1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "os_share_linux.hpp"
  37 #include "prims/jniFastGetField.hpp"
  38 #include "prims/jvm.h"
  39 #include "prims/jvm_misc.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/extendedPC.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/interfaceSupport.hpp"
  44 #include "runtime/java.hpp"
  45 #include "runtime/javaCalls.hpp"
  46 #include "runtime/mutexLocker.hpp"
  47 #include "runtime/osThread.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/thread.inline.hpp"
  51 #include "runtime/timer.hpp"
  52 #include "services/memTracker.hpp"
  53 #include "utilities/events.hpp"
  54 #include "utilities/vmError.hpp"
  55 
  56 // put OS-includes here
  57 # include <sys/types.h>
  58 # include <sys/mman.h>
  59 # include <pthread.h>
  60 # include <signal.h>
  61 # include <errno.h>
  62 # include <dlfcn.h>
  63 # include <stdlib.h>
  64 # include <stdio.h>
  65 # include <unistd.h>
  66 # include <sys/resource.h>
  67 # include <pthread.h>
  68 # include <sys/stat.h>
  69 # include <sys/time.h>
  70 # include <sys/utsname.h>
  71 # include <sys/socket.h>
  72 # include <sys/wait.h>
  73 # include <pwd.h>
  74 # include <poll.h>
  75 # include <ucontext.h>
  76 # include <fpu_control.h>
  77 
  78 #ifdef AMD64
  79 #define REG_SP REG_RSP
  80 #define REG_PC REG_RIP
  81 #define REG_FP REG_RBP
  82 #define SPELL_REG_SP "rsp"
  83 #define SPELL_REG_FP "rbp"
  84 #else
  85 #define REG_SP REG_UESP
  86 #define REG_PC REG_EIP
  87 #define REG_FP REG_EBP
  88 #define SPELL_REG_SP "esp"
  89 #define SPELL_REG_FP "ebp"
  90 #endif // AMD64
  91 
  92 address os::current_stack_pointer() {
  93 #ifdef SPARC_WORKS
  94   register void *esp;
  95   __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
  96   return (address) ((char*)esp + sizeof(long)*2);
  97 #elif defined(__clang__)
  98   intptr_t* esp;
  99   __asm__ __volatile__ ("mov %%"SPELL_REG_SP", %0":"=r"(esp):);
 100   return (address) esp;
 101 #else
 102   register void *esp __asm__ (SPELL_REG_SP);
 103   return (address) esp;
 104 #endif
 105 }
 106 
 107 char* os::non_memory_address_word() {
 108   // Must never look like an address returned by reserve_memory,
 109   // even in its subfields (as defined by the CPU immediate fields,
 110   // if the CPU splits constants across multiple instructions).
 111 
 112   return (char*) -1;
 113 }
 114 
 115 void os::initialize_thread(Thread* thr) {
 116 // Nothing to do.
 117 }
 118 
 119 address os::Linux::ucontext_get_pc(const ucontext_t * uc) {
 120   return (address)uc->uc_mcontext.gregs[REG_PC];
 121 }
 122 
 123 void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) {
 124   uc->uc_mcontext.gregs[REG_PC] = (intptr_t)pc;
 125 }
 126 
 127 intptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) {
 128   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
 129 }
 130 
 131 intptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) {
 132   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
 133 }
 134 
 135 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
 136 // is currently interrupted by SIGPROF.
 137 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
 138 // frames. Currently we don't do that on Linux, so it's the same as
 139 // os::fetch_frame_from_context().
 140 // This method is also used for stack overflow signal handling.
 141 ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
 142   const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
 143 
 144   assert(thread != NULL, "just checking");
 145   assert(ret_sp != NULL, "just checking");
 146   assert(ret_fp != NULL, "just checking");
 147 
 148   return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
 149 }
 150 
 151 ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
 152                     intptr_t** ret_sp, intptr_t** ret_fp) {
 153 
 154   ExtendedPC  epc;
 155   const ucontext_t* uc = (const ucontext_t*)ucVoid;
 156 
 157   if (uc != NULL) {
 158     epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
 159     if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
 160     if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
 161   } else {
 162     // construct empty ExtendedPC for return value checking
 163     epc = ExtendedPC(NULL);
 164     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 165     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 166   }
 167 
 168   return epc;
 169 }
 170 
 171 frame os::fetch_frame_from_context(const void* ucVoid) {
 172   intptr_t* sp;
 173   intptr_t* fp;
 174   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 175   return frame(sp, fp, epc.pc());
 176 }
 177 
 178 frame os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) {
 179   intptr_t* sp;
 180   intptr_t* fp;
 181   ExtendedPC epc = os::Linux::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, &fp);
 182   return frame(sp, fp, epc.pc());
 183 }
 184 
 185 bool os::Linux::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
 186   address pc = (address) os::Linux::ucontext_get_pc(uc);
 187   if (Interpreter::contains(pc)) {
 188     // interpreter performs stack banging after the fixed frame header has
 189     // been generated while the compilers perform it before. To maintain
 190     // semantic consistency between interpreted and compiled frames, the
 191     // method returns the Java sender of the current frame.
 192     *fr = os::fetch_frame_from_ucontext(thread, uc);
 193     if (!fr->is_first_java_frame()) {
 194       assert(fr->safe_for_sender(thread), "Safety check");
 195       *fr = fr->java_sender();
 196     }
 197   } else {
 198     // more complex code with compiled code
 199     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
 200     CodeBlob* cb = CodeCache::find_blob(pc);
 201     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
 202       // Not sure where the pc points to, fallback to default
 203       // stack overflow handling
 204       return false;
 205     } else {
 206       // in compiled code, the stack banging is performed just after the return pc
 207       // has been pushed on the stack
 208       intptr_t* fp = os::Linux::ucontext_get_fp(uc);
 209       intptr_t* sp = os::Linux::ucontext_get_sp(uc);
 210       *fr = frame(sp + 1, fp, (address)*sp);
 211       if (!fr->is_java_frame()) {
 212         assert(fr->safe_for_sender(thread), "Safety check");
 213         assert(!fr->is_first_frame(), "Safety check");
 214         *fr = fr->java_sender();
 215       }
 216     }
 217   }
 218   assert(fr->is_java_frame(), "Safety check");
 219   return true;
 220 }
 221 
 222 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
 223 // turned off by -fomit-frame-pointer,
 224 frame os::get_sender_for_C_frame(frame* fr) {
 225   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
 226 }
 227 
 228 intptr_t* _get_previous_fp() {
 229 #ifdef SPARC_WORKS
 230   register intptr_t **ebp;
 231   __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
 232 #elif defined(__clang__)
 233   intptr_t **ebp;
 234   __asm__ __volatile__ ("mov %%"SPELL_REG_FP", %0":"=r"(ebp):);
 235 #else
 236   register intptr_t **ebp __asm__ (SPELL_REG_FP);
 237 #endif
 238   // ebp is for this frame (_get_previous_fp). We want the ebp for the
 239   // caller of os::current_frame*(), so go up two frames. However, for
 240   // optimized builds, _get_previous_fp() will be inlined, so only go
 241   // up 1 frame in that case.
 242 #ifdef _NMT_NOINLINE_
 243   return **(intptr_t***)ebp;
 244 #else
 245   return *ebp;
 246 #endif
 247 }
 248 
 249 
 250 frame os::current_frame() {
 251   intptr_t* fp = _get_previous_fp();
 252   frame myframe((intptr_t*)os::current_stack_pointer(),
 253                 (intptr_t*)fp,
 254                 CAST_FROM_FN_PTR(address, os::current_frame));
 255   if (os::is_first_C_frame(&myframe)) {
 256     // stack is not walkable
 257     return frame();
 258   } else {
 259     return os::get_sender_for_C_frame(&myframe);
 260   }
 261 }
 262 
 263 // Utility functions
 264 
 265 // From IA32 System Programming Guide
 266 enum {
 267   trap_page_fault = 0xE
 268 };
 269 
 270 extern "C" JNIEXPORT int
 271 JVM_handle_linux_signal(int sig,
 272                         siginfo_t* info,
 273                         void* ucVoid,
 274                         int abort_if_unrecognized) {
 275   ucontext_t* uc = (ucontext_t*) ucVoid;
 276 
 277   Thread* t = Thread::current_or_null_safe();
 278 
 279   // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
 280   // (no destructors can be run)
 281   os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
 282 
 283   SignalHandlerMark shm(t);
 284 
 285   // Note: it's not uncommon that JNI code uses signal/sigset to install
 286   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
 287   // or have a SIGILL handler when detecting CPU type). When that happens,
 288   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
 289   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
 290   // that do not require siginfo/ucontext first.
 291 
 292   if (sig == SIGPIPE || sig == SIGXFSZ) {
 293     // allow chained handler to go first
 294     if (os::Linux::chained_handler(sig, info, ucVoid)) {
 295       return true;
 296     } else {
 297       // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219
 298       return true;
 299     }
 300   }
 301 
 302   JavaThread* thread = NULL;
 303   VMThread* vmthread = NULL;
 304   if (os::Linux::signal_handlers_are_installed) {
 305     if (t != NULL ){
 306       if(t->is_Java_thread()) {
 307         thread = (JavaThread*)t;
 308       }
 309       else if(t->is_VM_thread()){
 310         vmthread = (VMThread *)t;
 311       }
 312     }
 313   }
 314 /*
 315   NOTE: does not seem to work on linux.
 316   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
 317     // can't decode this kind of signal
 318     info = NULL;
 319   } else {
 320     assert(sig == info->si_signo, "bad siginfo");
 321   }
 322 */
 323   // decide if this trap can be handled by a stub
 324   address stub = NULL;
 325 
 326   address pc          = NULL;
 327 
 328   //%note os_trap_1
 329   if (info != NULL && uc != NULL && thread != NULL) {
 330     pc = (address) os::Linux::ucontext_get_pc(uc);
 331 
 332     if (StubRoutines::is_safefetch_fault(pc)) {
 333       os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
 334       return 1;
 335     }
 336 
 337 #ifndef AMD64
 338     // Halt if SI_KERNEL before more crashes get misdiagnosed as Java bugs
 339     // This can happen in any running code (currently more frequently in
 340     // interpreter code but has been seen in compiled code)
 341     if (sig == SIGSEGV && info->si_addr == 0 && info->si_code == SI_KERNEL) {
 342       fatal("An irrecoverable SI_KERNEL SIGSEGV has occurred due "
 343             "to unstable signal handling in this distribution.");
 344     }
 345 #endif // AMD64
 346 
 347     // Handle ALL stack overflow variations here
 348     if (sig == SIGSEGV) {
 349       address addr = (address) info->si_addr;
 350 
 351       // check if fault address is within thread stack
 352       if (thread->on_local_stack(addr)) {
 353         // stack overflow
 354         if (thread->in_stack_yellow_reserved_zone(addr)) {
 355           if (thread->thread_state() == _thread_in_Java) {
 356             if (thread->in_stack_reserved_zone(addr)) {
 357               frame fr;
 358               if (os::Linux::get_frame_at_stack_banging_point(thread, uc, &fr)) {
 359                 assert(fr.is_java_frame(), "Must be a Java frame");
 360                 frame activation =
 361                   SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
 362                 if (activation.sp() != NULL) {
 363                   thread->disable_stack_reserved_zone();
 364                   if (activation.is_interpreted_frame()) {
 365                     thread->set_reserved_stack_activation((address)(
 366                       activation.fp() + frame::interpreter_frame_initial_sp_offset));
 367                   } else {
 368                     thread->set_reserved_stack_activation((address)activation.unextended_sp());
 369                   }
 370                   return 1;
 371                 }
 372               }
 373             }
 374             // Throw a stack overflow exception.  Guard pages will be reenabled
 375             // while unwinding the stack.
 376             thread->disable_stack_yellow_reserved_zone();
 377             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 378           } else {
 379             // Thread was in the vm or native code.  Return and try to finish.
 380             thread->disable_stack_yellow_reserved_zone();
 381             return 1;
 382           }
 383         } else if (thread->in_stack_red_zone(addr)) {
 384           // Fatal red zone violation.  Disable the guard pages and fall through
 385           // to handle_unexpected_exception way down below.
 386           thread->disable_stack_red_zone();
 387           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 388 
 389           // This is a likely cause, but hard to verify. Let's just print
 390           // it as a hint.
 391           tty->print_raw_cr("Please check if any of your loaded .so files has "
 392                             "enabled executable stack (see man page execstack(8))");
 393         } else {
 394           // Accessing stack address below sp may cause SEGV if current
 395           // thread has MAP_GROWSDOWN stack. This should only happen when
 396           // current thread was created by user code with MAP_GROWSDOWN flag
 397           // and then attached to VM. See notes in os_linux.cpp.
 398           if (thread->osthread()->expanding_stack() == 0) {
 399              thread->osthread()->set_expanding_stack();
 400              if (os::Linux::manually_expand_stack(thread, addr)) {
 401                thread->osthread()->clear_expanding_stack();
 402                return 1;
 403              }
 404              thread->osthread()->clear_expanding_stack();
 405           } else {
 406              fatal("recursive segv. expanding stack.");
 407           }
 408         }
 409       }
 410     }
 411 
 412     if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
 413       // Verify that OS save/restore AVX registers.
 414       stub = VM_Version::cpuinfo_cont_addr();
 415     }
 416 
 417     if (thread->thread_state() == _thread_in_Java) {
 418       // Java thread running in Java code => find exception handler if any
 419       // a fault inside compiled code, the interpreter, or a stub
 420 
 421       if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
 422         stub = SharedRuntime::get_poll_stub(pc);
 423       } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
 424         // BugId 4454115: A read from a MappedByteBuffer can fault
 425         // here if the underlying file has been truncated.
 426         // Do not crash the VM in such a case.
 427         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 428         CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
 429         if (nm != NULL && nm->has_unsafe_access()) {
 430           address next_pc = Assembler::locate_next_instruction(pc);
 431           stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
 432         }
 433       }
 434       else
 435 
 436 #ifdef AMD64
 437       if (sig == SIGFPE  &&
 438           (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
 439         stub =
 440           SharedRuntime::
 441           continuation_for_implicit_exception(thread,
 442                                               pc,
 443                                               SharedRuntime::
 444                                               IMPLICIT_DIVIDE_BY_ZERO);
 445 #else
 446       if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
 447         // HACK: si_code does not work on linux 2.2.12-20!!!
 448         int op = pc[0];
 449         if (op == 0xDB) {
 450           // FIST
 451           // TODO: The encoding of D2I in i486.ad can cause an exception
 452           // prior to the fist instruction if there was an invalid operation
 453           // pending. We want to dismiss that exception. From the win_32
 454           // side it also seems that if it really was the fist causing
 455           // the exception that we do the d2i by hand with different
 456           // rounding. Seems kind of weird.
 457           // NOTE: that we take the exception at the NEXT floating point instruction.
 458           assert(pc[0] == 0xDB, "not a FIST opcode");
 459           assert(pc[1] == 0x14, "not a FIST opcode");
 460           assert(pc[2] == 0x24, "not a FIST opcode");
 461           return true;
 462         } else if (op == 0xF7) {
 463           // IDIV
 464           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 465         } else {
 466           // TODO: handle more cases if we are using other x86 instructions
 467           //   that can generate SIGFPE signal on linux.
 468           tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
 469           fatal("please update this code.");
 470         }
 471 #endif // AMD64
 472       } else if (sig == SIGSEGV &&
 473                !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
 474           // Determination of interpreter/vtable stub/compiled code null exception
 475           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 476       }
 477     } else if (thread->thread_state() == _thread_in_vm &&
 478                sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
 479                thread->doing_unsafe_access()) {
 480         address next_pc = Assembler::locate_next_instruction(pc);
 481         stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
 482     }
 483 
 484     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
 485     // and the heap gets shrunk before the field access.
 486     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
 487       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 488       if (addr != (address)-1) {
 489         stub = addr;
 490       }
 491     }
 492 
 493     // Check to see if we caught the safepoint code in the
 494     // process of write protecting the memory serialization page.
 495     // It write enables the page immediately after protecting it
 496     // so we can just return to retry the write.
 497     if ((sig == SIGSEGV) &&
 498         os::is_memory_serialize_page(thread, (address) info->si_addr)) {
 499       // Block current thread until the memory serialize page permission restored.
 500       os::block_on_serialize_page_trap();
 501       return true;
 502     }
 503   }
 504 
 505 #ifndef AMD64
 506   // Execution protection violation
 507   //
 508   // This should be kept as the last step in the triage.  We don't
 509   // have a dedicated trap number for a no-execute fault, so be
 510   // conservative and allow other handlers the first shot.
 511   //
 512   // Note: We don't test that info->si_code == SEGV_ACCERR here.
 513   // this si_code is so generic that it is almost meaningless; and
 514   // the si_code for this condition may change in the future.
 515   // Furthermore, a false-positive should be harmless.
 516   if (UnguardOnExecutionViolation > 0 &&
 517       (sig == SIGSEGV || sig == SIGBUS) &&
 518       uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
 519     int page_size = os::vm_page_size();
 520     address addr = (address) info->si_addr;
 521     address pc = os::Linux::ucontext_get_pc(uc);
 522     // Make sure the pc and the faulting address are sane.
 523     //
 524     // If an instruction spans a page boundary, and the page containing
 525     // the beginning of the instruction is executable but the following
 526     // page is not, the pc and the faulting address might be slightly
 527     // different - we still want to unguard the 2nd page in this case.
 528     //
 529     // 15 bytes seems to be a (very) safe value for max instruction size.
 530     bool pc_is_near_addr =
 531       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
 532     bool instr_spans_page_boundary =
 533       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
 534                        (intptr_t) page_size) > 0);
 535 
 536     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
 537       static volatile address last_addr =
 538         (address) os::non_memory_address_word();
 539 
 540       // In conservative mode, don't unguard unless the address is in the VM
 541       if (addr != last_addr &&
 542           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
 543 
 544         // Set memory to RWX and retry
 545         address page_start =
 546           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
 547         bool res = os::protect_memory((char*) page_start, page_size,
 548                                       os::MEM_PROT_RWX);
 549 
 550         log_debug(os)("Execution protection violation "
 551                       "at " INTPTR_FORMAT
 552                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", p2i(addr),
 553                       p2i(page_start), (res ? "success" : "failed"), errno);
 554         stub = pc;
 555 
 556         // Set last_addr so if we fault again at the same address, we don't end
 557         // up in an endless loop.
 558         //
 559         // There are two potential complications here.  Two threads trapping at
 560         // the same address at the same time could cause one of the threads to
 561         // think it already unguarded, and abort the VM.  Likely very rare.
 562         //
 563         // The other race involves two threads alternately trapping at
 564         // different addresses and failing to unguard the page, resulting in
 565         // an endless loop.  This condition is probably even more unlikely than
 566         // the first.
 567         //
 568         // Although both cases could be avoided by using locks or thread local
 569         // last_addr, these solutions are unnecessary complication: this
 570         // handler is a best-effort safety net, not a complete solution.  It is
 571         // disabled by default and should only be used as a workaround in case
 572         // we missed any no-execute-unsafe VM code.
 573 
 574         last_addr = addr;
 575       }
 576     }
 577   }
 578 #endif // !AMD64
 579 
 580   if (stub != NULL) {
 581     // save all thread context in case we need to restore it
 582     if (thread != NULL) thread->set_saved_exception_pc(pc);
 583 
 584     os::Linux::ucontext_set_pc(uc, stub);
 585     return true;
 586   }
 587 
 588   // signal-chaining
 589   if (os::Linux::chained_handler(sig, info, ucVoid)) {
 590      return true;
 591   }
 592 
 593   if (!abort_if_unrecognized) {
 594     // caller wants another chance, so give it to him
 595     return false;
 596   }
 597 
 598   if (pc == NULL && uc != NULL) {
 599     pc = os::Linux::ucontext_get_pc(uc);
 600   }
 601 
 602   // unmask current signal
 603   sigset_t newset;
 604   sigemptyset(&newset);
 605   sigaddset(&newset, sig);
 606   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 607 
 608   VMError::report_and_die(t, sig, pc, info, ucVoid);
 609 
 610   ShouldNotReachHere();
 611   return true; // Mute compiler
 612 }
 613 
 614 void os::Linux::init_thread_fpu_state(void) {
 615 #ifndef AMD64
 616   // set fpu to 53 bit precision
 617   set_fpu_control_word(0x27f);
 618 #endif // !AMD64
 619 }
 620 
 621 int os::Linux::get_fpu_control_word(void) {
 622 #ifdef AMD64
 623   return 0;
 624 #else
 625   int fpu_control;
 626   _FPU_GETCW(fpu_control);
 627   return fpu_control & 0xffff;
 628 #endif // AMD64
 629 }
 630 
 631 void os::Linux::set_fpu_control_word(int fpu_control) {
 632 #ifndef AMD64
 633   _FPU_SETCW(fpu_control);
 634 #endif // !AMD64
 635 }
 636 
 637 // Check that the linux kernel version is 2.4 or higher since earlier
 638 // versions do not support SSE without patches.
 639 bool os::supports_sse() {
 640 #ifdef AMD64
 641   return true;
 642 #else
 643   struct utsname uts;
 644   if( uname(&uts) != 0 ) return false; // uname fails?
 645   char *minor_string;
 646   int major = strtol(uts.release,&minor_string,10);
 647   int minor = strtol(minor_string+1,NULL,10);
 648   bool result = (major > 2 || (major==2 && minor >= 4));
 649   log_info(os)("OS version is %d.%d, which %s support SSE/SSE2",
 650                major,minor, result ? "DOES" : "does NOT");
 651   return result;
 652 #endif // AMD64
 653 }
 654 
 655 bool os::is_allocatable(size_t bytes) {
 656 #ifdef AMD64
 657   // unused on amd64?
 658   return true;
 659 #else
 660 
 661   if (bytes < 2 * G) {
 662     return true;
 663   }
 664 
 665   char* addr = reserve_memory(bytes, NULL);
 666 
 667   if (addr != NULL) {
 668     release_memory(addr, bytes);
 669   }
 670 
 671   return addr != NULL;
 672 #endif // AMD64
 673 }
 674 
 675 ////////////////////////////////////////////////////////////////////////////////
 676 // thread stack
 677 
 678 #ifdef AMD64
 679 size_t os::Posix::_compiler_thread_min_stack_allowed = 64 * K;
 680 size_t os::Posix::_java_thread_min_stack_allowed = 64 * K;
 681 size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K;
 682 #else
 683 size_t os::Posix::_compiler_thread_min_stack_allowed = (48 DEBUG_ONLY(+ 4)) * K;
 684 size_t os::Posix::_java_thread_min_stack_allowed = (48 DEBUG_ONLY(+ 4)) * K;
 685 size_t os::Posix::_vm_internal_thread_min_stack_allowed = (48 DEBUG_ONLY(+ 4)) * K;
 686 #endif // AMD64
 687 
 688 // return default stack size for thr_type
 689 size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
 690   // default stack size (compiler thread needs larger stack)
 691 #ifdef AMD64
 692   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
 693 #else
 694   size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
 695 #endif // AMD64
 696   return s;
 697 }
 698 
 699 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
 700   // Creating guard page is very expensive. Java thread has HotSpot
 701   // guard page, only enable glibc guard page for non-Java threads.
 702   return (thr_type == java_thread ? 0 : page_size());
 703 }
 704 
 705 // Java thread:
 706 //
 707 //   Low memory addresses
 708 //    +------------------------+
 709 //    |                        |\  JavaThread created by VM does not have glibc
 710 //    |    glibc guard page    | - guard, attached Java thread usually has
 711 //    |                        |/  1 page glibc guard.
 712 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
 713 //    |                        |\
 714 //    |  HotSpot Guard Pages   | - red and yellow pages
 715 //    |                        |/
 716 //    +------------------------+ JavaThread::stack_yellow_zone_base()
 717 //    |                        |\
 718 //    |      Normal Stack      | -
 719 //    |                        |/
 720 // P2 +------------------------+ Thread::stack_base()
 721 //
 722 // Non-Java thread:
 723 //
 724 //   Low memory addresses
 725 //    +------------------------+
 726 //    |                        |\
 727 //    |  glibc guard page      | - usually 1 page
 728 //    |                        |/
 729 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
 730 //    |                        |\
 731 //    |      Normal Stack      | -
 732 //    |                        |/
 733 // P2 +------------------------+ Thread::stack_base()
 734 //
 735 // ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
 736 //    pthread_attr_getstack()
 737 
 738 static void current_stack_region(address * bottom, size_t * size) {
 739   if (os::Linux::is_initial_thread()) {
 740      // initial thread needs special handling because pthread_getattr_np()
 741      // may return bogus value.
 742      *bottom = os::Linux::initial_thread_stack_bottom();
 743      *size   = os::Linux::initial_thread_stack_size();
 744   } else {
 745      pthread_attr_t attr;
 746 
 747      int rslt = pthread_getattr_np(pthread_self(), &attr);
 748 
 749      // JVM needs to know exact stack location, abort if it fails
 750      if (rslt != 0) {
 751        if (rslt == ENOMEM) {
 752          vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
 753        } else {
 754          fatal("pthread_getattr_np failed with errno = %d", rslt);
 755        }
 756      }
 757 
 758      if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
 759          fatal("Can not locate current stack attributes!");
 760      }
 761 
 762      pthread_attr_destroy(&attr);
 763 
 764   }
 765   assert(os::current_stack_pointer() >= *bottom &&
 766          os::current_stack_pointer() < *bottom + *size, "just checking");
 767 }
 768 
 769 address os::current_stack_base() {
 770   address bottom;
 771   size_t size;
 772   current_stack_region(&bottom, &size);
 773   return (bottom + size);
 774 }
 775 
 776 size_t os::current_stack_size() {
 777   // stack size includes normal stack and HotSpot guard pages
 778   address bottom;
 779   size_t size;
 780   current_stack_region(&bottom, &size);
 781   return size;
 782 }
 783 
 784 /////////////////////////////////////////////////////////////////////////////
 785 // helper functions for fatal error handler
 786 
 787 void os::print_context(outputStream *st, const void *context) {
 788   if (context == NULL) return;
 789 
 790   const ucontext_t *uc = (const ucontext_t*)context;
 791   st->print_cr("Registers:");
 792 #ifdef AMD64
 793   st->print(  "RAX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RAX]);
 794   st->print(", RBX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBX]);
 795   st->print(", RCX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RCX]);
 796   st->print(", RDX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDX]);
 797   st->cr();
 798   st->print(  "RSP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSP]);
 799   st->print(", RBP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBP]);
 800   st->print(", RSI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSI]);
 801   st->print(", RDI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDI]);
 802   st->cr();
 803   st->print(  "R8 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R8]);
 804   st->print(", R9 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R9]);
 805   st->print(", R10=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R10]);
 806   st->print(", R11=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R11]);
 807   st->cr();
 808   st->print(  "R12=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R12]);
 809   st->print(", R13=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R13]);
 810   st->print(", R14=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R14]);
 811   st->print(", R15=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R15]);
 812   st->cr();
 813   st->print(  "RIP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RIP]);
 814   st->print(", EFLAGS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_EFL]);
 815   st->print(", CSGSFS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_CSGSFS]);
 816   st->print(", ERR=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_ERR]);
 817   st->cr();
 818   st->print("  TRAPNO=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_TRAPNO]);
 819 #else
 820   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
 821   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
 822   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
 823   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
 824   st->cr();
 825   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
 826   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
 827   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
 828   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
 829   st->cr();
 830   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
 831   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
 832   st->print(", CR2=" PTR64_FORMAT, (uint64_t)uc->uc_mcontext.cr2);
 833 #endif // AMD64
 834   st->cr();
 835   st->cr();
 836 
 837   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
 838   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp));
 839   print_hex_dump(st, (address)sp, (address)(sp + 8), sizeof(intptr_t));
 840   st->cr();
 841 
 842   // Note: it may be unsafe to inspect memory near pc. For example, pc may
 843   // point to garbage if entry point in an nmethod is corrupted. Leave
 844   // this at the end, and hope for the best.
 845   address pc = os::Linux::ucontext_get_pc(uc);
 846   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", p2i(pc));
 847   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
 848 }
 849 
 850 void os::print_register_info(outputStream *st, const void *context) {
 851   if (context == NULL) return;
 852 
 853   const ucontext_t *uc = (const ucontext_t*)context;
 854 
 855   st->print_cr("Register to memory mapping:");
 856   st->cr();
 857 
 858   // this is horrendously verbose but the layout of the registers in the
 859   // context does not match how we defined our abstract Register set, so
 860   // we can't just iterate through the gregs area
 861 
 862   // this is only for the "general purpose" registers
 863 
 864 #ifdef AMD64
 865   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
 866   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
 867   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
 868   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
 869   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
 870   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
 871   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
 872   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
 873   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
 874   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
 875   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
 876   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
 877   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
 878   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
 879   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
 880   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
 881 #else
 882   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
 883   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
 884   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
 885   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
 886   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
 887   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
 888   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
 889   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
 890 #endif // AMD64
 891 
 892   st->cr();
 893 }
 894 
 895 void os::setup_fpu() {
 896 #ifndef AMD64
 897   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
 898   __asm__ volatile (  "fldcw (%0)" :
 899                       : "r" (fpu_cntrl) : "memory");
 900 #endif // !AMD64
 901 }
 902 
 903 #ifndef PRODUCT
 904 void os::verify_stack_alignment() {
 905 #ifdef AMD64
 906   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
 907 #endif
 908 }
 909 #endif
 910 
 911 
 912 /*
 913  * IA32 only: execute code at a high address in case buggy NX emulation is present. I.e. avoid CS limit
 914  * updates (JDK-8023956).
 915  */
 916 void os::workaround_expand_exec_shield_cs_limit() {
 917 #if defined(IA32)
 918   size_t page_size = os::vm_page_size();
 919   /*
 920    * Take the highest VA the OS will give us and exec
 921    *
 922    * Although using -(pagesz) as mmap hint works on newer kernel as you would
 923    * think, older variants affected by this work-around don't (search forward only).
 924    *
 925    * On the affected distributions, we understand the memory layout to be:
 926    *
 927    *   TASK_LIMIT= 3G, main stack base close to TASK_LIMT.
 928    *
 929    * A few pages south main stack will do it.
 930    *
 931    * If we are embedded in an app other than launcher (initial != main stack),
 932    * we don't have much control or understanding of the address space, just let it slide.
 933    */
 934   char* hint = (char*)(Linux::initial_thread_stack_bottom() -
 935                        (JavaThread::stack_guard_zone_size() + page_size));
 936   char* codebuf = os::attempt_reserve_memory_at(page_size, hint);
 937   if ((codebuf == NULL) || (!os::commit_memory(codebuf, page_size, true))) {
 938     return; // No matter, we tried, best effort.
 939   }
 940 
 941   MemTracker::record_virtual_memory_type((address)codebuf, mtInternal);
 942 
 943   log_info(os)("[CS limit NX emulation work-around, exec code at: %p]", codebuf);
 944 
 945   // Some code to exec: the 'ret' instruction
 946   codebuf[0] = 0xC3;
 947 
 948   // Call the code in the codebuf
 949   __asm__ volatile("call *%0" : : "r"(codebuf));
 950 
 951   // keep the page mapped so CS limit isn't reduced.
 952 #endif
 953 }
 954 
 955 int os::extra_bang_size_in_bytes() {
 956   // JDK-8050147 requires the full cache line bang for x86.
 957   return VM_Version::L1_line_size();
 958 }