2352     }
2353     if (f.id() == thread->must_deopt_id()) {
2354       thread->clear_must_deopt_id();
2355       f.deoptimize(thread);
2356     } else {
2357       fatal("missed deoptimization!");
2358     }
2359   }
2360 }
2361 
2362 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2363 // progress or when _suspend_flags is non-zero.
2364 // Current thread needs to self-suspend if there is a suspend request and/or
2365 // block if a safepoint is in progress.
2366 // Also check for pending async exception (not including unsafe access error).
2367 // Note only the native==>VM/Java barriers can call this function and when
2368 // thread state is _thread_in_native_trans.
2369 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2370   check_safepoint_and_suspend_for_native_trans(thread);
2371 
2372   if (thread->has_async_exception()) {
2373     // We are in _thread_in_native_trans state, don't handle unsafe
2374     // access error since that may block.
2375     thread->check_and_handle_async_exceptions(false);
2376   }
2377 }
2378 
2379 // This is a variant of the normal
2380 // check_special_condition_for_native_trans with slightly different
2381 // semantics for use by critical native wrappers.  It does all the
2382 // normal checks but also performs the transition back into
2383 // thread_in_Java state.  This is required so that critical natives
2384 // can potentially block and perform a GC if they are the last thread
2385 // exiting the GC_locker.
2386 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2387   check_special_condition_for_native_trans(thread);
2388 
2389   // Finish the transition
2390   thread->set_thread_state(_thread_in_Java);
2391 
2392   if (thread->do_critical_native_unlock()) {
2393     ThreadInVMfromJavaNoAsyncException tiv(thread);
2394     GC_locker::unlock_critical(thread);
2395     thread->clear_critical_native_unlock();
2396   }
2397 }
2398 
2399 // We need to guarantee the Threads_lock here, since resumes are not
2400 // allowed during safepoint synchronization
2401 // Can only resume from an external suspension
2402 void JavaThread::java_resume() {
2403   assert_locked_or_safepoint(Threads_lock);
2404 
2405   // Sanity check: thread is gone, has started exiting or the thread
2406   // was not externally suspended.
2407   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2408     return;
2409   }
2410 
2411   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2412 
2413   clear_external_suspend();
2414 
2415   if (is_ext_suspended()) {
2416     clear_ext_suspended();
2417     SR_lock()->notify_all();
2418   }
2419 }
2420 
2421 void JavaThread::create_stack_guard_pages() {
2422   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2423   address low_addr = stack_base() - stack_size();
2424   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2425 
2426   int allocate = os::allocate_stack_guard_pages();
2427   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2428 
2429   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2430     warning("Attempt to allocate stack guard pages failed.");
2431     return;
2432   }
2433 
2434   if (os::guard_memory((char *) low_addr, len)) {
2435     _stack_guard_state = stack_guard_enabled;
2436   } else {
2437     warning("Attempt to protect stack guard pages failed.");
2438     if (os::uncommit_memory((char *) low_addr, len)) {
2439       warning("Attempt to deallocate stack guard pages failed.");
2440     }
2441   }
2442 }
2443 
2444 void JavaThread::remove_stack_guard_pages() {
2445   assert(Thread::current() == this, "from different thread");
2446   if (_stack_guard_state == stack_guard_unused) return;
2447   address low_addr = stack_base() - stack_size();
2448   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2449 
2450   if (os::allocate_stack_guard_pages()) {
2451     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2452       _stack_guard_state = stack_guard_unused;
2453     } else {
2454       warning("Attempt to deallocate stack guard pages failed.");
2455     }
2456   } else {
2457     if (_stack_guard_state == stack_guard_unused) return;
2458     if (os::unguard_memory((char *) low_addr, len)) {
2459       _stack_guard_state = stack_guard_unused;
2460     } else {
2461       warning("Attempt to unprotect stack guard pages failed.");
2462     }
2463   }
2464 }
2465 
2466 void JavaThread::enable_stack_yellow_zone() {
2467   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2468   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2469 
2470   // The base notation is from the stacks point of view, growing downward.
2471   // We need to adjust it to work correctly with guard_memory()
2472   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2473 
2474   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2475   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2476 
2477   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2478     _stack_guard_state = stack_guard_enabled;
2479   } else {
2480     warning("Attempt to guard stack yellow zone failed.");
2481   }
2482   enable_register_stack_guard();
2483 }
2484 
2485 void JavaThread::disable_stack_yellow_zone() {
2486   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2487   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2488 
2489   // Simply return if called for a thread that does not use guard pages.
2490   if (_stack_guard_state == stack_guard_unused) return;
2491 
2492   // The base notation is from the stacks point of view, growing downward.
2493   // We need to adjust it to work correctly with guard_memory()
2494   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2495 
2496   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2497     _stack_guard_state = stack_guard_yellow_disabled;
2498   } else {
2499     warning("Attempt to unguard stack yellow zone failed.");
2500   }
2501   disable_register_stack_guard();
2502 }
2503 
2504 void JavaThread::enable_stack_red_zone() {
2505   // The base notation is from the stacks point of view, growing downward.
2506   // We need to adjust it to work correctly with guard_memory()
2507   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2508   address base = stack_red_zone_base() - stack_red_zone_size();
2509 
2510   guarantee(base < stack_base(), "Error calculating stack red zone");
2511   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2512 
2513   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2514     warning("Attempt to guard stack red zone failed.");
2515   }
2516 }
2517 
2518 void JavaThread::disable_stack_red_zone() {
2519   // The base notation is from the stacks point of view, growing downward.
2520   // We need to adjust it to work correctly with guard_memory()
2521   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2522   address base = stack_red_zone_base() - stack_red_zone_size();
2523   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2524     warning("Attempt to unguard stack red zone failed.");
2525   }
2526 }
2527 
2528 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2529   // ignore is there is no stack
2530   if (!has_last_Java_frame()) return;
2531   // traverse the stack frames. Starts from top frame.
2532   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2533     frame* fr = fst.current();
2534     f(fr, fst.register_map());
2535   }
2536 }
2537 
2538 
2539 #ifndef PRODUCT
2540 // Deoptimization
2541 // Function for testing deoptimization
2542 void JavaThread::deoptimize() {
2543   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2544   StackFrameStream fst(this, UseBiasedLocking);
2545   bool deopt = false;           // Dump stack only if a deopt actually happens.
2546   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2547   // Iterate over all frames in the thread and deoptimize
2548   for (; !fst.is_done(); fst.next()) {
2549     if (fst.current()->can_be_deoptimized()) {
2550 
2551       if (only_at) {
2552         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2553         // consists of comma or carriage return separated numbers so
2554         // search for the current bci in that string.
2555         address pc = fst.current()->pc();
2556         nmethod* nm =  (nmethod*) fst.current()->cb();
2557         ScopeDesc* sd = nm->scope_desc_at(pc);
2558         char buffer[8];
2559         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2560         size_t len = strlen(buffer);
2561         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2562         while (found != NULL) {
2563           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2564               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2565             // Check that the bci found is bracketed by terminators.
2566             break;
2567           }
2568           found = strstr(found + 1, buffer);
2569         }
2570         if (!found) {
2571           continue;
2572         }
2573       }
2574 
2575       if (DebugDeoptimization && !deopt) {
2576         deopt = true; // One-time only print before deopt
2577         tty->print_cr("[BEFORE Deoptimization]");
2578         trace_frames();
2579         trace_stack();
2580       }
2581       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2582     }
2583   }
2584 
2585   if (DebugDeoptimization && deopt) {
2586     tty->print_cr("[AFTER Deoptimization]");
2587     trace_frames();
2588   }
2589 }
2590 
2591 
2592 // Make zombies
2593 void JavaThread::make_zombies() {
2594   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2595     if (fst.current()->can_be_deoptimized()) {
2596       // it is a Java nmethod
2597       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2598       nm->make_not_entrant();
2599     }
2600   }
2601 }
2602 #endif // PRODUCT
2603 
2604 
2605 void JavaThread::deoptimized_wrt_marked_nmethods() {
2606   if (!has_last_Java_frame()) return;
2607   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2608   StackFrameStream fst(this, UseBiasedLocking);
2609   for (; !fst.is_done(); fst.next()) {
2610     if (fst.current()->should_be_deoptimized()) {
2611       if (LogCompilation && xtty != NULL) {
2612         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2613         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2614                    this->name(), nm != NULL ? nm->compile_id() : -1);
2615       }
2616 
2617       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2618     }
2619   }
2620 }
2621 
2622 
2623 // If the caller is a NamedThread, then remember, in the current scope,
2624 // the given JavaThread in its _processed_thread field.
2625 class RememberProcessedThread: public StackObj {
2626   NamedThread* _cur_thr;
2627  public:
2628   RememberProcessedThread(JavaThread* jthr) {
2629     Thread* thread = Thread::current();
2630     if (thread->is_Named_thread()) {
2631       _cur_thr = (NamedThread *)thread;
2632       _cur_thr->set_processed_thread(jthr);
2633     } else {
2634       _cur_thr = NULL;
2635     }
2636   }
2637 
2638   ~RememberProcessedThread() {
2639     if (_cur_thr) {
2640       _cur_thr->set_processed_thread(NULL);
2641     }
2642   }
2643 };
2644 
2645 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2646   // Verify that the deferred card marks have been flushed.
2647   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2648 
2649   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2650   // since there may be more than one thread using each ThreadProfiler.
2651 
2652   // Traverse the GCHandles
2653   Thread::oops_do(f, cld_f, cf);
2654 
2655   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2656          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2657 
2658   if (has_last_Java_frame()) {
2659     // Record JavaThread to GC thread
2660     RememberProcessedThread rpt(this);
2661 
2662     // Traverse the privileged stack
2663     if (_privileged_stack_top != NULL) {
2664       _privileged_stack_top->oops_do(f);
2665     }
2666 
2667     // traverse the registered growable array
2668     if (_array_for_gc != NULL) {
2669       for (int index = 0; index < _array_for_gc->length(); index++) {
2670         f->do_oop(_array_for_gc->adr_at(index));
2671       }
2672     }
2673 
2674     // Traverse the monitor chunks
2675     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2676       chunk->oops_do(f);
2677     }
2678 
2679     // Traverse the execution stack
2680     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2681       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2682     }
2683   }
2684 
2685   // callee_target is never live across a gc point so NULL it here should
2686   // it still contain a methdOop.
2687 
2688   set_callee_target(NULL);
2689 
2690   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2691   // If we have deferred set_locals there might be oops waiting to be
2692   // written
2693   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2694   if (list != NULL) {
2695     for (int i = 0; i < list->length(); i++) {
2696       list->at(i)->oops_do(f);
2697     }
2698   }
2699 
2700   // Traverse instance variables at the end since the GC may be moving things
2701   // around using this function
2702   f->do_oop((oop*) &_threadObj);
2703   f->do_oop((oop*) &_vm_result);
2704   f->do_oop((oop*) &_exception_oop);
2705   f->do_oop((oop*) &_pending_async_exception);
2706 
2707   if (jvmti_thread_state() != NULL) {
2708     jvmti_thread_state()->oops_do(f);
2709   }
2710 }
2711 
2712 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2713   Thread::nmethods_do(cf);  // (super method is a no-op)
2714 
2715   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2716          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2717 
2718   if (has_last_Java_frame()) {
2719     // Traverse the execution stack
2720     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2721       fst.current()->nmethods_do(cf);
2722     }
2723   }
2724 }
2725 
2726 void JavaThread::metadata_do(void f(Metadata*)) {
2727   if (has_last_Java_frame()) {
2728     // Traverse the execution stack to call f() on the methods in the stack
2729     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2730       fst.current()->metadata_do(f);
2731     }
2732   } else if (is_Compiler_thread()) {
2733     // need to walk ciMetadata in current compile tasks to keep alive.
2734     CompilerThread* ct = (CompilerThread*)this;
2735     if (ct->env() != NULL) {
2736       ct->env()->metadata_do(f);
2737     }
2738   }
2739 }
2740 
2741 // Printing
2742 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2743   switch (_thread_state) {
2744   case _thread_uninitialized:     return "_thread_uninitialized";
2745   case _thread_new:               return "_thread_new";
2746   case _thread_new_trans:         return "_thread_new_trans";
2747   case _thread_in_native:         return "_thread_in_native";
2748   case _thread_in_native_trans:   return "_thread_in_native_trans";
2749   case _thread_in_vm:             return "_thread_in_vm";
2750   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2751   case _thread_in_Java:           return "_thread_in_Java";
2752   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2753   case _thread_blocked:           return "_thread_blocked";
2754   case _thread_blocked_trans:     return "_thread_blocked_trans";
2755   default:                        return "unknown thread state";
2756   }
2757 }
2758 
2759 #ifndef PRODUCT
2760 void JavaThread::print_thread_state_on(outputStream *st) const {
2761   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2762 };
2763 void JavaThread::print_thread_state() const {
2764   print_thread_state_on(tty);
2765 }
2766 #endif // PRODUCT
2767 
2768 // Called by Threads::print() for VM_PrintThreads operation
2769 void JavaThread::print_on(outputStream *st) const {
2770   st->print("\"%s\" ", get_thread_name());
2771   oop thread_oop = threadObj();
2772   if (thread_oop != NULL) {
2773     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2774     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2775     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2776   }
2777   Thread::print_on(st);
2778   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2779   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2780   if (thread_oop != NULL) {
2781     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2782   }
2783 #ifndef PRODUCT
2784   print_thread_state_on(st);
2785   _safepoint_state->print_on(st);
2786 #endif // PRODUCT
2787 }
2788 
2789 // Called by fatal error handler. The difference between this and
2790 // JavaThread::print() is that we can't grab lock or allocate memory.
2791 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2792   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2793   oop thread_obj = threadObj();
2794   if (thread_obj != NULL) {
2795     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2796   }
2797   st->print(" [");
2798   st->print("%s", _get_thread_state_name(_thread_state));
2799   if (osthread()) {
2800     st->print(", id=%d", osthread()->thread_id());
2801   }
2802   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2803             _stack_base - _stack_size, _stack_base);
2804   st->print("]");
2805   return;
2806 }
2807 
2808 // Verification
2809 
2810 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2811 
2812 void JavaThread::verify() {
2813   // Verify oops in the thread.
2814   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2815 
2816   // Verify the stack frames.
2817   frames_do(frame_verify);
2818 }
2819 
2820 // CR 6300358 (sub-CR 2137150)
2821 // Most callers of this method assume that it can't return NULL but a
2822 // thread may not have a name whilst it is in the process of attaching to
2823 // the VM - see CR 6412693, and there are places where a JavaThread can be
2824 // seen prior to having it's threadObj set (eg JNI attaching threads and
2825 // if vm exit occurs during initialization). These cases can all be accounted
2826 // for such that this method never returns NULL.
2827 const char* JavaThread::get_thread_name() const {
2828 #ifdef ASSERT
2829   // early safepoints can hit while current thread does not yet have TLS
2830   if (!SafepointSynchronize::is_at_safepoint()) {
2831     Thread *cur = Thread::current();
2832     if (!(cur->is_Java_thread() && cur == this)) {
2833       // Current JavaThreads are allowed to get their own name without
2834       // the Threads_lock.
2835       assert_locked_or_safepoint(Threads_lock);
2836     }
2837   }
2838 #endif // ASSERT
2839   return get_thread_name_string();
2840 }
2841 
2842 // Returns a non-NULL representation of this thread's name, or a suitable
2843 // descriptive string if there is no set name
2844 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2845   const char* name_str;
2846   oop thread_obj = threadObj();
2847   if (thread_obj != NULL) {
2848     oop name = java_lang_Thread::name(thread_obj);
2849     if (name != NULL) {
2850       if (buf == NULL) {
2851         name_str = java_lang_String::as_utf8_string(name);
2852       } else {
2853         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2854       }
2855     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2856       name_str = "<no-name - thread is attaching>";
2857     } else {
2858       name_str = Thread::name();
2859     }
2860   } else {
2861     name_str = Thread::name();
2862   }
2863   assert(name_str != NULL, "unexpected NULL thread name");
2864   return name_str;
2865 }
2866 
2867 
2868 const char* JavaThread::get_threadgroup_name() const {
2869   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2870   oop thread_obj = threadObj();
2871   if (thread_obj != NULL) {
2872     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2873     if (thread_group != NULL) {
2874       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2875       // ThreadGroup.name can be null
2876       if (name != NULL) {
2877         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2878         return str;
2879       }
2880     }
2881   }
2882   return NULL;
2883 }
2884 
2885 const char* JavaThread::get_parent_name() const {
2886   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2887   oop thread_obj = threadObj();
2888   if (thread_obj != NULL) {
2889     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2890     if (thread_group != NULL) {
2891       oop parent = java_lang_ThreadGroup::parent(thread_group);
2892       if (parent != NULL) {
2893         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2894         // ThreadGroup.name can be null
2895         if (name != NULL) {
2896           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2897           return str;
2898         }
2899       }
2900     }
2901   }
2902   return NULL;
2903 }
2904 
2905 ThreadPriority JavaThread::java_priority() const {
2906   oop thr_oop = threadObj();
2907   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2908   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2909   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2910   return priority;
2911 }
2912 
2913 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2914 
2915   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2916   // Link Java Thread object <-> C++ Thread
2917 
2918   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2919   // and put it into a new Handle.  The Handle "thread_oop" can then
2920   // be used to pass the C++ thread object to other methods.
2921 
2922   // Set the Java level thread object (jthread) field of the
2923   // new thread (a JavaThread *) to C++ thread object using the
2924   // "thread_oop" handle.
2925 
2926   // Set the thread field (a JavaThread *) of the
2927   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2928 
2929   Handle thread_oop(Thread::current(),
2930                     JNIHandles::resolve_non_null(jni_thread));
2931   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2932          "must be initialized");
2933   set_threadObj(thread_oop());
2934   java_lang_Thread::set_thread(thread_oop(), this);
2935 
2936   if (prio == NoPriority) {
2937     prio = java_lang_Thread::priority(thread_oop());
2938     assert(prio != NoPriority, "A valid priority should be present");
2939   }
2940 
2941   // Push the Java priority down to the native thread; needs Threads_lock
2942   Thread::set_priority(this, prio);
2943 
2944   prepare_ext();
2945 
2946   // Add the new thread to the Threads list and set it in motion.
2947   // We must have threads lock in order to call Threads::add.
2948   // It is crucial that we do not block before the thread is
2949   // added to the Threads list for if a GC happens, then the java_thread oop
2950   // will not be visited by GC.
2951   Threads::add(this);
2952 }
2953 
2954 oop JavaThread::current_park_blocker() {
2955   // Support for JSR-166 locks
2956   oop thread_oop = threadObj();
2957   if (thread_oop != NULL &&
2958       JDK_Version::current().supports_thread_park_blocker()) {
2959     return java_lang_Thread::park_blocker(thread_oop);
2960   }
2961   return NULL;
2962 }
2963 
2964 
2965 void JavaThread::print_stack_on(outputStream* st) {
2966   if (!has_last_Java_frame()) return;
2967   ResourceMark rm;
2968   HandleMark   hm;
2969 
2970   RegisterMap reg_map(this);
2971   vframe* start_vf = last_java_vframe(&reg_map);
2972   int count = 0;
2973   for (vframe* f = start_vf; f; f = f->sender()) {
2974     if (f->is_java_frame()) {
2975       javaVFrame* jvf = javaVFrame::cast(f);
2976       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2977 
2978       // Print out lock information
2979       if (JavaMonitorsInStackTrace) {
2980         jvf->print_lock_info_on(st, count);
2981       }
2982     } else {
2983       // Ignore non-Java frames
2984     }
2985 
2986     // Bail-out case for too deep stacks
2987     count++;
2988     if (MaxJavaStackTraceDepth == count) return;
2989   }
2990 }
2991 
2992 
2993 // JVMTI PopFrame support
2994 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2995   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2996   if (in_bytes(size_in_bytes) != 0) {
2997     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
2998     _popframe_preserved_args_size = in_bytes(size_in_bytes);
2999     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3000   }
3001 }
3002 
3003 void* JavaThread::popframe_preserved_args() {
3004   return _popframe_preserved_args;
3005 }
3006 
3007 ByteSize JavaThread::popframe_preserved_args_size() {
3008   return in_ByteSize(_popframe_preserved_args_size);
3009 }
3010 
3011 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3012   int sz = in_bytes(popframe_preserved_args_size());
3013   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3014   return in_WordSize(sz / wordSize);
3015 }
3016 
3017 void JavaThread::popframe_free_preserved_args() {
3018   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3019   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3020   _popframe_preserved_args = NULL;
3021   _popframe_preserved_args_size = 0;
3022 }
3023 
3024 #ifndef PRODUCT
3025 
3026 void JavaThread::trace_frames() {
3027   tty->print_cr("[Describe stack]");
3028   int frame_no = 1;
3029   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3030     tty->print("  %d. ", frame_no++);
3031     fst.current()->print_value_on(tty, this);
3032     tty->cr();
3033   }
3034 }
3035 
3036 class PrintAndVerifyOopClosure: public OopClosure {
3037  protected:
3038   template <class T> inline void do_oop_work(T* p) {
3039     oop obj = oopDesc::load_decode_heap_oop(p);
3040     if (obj == NULL) return;
3041     tty->print(INTPTR_FORMAT ": ", p);
3042     if (obj->is_oop_or_null()) {
3043       if (obj->is_objArray()) {
3044         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3045       } else {
3046         obj->print();
3047       }
3048     } else {
3049       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3050     }
3051     tty->cr();
3052   }
3053  public:
3054   virtual void do_oop(oop* p) { do_oop_work(p); }
3055   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3056 };
3057 
3058 
3059 static void oops_print(frame* f, const RegisterMap *map) {
3060   PrintAndVerifyOopClosure print;
3061   f->print_value();
3062   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3063 }
3064 
3065 // Print our all the locations that contain oops and whether they are
3066 // valid or not.  This useful when trying to find the oldest frame
3067 // where an oop has gone bad since the frame walk is from youngest to
3068 // oldest.
3069 void JavaThread::trace_oops() {
3070   tty->print_cr("[Trace oops]");
3071   frames_do(oops_print);
3072 }
3073 
3074 
3075 #ifdef ASSERT
3076 // Print or validate the layout of stack frames
3077 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3078   ResourceMark rm;
3079   PRESERVE_EXCEPTION_MARK;
3080   FrameValues values;
3081   int frame_no = 0;
3082   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3083     fst.current()->describe(values, ++frame_no);
3084     if (depth == frame_no) break;
3085   }
3086   if (validate_only) {
3087     values.validate();
3088   } else {
3089     tty->print_cr("[Describe stack layout]");
3090     values.print(this);
3091   }
3092 }
3093 #endif
3094 
3095 void JavaThread::trace_stack_from(vframe* start_vf) {
3096   ResourceMark rm;
3097   int vframe_no = 1;
3098   for (vframe* f = start_vf; f; f = f->sender()) {
3099     if (f->is_java_frame()) {
3100       javaVFrame::cast(f)->print_activation(vframe_no++);
3101     } else {
3102       f->print();
3103     }
3104     if (vframe_no > StackPrintLimit) {
3105       tty->print_cr("...<more frames>...");
3106       return;
3107     }
3108   }
3109 }
3110 
3111 
3112 void JavaThread::trace_stack() {
3113   if (!has_last_Java_frame()) return;
3114   ResourceMark rm;
3115   HandleMark   hm;
3116   RegisterMap reg_map(this);
3117   trace_stack_from(last_java_vframe(&reg_map));
3118 }
3119 
3120 
3121 #endif // PRODUCT
3122 
3123 
3124 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3125   assert(reg_map != NULL, "a map must be given");
3126   frame f = last_frame();
3127   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3128     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3129   }
3130   return NULL;
3131 }
3132 
3133 
3134 Klass* JavaThread::security_get_caller_class(int depth) {
3135   vframeStream vfst(this);
3136   vfst.security_get_caller_frame(depth);
3137   if (!vfst.at_end()) {
3138     return vfst.method()->method_holder();
3139   }
3140   return NULL;
3141 }
3142 
3143 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3144   assert(thread->is_Compiler_thread(), "must be compiler thread");
3145   CompileBroker::compiler_thread_loop();
3146 }
3147 
3148 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3149   NMethodSweeper::sweeper_loop();
3150 }
3151 
3152 // Create a CompilerThread
3153 CompilerThread::CompilerThread(CompileQueue* queue,
3154                                CompilerCounters* counters)
3155                                : JavaThread(&compiler_thread_entry) {
3156   _env   = NULL;
3157   _log   = NULL;
3158   _task  = NULL;
3159   _queue = queue;
3160   _counters = counters;
3161   _buffer_blob = NULL;
3162   _compiler = NULL;
3163 
3164 #ifndef PRODUCT
3165   _ideal_graph_printer = NULL;
3166 #endif
3167 }
3168 
3169 // Create sweeper thread
3170 CodeCacheSweeperThread::CodeCacheSweeperThread()
3171 : JavaThread(&sweeper_thread_entry) {
3172   _scanned_nmethod = NULL;
3173 }
3174 void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3175   JavaThread::oops_do(f, cld_f, cf);
3176   if (_scanned_nmethod != NULL && cf != NULL) {
3177     // Safepoints can occur when the sweeper is scanning an nmethod so
3178     // process it here to make sure it isn't unloaded in the middle of
3179     // a scan.
3180     cf->do_code_blob(_scanned_nmethod);
3181   }
3182 }
3183 
3184 
3185 // ======= Threads ========
3186 
3187 // The Threads class links together all active threads, and provides
3188 // operations over all threads.  It is protected by its own Mutex
3189 // lock, which is also used in other contexts to protect thread
3190 // operations from having the thread being operated on from exiting
3191 // and going away unexpectedly (e.g., safepoint synchronization)
3192 
3193 JavaThread* Threads::_thread_list = NULL;
3194 int         Threads::_number_of_threads = 0;
3195 int         Threads::_number_of_non_daemon_threads = 0;
3196 int         Threads::_return_code = 0;
3197 int         Threads::_thread_claim_parity = 0;
3198 size_t      JavaThread::_stack_size_at_create = 0;
3199 #ifdef ASSERT
3200 bool        Threads::_vm_complete = false;
3201 #endif
3202 
3203 // All JavaThreads
3204 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3205 
3206 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3207 void Threads::threads_do(ThreadClosure* tc) {
3208   assert_locked_or_safepoint(Threads_lock);
3209   // ALL_JAVA_THREADS iterates through all JavaThreads
3210   ALL_JAVA_THREADS(p) {
3211     tc->do_thread(p);
3212   }
3213   // Someday we could have a table or list of all non-JavaThreads.
3214   // For now, just manually iterate through them.
3215   tc->do_thread(VMThread::vm_thread());
3216   Universe::heap()->gc_threads_do(tc);
3217   WatcherThread *wt = WatcherThread::watcher_thread();
3218   // Strictly speaking, the following NULL check isn't sufficient to make sure
3219   // the data for WatcherThread is still valid upon being examined. However,
3220   // considering that WatchThread terminates when the VM is on the way to
3221   // exit at safepoint, the chance of the above is extremely small. The right
3222   // way to prevent termination of WatcherThread would be to acquire
3223   // Terminator_lock, but we can't do that without violating the lock rank
3224   // checking in some cases.
3225   if (wt != NULL) {
3226     tc->do_thread(wt);
3227   }
3228 
3229   // If CompilerThreads ever become non-JavaThreads, add them here
3230 }
3231 
3232 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3233   TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3234 
3235   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3236     create_vm_init_libraries();
3237   }
3238 
3239   initialize_class(vmSymbols::java_lang_String(), CHECK);
3240 
3241   // Initialize java_lang.System (needed before creating the thread)
3242   initialize_class(vmSymbols::java_lang_System(), CHECK);
3243   // The VM creates & returns objects of this class. Make sure it's initialized.
3244   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3245   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3246   Handle thread_group = create_initial_thread_group(CHECK);
3247   Universe::set_main_thread_group(thread_group());
3248   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3249   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3250   main_thread->set_threadObj(thread_object);
3251   // Set thread status to running since main thread has
3252   // been started and running.
3253   java_lang_Thread::set_thread_status(thread_object,
3254                                       java_lang_Thread::RUNNABLE);
3255 
3256   // The VM preresolves methods to these classes. Make sure that they get initialized
3257   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3258   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3259   call_initializeSystemClass(CHECK);
3260 
3261   // get the Java runtime name after java.lang.System is initialized
3262   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3263   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3264 
3265   // an instance of OutOfMemory exception has been allocated earlier
3266   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3267   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3268   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3269   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3270   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3271   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3272   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3273   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3274 }
3275 
3276 void Threads::initialize_jsr292_core_classes(TRAPS) {
3277   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3278   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3279   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3280 }
3281 
3282 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3283   extern void JDK_Version_init();
3284 
3285   // Preinitialize version info.
3286   VM_Version::early_initialize();
3287 
3288   // Check version
3289   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3290 
3291   // Initialize the output stream module
3292   ostream_init();
3293 
3294   // Process java launcher properties.
3295   Arguments::process_sun_java_launcher_properties(args);
3296 
3297   // Initialize the os module before using TLS
3298   os::init();
3299 
3300   // Initialize system properties.
3301   Arguments::init_system_properties();
3302 
3303   // So that JDK version can be used as a discriminator when parsing arguments
3304   JDK_Version_init();
3305 
3306   // Update/Initialize System properties after JDK version number is known
3307   Arguments::init_version_specific_system_properties();
3308 
3309   // Parse arguments
3310   jint parse_result = Arguments::parse(args);
3311   if (parse_result != JNI_OK) return parse_result;
3312 
3313   os::init_before_ergo();
3314 
3315   jint ergo_result = Arguments::apply_ergo();
3316   if (ergo_result != JNI_OK) return ergo_result;
3317 
3318   // Final check of all arguments after ergonomics which may change values.
3319   if (!CommandLineFlags::check_all_ranges_and_constraints()) {
3320     return JNI_EINVAL;
3321   }
3322 
3323   if (PauseAtStartup) {
3324     os::pause();
3325   }
3326 
3327   HOTSPOT_VM_INIT_BEGIN();
3328 
3329   // Record VM creation timing statistics
3330   TraceVmCreationTime create_vm_timer;
3331   create_vm_timer.start();
3332 
3333   // Timing (must come after argument parsing)
3334   TraceTime timer("Create VM", TraceStartupTime);
3335 
3336   // Initialize the os module after parsing the args
3337   jint os_init_2_result = os::init_2();
3338   if (os_init_2_result != JNI_OK) return os_init_2_result;
3339 
3340   jint adjust_after_os_result = Arguments::adjust_after_os();
3341   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3342 
3343   // initialize TLS
3344   ThreadLocalStorage::init();
3345 
3346   // Initialize output stream logging
3347   ostream_init_log();
3348 
3349   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3350   // Must be before create_vm_init_agents()
3351   if (Arguments::init_libraries_at_startup()) {
3352     convert_vm_init_libraries_to_agents();
3353   }
3354 
3355   // Launch -agentlib/-agentpath and converted -Xrun agents
3356   if (Arguments::init_agents_at_startup()) {
3357     create_vm_init_agents();
3358   }
3359 
3360   // Initialize Threads state
3361   _thread_list = NULL;
3362   _number_of_threads = 0;
3363   _number_of_non_daemon_threads = 0;
3364 
3365   // Initialize global data structures and create system classes in heap
3366   vm_init_globals();
3367 
3368   // Attach the main thread to this os thread
3369   JavaThread* main_thread = new JavaThread();
3370   main_thread->set_thread_state(_thread_in_vm);
3371   // must do this before set_active_handles and initialize_thread_local_storage
3372   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3373   // change the stack size recorded here to one based on the java thread
3374   // stacksize. This adjusted size is what is used to figure the placement
3375   // of the guard pages.
3376   main_thread->record_stack_base_and_size();
3377   main_thread->initialize_thread_local_storage();
3378 
3379   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3380 
3381   if (!main_thread->set_as_starting_thread()) {
3382     vm_shutdown_during_initialization(
3383                                       "Failed necessary internal allocation. Out of swap space");
3384     delete main_thread;
3385     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3386     return JNI_ENOMEM;
3387   }
3388 
3389   // Enable guard page *after* os::create_main_thread(), otherwise it would
3390   // crash Linux VM, see notes in os_linux.cpp.
3391   main_thread->create_stack_guard_pages();
3392 
3393   // Initialize Java-Level synchronization subsystem
3394   ObjectMonitor::Initialize();
3395 
3396   // Initialize global modules
3397   jint status = init_globals();
3398   if (status != JNI_OK) {
3399     delete main_thread;
3400     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3401     return status;
3402   }
3403 
3404   // Should be done after the heap is fully created
3405   main_thread->cache_global_variables();
3406 
3407   HandleMark hm;
3408 
3409   { MutexLocker mu(Threads_lock);
3410     Threads::add(main_thread);
3411   }
3412 
3413   // Any JVMTI raw monitors entered in onload will transition into
3414   // real raw monitor. VM is setup enough here for raw monitor enter.
3415   JvmtiExport::transition_pending_onload_raw_monitors();
3416 
3417   // Create the VMThread
3418   { TraceTime timer("Start VMThread", TraceStartupTime);
3419     VMThread::create();
3420     Thread* vmthread = VMThread::vm_thread();
3421 
3422     if (!os::create_thread(vmthread, os::vm_thread)) {
3423       vm_exit_during_initialization("Cannot create VM thread. "
3424                                     "Out of system resources.");
3425     }
3426 
3427     // Wait for the VM thread to become ready, and VMThread::run to initialize
3428     // Monitors can have spurious returns, must always check another state flag
3429     {
3430       MutexLocker ml(Notify_lock);
3431       os::start_thread(vmthread);
3432       while (vmthread->active_handles() == NULL) {
3433         Notify_lock->wait();
3434       }
3435     }
3436   }
3437 
3438   assert(Universe::is_fully_initialized(), "not initialized");
3439   if (VerifyDuringStartup) {
3440     // Make sure we're starting with a clean slate.
3441     VM_Verify verify_op;
3442     VMThread::execute(&verify_op);
3443   }
3444 
3445   Thread* THREAD = Thread::current();
3446 
3447   // At this point, the Universe is initialized, but we have not executed
3448   // any byte code.  Now is a good time (the only time) to dump out the
3449   // internal state of the JVM for sharing.
3450   if (DumpSharedSpaces) {
3451     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3452     ShouldNotReachHere();
3453   }
3454 
3455   // Always call even when there are not JVMTI environments yet, since environments
3456   // may be attached late and JVMTI must track phases of VM execution
3457   JvmtiExport::enter_start_phase();
3458 
3459   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3460   JvmtiExport::post_vm_start();
3461 
3462   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3463 
3464   // We need this for ClassDataSharing - the initial vm.info property is set
3465   // with the default value of CDS "sharing" which may be reset through
3466   // command line options.
3467   reset_vm_info_property(CHECK_JNI_ERR);
3468 
3469   quicken_jni_functions();
3470 
3471   // Must be run after init_ft which initializes ft_enabled
3472   if (TRACE_INITIALIZE() != JNI_OK) {
3473     vm_exit_during_initialization("Failed to initialize tracing backend");
3474   }
3475 
3476   // Set flag that basic initialization has completed. Used by exceptions and various
3477   // debug stuff, that does not work until all basic classes have been initialized.
3478   set_init_completed();
3479 
3480   Metaspace::post_initialize();
3481 
3482   HOTSPOT_VM_INIT_END();
3483 
3484   // record VM initialization completion time
3485 #if INCLUDE_MANAGEMENT
3486   Management::record_vm_init_completed();
3487 #endif // INCLUDE_MANAGEMENT
3488 
3489   // Compute system loader. Note that this has to occur after set_init_completed, since
3490   // valid exceptions may be thrown in the process.
3491   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3492   // set_init_completed has just been called, causing exceptions not to be shortcut
3493   // anymore. We call vm_exit_during_initialization directly instead.
3494   SystemDictionary::compute_java_system_loader(CHECK_JNI_ERR);
3495 
3496 #if INCLUDE_ALL_GCS
3497   // Support for ConcurrentMarkSweep. This should be cleaned up
3498   // and better encapsulated. The ugly nested if test would go away
3499   // once things are properly refactored. XXX YSR
3500   if (UseConcMarkSweepGC || UseG1GC) {
3501     if (UseConcMarkSweepGC) {
3502       ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3503     } else {
3504       ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3505     }
3506   }
3507 #endif // INCLUDE_ALL_GCS
3508 
3509   // Always call even when there are not JVMTI environments yet, since environments
3510   // may be attached late and JVMTI must track phases of VM execution
3511   JvmtiExport::enter_live_phase();
3512 
3513   // Signal Dispatcher needs to be started before VMInit event is posted
3514   os::signal_init();
3515 
3516   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3517   if (!DisableAttachMechanism) {
3518     AttachListener::vm_start();
3519     if (StartAttachListener || AttachListener::init_at_startup()) {
3520       AttachListener::init();
3521     }
3522   }
3523 
3524   // Launch -Xrun agents
3525   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3526   // back-end can launch with -Xdebug -Xrunjdwp.
3527   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3528     create_vm_init_libraries();
3529   }
3530 
3531   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3532   JvmtiExport::post_vm_initialized();
3533 
3534   if (TRACE_START() != JNI_OK) {
3535     vm_exit_during_initialization("Failed to start tracing backend.");
3536   }
3537 
3538   if (CleanChunkPoolAsync) {
3539     Chunk::start_chunk_pool_cleaner_task();
3540   }
3541 
3542   // initialize compiler(s)
3543 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3544   CompileBroker::compilation_init();
3545 #endif
3546 
3547   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3548   // It is done after compilers are initialized, because otherwise compilations of
3549   // signature polymorphic MH intrinsics can be missed
3550   // (see SystemDictionary::find_method_handle_intrinsic).
3551   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3552 
3553 #if INCLUDE_MANAGEMENT
3554   Management::initialize(THREAD);
3555 
3556   if (HAS_PENDING_EXCEPTION) {
3557     // management agent fails to start possibly due to
3558     // configuration problem and is responsible for printing
3559     // stack trace if appropriate. Simply exit VM.
3560     vm_exit(1);
3561   }
3562 #endif // INCLUDE_MANAGEMENT
3563 
3564   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3565   if (MemProfiling)                   MemProfiler::engage();
3566   StatSampler::engage();
3567   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3568 
3569   BiasedLocking::init();
3570 
3571 #if INCLUDE_RTM_OPT
3572   RTMLockingCounters::init();
3573 #endif
3574 
3575   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3576     call_postVMInitHook(THREAD);
3577     // The Java side of PostVMInitHook.run must deal with all
3578     // exceptions and provide means of diagnosis.
3579     if (HAS_PENDING_EXCEPTION) {
3580       CLEAR_PENDING_EXCEPTION;
3581     }
3582   }
3583 
3584   {
3585     MutexLocker ml(PeriodicTask_lock);
3586     // Make sure the WatcherThread can be started by WatcherThread::start()
3587     // or by dynamic enrollment.
3588     WatcherThread::make_startable();
3589     // Start up the WatcherThread if there are any periodic tasks
3590     // NOTE:  All PeriodicTasks should be registered by now. If they
3591     //   aren't, late joiners might appear to start slowly (we might
3592     //   take a while to process their first tick).
3593     if (PeriodicTask::num_tasks() > 0) {
3594       WatcherThread::start();
3595     }
3596   }
3597 
3598   CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3599 
3600   create_vm_timer.end();
3601 #ifdef ASSERT
3602   _vm_complete = true;
3603 #endif
3604   return JNI_OK;
3605 }
3606 
3607 // type for the Agent_OnLoad and JVM_OnLoad entry points
3608 extern "C" {
3609   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3610 }
3611 // Find a command line agent library and return its entry point for
3612 //         -agentlib:  -agentpath:   -Xrun
3613 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3614 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3615                                     const char *on_load_symbols[],
3616                                     size_t num_symbol_entries) {
3617   OnLoadEntry_t on_load_entry = NULL;
3618   void *library = NULL;
3619 
3620   if (!agent->valid()) {
3621     char buffer[JVM_MAXPATHLEN];
3622     char ebuf[1024] = "";
3623     const char *name = agent->name();
3624     const char *msg = "Could not find agent library ";
3625 
3626     // First check to see if agent is statically linked into executable
3627     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3628       library = agent->os_lib();
3629     } else if (agent->is_absolute_path()) {
3630       library = os::dll_load(name, ebuf, sizeof ebuf);
3631       if (library == NULL) {
3632         const char *sub_msg = " in absolute path, with error: ";
3633         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3634         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3635         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3636         // If we can't find the agent, exit.
3637         vm_exit_during_initialization(buf, NULL);
3638         FREE_C_HEAP_ARRAY(char, buf);
3639       }
3640     } else {
3641       // Try to load the agent from the standard dll directory
3642       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3643                              name)) {
3644         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3645       }
3646       if (library == NULL) { // Try the local directory
3647         char ns[1] = {0};
3648         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3649           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3650         }
3651         if (library == NULL) {
3652           const char *sub_msg = " on the library path, with error: ";
3653           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3654           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3655           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3656           // If we can't find the agent, exit.
3657           vm_exit_during_initialization(buf, NULL);
3658           FREE_C_HEAP_ARRAY(char, buf);
3659         }
3660       }
3661     }
3662     agent->set_os_lib(library);
3663     agent->set_valid();
3664   }
3665 
3666   // Find the OnLoad function.
3667   on_load_entry =
3668     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3669                                                           false,
3670                                                           on_load_symbols,
3671                                                           num_symbol_entries));
3672   return on_load_entry;
3673 }
3674 
3675 // Find the JVM_OnLoad entry point
3676 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3677   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3678   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3679 }
3680 
3681 // Find the Agent_OnLoad entry point
3682 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3683   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3684   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3685 }
3686 
3687 // For backwards compatibility with -Xrun
3688 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3689 // treated like -agentpath:
3690 // Must be called before agent libraries are created
3691 void Threads::convert_vm_init_libraries_to_agents() {
3692   AgentLibrary* agent;
3693   AgentLibrary* next;
3694 
3695   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3696     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3697     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3698 
3699     // If there is an JVM_OnLoad function it will get called later,
3700     // otherwise see if there is an Agent_OnLoad
3701     if (on_load_entry == NULL) {
3702       on_load_entry = lookup_agent_on_load(agent);
3703       if (on_load_entry != NULL) {
3704         // switch it to the agent list -- so that Agent_OnLoad will be called,
3705         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3706         Arguments::convert_library_to_agent(agent);
3707       } else {
3708         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3709       }
3710     }
3711   }
3712 }
3713 
3714 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3715 // Invokes Agent_OnLoad
3716 // Called very early -- before JavaThreads exist
3717 void Threads::create_vm_init_agents() {
3718   extern struct JavaVM_ main_vm;
3719   AgentLibrary* agent;
3720 
3721   JvmtiExport::enter_onload_phase();
3722 
3723   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3724     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3725 
3726     if (on_load_entry != NULL) {
3727       // Invoke the Agent_OnLoad function
3728       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3729       if (err != JNI_OK) {
3730         vm_exit_during_initialization("agent library failed to init", agent->name());
3731       }
3732     } else {
3733       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3734     }
3735   }
3736   JvmtiExport::enter_primordial_phase();
3737 }
3738 
3739 extern "C" {
3740   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3741 }
3742 
3743 void Threads::shutdown_vm_agents() {
3744   // Send any Agent_OnUnload notifications
3745   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3746   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3747   extern struct JavaVM_ main_vm;
3748   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3749 
3750     // Find the Agent_OnUnload function.
3751     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3752                                                    os::find_agent_function(agent,
3753                                                    false,
3754                                                    on_unload_symbols,
3755                                                    num_symbol_entries));
3756 
3757     // Invoke the Agent_OnUnload function
3758     if (unload_entry != NULL) {
3759       JavaThread* thread = JavaThread::current();
3760       ThreadToNativeFromVM ttn(thread);
3761       HandleMark hm(thread);
3762       (*unload_entry)(&main_vm);
3763     }
3764   }
3765 }
3766 
3767 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3768 // Invokes JVM_OnLoad
3769 void Threads::create_vm_init_libraries() {
3770   extern struct JavaVM_ main_vm;
3771   AgentLibrary* agent;
3772 
3773   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3774     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3775 
3776     if (on_load_entry != NULL) {
3777       // Invoke the JVM_OnLoad function
3778       JavaThread* thread = JavaThread::current();
3779       ThreadToNativeFromVM ttn(thread);
3780       HandleMark hm(thread);
3781       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3782       if (err != JNI_OK) {
3783         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3784       }
3785     } else {
3786       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3787     }
3788   }
3789 }
3790 
3791 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3792   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3793 
3794   JavaThread* java_thread = NULL;
3795   // Sequential search for now.  Need to do better optimization later.
3796   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3797     oop tobj = thread->threadObj();
3798     if (!thread->is_exiting() &&
3799         tobj != NULL &&
3800         java_tid == java_lang_Thread::thread_id(tobj)) {
3801       java_thread = thread;
3802       break;
3803     }
3804   }
3805   return java_thread;
3806 }
3807 
3808 
3809 // Last thread running calls java.lang.Shutdown.shutdown()
3810 void JavaThread::invoke_shutdown_hooks() {
3811   HandleMark hm(this);
3812 
3813   // We could get here with a pending exception, if so clear it now.
3814   if (this->has_pending_exception()) {
3815     this->clear_pending_exception();
3816   }
3817 
3818   EXCEPTION_MARK;
3819   Klass* k =
3820     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3821                                       THREAD);
3822   if (k != NULL) {
3823     // SystemDictionary::resolve_or_null will return null if there was
3824     // an exception.  If we cannot load the Shutdown class, just don't
3825     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3826     // and finalizers (if runFinalizersOnExit is set) won't be run.
3827     // Note that if a shutdown hook was registered or runFinalizersOnExit
3828     // was called, the Shutdown class would have already been loaded
3829     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3830     instanceKlassHandle shutdown_klass (THREAD, k);
3831     JavaValue result(T_VOID);
3832     JavaCalls::call_static(&result,
3833                            shutdown_klass,
3834                            vmSymbols::shutdown_method_name(),
3835                            vmSymbols::void_method_signature(),
3836                            THREAD);
3837   }
3838   CLEAR_PENDING_EXCEPTION;
3839 }
3840 
3841 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3842 // the program falls off the end of main(). Another VM exit path is through
3843 // vm_exit() when the program calls System.exit() to return a value or when
3844 // there is a serious error in VM. The two shutdown paths are not exactly
3845 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3846 // and VM_Exit op at VM level.
3847 //
3848 // Shutdown sequence:
3849 //   + Shutdown native memory tracking if it is on
3850 //   + Wait until we are the last non-daemon thread to execute
3851 //     <-- every thing is still working at this moment -->
3852 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3853 //        shutdown hooks, run finalizers if finalization-on-exit
3854 //   + Call before_exit(), prepare for VM exit
3855 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3856 //        currently the only user of this mechanism is File.deleteOnExit())
3857 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3858 //        post thread end and vm death events to JVMTI,
3859 //        stop signal thread
3860 //   + Call JavaThread::exit(), it will:
3861 //      > release JNI handle blocks, remove stack guard pages
3862 //      > remove this thread from Threads list
3863 //     <-- no more Java code from this thread after this point -->
3864 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3865 //     the compiler threads at safepoint
3866 //     <-- do not use anything that could get blocked by Safepoint -->
3867 //   + Disable tracing at JNI/JVM barriers
3868 //   + Set _vm_exited flag for threads that are still running native code
3869 //   + Delete this thread
3870 //   + Call exit_globals()
3871 //      > deletes tty
3872 //      > deletes PerfMemory resources
3873 //   + Return to caller
3874 
3875 bool Threads::destroy_vm() {
3876   JavaThread* thread = JavaThread::current();
3877 
3878 #ifdef ASSERT
3879   _vm_complete = false;
3880 #endif
3881   // Wait until we are the last non-daemon thread to execute
3882   { MutexLocker nu(Threads_lock);
3883     while (Threads::number_of_non_daemon_threads() > 1)
3884       // This wait should make safepoint checks, wait without a timeout,
3885       // and wait as a suspend-equivalent condition.
3886       //
3887       // Note: If the FlatProfiler is running and this thread is waiting
3888       // for another non-daemon thread to finish, then the FlatProfiler
3889       // is waiting for the external suspend request on this thread to
3890       // complete. wait_for_ext_suspend_completion() will eventually
3891       // timeout, but that takes time. Making this wait a suspend-
3892       // equivalent condition solves that timeout problem.
3893       //
3894       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3895                          Mutex::_as_suspend_equivalent_flag);
3896   }
3897 
3898   // Hang forever on exit if we are reporting an error.
3899   if (ShowMessageBoxOnError && is_error_reported()) {
3900     os::infinite_sleep();
3901   }
3902   os::wait_for_keypress_at_exit();
3903 
3904   // run Java level shutdown hooks
3905   thread->invoke_shutdown_hooks();
3906 
3907   before_exit(thread);
3908 
3909   thread->exit(true);
3910 
3911   // Stop VM thread.
3912   {
3913     // 4945125 The vm thread comes to a safepoint during exit.
3914     // GC vm_operations can get caught at the safepoint, and the
3915     // heap is unparseable if they are caught. Grab the Heap_lock
3916     // to prevent this. The GC vm_operations will not be able to
3917     // queue until after the vm thread is dead. After this point,
3918     // we'll never emerge out of the safepoint before the VM exits.
3919 
3920     MutexLocker ml(Heap_lock);
3921 
3922     VMThread::wait_for_vm_thread_exit();
3923     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3924     VMThread::destroy();
3925   }
3926 
3927   // clean up ideal graph printers
3928 #if defined(COMPILER2) && !defined(PRODUCT)
3929   IdealGraphPrinter::clean_up();
3930 #endif
3931 
3932   // Now, all Java threads are gone except daemon threads. Daemon threads
3933   // running Java code or in VM are stopped by the Safepoint. However,
3934   // daemon threads executing native code are still running.  But they
3935   // will be stopped at native=>Java/VM barriers. Note that we can't
3936   // simply kill or suspend them, as it is inherently deadlock-prone.
3937 
3938 #ifndef PRODUCT
3939   // disable function tracing at JNI/JVM barriers
3940   TraceJNICalls = false;
3941   TraceJVMCalls = false;
3942   TraceRuntimeCalls = false;
3943 #endif
3944 
3945   VM_Exit::set_vm_exited();
3946 
3947   notify_vm_shutdown();
3948 
3949   delete thread;
3950 
3951   // exit_globals() will delete tty
3952   exit_globals();
3953 
3954   return true;
3955 }
3956 
3957 
3958 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3959   if (version == JNI_VERSION_1_1) return JNI_TRUE;
3960   return is_supported_jni_version(version);
3961 }
3962 
3963 
3964 jboolean Threads::is_supported_jni_version(jint version) {
3965   if (version == JNI_VERSION_1_2) return JNI_TRUE;
3966   if (version == JNI_VERSION_1_4) return JNI_TRUE;
3967   if (version == JNI_VERSION_1_6) return JNI_TRUE;
3968   if (version == JNI_VERSION_1_8) return JNI_TRUE;
3969   return JNI_FALSE;
3970 }
3971 
3972 
3973 void Threads::add(JavaThread* p, bool force_daemon) {
3974   // The threads lock must be owned at this point
3975   assert_locked_or_safepoint(Threads_lock);
3976 
3977   // See the comment for this method in thread.hpp for its purpose and
3978   // why it is called here.
3979   p->initialize_queues();
3980   p->set_next(_thread_list);
3981   _thread_list = p;
3982   _number_of_threads++;
3983   oop threadObj = p->threadObj();
3984   bool daemon = true;
3985   // Bootstrapping problem: threadObj can be null for initial
3986   // JavaThread (or for threads attached via JNI)
3987   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3988     _number_of_non_daemon_threads++;
3989     daemon = false;
3990   }
3991 
3992   ThreadService::add_thread(p, daemon);
3993 
3994   // Possible GC point.
3995   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
3996 }
3997 
3998 void Threads::remove(JavaThread* p) {
3999   // Extra scope needed for Thread_lock, so we can check
4000   // that we do not remove thread without safepoint code notice
4001   { MutexLocker ml(Threads_lock);
4002 
4003     assert(includes(p), "p must be present");
4004 
4005     JavaThread* current = _thread_list;
4006     JavaThread* prev    = NULL;
4007 
4008     while (current != p) {
4009       prev    = current;
4010       current = current->next();
4011     }
4012 
4013     if (prev) {
4014       prev->set_next(current->next());
4015     } else {
4016       _thread_list = p->next();
4017     }
4018     _number_of_threads--;
4019     oop threadObj = p->threadObj();
4020     bool daemon = true;
4021     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4022       _number_of_non_daemon_threads--;
4023       daemon = false;
4024 
4025       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4026       // on destroy_vm will wake up.
4027       if (number_of_non_daemon_threads() == 1) {
4028         Threads_lock->notify_all();
4029       }
4030     }
4031     ThreadService::remove_thread(p, daemon);
4032 
4033     // Make sure that safepoint code disregard this thread. This is needed since
4034     // the thread might mess around with locks after this point. This can cause it
4035     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4036     // of this thread since it is removed from the queue.
4037     p->set_terminated_value();
4038   } // unlock Threads_lock
4039 
4040   // Since Events::log uses a lock, we grab it outside the Threads_lock
4041   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4042 }
4043 
4044 // Threads_lock must be held when this is called (or must be called during a safepoint)
4045 bool Threads::includes(JavaThread* p) {
4046   assert(Threads_lock->is_locked(), "sanity check");
4047   ALL_JAVA_THREADS(q) {
4048     if (q == p) {
4049       return true;
4050     }
4051   }
4052   return false;
4053 }
4054 
4055 // Operations on the Threads list for GC.  These are not explicitly locked,
4056 // but the garbage collector must provide a safe context for them to run.
4057 // In particular, these things should never be called when the Threads_lock
4058 // is held by some other thread. (Note: the Safepoint abstraction also
4059 // uses the Threads_lock to guarantee this property. It also makes sure that
4060 // all threads gets blocked when exiting or starting).
4061 
4062 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4063   ALL_JAVA_THREADS(p) {
4064     p->oops_do(f, cld_f, cf);
4065   }
4066   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4067 }
4068 
4069 void Threads::change_thread_claim_parity() {
4070   // Set the new claim parity.
4071   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4072          "Not in range.");
4073   _thread_claim_parity++;
4074   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4075   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4076          "Not in range.");
4077 }
4078 
4079 #ifdef ASSERT
4080 void Threads::assert_all_threads_claimed() {
4081   ALL_JAVA_THREADS(p) {
4082     const int thread_parity = p->oops_do_parity();
4083     assert((thread_parity == _thread_claim_parity),
4084         err_msg("Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity));
4085   }
4086 }
4087 #endif // ASSERT
4088 
4089 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4090   int cp = Threads::thread_claim_parity();
4091   ALL_JAVA_THREADS(p) {
4092     if (p->claim_oops_do(is_par, cp)) {
4093       p->oops_do(f, cld_f, cf);
4094     }
4095   }
4096   VMThread* vmt = VMThread::vm_thread();
4097   if (vmt->claim_oops_do(is_par, cp)) {
4098     vmt->oops_do(f, cld_f, cf);
4099   }
4100 }
4101 
4102 #if INCLUDE_ALL_GCS
4103 // Used by ParallelScavenge
4104 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4105   ALL_JAVA_THREADS(p) {
4106     q->enqueue(new ThreadRootsTask(p));
4107   }
4108   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4109 }
4110 
4111 // Used by Parallel Old
4112 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4113   ALL_JAVA_THREADS(p) {
4114     q->enqueue(new ThreadRootsMarkingTask(p));
4115   }
4116   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4117 }
4118 #endif // INCLUDE_ALL_GCS
4119 
4120 void Threads::nmethods_do(CodeBlobClosure* cf) {
4121   ALL_JAVA_THREADS(p) {
4122     p->nmethods_do(cf);
4123   }
4124   VMThread::vm_thread()->nmethods_do(cf);
4125 }
4126 
4127 void Threads::metadata_do(void f(Metadata*)) {
4128   ALL_JAVA_THREADS(p) {
4129     p->metadata_do(f);
4130   }
4131 }
4132 
4133 class ThreadHandlesClosure : public ThreadClosure {
4134   void (*_f)(Metadata*);
4135  public:
4136   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4137   virtual void do_thread(Thread* thread) {
4138     thread->metadata_handles_do(_f);
4139   }
4140 };
4141 
4142 void Threads::metadata_handles_do(void f(Metadata*)) {
4143   // Only walk the Handles in Thread.
4144   ThreadHandlesClosure handles_closure(f);
4145   threads_do(&handles_closure);
4146 }
4147 
4148 void Threads::deoptimized_wrt_marked_nmethods() {
4149   ALL_JAVA_THREADS(p) {
4150     p->deoptimized_wrt_marked_nmethods();
4151   }
4152 }
4153 
4154 
4155 // Get count Java threads that are waiting to enter the specified monitor.
4156 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4157                                                          address monitor,
4158                                                          bool doLock) {
4159   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4160          "must grab Threads_lock or be at safepoint");
4161   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4162 
4163   int i = 0;
4164   {
4165     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4166     ALL_JAVA_THREADS(p) {
4167       if (p->is_Compiler_thread()) continue;
4168 
4169       address pending = (address)p->current_pending_monitor();
4170       if (pending == monitor) {             // found a match
4171         if (i < count) result->append(p);   // save the first count matches
4172         i++;
4173       }
4174     }
4175   }
4176   return result;
4177 }
4178 
4179 
4180 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4181                                                       bool doLock) {
4182   assert(doLock ||
4183          Threads_lock->owned_by_self() ||
4184          SafepointSynchronize::is_at_safepoint(),
4185          "must grab Threads_lock or be at safepoint");
4186 
4187   // NULL owner means not locked so we can skip the search
4188   if (owner == NULL) return NULL;
4189 
4190   {
4191     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4192     ALL_JAVA_THREADS(p) {
4193       // first, see if owner is the address of a Java thread
4194       if (owner == (address)p) return p;
4195     }
4196   }
4197   // Cannot assert on lack of success here since this function may be
4198   // used by code that is trying to report useful problem information
4199   // like deadlock detection.
4200   if (UseHeavyMonitors) return NULL;
4201 
4202   // If we didn't find a matching Java thread and we didn't force use of
4203   // heavyweight monitors, then the owner is the stack address of the
4204   // Lock Word in the owning Java thread's stack.
4205   //
4206   JavaThread* the_owner = NULL;
4207   {
4208     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4209     ALL_JAVA_THREADS(q) {
4210       if (q->is_lock_owned(owner)) {
4211         the_owner = q;
4212         break;
4213       }
4214     }
4215   }
4216   // cannot assert on lack of success here; see above comment
4217   return the_owner;
4218 }
4219 
4220 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4221 void Threads::print_on(outputStream* st, bool print_stacks,
4222                        bool internal_format, bool print_concurrent_locks) {
4223   char buf[32];
4224   st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4225 
4226   st->print_cr("Full thread dump %s (%s %s):",
4227                Abstract_VM_Version::vm_name(),
4228                Abstract_VM_Version::vm_release(),
4229                Abstract_VM_Version::vm_info_string());
4230   st->cr();
4231 
4232 #if INCLUDE_SERVICES
4233   // Dump concurrent locks
4234   ConcurrentLocksDump concurrent_locks;
4235   if (print_concurrent_locks) {
4236     concurrent_locks.dump_at_safepoint();
4237   }
4238 #endif // INCLUDE_SERVICES
4239 
4240   ALL_JAVA_THREADS(p) {
4241     ResourceMark rm;
4242     p->print_on(st);
4243     if (print_stacks) {
4244       if (internal_format) {
4245         p->trace_stack();
4246       } else {
4247         p->print_stack_on(st);
4248       }
4249     }
4250     st->cr();
4251 #if INCLUDE_SERVICES
4252     if (print_concurrent_locks) {
4253       concurrent_locks.print_locks_on(p, st);
4254     }
4255 #endif // INCLUDE_SERVICES
4256   }
4257 
4258   VMThread::vm_thread()->print_on(st);
4259   st->cr();
4260   Universe::heap()->print_gc_threads_on(st);
4261   WatcherThread* wt = WatcherThread::watcher_thread();
4262   if (wt != NULL) {
4263     wt->print_on(st);
4264     st->cr();
4265   }
4266   CompileBroker::print_compiler_threads_on(st);
4267   st->flush();
4268 }
4269 
4270 // Threads::print_on_error() is called by fatal error handler. It's possible
4271 // that VM is not at safepoint and/or current thread is inside signal handler.
4272 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4273 // memory (even in resource area), it might deadlock the error handler.
4274 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4275                              int buflen) {
4276   bool found_current = false;
4277   st->print_cr("Java Threads: ( => current thread )");
4278   ALL_JAVA_THREADS(thread) {
4279     bool is_current = (current == thread);
4280     found_current = found_current || is_current;
4281 
4282     st->print("%s", is_current ? "=>" : "  ");
4283 
4284     st->print(PTR_FORMAT, thread);
4285     st->print(" ");
4286     thread->print_on_error(st, buf, buflen);
4287     st->cr();
4288   }
4289   st->cr();
4290 
4291   st->print_cr("Other Threads:");
4292   if (VMThread::vm_thread()) {
4293     bool is_current = (current == VMThread::vm_thread());
4294     found_current = found_current || is_current;
4295     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4296 
4297     st->print(PTR_FORMAT, VMThread::vm_thread());
4298     st->print(" ");
4299     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4300     st->cr();
4301   }
4302   WatcherThread* wt = WatcherThread::watcher_thread();
4303   if (wt != NULL) {
4304     bool is_current = (current == wt);
4305     found_current = found_current || is_current;
4306     st->print("%s", is_current ? "=>" : "  ");
4307 
4308     st->print(PTR_FORMAT, wt);
4309     st->print(" ");
4310     wt->print_on_error(st, buf, buflen);
4311     st->cr();
4312   }
4313   if (!found_current) {
4314     st->cr();
4315     st->print("=>" PTR_FORMAT " (exited) ", current);
4316     current->print_on_error(st, buf, buflen);
4317     st->cr();
4318   }
4319 }
4320 
4321 // Internal SpinLock and Mutex
4322 // Based on ParkEvent
4323 
4324 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4325 //
4326 // We employ SpinLocks _only for low-contention, fixed-length
4327 // short-duration critical sections where we're concerned
4328 // about native mutex_t or HotSpot Mutex:: latency.
4329 // The mux construct provides a spin-then-block mutual exclusion
4330 // mechanism.
4331 //
4332 // Testing has shown that contention on the ListLock guarding gFreeList
4333 // is common.  If we implement ListLock as a simple SpinLock it's common
4334 // for the JVM to devolve to yielding with little progress.  This is true
4335 // despite the fact that the critical sections protected by ListLock are
4336 // extremely short.
4337 //
4338 // TODO-FIXME: ListLock should be of type SpinLock.
4339 // We should make this a 1st-class type, integrated into the lock
4340 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4341 // should have sufficient padding to avoid false-sharing and excessive
4342 // cache-coherency traffic.
4343 
4344 
4345 typedef volatile int SpinLockT;
4346 
4347 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4348   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4349     return;   // normal fast-path return
4350   }
4351 
4352   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4353   TEVENT(SpinAcquire - ctx);
4354   int ctr = 0;
4355   int Yields = 0;
4356   for (;;) {
4357     while (*adr != 0) {
4358       ++ctr;
4359       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4360         if (Yields > 5) {
4361           os::naked_short_sleep(1);
4362         } else {
4363           os::naked_yield();
4364           ++Yields;
4365         }
4366       } else {
4367         SpinPause();
4368       }
4369     }
4370     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4371   }
4372 }
4373 
4374 void Thread::SpinRelease(volatile int * adr) {
4375   assert(*adr != 0, "invariant");
4376   OrderAccess::fence();      // guarantee at least release consistency.
4377   // Roach-motel semantics.
4378   // It's safe if subsequent LDs and STs float "up" into the critical section,
4379   // but prior LDs and STs within the critical section can't be allowed
4380   // to reorder or float past the ST that releases the lock.
4381   // Loads and stores in the critical section - which appear in program
4382   // order before the store that releases the lock - must also appear
4383   // before the store that releases the lock in memory visibility order.
4384   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4385   // the ST of 0 into the lock-word which releases the lock, so fence
4386   // more than covers this on all platforms.
4387   *adr = 0;
4388 }
4389 
4390 // muxAcquire and muxRelease:
4391 //
4392 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4393 //    The LSB of the word is set IFF the lock is held.
4394 //    The remainder of the word points to the head of a singly-linked list
4395 //    of threads blocked on the lock.
4396 //
4397 // *  The current implementation of muxAcquire-muxRelease uses its own
4398 //    dedicated Thread._MuxEvent instance.  If we're interested in
4399 //    minimizing the peak number of extant ParkEvent instances then
4400 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4401 //    as certain invariants were satisfied.  Specifically, care would need
4402 //    to be taken with regards to consuming unpark() "permits".
4403 //    A safe rule of thumb is that a thread would never call muxAcquire()
4404 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4405 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4406 //    consume an unpark() permit intended for monitorenter, for instance.
4407 //    One way around this would be to widen the restricted-range semaphore
4408 //    implemented in park().  Another alternative would be to provide
4409 //    multiple instances of the PlatformEvent() for each thread.  One
4410 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4411 //
4412 // *  Usage:
4413 //    -- Only as leaf locks
4414 //    -- for short-term locking only as muxAcquire does not perform
4415 //       thread state transitions.
4416 //
4417 // Alternatives:
4418 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4419 //    but with parking or spin-then-park instead of pure spinning.
4420 // *  Use Taura-Oyama-Yonenzawa locks.
4421 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4422 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4423 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4424 //    acquiring threads use timers (ParkTimed) to detect and recover from
4425 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4426 //    boundaries by using placement-new.
4427 // *  Augment MCS with advisory back-link fields maintained with CAS().
4428 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4429 //    The validity of the backlinks must be ratified before we trust the value.
4430 //    If the backlinks are invalid the exiting thread must back-track through the
4431 //    the forward links, which are always trustworthy.
4432 // *  Add a successor indication.  The LockWord is currently encoded as
4433 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4434 //    to provide the usual futile-wakeup optimization.
4435 //    See RTStt for details.
4436 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4437 //
4438 
4439 
4440 typedef volatile intptr_t MutexT;      // Mux Lock-word
4441 enum MuxBits { LOCKBIT = 1 };
4442 
4443 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4444   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4445   if (w == 0) return;
4446   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4447     return;
4448   }
4449 
4450   TEVENT(muxAcquire - Contention);
4451   ParkEvent * const Self = Thread::current()->_MuxEvent;
4452   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4453   for (;;) {
4454     int its = (os::is_MP() ? 100 : 0) + 1;
4455 
4456     // Optional spin phase: spin-then-park strategy
4457     while (--its >= 0) {
4458       w = *Lock;
4459       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4460         return;
4461       }
4462     }
4463 
4464     Self->reset();
4465     Self->OnList = intptr_t(Lock);
4466     // The following fence() isn't _strictly necessary as the subsequent
4467     // CAS() both serializes execution and ratifies the fetched *Lock value.
4468     OrderAccess::fence();
4469     for (;;) {
4470       w = *Lock;
4471       if ((w & LOCKBIT) == 0) {
4472         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4473           Self->OnList = 0;   // hygiene - allows stronger asserts
4474           return;
4475         }
4476         continue;      // Interference -- *Lock changed -- Just retry
4477       }
4478       assert(w & LOCKBIT, "invariant");
4479       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4480       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4481     }
4482 
4483     while (Self->OnList != 0) {
4484       Self->park();
4485     }
4486   }
4487 }
4488 
4489 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4490   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4491   if (w == 0) return;
4492   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4493     return;
4494   }
4495 
4496   TEVENT(muxAcquire - Contention);
4497   ParkEvent * ReleaseAfter = NULL;
4498   if (ev == NULL) {
4499     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4500   }
4501   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4502   for (;;) {
4503     guarantee(ev->OnList == 0, "invariant");
4504     int its = (os::is_MP() ? 100 : 0) + 1;
4505 
4506     // Optional spin phase: spin-then-park strategy
4507     while (--its >= 0) {
4508       w = *Lock;
4509       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4510         if (ReleaseAfter != NULL) {
4511           ParkEvent::Release(ReleaseAfter);
4512         }
4513         return;
4514       }
4515     }
4516 
4517     ev->reset();
4518     ev->OnList = intptr_t(Lock);
4519     // The following fence() isn't _strictly necessary as the subsequent
4520     // CAS() both serializes execution and ratifies the fetched *Lock value.
4521     OrderAccess::fence();
4522     for (;;) {
4523       w = *Lock;
4524       if ((w & LOCKBIT) == 0) {
4525         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4526           ev->OnList = 0;
4527           // We call ::Release while holding the outer lock, thus
4528           // artificially lengthening the critical section.
4529           // Consider deferring the ::Release() until the subsequent unlock(),
4530           // after we've dropped the outer lock.
4531           if (ReleaseAfter != NULL) {
4532             ParkEvent::Release(ReleaseAfter);
4533           }
4534           return;
4535         }
4536         continue;      // Interference -- *Lock changed -- Just retry
4537       }
4538       assert(w & LOCKBIT, "invariant");
4539       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4540       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4541     }
4542 
4543     while (ev->OnList != 0) {
4544       ev->park();
4545     }
4546   }
4547 }
4548 
4549 // Release() must extract a successor from the list and then wake that thread.
4550 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4551 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4552 // Release() would :
4553 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4554 // (B) Extract a successor from the private list "in-hand"
4555 // (C) attempt to CAS() the residual back into *Lock over null.
4556 //     If there were any newly arrived threads and the CAS() would fail.
4557 //     In that case Release() would detach the RATs, re-merge the list in-hand
4558 //     with the RATs and repeat as needed.  Alternately, Release() might
4559 //     detach and extract a successor, but then pass the residual list to the wakee.
4560 //     The wakee would be responsible for reattaching and remerging before it
4561 //     competed for the lock.
4562 //
4563 // Both "pop" and DMR are immune from ABA corruption -- there can be
4564 // multiple concurrent pushers, but only one popper or detacher.
4565 // This implementation pops from the head of the list.  This is unfair,
4566 // but tends to provide excellent throughput as hot threads remain hot.
4567 // (We wake recently run threads first).
4568 //
4569 // All paths through muxRelease() will execute a CAS.
4570 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4571 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4572 // executed within the critical section are complete and globally visible before the
4573 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4574 void Thread::muxRelease(volatile intptr_t * Lock)  {
4575   for (;;) {
4576     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4577     assert(w & LOCKBIT, "invariant");
4578     if (w == LOCKBIT) return;
4579     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4580     assert(List != NULL, "invariant");
4581     assert(List->OnList == intptr_t(Lock), "invariant");
4582     ParkEvent * const nxt = List->ListNext;
4583     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4584 
4585     // The following CAS() releases the lock and pops the head element.
4586     // The CAS() also ratifies the previously fetched lock-word value.
4587     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4588       continue;
4589     }
4590     List->OnList = 0;
4591     OrderAccess::fence();
4592     List->unpark();
4593     return;
4594   }
4595 }
4596 
4597 
4598 void Threads::verify() {
4599   ALL_JAVA_THREADS(p) {
4600     p->verify();
4601   }
4602   VMThread* thread = VMThread::vm_thread();
4603   if (thread != NULL) thread->verify();
4604 }