1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "asm/assembler.hpp"
  28 #include "asm/assembler.inline.hpp"
  29 #include "compiler/disassembler.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/barrierSetAssembler.hpp"
  32 #include "gc/shared/collectedHeap.inline.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "memory/universe.hpp"
  36 #include "oops/accessDecorators.hpp"
  37 #include "oops/compressedOops.inline.hpp"
  38 #include "oops/klass.inline.hpp"
  39 #include "prims/methodHandles.hpp"
  40 #include "runtime/biasedLocking.hpp"
  41 #include "runtime/flags/flagSetting.hpp"
  42 #include "runtime/interfaceSupport.inline.hpp"
  43 #include "runtime/objectMonitor.hpp"
  44 #include "runtime/os.hpp"
  45 #include "runtime/safepoint.hpp"
  46 #include "runtime/safepointMechanism.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "runtime/stubRoutines.hpp"
  49 #include "runtime/thread.hpp"
  50 #include "utilities/macros.hpp"
  51 #include "crc32c.h"
  52 #ifdef COMPILER2
  53 #include "opto/intrinsicnode.hpp"
  54 #endif
  55 
  56 #ifdef PRODUCT
  57 #define BLOCK_COMMENT(str) /* nothing */
  58 #define STOP(error) stop(error)
  59 #else
  60 #define BLOCK_COMMENT(str) block_comment(str)
  61 #define STOP(error) block_comment(error); stop(error)
  62 #endif
  63 
  64 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  65 
  66 #ifdef ASSERT
  67 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  68 #endif
  69 
  70 static Assembler::Condition reverse[] = {
  71     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  72     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  73     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  74     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  75     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  76     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  77     Assembler::above          /* belowEqual    = 0x6 */ ,
  78     Assembler::belowEqual     /* above         = 0x7 */ ,
  79     Assembler::positive       /* negative      = 0x8 */ ,
  80     Assembler::negative       /* positive      = 0x9 */ ,
  81     Assembler::noParity       /* parity        = 0xa */ ,
  82     Assembler::parity         /* noParity      = 0xb */ ,
  83     Assembler::greaterEqual   /* less          = 0xc */ ,
  84     Assembler::less           /* greaterEqual  = 0xd */ ,
  85     Assembler::greater        /* lessEqual     = 0xe */ ,
  86     Assembler::lessEqual      /* greater       = 0xf, */
  87 
  88 };
  89 
  90 
  91 // Implementation of MacroAssembler
  92 
  93 // First all the versions that have distinct versions depending on 32/64 bit
  94 // Unless the difference is trivial (1 line or so).
  95 
  96 #ifndef _LP64
  97 
  98 // 32bit versions
  99 
 100 Address MacroAssembler::as_Address(AddressLiteral adr) {
 101   return Address(adr.target(), adr.rspec());
 102 }
 103 
 104 Address MacroAssembler::as_Address(ArrayAddress adr) {
 105   return Address::make_array(adr);
 106 }
 107 
 108 void MacroAssembler::call_VM_leaf_base(address entry_point,
 109                                        int number_of_arguments) {
 110   call(RuntimeAddress(entry_point));
 111   increment(rsp, number_of_arguments * wordSize);
 112 }
 113 
 114 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 115   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 116 }
 117 
 118 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 119   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 120 }
 121 
 122 void MacroAssembler::cmpoop_raw(Address src1, jobject obj) {
 123   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 124 }
 125 
 126 void MacroAssembler::cmpoop_raw(Register src1, jobject obj) {
 127   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 128 }
 129 
 130 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 131   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 132   bs->obj_equals(this, src1, obj);
 133 }
 134 
 135 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 136   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 137   bs->obj_equals(this, src1, obj);
 138 }
 139 
 140 void MacroAssembler::extend_sign(Register hi, Register lo) {
 141   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 142   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 143     cdql();
 144   } else {
 145     movl(hi, lo);
 146     sarl(hi, 31);
 147   }
 148 }
 149 
 150 void MacroAssembler::jC2(Register tmp, Label& L) {
 151   // set parity bit if FPU flag C2 is set (via rax)
 152   save_rax(tmp);
 153   fwait(); fnstsw_ax();
 154   sahf();
 155   restore_rax(tmp);
 156   // branch
 157   jcc(Assembler::parity, L);
 158 }
 159 
 160 void MacroAssembler::jnC2(Register tmp, Label& L) {
 161   // set parity bit if FPU flag C2 is set (via rax)
 162   save_rax(tmp);
 163   fwait(); fnstsw_ax();
 164   sahf();
 165   restore_rax(tmp);
 166   // branch
 167   jcc(Assembler::noParity, L);
 168 }
 169 
 170 // 32bit can do a case table jump in one instruction but we no longer allow the base
 171 // to be installed in the Address class
 172 void MacroAssembler::jump(ArrayAddress entry) {
 173   jmp(as_Address(entry));
 174 }
 175 
 176 // Note: y_lo will be destroyed
 177 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 178   // Long compare for Java (semantics as described in JVM spec.)
 179   Label high, low, done;
 180 
 181   cmpl(x_hi, y_hi);
 182   jcc(Assembler::less, low);
 183   jcc(Assembler::greater, high);
 184   // x_hi is the return register
 185   xorl(x_hi, x_hi);
 186   cmpl(x_lo, y_lo);
 187   jcc(Assembler::below, low);
 188   jcc(Assembler::equal, done);
 189 
 190   bind(high);
 191   xorl(x_hi, x_hi);
 192   increment(x_hi);
 193   jmp(done);
 194 
 195   bind(low);
 196   xorl(x_hi, x_hi);
 197   decrementl(x_hi);
 198 
 199   bind(done);
 200 }
 201 
 202 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 203     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 204 }
 205 
 206 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 207   // leal(dst, as_Address(adr));
 208   // see note in movl as to why we must use a move
 209   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 210 }
 211 
 212 void MacroAssembler::leave() {
 213   mov(rsp, rbp);
 214   pop(rbp);
 215 }
 216 
 217 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 218   // Multiplication of two Java long values stored on the stack
 219   // as illustrated below. Result is in rdx:rax.
 220   //
 221   // rsp ---> [  ??  ] \               \
 222   //            ....    | y_rsp_offset  |
 223   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 224   //          [ y_hi ]                  | (in bytes)
 225   //            ....                    |
 226   //          [ x_lo ]                 /
 227   //          [ x_hi ]
 228   //            ....
 229   //
 230   // Basic idea: lo(result) = lo(x_lo * y_lo)
 231   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 232   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 233   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 234   Label quick;
 235   // load x_hi, y_hi and check if quick
 236   // multiplication is possible
 237   movl(rbx, x_hi);
 238   movl(rcx, y_hi);
 239   movl(rax, rbx);
 240   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 241   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 242   // do full multiplication
 243   // 1st step
 244   mull(y_lo);                                    // x_hi * y_lo
 245   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 246   // 2nd step
 247   movl(rax, x_lo);
 248   mull(rcx);                                     // x_lo * y_hi
 249   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 250   // 3rd step
 251   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 252   movl(rax, x_lo);
 253   mull(y_lo);                                    // x_lo * y_lo
 254   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 255 }
 256 
 257 void MacroAssembler::lneg(Register hi, Register lo) {
 258   negl(lo);
 259   adcl(hi, 0);
 260   negl(hi);
 261 }
 262 
 263 void MacroAssembler::lshl(Register hi, Register lo) {
 264   // Java shift left long support (semantics as described in JVM spec., p.305)
 265   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 266   // shift value is in rcx !
 267   assert(hi != rcx, "must not use rcx");
 268   assert(lo != rcx, "must not use rcx");
 269   const Register s = rcx;                        // shift count
 270   const int      n = BitsPerWord;
 271   Label L;
 272   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 273   cmpl(s, n);                                    // if (s < n)
 274   jcc(Assembler::less, L);                       // else (s >= n)
 275   movl(hi, lo);                                  // x := x << n
 276   xorl(lo, lo);
 277   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 278   bind(L);                                       // s (mod n) < n
 279   shldl(hi, lo);                                 // x := x << s
 280   shll(lo);
 281 }
 282 
 283 
 284 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 285   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 286   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 287   assert(hi != rcx, "must not use rcx");
 288   assert(lo != rcx, "must not use rcx");
 289   const Register s = rcx;                        // shift count
 290   const int      n = BitsPerWord;
 291   Label L;
 292   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 293   cmpl(s, n);                                    // if (s < n)
 294   jcc(Assembler::less, L);                       // else (s >= n)
 295   movl(lo, hi);                                  // x := x >> n
 296   if (sign_extension) sarl(hi, 31);
 297   else                xorl(hi, hi);
 298   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 299   bind(L);                                       // s (mod n) < n
 300   shrdl(lo, hi);                                 // x := x >> s
 301   if (sign_extension) sarl(hi);
 302   else                shrl(hi);
 303 }
 304 
 305 void MacroAssembler::movoop(Register dst, jobject obj) {
 306   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 307 }
 308 
 309 void MacroAssembler::movoop(Address dst, jobject obj) {
 310   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 311 }
 312 
 313 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 314   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 315 }
 316 
 317 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 318   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 319 }
 320 
 321 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 322   // scratch register is not used,
 323   // it is defined to match parameters of 64-bit version of this method.
 324   if (src.is_lval()) {
 325     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 326   } else {
 327     movl(dst, as_Address(src));
 328   }
 329 }
 330 
 331 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 332   movl(as_Address(dst), src);
 333 }
 334 
 335 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 336   movl(dst, as_Address(src));
 337 }
 338 
 339 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 340 void MacroAssembler::movptr(Address dst, intptr_t src) {
 341   movl(dst, src);
 342 }
 343 
 344 
 345 void MacroAssembler::pop_callee_saved_registers() {
 346   pop(rcx);
 347   pop(rdx);
 348   pop(rdi);
 349   pop(rsi);
 350 }
 351 
 352 void MacroAssembler::pop_fTOS() {
 353   fld_d(Address(rsp, 0));
 354   addl(rsp, 2 * wordSize);
 355 }
 356 
 357 void MacroAssembler::push_callee_saved_registers() {
 358   push(rsi);
 359   push(rdi);
 360   push(rdx);
 361   push(rcx);
 362 }
 363 
 364 void MacroAssembler::push_fTOS() {
 365   subl(rsp, 2 * wordSize);
 366   fstp_d(Address(rsp, 0));
 367 }
 368 
 369 
 370 void MacroAssembler::pushoop(jobject obj) {
 371   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 372 }
 373 
 374 void MacroAssembler::pushklass(Metadata* obj) {
 375   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 376 }
 377 
 378 void MacroAssembler::pushptr(AddressLiteral src) {
 379   if (src.is_lval()) {
 380     push_literal32((int32_t)src.target(), src.rspec());
 381   } else {
 382     pushl(as_Address(src));
 383   }
 384 }
 385 
 386 void MacroAssembler::set_word_if_not_zero(Register dst) {
 387   xorl(dst, dst);
 388   set_byte_if_not_zero(dst);
 389 }
 390 
 391 static void pass_arg0(MacroAssembler* masm, Register arg) {
 392   masm->push(arg);
 393 }
 394 
 395 static void pass_arg1(MacroAssembler* masm, Register arg) {
 396   masm->push(arg);
 397 }
 398 
 399 static void pass_arg2(MacroAssembler* masm, Register arg) {
 400   masm->push(arg);
 401 }
 402 
 403 static void pass_arg3(MacroAssembler* masm, Register arg) {
 404   masm->push(arg);
 405 }
 406 
 407 #ifndef PRODUCT
 408 extern "C" void findpc(intptr_t x);
 409 #endif
 410 
 411 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 412   // In order to get locks to work, we need to fake a in_VM state
 413   JavaThread* thread = JavaThread::current();
 414   JavaThreadState saved_state = thread->thread_state();
 415   thread->set_thread_state(_thread_in_vm);
 416   if (ShowMessageBoxOnError) {
 417     JavaThread* thread = JavaThread::current();
 418     JavaThreadState saved_state = thread->thread_state();
 419     thread->set_thread_state(_thread_in_vm);
 420     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 421       ttyLocker ttyl;
 422       BytecodeCounter::print();
 423     }
 424     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 425     // This is the value of eip which points to where verify_oop will return.
 426     if (os::message_box(msg, "Execution stopped, print registers?")) {
 427       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 428       BREAKPOINT;
 429     }
 430   }
 431   fatal("DEBUG MESSAGE: %s", msg);
 432 }
 433 
 434 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 435   ttyLocker ttyl;
 436   FlagSetting fs(Debugging, true);
 437   tty->print_cr("eip = 0x%08x", eip);
 438 #ifndef PRODUCT
 439   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 440     tty->cr();
 441     findpc(eip);
 442     tty->cr();
 443   }
 444 #endif
 445 #define PRINT_REG(rax) \
 446   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 447   PRINT_REG(rax);
 448   PRINT_REG(rbx);
 449   PRINT_REG(rcx);
 450   PRINT_REG(rdx);
 451   PRINT_REG(rdi);
 452   PRINT_REG(rsi);
 453   PRINT_REG(rbp);
 454   PRINT_REG(rsp);
 455 #undef PRINT_REG
 456   // Print some words near top of staack.
 457   int* dump_sp = (int*) rsp;
 458   for (int col1 = 0; col1 < 8; col1++) {
 459     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 460     os::print_location(tty, *dump_sp++);
 461   }
 462   for (int row = 0; row < 16; row++) {
 463     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 464     for (int col = 0; col < 8; col++) {
 465       tty->print(" 0x%08x", *dump_sp++);
 466     }
 467     tty->cr();
 468   }
 469   // Print some instructions around pc:
 470   Disassembler::decode((address)eip-64, (address)eip);
 471   tty->print_cr("--------");
 472   Disassembler::decode((address)eip, (address)eip+32);
 473 }
 474 
 475 void MacroAssembler::stop(const char* msg) {
 476   ExternalAddress message((address)msg);
 477   // push address of message
 478   pushptr(message.addr());
 479   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 480   pusha();                                            // push registers
 481   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 482   hlt();
 483 }
 484 
 485 void MacroAssembler::warn(const char* msg) {
 486   push_CPU_state();
 487 
 488   ExternalAddress message((address) msg);
 489   // push address of message
 490   pushptr(message.addr());
 491 
 492   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 493   addl(rsp, wordSize);       // discard argument
 494   pop_CPU_state();
 495 }
 496 
 497 void MacroAssembler::print_state() {
 498   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 499   pusha();                                            // push registers
 500 
 501   push_CPU_state();
 502   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 503   pop_CPU_state();
 504 
 505   popa();
 506   addl(rsp, wordSize);
 507 }
 508 
 509 #else // _LP64
 510 
 511 // 64 bit versions
 512 
 513 Address MacroAssembler::as_Address(AddressLiteral adr) {
 514   // amd64 always does this as a pc-rel
 515   // we can be absolute or disp based on the instruction type
 516   // jmp/call are displacements others are absolute
 517   assert(!adr.is_lval(), "must be rval");
 518   assert(reachable(adr), "must be");
 519   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 520 
 521 }
 522 
 523 Address MacroAssembler::as_Address(ArrayAddress adr) {
 524   AddressLiteral base = adr.base();
 525   lea(rscratch1, base);
 526   Address index = adr.index();
 527   assert(index._disp == 0, "must not have disp"); // maybe it can?
 528   Address array(rscratch1, index._index, index._scale, index._disp);
 529   return array;
 530 }
 531 
 532 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 533   Label L, E;
 534 
 535 #ifdef _WIN64
 536   // Windows always allocates space for it's register args
 537   assert(num_args <= 4, "only register arguments supported");
 538   subq(rsp,  frame::arg_reg_save_area_bytes);
 539 #endif
 540 
 541   // Align stack if necessary
 542   testl(rsp, 15);
 543   jcc(Assembler::zero, L);
 544 
 545   subq(rsp, 8);
 546   {
 547     call(RuntimeAddress(entry_point));
 548   }
 549   addq(rsp, 8);
 550   jmp(E);
 551 
 552   bind(L);
 553   {
 554     call(RuntimeAddress(entry_point));
 555   }
 556 
 557   bind(E);
 558 
 559 #ifdef _WIN64
 560   // restore stack pointer
 561   addq(rsp, frame::arg_reg_save_area_bytes);
 562 #endif
 563 
 564 }
 565 
 566 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 567   assert(!src2.is_lval(), "should use cmpptr");
 568 
 569   if (reachable(src2)) {
 570     cmpq(src1, as_Address(src2));
 571   } else {
 572     lea(rscratch1, src2);
 573     Assembler::cmpq(src1, Address(rscratch1, 0));
 574   }
 575 }
 576 
 577 int MacroAssembler::corrected_idivq(Register reg) {
 578   // Full implementation of Java ldiv and lrem; checks for special
 579   // case as described in JVM spec., p.243 & p.271.  The function
 580   // returns the (pc) offset of the idivl instruction - may be needed
 581   // for implicit exceptions.
 582   //
 583   //         normal case                           special case
 584   //
 585   // input : rax: dividend                         min_long
 586   //         reg: divisor   (may not be eax/edx)   -1
 587   //
 588   // output: rax: quotient  (= rax idiv reg)       min_long
 589   //         rdx: remainder (= rax irem reg)       0
 590   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 591   static const int64_t min_long = 0x8000000000000000;
 592   Label normal_case, special_case;
 593 
 594   // check for special case
 595   cmp64(rax, ExternalAddress((address) &min_long));
 596   jcc(Assembler::notEqual, normal_case);
 597   xorl(rdx, rdx); // prepare rdx for possible special case (where
 598                   // remainder = 0)
 599   cmpq(reg, -1);
 600   jcc(Assembler::equal, special_case);
 601 
 602   // handle normal case
 603   bind(normal_case);
 604   cdqq();
 605   int idivq_offset = offset();
 606   idivq(reg);
 607 
 608   // normal and special case exit
 609   bind(special_case);
 610 
 611   return idivq_offset;
 612 }
 613 
 614 void MacroAssembler::decrementq(Register reg, int value) {
 615   if (value == min_jint) { subq(reg, value); return; }
 616   if (value <  0) { incrementq(reg, -value); return; }
 617   if (value == 0) {                        ; return; }
 618   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 619   /* else */      { subq(reg, value)       ; return; }
 620 }
 621 
 622 void MacroAssembler::decrementq(Address dst, int value) {
 623   if (value == min_jint) { subq(dst, value); return; }
 624   if (value <  0) { incrementq(dst, -value); return; }
 625   if (value == 0) {                        ; return; }
 626   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 627   /* else */      { subq(dst, value)       ; return; }
 628 }
 629 
 630 void MacroAssembler::incrementq(AddressLiteral dst) {
 631   if (reachable(dst)) {
 632     incrementq(as_Address(dst));
 633   } else {
 634     lea(rscratch1, dst);
 635     incrementq(Address(rscratch1, 0));
 636   }
 637 }
 638 
 639 void MacroAssembler::incrementq(Register reg, int value) {
 640   if (value == min_jint) { addq(reg, value); return; }
 641   if (value <  0) { decrementq(reg, -value); return; }
 642   if (value == 0) {                        ; return; }
 643   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 644   /* else */      { addq(reg, value)       ; return; }
 645 }
 646 
 647 void MacroAssembler::incrementq(Address dst, int value) {
 648   if (value == min_jint) { addq(dst, value); return; }
 649   if (value <  0) { decrementq(dst, -value); return; }
 650   if (value == 0) {                        ; return; }
 651   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 652   /* else */      { addq(dst, value)       ; return; }
 653 }
 654 
 655 // 32bit can do a case table jump in one instruction but we no longer allow the base
 656 // to be installed in the Address class
 657 void MacroAssembler::jump(ArrayAddress entry) {
 658   lea(rscratch1, entry.base());
 659   Address dispatch = entry.index();
 660   assert(dispatch._base == noreg, "must be");
 661   dispatch._base = rscratch1;
 662   jmp(dispatch);
 663 }
 664 
 665 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 666   ShouldNotReachHere(); // 64bit doesn't use two regs
 667   cmpq(x_lo, y_lo);
 668 }
 669 
 670 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 671     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 672 }
 673 
 674 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 675   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 676   movptr(dst, rscratch1);
 677 }
 678 
 679 void MacroAssembler::leave() {
 680   // %%% is this really better? Why not on 32bit too?
 681   emit_int8((unsigned char)0xC9); // LEAVE
 682 }
 683 
 684 void MacroAssembler::lneg(Register hi, Register lo) {
 685   ShouldNotReachHere(); // 64bit doesn't use two regs
 686   negq(lo);
 687 }
 688 
 689 void MacroAssembler::movoop(Register dst, jobject obj) {
 690   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 691 }
 692 
 693 void MacroAssembler::movoop(Address dst, jobject obj) {
 694   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 695   movq(dst, rscratch1);
 696 }
 697 
 698 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 699   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 700 }
 701 
 702 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 703   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 704   movq(dst, rscratch1);
 705 }
 706 
 707 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 708   if (src.is_lval()) {
 709     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 710   } else {
 711     if (reachable(src)) {
 712       movq(dst, as_Address(src));
 713     } else {
 714       lea(scratch, src);
 715       movq(dst, Address(scratch, 0));
 716     }
 717   }
 718 }
 719 
 720 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 721   movq(as_Address(dst), src);
 722 }
 723 
 724 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 725   movq(dst, as_Address(src));
 726 }
 727 
 728 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 729 void MacroAssembler::movptr(Address dst, intptr_t src) {
 730   mov64(rscratch1, src);
 731   movq(dst, rscratch1);
 732 }
 733 
 734 // These are mostly for initializing NULL
 735 void MacroAssembler::movptr(Address dst, int32_t src) {
 736   movslq(dst, src);
 737 }
 738 
 739 void MacroAssembler::movptr(Register dst, int32_t src) {
 740   mov64(dst, (intptr_t)src);
 741 }
 742 
 743 void MacroAssembler::pushoop(jobject obj) {
 744   movoop(rscratch1, obj);
 745   push(rscratch1);
 746 }
 747 
 748 void MacroAssembler::pushklass(Metadata* obj) {
 749   mov_metadata(rscratch1, obj);
 750   push(rscratch1);
 751 }
 752 
 753 void MacroAssembler::pushptr(AddressLiteral src) {
 754   lea(rscratch1, src);
 755   if (src.is_lval()) {
 756     push(rscratch1);
 757   } else {
 758     pushq(Address(rscratch1, 0));
 759   }
 760 }
 761 
 762 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
 763   // we must set sp to zero to clear frame
 764   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 765   // must clear fp, so that compiled frames are not confused; it is
 766   // possible that we need it only for debugging
 767   if (clear_fp) {
 768     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 769   }
 770 
 771   // Always clear the pc because it could have been set by make_walkable()
 772   movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 773   vzeroupper();
 774 }
 775 
 776 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 777                                          Register last_java_fp,
 778                                          address  last_java_pc) {
 779   vzeroupper();
 780   // determine last_java_sp register
 781   if (!last_java_sp->is_valid()) {
 782     last_java_sp = rsp;
 783   }
 784 
 785   // last_java_fp is optional
 786   if (last_java_fp->is_valid()) {
 787     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 788            last_java_fp);
 789   }
 790 
 791   // last_java_pc is optional
 792   if (last_java_pc != NULL) {
 793     Address java_pc(r15_thread,
 794                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 795     lea(rscratch1, InternalAddress(last_java_pc));
 796     movptr(java_pc, rscratch1);
 797   }
 798 
 799   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 800 }
 801 
 802 static void pass_arg0(MacroAssembler* masm, Register arg) {
 803   if (c_rarg0 != arg ) {
 804     masm->mov(c_rarg0, arg);
 805   }
 806 }
 807 
 808 static void pass_arg1(MacroAssembler* masm, Register arg) {
 809   if (c_rarg1 != arg ) {
 810     masm->mov(c_rarg1, arg);
 811   }
 812 }
 813 
 814 static void pass_arg2(MacroAssembler* masm, Register arg) {
 815   if (c_rarg2 != arg ) {
 816     masm->mov(c_rarg2, arg);
 817   }
 818 }
 819 
 820 static void pass_arg3(MacroAssembler* masm, Register arg) {
 821   if (c_rarg3 != arg ) {
 822     masm->mov(c_rarg3, arg);
 823   }
 824 }
 825 
 826 void MacroAssembler::stop(const char* msg) {
 827   if (ShowMessageBoxOnError) {
 828     address rip = pc();
 829     pusha(); // get regs on stack
 830     lea(c_rarg1, InternalAddress(rip));
 831     movq(c_rarg2, rsp); // pass pointer to regs array
 832   }
 833   lea(c_rarg0, ExternalAddress((address) msg));
 834   andq(rsp, -16); // align stack as required by ABI
 835   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 836   hlt();
 837 }
 838 
 839 void MacroAssembler::warn(const char* msg) {
 840   push(rbp);
 841   movq(rbp, rsp);
 842   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 843   push_CPU_state();   // keeps alignment at 16 bytes
 844   lea(c_rarg0, ExternalAddress((address) msg));
 845   lea(rax, ExternalAddress(CAST_FROM_FN_PTR(address, warning)));
 846   call(rax);
 847   pop_CPU_state();
 848   mov(rsp, rbp);
 849   pop(rbp);
 850 }
 851 
 852 void MacroAssembler::print_state() {
 853   address rip = pc();
 854   pusha();            // get regs on stack
 855   push(rbp);
 856   movq(rbp, rsp);
 857   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 858   push_CPU_state();   // keeps alignment at 16 bytes
 859 
 860   lea(c_rarg0, InternalAddress(rip));
 861   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 862   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 863 
 864   pop_CPU_state();
 865   mov(rsp, rbp);
 866   pop(rbp);
 867   popa();
 868 }
 869 
 870 #ifndef PRODUCT
 871 extern "C" void findpc(intptr_t x);
 872 #endif
 873 
 874 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 875   // In order to get locks to work, we need to fake a in_VM state
 876   if (ShowMessageBoxOnError) {
 877     JavaThread* thread = JavaThread::current();
 878     JavaThreadState saved_state = thread->thread_state();
 879     thread->set_thread_state(_thread_in_vm);
 880 #ifndef PRODUCT
 881     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 882       ttyLocker ttyl;
 883       BytecodeCounter::print();
 884     }
 885 #endif
 886     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 887     // XXX correct this offset for amd64
 888     // This is the value of eip which points to where verify_oop will return.
 889     if (os::message_box(msg, "Execution stopped, print registers?")) {
 890       print_state64(pc, regs);
 891       BREAKPOINT;
 892     }
 893   }
 894   fatal("DEBUG MESSAGE: %s", msg);
 895 }
 896 
 897 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 898   ttyLocker ttyl;
 899   FlagSetting fs(Debugging, true);
 900   tty->print_cr("rip = 0x%016lx", (intptr_t)pc);
 901 #ifndef PRODUCT
 902   tty->cr();
 903   findpc(pc);
 904   tty->cr();
 905 #endif
 906 #define PRINT_REG(rax, value) \
 907   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 908   PRINT_REG(rax, regs[15]);
 909   PRINT_REG(rbx, regs[12]);
 910   PRINT_REG(rcx, regs[14]);
 911   PRINT_REG(rdx, regs[13]);
 912   PRINT_REG(rdi, regs[8]);
 913   PRINT_REG(rsi, regs[9]);
 914   PRINT_REG(rbp, regs[10]);
 915   PRINT_REG(rsp, regs[11]);
 916   PRINT_REG(r8 , regs[7]);
 917   PRINT_REG(r9 , regs[6]);
 918   PRINT_REG(r10, regs[5]);
 919   PRINT_REG(r11, regs[4]);
 920   PRINT_REG(r12, regs[3]);
 921   PRINT_REG(r13, regs[2]);
 922   PRINT_REG(r14, regs[1]);
 923   PRINT_REG(r15, regs[0]);
 924 #undef PRINT_REG
 925   // Print some words near top of staack.
 926   int64_t* rsp = (int64_t*) regs[11];
 927   int64_t* dump_sp = rsp;
 928   for (int col1 = 0; col1 < 8; col1++) {
 929     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 930     os::print_location(tty, *dump_sp++);
 931   }
 932   for (int row = 0; row < 25; row++) {
 933     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 934     for (int col = 0; col < 4; col++) {
 935       tty->print(" 0x%016lx", (intptr_t)*dump_sp++);
 936     }
 937     tty->cr();
 938   }
 939   // Print some instructions around pc:
 940   Disassembler::decode((address)pc-64, (address)pc);
 941   tty->print_cr("--------");
 942   Disassembler::decode((address)pc, (address)pc+32);
 943 }
 944 
 945 #endif // _LP64
 946 
 947 // Now versions that are common to 32/64 bit
 948 
 949 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 950   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 951 }
 952 
 953 void MacroAssembler::addptr(Register dst, Register src) {
 954   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 955 }
 956 
 957 void MacroAssembler::addptr(Address dst, Register src) {
 958   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 959 }
 960 
 961 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 962   if (reachable(src)) {
 963     Assembler::addsd(dst, as_Address(src));
 964   } else {
 965     lea(rscratch1, src);
 966     Assembler::addsd(dst, Address(rscratch1, 0));
 967   }
 968 }
 969 
 970 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 971   if (reachable(src)) {
 972     addss(dst, as_Address(src));
 973   } else {
 974     lea(rscratch1, src);
 975     addss(dst, Address(rscratch1, 0));
 976   }
 977 }
 978 
 979 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) {
 980   if (reachable(src)) {
 981     Assembler::addpd(dst, as_Address(src));
 982   } else {
 983     lea(rscratch1, src);
 984     Assembler::addpd(dst, Address(rscratch1, 0));
 985   }
 986 }
 987 
 988 void MacroAssembler::align(int modulus) {
 989   align(modulus, offset());
 990 }
 991 
 992 void MacroAssembler::align(int modulus, int target) {
 993   if (target % modulus != 0) {
 994     nop(modulus - (target % modulus));
 995   }
 996 }
 997 
 998 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
 999   // Used in sign-masking with aligned address.
1000   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1001   if (reachable(src)) {
1002     Assembler::andpd(dst, as_Address(src));
1003   } else {
1004     lea(scratch_reg, src);
1005     Assembler::andpd(dst, Address(scratch_reg, 0));
1006   }
1007 }
1008 
1009 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
1010   // Used in sign-masking with aligned address.
1011   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1012   if (reachable(src)) {
1013     Assembler::andps(dst, as_Address(src));
1014   } else {
1015     lea(scratch_reg, src);
1016     Assembler::andps(dst, Address(scratch_reg, 0));
1017   }
1018 }
1019 
1020 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1021   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1022 }
1023 
1024 void MacroAssembler::atomic_incl(Address counter_addr) {
1025   lock();
1026   incrementl(counter_addr);
1027 }
1028 
1029 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1030   if (reachable(counter_addr)) {
1031     atomic_incl(as_Address(counter_addr));
1032   } else {
1033     lea(scr, counter_addr);
1034     atomic_incl(Address(scr, 0));
1035   }
1036 }
1037 
1038 #ifdef _LP64
1039 void MacroAssembler::atomic_incq(Address counter_addr) {
1040   lock();
1041   incrementq(counter_addr);
1042 }
1043 
1044 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1045   if (reachable(counter_addr)) {
1046     atomic_incq(as_Address(counter_addr));
1047   } else {
1048     lea(scr, counter_addr);
1049     atomic_incq(Address(scr, 0));
1050   }
1051 }
1052 #endif
1053 
1054 // Writes to stack successive pages until offset reached to check for
1055 // stack overflow + shadow pages.  This clobbers tmp.
1056 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1057   movptr(tmp, rsp);
1058   // Bang stack for total size given plus shadow page size.
1059   // Bang one page at a time because large size can bang beyond yellow and
1060   // red zones.
1061   Label loop;
1062   bind(loop);
1063   movl(Address(tmp, (-os::vm_page_size())), size );
1064   subptr(tmp, os::vm_page_size());
1065   subl(size, os::vm_page_size());
1066   jcc(Assembler::greater, loop);
1067 
1068   // Bang down shadow pages too.
1069   // At this point, (tmp-0) is the last address touched, so don't
1070   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1071   // was post-decremented.)  Skip this address by starting at i=1, and
1072   // touch a few more pages below.  N.B.  It is important to touch all
1073   // the way down including all pages in the shadow zone.
1074   for (int i = 1; i < ((int)JavaThread::stack_shadow_zone_size() / os::vm_page_size()); i++) {
1075     // this could be any sized move but this is can be a debugging crumb
1076     // so the bigger the better.
1077     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1078   }
1079 }
1080 
1081 void MacroAssembler::reserved_stack_check() {
1082     // testing if reserved zone needs to be enabled
1083     Label no_reserved_zone_enabling;
1084     Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
1085     NOT_LP64(get_thread(rsi);)
1086 
1087     cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
1088     jcc(Assembler::below, no_reserved_zone_enabling);
1089 
1090     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
1091     jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
1092     should_not_reach_here();
1093 
1094     bind(no_reserved_zone_enabling);
1095 }
1096 
1097 int MacroAssembler::biased_locking_enter(Register lock_reg,
1098                                          Register obj_reg,
1099                                          Register swap_reg,
1100                                          Register tmp_reg,
1101                                          bool swap_reg_contains_mark,
1102                                          Label& done,
1103                                          Label* slow_case,
1104                                          BiasedLockingCounters* counters) {
1105   assert(UseBiasedLocking, "why call this otherwise?");
1106   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1107   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1108   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1109   assert(markWord::age_shift == markWord::lock_bits + markWord::biased_lock_bits, "biased locking makes assumptions about bit layout");
1110   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1111   NOT_LP64( Address saved_mark_addr(lock_reg, 0); )
1112 
1113   if (PrintBiasedLockingStatistics && counters == NULL) {
1114     counters = BiasedLocking::counters();
1115   }
1116   // Biased locking
1117   // See whether the lock is currently biased toward our thread and
1118   // whether the epoch is still valid
1119   // Note that the runtime guarantees sufficient alignment of JavaThread
1120   // pointers to allow age to be placed into low bits
1121   // First check to see whether biasing is even enabled for this object
1122   Label cas_label;
1123   int null_check_offset = -1;
1124   if (!swap_reg_contains_mark) {
1125     null_check_offset = offset();
1126     movptr(swap_reg, mark_addr);
1127   }
1128   movptr(tmp_reg, swap_reg);
1129   andptr(tmp_reg, markWord::biased_lock_mask_in_place);
1130   cmpptr(tmp_reg, markWord::biased_lock_pattern);
1131   jcc(Assembler::notEqual, cas_label);
1132   // The bias pattern is present in the object's header. Need to check
1133   // whether the bias owner and the epoch are both still current.
1134 #ifndef _LP64
1135   // Note that because there is no current thread register on x86_32 we
1136   // need to store off the mark word we read out of the object to
1137   // avoid reloading it and needing to recheck invariants below. This
1138   // store is unfortunate but it makes the overall code shorter and
1139   // simpler.
1140   movptr(saved_mark_addr, swap_reg);
1141 #endif
1142   if (swap_reg_contains_mark) {
1143     null_check_offset = offset();
1144   }
1145   load_prototype_header(tmp_reg, obj_reg);
1146 #ifdef _LP64
1147   orptr(tmp_reg, r15_thread);
1148   xorptr(tmp_reg, swap_reg);
1149   Register header_reg = tmp_reg;
1150 #else
1151   xorptr(tmp_reg, swap_reg);
1152   get_thread(swap_reg);
1153   xorptr(swap_reg, tmp_reg);
1154   Register header_reg = swap_reg;
1155 #endif
1156   andptr(header_reg, ~((int) markWord::age_mask_in_place));
1157   if (counters != NULL) {
1158     cond_inc32(Assembler::zero,
1159                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1160   }
1161   jcc(Assembler::equal, done);
1162 
1163   Label try_revoke_bias;
1164   Label try_rebias;
1165 
1166   // At this point we know that the header has the bias pattern and
1167   // that we are not the bias owner in the current epoch. We need to
1168   // figure out more details about the state of the header in order to
1169   // know what operations can be legally performed on the object's
1170   // header.
1171 
1172   // If the low three bits in the xor result aren't clear, that means
1173   // the prototype header is no longer biased and we have to revoke
1174   // the bias on this object.
1175   testptr(header_reg, markWord::biased_lock_mask_in_place);
1176   jccb(Assembler::notZero, try_revoke_bias);
1177 
1178   // Biasing is still enabled for this data type. See whether the
1179   // epoch of the current bias is still valid, meaning that the epoch
1180   // bits of the mark word are equal to the epoch bits of the
1181   // prototype header. (Note that the prototype header's epoch bits
1182   // only change at a safepoint.) If not, attempt to rebias the object
1183   // toward the current thread. Note that we must be absolutely sure
1184   // that the current epoch is invalid in order to do this because
1185   // otherwise the manipulations it performs on the mark word are
1186   // illegal.
1187   testptr(header_reg, markWord::epoch_mask_in_place);
1188   jccb(Assembler::notZero, try_rebias);
1189 
1190   // The epoch of the current bias is still valid but we know nothing
1191   // about the owner; it might be set or it might be clear. Try to
1192   // acquire the bias of the object using an atomic operation. If this
1193   // fails we will go in to the runtime to revoke the object's bias.
1194   // Note that we first construct the presumed unbiased header so we
1195   // don't accidentally blow away another thread's valid bias.
1196   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1197   andptr(swap_reg,
1198          markWord::biased_lock_mask_in_place | markWord::age_mask_in_place | markWord::epoch_mask_in_place);
1199 #ifdef _LP64
1200   movptr(tmp_reg, swap_reg);
1201   orptr(tmp_reg, r15_thread);
1202 #else
1203   get_thread(tmp_reg);
1204   orptr(tmp_reg, swap_reg);
1205 #endif
1206   lock();
1207   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1208   // If the biasing toward our thread failed, this means that
1209   // another thread succeeded in biasing it toward itself and we
1210   // need to revoke that bias. The revocation will occur in the
1211   // interpreter runtime in the slow case.
1212   if (counters != NULL) {
1213     cond_inc32(Assembler::zero,
1214                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1215   }
1216   if (slow_case != NULL) {
1217     jcc(Assembler::notZero, *slow_case);
1218   }
1219   jmp(done);
1220 
1221   bind(try_rebias);
1222   // At this point we know the epoch has expired, meaning that the
1223   // current "bias owner", if any, is actually invalid. Under these
1224   // circumstances _only_, we are allowed to use the current header's
1225   // value as the comparison value when doing the cas to acquire the
1226   // bias in the current epoch. In other words, we allow transfer of
1227   // the bias from one thread to another directly in this situation.
1228   //
1229   // FIXME: due to a lack of registers we currently blow away the age
1230   // bits in this situation. Should attempt to preserve them.
1231   load_prototype_header(tmp_reg, obj_reg);
1232 #ifdef _LP64
1233   orptr(tmp_reg, r15_thread);
1234 #else
1235   get_thread(swap_reg);
1236   orptr(tmp_reg, swap_reg);
1237   movptr(swap_reg, saved_mark_addr);
1238 #endif
1239   lock();
1240   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1241   // If the biasing toward our thread failed, then another thread
1242   // succeeded in biasing it toward itself and we need to revoke that
1243   // bias. The revocation will occur in the runtime in the slow case.
1244   if (counters != NULL) {
1245     cond_inc32(Assembler::zero,
1246                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1247   }
1248   if (slow_case != NULL) {
1249     jcc(Assembler::notZero, *slow_case);
1250   }
1251   jmp(done);
1252 
1253   bind(try_revoke_bias);
1254   // The prototype mark in the klass doesn't have the bias bit set any
1255   // more, indicating that objects of this data type are not supposed
1256   // to be biased any more. We are going to try to reset the mark of
1257   // this object to the prototype value and fall through to the
1258   // CAS-based locking scheme. Note that if our CAS fails, it means
1259   // that another thread raced us for the privilege of revoking the
1260   // bias of this particular object, so it's okay to continue in the
1261   // normal locking code.
1262   //
1263   // FIXME: due to a lack of registers we currently blow away the age
1264   // bits in this situation. Should attempt to preserve them.
1265   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1266   load_prototype_header(tmp_reg, obj_reg);
1267   lock();
1268   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1269   // Fall through to the normal CAS-based lock, because no matter what
1270   // the result of the above CAS, some thread must have succeeded in
1271   // removing the bias bit from the object's header.
1272   if (counters != NULL) {
1273     cond_inc32(Assembler::zero,
1274                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1275   }
1276 
1277   bind(cas_label);
1278 
1279   return null_check_offset;
1280 }
1281 
1282 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1283   assert(UseBiasedLocking, "why call this otherwise?");
1284 
1285   // Check for biased locking unlock case, which is a no-op
1286   // Note: we do not have to check the thread ID for two reasons.
1287   // First, the interpreter checks for IllegalMonitorStateException at
1288   // a higher level. Second, if the bias was revoked while we held the
1289   // lock, the object could not be rebiased toward another thread, so
1290   // the bias bit would be clear.
1291   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1292   andptr(temp_reg, markWord::biased_lock_mask_in_place);
1293   cmpptr(temp_reg, markWord::biased_lock_pattern);
1294   jcc(Assembler::equal, done);
1295 }
1296 
1297 #ifdef COMPILER2
1298 
1299 #if INCLUDE_RTM_OPT
1300 
1301 // Update rtm_counters based on abort status
1302 // input: abort_status
1303 //        rtm_counters (RTMLockingCounters*)
1304 // flags are killed
1305 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1306 
1307   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1308   if (PrintPreciseRTMLockingStatistics) {
1309     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1310       Label check_abort;
1311       testl(abort_status, (1<<i));
1312       jccb(Assembler::equal, check_abort);
1313       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1314       bind(check_abort);
1315     }
1316   }
1317 }
1318 
1319 // Branch if (random & (count-1) != 0), count is 2^n
1320 // tmp, scr and flags are killed
1321 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1322   assert(tmp == rax, "");
1323   assert(scr == rdx, "");
1324   rdtsc(); // modifies EDX:EAX
1325   andptr(tmp, count-1);
1326   jccb(Assembler::notZero, brLabel);
1327 }
1328 
1329 // Perform abort ratio calculation, set no_rtm bit if high ratio
1330 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1331 // tmpReg, rtm_counters_Reg and flags are killed
1332 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1333                                                  Register rtm_counters_Reg,
1334                                                  RTMLockingCounters* rtm_counters,
1335                                                  Metadata* method_data) {
1336   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1337 
1338   if (RTMLockingCalculationDelay > 0) {
1339     // Delay calculation
1340     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1341     testptr(tmpReg, tmpReg);
1342     jccb(Assembler::equal, L_done);
1343   }
1344   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1345   //   Aborted transactions = abort_count * 100
1346   //   All transactions = total_count *  RTMTotalCountIncrRate
1347   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1348 
1349   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1350   cmpptr(tmpReg, RTMAbortThreshold);
1351   jccb(Assembler::below, L_check_always_rtm2);
1352   imulptr(tmpReg, tmpReg, 100);
1353 
1354   Register scrReg = rtm_counters_Reg;
1355   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1356   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1357   imulptr(scrReg, scrReg, RTMAbortRatio);
1358   cmpptr(tmpReg, scrReg);
1359   jccb(Assembler::below, L_check_always_rtm1);
1360   if (method_data != NULL) {
1361     // set rtm_state to "no rtm" in MDO
1362     mov_metadata(tmpReg, method_data);
1363     lock();
1364     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1365   }
1366   jmpb(L_done);
1367   bind(L_check_always_rtm1);
1368   // Reload RTMLockingCounters* address
1369   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1370   bind(L_check_always_rtm2);
1371   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1372   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1373   jccb(Assembler::below, L_done);
1374   if (method_data != NULL) {
1375     // set rtm_state to "always rtm" in MDO
1376     mov_metadata(tmpReg, method_data);
1377     lock();
1378     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1379   }
1380   bind(L_done);
1381 }
1382 
1383 // Update counters and perform abort ratio calculation
1384 // input:  abort_status_Reg
1385 // rtm_counters_Reg, flags are killed
1386 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1387                                    Register rtm_counters_Reg,
1388                                    RTMLockingCounters* rtm_counters,
1389                                    Metadata* method_data,
1390                                    bool profile_rtm) {
1391 
1392   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1393   // update rtm counters based on rax value at abort
1394   // reads abort_status_Reg, updates flags
1395   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1396   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1397   if (profile_rtm) {
1398     // Save abort status because abort_status_Reg is used by following code.
1399     if (RTMRetryCount > 0) {
1400       push(abort_status_Reg);
1401     }
1402     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1403     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1404     // restore abort status
1405     if (RTMRetryCount > 0) {
1406       pop(abort_status_Reg);
1407     }
1408   }
1409 }
1410 
1411 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1412 // inputs: retry_count_Reg
1413 //       : abort_status_Reg
1414 // output: retry_count_Reg decremented by 1
1415 // flags are killed
1416 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1417   Label doneRetry;
1418   assert(abort_status_Reg == rax, "");
1419   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1420   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1421   // if reason is in 0x6 and retry count != 0 then retry
1422   andptr(abort_status_Reg, 0x6);
1423   jccb(Assembler::zero, doneRetry);
1424   testl(retry_count_Reg, retry_count_Reg);
1425   jccb(Assembler::zero, doneRetry);
1426   pause();
1427   decrementl(retry_count_Reg);
1428   jmp(retryLabel);
1429   bind(doneRetry);
1430 }
1431 
1432 // Spin and retry if lock is busy,
1433 // inputs: box_Reg (monitor address)
1434 //       : retry_count_Reg
1435 // output: retry_count_Reg decremented by 1
1436 //       : clear z flag if retry count exceeded
1437 // tmp_Reg, scr_Reg, flags are killed
1438 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1439                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1440   Label SpinLoop, SpinExit, doneRetry;
1441   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1442 
1443   testl(retry_count_Reg, retry_count_Reg);
1444   jccb(Assembler::zero, doneRetry);
1445   decrementl(retry_count_Reg);
1446   movptr(scr_Reg, RTMSpinLoopCount);
1447 
1448   bind(SpinLoop);
1449   pause();
1450   decrementl(scr_Reg);
1451   jccb(Assembler::lessEqual, SpinExit);
1452   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1453   testptr(tmp_Reg, tmp_Reg);
1454   jccb(Assembler::notZero, SpinLoop);
1455 
1456   bind(SpinExit);
1457   jmp(retryLabel);
1458   bind(doneRetry);
1459   incrementl(retry_count_Reg); // clear z flag
1460 }
1461 
1462 // Use RTM for normal stack locks
1463 // Input: objReg (object to lock)
1464 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1465                                        Register retry_on_abort_count_Reg,
1466                                        RTMLockingCounters* stack_rtm_counters,
1467                                        Metadata* method_data, bool profile_rtm,
1468                                        Label& DONE_LABEL, Label& IsInflated) {
1469   assert(UseRTMForStackLocks, "why call this otherwise?");
1470   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1471   assert(tmpReg == rax, "");
1472   assert(scrReg == rdx, "");
1473   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1474 
1475   if (RTMRetryCount > 0) {
1476     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1477     bind(L_rtm_retry);
1478   }
1479   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1480   testptr(tmpReg, markWord::monitor_value);  // inflated vs stack-locked|neutral|biased
1481   jcc(Assembler::notZero, IsInflated);
1482 
1483   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1484     Label L_noincrement;
1485     if (RTMTotalCountIncrRate > 1) {
1486       // tmpReg, scrReg and flags are killed
1487       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1488     }
1489     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1490     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1491     bind(L_noincrement);
1492   }
1493   xbegin(L_on_abort);
1494   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));       // fetch markword
1495   andptr(tmpReg, markWord::biased_lock_mask_in_place); // look at 3 lock bits
1496   cmpptr(tmpReg, markWord::unlocked_value);            // bits = 001 unlocked
1497   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1498 
1499   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1500   if (UseRTMXendForLockBusy) {
1501     xend();
1502     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1503     jmp(L_decrement_retry);
1504   }
1505   else {
1506     xabort(0);
1507   }
1508   bind(L_on_abort);
1509   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1510     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1511   }
1512   bind(L_decrement_retry);
1513   if (RTMRetryCount > 0) {
1514     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1515     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1516   }
1517 }
1518 
1519 // Use RTM for inflating locks
1520 // inputs: objReg (object to lock)
1521 //         boxReg (on-stack box address (displaced header location) - KILLED)
1522 //         tmpReg (ObjectMonitor address + markWord::monitor_value)
1523 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1524                                           Register scrReg, Register retry_on_busy_count_Reg,
1525                                           Register retry_on_abort_count_Reg,
1526                                           RTMLockingCounters* rtm_counters,
1527                                           Metadata* method_data, bool profile_rtm,
1528                                           Label& DONE_LABEL) {
1529   assert(UseRTMLocking, "why call this otherwise?");
1530   assert(tmpReg == rax, "");
1531   assert(scrReg == rdx, "");
1532   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1533   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1534 
1535   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1536   movptr(Address(boxReg, 0), (int32_t)intptr_t(markWord::unused_mark().value()));
1537   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1538 
1539   if (RTMRetryCount > 0) {
1540     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1541     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1542     bind(L_rtm_retry);
1543   }
1544   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1545     Label L_noincrement;
1546     if (RTMTotalCountIncrRate > 1) {
1547       // tmpReg, scrReg and flags are killed
1548       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1549     }
1550     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1551     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1552     bind(L_noincrement);
1553   }
1554   xbegin(L_on_abort);
1555   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1556   movptr(tmpReg, Address(tmpReg, owner_offset));
1557   testptr(tmpReg, tmpReg);
1558   jcc(Assembler::zero, DONE_LABEL);
1559   if (UseRTMXendForLockBusy) {
1560     xend();
1561     jmp(L_decrement_retry);
1562   }
1563   else {
1564     xabort(0);
1565   }
1566   bind(L_on_abort);
1567   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1568   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1569     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1570   }
1571   if (RTMRetryCount > 0) {
1572     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1573     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1574   }
1575 
1576   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1577   testptr(tmpReg, tmpReg) ;
1578   jccb(Assembler::notZero, L_decrement_retry) ;
1579 
1580   // Appears unlocked - try to swing _owner from null to non-null.
1581   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1582 #ifdef _LP64
1583   Register threadReg = r15_thread;
1584 #else
1585   get_thread(scrReg);
1586   Register threadReg = scrReg;
1587 #endif
1588   lock();
1589   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1590 
1591   if (RTMRetryCount > 0) {
1592     // success done else retry
1593     jccb(Assembler::equal, DONE_LABEL) ;
1594     bind(L_decrement_retry);
1595     // Spin and retry if lock is busy.
1596     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1597   }
1598   else {
1599     bind(L_decrement_retry);
1600   }
1601 }
1602 
1603 #endif //  INCLUDE_RTM_OPT
1604 
1605 // Fast_Lock and Fast_Unlock used by C2
1606 
1607 // Because the transitions from emitted code to the runtime
1608 // monitorenter/exit helper stubs are so slow it's critical that
1609 // we inline both the stack-locking fast-path and the inflated fast path.
1610 //
1611 // See also: cmpFastLock and cmpFastUnlock.
1612 //
1613 // What follows is a specialized inline transliteration of the code
1614 // in enter() and exit(). If we're concerned about I$ bloat another
1615 // option would be to emit TrySlowEnter and TrySlowExit methods
1616 // at startup-time.  These methods would accept arguments as
1617 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1618 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1619 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1620 // In practice, however, the # of lock sites is bounded and is usually small.
1621 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1622 // if the processor uses simple bimodal branch predictors keyed by EIP
1623 // Since the helper routines would be called from multiple synchronization
1624 // sites.
1625 //
1626 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1627 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1628 // to those specialized methods.  That'd give us a mostly platform-independent
1629 // implementation that the JITs could optimize and inline at their pleasure.
1630 // Done correctly, the only time we'd need to cross to native could would be
1631 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1632 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1633 // (b) explicit barriers or fence operations.
1634 //
1635 // TODO:
1636 //
1637 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1638 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1639 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1640 //    the lock operators would typically be faster than reifying Self.
1641 //
1642 // *  Ideally I'd define the primitives as:
1643 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1644 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1645 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1646 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1647 //    Furthermore the register assignments are overconstrained, possibly resulting in
1648 //    sub-optimal code near the synchronization site.
1649 //
1650 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1651 //    Alternately, use a better sp-proximity test.
1652 //
1653 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1654 //    Either one is sufficient to uniquely identify a thread.
1655 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1656 //
1657 // *  Intrinsify notify() and notifyAll() for the common cases where the
1658 //    object is locked by the calling thread but the waitlist is empty.
1659 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1660 //
1661 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1662 //    But beware of excessive branch density on AMD Opterons.
1663 //
1664 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1665 //    or failure of the fast-path.  If the fast-path fails then we pass
1666 //    control to the slow-path, typically in C.  In Fast_Lock and
1667 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1668 //    will emit a conditional branch immediately after the node.
1669 //    So we have branches to branches and lots of ICC.ZF games.
1670 //    Instead, it might be better to have C2 pass a "FailureLabel"
1671 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1672 //    will drop through the node.  ICC.ZF is undefined at exit.
1673 //    In the case of failure, the node will branch directly to the
1674 //    FailureLabel
1675 
1676 
1677 // obj: object to lock
1678 // box: on-stack box address (displaced header location) - KILLED
1679 // rax,: tmp -- KILLED
1680 // scr: tmp -- KILLED
1681 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1682                                Register scrReg, Register cx1Reg, Register cx2Reg,
1683                                BiasedLockingCounters* counters,
1684                                RTMLockingCounters* rtm_counters,
1685                                RTMLockingCounters* stack_rtm_counters,
1686                                Metadata* method_data,
1687                                bool use_rtm, bool profile_rtm) {
1688   // Ensure the register assignments are disjoint
1689   assert(tmpReg == rax, "");
1690 
1691   if (use_rtm) {
1692     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1693   } else {
1694     assert(cx1Reg == noreg, "");
1695     assert(cx2Reg == noreg, "");
1696     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1697   }
1698 
1699   if (counters != NULL) {
1700     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1701   }
1702 
1703   // Possible cases that we'll encounter in fast_lock
1704   // ------------------------------------------------
1705   // * Inflated
1706   //    -- unlocked
1707   //    -- Locked
1708   //       = by self
1709   //       = by other
1710   // * biased
1711   //    -- by Self
1712   //    -- by other
1713   // * neutral
1714   // * stack-locked
1715   //    -- by self
1716   //       = sp-proximity test hits
1717   //       = sp-proximity test generates false-negative
1718   //    -- by other
1719   //
1720 
1721   Label IsInflated, DONE_LABEL;
1722 
1723   // it's stack-locked, biased or neutral
1724   // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1725   // order to reduce the number of conditional branches in the most common cases.
1726   // Beware -- there's a subtle invariant that fetch of the markword
1727   // at [FETCH], below, will never observe a biased encoding (*101b).
1728   // If this invariant is not held we risk exclusion (safety) failure.
1729   if (UseBiasedLocking && !UseOptoBiasInlining) {
1730     biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1731   }
1732 
1733 #if INCLUDE_RTM_OPT
1734   if (UseRTMForStackLocks && use_rtm) {
1735     rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1736                       stack_rtm_counters, method_data, profile_rtm,
1737                       DONE_LABEL, IsInflated);
1738   }
1739 #endif // INCLUDE_RTM_OPT
1740 
1741   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));          // [FETCH]
1742   testptr(tmpReg, markWord::monitor_value); // inflated vs stack-locked|neutral|biased
1743   jccb(Assembler::notZero, IsInflated);
1744 
1745   // Attempt stack-locking ...
1746   orptr (tmpReg, markWord::unlocked_value);
1747   movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1748   lock();
1749   cmpxchgptr(boxReg, Address(objReg, oopDesc::mark_offset_in_bytes()));      // Updates tmpReg
1750   if (counters != NULL) {
1751     cond_inc32(Assembler::equal,
1752                ExternalAddress((address)counters->fast_path_entry_count_addr()));
1753   }
1754   jcc(Assembler::equal, DONE_LABEL);           // Success
1755 
1756   // Recursive locking.
1757   // The object is stack-locked: markword contains stack pointer to BasicLock.
1758   // Locked by current thread if difference with current SP is less than one page.
1759   subptr(tmpReg, rsp);
1760   // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1761   andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1762   movptr(Address(boxReg, 0), tmpReg);
1763   if (counters != NULL) {
1764     cond_inc32(Assembler::equal,
1765                ExternalAddress((address)counters->fast_path_entry_count_addr()));
1766   }
1767   jmp(DONE_LABEL);
1768 
1769   bind(IsInflated);
1770   // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markWord::monitor_value
1771 
1772 #if INCLUDE_RTM_OPT
1773   // Use the same RTM locking code in 32- and 64-bit VM.
1774   if (use_rtm) {
1775     rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1776                          rtm_counters, method_data, profile_rtm, DONE_LABEL);
1777   } else {
1778 #endif // INCLUDE_RTM_OPT
1779 
1780 #ifndef _LP64
1781   // The object is inflated.
1782 
1783   // boxReg refers to the on-stack BasicLock in the current frame.
1784   // We'd like to write:
1785   //   set box->_displaced_header = markWord::unused_mark().  Any non-0 value suffices.
1786   // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1787   // additional latency as we have another ST in the store buffer that must drain.
1788 
1789   // avoid ST-before-CAS
1790   // register juggle because we need tmpReg for cmpxchgptr below
1791   movptr(scrReg, boxReg);
1792   movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1793 
1794   // Optimistic form: consider XORL tmpReg,tmpReg
1795   movptr(tmpReg, NULL_WORD);
1796 
1797   // Appears unlocked - try to swing _owner from null to non-null.
1798   // Ideally, I'd manifest "Self" with get_thread and then attempt
1799   // to CAS the register containing Self into m->Owner.
1800   // But we don't have enough registers, so instead we can either try to CAS
1801   // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1802   // we later store "Self" into m->Owner.  Transiently storing a stack address
1803   // (rsp or the address of the box) into  m->owner is harmless.
1804   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1805   lock();
1806   cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1807   movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1808   // If we weren't able to swing _owner from NULL to the BasicLock
1809   // then take the slow path.
1810   jccb  (Assembler::notZero, DONE_LABEL);
1811   // update _owner from BasicLock to thread
1812   get_thread (scrReg);                    // beware: clobbers ICCs
1813   movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1814   xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1815 
1816   // If the CAS fails we can either retry or pass control to the slow-path.
1817   // We use the latter tactic.
1818   // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1819   // If the CAS was successful ...
1820   //   Self has acquired the lock
1821   //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1822   // Intentional fall-through into DONE_LABEL ...
1823 #else // _LP64
1824   // It's inflated
1825   movq(scrReg, tmpReg);
1826   xorq(tmpReg, tmpReg);
1827 
1828   lock();
1829   cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1830   // Unconditionally set box->_displaced_header = markWord::unused_mark().
1831   // Without cast to int32_t movptr will destroy r10 which is typically obj.
1832   movptr(Address(boxReg, 0), (int32_t)intptr_t(markWord::unused_mark().value()));
1833   // The following code to verify that the object field still refers
1834   // to the object we are trying to lock is not needed with safepoint
1835   // based deflation. It is also not needed with async deflation when
1836   // the DEFLATER_MARKER is allowed to linger in the owner field in an
1837   // async deflated ObjectMonitor until replaced by the next owner value.
1838   // We keep this code as a sanity check against bugs in other parts
1839   // of the async deflation mechanism.
1840   //
1841   // If we weren't able to swing _owner from NULL to r15_thread
1842   // then take the slow path.
1843   jccb(Assembler::notZero, DONE_LABEL);
1844   // r15_thread is now the owner so verify that the ObjectMonitor
1845   // still refers to the same object.
1846   cmpptr(objReg, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(object)));
1847   // The ObjectMonitor still refers to the same object so
1848   // r15_thread's ownership is valid.
1849   jccb(Assembler::zero, DONE_LABEL);
1850   // The ObjectMonitor does not refer to the same object so
1851   // drop ownership.
1852   movptr(Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
1853   // Intentional fall-through into DONE_LABEL ...
1854   // Propagate ICC.ZF from cmpptr() above into DONE_LABEL.
1855 #endif // _LP64
1856 #if INCLUDE_RTM_OPT
1857   } // use_rtm()
1858 #endif
1859   // DONE_LABEL is a hot target - we'd really like to place it at the
1860   // start of cache line by padding with NOPs.
1861   // See the AMD and Intel software optimization manuals for the
1862   // most efficient "long" NOP encodings.
1863   // Unfortunately none of our alignment mechanisms suffice.
1864   bind(DONE_LABEL);
1865 
1866   // At DONE_LABEL the icc ZFlag is set as follows ...
1867   // Fast_Unlock uses the same protocol.
1868   // ZFlag == 1 -> Success
1869   // ZFlag == 0 -> Failure - force control through the slow-path
1870 }
1871 
1872 // obj: object to unlock
1873 // box: box address (displaced header location), killed.  Must be EAX.
1874 // tmp: killed, cannot be obj nor box.
1875 //
1876 // Some commentary on balanced locking:
1877 //
1878 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1879 // Methods that don't have provably balanced locking are forced to run in the
1880 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1881 // The interpreter provides two properties:
1882 // I1:  At return-time the interpreter automatically and quietly unlocks any
1883 //      objects acquired the current activation (frame).  Recall that the
1884 //      interpreter maintains an on-stack list of locks currently held by
1885 //      a frame.
1886 // I2:  If a method attempts to unlock an object that is not held by the
1887 //      the frame the interpreter throws IMSX.
1888 //
1889 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1890 // B() doesn't have provably balanced locking so it runs in the interpreter.
1891 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1892 // is still locked by A().
1893 //
1894 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1895 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1896 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1897 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1898 // Arguably given that the spec legislates the JNI case as undefined our implementation
1899 // could reasonably *avoid* checking owner in Fast_Unlock().
1900 // In the interest of performance we elide m->Owner==Self check in unlock.
1901 // A perfectly viable alternative is to elide the owner check except when
1902 // Xcheck:jni is enabled.
1903 
1904 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1905   assert(boxReg == rax, "");
1906   assert_different_registers(objReg, boxReg, tmpReg);
1907 
1908   Label DONE_LABEL, Stacked, CheckSucc;
1909 
1910   // Critically, the biased locking test must have precedence over
1911   // and appear before the (box->dhw == 0) recursive stack-lock test.
1912   if (UseBiasedLocking && !UseOptoBiasInlining) {
1913     biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1914   }
1915 
1916 #if INCLUDE_RTM_OPT
1917   if (UseRTMForStackLocks && use_rtm) {
1918     assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1919     Label L_regular_unlock;
1920     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // fetch markword
1921     andptr(tmpReg, markWord::biased_lock_mask_in_place);              // look at 3 lock bits
1922     cmpptr(tmpReg, markWord::unlocked_value);                         // bits = 001 unlocked
1923     jccb(Assembler::notEqual, L_regular_unlock);                      // if !HLE RegularLock
1924     xend();                                                           // otherwise end...
1925     jmp(DONE_LABEL);                                                  // ... and we're done
1926     bind(L_regular_unlock);
1927   }
1928 #endif
1929 
1930   cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD);                   // Examine the displaced header
1931   jcc   (Assembler::zero, DONE_LABEL);                              // 0 indicates recursive stack-lock
1932   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Examine the object's markword
1933   testptr(tmpReg, markWord::monitor_value);                         // Inflated?
1934   jccb  (Assembler::zero, Stacked);
1935 
1936   // It's inflated.
1937 #if INCLUDE_RTM_OPT
1938   if (use_rtm) {
1939     Label L_regular_inflated_unlock;
1940     int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1941     movptr(boxReg, Address(tmpReg, owner_offset));
1942     testptr(boxReg, boxReg);
1943     jccb(Assembler::notZero, L_regular_inflated_unlock);
1944     xend();
1945     jmpb(DONE_LABEL);
1946     bind(L_regular_inflated_unlock);
1947   }
1948 #endif
1949 
1950   // Despite our balanced locking property we still check that m->_owner == Self
1951   // as java routines or native JNI code called by this thread might
1952   // have released the lock.
1953   // Refer to the comments in synchronizer.cpp for how we might encode extra
1954   // state in _succ so we can avoid fetching EntryList|cxq.
1955   //
1956   // I'd like to add more cases in fast_lock() and fast_unlock() --
1957   // such as recursive enter and exit -- but we have to be wary of
1958   // I$ bloat, T$ effects and BP$ effects.
1959   //
1960   // If there's no contention try a 1-0 exit.  That is, exit without
1961   // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
1962   // we detect and recover from the race that the 1-0 exit admits.
1963   //
1964   // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
1965   // before it STs null into _owner, releasing the lock.  Updates
1966   // to data protected by the critical section must be visible before
1967   // we drop the lock (and thus before any other thread could acquire
1968   // the lock and observe the fields protected by the lock).
1969   // IA32's memory-model is SPO, so STs are ordered with respect to
1970   // each other and there's no need for an explicit barrier (fence).
1971   // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
1972 #ifndef _LP64
1973   get_thread (boxReg);
1974 
1975   // Note that we could employ various encoding schemes to reduce
1976   // the number of loads below (currently 4) to just 2 or 3.
1977   // Refer to the comments in synchronizer.cpp.
1978   // In practice the chain of fetches doesn't seem to impact performance, however.
1979   xorptr(boxReg, boxReg);
1980   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
1981   jccb  (Assembler::notZero, DONE_LABEL);
1982   movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
1983   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
1984   jccb  (Assembler::notZero, CheckSucc);
1985   movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
1986   jmpb  (DONE_LABEL);
1987 
1988   bind (Stacked);
1989   // It's not inflated and it's not recursively stack-locked and it's not biased.
1990   // It must be stack-locked.
1991   // Try to reset the header to displaced header.
1992   // The "box" value on the stack is stable, so we can reload
1993   // and be assured we observe the same value as above.
1994   movptr(tmpReg, Address(boxReg, 0));
1995   lock();
1996   cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
1997   // Intention fall-thru into DONE_LABEL
1998 
1999   // DONE_LABEL is a hot target - we'd really like to place it at the
2000   // start of cache line by padding with NOPs.
2001   // See the AMD and Intel software optimization manuals for the
2002   // most efficient "long" NOP encodings.
2003   // Unfortunately none of our alignment mechanisms suffice.
2004   bind (CheckSucc);
2005 #else // _LP64
2006   // It's inflated
2007   xorptr(boxReg, boxReg);
2008   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2009   jccb  (Assembler::notZero, DONE_LABEL);
2010   movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2011   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2012   jccb  (Assembler::notZero, CheckSucc);
2013   movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2014   jmpb  (DONE_LABEL);
2015 
2016   // Try to avoid passing control into the slow_path ...
2017   Label LSuccess, LGoSlowPath ;
2018   bind  (CheckSucc);
2019 
2020   // The following optional optimization can be elided if necessary
2021   // Effectively: if (succ == null) goto SlowPath
2022   // The code reduces the window for a race, however,
2023   // and thus benefits performance.
2024   cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2025   jccb  (Assembler::zero, LGoSlowPath);
2026 
2027   xorptr(boxReg, boxReg);
2028   movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2029 
2030   // Memory barrier/fence
2031   // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2032   // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2033   // This is faster on Nehalem and AMD Shanghai/Barcelona.
2034   // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2035   // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2036   // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2037   lock(); addl(Address(rsp, 0), 0);
2038 
2039   cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2040   jccb  (Assembler::notZero, LSuccess);
2041 
2042   // Rare inopportune interleaving - race.
2043   // The successor vanished in the small window above.
2044   // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2045   // We need to ensure progress and succession.
2046   // Try to reacquire the lock.
2047   // If that fails then the new owner is responsible for succession and this
2048   // thread needs to take no further action and can exit via the fast path (success).
2049   // If the re-acquire succeeds then pass control into the slow path.
2050   // As implemented, this latter mode is horrible because we generated more
2051   // coherence traffic on the lock *and* artifically extended the critical section
2052   // length while by virtue of passing control into the slow path.
2053 
2054   // box is really RAX -- the following CMPXCHG depends on that binding
2055   // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2056   lock();
2057   cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2058   // There's no successor so we tried to regrab the lock.
2059   // If that didn't work, then another thread grabbed the
2060   // lock so we're done (and exit was a success).
2061   jccb  (Assembler::notEqual, LSuccess);
2062   // Intentional fall-through into slow-path
2063 
2064   bind  (LGoSlowPath);
2065   orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2066   jmpb  (DONE_LABEL);
2067 
2068   bind  (LSuccess);
2069   testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2070   jmpb  (DONE_LABEL);
2071 
2072   bind  (Stacked);
2073   movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2074   lock();
2075   cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2076 
2077 #endif
2078   bind(DONE_LABEL);
2079 }
2080 #endif // COMPILER2
2081 
2082 void MacroAssembler::c2bool(Register x) {
2083   // implements x == 0 ? 0 : 1
2084   // note: must only look at least-significant byte of x
2085   //       since C-style booleans are stored in one byte
2086   //       only! (was bug)
2087   andl(x, 0xFF);
2088   setb(Assembler::notZero, x);
2089 }
2090 
2091 // Wouldn't need if AddressLiteral version had new name
2092 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2093   Assembler::call(L, rtype);
2094 }
2095 
2096 void MacroAssembler::call(Register entry) {
2097   Assembler::call(entry);
2098 }
2099 
2100 void MacroAssembler::call(AddressLiteral entry) {
2101   if (reachable(entry)) {
2102     Assembler::call_literal(entry.target(), entry.rspec());
2103   } else {
2104     lea(rscratch1, entry);
2105     Assembler::call(rscratch1);
2106   }
2107 }
2108 
2109 void MacroAssembler::ic_call(address entry, jint method_index) {
2110   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
2111   movptr(rax, (intptr_t)Universe::non_oop_word());
2112   call(AddressLiteral(entry, rh));
2113 }
2114 
2115 // Implementation of call_VM versions
2116 
2117 void MacroAssembler::call_VM(Register oop_result,
2118                              address entry_point,
2119                              bool check_exceptions) {
2120   Label C, E;
2121   call(C, relocInfo::none);
2122   jmp(E);
2123 
2124   bind(C);
2125   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2126   ret(0);
2127 
2128   bind(E);
2129 }
2130 
2131 void MacroAssembler::call_VM(Register oop_result,
2132                              address entry_point,
2133                              Register arg_1,
2134                              bool check_exceptions) {
2135   Label C, E;
2136   call(C, relocInfo::none);
2137   jmp(E);
2138 
2139   bind(C);
2140   pass_arg1(this, arg_1);
2141   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2142   ret(0);
2143 
2144   bind(E);
2145 }
2146 
2147 void MacroAssembler::call_VM(Register oop_result,
2148                              address entry_point,
2149                              Register arg_1,
2150                              Register arg_2,
2151                              bool check_exceptions) {
2152   Label C, E;
2153   call(C, relocInfo::none);
2154   jmp(E);
2155 
2156   bind(C);
2157 
2158   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2159 
2160   pass_arg2(this, arg_2);
2161   pass_arg1(this, arg_1);
2162   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2163   ret(0);
2164 
2165   bind(E);
2166 }
2167 
2168 void MacroAssembler::call_VM(Register oop_result,
2169                              address entry_point,
2170                              Register arg_1,
2171                              Register arg_2,
2172                              Register arg_3,
2173                              bool check_exceptions) {
2174   Label C, E;
2175   call(C, relocInfo::none);
2176   jmp(E);
2177 
2178   bind(C);
2179 
2180   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2181   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2182   pass_arg3(this, arg_3);
2183 
2184   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2185   pass_arg2(this, arg_2);
2186 
2187   pass_arg1(this, arg_1);
2188   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2189   ret(0);
2190 
2191   bind(E);
2192 }
2193 
2194 void MacroAssembler::call_VM(Register oop_result,
2195                              Register last_java_sp,
2196                              address entry_point,
2197                              int number_of_arguments,
2198                              bool check_exceptions) {
2199   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2200   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2201 }
2202 
2203 void MacroAssembler::call_VM(Register oop_result,
2204                              Register last_java_sp,
2205                              address entry_point,
2206                              Register arg_1,
2207                              bool check_exceptions) {
2208   pass_arg1(this, arg_1);
2209   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2210 }
2211 
2212 void MacroAssembler::call_VM(Register oop_result,
2213                              Register last_java_sp,
2214                              address entry_point,
2215                              Register arg_1,
2216                              Register arg_2,
2217                              bool check_exceptions) {
2218 
2219   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2220   pass_arg2(this, arg_2);
2221   pass_arg1(this, arg_1);
2222   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2223 }
2224 
2225 void MacroAssembler::call_VM(Register oop_result,
2226                              Register last_java_sp,
2227                              address entry_point,
2228                              Register arg_1,
2229                              Register arg_2,
2230                              Register arg_3,
2231                              bool check_exceptions) {
2232   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2233   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2234   pass_arg3(this, arg_3);
2235   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2236   pass_arg2(this, arg_2);
2237   pass_arg1(this, arg_1);
2238   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2239 }
2240 
2241 void MacroAssembler::super_call_VM(Register oop_result,
2242                                    Register last_java_sp,
2243                                    address entry_point,
2244                                    int number_of_arguments,
2245                                    bool check_exceptions) {
2246   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2247   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2248 }
2249 
2250 void MacroAssembler::super_call_VM(Register oop_result,
2251                                    Register last_java_sp,
2252                                    address entry_point,
2253                                    Register arg_1,
2254                                    bool check_exceptions) {
2255   pass_arg1(this, arg_1);
2256   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2257 }
2258 
2259 void MacroAssembler::super_call_VM(Register oop_result,
2260                                    Register last_java_sp,
2261                                    address entry_point,
2262                                    Register arg_1,
2263                                    Register arg_2,
2264                                    bool check_exceptions) {
2265 
2266   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2267   pass_arg2(this, arg_2);
2268   pass_arg1(this, arg_1);
2269   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2270 }
2271 
2272 void MacroAssembler::super_call_VM(Register oop_result,
2273                                    Register last_java_sp,
2274                                    address entry_point,
2275                                    Register arg_1,
2276                                    Register arg_2,
2277                                    Register arg_3,
2278                                    bool check_exceptions) {
2279   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2280   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2281   pass_arg3(this, arg_3);
2282   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2283   pass_arg2(this, arg_2);
2284   pass_arg1(this, arg_1);
2285   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2286 }
2287 
2288 void MacroAssembler::call_VM_base(Register oop_result,
2289                                   Register java_thread,
2290                                   Register last_java_sp,
2291                                   address  entry_point,
2292                                   int      number_of_arguments,
2293                                   bool     check_exceptions) {
2294   // determine java_thread register
2295   if (!java_thread->is_valid()) {
2296 #ifdef _LP64
2297     java_thread = r15_thread;
2298 #else
2299     java_thread = rdi;
2300     get_thread(java_thread);
2301 #endif // LP64
2302   }
2303   // determine last_java_sp register
2304   if (!last_java_sp->is_valid()) {
2305     last_java_sp = rsp;
2306   }
2307   // debugging support
2308   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2309   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2310 #ifdef ASSERT
2311   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2312   // r12 is the heapbase.
2313   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2314 #endif // ASSERT
2315 
2316   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2317   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2318 
2319   // push java thread (becomes first argument of C function)
2320 
2321   NOT_LP64(push(java_thread); number_of_arguments++);
2322   LP64_ONLY(mov(c_rarg0, r15_thread));
2323 
2324   // set last Java frame before call
2325   assert(last_java_sp != rbp, "can't use ebp/rbp");
2326 
2327   // Only interpreter should have to set fp
2328   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2329 
2330   // do the call, remove parameters
2331   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2332 
2333   // restore the thread (cannot use the pushed argument since arguments
2334   // may be overwritten by C code generated by an optimizing compiler);
2335   // however can use the register value directly if it is callee saved.
2336   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2337     // rdi & rsi (also r15) are callee saved -> nothing to do
2338 #ifdef ASSERT
2339     guarantee(java_thread != rax, "change this code");
2340     push(rax);
2341     { Label L;
2342       get_thread(rax);
2343       cmpptr(java_thread, rax);
2344       jcc(Assembler::equal, L);
2345       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2346       bind(L);
2347     }
2348     pop(rax);
2349 #endif
2350   } else {
2351     get_thread(java_thread);
2352   }
2353   // reset last Java frame
2354   // Only interpreter should have to clear fp
2355   reset_last_Java_frame(java_thread, true);
2356 
2357    // C++ interp handles this in the interpreter
2358   check_and_handle_popframe(java_thread);
2359   check_and_handle_earlyret(java_thread);
2360 
2361   if (check_exceptions) {
2362     // check for pending exceptions (java_thread is set upon return)
2363     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2364 #ifndef _LP64
2365     jump_cc(Assembler::notEqual,
2366             RuntimeAddress(StubRoutines::forward_exception_entry()));
2367 #else
2368     // This used to conditionally jump to forward_exception however it is
2369     // possible if we relocate that the branch will not reach. So we must jump
2370     // around so we can always reach
2371 
2372     Label ok;
2373     jcc(Assembler::equal, ok);
2374     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2375     bind(ok);
2376 #endif // LP64
2377   }
2378 
2379   // get oop result if there is one and reset the value in the thread
2380   if (oop_result->is_valid()) {
2381     get_vm_result(oop_result, java_thread);
2382   }
2383 }
2384 
2385 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2386 
2387   // Calculate the value for last_Java_sp
2388   // somewhat subtle. call_VM does an intermediate call
2389   // which places a return address on the stack just under the
2390   // stack pointer as the user finsihed with it. This allows
2391   // use to retrieve last_Java_pc from last_Java_sp[-1].
2392   // On 32bit we then have to push additional args on the stack to accomplish
2393   // the actual requested call. On 64bit call_VM only can use register args
2394   // so the only extra space is the return address that call_VM created.
2395   // This hopefully explains the calculations here.
2396 
2397 #ifdef _LP64
2398   // We've pushed one address, correct last_Java_sp
2399   lea(rax, Address(rsp, wordSize));
2400 #else
2401   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2402 #endif // LP64
2403 
2404   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2405 
2406 }
2407 
2408 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
2409 void MacroAssembler::call_VM_leaf0(address entry_point) {
2410   MacroAssembler::call_VM_leaf_base(entry_point, 0);
2411 }
2412 
2413 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2414   call_VM_leaf_base(entry_point, number_of_arguments);
2415 }
2416 
2417 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2418   pass_arg0(this, arg_0);
2419   call_VM_leaf(entry_point, 1);
2420 }
2421 
2422 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2423 
2424   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2425   pass_arg1(this, arg_1);
2426   pass_arg0(this, arg_0);
2427   call_VM_leaf(entry_point, 2);
2428 }
2429 
2430 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2431   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2432   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2433   pass_arg2(this, arg_2);
2434   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2435   pass_arg1(this, arg_1);
2436   pass_arg0(this, arg_0);
2437   call_VM_leaf(entry_point, 3);
2438 }
2439 
2440 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2441   pass_arg0(this, arg_0);
2442   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2443 }
2444 
2445 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2446 
2447   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2448   pass_arg1(this, arg_1);
2449   pass_arg0(this, arg_0);
2450   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2451 }
2452 
2453 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2454   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2455   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2456   pass_arg2(this, arg_2);
2457   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2458   pass_arg1(this, arg_1);
2459   pass_arg0(this, arg_0);
2460   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2461 }
2462 
2463 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2464   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2465   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2466   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2467   pass_arg3(this, arg_3);
2468   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2469   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2470   pass_arg2(this, arg_2);
2471   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2472   pass_arg1(this, arg_1);
2473   pass_arg0(this, arg_0);
2474   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2475 }
2476 
2477 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2478   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2479   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2480   verify_oop(oop_result, "broken oop in call_VM_base");
2481 }
2482 
2483 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2484   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2485   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2486 }
2487 
2488 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2489 }
2490 
2491 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2492 }
2493 
2494 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2495   if (reachable(src1)) {
2496     cmpl(as_Address(src1), imm);
2497   } else {
2498     lea(rscratch1, src1);
2499     cmpl(Address(rscratch1, 0), imm);
2500   }
2501 }
2502 
2503 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2504   assert(!src2.is_lval(), "use cmpptr");
2505   if (reachable(src2)) {
2506     cmpl(src1, as_Address(src2));
2507   } else {
2508     lea(rscratch1, src2);
2509     cmpl(src1, Address(rscratch1, 0));
2510   }
2511 }
2512 
2513 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2514   Assembler::cmpl(src1, imm);
2515 }
2516 
2517 void MacroAssembler::cmp32(Register src1, Address src2) {
2518   Assembler::cmpl(src1, src2);
2519 }
2520 
2521 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2522   ucomisd(opr1, opr2);
2523 
2524   Label L;
2525   if (unordered_is_less) {
2526     movl(dst, -1);
2527     jcc(Assembler::parity, L);
2528     jcc(Assembler::below , L);
2529     movl(dst, 0);
2530     jcc(Assembler::equal , L);
2531     increment(dst);
2532   } else { // unordered is greater
2533     movl(dst, 1);
2534     jcc(Assembler::parity, L);
2535     jcc(Assembler::above , L);
2536     movl(dst, 0);
2537     jcc(Assembler::equal , L);
2538     decrementl(dst);
2539   }
2540   bind(L);
2541 }
2542 
2543 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2544   ucomiss(opr1, opr2);
2545 
2546   Label L;
2547   if (unordered_is_less) {
2548     movl(dst, -1);
2549     jcc(Assembler::parity, L);
2550     jcc(Assembler::below , L);
2551     movl(dst, 0);
2552     jcc(Assembler::equal , L);
2553     increment(dst);
2554   } else { // unordered is greater
2555     movl(dst, 1);
2556     jcc(Assembler::parity, L);
2557     jcc(Assembler::above , L);
2558     movl(dst, 0);
2559     jcc(Assembler::equal , L);
2560     decrementl(dst);
2561   }
2562   bind(L);
2563 }
2564 
2565 
2566 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2567   if (reachable(src1)) {
2568     cmpb(as_Address(src1), imm);
2569   } else {
2570     lea(rscratch1, src1);
2571     cmpb(Address(rscratch1, 0), imm);
2572   }
2573 }
2574 
2575 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2576 #ifdef _LP64
2577   if (src2.is_lval()) {
2578     movptr(rscratch1, src2);
2579     Assembler::cmpq(src1, rscratch1);
2580   } else if (reachable(src2)) {
2581     cmpq(src1, as_Address(src2));
2582   } else {
2583     lea(rscratch1, src2);
2584     Assembler::cmpq(src1, Address(rscratch1, 0));
2585   }
2586 #else
2587   if (src2.is_lval()) {
2588     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2589   } else {
2590     cmpl(src1, as_Address(src2));
2591   }
2592 #endif // _LP64
2593 }
2594 
2595 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2596   assert(src2.is_lval(), "not a mem-mem compare");
2597 #ifdef _LP64
2598   // moves src2's literal address
2599   movptr(rscratch1, src2);
2600   Assembler::cmpq(src1, rscratch1);
2601 #else
2602   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2603 #endif // _LP64
2604 }
2605 
2606 void MacroAssembler::cmpoop(Register src1, Register src2) {
2607   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2608   bs->obj_equals(this, src1, src2);
2609 }
2610 
2611 void MacroAssembler::cmpoop(Register src1, Address src2) {
2612   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2613   bs->obj_equals(this, src1, src2);
2614 }
2615 
2616 #ifdef _LP64
2617 void MacroAssembler::cmpoop(Register src1, jobject src2) {
2618   movoop(rscratch1, src2);
2619   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2620   bs->obj_equals(this, src1, rscratch1);
2621 }
2622 #endif
2623 
2624 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2625   if (reachable(adr)) {
2626     lock();
2627     cmpxchgptr(reg, as_Address(adr));
2628   } else {
2629     lea(rscratch1, adr);
2630     lock();
2631     cmpxchgptr(reg, Address(rscratch1, 0));
2632   }
2633 }
2634 
2635 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2636   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2637 }
2638 
2639 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2640   if (reachable(src)) {
2641     Assembler::comisd(dst, as_Address(src));
2642   } else {
2643     lea(rscratch1, src);
2644     Assembler::comisd(dst, Address(rscratch1, 0));
2645   }
2646 }
2647 
2648 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2649   if (reachable(src)) {
2650     Assembler::comiss(dst, as_Address(src));
2651   } else {
2652     lea(rscratch1, src);
2653     Assembler::comiss(dst, Address(rscratch1, 0));
2654   }
2655 }
2656 
2657 
2658 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2659   Condition negated_cond = negate_condition(cond);
2660   Label L;
2661   jcc(negated_cond, L);
2662   pushf(); // Preserve flags
2663   atomic_incl(counter_addr);
2664   popf();
2665   bind(L);
2666 }
2667 
2668 int MacroAssembler::corrected_idivl(Register reg) {
2669   // Full implementation of Java idiv and irem; checks for
2670   // special case as described in JVM spec., p.243 & p.271.
2671   // The function returns the (pc) offset of the idivl
2672   // instruction - may be needed for implicit exceptions.
2673   //
2674   //         normal case                           special case
2675   //
2676   // input : rax,: dividend                         min_int
2677   //         reg: divisor   (may not be rax,/rdx)   -1
2678   //
2679   // output: rax,: quotient  (= rax, idiv reg)       min_int
2680   //         rdx: remainder (= rax, irem reg)       0
2681   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2682   const int min_int = 0x80000000;
2683   Label normal_case, special_case;
2684 
2685   // check for special case
2686   cmpl(rax, min_int);
2687   jcc(Assembler::notEqual, normal_case);
2688   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2689   cmpl(reg, -1);
2690   jcc(Assembler::equal, special_case);
2691 
2692   // handle normal case
2693   bind(normal_case);
2694   cdql();
2695   int idivl_offset = offset();
2696   idivl(reg);
2697 
2698   // normal and special case exit
2699   bind(special_case);
2700 
2701   return idivl_offset;
2702 }
2703 
2704 
2705 
2706 void MacroAssembler::decrementl(Register reg, int value) {
2707   if (value == min_jint) {subl(reg, value) ; return; }
2708   if (value <  0) { incrementl(reg, -value); return; }
2709   if (value == 0) {                        ; return; }
2710   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2711   /* else */      { subl(reg, value)       ; return; }
2712 }
2713 
2714 void MacroAssembler::decrementl(Address dst, int value) {
2715   if (value == min_jint) {subl(dst, value) ; return; }
2716   if (value <  0) { incrementl(dst, -value); return; }
2717   if (value == 0) {                        ; return; }
2718   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2719   /* else */      { subl(dst, value)       ; return; }
2720 }
2721 
2722 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2723   assert (shift_value > 0, "illegal shift value");
2724   Label _is_positive;
2725   testl (reg, reg);
2726   jcc (Assembler::positive, _is_positive);
2727   int offset = (1 << shift_value) - 1 ;
2728 
2729   if (offset == 1) {
2730     incrementl(reg);
2731   } else {
2732     addl(reg, offset);
2733   }
2734 
2735   bind (_is_positive);
2736   sarl(reg, shift_value);
2737 }
2738 
2739 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2740   if (reachable(src)) {
2741     Assembler::divsd(dst, as_Address(src));
2742   } else {
2743     lea(rscratch1, src);
2744     Assembler::divsd(dst, Address(rscratch1, 0));
2745   }
2746 }
2747 
2748 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2749   if (reachable(src)) {
2750     Assembler::divss(dst, as_Address(src));
2751   } else {
2752     lea(rscratch1, src);
2753     Assembler::divss(dst, Address(rscratch1, 0));
2754   }
2755 }
2756 
2757 // !defined(COMPILER2) is because of stupid core builds
2758 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
2759 void MacroAssembler::empty_FPU_stack() {
2760   if (VM_Version::supports_mmx()) {
2761     emms();
2762   } else {
2763     for (int i = 8; i-- > 0; ) ffree(i);
2764   }
2765 }
2766 #endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
2767 
2768 
2769 void MacroAssembler::enter() {
2770   push(rbp);
2771   mov(rbp, rsp);
2772 }
2773 
2774 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2775 void MacroAssembler::fat_nop() {
2776   if (UseAddressNop) {
2777     addr_nop_5();
2778   } else {
2779     emit_int8(0x26); // es:
2780     emit_int8(0x2e); // cs:
2781     emit_int8(0x64); // fs:
2782     emit_int8(0x65); // gs:
2783     emit_int8((unsigned char)0x90);
2784   }
2785 }
2786 
2787 void MacroAssembler::fcmp(Register tmp) {
2788   fcmp(tmp, 1, true, true);
2789 }
2790 
2791 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2792   assert(!pop_right || pop_left, "usage error");
2793   if (VM_Version::supports_cmov()) {
2794     assert(tmp == noreg, "unneeded temp");
2795     if (pop_left) {
2796       fucomip(index);
2797     } else {
2798       fucomi(index);
2799     }
2800     if (pop_right) {
2801       fpop();
2802     }
2803   } else {
2804     assert(tmp != noreg, "need temp");
2805     if (pop_left) {
2806       if (pop_right) {
2807         fcompp();
2808       } else {
2809         fcomp(index);
2810       }
2811     } else {
2812       fcom(index);
2813     }
2814     // convert FPU condition into eflags condition via rax,
2815     save_rax(tmp);
2816     fwait(); fnstsw_ax();
2817     sahf();
2818     restore_rax(tmp);
2819   }
2820   // condition codes set as follows:
2821   //
2822   // CF (corresponds to C0) if x < y
2823   // PF (corresponds to C2) if unordered
2824   // ZF (corresponds to C3) if x = y
2825 }
2826 
2827 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
2828   fcmp2int(dst, unordered_is_less, 1, true, true);
2829 }
2830 
2831 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
2832   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
2833   Label L;
2834   if (unordered_is_less) {
2835     movl(dst, -1);
2836     jcc(Assembler::parity, L);
2837     jcc(Assembler::below , L);
2838     movl(dst, 0);
2839     jcc(Assembler::equal , L);
2840     increment(dst);
2841   } else { // unordered is greater
2842     movl(dst, 1);
2843     jcc(Assembler::parity, L);
2844     jcc(Assembler::above , L);
2845     movl(dst, 0);
2846     jcc(Assembler::equal , L);
2847     decrementl(dst);
2848   }
2849   bind(L);
2850 }
2851 
2852 void MacroAssembler::fld_d(AddressLiteral src) {
2853   fld_d(as_Address(src));
2854 }
2855 
2856 void MacroAssembler::fld_s(AddressLiteral src) {
2857   fld_s(as_Address(src));
2858 }
2859 
2860 void MacroAssembler::fld_x(AddressLiteral src) {
2861   Assembler::fld_x(as_Address(src));
2862 }
2863 
2864 void MacroAssembler::fldcw(AddressLiteral src) {
2865   Assembler::fldcw(as_Address(src));
2866 }
2867 
2868 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
2869   if (reachable(src)) {
2870     Assembler::mulpd(dst, as_Address(src));
2871   } else {
2872     lea(rscratch1, src);
2873     Assembler::mulpd(dst, Address(rscratch1, 0));
2874   }
2875 }
2876 
2877 void MacroAssembler::increase_precision() {
2878   subptr(rsp, BytesPerWord);
2879   fnstcw(Address(rsp, 0));
2880   movl(rax, Address(rsp, 0));
2881   orl(rax, 0x300);
2882   push(rax);
2883   fldcw(Address(rsp, 0));
2884   pop(rax);
2885 }
2886 
2887 void MacroAssembler::restore_precision() {
2888   fldcw(Address(rsp, 0));
2889   addptr(rsp, BytesPerWord);
2890 }
2891 
2892 void MacroAssembler::fpop() {
2893   ffree();
2894   fincstp();
2895 }
2896 
2897 void MacroAssembler::load_float(Address src) {
2898   if (UseSSE >= 1) {
2899     movflt(xmm0, src);
2900   } else {
2901     LP64_ONLY(ShouldNotReachHere());
2902     NOT_LP64(fld_s(src));
2903   }
2904 }
2905 
2906 void MacroAssembler::store_float(Address dst) {
2907   if (UseSSE >= 1) {
2908     movflt(dst, xmm0);
2909   } else {
2910     LP64_ONLY(ShouldNotReachHere());
2911     NOT_LP64(fstp_s(dst));
2912   }
2913 }
2914 
2915 void MacroAssembler::load_double(Address src) {
2916   if (UseSSE >= 2) {
2917     movdbl(xmm0, src);
2918   } else {
2919     LP64_ONLY(ShouldNotReachHere());
2920     NOT_LP64(fld_d(src));
2921   }
2922 }
2923 
2924 void MacroAssembler::store_double(Address dst) {
2925   if (UseSSE >= 2) {
2926     movdbl(dst, xmm0);
2927   } else {
2928     LP64_ONLY(ShouldNotReachHere());
2929     NOT_LP64(fstp_d(dst));
2930   }
2931 }
2932 
2933 void MacroAssembler::fremr(Register tmp) {
2934   save_rax(tmp);
2935   { Label L;
2936     bind(L);
2937     fprem();
2938     fwait(); fnstsw_ax();
2939 #ifdef _LP64
2940     testl(rax, 0x400);
2941     jcc(Assembler::notEqual, L);
2942 #else
2943     sahf();
2944     jcc(Assembler::parity, L);
2945 #endif // _LP64
2946   }
2947   restore_rax(tmp);
2948   // Result is in ST0.
2949   // Note: fxch & fpop to get rid of ST1
2950   // (otherwise FPU stack could overflow eventually)
2951   fxch(1);
2952   fpop();
2953 }
2954 
2955 // dst = c = a * b + c
2956 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
2957   Assembler::vfmadd231sd(c, a, b);
2958   if (dst != c) {
2959     movdbl(dst, c);
2960   }
2961 }
2962 
2963 // dst = c = a * b + c
2964 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
2965   Assembler::vfmadd231ss(c, a, b);
2966   if (dst != c) {
2967     movflt(dst, c);
2968   }
2969 }
2970 
2971 // dst = c = a * b + c
2972 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
2973   Assembler::vfmadd231pd(c, a, b, vector_len);
2974   if (dst != c) {
2975     vmovdqu(dst, c);
2976   }
2977 }
2978 
2979 // dst = c = a * b + c
2980 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
2981   Assembler::vfmadd231ps(c, a, b, vector_len);
2982   if (dst != c) {
2983     vmovdqu(dst, c);
2984   }
2985 }
2986 
2987 // dst = c = a * b + c
2988 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
2989   Assembler::vfmadd231pd(c, a, b, vector_len);
2990   if (dst != c) {
2991     vmovdqu(dst, c);
2992   }
2993 }
2994 
2995 // dst = c = a * b + c
2996 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
2997   Assembler::vfmadd231ps(c, a, b, vector_len);
2998   if (dst != c) {
2999     vmovdqu(dst, c);
3000   }
3001 }
3002 
3003 void MacroAssembler::incrementl(AddressLiteral dst) {
3004   if (reachable(dst)) {
3005     incrementl(as_Address(dst));
3006   } else {
3007     lea(rscratch1, dst);
3008     incrementl(Address(rscratch1, 0));
3009   }
3010 }
3011 
3012 void MacroAssembler::incrementl(ArrayAddress dst) {
3013   incrementl(as_Address(dst));
3014 }
3015 
3016 void MacroAssembler::incrementl(Register reg, int value) {
3017   if (value == min_jint) {addl(reg, value) ; return; }
3018   if (value <  0) { decrementl(reg, -value); return; }
3019   if (value == 0) {                        ; return; }
3020   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3021   /* else */      { addl(reg, value)       ; return; }
3022 }
3023 
3024 void MacroAssembler::incrementl(Address dst, int value) {
3025   if (value == min_jint) {addl(dst, value) ; return; }
3026   if (value <  0) { decrementl(dst, -value); return; }
3027   if (value == 0) {                        ; return; }
3028   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3029   /* else */      { addl(dst, value)       ; return; }
3030 }
3031 
3032 void MacroAssembler::jump(AddressLiteral dst) {
3033   if (reachable(dst)) {
3034     jmp_literal(dst.target(), dst.rspec());
3035   } else {
3036     lea(rscratch1, dst);
3037     jmp(rscratch1);
3038   }
3039 }
3040 
3041 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3042   if (reachable(dst)) {
3043     InstructionMark im(this);
3044     relocate(dst.reloc());
3045     const int short_size = 2;
3046     const int long_size = 6;
3047     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3048     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3049       // 0111 tttn #8-bit disp
3050       emit_int8(0x70 | cc);
3051       emit_int8((offs - short_size) & 0xFF);
3052     } else {
3053       // 0000 1111 1000 tttn #32-bit disp
3054       emit_int8(0x0F);
3055       emit_int8((unsigned char)(0x80 | cc));
3056       emit_int32(offs - long_size);
3057     }
3058   } else {
3059 #ifdef ASSERT
3060     warning("reversing conditional branch");
3061 #endif /* ASSERT */
3062     Label skip;
3063     jccb(reverse[cc], skip);
3064     lea(rscratch1, dst);
3065     Assembler::jmp(rscratch1);
3066     bind(skip);
3067   }
3068 }
3069 
3070 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3071   if (reachable(src)) {
3072     Assembler::ldmxcsr(as_Address(src));
3073   } else {
3074     lea(rscratch1, src);
3075     Assembler::ldmxcsr(Address(rscratch1, 0));
3076   }
3077 }
3078 
3079 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3080   int off;
3081   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3082     off = offset();
3083     movsbl(dst, src); // movsxb
3084   } else {
3085     off = load_unsigned_byte(dst, src);
3086     shll(dst, 24);
3087     sarl(dst, 24);
3088   }
3089   return off;
3090 }
3091 
3092 // Note: load_signed_short used to be called load_signed_word.
3093 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3094 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3095 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3096 int MacroAssembler::load_signed_short(Register dst, Address src) {
3097   int off;
3098   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3099     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3100     // version but this is what 64bit has always done. This seems to imply
3101     // that users are only using 32bits worth.
3102     off = offset();
3103     movswl(dst, src); // movsxw
3104   } else {
3105     off = load_unsigned_short(dst, src);
3106     shll(dst, 16);
3107     sarl(dst, 16);
3108   }
3109   return off;
3110 }
3111 
3112 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3113   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3114   // and "3.9 Partial Register Penalties", p. 22).
3115   int off;
3116   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3117     off = offset();
3118     movzbl(dst, src); // movzxb
3119   } else {
3120     xorl(dst, dst);
3121     off = offset();
3122     movb(dst, src);
3123   }
3124   return off;
3125 }
3126 
3127 // Note: load_unsigned_short used to be called load_unsigned_word.
3128 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3129   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3130   // and "3.9 Partial Register Penalties", p. 22).
3131   int off;
3132   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3133     off = offset();
3134     movzwl(dst, src); // movzxw
3135   } else {
3136     xorl(dst, dst);
3137     off = offset();
3138     movw(dst, src);
3139   }
3140   return off;
3141 }
3142 
3143 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3144   switch (size_in_bytes) {
3145 #ifndef _LP64
3146   case  8:
3147     assert(dst2 != noreg, "second dest register required");
3148     movl(dst,  src);
3149     movl(dst2, src.plus_disp(BytesPerInt));
3150     break;
3151 #else
3152   case  8:  movq(dst, src); break;
3153 #endif
3154   case  4:  movl(dst, src); break;
3155   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3156   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3157   default:  ShouldNotReachHere();
3158   }
3159 }
3160 
3161 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3162   switch (size_in_bytes) {
3163 #ifndef _LP64
3164   case  8:
3165     assert(src2 != noreg, "second source register required");
3166     movl(dst,                        src);
3167     movl(dst.plus_disp(BytesPerInt), src2);
3168     break;
3169 #else
3170   case  8:  movq(dst, src); break;
3171 #endif
3172   case  4:  movl(dst, src); break;
3173   case  2:  movw(dst, src); break;
3174   case  1:  movb(dst, src); break;
3175   default:  ShouldNotReachHere();
3176   }
3177 }
3178 
3179 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3180   if (reachable(dst)) {
3181     movl(as_Address(dst), src);
3182   } else {
3183     lea(rscratch1, dst);
3184     movl(Address(rscratch1, 0), src);
3185   }
3186 }
3187 
3188 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3189   if (reachable(src)) {
3190     movl(dst, as_Address(src));
3191   } else {
3192     lea(rscratch1, src);
3193     movl(dst, Address(rscratch1, 0));
3194   }
3195 }
3196 
3197 // C++ bool manipulation
3198 
3199 void MacroAssembler::movbool(Register dst, Address src) {
3200   if(sizeof(bool) == 1)
3201     movb(dst, src);
3202   else if(sizeof(bool) == 2)
3203     movw(dst, src);
3204   else if(sizeof(bool) == 4)
3205     movl(dst, src);
3206   else
3207     // unsupported
3208     ShouldNotReachHere();
3209 }
3210 
3211 void MacroAssembler::movbool(Address dst, bool boolconst) {
3212   if(sizeof(bool) == 1)
3213     movb(dst, (int) boolconst);
3214   else if(sizeof(bool) == 2)
3215     movw(dst, (int) boolconst);
3216   else if(sizeof(bool) == 4)
3217     movl(dst, (int) boolconst);
3218   else
3219     // unsupported
3220     ShouldNotReachHere();
3221 }
3222 
3223 void MacroAssembler::movbool(Address dst, Register src) {
3224   if(sizeof(bool) == 1)
3225     movb(dst, src);
3226   else if(sizeof(bool) == 2)
3227     movw(dst, src);
3228   else if(sizeof(bool) == 4)
3229     movl(dst, src);
3230   else
3231     // unsupported
3232     ShouldNotReachHere();
3233 }
3234 
3235 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3236   movb(as_Address(dst), src);
3237 }
3238 
3239 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3240   if (reachable(src)) {
3241     movdl(dst, as_Address(src));
3242   } else {
3243     lea(rscratch1, src);
3244     movdl(dst, Address(rscratch1, 0));
3245   }
3246 }
3247 
3248 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3249   if (reachable(src)) {
3250     movq(dst, as_Address(src));
3251   } else {
3252     lea(rscratch1, src);
3253     movq(dst, Address(rscratch1, 0));
3254   }
3255 }
3256 
3257 #ifdef COMPILER2
3258 void MacroAssembler::setvectmask(Register dst, Register src) {
3259   guarantee(PostLoopMultiversioning, "must be");
3260   Assembler::movl(dst, 1);
3261   Assembler::shlxl(dst, dst, src);
3262   Assembler::decl(dst);
3263   Assembler::kmovdl(k1, dst);
3264   Assembler::movl(dst, src);
3265 }
3266 
3267 void MacroAssembler::restorevectmask() {
3268   guarantee(PostLoopMultiversioning, "must be");
3269   Assembler::knotwl(k1, k0);
3270 }
3271 #endif // COMPILER2
3272 
3273 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3274   if (reachable(src)) {
3275     if (UseXmmLoadAndClearUpper) {
3276       movsd (dst, as_Address(src));
3277     } else {
3278       movlpd(dst, as_Address(src));
3279     }
3280   } else {
3281     lea(rscratch1, src);
3282     if (UseXmmLoadAndClearUpper) {
3283       movsd (dst, Address(rscratch1, 0));
3284     } else {
3285       movlpd(dst, Address(rscratch1, 0));
3286     }
3287   }
3288 }
3289 
3290 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3291   if (reachable(src)) {
3292     movss(dst, as_Address(src));
3293   } else {
3294     lea(rscratch1, src);
3295     movss(dst, Address(rscratch1, 0));
3296   }
3297 }
3298 
3299 void MacroAssembler::movptr(Register dst, Register src) {
3300   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3301 }
3302 
3303 void MacroAssembler::movptr(Register dst, Address src) {
3304   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3305 }
3306 
3307 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3308 void MacroAssembler::movptr(Register dst, intptr_t src) {
3309   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3310 }
3311 
3312 void MacroAssembler::movptr(Address dst, Register src) {
3313   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3314 }
3315 
3316 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
3317     assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3318     Assembler::movdqu(dst, src);
3319 }
3320 
3321 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
3322     assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3323     Assembler::movdqu(dst, src);
3324 }
3325 
3326 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
3327     assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3328     Assembler::movdqu(dst, src);
3329 }
3330 
3331 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg) {
3332   if (reachable(src)) {
3333     movdqu(dst, as_Address(src));
3334   } else {
3335     lea(scratchReg, src);
3336     movdqu(dst, Address(scratchReg, 0));
3337   }
3338 }
3339 
3340 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
3341     assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3342     Assembler::vmovdqu(dst, src);
3343 }
3344 
3345 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
3346     assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3347     Assembler::vmovdqu(dst, src);
3348 }
3349 
3350 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
3351     assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3352     Assembler::vmovdqu(dst, src);
3353 }
3354 
3355 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
3356   if (reachable(src)) {
3357     vmovdqu(dst, as_Address(src));
3358   }
3359   else {
3360     lea(scratch_reg, src);
3361     vmovdqu(dst, Address(scratch_reg, 0));
3362   }
3363 }
3364 
3365 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
3366   if (reachable(src)) {
3367     Assembler::evmovdquq(dst, as_Address(src), vector_len);
3368   } else {
3369     lea(rscratch, src);
3370     Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len);
3371   }
3372 }
3373 
3374 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3375   if (reachable(src)) {
3376     Assembler::movdqa(dst, as_Address(src));
3377   } else {
3378     lea(rscratch1, src);
3379     Assembler::movdqa(dst, Address(rscratch1, 0));
3380   }
3381 }
3382 
3383 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3384   if (reachable(src)) {
3385     Assembler::movsd(dst, as_Address(src));
3386   } else {
3387     lea(rscratch1, src);
3388     Assembler::movsd(dst, Address(rscratch1, 0));
3389   }
3390 }
3391 
3392 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3393   if (reachable(src)) {
3394     Assembler::movss(dst, as_Address(src));
3395   } else {
3396     lea(rscratch1, src);
3397     Assembler::movss(dst, Address(rscratch1, 0));
3398   }
3399 }
3400 
3401 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3402   if (reachable(src)) {
3403     Assembler::mulsd(dst, as_Address(src));
3404   } else {
3405     lea(rscratch1, src);
3406     Assembler::mulsd(dst, Address(rscratch1, 0));
3407   }
3408 }
3409 
3410 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3411   if (reachable(src)) {
3412     Assembler::mulss(dst, as_Address(src));
3413   } else {
3414     lea(rscratch1, src);
3415     Assembler::mulss(dst, Address(rscratch1, 0));
3416   }
3417 }
3418 
3419 void MacroAssembler::null_check(Register reg, int offset) {
3420   if (needs_explicit_null_check(offset)) {
3421     // provoke OS NULL exception if reg = NULL by
3422     // accessing M[reg] w/o changing any (non-CC) registers
3423     // NOTE: cmpl is plenty here to provoke a segv
3424     cmpptr(rax, Address(reg, 0));
3425     // Note: should probably use testl(rax, Address(reg, 0));
3426     //       may be shorter code (however, this version of
3427     //       testl needs to be implemented first)
3428   } else {
3429     // nothing to do, (later) access of M[reg + offset]
3430     // will provoke OS NULL exception if reg = NULL
3431   }
3432 }
3433 
3434 void MacroAssembler::os_breakpoint() {
3435   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3436   // (e.g., MSVC can't call ps() otherwise)
3437   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3438 }
3439 
3440 void MacroAssembler::unimplemented(const char* what) {
3441   const char* buf = NULL;
3442   {
3443     ResourceMark rm;
3444     stringStream ss;
3445     ss.print("unimplemented: %s", what);
3446     buf = code_string(ss.as_string());
3447   }
3448   stop(buf);
3449 }
3450 
3451 #ifdef _LP64
3452 #define XSTATE_BV 0x200
3453 #endif
3454 
3455 void MacroAssembler::pop_CPU_state() {
3456   pop_FPU_state();
3457   pop_IU_state();
3458 }
3459 
3460 void MacroAssembler::pop_FPU_state() {
3461 #ifndef _LP64
3462   frstor(Address(rsp, 0));
3463 #else
3464   fxrstor(Address(rsp, 0));
3465 #endif
3466   addptr(rsp, FPUStateSizeInWords * wordSize);
3467 }
3468 
3469 void MacroAssembler::pop_IU_state() {
3470   popa();
3471   LP64_ONLY(addq(rsp, 8));
3472   popf();
3473 }
3474 
3475 // Save Integer and Float state
3476 // Warning: Stack must be 16 byte aligned (64bit)
3477 void MacroAssembler::push_CPU_state() {
3478   push_IU_state();
3479   push_FPU_state();
3480 }
3481 
3482 void MacroAssembler::push_FPU_state() {
3483   subptr(rsp, FPUStateSizeInWords * wordSize);
3484 #ifndef _LP64
3485   fnsave(Address(rsp, 0));
3486   fwait();
3487 #else
3488   fxsave(Address(rsp, 0));
3489 #endif // LP64
3490 }
3491 
3492 void MacroAssembler::push_IU_state() {
3493   // Push flags first because pusha kills them
3494   pushf();
3495   // Make sure rsp stays 16-byte aligned
3496   LP64_ONLY(subq(rsp, 8));
3497   pusha();
3498 }
3499 
3500 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
3501   if (!java_thread->is_valid()) {
3502     java_thread = rdi;
3503     get_thread(java_thread);
3504   }
3505   // we must set sp to zero to clear frame
3506   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3507   if (clear_fp) {
3508     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3509   }
3510 
3511   // Always clear the pc because it could have been set by make_walkable()
3512   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3513 
3514   vzeroupper();
3515 }
3516 
3517 void MacroAssembler::restore_rax(Register tmp) {
3518   if (tmp == noreg) pop(rax);
3519   else if (tmp != rax) mov(rax, tmp);
3520 }
3521 
3522 void MacroAssembler::round_to(Register reg, int modulus) {
3523   addptr(reg, modulus - 1);
3524   andptr(reg, -modulus);
3525 }
3526 
3527 void MacroAssembler::save_rax(Register tmp) {
3528   if (tmp == noreg) push(rax);
3529   else if (tmp != rax) mov(tmp, rax);
3530 }
3531 
3532 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg) {
3533   if (SafepointMechanism::uses_thread_local_poll()) {
3534 #ifdef _LP64
3535     assert(thread_reg == r15_thread, "should be");
3536 #else
3537     if (thread_reg == noreg) {
3538       thread_reg = temp_reg;
3539       get_thread(thread_reg);
3540     }
3541 #endif
3542     testb(Address(thread_reg, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
3543     jcc(Assembler::notZero, slow_path); // handshake bit set implies poll
3544   } else {
3545     cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
3546         SafepointSynchronize::_not_synchronized);
3547     jcc(Assembler::notEqual, slow_path);
3548   }
3549 }
3550 
3551 // Calls to C land
3552 //
3553 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3554 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3555 // has to be reset to 0. This is required to allow proper stack traversal.
3556 void MacroAssembler::set_last_Java_frame(Register java_thread,
3557                                          Register last_java_sp,
3558                                          Register last_java_fp,
3559                                          address  last_java_pc) {
3560   vzeroupper();
3561   // determine java_thread register
3562   if (!java_thread->is_valid()) {
3563     java_thread = rdi;
3564     get_thread(java_thread);
3565   }
3566   // determine last_java_sp register
3567   if (!last_java_sp->is_valid()) {
3568     last_java_sp = rsp;
3569   }
3570 
3571   // last_java_fp is optional
3572 
3573   if (last_java_fp->is_valid()) {
3574     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3575   }
3576 
3577   // last_java_pc is optional
3578 
3579   if (last_java_pc != NULL) {
3580     lea(Address(java_thread,
3581                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3582         InternalAddress(last_java_pc));
3583 
3584   }
3585   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3586 }
3587 
3588 void MacroAssembler::shlptr(Register dst, int imm8) {
3589   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3590 }
3591 
3592 void MacroAssembler::shrptr(Register dst, int imm8) {
3593   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3594 }
3595 
3596 void MacroAssembler::sign_extend_byte(Register reg) {
3597   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3598     movsbl(reg, reg); // movsxb
3599   } else {
3600     shll(reg, 24);
3601     sarl(reg, 24);
3602   }
3603 }
3604 
3605 void MacroAssembler::sign_extend_short(Register reg) {
3606   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3607     movswl(reg, reg); // movsxw
3608   } else {
3609     shll(reg, 16);
3610     sarl(reg, 16);
3611   }
3612 }
3613 
3614 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3615   assert(reachable(src), "Address should be reachable");
3616   testl(dst, as_Address(src));
3617 }
3618 
3619 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3620   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3621   Assembler::pcmpeqb(dst, src);
3622 }
3623 
3624 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3625   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3626   Assembler::pcmpeqw(dst, src);
3627 }
3628 
3629 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3630   assert((dst->encoding() < 16),"XMM register should be 0-15");
3631   Assembler::pcmpestri(dst, src, imm8);
3632 }
3633 
3634 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3635   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
3636   Assembler::pcmpestri(dst, src, imm8);
3637 }
3638 
3639 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3640   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3641   Assembler::pmovzxbw(dst, src);
3642 }
3643 
3644 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
3645   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3646   Assembler::pmovzxbw(dst, src);
3647 }
3648 
3649 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
3650   assert((src->encoding() < 16),"XMM register should be 0-15");
3651   Assembler::pmovmskb(dst, src);
3652 }
3653 
3654 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
3655   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
3656   Assembler::ptest(dst, src);
3657 }
3658 
3659 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
3660   if (reachable(src)) {
3661     Assembler::sqrtsd(dst, as_Address(src));
3662   } else {
3663     lea(rscratch1, src);
3664     Assembler::sqrtsd(dst, Address(rscratch1, 0));
3665   }
3666 }
3667 
3668 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
3669   if (reachable(src)) {
3670     Assembler::sqrtss(dst, as_Address(src));
3671   } else {
3672     lea(rscratch1, src);
3673     Assembler::sqrtss(dst, Address(rscratch1, 0));
3674   }
3675 }
3676 
3677 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
3678   if (reachable(src)) {
3679     Assembler::subsd(dst, as_Address(src));
3680   } else {
3681     lea(rscratch1, src);
3682     Assembler::subsd(dst, Address(rscratch1, 0));
3683   }
3684 }
3685 
3686 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register scratch_reg) {
3687   if (reachable(src)) {
3688     Assembler::roundsd(dst, as_Address(src), rmode);
3689   } else {
3690     lea(scratch_reg, src);
3691     Assembler::roundsd(dst, Address(scratch_reg, 0), rmode);
3692   }
3693 }
3694 
3695 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
3696   if (reachable(src)) {
3697     Assembler::subss(dst, as_Address(src));
3698   } else {
3699     lea(rscratch1, src);
3700     Assembler::subss(dst, Address(rscratch1, 0));
3701   }
3702 }
3703 
3704 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
3705   if (reachable(src)) {
3706     Assembler::ucomisd(dst, as_Address(src));
3707   } else {
3708     lea(rscratch1, src);
3709     Assembler::ucomisd(dst, Address(rscratch1, 0));
3710   }
3711 }
3712 
3713 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
3714   if (reachable(src)) {
3715     Assembler::ucomiss(dst, as_Address(src));
3716   } else {
3717     lea(rscratch1, src);
3718     Assembler::ucomiss(dst, Address(rscratch1, 0));
3719   }
3720 }
3721 
3722 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
3723   // Used in sign-bit flipping with aligned address.
3724   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3725   if (reachable(src)) {
3726     Assembler::xorpd(dst, as_Address(src));
3727   } else {
3728     lea(scratch_reg, src);
3729     Assembler::xorpd(dst, Address(scratch_reg, 0));
3730   }
3731 }
3732 
3733 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
3734   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
3735     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
3736   }
3737   else {
3738     Assembler::xorpd(dst, src);
3739   }
3740 }
3741 
3742 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
3743   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
3744     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
3745   } else {
3746     Assembler::xorps(dst, src);
3747   }
3748 }
3749 
3750 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
3751   // Used in sign-bit flipping with aligned address.
3752   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3753   if (reachable(src)) {
3754     Assembler::xorps(dst, as_Address(src));
3755   } else {
3756     lea(scratch_reg, src);
3757     Assembler::xorps(dst, Address(scratch_reg, 0));
3758   }
3759 }
3760 
3761 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
3762   // Used in sign-bit flipping with aligned address.
3763   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
3764   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
3765   if (reachable(src)) {
3766     Assembler::pshufb(dst, as_Address(src));
3767   } else {
3768     lea(rscratch1, src);
3769     Assembler::pshufb(dst, Address(rscratch1, 0));
3770   }
3771 }
3772 
3773 // AVX 3-operands instructions
3774 
3775 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3776   if (reachable(src)) {
3777     vaddsd(dst, nds, as_Address(src));
3778   } else {
3779     lea(rscratch1, src);
3780     vaddsd(dst, nds, Address(rscratch1, 0));
3781   }
3782 }
3783 
3784 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3785   if (reachable(src)) {
3786     vaddss(dst, nds, as_Address(src));
3787   } else {
3788     lea(rscratch1, src);
3789     vaddss(dst, nds, Address(rscratch1, 0));
3790   }
3791 }
3792 
3793 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
3794   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
3795   vandps(dst, nds, negate_field, vector_len);
3796 }
3797 
3798 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
3799   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
3800   vandpd(dst, nds, negate_field, vector_len);
3801 }
3802 
3803 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3804   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3805   Assembler::vpaddb(dst, nds, src, vector_len);
3806 }
3807 
3808 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3809   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3810   Assembler::vpaddb(dst, nds, src, vector_len);
3811 }
3812 
3813 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3814   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3815   Assembler::vpaddw(dst, nds, src, vector_len);
3816 }
3817 
3818 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3819   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3820   Assembler::vpaddw(dst, nds, src, vector_len);
3821 }
3822 
3823 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
3824   if (reachable(src)) {
3825     Assembler::vpand(dst, nds, as_Address(src), vector_len);
3826   } else {
3827     lea(scratch_reg, src);
3828     Assembler::vpand(dst, nds, Address(scratch_reg, 0), vector_len);
3829   }
3830 }
3831 
3832 void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
3833   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3834   Assembler::vpbroadcastw(dst, src, vector_len);
3835 }
3836 
3837 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3838   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3839   Assembler::vpcmpeqb(dst, nds, src, vector_len);
3840 }
3841 
3842 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3843   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3844   Assembler::vpcmpeqw(dst, nds, src, vector_len);
3845 }
3846 
3847 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
3848   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3849   Assembler::vpmovzxbw(dst, src, vector_len);
3850 }
3851 
3852 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) {
3853   assert((src->encoding() < 16),"XMM register should be 0-15");
3854   Assembler::vpmovmskb(dst, src);
3855 }
3856 
3857 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3858   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3859   Assembler::vpmullw(dst, nds, src, vector_len);
3860 }
3861 
3862 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3863   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3864   Assembler::vpmullw(dst, nds, src, vector_len);
3865 }
3866 
3867 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3868   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3869   Assembler::vpsubb(dst, nds, src, vector_len);
3870 }
3871 
3872 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3873   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3874   Assembler::vpsubb(dst, nds, src, vector_len);
3875 }
3876 
3877 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3878   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3879   Assembler::vpsubw(dst, nds, src, vector_len);
3880 }
3881 
3882 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3883   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3884   Assembler::vpsubw(dst, nds, src, vector_len);
3885 }
3886 
3887 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3888   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3889   Assembler::vpsraw(dst, nds, shift, vector_len);
3890 }
3891 
3892 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3893   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3894   Assembler::vpsraw(dst, nds, shift, vector_len);
3895 }
3896 
3897 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3898   assert(UseAVX > 2,"");
3899   if (!VM_Version::supports_avx512vl() && vector_len < 2) {
3900      vector_len = 2;
3901   }
3902   Assembler::evpsraq(dst, nds, shift, vector_len);
3903 }
3904 
3905 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3906   assert(UseAVX > 2,"");
3907   if (!VM_Version::supports_avx512vl() && vector_len < 2) {
3908      vector_len = 2;
3909   }
3910   Assembler::evpsraq(dst, nds, shift, vector_len);
3911 }
3912 
3913 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3914   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3915   Assembler::vpsrlw(dst, nds, shift, vector_len);
3916 }
3917 
3918 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3919   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3920   Assembler::vpsrlw(dst, nds, shift, vector_len);
3921 }
3922 
3923 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3924   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3925   Assembler::vpsllw(dst, nds, shift, vector_len);
3926 }
3927 
3928 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3929   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3930   Assembler::vpsllw(dst, nds, shift, vector_len);
3931 }
3932 
3933 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
3934   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
3935   Assembler::vptest(dst, src);
3936 }
3937 
3938 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
3939   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3940   Assembler::punpcklbw(dst, src);
3941 }
3942 
3943 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) {
3944   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3945   Assembler::pshufd(dst, src, mode);
3946 }
3947 
3948 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3949   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3950   Assembler::pshuflw(dst, src, mode);
3951 }
3952 
3953 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
3954   if (reachable(src)) {
3955     vandpd(dst, nds, as_Address(src), vector_len);
3956   } else {
3957     lea(scratch_reg, src);
3958     vandpd(dst, nds, Address(scratch_reg, 0), vector_len);
3959   }
3960 }
3961 
3962 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
3963   if (reachable(src)) {
3964     vandps(dst, nds, as_Address(src), vector_len);
3965   } else {
3966     lea(scratch_reg, src);
3967     vandps(dst, nds, Address(scratch_reg, 0), vector_len);
3968   }
3969 }
3970 
3971 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3972   if (reachable(src)) {
3973     vdivsd(dst, nds, as_Address(src));
3974   } else {
3975     lea(rscratch1, src);
3976     vdivsd(dst, nds, Address(rscratch1, 0));
3977   }
3978 }
3979 
3980 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3981   if (reachable(src)) {
3982     vdivss(dst, nds, as_Address(src));
3983   } else {
3984     lea(rscratch1, src);
3985     vdivss(dst, nds, Address(rscratch1, 0));
3986   }
3987 }
3988 
3989 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3990   if (reachable(src)) {
3991     vmulsd(dst, nds, as_Address(src));
3992   } else {
3993     lea(rscratch1, src);
3994     vmulsd(dst, nds, Address(rscratch1, 0));
3995   }
3996 }
3997 
3998 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3999   if (reachable(src)) {
4000     vmulss(dst, nds, as_Address(src));
4001   } else {
4002     lea(rscratch1, src);
4003     vmulss(dst, nds, Address(rscratch1, 0));
4004   }
4005 }
4006 
4007 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4008   if (reachable(src)) {
4009     vsubsd(dst, nds, as_Address(src));
4010   } else {
4011     lea(rscratch1, src);
4012     vsubsd(dst, nds, Address(rscratch1, 0));
4013   }
4014 }
4015 
4016 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4017   if (reachable(src)) {
4018     vsubss(dst, nds, as_Address(src));
4019   } else {
4020     lea(rscratch1, src);
4021     vsubss(dst, nds, Address(rscratch1, 0));
4022   }
4023 }
4024 
4025 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4026   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
4027   vxorps(dst, nds, src, Assembler::AVX_128bit);
4028 }
4029 
4030 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4031   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
4032   vxorpd(dst, nds, src, Assembler::AVX_128bit);
4033 }
4034 
4035 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
4036   if (reachable(src)) {
4037     vxorpd(dst, nds, as_Address(src), vector_len);
4038   } else {
4039     lea(scratch_reg, src);
4040     vxorpd(dst, nds, Address(scratch_reg, 0), vector_len);
4041   }
4042 }
4043 
4044 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
4045   if (reachable(src)) {
4046     vxorps(dst, nds, as_Address(src), vector_len);
4047   } else {
4048     lea(scratch_reg, src);
4049     vxorps(dst, nds, Address(scratch_reg, 0), vector_len);
4050   }
4051 }
4052 
4053 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
4054   if (UseAVX > 1 || (vector_len < 1)) {
4055     if (reachable(src)) {
4056       Assembler::vpxor(dst, nds, as_Address(src), vector_len);
4057     } else {
4058       lea(scratch_reg, src);
4059       Assembler::vpxor(dst, nds, Address(scratch_reg, 0), vector_len);
4060     }
4061   }
4062   else {
4063     MacroAssembler::vxorpd(dst, nds, src, vector_len, scratch_reg);
4064   }
4065 }
4066 
4067 //-------------------------------------------------------------------------------------------
4068 #ifdef COMPILER2
4069 // Generic instructions support for use in .ad files C2 code generation
4070 
4071 void MacroAssembler::vabsnegd(int opcode, XMMRegister dst, Register scr) {
4072   if (opcode == Op_AbsVD) {
4073     andpd(dst, ExternalAddress(StubRoutines::x86::vector_double_sign_mask()), scr);
4074   } else {
4075     assert((opcode == Op_NegVD),"opcode should be Op_NegD");
4076     xorpd(dst, ExternalAddress(StubRoutines::x86::vector_double_sign_flip()), scr);
4077   }
4078 }
4079 
4080 void MacroAssembler::vabsnegd(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr) {
4081   if (opcode == Op_AbsVD) {
4082     vandpd(dst, src, ExternalAddress(StubRoutines::x86::vector_double_sign_mask()), vector_len, scr);
4083   } else {
4084     assert((opcode == Op_NegVD),"opcode should be Op_NegD");
4085     vxorpd(dst, src, ExternalAddress(StubRoutines::x86::vector_double_sign_flip()), vector_len, scr);
4086   }
4087 }
4088 
4089 void MacroAssembler::vabsnegf(int opcode, XMMRegister dst, Register scr) {
4090   if (opcode == Op_AbsVF) {
4091     andps(dst, ExternalAddress(StubRoutines::x86::vector_float_sign_mask()), scr);
4092   } else {
4093     assert((opcode == Op_NegVF),"opcode should be Op_NegF");
4094     xorps(dst, ExternalAddress(StubRoutines::x86::vector_float_sign_flip()), scr);
4095   }
4096 }
4097 
4098 void MacroAssembler::vabsnegf(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr) {
4099   if (opcode == Op_AbsVF) {
4100     vandps(dst, src, ExternalAddress(StubRoutines::x86::vector_float_sign_mask()), vector_len, scr);
4101   } else {
4102     assert((opcode == Op_NegVF),"opcode should be Op_NegF");
4103     vxorps(dst, src, ExternalAddress(StubRoutines::x86::vector_float_sign_flip()), vector_len, scr);
4104   }
4105 }
4106 
4107 void MacroAssembler::vextendbw(bool sign, XMMRegister dst, XMMRegister src) {
4108   if (sign) {
4109     pmovsxbw(dst, src);
4110   } else {
4111     pmovzxbw(dst, src);
4112   }
4113 }
4114 
4115 void MacroAssembler::vextendbw(bool sign, XMMRegister dst, XMMRegister src, int vector_len) {
4116   if (sign) {
4117     vpmovsxbw(dst, src, vector_len);
4118   } else {
4119     vpmovzxbw(dst, src, vector_len);
4120   }
4121 }
4122 
4123 void MacroAssembler::vshiftd(int opcode, XMMRegister dst, XMMRegister src) {
4124   if (opcode == Op_RShiftVI) {
4125     psrad(dst, src);
4126   } else if (opcode == Op_LShiftVI) {
4127     pslld(dst, src);
4128   } else {
4129     assert((opcode == Op_URShiftVI),"opcode should be Op_URShiftVI");
4130     psrld(dst, src);
4131   }
4132 }
4133 
4134 void MacroAssembler::vshiftd(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4135   if (opcode == Op_RShiftVI) {
4136     vpsrad(dst, nds, src, vector_len);
4137   } else if (opcode == Op_LShiftVI) {
4138     vpslld(dst, nds, src, vector_len);
4139   } else {
4140     assert((opcode == Op_URShiftVI),"opcode should be Op_URShiftVI");
4141     vpsrld(dst, nds, src, vector_len);
4142   }
4143 }
4144 
4145 void MacroAssembler::vshiftw(int opcode, XMMRegister dst, XMMRegister src) {
4146   if ((opcode == Op_RShiftVS) || (opcode == Op_RShiftVB)) {
4147     psraw(dst, src);
4148   } else if ((opcode == Op_LShiftVS) || (opcode == Op_LShiftVB)) {
4149     psllw(dst, src);
4150   } else {
4151     assert(((opcode == Op_URShiftVS) || (opcode == Op_URShiftVB)),"opcode should be one of Op_URShiftVS or Op_URShiftVB");
4152     psrlw(dst, src);
4153   }
4154 }
4155 
4156 void MacroAssembler::vshiftw(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4157   if ((opcode == Op_RShiftVS) || (opcode == Op_RShiftVB)) {
4158     vpsraw(dst, nds, src, vector_len);
4159   } else if ((opcode == Op_LShiftVS) || (opcode == Op_LShiftVB)) {
4160     vpsllw(dst, nds, src, vector_len);
4161   } else {
4162     assert(((opcode == Op_URShiftVS) || (opcode == Op_URShiftVB)),"opcode should be one of Op_URShiftVS or Op_URShiftVB");
4163     vpsrlw(dst, nds, src, vector_len);
4164   }
4165 }
4166 
4167 void MacroAssembler::vshiftq(int opcode, XMMRegister dst, XMMRegister src) {
4168   if (opcode == Op_RShiftVL) {
4169     psrlq(dst, src);  // using srl to implement sra on pre-avs512 systems
4170   } else if (opcode == Op_LShiftVL) {
4171     psllq(dst, src);
4172   } else {
4173     assert((opcode == Op_URShiftVL),"opcode should be Op_URShiftVL");
4174     psrlq(dst, src);
4175   }
4176 }
4177 
4178 void MacroAssembler::vshiftq(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4179   if (opcode == Op_RShiftVL) {
4180     evpsraq(dst, nds, src, vector_len);
4181   } else if (opcode == Op_LShiftVL) {
4182     vpsllq(dst, nds, src, vector_len);
4183   } else {
4184     assert((opcode == Op_URShiftVL),"opcode should be Op_URShiftVL");
4185     vpsrlq(dst, nds, src, vector_len);
4186   }
4187 }
4188 #endif
4189 //-------------------------------------------------------------------------------------------
4190 
4191 void MacroAssembler::clear_jweak_tag(Register possibly_jweak) {
4192   const int32_t inverted_jweak_mask = ~static_cast<int32_t>(JNIHandles::weak_tag_mask);
4193   STATIC_ASSERT(inverted_jweak_mask == -2); // otherwise check this code
4194   // The inverted mask is sign-extended
4195   andptr(possibly_jweak, inverted_jweak_mask);
4196 }
4197 
4198 void MacroAssembler::resolve_jobject(Register value,
4199                                      Register thread,
4200                                      Register tmp) {
4201   assert_different_registers(value, thread, tmp);
4202   Label done, not_weak;
4203   testptr(value, value);
4204   jcc(Assembler::zero, done);                // Use NULL as-is.
4205   testptr(value, JNIHandles::weak_tag_mask); // Test for jweak tag.
4206   jcc(Assembler::zero, not_weak);
4207   // Resolve jweak.
4208   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
4209                  value, Address(value, -JNIHandles::weak_tag_value), tmp, thread);
4210   verify_oop(value);
4211   jmp(done);
4212   bind(not_weak);
4213   // Resolve (untagged) jobject.
4214   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, 0), tmp, thread);
4215   verify_oop(value);
4216   bind(done);
4217 }
4218 
4219 void MacroAssembler::subptr(Register dst, int32_t imm32) {
4220   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
4221 }
4222 
4223 // Force generation of a 4 byte immediate value even if it fits into 8bit
4224 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
4225   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
4226 }
4227 
4228 void MacroAssembler::subptr(Register dst, Register src) {
4229   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
4230 }
4231 
4232 // C++ bool manipulation
4233 void MacroAssembler::testbool(Register dst) {
4234   if(sizeof(bool) == 1)
4235     testb(dst, 0xff);
4236   else if(sizeof(bool) == 2) {
4237     // testw implementation needed for two byte bools
4238     ShouldNotReachHere();
4239   } else if(sizeof(bool) == 4)
4240     testl(dst, dst);
4241   else
4242     // unsupported
4243     ShouldNotReachHere();
4244 }
4245 
4246 void MacroAssembler::testptr(Register dst, Register src) {
4247   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
4248 }
4249 
4250 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
4251 void MacroAssembler::tlab_allocate(Register thread, Register obj,
4252                                    Register var_size_in_bytes,
4253                                    int con_size_in_bytes,
4254                                    Register t1,
4255                                    Register t2,
4256                                    Label& slow_case) {
4257   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
4258   bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
4259 }
4260 
4261 // Defines obj, preserves var_size_in_bytes
4262 void MacroAssembler::eden_allocate(Register thread, Register obj,
4263                                    Register var_size_in_bytes,
4264                                    int con_size_in_bytes,
4265                                    Register t1,
4266                                    Label& slow_case) {
4267   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
4268   bs->eden_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case);
4269 }
4270 
4271 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
4272 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
4273   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
4274   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
4275   Label done;
4276 
4277   testptr(length_in_bytes, length_in_bytes);
4278   jcc(Assembler::zero, done);
4279 
4280   // initialize topmost word, divide index by 2, check if odd and test if zero
4281   // note: for the remaining code to work, index must be a multiple of BytesPerWord
4282 #ifdef ASSERT
4283   {
4284     Label L;
4285     testptr(length_in_bytes, BytesPerWord - 1);
4286     jcc(Assembler::zero, L);
4287     stop("length must be a multiple of BytesPerWord");
4288     bind(L);
4289   }
4290 #endif
4291   Register index = length_in_bytes;
4292   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
4293   if (UseIncDec) {
4294     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
4295   } else {
4296     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
4297     shrptr(index, 1);
4298   }
4299 #ifndef _LP64
4300   // index could have not been a multiple of 8 (i.e., bit 2 was set)
4301   {
4302     Label even;
4303     // note: if index was a multiple of 8, then it cannot
4304     //       be 0 now otherwise it must have been 0 before
4305     //       => if it is even, we don't need to check for 0 again
4306     jcc(Assembler::carryClear, even);
4307     // clear topmost word (no jump would be needed if conditional assignment worked here)
4308     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
4309     // index could be 0 now, must check again
4310     jcc(Assembler::zero, done);
4311     bind(even);
4312   }
4313 #endif // !_LP64
4314   // initialize remaining object fields: index is a multiple of 2 now
4315   {
4316     Label loop;
4317     bind(loop);
4318     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
4319     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
4320     decrement(index);
4321     jcc(Assembler::notZero, loop);
4322   }
4323 
4324   bind(done);
4325 }
4326 
4327 // Look up the method for a megamorphic invokeinterface call.
4328 // The target method is determined by <intf_klass, itable_index>.
4329 // The receiver klass is in recv_klass.
4330 // On success, the result will be in method_result, and execution falls through.
4331 // On failure, execution transfers to the given label.
4332 void MacroAssembler::lookup_interface_method(Register recv_klass,
4333                                              Register intf_klass,
4334                                              RegisterOrConstant itable_index,
4335                                              Register method_result,
4336                                              Register scan_temp,
4337                                              Label& L_no_such_interface,
4338                                              bool return_method) {
4339   assert_different_registers(recv_klass, intf_klass, scan_temp);
4340   assert_different_registers(method_result, intf_klass, scan_temp);
4341   assert(recv_klass != method_result || !return_method,
4342          "recv_klass can be destroyed when method isn't needed");
4343 
4344   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
4345          "caller must use same register for non-constant itable index as for method");
4346 
4347   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
4348   int vtable_base = in_bytes(Klass::vtable_start_offset());
4349   int itentry_off = itableMethodEntry::method_offset_in_bytes();
4350   int scan_step   = itableOffsetEntry::size() * wordSize;
4351   int vte_size    = vtableEntry::size_in_bytes();
4352   Address::ScaleFactor times_vte_scale = Address::times_ptr;
4353   assert(vte_size == wordSize, "else adjust times_vte_scale");
4354 
4355   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
4356 
4357   // %%% Could store the aligned, prescaled offset in the klassoop.
4358   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
4359 
4360   if (return_method) {
4361     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
4362     assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
4363     lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
4364   }
4365 
4366   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
4367   //   if (scan->interface() == intf) {
4368   //     result = (klass + scan->offset() + itable_index);
4369   //   }
4370   // }
4371   Label search, found_method;
4372 
4373   for (int peel = 1; peel >= 0; peel--) {
4374     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
4375     cmpptr(intf_klass, method_result);
4376 
4377     if (peel) {
4378       jccb(Assembler::equal, found_method);
4379     } else {
4380       jccb(Assembler::notEqual, search);
4381       // (invert the test to fall through to found_method...)
4382     }
4383 
4384     if (!peel)  break;
4385 
4386     bind(search);
4387 
4388     // Check that the previous entry is non-null.  A null entry means that
4389     // the receiver class doesn't implement the interface, and wasn't the
4390     // same as when the caller was compiled.
4391     testptr(method_result, method_result);
4392     jcc(Assembler::zero, L_no_such_interface);
4393     addptr(scan_temp, scan_step);
4394   }
4395 
4396   bind(found_method);
4397 
4398   if (return_method) {
4399     // Got a hit.
4400     movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
4401     movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
4402   }
4403 }
4404 
4405 
4406 // virtual method calling
4407 void MacroAssembler::lookup_virtual_method(Register recv_klass,
4408                                            RegisterOrConstant vtable_index,
4409                                            Register method_result) {
4410   const int base = in_bytes(Klass::vtable_start_offset());
4411   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
4412   Address vtable_entry_addr(recv_klass,
4413                             vtable_index, Address::times_ptr,
4414                             base + vtableEntry::method_offset_in_bytes());
4415   movptr(method_result, vtable_entry_addr);
4416 }
4417 
4418 
4419 void MacroAssembler::check_klass_subtype(Register sub_klass,
4420                            Register super_klass,
4421                            Register temp_reg,
4422                            Label& L_success) {
4423   Label L_failure;
4424   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
4425   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
4426   bind(L_failure);
4427 }
4428 
4429 
4430 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
4431                                                    Register super_klass,
4432                                                    Register temp_reg,
4433                                                    Label* L_success,
4434                                                    Label* L_failure,
4435                                                    Label* L_slow_path,
4436                                         RegisterOrConstant super_check_offset) {
4437   assert_different_registers(sub_klass, super_klass, temp_reg);
4438   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
4439   if (super_check_offset.is_register()) {
4440     assert_different_registers(sub_klass, super_klass,
4441                                super_check_offset.as_register());
4442   } else if (must_load_sco) {
4443     assert(temp_reg != noreg, "supply either a temp or a register offset");
4444   }
4445 
4446   Label L_fallthrough;
4447   int label_nulls = 0;
4448   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4449   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4450   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
4451   assert(label_nulls <= 1, "at most one NULL in the batch");
4452 
4453   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4454   int sco_offset = in_bytes(Klass::super_check_offset_offset());
4455   Address super_check_offset_addr(super_klass, sco_offset);
4456 
4457   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
4458   // range of a jccb.  If this routine grows larger, reconsider at
4459   // least some of these.
4460 #define local_jcc(assembler_cond, label)                                \
4461   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
4462   else                             jcc( assembler_cond, label) /*omit semi*/
4463 
4464   // Hacked jmp, which may only be used just before L_fallthrough.
4465 #define final_jmp(label)                                                \
4466   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
4467   else                            jmp(label)                /*omit semi*/
4468 
4469   // If the pointers are equal, we are done (e.g., String[] elements).
4470   // This self-check enables sharing of secondary supertype arrays among
4471   // non-primary types such as array-of-interface.  Otherwise, each such
4472   // type would need its own customized SSA.
4473   // We move this check to the front of the fast path because many
4474   // type checks are in fact trivially successful in this manner,
4475   // so we get a nicely predicted branch right at the start of the check.
4476   cmpptr(sub_klass, super_klass);
4477   local_jcc(Assembler::equal, *L_success);
4478 
4479   // Check the supertype display:
4480   if (must_load_sco) {
4481     // Positive movl does right thing on LP64.
4482     movl(temp_reg, super_check_offset_addr);
4483     super_check_offset = RegisterOrConstant(temp_reg);
4484   }
4485   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
4486   cmpptr(super_klass, super_check_addr); // load displayed supertype
4487 
4488   // This check has worked decisively for primary supers.
4489   // Secondary supers are sought in the super_cache ('super_cache_addr').
4490   // (Secondary supers are interfaces and very deeply nested subtypes.)
4491   // This works in the same check above because of a tricky aliasing
4492   // between the super_cache and the primary super display elements.
4493   // (The 'super_check_addr' can address either, as the case requires.)
4494   // Note that the cache is updated below if it does not help us find
4495   // what we need immediately.
4496   // So if it was a primary super, we can just fail immediately.
4497   // Otherwise, it's the slow path for us (no success at this point).
4498 
4499   if (super_check_offset.is_register()) {
4500     local_jcc(Assembler::equal, *L_success);
4501     cmpl(super_check_offset.as_register(), sc_offset);
4502     if (L_failure == &L_fallthrough) {
4503       local_jcc(Assembler::equal, *L_slow_path);
4504     } else {
4505       local_jcc(Assembler::notEqual, *L_failure);
4506       final_jmp(*L_slow_path);
4507     }
4508   } else if (super_check_offset.as_constant() == sc_offset) {
4509     // Need a slow path; fast failure is impossible.
4510     if (L_slow_path == &L_fallthrough) {
4511       local_jcc(Assembler::equal, *L_success);
4512     } else {
4513       local_jcc(Assembler::notEqual, *L_slow_path);
4514       final_jmp(*L_success);
4515     }
4516   } else {
4517     // No slow path; it's a fast decision.
4518     if (L_failure == &L_fallthrough) {
4519       local_jcc(Assembler::equal, *L_success);
4520     } else {
4521       local_jcc(Assembler::notEqual, *L_failure);
4522       final_jmp(*L_success);
4523     }
4524   }
4525 
4526   bind(L_fallthrough);
4527 
4528 #undef local_jcc
4529 #undef final_jmp
4530 }
4531 
4532 
4533 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
4534                                                    Register super_klass,
4535                                                    Register temp_reg,
4536                                                    Register temp2_reg,
4537                                                    Label* L_success,
4538                                                    Label* L_failure,
4539                                                    bool set_cond_codes) {
4540   assert_different_registers(sub_klass, super_klass, temp_reg);
4541   if (temp2_reg != noreg)
4542     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
4543 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
4544 
4545   Label L_fallthrough;
4546   int label_nulls = 0;
4547   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4548   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4549   assert(label_nulls <= 1, "at most one NULL in the batch");
4550 
4551   // a couple of useful fields in sub_klass:
4552   int ss_offset = in_bytes(Klass::secondary_supers_offset());
4553   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4554   Address secondary_supers_addr(sub_klass, ss_offset);
4555   Address super_cache_addr(     sub_klass, sc_offset);
4556 
4557   // Do a linear scan of the secondary super-klass chain.
4558   // This code is rarely used, so simplicity is a virtue here.
4559   // The repne_scan instruction uses fixed registers, which we must spill.
4560   // Don't worry too much about pre-existing connections with the input regs.
4561 
4562   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
4563   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
4564 
4565   // Get super_klass value into rax (even if it was in rdi or rcx).
4566   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
4567   if (super_klass != rax || UseCompressedOops) {
4568     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
4569     mov(rax, super_klass);
4570   }
4571   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
4572   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
4573 
4574 #ifndef PRODUCT
4575   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
4576   ExternalAddress pst_counter_addr((address) pst_counter);
4577   NOT_LP64(  incrementl(pst_counter_addr) );
4578   LP64_ONLY( lea(rcx, pst_counter_addr) );
4579   LP64_ONLY( incrementl(Address(rcx, 0)) );
4580 #endif //PRODUCT
4581 
4582   // We will consult the secondary-super array.
4583   movptr(rdi, secondary_supers_addr);
4584   // Load the array length.  (Positive movl does right thing on LP64.)
4585   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
4586   // Skip to start of data.
4587   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
4588 
4589   // Scan RCX words at [RDI] for an occurrence of RAX.
4590   // Set NZ/Z based on last compare.
4591   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
4592   // not change flags (only scas instruction which is repeated sets flags).
4593   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
4594 
4595     testptr(rax,rax); // Set Z = 0
4596     repne_scan();
4597 
4598   // Unspill the temp. registers:
4599   if (pushed_rdi)  pop(rdi);
4600   if (pushed_rcx)  pop(rcx);
4601   if (pushed_rax)  pop(rax);
4602 
4603   if (set_cond_codes) {
4604     // Special hack for the AD files:  rdi is guaranteed non-zero.
4605     assert(!pushed_rdi, "rdi must be left non-NULL");
4606     // Also, the condition codes are properly set Z/NZ on succeed/failure.
4607   }
4608 
4609   if (L_failure == &L_fallthrough)
4610         jccb(Assembler::notEqual, *L_failure);
4611   else  jcc(Assembler::notEqual, *L_failure);
4612 
4613   // Success.  Cache the super we found and proceed in triumph.
4614   movptr(super_cache_addr, super_klass);
4615 
4616   if (L_success != &L_fallthrough) {
4617     jmp(*L_success);
4618   }
4619 
4620 #undef IS_A_TEMP
4621 
4622   bind(L_fallthrough);
4623 }
4624 
4625 void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) {
4626   assert(L_fast_path != NULL || L_slow_path != NULL, "at least one is required");
4627 
4628   Label L_fallthrough;
4629   if (L_fast_path == NULL) {
4630     L_fast_path = &L_fallthrough;
4631   } else if (L_slow_path == NULL) {
4632     L_slow_path = &L_fallthrough;
4633   }
4634 
4635   // Fast path check: class is fully initialized
4636   cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
4637   jcc(Assembler::equal, *L_fast_path);
4638 
4639   // Fast path check: current thread is initializer thread
4640   cmpptr(thread, Address(klass, InstanceKlass::init_thread_offset()));
4641   if (L_slow_path == &L_fallthrough) {
4642     jcc(Assembler::equal, *L_fast_path);
4643     bind(*L_slow_path);
4644   } else if (L_fast_path == &L_fallthrough) {
4645     jcc(Assembler::notEqual, *L_slow_path);
4646     bind(*L_fast_path);
4647   } else {
4648     Unimplemented();
4649   }
4650 }
4651 
4652 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
4653   if (VM_Version::supports_cmov()) {
4654     cmovl(cc, dst, src);
4655   } else {
4656     Label L;
4657     jccb(negate_condition(cc), L);
4658     movl(dst, src);
4659     bind(L);
4660   }
4661 }
4662 
4663 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
4664   if (VM_Version::supports_cmov()) {
4665     cmovl(cc, dst, src);
4666   } else {
4667     Label L;
4668     jccb(negate_condition(cc), L);
4669     movl(dst, src);
4670     bind(L);
4671   }
4672 }
4673 
4674 void MacroAssembler::verify_oop(Register reg, const char* s) {
4675   if (!VerifyOops) return;
4676 
4677   // Pass register number to verify_oop_subroutine
4678   const char* b = NULL;
4679   {
4680     ResourceMark rm;
4681     stringStream ss;
4682     ss.print("verify_oop: %s: %s", reg->name(), s);
4683     b = code_string(ss.as_string());
4684   }
4685   BLOCK_COMMENT("verify_oop {");
4686 #ifdef _LP64
4687   push(rscratch1);                    // save r10, trashed by movptr()
4688 #endif
4689   push(rax);                          // save rax,
4690   push(reg);                          // pass register argument
4691   ExternalAddress buffer((address) b);
4692   // avoid using pushptr, as it modifies scratch registers
4693   // and our contract is not to modify anything
4694   movptr(rax, buffer.addr());
4695   push(rax);
4696   // call indirectly to solve generation ordering problem
4697   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
4698   call(rax);
4699   // Caller pops the arguments (oop, message) and restores rax, r10
4700   BLOCK_COMMENT("} verify_oop");
4701 }
4702 
4703 
4704 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
4705                                                       Register tmp,
4706                                                       int offset) {
4707   intptr_t value = *delayed_value_addr;
4708   if (value != 0)
4709     return RegisterOrConstant(value + offset);
4710 
4711   // load indirectly to solve generation ordering problem
4712   movptr(tmp, ExternalAddress((address) delayed_value_addr));
4713 
4714 #ifdef ASSERT
4715   { Label L;
4716     testptr(tmp, tmp);
4717     if (WizardMode) {
4718       const char* buf = NULL;
4719       {
4720         ResourceMark rm;
4721         stringStream ss;
4722         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
4723         buf = code_string(ss.as_string());
4724       }
4725       jcc(Assembler::notZero, L);
4726       STOP(buf);
4727     } else {
4728       jccb(Assembler::notZero, L);
4729       hlt();
4730     }
4731     bind(L);
4732   }
4733 #endif
4734 
4735   if (offset != 0)
4736     addptr(tmp, offset);
4737 
4738   return RegisterOrConstant(tmp);
4739 }
4740 
4741 
4742 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
4743                                          int extra_slot_offset) {
4744   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
4745   int stackElementSize = Interpreter::stackElementSize;
4746   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
4747 #ifdef ASSERT
4748   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
4749   assert(offset1 - offset == stackElementSize, "correct arithmetic");
4750 #endif
4751   Register             scale_reg    = noreg;
4752   Address::ScaleFactor scale_factor = Address::no_scale;
4753   if (arg_slot.is_constant()) {
4754     offset += arg_slot.as_constant() * stackElementSize;
4755   } else {
4756     scale_reg    = arg_slot.as_register();
4757     scale_factor = Address::times(stackElementSize);
4758   }
4759   offset += wordSize;           // return PC is on stack
4760   return Address(rsp, scale_reg, scale_factor, offset);
4761 }
4762 
4763 
4764 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
4765   if (!VerifyOops) return;
4766 
4767   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
4768   // Pass register number to verify_oop_subroutine
4769   const char* b = NULL;
4770   {
4771     ResourceMark rm;
4772     stringStream ss;
4773     ss.print("verify_oop_addr: %s", s);
4774     b = code_string(ss.as_string());
4775   }
4776 #ifdef _LP64
4777   push(rscratch1);                    // save r10, trashed by movptr()
4778 #endif
4779   push(rax);                          // save rax,
4780   // addr may contain rsp so we will have to adjust it based on the push
4781   // we just did (and on 64 bit we do two pushes)
4782   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
4783   // stores rax into addr which is backwards of what was intended.
4784   if (addr.uses(rsp)) {
4785     lea(rax, addr);
4786     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
4787   } else {
4788     pushptr(addr);
4789   }
4790 
4791   ExternalAddress buffer((address) b);
4792   // pass msg argument
4793   // avoid using pushptr, as it modifies scratch registers
4794   // and our contract is not to modify anything
4795   movptr(rax, buffer.addr());
4796   push(rax);
4797 
4798   // call indirectly to solve generation ordering problem
4799   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
4800   call(rax);
4801   // Caller pops the arguments (addr, message) and restores rax, r10.
4802 }
4803 
4804 void MacroAssembler::verify_tlab() {
4805 #ifdef ASSERT
4806   if (UseTLAB && VerifyOops) {
4807     Label next, ok;
4808     Register t1 = rsi;
4809     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
4810 
4811     push(t1);
4812     NOT_LP64(push(thread_reg));
4813     NOT_LP64(get_thread(thread_reg));
4814 
4815     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4816     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
4817     jcc(Assembler::aboveEqual, next);
4818     STOP("assert(top >= start)");
4819     should_not_reach_here();
4820 
4821     bind(next);
4822     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
4823     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4824     jcc(Assembler::aboveEqual, ok);
4825     STOP("assert(top <= end)");
4826     should_not_reach_here();
4827 
4828     bind(ok);
4829     NOT_LP64(pop(thread_reg));
4830     pop(t1);
4831   }
4832 #endif
4833 }
4834 
4835 class ControlWord {
4836  public:
4837   int32_t _value;
4838 
4839   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
4840   int  precision_control() const       { return  (_value >>  8) & 3      ; }
4841   bool precision() const               { return ((_value >>  5) & 1) != 0; }
4842   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
4843   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
4844   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
4845   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
4846   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
4847 
4848   void print() const {
4849     // rounding control
4850     const char* rc;
4851     switch (rounding_control()) {
4852       case 0: rc = "round near"; break;
4853       case 1: rc = "round down"; break;
4854       case 2: rc = "round up  "; break;
4855       case 3: rc = "chop      "; break;
4856     };
4857     // precision control
4858     const char* pc;
4859     switch (precision_control()) {
4860       case 0: pc = "24 bits "; break;
4861       case 1: pc = "reserved"; break;
4862       case 2: pc = "53 bits "; break;
4863       case 3: pc = "64 bits "; break;
4864     };
4865     // flags
4866     char f[9];
4867     f[0] = ' ';
4868     f[1] = ' ';
4869     f[2] = (precision   ()) ? 'P' : 'p';
4870     f[3] = (underflow   ()) ? 'U' : 'u';
4871     f[4] = (overflow    ()) ? 'O' : 'o';
4872     f[5] = (zero_divide ()) ? 'Z' : 'z';
4873     f[6] = (denormalized()) ? 'D' : 'd';
4874     f[7] = (invalid     ()) ? 'I' : 'i';
4875     f[8] = '\x0';
4876     // output
4877     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
4878   }
4879 
4880 };
4881 
4882 class StatusWord {
4883  public:
4884   int32_t _value;
4885 
4886   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
4887   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
4888   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
4889   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
4890   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
4891   int  top() const                     { return  (_value >> 11) & 7      ; }
4892   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
4893   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
4894   bool precision() const               { return ((_value >>  5) & 1) != 0; }
4895   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
4896   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
4897   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
4898   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
4899   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
4900 
4901   void print() const {
4902     // condition codes
4903     char c[5];
4904     c[0] = (C3()) ? '3' : '-';
4905     c[1] = (C2()) ? '2' : '-';
4906     c[2] = (C1()) ? '1' : '-';
4907     c[3] = (C0()) ? '0' : '-';
4908     c[4] = '\x0';
4909     // flags
4910     char f[9];
4911     f[0] = (error_status()) ? 'E' : '-';
4912     f[1] = (stack_fault ()) ? 'S' : '-';
4913     f[2] = (precision   ()) ? 'P' : '-';
4914     f[3] = (underflow   ()) ? 'U' : '-';
4915     f[4] = (overflow    ()) ? 'O' : '-';
4916     f[5] = (zero_divide ()) ? 'Z' : '-';
4917     f[6] = (denormalized()) ? 'D' : '-';
4918     f[7] = (invalid     ()) ? 'I' : '-';
4919     f[8] = '\x0';
4920     // output
4921     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
4922   }
4923 
4924 };
4925 
4926 class TagWord {
4927  public:
4928   int32_t _value;
4929 
4930   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
4931 
4932   void print() const {
4933     printf("%04x", _value & 0xFFFF);
4934   }
4935 
4936 };
4937 
4938 class FPU_Register {
4939  public:
4940   int32_t _m0;
4941   int32_t _m1;
4942   int16_t _ex;
4943 
4944   bool is_indefinite() const           {
4945     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
4946   }
4947 
4948   void print() const {
4949     char  sign = (_ex < 0) ? '-' : '+';
4950     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
4951     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
4952   };
4953 
4954 };
4955 
4956 class FPU_State {
4957  public:
4958   enum {
4959     register_size       = 10,
4960     number_of_registers =  8,
4961     register_mask       =  7
4962   };
4963 
4964   ControlWord  _control_word;
4965   StatusWord   _status_word;
4966   TagWord      _tag_word;
4967   int32_t      _error_offset;
4968   int32_t      _error_selector;
4969   int32_t      _data_offset;
4970   int32_t      _data_selector;
4971   int8_t       _register[register_size * number_of_registers];
4972 
4973   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
4974   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
4975 
4976   const char* tag_as_string(int tag) const {
4977     switch (tag) {
4978       case 0: return "valid";
4979       case 1: return "zero";
4980       case 2: return "special";
4981       case 3: return "empty";
4982     }
4983     ShouldNotReachHere();
4984     return NULL;
4985   }
4986 
4987   void print() const {
4988     // print computation registers
4989     { int t = _status_word.top();
4990       for (int i = 0; i < number_of_registers; i++) {
4991         int j = (i - t) & register_mask;
4992         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
4993         st(j)->print();
4994         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
4995       }
4996     }
4997     printf("\n");
4998     // print control registers
4999     printf("ctrl = "); _control_word.print(); printf("\n");
5000     printf("stat = "); _status_word .print(); printf("\n");
5001     printf("tags = "); _tag_word    .print(); printf("\n");
5002   }
5003 
5004 };
5005 
5006 class Flag_Register {
5007  public:
5008   int32_t _value;
5009 
5010   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
5011   bool direction() const               { return ((_value >> 10) & 1) != 0; }
5012   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
5013   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
5014   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
5015   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
5016   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
5017 
5018   void print() const {
5019     // flags
5020     char f[8];
5021     f[0] = (overflow       ()) ? 'O' : '-';
5022     f[1] = (direction      ()) ? 'D' : '-';
5023     f[2] = (sign           ()) ? 'S' : '-';
5024     f[3] = (zero           ()) ? 'Z' : '-';
5025     f[4] = (auxiliary_carry()) ? 'A' : '-';
5026     f[5] = (parity         ()) ? 'P' : '-';
5027     f[6] = (carry          ()) ? 'C' : '-';
5028     f[7] = '\x0';
5029     // output
5030     printf("%08x  flags = %s", _value, f);
5031   }
5032 
5033 };
5034 
5035 class IU_Register {
5036  public:
5037   int32_t _value;
5038 
5039   void print() const {
5040     printf("%08x  %11d", _value, _value);
5041   }
5042 
5043 };
5044 
5045 class IU_State {
5046  public:
5047   Flag_Register _eflags;
5048   IU_Register   _rdi;
5049   IU_Register   _rsi;
5050   IU_Register   _rbp;
5051   IU_Register   _rsp;
5052   IU_Register   _rbx;
5053   IU_Register   _rdx;
5054   IU_Register   _rcx;
5055   IU_Register   _rax;
5056 
5057   void print() const {
5058     // computation registers
5059     printf("rax,  = "); _rax.print(); printf("\n");
5060     printf("rbx,  = "); _rbx.print(); printf("\n");
5061     printf("rcx  = "); _rcx.print(); printf("\n");
5062     printf("rdx  = "); _rdx.print(); printf("\n");
5063     printf("rdi  = "); _rdi.print(); printf("\n");
5064     printf("rsi  = "); _rsi.print(); printf("\n");
5065     printf("rbp,  = "); _rbp.print(); printf("\n");
5066     printf("rsp  = "); _rsp.print(); printf("\n");
5067     printf("\n");
5068     // control registers
5069     printf("flgs = "); _eflags.print(); printf("\n");
5070   }
5071 };
5072 
5073 
5074 class CPU_State {
5075  public:
5076   FPU_State _fpu_state;
5077   IU_State  _iu_state;
5078 
5079   void print() const {
5080     printf("--------------------------------------------------\n");
5081     _iu_state .print();
5082     printf("\n");
5083     _fpu_state.print();
5084     printf("--------------------------------------------------\n");
5085   }
5086 
5087 };
5088 
5089 
5090 static void _print_CPU_state(CPU_State* state) {
5091   state->print();
5092 };
5093 
5094 
5095 void MacroAssembler::print_CPU_state() {
5096   push_CPU_state();
5097   push(rsp);                // pass CPU state
5098   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
5099   addptr(rsp, wordSize);       // discard argument
5100   pop_CPU_state();
5101 }
5102 
5103 
5104 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
5105   static int counter = 0;
5106   FPU_State* fs = &state->_fpu_state;
5107   counter++;
5108   // For leaf calls, only verify that the top few elements remain empty.
5109   // We only need 1 empty at the top for C2 code.
5110   if( stack_depth < 0 ) {
5111     if( fs->tag_for_st(7) != 3 ) {
5112       printf("FPR7 not empty\n");
5113       state->print();
5114       assert(false, "error");
5115       return false;
5116     }
5117     return true;                // All other stack states do not matter
5118   }
5119 
5120   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
5121          "bad FPU control word");
5122 
5123   // compute stack depth
5124   int i = 0;
5125   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
5126   int d = i;
5127   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
5128   // verify findings
5129   if (i != FPU_State::number_of_registers) {
5130     // stack not contiguous
5131     printf("%s: stack not contiguous at ST%d\n", s, i);
5132     state->print();
5133     assert(false, "error");
5134     return false;
5135   }
5136   // check if computed stack depth corresponds to expected stack depth
5137   if (stack_depth < 0) {
5138     // expected stack depth is -stack_depth or less
5139     if (d > -stack_depth) {
5140       // too many elements on the stack
5141       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
5142       state->print();
5143       assert(false, "error");
5144       return false;
5145     }
5146   } else {
5147     // expected stack depth is stack_depth
5148     if (d != stack_depth) {
5149       // wrong stack depth
5150       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
5151       state->print();
5152       assert(false, "error");
5153       return false;
5154     }
5155   }
5156   // everything is cool
5157   return true;
5158 }
5159 
5160 
5161 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
5162   if (!VerifyFPU) return;
5163   push_CPU_state();
5164   push(rsp);                // pass CPU state
5165   ExternalAddress msg((address) s);
5166   // pass message string s
5167   pushptr(msg.addr());
5168   push(stack_depth);        // pass stack depth
5169   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
5170   addptr(rsp, 3 * wordSize);   // discard arguments
5171   // check for error
5172   { Label L;
5173     testl(rax, rax);
5174     jcc(Assembler::notZero, L);
5175     int3();                  // break if error condition
5176     bind(L);
5177   }
5178   pop_CPU_state();
5179 }
5180 
5181 void MacroAssembler::restore_cpu_control_state_after_jni() {
5182   // Either restore the MXCSR register after returning from the JNI Call
5183   // or verify that it wasn't changed (with -Xcheck:jni flag).
5184   if (VM_Version::supports_sse()) {
5185     if (RestoreMXCSROnJNICalls) {
5186       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
5187     } else if (CheckJNICalls) {
5188       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
5189     }
5190   }
5191   // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
5192   vzeroupper();
5193   // Reset k1 to 0xffff.
5194 
5195 #ifdef COMPILER2
5196   if (PostLoopMultiversioning && VM_Version::supports_evex()) {
5197     push(rcx);
5198     movl(rcx, 0xffff);
5199     kmovwl(k1, rcx);
5200     pop(rcx);
5201   }
5202 #endif // COMPILER2
5203 
5204 #ifndef _LP64
5205   // Either restore the x87 floating pointer control word after returning
5206   // from the JNI call or verify that it wasn't changed.
5207   if (CheckJNICalls) {
5208     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
5209   }
5210 #endif // _LP64
5211 }
5212 
5213 // ((OopHandle)result).resolve();
5214 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) {
5215   assert_different_registers(result, tmp);
5216 
5217   // Only 64 bit platforms support GCs that require a tmp register
5218   // Only IN_HEAP loads require a thread_tmp register
5219   // OopHandle::resolve is an indirection like jobject.
5220   access_load_at(T_OBJECT, IN_NATIVE,
5221                  result, Address(result, 0), tmp, /*tmp_thread*/noreg);
5222 }
5223 
5224 // ((WeakHandle)result).resolve();
5225 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) {
5226   assert_different_registers(rresult, rtmp);
5227   Label resolved;
5228 
5229   // A null weak handle resolves to null.
5230   cmpptr(rresult, 0);
5231   jcc(Assembler::equal, resolved);
5232 
5233   // Only 64 bit platforms support GCs that require a tmp register
5234   // Only IN_HEAP loads require a thread_tmp register
5235   // WeakHandle::resolve is an indirection like jweak.
5236   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
5237                  rresult, Address(rresult, 0), rtmp, /*tmp_thread*/noreg);
5238   bind(resolved);
5239 }
5240 
5241 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) {
5242   // get mirror
5243   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
5244   load_method_holder(mirror, method);
5245   movptr(mirror, Address(mirror, mirror_offset));
5246   resolve_oop_handle(mirror, tmp);
5247 }
5248 
5249 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
5250   load_method_holder(rresult, rmethod);
5251   movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
5252 }
5253 
5254 void MacroAssembler::load_method_holder(Register holder, Register method) {
5255   movptr(holder, Address(method, Method::const_offset()));                      // ConstMethod*
5256   movptr(holder, Address(holder, ConstMethod::constants_offset()));             // ConstantPool*
5257   movptr(holder, Address(holder, ConstantPool::pool_holder_offset_in_bytes())); // InstanceKlass*
5258 }
5259 
5260 void MacroAssembler::load_klass(Register dst, Register src) {
5261 #ifdef _LP64
5262   if (UseCompressedClassPointers) {
5263     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5264     decode_klass_not_null(dst);
5265   } else
5266 #endif
5267     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5268 }
5269 
5270 void MacroAssembler::load_prototype_header(Register dst, Register src) {
5271   load_klass(dst, src);
5272   movptr(dst, Address(dst, Klass::prototype_header_offset()));
5273 }
5274 
5275 void MacroAssembler::store_klass(Register dst, Register src) {
5276 #ifdef _LP64
5277   if (UseCompressedClassPointers) {
5278     encode_klass_not_null(src);
5279     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5280   } else
5281 #endif
5282     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5283 }
5284 
5285 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
5286                                     Register tmp1, Register thread_tmp) {
5287   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5288   decorators = AccessInternal::decorator_fixup(decorators);
5289   bool as_raw = (decorators & AS_RAW) != 0;
5290   if (as_raw) {
5291     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
5292   } else {
5293     bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
5294   }
5295 }
5296 
5297 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
5298                                      Register tmp1, Register tmp2) {
5299   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5300   decorators = AccessInternal::decorator_fixup(decorators);
5301   bool as_raw = (decorators & AS_RAW) != 0;
5302   if (as_raw) {
5303     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, src, tmp1, tmp2);
5304   } else {
5305     bs->store_at(this, decorators, type, dst, src, tmp1, tmp2);
5306   }
5307 }
5308 
5309 void MacroAssembler::resolve(DecoratorSet decorators, Register obj) {
5310   // Use stronger ACCESS_WRITE|ACCESS_READ by default.
5311   if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
5312     decorators |= ACCESS_READ | ACCESS_WRITE;
5313   }
5314   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5315   return bs->resolve(this, decorators, obj);
5316 }
5317 
5318 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
5319                                    Register thread_tmp, DecoratorSet decorators) {
5320   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
5321 }
5322 
5323 // Doesn't do verfication, generates fixed size code
5324 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
5325                                             Register thread_tmp, DecoratorSet decorators) {
5326   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp);
5327 }
5328 
5329 void MacroAssembler::store_heap_oop(Address dst, Register src, Register tmp1,
5330                                     Register tmp2, DecoratorSet decorators) {
5331   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
5332 }
5333 
5334 // Used for storing NULLs.
5335 void MacroAssembler::store_heap_oop_null(Address dst) {
5336   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg);
5337 }
5338 
5339 #ifdef _LP64
5340 void MacroAssembler::store_klass_gap(Register dst, Register src) {
5341   if (UseCompressedClassPointers) {
5342     // Store to klass gap in destination
5343     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
5344   }
5345 }
5346 
5347 #ifdef ASSERT
5348 void MacroAssembler::verify_heapbase(const char* msg) {
5349   assert (UseCompressedOops, "should be compressed");
5350   assert (Universe::heap() != NULL, "java heap should be initialized");
5351   if (CheckCompressedOops) {
5352     Label ok;
5353     push(rscratch1); // cmpptr trashes rscratch1
5354     cmpptr(r12_heapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr()));
5355     jcc(Assembler::equal, ok);
5356     STOP(msg);
5357     bind(ok);
5358     pop(rscratch1);
5359   }
5360 }
5361 #endif
5362 
5363 // Algorithm must match oop.inline.hpp encode_heap_oop.
5364 void MacroAssembler::encode_heap_oop(Register r) {
5365 #ifdef ASSERT
5366   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
5367 #endif
5368   verify_oop(r, "broken oop in encode_heap_oop");
5369   if (CompressedOops::base() == NULL) {
5370     if (CompressedOops::shift() != 0) {
5371       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5372       shrq(r, LogMinObjAlignmentInBytes);
5373     }
5374     return;
5375   }
5376   testq(r, r);
5377   cmovq(Assembler::equal, r, r12_heapbase);
5378   subq(r, r12_heapbase);
5379   shrq(r, LogMinObjAlignmentInBytes);
5380 }
5381 
5382 void MacroAssembler::encode_heap_oop_not_null(Register r) {
5383 #ifdef ASSERT
5384   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
5385   if (CheckCompressedOops) {
5386     Label ok;
5387     testq(r, r);
5388     jcc(Assembler::notEqual, ok);
5389     STOP("null oop passed to encode_heap_oop_not_null");
5390     bind(ok);
5391   }
5392 #endif
5393   verify_oop(r, "broken oop in encode_heap_oop_not_null");
5394   if (CompressedOops::base() != NULL) {
5395     subq(r, r12_heapbase);
5396   }
5397   if (CompressedOops::shift() != 0) {
5398     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5399     shrq(r, LogMinObjAlignmentInBytes);
5400   }
5401 }
5402 
5403 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
5404 #ifdef ASSERT
5405   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
5406   if (CheckCompressedOops) {
5407     Label ok;
5408     testq(src, src);
5409     jcc(Assembler::notEqual, ok);
5410     STOP("null oop passed to encode_heap_oop_not_null2");
5411     bind(ok);
5412   }
5413 #endif
5414   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
5415   if (dst != src) {
5416     movq(dst, src);
5417   }
5418   if (CompressedOops::base() != NULL) {
5419     subq(dst, r12_heapbase);
5420   }
5421   if (CompressedOops::shift() != 0) {
5422     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5423     shrq(dst, LogMinObjAlignmentInBytes);
5424   }
5425 }
5426 
5427 void  MacroAssembler::decode_heap_oop(Register r) {
5428 #ifdef ASSERT
5429   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
5430 #endif
5431   if (CompressedOops::base() == NULL) {
5432     if (CompressedOops::shift() != 0) {
5433       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5434       shlq(r, LogMinObjAlignmentInBytes);
5435     }
5436   } else {
5437     Label done;
5438     shlq(r, LogMinObjAlignmentInBytes);
5439     jccb(Assembler::equal, done);
5440     addq(r, r12_heapbase);
5441     bind(done);
5442   }
5443   verify_oop(r, "broken oop in decode_heap_oop");
5444 }
5445 
5446 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
5447   // Note: it will change flags
5448   assert (UseCompressedOops, "should only be used for compressed headers");
5449   assert (Universe::heap() != NULL, "java heap should be initialized");
5450   // Cannot assert, unverified entry point counts instructions (see .ad file)
5451   // vtableStubs also counts instructions in pd_code_size_limit.
5452   // Also do not verify_oop as this is called by verify_oop.
5453   if (CompressedOops::shift() != 0) {
5454     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5455     shlq(r, LogMinObjAlignmentInBytes);
5456     if (CompressedOops::base() != NULL) {
5457       addq(r, r12_heapbase);
5458     }
5459   } else {
5460     assert (CompressedOops::base() == NULL, "sanity");
5461   }
5462 }
5463 
5464 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
5465   // Note: it will change flags
5466   assert (UseCompressedOops, "should only be used for compressed headers");
5467   assert (Universe::heap() != NULL, "java heap should be initialized");
5468   // Cannot assert, unverified entry point counts instructions (see .ad file)
5469   // vtableStubs also counts instructions in pd_code_size_limit.
5470   // Also do not verify_oop as this is called by verify_oop.
5471   if (CompressedOops::shift() != 0) {
5472     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5473     if (LogMinObjAlignmentInBytes == Address::times_8) {
5474       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
5475     } else {
5476       if (dst != src) {
5477         movq(dst, src);
5478       }
5479       shlq(dst, LogMinObjAlignmentInBytes);
5480       if (CompressedOops::base() != NULL) {
5481         addq(dst, r12_heapbase);
5482       }
5483     }
5484   } else {
5485     assert (CompressedOops::base() == NULL, "sanity");
5486     if (dst != src) {
5487       movq(dst, src);
5488     }
5489   }
5490 }
5491 
5492 void MacroAssembler::encode_klass_not_null(Register r) {
5493   if (CompressedKlassPointers::base() != NULL) {
5494     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5495     assert(r != r12_heapbase, "Encoding a klass in r12");
5496     mov64(r12_heapbase, (int64_t)CompressedKlassPointers::base());
5497     subq(r, r12_heapbase);
5498   }
5499   if (CompressedKlassPointers::shift() != 0) {
5500     assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
5501     shrq(r, LogKlassAlignmentInBytes);
5502   }
5503   if (CompressedKlassPointers::base() != NULL) {
5504     reinit_heapbase();
5505   }
5506 }
5507 
5508 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
5509   if (dst == src) {
5510     encode_klass_not_null(src);
5511   } else {
5512     if (CompressedKlassPointers::base() != NULL) {
5513       mov64(dst, (int64_t)CompressedKlassPointers::base());
5514       negq(dst);
5515       addq(dst, src);
5516     } else {
5517       movptr(dst, src);
5518     }
5519     if (CompressedKlassPointers::shift() != 0) {
5520       assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
5521       shrq(dst, LogKlassAlignmentInBytes);
5522     }
5523   }
5524 }
5525 
5526 // Function instr_size_for_decode_klass_not_null() counts the instructions
5527 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
5528 // when (Universe::heap() != NULL).  Hence, if the instructions they
5529 // generate change, then this method needs to be updated.
5530 int MacroAssembler::instr_size_for_decode_klass_not_null() {
5531   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
5532   if (CompressedKlassPointers::base() != NULL) {
5533     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
5534     return (CompressedKlassPointers::shift() == 0 ? 20 : 24);
5535   } else {
5536     // longest load decode klass function, mov64, leaq
5537     return 16;
5538   }
5539 }
5540 
5541 // !!! If the instructions that get generated here change then function
5542 // instr_size_for_decode_klass_not_null() needs to get updated.
5543 void  MacroAssembler::decode_klass_not_null(Register r) {
5544   // Note: it will change flags
5545   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5546   assert(r != r12_heapbase, "Decoding a klass in r12");
5547   // Cannot assert, unverified entry point counts instructions (see .ad file)
5548   // vtableStubs also counts instructions in pd_code_size_limit.
5549   // Also do not verify_oop as this is called by verify_oop.
5550   if (CompressedKlassPointers::shift() != 0) {
5551     assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
5552     shlq(r, LogKlassAlignmentInBytes);
5553   }
5554   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5555   if (CompressedKlassPointers::base() != NULL) {
5556     mov64(r12_heapbase, (int64_t)CompressedKlassPointers::base());
5557     addq(r, r12_heapbase);
5558     reinit_heapbase();
5559   }
5560 }
5561 
5562 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
5563   // Note: it will change flags
5564   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5565   if (dst == src) {
5566     decode_klass_not_null(dst);
5567   } else {
5568     // Cannot assert, unverified entry point counts instructions (see .ad file)
5569     // vtableStubs also counts instructions in pd_code_size_limit.
5570     // Also do not verify_oop as this is called by verify_oop.
5571     mov64(dst, (int64_t)CompressedKlassPointers::base());
5572     if (CompressedKlassPointers::shift() != 0) {
5573       assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
5574       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
5575       leaq(dst, Address(dst, src, Address::times_8, 0));
5576     } else {
5577       addq(dst, src);
5578     }
5579   }
5580 }
5581 
5582 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
5583   assert (UseCompressedOops, "should only be used for compressed headers");
5584   assert (Universe::heap() != NULL, "java heap should be initialized");
5585   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5586   int oop_index = oop_recorder()->find_index(obj);
5587   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5588   mov_narrow_oop(dst, oop_index, rspec);
5589 }
5590 
5591 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
5592   assert (UseCompressedOops, "should only be used for compressed headers");
5593   assert (Universe::heap() != NULL, "java heap should be initialized");
5594   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5595   int oop_index = oop_recorder()->find_index(obj);
5596   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5597   mov_narrow_oop(dst, oop_index, rspec);
5598 }
5599 
5600 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
5601   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5602   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5603   int klass_index = oop_recorder()->find_index(k);
5604   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5605   mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5606 }
5607 
5608 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
5609   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5610   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5611   int klass_index = oop_recorder()->find_index(k);
5612   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5613   mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5614 }
5615 
5616 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
5617   assert (UseCompressedOops, "should only be used for compressed headers");
5618   assert (Universe::heap() != NULL, "java heap should be initialized");
5619   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5620   int oop_index = oop_recorder()->find_index(obj);
5621   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5622   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
5623 }
5624 
5625 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
5626   assert (UseCompressedOops, "should only be used for compressed headers");
5627   assert (Universe::heap() != NULL, "java heap should be initialized");
5628   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5629   int oop_index = oop_recorder()->find_index(obj);
5630   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5631   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
5632 }
5633 
5634 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
5635   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5636   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5637   int klass_index = oop_recorder()->find_index(k);
5638   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5639   Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5640 }
5641 
5642 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
5643   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5644   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5645   int klass_index = oop_recorder()->find_index(k);
5646   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5647   Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5648 }
5649 
5650 void MacroAssembler::reinit_heapbase() {
5651   if (UseCompressedOops || UseCompressedClassPointers) {
5652     if (Universe::heap() != NULL) {
5653       if (CompressedOops::base() == NULL) {
5654         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
5655       } else {
5656         mov64(r12_heapbase, (int64_t)CompressedOops::ptrs_base());
5657       }
5658     } else {
5659       movptr(r12_heapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr()));
5660     }
5661   }
5662 }
5663 
5664 #endif // _LP64
5665 
5666 // C2 compiled method's prolog code.
5667 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b, bool is_stub) {
5668 
5669   // WARNING: Initial instruction MUST be 5 bytes or longer so that
5670   // NativeJump::patch_verified_entry will be able to patch out the entry
5671   // code safely. The push to verify stack depth is ok at 5 bytes,
5672   // the frame allocation can be either 3 or 6 bytes. So if we don't do
5673   // stack bang then we must use the 6 byte frame allocation even if
5674   // we have no frame. :-(
5675   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
5676 
5677   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
5678   // Remove word for return addr
5679   framesize -= wordSize;
5680   stack_bang_size -= wordSize;
5681 
5682   // Calls to C2R adapters often do not accept exceptional returns.
5683   // We require that their callers must bang for them.  But be careful, because
5684   // some VM calls (such as call site linkage) can use several kilobytes of
5685   // stack.  But the stack safety zone should account for that.
5686   // See bugs 4446381, 4468289, 4497237.
5687   if (stack_bang_size > 0) {
5688     generate_stack_overflow_check(stack_bang_size);
5689 
5690     // We always push rbp, so that on return to interpreter rbp, will be
5691     // restored correctly and we can correct the stack.
5692     push(rbp);
5693     // Save caller's stack pointer into RBP if the frame pointer is preserved.
5694     if (PreserveFramePointer) {
5695       mov(rbp, rsp);
5696     }
5697     // Remove word for ebp
5698     framesize -= wordSize;
5699 
5700     // Create frame
5701     if (framesize) {
5702       subptr(rsp, framesize);
5703     }
5704   } else {
5705     // Create frame (force generation of a 4 byte immediate value)
5706     subptr_imm32(rsp, framesize);
5707 
5708     // Save RBP register now.
5709     framesize -= wordSize;
5710     movptr(Address(rsp, framesize), rbp);
5711     // Save caller's stack pointer into RBP if the frame pointer is preserved.
5712     if (PreserveFramePointer) {
5713       movptr(rbp, rsp);
5714       if (framesize > 0) {
5715         addptr(rbp, framesize);
5716       }
5717     }
5718   }
5719 
5720   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
5721     framesize -= wordSize;
5722     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
5723   }
5724 
5725 #ifndef _LP64
5726   // If method sets FPU control word do it now
5727   if (fp_mode_24b) {
5728     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
5729   }
5730   if (UseSSE >= 2 && VerifyFPU) {
5731     verify_FPU(0, "FPU stack must be clean on entry");
5732   }
5733 #endif
5734 
5735 #ifdef ASSERT
5736   if (VerifyStackAtCalls) {
5737     Label L;
5738     push(rax);
5739     mov(rax, rsp);
5740     andptr(rax, StackAlignmentInBytes-1);
5741     cmpptr(rax, StackAlignmentInBytes-wordSize);
5742     pop(rax);
5743     jcc(Assembler::equal, L);
5744     STOP("Stack is not properly aligned!");
5745     bind(L);
5746   }
5747 #endif
5748 
5749   if (!is_stub) {
5750     BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5751     bs->nmethod_entry_barrier(this);
5752   }
5753 }
5754 
5755 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
5756 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, XMMRegister xtmp) {
5757   // cnt - number of qwords (8-byte words).
5758   // base - start address, qword aligned.
5759   Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end;
5760   if (UseAVX >= 2) {
5761     vpxor(xtmp, xtmp, xtmp, AVX_256bit);
5762   } else {
5763     pxor(xtmp, xtmp);
5764   }
5765   jmp(L_zero_64_bytes);
5766 
5767   BIND(L_loop);
5768   if (UseAVX >= 2) {
5769     vmovdqu(Address(base,  0), xtmp);
5770     vmovdqu(Address(base, 32), xtmp);
5771   } else {
5772     movdqu(Address(base,  0), xtmp);
5773     movdqu(Address(base, 16), xtmp);
5774     movdqu(Address(base, 32), xtmp);
5775     movdqu(Address(base, 48), xtmp);
5776   }
5777   addptr(base, 64);
5778 
5779   BIND(L_zero_64_bytes);
5780   subptr(cnt, 8);
5781   jccb(Assembler::greaterEqual, L_loop);
5782   addptr(cnt, 4);
5783   jccb(Assembler::less, L_tail);
5784   // Copy trailing 32 bytes
5785   if (UseAVX >= 2) {
5786     vmovdqu(Address(base, 0), xtmp);
5787   } else {
5788     movdqu(Address(base,  0), xtmp);
5789     movdqu(Address(base, 16), xtmp);
5790   }
5791   addptr(base, 32);
5792   subptr(cnt, 4);
5793 
5794   BIND(L_tail);
5795   addptr(cnt, 4);
5796   jccb(Assembler::lessEqual, L_end);
5797   decrement(cnt);
5798 
5799   BIND(L_sloop);
5800   movq(Address(base, 0), xtmp);
5801   addptr(base, 8);
5802   decrement(cnt);
5803   jccb(Assembler::greaterEqual, L_sloop);
5804   BIND(L_end);
5805 }
5806 
5807 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp, bool is_large) {
5808   // cnt - number of qwords (8-byte words).
5809   // base - start address, qword aligned.
5810   // is_large - if optimizers know cnt is larger than InitArrayShortSize
5811   assert(base==rdi, "base register must be edi for rep stos");
5812   assert(tmp==rax,   "tmp register must be eax for rep stos");
5813   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
5814   assert(InitArrayShortSize % BytesPerLong == 0,
5815     "InitArrayShortSize should be the multiple of BytesPerLong");
5816 
5817   Label DONE;
5818 
5819   if (!is_large || !UseXMMForObjInit) {
5820     xorptr(tmp, tmp);
5821   }
5822 
5823   if (!is_large) {
5824     Label LOOP, LONG;
5825     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
5826     jccb(Assembler::greater, LONG);
5827 
5828     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
5829 
5830     decrement(cnt);
5831     jccb(Assembler::negative, DONE); // Zero length
5832 
5833     // Use individual pointer-sized stores for small counts:
5834     BIND(LOOP);
5835     movptr(Address(base, cnt, Address::times_ptr), tmp);
5836     decrement(cnt);
5837     jccb(Assembler::greaterEqual, LOOP);
5838     jmpb(DONE);
5839 
5840     BIND(LONG);
5841   }
5842 
5843   // Use longer rep-prefixed ops for non-small counts:
5844   if (UseFastStosb) {
5845     shlptr(cnt, 3); // convert to number of bytes
5846     rep_stosb();
5847   } else if (UseXMMForObjInit) {
5848     movptr(tmp, base);
5849     xmm_clear_mem(tmp, cnt, xtmp);
5850   } else {
5851     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
5852     rep_stos();
5853   }
5854 
5855   BIND(DONE);
5856 }
5857 
5858 #ifdef COMPILER2
5859 
5860 // IndexOf for constant substrings with size >= 8 chars
5861 // which don't need to be loaded through stack.
5862 void MacroAssembler::string_indexofC8(Register str1, Register str2,
5863                                       Register cnt1, Register cnt2,
5864                                       int int_cnt2,  Register result,
5865                                       XMMRegister vec, Register tmp,
5866                                       int ae) {
5867   ShortBranchVerifier sbv(this);
5868   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
5869   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
5870 
5871   // This method uses the pcmpestri instruction with bound registers
5872   //   inputs:
5873   //     xmm - substring
5874   //     rax - substring length (elements count)
5875   //     mem - scanned string
5876   //     rdx - string length (elements count)
5877   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
5878   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
5879   //   outputs:
5880   //     rcx - matched index in string
5881   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
5882   int mode   = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
5883   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
5884   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
5885   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
5886 
5887   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
5888         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
5889         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
5890 
5891   // Note, inline_string_indexOf() generates checks:
5892   // if (substr.count > string.count) return -1;
5893   // if (substr.count == 0) return 0;
5894   assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars");
5895 
5896   // Load substring.
5897   if (ae == StrIntrinsicNode::UL) {
5898     pmovzxbw(vec, Address(str2, 0));
5899   } else {
5900     movdqu(vec, Address(str2, 0));
5901   }
5902   movl(cnt2, int_cnt2);
5903   movptr(result, str1); // string addr
5904 
5905   if (int_cnt2 > stride) {
5906     jmpb(SCAN_TO_SUBSTR);
5907 
5908     // Reload substr for rescan, this code
5909     // is executed only for large substrings (> 8 chars)
5910     bind(RELOAD_SUBSTR);
5911     if (ae == StrIntrinsicNode::UL) {
5912       pmovzxbw(vec, Address(str2, 0));
5913     } else {
5914       movdqu(vec, Address(str2, 0));
5915     }
5916     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
5917 
5918     bind(RELOAD_STR);
5919     // We came here after the beginning of the substring was
5920     // matched but the rest of it was not so we need to search
5921     // again. Start from the next element after the previous match.
5922 
5923     // cnt2 is number of substring reminding elements and
5924     // cnt1 is number of string reminding elements when cmp failed.
5925     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
5926     subl(cnt1, cnt2);
5927     addl(cnt1, int_cnt2);
5928     movl(cnt2, int_cnt2); // Now restore cnt2
5929 
5930     decrementl(cnt1);     // Shift to next element
5931     cmpl(cnt1, cnt2);
5932     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
5933 
5934     addptr(result, (1<<scale1));
5935 
5936   } // (int_cnt2 > 8)
5937 
5938   // Scan string for start of substr in 16-byte vectors
5939   bind(SCAN_TO_SUBSTR);
5940   pcmpestri(vec, Address(result, 0), mode);
5941   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
5942   subl(cnt1, stride);
5943   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
5944   cmpl(cnt1, cnt2);
5945   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
5946   addptr(result, 16);
5947   jmpb(SCAN_TO_SUBSTR);
5948 
5949   // Found a potential substr
5950   bind(FOUND_CANDIDATE);
5951   // Matched whole vector if first element matched (tmp(rcx) == 0).
5952   if (int_cnt2 == stride) {
5953     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
5954   } else { // int_cnt2 > 8
5955     jccb(Assembler::overflow, FOUND_SUBSTR);
5956   }
5957   // After pcmpestri tmp(rcx) contains matched element index
5958   // Compute start addr of substr
5959   lea(result, Address(result, tmp, scale1));
5960 
5961   // Make sure string is still long enough
5962   subl(cnt1, tmp);
5963   cmpl(cnt1, cnt2);
5964   if (int_cnt2 == stride) {
5965     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
5966   } else { // int_cnt2 > 8
5967     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
5968   }
5969   // Left less then substring.
5970 
5971   bind(RET_NOT_FOUND);
5972   movl(result, -1);
5973   jmp(EXIT);
5974 
5975   if (int_cnt2 > stride) {
5976     // This code is optimized for the case when whole substring
5977     // is matched if its head is matched.
5978     bind(MATCH_SUBSTR_HEAD);
5979     pcmpestri(vec, Address(result, 0), mode);
5980     // Reload only string if does not match
5981     jcc(Assembler::noOverflow, RELOAD_STR); // OF == 0
5982 
5983     Label CONT_SCAN_SUBSTR;
5984     // Compare the rest of substring (> 8 chars).
5985     bind(FOUND_SUBSTR);
5986     // First 8 chars are already matched.
5987     negptr(cnt2);
5988     addptr(cnt2, stride);
5989 
5990     bind(SCAN_SUBSTR);
5991     subl(cnt1, stride);
5992     cmpl(cnt2, -stride); // Do not read beyond substring
5993     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
5994     // Back-up strings to avoid reading beyond substring:
5995     // cnt1 = cnt1 - cnt2 + 8
5996     addl(cnt1, cnt2); // cnt2 is negative
5997     addl(cnt1, stride);
5998     movl(cnt2, stride); negptr(cnt2);
5999     bind(CONT_SCAN_SUBSTR);
6000     if (int_cnt2 < (int)G) {
6001       int tail_off1 = int_cnt2<<scale1;
6002       int tail_off2 = int_cnt2<<scale2;
6003       if (ae == StrIntrinsicNode::UL) {
6004         pmovzxbw(vec, Address(str2, cnt2, scale2, tail_off2));
6005       } else {
6006         movdqu(vec, Address(str2, cnt2, scale2, tail_off2));
6007       }
6008       pcmpestri(vec, Address(result, cnt2, scale1, tail_off1), mode);
6009     } else {
6010       // calculate index in register to avoid integer overflow (int_cnt2*2)
6011       movl(tmp, int_cnt2);
6012       addptr(tmp, cnt2);
6013       if (ae == StrIntrinsicNode::UL) {
6014         pmovzxbw(vec, Address(str2, tmp, scale2, 0));
6015       } else {
6016         movdqu(vec, Address(str2, tmp, scale2, 0));
6017       }
6018       pcmpestri(vec, Address(result, tmp, scale1, 0), mode);
6019     }
6020     // Need to reload strings pointers if not matched whole vector
6021     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6022     addptr(cnt2, stride);
6023     jcc(Assembler::negative, SCAN_SUBSTR);
6024     // Fall through if found full substring
6025 
6026   } // (int_cnt2 > 8)
6027 
6028   bind(RET_FOUND);
6029   // Found result if we matched full small substring.
6030   // Compute substr offset
6031   subptr(result, str1);
6032   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
6033     shrl(result, 1); // index
6034   }
6035   bind(EXIT);
6036 
6037 } // string_indexofC8
6038 
6039 // Small strings are loaded through stack if they cross page boundary.
6040 void MacroAssembler::string_indexof(Register str1, Register str2,
6041                                     Register cnt1, Register cnt2,
6042                                     int int_cnt2,  Register result,
6043                                     XMMRegister vec, Register tmp,
6044                                     int ae) {
6045   ShortBranchVerifier sbv(this);
6046   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
6047   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
6048 
6049   //
6050   // int_cnt2 is length of small (< 8 chars) constant substring
6051   // or (-1) for non constant substring in which case its length
6052   // is in cnt2 register.
6053   //
6054   // Note, inline_string_indexOf() generates checks:
6055   // if (substr.count > string.count) return -1;
6056   // if (substr.count == 0) return 0;
6057   //
6058   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
6059   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0");
6060   // This method uses the pcmpestri instruction with bound registers
6061   //   inputs:
6062   //     xmm - substring
6063   //     rax - substring length (elements count)
6064   //     mem - scanned string
6065   //     rdx - string length (elements count)
6066   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6067   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
6068   //   outputs:
6069   //     rcx - matched index in string
6070   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6071   int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
6072   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
6073   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
6074 
6075   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
6076         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
6077         FOUND_CANDIDATE;
6078 
6079   { //========================================================
6080     // We don't know where these strings are located
6081     // and we can't read beyond them. Load them through stack.
6082     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
6083 
6084     movptr(tmp, rsp); // save old SP
6085 
6086     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
6087       if (int_cnt2 == (1>>scale2)) { // One byte
6088         assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding");
6089         load_unsigned_byte(result, Address(str2, 0));
6090         movdl(vec, result); // move 32 bits
6091       } else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) {  // Three bytes
6092         // Not enough header space in 32-bit VM: 12+3 = 15.
6093         movl(result, Address(str2, -1));
6094         shrl(result, 8);
6095         movdl(vec, result); // move 32 bits
6096       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) {  // One char
6097         load_unsigned_short(result, Address(str2, 0));
6098         movdl(vec, result); // move 32 bits
6099       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars
6100         movdl(vec, Address(str2, 0)); // move 32 bits
6101       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars
6102         movq(vec, Address(str2, 0));  // move 64 bits
6103       } else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7})
6104         // Array header size is 12 bytes in 32-bit VM
6105         // + 6 bytes for 3 chars == 18 bytes,
6106         // enough space to load vec and shift.
6107         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
6108         if (ae == StrIntrinsicNode::UL) {
6109           int tail_off = int_cnt2-8;
6110           pmovzxbw(vec, Address(str2, tail_off));
6111           psrldq(vec, -2*tail_off);
6112         }
6113         else {
6114           int tail_off = int_cnt2*(1<<scale2);
6115           movdqu(vec, Address(str2, tail_off-16));
6116           psrldq(vec, 16-tail_off);
6117         }
6118       }
6119     } else { // not constant substring
6120       cmpl(cnt2, stride);
6121       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
6122 
6123       // We can read beyond string if srt+16 does not cross page boundary
6124       // since heaps are aligned and mapped by pages.
6125       assert(os::vm_page_size() < (int)G, "default page should be small");
6126       movl(result, str2); // We need only low 32 bits
6127       andl(result, (os::vm_page_size()-1));
6128       cmpl(result, (os::vm_page_size()-16));
6129       jccb(Assembler::belowEqual, CHECK_STR);
6130 
6131       // Move small strings to stack to allow load 16 bytes into vec.
6132       subptr(rsp, 16);
6133       int stk_offset = wordSize-(1<<scale2);
6134       push(cnt2);
6135 
6136       bind(COPY_SUBSTR);
6137       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL) {
6138         load_unsigned_byte(result, Address(str2, cnt2, scale2, -1));
6139         movb(Address(rsp, cnt2, scale2, stk_offset), result);
6140       } else if (ae == StrIntrinsicNode::UU) {
6141         load_unsigned_short(result, Address(str2, cnt2, scale2, -2));
6142         movw(Address(rsp, cnt2, scale2, stk_offset), result);
6143       }
6144       decrement(cnt2);
6145       jccb(Assembler::notZero, COPY_SUBSTR);
6146 
6147       pop(cnt2);
6148       movptr(str2, rsp);  // New substring address
6149     } // non constant
6150 
6151     bind(CHECK_STR);
6152     cmpl(cnt1, stride);
6153     jccb(Assembler::aboveEqual, BIG_STRINGS);
6154 
6155     // Check cross page boundary.
6156     movl(result, str1); // We need only low 32 bits
6157     andl(result, (os::vm_page_size()-1));
6158     cmpl(result, (os::vm_page_size()-16));
6159     jccb(Assembler::belowEqual, BIG_STRINGS);
6160 
6161     subptr(rsp, 16);
6162     int stk_offset = -(1<<scale1);
6163     if (int_cnt2 < 0) { // not constant
6164       push(cnt2);
6165       stk_offset += wordSize;
6166     }
6167     movl(cnt2, cnt1);
6168 
6169     bind(COPY_STR);
6170     if (ae == StrIntrinsicNode::LL) {
6171       load_unsigned_byte(result, Address(str1, cnt2, scale1, -1));
6172       movb(Address(rsp, cnt2, scale1, stk_offset), result);
6173     } else {
6174       load_unsigned_short(result, Address(str1, cnt2, scale1, -2));
6175       movw(Address(rsp, cnt2, scale1, stk_offset), result);
6176     }
6177     decrement(cnt2);
6178     jccb(Assembler::notZero, COPY_STR);
6179 
6180     if (int_cnt2 < 0) { // not constant
6181       pop(cnt2);
6182     }
6183     movptr(str1, rsp);  // New string address
6184 
6185     bind(BIG_STRINGS);
6186     // Load substring.
6187     if (int_cnt2 < 0) { // -1
6188       if (ae == StrIntrinsicNode::UL) {
6189         pmovzxbw(vec, Address(str2, 0));
6190       } else {
6191         movdqu(vec, Address(str2, 0));
6192       }
6193       push(cnt2);       // substr count
6194       push(str2);       // substr addr
6195       push(str1);       // string addr
6196     } else {
6197       // Small (< 8 chars) constant substrings are loaded already.
6198       movl(cnt2, int_cnt2);
6199     }
6200     push(tmp);  // original SP
6201 
6202   } // Finished loading
6203 
6204   //========================================================
6205   // Start search
6206   //
6207 
6208   movptr(result, str1); // string addr
6209 
6210   if (int_cnt2  < 0) {  // Only for non constant substring
6211     jmpb(SCAN_TO_SUBSTR);
6212 
6213     // SP saved at sp+0
6214     // String saved at sp+1*wordSize
6215     // Substr saved at sp+2*wordSize
6216     // Substr count saved at sp+3*wordSize
6217 
6218     // Reload substr for rescan, this code
6219     // is executed only for large substrings (> 8 chars)
6220     bind(RELOAD_SUBSTR);
6221     movptr(str2, Address(rsp, 2*wordSize));
6222     movl(cnt2, Address(rsp, 3*wordSize));
6223     if (ae == StrIntrinsicNode::UL) {
6224       pmovzxbw(vec, Address(str2, 0));
6225     } else {
6226       movdqu(vec, Address(str2, 0));
6227     }
6228     // We came here after the beginning of the substring was
6229     // matched but the rest of it was not so we need to search
6230     // again. Start from the next element after the previous match.
6231     subptr(str1, result); // Restore counter
6232     if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
6233       shrl(str1, 1);
6234     }
6235     addl(cnt1, str1);
6236     decrementl(cnt1);   // Shift to next element
6237     cmpl(cnt1, cnt2);
6238     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6239 
6240     addptr(result, (1<<scale1));
6241   } // non constant
6242 
6243   // Scan string for start of substr in 16-byte vectors
6244   bind(SCAN_TO_SUBSTR);
6245   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6246   pcmpestri(vec, Address(result, 0), mode);
6247   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6248   subl(cnt1, stride);
6249   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6250   cmpl(cnt1, cnt2);
6251   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6252   addptr(result, 16);
6253 
6254   bind(ADJUST_STR);
6255   cmpl(cnt1, stride); // Do not read beyond string
6256   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6257   // Back-up string to avoid reading beyond string.
6258   lea(result, Address(result, cnt1, scale1, -16));
6259   movl(cnt1, stride);
6260   jmpb(SCAN_TO_SUBSTR);
6261 
6262   // Found a potential substr
6263   bind(FOUND_CANDIDATE);
6264   // After pcmpestri tmp(rcx) contains matched element index
6265 
6266   // Make sure string is still long enough
6267   subl(cnt1, tmp);
6268   cmpl(cnt1, cnt2);
6269   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
6270   // Left less then substring.
6271 
6272   bind(RET_NOT_FOUND);
6273   movl(result, -1);
6274   jmp(CLEANUP);
6275 
6276   bind(FOUND_SUBSTR);
6277   // Compute start addr of substr
6278   lea(result, Address(result, tmp, scale1));
6279   if (int_cnt2 > 0) { // Constant substring
6280     // Repeat search for small substring (< 8 chars)
6281     // from new point without reloading substring.
6282     // Have to check that we don't read beyond string.
6283     cmpl(tmp, stride-int_cnt2);
6284     jccb(Assembler::greater, ADJUST_STR);
6285     // Fall through if matched whole substring.
6286   } else { // non constant
6287     assert(int_cnt2 == -1, "should be != 0");
6288 
6289     addl(tmp, cnt2);
6290     // Found result if we matched whole substring.
6291     cmpl(tmp, stride);
6292     jcc(Assembler::lessEqual, RET_FOUND);
6293 
6294     // Repeat search for small substring (<= 8 chars)
6295     // from new point 'str1' without reloading substring.
6296     cmpl(cnt2, stride);
6297     // Have to check that we don't read beyond string.
6298     jccb(Assembler::lessEqual, ADJUST_STR);
6299 
6300     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
6301     // Compare the rest of substring (> 8 chars).
6302     movptr(str1, result);
6303 
6304     cmpl(tmp, cnt2);
6305     // First 8 chars are already matched.
6306     jccb(Assembler::equal, CHECK_NEXT);
6307 
6308     bind(SCAN_SUBSTR);
6309     pcmpestri(vec, Address(str1, 0), mode);
6310     // Need to reload strings pointers if not matched whole vector
6311     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6312 
6313     bind(CHECK_NEXT);
6314     subl(cnt2, stride);
6315     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
6316     addptr(str1, 16);
6317     if (ae == StrIntrinsicNode::UL) {
6318       addptr(str2, 8);
6319     } else {
6320       addptr(str2, 16);
6321     }
6322     subl(cnt1, stride);
6323     cmpl(cnt2, stride); // Do not read beyond substring
6324     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
6325     // Back-up strings to avoid reading beyond substring.
6326 
6327     if (ae == StrIntrinsicNode::UL) {
6328       lea(str2, Address(str2, cnt2, scale2, -8));
6329       lea(str1, Address(str1, cnt2, scale1, -16));
6330     } else {
6331       lea(str2, Address(str2, cnt2, scale2, -16));
6332       lea(str1, Address(str1, cnt2, scale1, -16));
6333     }
6334     subl(cnt1, cnt2);
6335     movl(cnt2, stride);
6336     addl(cnt1, stride);
6337     bind(CONT_SCAN_SUBSTR);
6338     if (ae == StrIntrinsicNode::UL) {
6339       pmovzxbw(vec, Address(str2, 0));
6340     } else {
6341       movdqu(vec, Address(str2, 0));
6342     }
6343     jmp(SCAN_SUBSTR);
6344 
6345     bind(RET_FOUND_LONG);
6346     movptr(str1, Address(rsp, wordSize));
6347   } // non constant
6348 
6349   bind(RET_FOUND);
6350   // Compute substr offset
6351   subptr(result, str1);
6352   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
6353     shrl(result, 1); // index
6354   }
6355   bind(CLEANUP);
6356   pop(rsp); // restore SP
6357 
6358 } // string_indexof
6359 
6360 void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
6361                                          XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) {
6362   ShortBranchVerifier sbv(this);
6363   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
6364 
6365   int stride = 8;
6366 
6367   Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP,
6368         SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP,
6369         RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT,
6370         FOUND_SEQ_CHAR, DONE_LABEL;
6371 
6372   movptr(result, str1);
6373   if (UseAVX >= 2) {
6374     cmpl(cnt1, stride);
6375     jcc(Assembler::less, SCAN_TO_CHAR);
6376     cmpl(cnt1, 2*stride);
6377     jcc(Assembler::less, SCAN_TO_8_CHAR_INIT);
6378     movdl(vec1, ch);
6379     vpbroadcastw(vec1, vec1, Assembler::AVX_256bit);
6380     vpxor(vec2, vec2);
6381     movl(tmp, cnt1);
6382     andl(tmp, 0xFFFFFFF0);  //vector count (in chars)
6383     andl(cnt1,0x0000000F);  //tail count (in chars)
6384 
6385     bind(SCAN_TO_16_CHAR_LOOP);
6386     vmovdqu(vec3, Address(result, 0));
6387     vpcmpeqw(vec3, vec3, vec1, 1);
6388     vptest(vec2, vec3);
6389     jcc(Assembler::carryClear, FOUND_CHAR);
6390     addptr(result, 32);
6391     subl(tmp, 2*stride);
6392     jcc(Assembler::notZero, SCAN_TO_16_CHAR_LOOP);
6393     jmp(SCAN_TO_8_CHAR);
6394     bind(SCAN_TO_8_CHAR_INIT);
6395     movdl(vec1, ch);
6396     pshuflw(vec1, vec1, 0x00);
6397     pshufd(vec1, vec1, 0);
6398     pxor(vec2, vec2);
6399   }
6400   bind(SCAN_TO_8_CHAR);
6401   cmpl(cnt1, stride);
6402   jcc(Assembler::less, SCAN_TO_CHAR);
6403   if (UseAVX < 2) {
6404     movdl(vec1, ch);
6405     pshuflw(vec1, vec1, 0x00);
6406     pshufd(vec1, vec1, 0);
6407     pxor(vec2, vec2);
6408   }
6409   movl(tmp, cnt1);
6410   andl(tmp, 0xFFFFFFF8);  //vector count (in chars)
6411   andl(cnt1,0x00000007);  //tail count (in chars)
6412 
6413   bind(SCAN_TO_8_CHAR_LOOP);
6414   movdqu(vec3, Address(result, 0));
6415   pcmpeqw(vec3, vec1);
6416   ptest(vec2, vec3);
6417   jcc(Assembler::carryClear, FOUND_CHAR);
6418   addptr(result, 16);
6419   subl(tmp, stride);
6420   jcc(Assembler::notZero, SCAN_TO_8_CHAR_LOOP);
6421   bind(SCAN_TO_CHAR);
6422   testl(cnt1, cnt1);
6423   jcc(Assembler::zero, RET_NOT_FOUND);
6424   bind(SCAN_TO_CHAR_LOOP);
6425   load_unsigned_short(tmp, Address(result, 0));
6426   cmpl(ch, tmp);
6427   jccb(Assembler::equal, FOUND_SEQ_CHAR);
6428   addptr(result, 2);
6429   subl(cnt1, 1);
6430   jccb(Assembler::zero, RET_NOT_FOUND);
6431   jmp(SCAN_TO_CHAR_LOOP);
6432 
6433   bind(RET_NOT_FOUND);
6434   movl(result, -1);
6435   jmpb(DONE_LABEL);
6436 
6437   bind(FOUND_CHAR);
6438   if (UseAVX >= 2) {
6439     vpmovmskb(tmp, vec3);
6440   } else {
6441     pmovmskb(tmp, vec3);
6442   }
6443   bsfl(ch, tmp);
6444   addl(result, ch);
6445 
6446   bind(FOUND_SEQ_CHAR);
6447   subptr(result, str1);
6448   shrl(result, 1);
6449 
6450   bind(DONE_LABEL);
6451 } // string_indexof_char
6452 
6453 // helper function for string_compare
6454 void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
6455                                         Address::ScaleFactor scale, Address::ScaleFactor scale1,
6456                                         Address::ScaleFactor scale2, Register index, int ae) {
6457   if (ae == StrIntrinsicNode::LL) {
6458     load_unsigned_byte(elem1, Address(str1, index, scale, 0));
6459     load_unsigned_byte(elem2, Address(str2, index, scale, 0));
6460   } else if (ae == StrIntrinsicNode::UU) {
6461     load_unsigned_short(elem1, Address(str1, index, scale, 0));
6462     load_unsigned_short(elem2, Address(str2, index, scale, 0));
6463   } else {
6464     load_unsigned_byte(elem1, Address(str1, index, scale1, 0));
6465     load_unsigned_short(elem2, Address(str2, index, scale2, 0));
6466   }
6467 }
6468 
6469 // Compare strings, used for char[] and byte[].
6470 void MacroAssembler::string_compare(Register str1, Register str2,
6471                                     Register cnt1, Register cnt2, Register result,
6472                                     XMMRegister vec1, int ae) {
6473   ShortBranchVerifier sbv(this);
6474   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
6475   Label COMPARE_WIDE_VECTORS_LOOP_FAILED;  // used only _LP64 && AVX3
6476   int stride, stride2, adr_stride, adr_stride1, adr_stride2;
6477   int stride2x2 = 0x40;
6478   Address::ScaleFactor scale = Address::no_scale;
6479   Address::ScaleFactor scale1 = Address::no_scale;
6480   Address::ScaleFactor scale2 = Address::no_scale;
6481 
6482   if (ae != StrIntrinsicNode::LL) {
6483     stride2x2 = 0x20;
6484   }
6485 
6486   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
6487     shrl(cnt2, 1);
6488   }
6489   // Compute the minimum of the string lengths and the
6490   // difference of the string lengths (stack).
6491   // Do the conditional move stuff
6492   movl(result, cnt1);
6493   subl(cnt1, cnt2);
6494   push(cnt1);
6495   cmov32(Assembler::lessEqual, cnt2, result);    // cnt2 = min(cnt1, cnt2)
6496 
6497   // Is the minimum length zero?
6498   testl(cnt2, cnt2);
6499   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6500   if (ae == StrIntrinsicNode::LL) {
6501     // Load first bytes
6502     load_unsigned_byte(result, Address(str1, 0));  // result = str1[0]
6503     load_unsigned_byte(cnt1, Address(str2, 0));    // cnt1   = str2[0]
6504   } else if (ae == StrIntrinsicNode::UU) {
6505     // Load first characters
6506     load_unsigned_short(result, Address(str1, 0));
6507     load_unsigned_short(cnt1, Address(str2, 0));
6508   } else {
6509     load_unsigned_byte(result, Address(str1, 0));
6510     load_unsigned_short(cnt1, Address(str2, 0));
6511   }
6512   subl(result, cnt1);
6513   jcc(Assembler::notZero,  POP_LABEL);
6514 
6515   if (ae == StrIntrinsicNode::UU) {
6516     // Divide length by 2 to get number of chars
6517     shrl(cnt2, 1);
6518   }
6519   cmpl(cnt2, 1);
6520   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6521 
6522   // Check if the strings start at the same location and setup scale and stride
6523   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6524     cmpptr(str1, str2);
6525     jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6526     if (ae == StrIntrinsicNode::LL) {
6527       scale = Address::times_1;
6528       stride = 16;
6529     } else {
6530       scale = Address::times_2;
6531       stride = 8;
6532     }
6533   } else {
6534     scale1 = Address::times_1;
6535     scale2 = Address::times_2;
6536     // scale not used
6537     stride = 8;
6538   }
6539 
6540   if (UseAVX >= 2 && UseSSE42Intrinsics) {
6541     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
6542     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
6543     Label COMPARE_WIDE_VECTORS_LOOP_AVX2;
6544     Label COMPARE_TAIL_LONG;
6545     Label COMPARE_WIDE_VECTORS_LOOP_AVX3;  // used only _LP64 && AVX3
6546 
6547     int pcmpmask = 0x19;
6548     if (ae == StrIntrinsicNode::LL) {
6549       pcmpmask &= ~0x01;
6550     }
6551 
6552     // Setup to compare 16-chars (32-bytes) vectors,
6553     // start from first character again because it has aligned address.
6554     if (ae == StrIntrinsicNode::LL) {
6555       stride2 = 32;
6556     } else {
6557       stride2 = 16;
6558     }
6559     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6560       adr_stride = stride << scale;
6561     } else {
6562       adr_stride1 = 8;  //stride << scale1;
6563       adr_stride2 = 16; //stride << scale2;
6564     }
6565 
6566     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6567     // rax and rdx are used by pcmpestri as elements counters
6568     movl(result, cnt2);
6569     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
6570     jcc(Assembler::zero, COMPARE_TAIL_LONG);
6571 
6572     // fast path : compare first 2 8-char vectors.
6573     bind(COMPARE_16_CHARS);
6574     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6575       movdqu(vec1, Address(str1, 0));
6576     } else {
6577       pmovzxbw(vec1, Address(str1, 0));
6578     }
6579     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6580     jccb(Assembler::below, COMPARE_INDEX_CHAR);
6581 
6582     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6583       movdqu(vec1, Address(str1, adr_stride));
6584       pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
6585     } else {
6586       pmovzxbw(vec1, Address(str1, adr_stride1));
6587       pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask);
6588     }
6589     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
6590     addl(cnt1, stride);
6591 
6592     // Compare the characters at index in cnt1
6593     bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character
6594     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
6595     subl(result, cnt2);
6596     jmp(POP_LABEL);
6597 
6598     // Setup the registers to start vector comparison loop
6599     bind(COMPARE_WIDE_VECTORS);
6600     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6601       lea(str1, Address(str1, result, scale));
6602       lea(str2, Address(str2, result, scale));
6603     } else {
6604       lea(str1, Address(str1, result, scale1));
6605       lea(str2, Address(str2, result, scale2));
6606     }
6607     subl(result, stride2);
6608     subl(cnt2, stride2);
6609     jcc(Assembler::zero, COMPARE_WIDE_TAIL);
6610     negptr(result);
6611 
6612     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
6613     bind(COMPARE_WIDE_VECTORS_LOOP);
6614 
6615 #ifdef _LP64
6616     if ((AVX3Threshold == 0) && VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
6617       cmpl(cnt2, stride2x2);
6618       jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2);
6619       testl(cnt2, stride2x2-1);   // cnt2 holds the vector count
6620       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2);   // means we cannot subtract by 0x40
6621 
6622       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
6623       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6624         evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit);
6625         evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
6626       } else {
6627         vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit);
6628         evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
6629       }
6630       kortestql(k7, k7);
6631       jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED);     // miscompare
6632       addptr(result, stride2x2);  // update since we already compared at this addr
6633       subl(cnt2, stride2x2);      // and sub the size too
6634       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3);
6635 
6636       vpxor(vec1, vec1);
6637       jmpb(COMPARE_WIDE_TAIL);
6638     }//if (VM_Version::supports_avx512vlbw())
6639 #endif // _LP64
6640 
6641 
6642     bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
6643     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6644       vmovdqu(vec1, Address(str1, result, scale));
6645       vpxor(vec1, Address(str2, result, scale));
6646     } else {
6647       vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit);
6648       vpxor(vec1, Address(str2, result, scale2));
6649     }
6650     vptest(vec1, vec1);
6651     jcc(Assembler::notZero, VECTOR_NOT_EQUAL);
6652     addptr(result, stride2);
6653     subl(cnt2, stride2);
6654     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
6655     // clean upper bits of YMM registers
6656     vpxor(vec1, vec1);
6657 
6658     // compare wide vectors tail
6659     bind(COMPARE_WIDE_TAIL);
6660     testptr(result, result);
6661     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6662 
6663     movl(result, stride2);
6664     movl(cnt2, result);
6665     negptr(result);
6666     jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2);
6667 
6668     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
6669     bind(VECTOR_NOT_EQUAL);
6670     // clean upper bits of YMM registers
6671     vpxor(vec1, vec1);
6672     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6673       lea(str1, Address(str1, result, scale));
6674       lea(str2, Address(str2, result, scale));
6675     } else {
6676       lea(str1, Address(str1, result, scale1));
6677       lea(str2, Address(str2, result, scale2));
6678     }
6679     jmp(COMPARE_16_CHARS);
6680 
6681     // Compare tail chars, length between 1 to 15 chars
6682     bind(COMPARE_TAIL_LONG);
6683     movl(cnt2, result);
6684     cmpl(cnt2, stride);
6685     jcc(Assembler::less, COMPARE_SMALL_STR);
6686 
6687     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6688       movdqu(vec1, Address(str1, 0));
6689     } else {
6690       pmovzxbw(vec1, Address(str1, 0));
6691     }
6692     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6693     jcc(Assembler::below, COMPARE_INDEX_CHAR);
6694     subptr(cnt2, stride);
6695     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6696     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6697       lea(str1, Address(str1, result, scale));
6698       lea(str2, Address(str2, result, scale));
6699     } else {
6700       lea(str1, Address(str1, result, scale1));
6701       lea(str2, Address(str2, result, scale2));
6702     }
6703     negptr(cnt2);
6704     jmpb(WHILE_HEAD_LABEL);
6705 
6706     bind(COMPARE_SMALL_STR);
6707   } else if (UseSSE42Intrinsics) {
6708     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
6709     int pcmpmask = 0x19;
6710     // Setup to compare 8-char (16-byte) vectors,
6711     // start from first character again because it has aligned address.
6712     movl(result, cnt2);
6713     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
6714     if (ae == StrIntrinsicNode::LL) {
6715       pcmpmask &= ~0x01;
6716     }
6717     jcc(Assembler::zero, COMPARE_TAIL);
6718     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6719       lea(str1, Address(str1, result, scale));
6720       lea(str2, Address(str2, result, scale));
6721     } else {
6722       lea(str1, Address(str1, result, scale1));
6723       lea(str2, Address(str2, result, scale2));
6724     }
6725     negptr(result);
6726 
6727     // pcmpestri
6728     //   inputs:
6729     //     vec1- substring
6730     //     rax - negative string length (elements count)
6731     //     mem - scanned string
6732     //     rdx - string length (elements count)
6733     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
6734     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
6735     //   outputs:
6736     //     rcx - first mismatched element index
6737     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6738 
6739     bind(COMPARE_WIDE_VECTORS);
6740     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6741       movdqu(vec1, Address(str1, result, scale));
6742       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6743     } else {
6744       pmovzxbw(vec1, Address(str1, result, scale1));
6745       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
6746     }
6747     // After pcmpestri cnt1(rcx) contains mismatched element index
6748 
6749     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
6750     addptr(result, stride);
6751     subptr(cnt2, stride);
6752     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
6753 
6754     // compare wide vectors tail
6755     testptr(result, result);
6756     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6757 
6758     movl(cnt2, stride);
6759     movl(result, stride);
6760     negptr(result);
6761     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6762       movdqu(vec1, Address(str1, result, scale));
6763       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6764     } else {
6765       pmovzxbw(vec1, Address(str1, result, scale1));
6766       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
6767     }
6768     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
6769 
6770     // Mismatched characters in the vectors
6771     bind(VECTOR_NOT_EQUAL);
6772     addptr(cnt1, result);
6773     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
6774     subl(result, cnt2);
6775     jmpb(POP_LABEL);
6776 
6777     bind(COMPARE_TAIL); // limit is zero
6778     movl(cnt2, result);
6779     // Fallthru to tail compare
6780   }
6781   // Shift str2 and str1 to the end of the arrays, negate min
6782   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6783     lea(str1, Address(str1, cnt2, scale));
6784     lea(str2, Address(str2, cnt2, scale));
6785   } else {
6786     lea(str1, Address(str1, cnt2, scale1));
6787     lea(str2, Address(str2, cnt2, scale2));
6788   }
6789   decrementl(cnt2);  // first character was compared already
6790   negptr(cnt2);
6791 
6792   // Compare the rest of the elements
6793   bind(WHILE_HEAD_LABEL);
6794   load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae);
6795   subl(result, cnt1);
6796   jccb(Assembler::notZero, POP_LABEL);
6797   increment(cnt2);
6798   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
6799 
6800   // Strings are equal up to min length.  Return the length difference.
6801   bind(LENGTH_DIFF_LABEL);
6802   pop(result);
6803   if (ae == StrIntrinsicNode::UU) {
6804     // Divide diff by 2 to get number of chars
6805     sarl(result, 1);
6806   }
6807   jmpb(DONE_LABEL);
6808 
6809 #ifdef _LP64
6810   if (VM_Version::supports_avx512vlbw()) {
6811 
6812     bind(COMPARE_WIDE_VECTORS_LOOP_FAILED);
6813 
6814     kmovql(cnt1, k7);
6815     notq(cnt1);
6816     bsfq(cnt2, cnt1);
6817     if (ae != StrIntrinsicNode::LL) {
6818       // Divide diff by 2 to get number of chars
6819       sarl(cnt2, 1);
6820     }
6821     addq(result, cnt2);
6822     if (ae == StrIntrinsicNode::LL) {
6823       load_unsigned_byte(cnt1, Address(str2, result));
6824       load_unsigned_byte(result, Address(str1, result));
6825     } else if (ae == StrIntrinsicNode::UU) {
6826       load_unsigned_short(cnt1, Address(str2, result, scale));
6827       load_unsigned_short(result, Address(str1, result, scale));
6828     } else {
6829       load_unsigned_short(cnt1, Address(str2, result, scale2));
6830       load_unsigned_byte(result, Address(str1, result, scale1));
6831     }
6832     subl(result, cnt1);
6833     jmpb(POP_LABEL);
6834   }//if (VM_Version::supports_avx512vlbw())
6835 #endif // _LP64
6836 
6837   // Discard the stored length difference
6838   bind(POP_LABEL);
6839   pop(cnt1);
6840 
6841   // That's it
6842   bind(DONE_LABEL);
6843   if(ae == StrIntrinsicNode::UL) {
6844     negl(result);
6845   }
6846 
6847 }
6848 
6849 // Search for Non-ASCII character (Negative byte value) in a byte array,
6850 // return true if it has any and false otherwise.
6851 //   ..\jdk\src\java.base\share\classes\java\lang\StringCoding.java
6852 //   @HotSpotIntrinsicCandidate
6853 //   private static boolean hasNegatives(byte[] ba, int off, int len) {
6854 //     for (int i = off; i < off + len; i++) {
6855 //       if (ba[i] < 0) {
6856 //         return true;
6857 //       }
6858 //     }
6859 //     return false;
6860 //   }
6861 void MacroAssembler::has_negatives(Register ary1, Register len,
6862   Register result, Register tmp1,
6863   XMMRegister vec1, XMMRegister vec2) {
6864   // rsi: byte array
6865   // rcx: len
6866   // rax: result
6867   ShortBranchVerifier sbv(this);
6868   assert_different_registers(ary1, len, result, tmp1);
6869   assert_different_registers(vec1, vec2);
6870   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE;
6871 
6872   // len == 0
6873   testl(len, len);
6874   jcc(Assembler::zero, FALSE_LABEL);
6875 
6876   if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512
6877     VM_Version::supports_avx512vlbw() &&
6878     VM_Version::supports_bmi2()) {
6879 
6880     Label test_64_loop, test_tail;
6881     Register tmp3_aliased = len;
6882 
6883     movl(tmp1, len);
6884     vpxor(vec2, vec2, vec2, Assembler::AVX_512bit);
6885 
6886     andl(tmp1, 64 - 1);   // tail count (in chars) 0x3F
6887     andl(len, ~(64 - 1));    // vector count (in chars)
6888     jccb(Assembler::zero, test_tail);
6889 
6890     lea(ary1, Address(ary1, len, Address::times_1));
6891     negptr(len);
6892 
6893     bind(test_64_loop);
6894     // Check whether our 64 elements of size byte contain negatives
6895     evpcmpgtb(k2, vec2, Address(ary1, len, Address::times_1), Assembler::AVX_512bit);
6896     kortestql(k2, k2);
6897     jcc(Assembler::notZero, TRUE_LABEL);
6898 
6899     addptr(len, 64);
6900     jccb(Assembler::notZero, test_64_loop);
6901 
6902 
6903     bind(test_tail);
6904     // bail out when there is nothing to be done
6905     testl(tmp1, -1);
6906     jcc(Assembler::zero, FALSE_LABEL);
6907 
6908     // ~(~0 << len) applied up to two times (for 32-bit scenario)
6909 #ifdef _LP64
6910     mov64(tmp3_aliased, 0xFFFFFFFFFFFFFFFF);
6911     shlxq(tmp3_aliased, tmp3_aliased, tmp1);
6912     notq(tmp3_aliased);
6913     kmovql(k3, tmp3_aliased);
6914 #else
6915     Label k_init;
6916     jmp(k_init);
6917 
6918     // We could not read 64-bits from a general purpose register thus we move
6919     // data required to compose 64 1's to the instruction stream
6920     // We emit 64 byte wide series of elements from 0..63 which later on would
6921     // be used as a compare targets with tail count contained in tmp1 register.
6922     // Result would be a k register having tmp1 consecutive number or 1
6923     // counting from least significant bit.
6924     address tmp = pc();
6925     emit_int64(0x0706050403020100);
6926     emit_int64(0x0F0E0D0C0B0A0908);
6927     emit_int64(0x1716151413121110);
6928     emit_int64(0x1F1E1D1C1B1A1918);
6929     emit_int64(0x2726252423222120);
6930     emit_int64(0x2F2E2D2C2B2A2928);
6931     emit_int64(0x3736353433323130);
6932     emit_int64(0x3F3E3D3C3B3A3938);
6933 
6934     bind(k_init);
6935     lea(len, InternalAddress(tmp));
6936     // create mask to test for negative byte inside a vector
6937     evpbroadcastb(vec1, tmp1, Assembler::AVX_512bit);
6938     evpcmpgtb(k3, vec1, Address(len, 0), Assembler::AVX_512bit);
6939 
6940 #endif
6941     evpcmpgtb(k2, k3, vec2, Address(ary1, 0), Assembler::AVX_512bit);
6942     ktestq(k2, k3);
6943     jcc(Assembler::notZero, TRUE_LABEL);
6944 
6945     jmp(FALSE_LABEL);
6946   } else {
6947     movl(result, len); // copy
6948 
6949     if (UseAVX >= 2 && UseSSE >= 2) {
6950       // With AVX2, use 32-byte vector compare
6951       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6952 
6953       // Compare 32-byte vectors
6954       andl(result, 0x0000001f);  //   tail count (in bytes)
6955       andl(len, 0xffffffe0);   // vector count (in bytes)
6956       jccb(Assembler::zero, COMPARE_TAIL);
6957 
6958       lea(ary1, Address(ary1, len, Address::times_1));
6959       negptr(len);
6960 
6961       movl(tmp1, 0x80808080);   // create mask to test for Unicode chars in vector
6962       movdl(vec2, tmp1);
6963       vpbroadcastd(vec2, vec2, Assembler::AVX_256bit);
6964 
6965       bind(COMPARE_WIDE_VECTORS);
6966       vmovdqu(vec1, Address(ary1, len, Address::times_1));
6967       vptest(vec1, vec2);
6968       jccb(Assembler::notZero, TRUE_LABEL);
6969       addptr(len, 32);
6970       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6971 
6972       testl(result, result);
6973       jccb(Assembler::zero, FALSE_LABEL);
6974 
6975       vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
6976       vptest(vec1, vec2);
6977       jccb(Assembler::notZero, TRUE_LABEL);
6978       jmpb(FALSE_LABEL);
6979 
6980       bind(COMPARE_TAIL); // len is zero
6981       movl(len, result);
6982       // Fallthru to tail compare
6983     } else if (UseSSE42Intrinsics) {
6984       // With SSE4.2, use double quad vector compare
6985       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6986 
6987       // Compare 16-byte vectors
6988       andl(result, 0x0000000f);  //   tail count (in bytes)
6989       andl(len, 0xfffffff0);   // vector count (in bytes)
6990       jcc(Assembler::zero, COMPARE_TAIL);
6991 
6992       lea(ary1, Address(ary1, len, Address::times_1));
6993       negptr(len);
6994 
6995       movl(tmp1, 0x80808080);
6996       movdl(vec2, tmp1);
6997       pshufd(vec2, vec2, 0);
6998 
6999       bind(COMPARE_WIDE_VECTORS);
7000       movdqu(vec1, Address(ary1, len, Address::times_1));
7001       ptest(vec1, vec2);
7002       jcc(Assembler::notZero, TRUE_LABEL);
7003       addptr(len, 16);
7004       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7005 
7006       testl(result, result);
7007       jcc(Assembler::zero, FALSE_LABEL);
7008 
7009       movdqu(vec1, Address(ary1, result, Address::times_1, -16));
7010       ptest(vec1, vec2);
7011       jccb(Assembler::notZero, TRUE_LABEL);
7012       jmpb(FALSE_LABEL);
7013 
7014       bind(COMPARE_TAIL); // len is zero
7015       movl(len, result);
7016       // Fallthru to tail compare
7017     }
7018   }
7019   // Compare 4-byte vectors
7020   andl(len, 0xfffffffc); // vector count (in bytes)
7021   jccb(Assembler::zero, COMPARE_CHAR);
7022 
7023   lea(ary1, Address(ary1, len, Address::times_1));
7024   negptr(len);
7025 
7026   bind(COMPARE_VECTORS);
7027   movl(tmp1, Address(ary1, len, Address::times_1));
7028   andl(tmp1, 0x80808080);
7029   jccb(Assembler::notZero, TRUE_LABEL);
7030   addptr(len, 4);
7031   jcc(Assembler::notZero, COMPARE_VECTORS);
7032 
7033   // Compare trailing char (final 2 bytes), if any
7034   bind(COMPARE_CHAR);
7035   testl(result, 0x2);   // tail  char
7036   jccb(Assembler::zero, COMPARE_BYTE);
7037   load_unsigned_short(tmp1, Address(ary1, 0));
7038   andl(tmp1, 0x00008080);
7039   jccb(Assembler::notZero, TRUE_LABEL);
7040   subptr(result, 2);
7041   lea(ary1, Address(ary1, 2));
7042 
7043   bind(COMPARE_BYTE);
7044   testl(result, 0x1);   // tail  byte
7045   jccb(Assembler::zero, FALSE_LABEL);
7046   load_unsigned_byte(tmp1, Address(ary1, 0));
7047   andl(tmp1, 0x00000080);
7048   jccb(Assembler::notEqual, TRUE_LABEL);
7049   jmpb(FALSE_LABEL);
7050 
7051   bind(TRUE_LABEL);
7052   movl(result, 1);   // return true
7053   jmpb(DONE);
7054 
7055   bind(FALSE_LABEL);
7056   xorl(result, result); // return false
7057 
7058   // That's it
7059   bind(DONE);
7060   if (UseAVX >= 2 && UseSSE >= 2) {
7061     // clean upper bits of YMM registers
7062     vpxor(vec1, vec1);
7063     vpxor(vec2, vec2);
7064   }
7065 }
7066 // Compare char[] or byte[] arrays aligned to 4 bytes or substrings.
7067 void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2,
7068                                    Register limit, Register result, Register chr,
7069                                    XMMRegister vec1, XMMRegister vec2, bool is_char) {
7070   ShortBranchVerifier sbv(this);
7071   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE;
7072 
7073   int length_offset  = arrayOopDesc::length_offset_in_bytes();
7074   int base_offset    = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE);
7075 
7076   if (is_array_equ) {
7077     // Check the input args
7078     cmpoop(ary1, ary2);
7079     jcc(Assembler::equal, TRUE_LABEL);
7080 
7081     // Need additional checks for arrays_equals.
7082     testptr(ary1, ary1);
7083     jcc(Assembler::zero, FALSE_LABEL);
7084     testptr(ary2, ary2);
7085     jcc(Assembler::zero, FALSE_LABEL);
7086 
7087     // Check the lengths
7088     movl(limit, Address(ary1, length_offset));
7089     cmpl(limit, Address(ary2, length_offset));
7090     jcc(Assembler::notEqual, FALSE_LABEL);
7091   }
7092 
7093   // count == 0
7094   testl(limit, limit);
7095   jcc(Assembler::zero, TRUE_LABEL);
7096 
7097   if (is_array_equ) {
7098     // Load array address
7099     lea(ary1, Address(ary1, base_offset));
7100     lea(ary2, Address(ary2, base_offset));
7101   }
7102 
7103   if (is_array_equ && is_char) {
7104     // arrays_equals when used for char[].
7105     shll(limit, 1);      // byte count != 0
7106   }
7107   movl(result, limit); // copy
7108 
7109   if (UseAVX >= 2) {
7110     // With AVX2, use 32-byte vector compare
7111     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7112 
7113     // Compare 32-byte vectors
7114     andl(result, 0x0000001f);  //   tail count (in bytes)
7115     andl(limit, 0xffffffe0);   // vector count (in bytes)
7116     jcc(Assembler::zero, COMPARE_TAIL);
7117 
7118     lea(ary1, Address(ary1, limit, Address::times_1));
7119     lea(ary2, Address(ary2, limit, Address::times_1));
7120     negptr(limit);
7121 
7122 #ifdef _LP64
7123     if ((AVX3Threshold == 0) && VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
7124       Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3;
7125 
7126       cmpl(limit, -64);
7127       jcc(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2);
7128 
7129       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
7130 
7131       evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit);
7132       evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit);
7133       kortestql(k7, k7);
7134       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
7135       addptr(limit, 64);  // update since we already compared at this addr
7136       cmpl(limit, -64);
7137       jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3);
7138 
7139       // At this point we may still need to compare -limit+result bytes.
7140       // We could execute the next two instruction and just continue via non-wide path:
7141       //  cmpl(limit, 0);
7142       //  jcc(Assembler::equal, COMPARE_TAIL);  // true
7143       // But since we stopped at the points ary{1,2}+limit which are
7144       // not farther than 64 bytes from the ends of arrays ary{1,2}+result
7145       // (|limit| <= 32 and result < 32),
7146       // we may just compare the last 64 bytes.
7147       //
7148       addptr(result, -64);   // it is safe, bc we just came from this area
7149       evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit);
7150       evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit);
7151       kortestql(k7, k7);
7152       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
7153 
7154       jmp(TRUE_LABEL);
7155 
7156       bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7157 
7158     }//if (VM_Version::supports_avx512vlbw())
7159 #endif //_LP64
7160     bind(COMPARE_WIDE_VECTORS);
7161     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
7162     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
7163     vpxor(vec1, vec2);
7164 
7165     vptest(vec1, vec1);
7166     jcc(Assembler::notZero, FALSE_LABEL);
7167     addptr(limit, 32);
7168     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7169 
7170     testl(result, result);
7171     jcc(Assembler::zero, TRUE_LABEL);
7172 
7173     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
7174     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
7175     vpxor(vec1, vec2);
7176 
7177     vptest(vec1, vec1);
7178     jccb(Assembler::notZero, FALSE_LABEL);
7179     jmpb(TRUE_LABEL);
7180 
7181     bind(COMPARE_TAIL); // limit is zero
7182     movl(limit, result);
7183     // Fallthru to tail compare
7184   } else if (UseSSE42Intrinsics) {
7185     // With SSE4.2, use double quad vector compare
7186     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7187 
7188     // Compare 16-byte vectors
7189     andl(result, 0x0000000f);  //   tail count (in bytes)
7190     andl(limit, 0xfffffff0);   // vector count (in bytes)
7191     jcc(Assembler::zero, COMPARE_TAIL);
7192 
7193     lea(ary1, Address(ary1, limit, Address::times_1));
7194     lea(ary2, Address(ary2, limit, Address::times_1));
7195     negptr(limit);
7196 
7197     bind(COMPARE_WIDE_VECTORS);
7198     movdqu(vec1, Address(ary1, limit, Address::times_1));
7199     movdqu(vec2, Address(ary2, limit, Address::times_1));
7200     pxor(vec1, vec2);
7201 
7202     ptest(vec1, vec1);
7203     jcc(Assembler::notZero, FALSE_LABEL);
7204     addptr(limit, 16);
7205     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7206 
7207     testl(result, result);
7208     jcc(Assembler::zero, TRUE_LABEL);
7209 
7210     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
7211     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
7212     pxor(vec1, vec2);
7213 
7214     ptest(vec1, vec1);
7215     jccb(Assembler::notZero, FALSE_LABEL);
7216     jmpb(TRUE_LABEL);
7217 
7218     bind(COMPARE_TAIL); // limit is zero
7219     movl(limit, result);
7220     // Fallthru to tail compare
7221   }
7222 
7223   // Compare 4-byte vectors
7224   andl(limit, 0xfffffffc); // vector count (in bytes)
7225   jccb(Assembler::zero, COMPARE_CHAR);
7226 
7227   lea(ary1, Address(ary1, limit, Address::times_1));
7228   lea(ary2, Address(ary2, limit, Address::times_1));
7229   negptr(limit);
7230 
7231   bind(COMPARE_VECTORS);
7232   movl(chr, Address(ary1, limit, Address::times_1));
7233   cmpl(chr, Address(ary2, limit, Address::times_1));
7234   jccb(Assembler::notEqual, FALSE_LABEL);
7235   addptr(limit, 4);
7236   jcc(Assembler::notZero, COMPARE_VECTORS);
7237 
7238   // Compare trailing char (final 2 bytes), if any
7239   bind(COMPARE_CHAR);
7240   testl(result, 0x2);   // tail  char
7241   jccb(Assembler::zero, COMPARE_BYTE);
7242   load_unsigned_short(chr, Address(ary1, 0));
7243   load_unsigned_short(limit, Address(ary2, 0));
7244   cmpl(chr, limit);
7245   jccb(Assembler::notEqual, FALSE_LABEL);
7246 
7247   if (is_array_equ && is_char) {
7248     bind(COMPARE_BYTE);
7249   } else {
7250     lea(ary1, Address(ary1, 2));
7251     lea(ary2, Address(ary2, 2));
7252 
7253     bind(COMPARE_BYTE);
7254     testl(result, 0x1);   // tail  byte
7255     jccb(Assembler::zero, TRUE_LABEL);
7256     load_unsigned_byte(chr, Address(ary1, 0));
7257     load_unsigned_byte(limit, Address(ary2, 0));
7258     cmpl(chr, limit);
7259     jccb(Assembler::notEqual, FALSE_LABEL);
7260   }
7261   bind(TRUE_LABEL);
7262   movl(result, 1);   // return true
7263   jmpb(DONE);
7264 
7265   bind(FALSE_LABEL);
7266   xorl(result, result); // return false
7267 
7268   // That's it
7269   bind(DONE);
7270   if (UseAVX >= 2) {
7271     // clean upper bits of YMM registers
7272     vpxor(vec1, vec1);
7273     vpxor(vec2, vec2);
7274   }
7275 }
7276 
7277 #endif
7278 
7279 void MacroAssembler::generate_fill(BasicType t, bool aligned,
7280                                    Register to, Register value, Register count,
7281                                    Register rtmp, XMMRegister xtmp) {
7282   ShortBranchVerifier sbv(this);
7283   assert_different_registers(to, value, count, rtmp);
7284   Label L_exit;
7285   Label L_fill_2_bytes, L_fill_4_bytes;
7286 
7287   int shift = -1;
7288   switch (t) {
7289     case T_BYTE:
7290       shift = 2;
7291       break;
7292     case T_SHORT:
7293       shift = 1;
7294       break;
7295     case T_INT:
7296       shift = 0;
7297       break;
7298     default: ShouldNotReachHere();
7299   }
7300 
7301   if (t == T_BYTE) {
7302     andl(value, 0xff);
7303     movl(rtmp, value);
7304     shll(rtmp, 8);
7305     orl(value, rtmp);
7306   }
7307   if (t == T_SHORT) {
7308     andl(value, 0xffff);
7309   }
7310   if (t == T_BYTE || t == T_SHORT) {
7311     movl(rtmp, value);
7312     shll(rtmp, 16);
7313     orl(value, rtmp);
7314   }
7315 
7316   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
7317   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
7318   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
7319     Label L_skip_align2;
7320     // align source address at 4 bytes address boundary
7321     if (t == T_BYTE) {
7322       Label L_skip_align1;
7323       // One byte misalignment happens only for byte arrays
7324       testptr(to, 1);
7325       jccb(Assembler::zero, L_skip_align1);
7326       movb(Address(to, 0), value);
7327       increment(to);
7328       decrement(count);
7329       BIND(L_skip_align1);
7330     }
7331     // Two bytes misalignment happens only for byte and short (char) arrays
7332     testptr(to, 2);
7333     jccb(Assembler::zero, L_skip_align2);
7334     movw(Address(to, 0), value);
7335     addptr(to, 2);
7336     subl(count, 1<<(shift-1));
7337     BIND(L_skip_align2);
7338   }
7339   if (UseSSE < 2) {
7340     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7341     // Fill 32-byte chunks
7342     subl(count, 8 << shift);
7343     jcc(Assembler::less, L_check_fill_8_bytes);
7344     align(16);
7345 
7346     BIND(L_fill_32_bytes_loop);
7347 
7348     for (int i = 0; i < 32; i += 4) {
7349       movl(Address(to, i), value);
7350     }
7351 
7352     addptr(to, 32);
7353     subl(count, 8 << shift);
7354     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7355     BIND(L_check_fill_8_bytes);
7356     addl(count, 8 << shift);
7357     jccb(Assembler::zero, L_exit);
7358     jmpb(L_fill_8_bytes);
7359 
7360     //
7361     // length is too short, just fill qwords
7362     //
7363     BIND(L_fill_8_bytes_loop);
7364     movl(Address(to, 0), value);
7365     movl(Address(to, 4), value);
7366     addptr(to, 8);
7367     BIND(L_fill_8_bytes);
7368     subl(count, 1 << (shift + 1));
7369     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7370     // fall through to fill 4 bytes
7371   } else {
7372     Label L_fill_32_bytes;
7373     if (!UseUnalignedLoadStores) {
7374       // align to 8 bytes, we know we are 4 byte aligned to start
7375       testptr(to, 4);
7376       jccb(Assembler::zero, L_fill_32_bytes);
7377       movl(Address(to, 0), value);
7378       addptr(to, 4);
7379       subl(count, 1<<shift);
7380     }
7381     BIND(L_fill_32_bytes);
7382     {
7383       assert( UseSSE >= 2, "supported cpu only" );
7384       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7385       movdl(xtmp, value);
7386       if (UseAVX >= 2 && UseUnalignedLoadStores) {
7387         Label L_check_fill_32_bytes;
7388         if (UseAVX > 2) {
7389           // Fill 64-byte chunks
7390           Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2;
7391 
7392           // If number of bytes to fill < AVX3Threshold, perform fill using AVX2
7393           cmpl(count, AVX3Threshold);
7394           jccb(Assembler::below, L_check_fill_64_bytes_avx2);
7395 
7396           vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
7397 
7398           subl(count, 16 << shift);
7399           jccb(Assembler::less, L_check_fill_32_bytes);
7400           align(16);
7401 
7402           BIND(L_fill_64_bytes_loop_avx3);
7403           evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
7404           addptr(to, 64);
7405           subl(count, 16 << shift);
7406           jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3);
7407           jmpb(L_check_fill_32_bytes);
7408 
7409           BIND(L_check_fill_64_bytes_avx2);
7410         }
7411         // Fill 64-byte chunks
7412         Label L_fill_64_bytes_loop;
7413         vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit);
7414 
7415         subl(count, 16 << shift);
7416         jcc(Assembler::less, L_check_fill_32_bytes);
7417         align(16);
7418 
7419         BIND(L_fill_64_bytes_loop);
7420         vmovdqu(Address(to, 0), xtmp);
7421         vmovdqu(Address(to, 32), xtmp);
7422         addptr(to, 64);
7423         subl(count, 16 << shift);
7424         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7425 
7426         BIND(L_check_fill_32_bytes);
7427         addl(count, 8 << shift);
7428         jccb(Assembler::less, L_check_fill_8_bytes);
7429         vmovdqu(Address(to, 0), xtmp);
7430         addptr(to, 32);
7431         subl(count, 8 << shift);
7432 
7433         BIND(L_check_fill_8_bytes);
7434         // clean upper bits of YMM registers
7435         movdl(xtmp, value);
7436         pshufd(xtmp, xtmp, 0);
7437       } else {
7438         // Fill 32-byte chunks
7439         pshufd(xtmp, xtmp, 0);
7440 
7441         subl(count, 8 << shift);
7442         jcc(Assembler::less, L_check_fill_8_bytes);
7443         align(16);
7444 
7445         BIND(L_fill_32_bytes_loop);
7446 
7447         if (UseUnalignedLoadStores) {
7448           movdqu(Address(to, 0), xtmp);
7449           movdqu(Address(to, 16), xtmp);
7450         } else {
7451           movq(Address(to, 0), xtmp);
7452           movq(Address(to, 8), xtmp);
7453           movq(Address(to, 16), xtmp);
7454           movq(Address(to, 24), xtmp);
7455         }
7456 
7457         addptr(to, 32);
7458         subl(count, 8 << shift);
7459         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7460 
7461         BIND(L_check_fill_8_bytes);
7462       }
7463       addl(count, 8 << shift);
7464       jccb(Assembler::zero, L_exit);
7465       jmpb(L_fill_8_bytes);
7466 
7467       //
7468       // length is too short, just fill qwords
7469       //
7470       BIND(L_fill_8_bytes_loop);
7471       movq(Address(to, 0), xtmp);
7472       addptr(to, 8);
7473       BIND(L_fill_8_bytes);
7474       subl(count, 1 << (shift + 1));
7475       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7476     }
7477   }
7478   // fill trailing 4 bytes
7479   BIND(L_fill_4_bytes);
7480   testl(count, 1<<shift);
7481   jccb(Assembler::zero, L_fill_2_bytes);
7482   movl(Address(to, 0), value);
7483   if (t == T_BYTE || t == T_SHORT) {
7484     Label L_fill_byte;
7485     addptr(to, 4);
7486     BIND(L_fill_2_bytes);
7487     // fill trailing 2 bytes
7488     testl(count, 1<<(shift-1));
7489     jccb(Assembler::zero, L_fill_byte);
7490     movw(Address(to, 0), value);
7491     if (t == T_BYTE) {
7492       addptr(to, 2);
7493       BIND(L_fill_byte);
7494       // fill trailing byte
7495       testl(count, 1);
7496       jccb(Assembler::zero, L_exit);
7497       movb(Address(to, 0), value);
7498     } else {
7499       BIND(L_fill_byte);
7500     }
7501   } else {
7502     BIND(L_fill_2_bytes);
7503   }
7504   BIND(L_exit);
7505 }
7506 
7507 // encode char[] to byte[] in ISO_8859_1
7508    //@HotSpotIntrinsicCandidate
7509    //private static int implEncodeISOArray(byte[] sa, int sp,
7510    //byte[] da, int dp, int len) {
7511    //  int i = 0;
7512    //  for (; i < len; i++) {
7513    //    char c = StringUTF16.getChar(sa, sp++);
7514    //    if (c > '\u00FF')
7515    //      break;
7516    //    da[dp++] = (byte)c;
7517    //  }
7518    //  return i;
7519    //}
7520 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
7521   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
7522   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
7523   Register tmp5, Register result) {
7524 
7525   // rsi: src
7526   // rdi: dst
7527   // rdx: len
7528   // rcx: tmp5
7529   // rax: result
7530   ShortBranchVerifier sbv(this);
7531   assert_different_registers(src, dst, len, tmp5, result);
7532   Label L_done, L_copy_1_char, L_copy_1_char_exit;
7533 
7534   // set result
7535   xorl(result, result);
7536   // check for zero length
7537   testl(len, len);
7538   jcc(Assembler::zero, L_done);
7539 
7540   movl(result, len);
7541 
7542   // Setup pointers
7543   lea(src, Address(src, len, Address::times_2)); // char[]
7544   lea(dst, Address(dst, len, Address::times_1)); // byte[]
7545   negptr(len);
7546 
7547   if (UseSSE42Intrinsics || UseAVX >= 2) {
7548     Label L_copy_8_chars, L_copy_8_chars_exit;
7549     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
7550 
7551     if (UseAVX >= 2) {
7552       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
7553       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7554       movdl(tmp1Reg, tmp5);
7555       vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit);
7556       jmp(L_chars_32_check);
7557 
7558       bind(L_copy_32_chars);
7559       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
7560       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
7561       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7562       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7563       jccb(Assembler::notZero, L_copy_32_chars_exit);
7564       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7565       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
7566       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
7567 
7568       bind(L_chars_32_check);
7569       addptr(len, 32);
7570       jcc(Assembler::lessEqual, L_copy_32_chars);
7571 
7572       bind(L_copy_32_chars_exit);
7573       subptr(len, 16);
7574       jccb(Assembler::greater, L_copy_16_chars_exit);
7575 
7576     } else if (UseSSE42Intrinsics) {
7577       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7578       movdl(tmp1Reg, tmp5);
7579       pshufd(tmp1Reg, tmp1Reg, 0);
7580       jmpb(L_chars_16_check);
7581     }
7582 
7583     bind(L_copy_16_chars);
7584     if (UseAVX >= 2) {
7585       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
7586       vptest(tmp2Reg, tmp1Reg);
7587       jcc(Assembler::notZero, L_copy_16_chars_exit);
7588       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
7589       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
7590     } else {
7591       if (UseAVX > 0) {
7592         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7593         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7594         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
7595       } else {
7596         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7597         por(tmp2Reg, tmp3Reg);
7598         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7599         por(tmp2Reg, tmp4Reg);
7600       }
7601       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7602       jccb(Assembler::notZero, L_copy_16_chars_exit);
7603       packuswb(tmp3Reg, tmp4Reg);
7604     }
7605     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
7606 
7607     bind(L_chars_16_check);
7608     addptr(len, 16);
7609     jcc(Assembler::lessEqual, L_copy_16_chars);
7610 
7611     bind(L_copy_16_chars_exit);
7612     if (UseAVX >= 2) {
7613       // clean upper bits of YMM registers
7614       vpxor(tmp2Reg, tmp2Reg);
7615       vpxor(tmp3Reg, tmp3Reg);
7616       vpxor(tmp4Reg, tmp4Reg);
7617       movdl(tmp1Reg, tmp5);
7618       pshufd(tmp1Reg, tmp1Reg, 0);
7619     }
7620     subptr(len, 8);
7621     jccb(Assembler::greater, L_copy_8_chars_exit);
7622 
7623     bind(L_copy_8_chars);
7624     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
7625     ptest(tmp3Reg, tmp1Reg);
7626     jccb(Assembler::notZero, L_copy_8_chars_exit);
7627     packuswb(tmp3Reg, tmp1Reg);
7628     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
7629     addptr(len, 8);
7630     jccb(Assembler::lessEqual, L_copy_8_chars);
7631 
7632     bind(L_copy_8_chars_exit);
7633     subptr(len, 8);
7634     jccb(Assembler::zero, L_done);
7635   }
7636 
7637   bind(L_copy_1_char);
7638   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
7639   testl(tmp5, 0xff00);      // check if Unicode char
7640   jccb(Assembler::notZero, L_copy_1_char_exit);
7641   movb(Address(dst, len, Address::times_1, 0), tmp5);
7642   addptr(len, 1);
7643   jccb(Assembler::less, L_copy_1_char);
7644 
7645   bind(L_copy_1_char_exit);
7646   addptr(result, len); // len is negative count of not processed elements
7647 
7648   bind(L_done);
7649 }
7650 
7651 #ifdef _LP64
7652 /**
7653  * Helper for multiply_to_len().
7654  */
7655 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
7656   addq(dest_lo, src1);
7657   adcq(dest_hi, 0);
7658   addq(dest_lo, src2);
7659   adcq(dest_hi, 0);
7660 }
7661 
7662 /**
7663  * Multiply 64 bit by 64 bit first loop.
7664  */
7665 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
7666                                            Register y, Register y_idx, Register z,
7667                                            Register carry, Register product,
7668                                            Register idx, Register kdx) {
7669   //
7670   //  jlong carry, x[], y[], z[];
7671   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7672   //    huge_128 product = y[idx] * x[xstart] + carry;
7673   //    z[kdx] = (jlong)product;
7674   //    carry  = (jlong)(product >>> 64);
7675   //  }
7676   //  z[xstart] = carry;
7677   //
7678 
7679   Label L_first_loop, L_first_loop_exit;
7680   Label L_one_x, L_one_y, L_multiply;
7681 
7682   decrementl(xstart);
7683   jcc(Assembler::negative, L_one_x);
7684 
7685   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7686   rorq(x_xstart, 32); // convert big-endian to little-endian
7687 
7688   bind(L_first_loop);
7689   decrementl(idx);
7690   jcc(Assembler::negative, L_first_loop_exit);
7691   decrementl(idx);
7692   jcc(Assembler::negative, L_one_y);
7693   movq(y_idx, Address(y, idx, Address::times_4,  0));
7694   rorq(y_idx, 32); // convert big-endian to little-endian
7695   bind(L_multiply);
7696   movq(product, x_xstart);
7697   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
7698   addq(product, carry);
7699   adcq(rdx, 0);
7700   subl(kdx, 2);
7701   movl(Address(z, kdx, Address::times_4,  4), product);
7702   shrq(product, 32);
7703   movl(Address(z, kdx, Address::times_4,  0), product);
7704   movq(carry, rdx);
7705   jmp(L_first_loop);
7706 
7707   bind(L_one_y);
7708   movl(y_idx, Address(y,  0));
7709   jmp(L_multiply);
7710 
7711   bind(L_one_x);
7712   movl(x_xstart, Address(x,  0));
7713   jmp(L_first_loop);
7714 
7715   bind(L_first_loop_exit);
7716 }
7717 
7718 /**
7719  * Multiply 64 bit by 64 bit and add 128 bit.
7720  */
7721 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
7722                                             Register yz_idx, Register idx,
7723                                             Register carry, Register product, int offset) {
7724   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
7725   //     z[kdx] = (jlong)product;
7726 
7727   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
7728   rorq(yz_idx, 32); // convert big-endian to little-endian
7729   movq(product, x_xstart);
7730   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
7731   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
7732   rorq(yz_idx, 32); // convert big-endian to little-endian
7733 
7734   add2_with_carry(rdx, product, carry, yz_idx);
7735 
7736   movl(Address(z, idx, Address::times_4,  offset+4), product);
7737   shrq(product, 32);
7738   movl(Address(z, idx, Address::times_4,  offset), product);
7739 
7740 }
7741 
7742 /**
7743  * Multiply 128 bit by 128 bit. Unrolled inner loop.
7744  */
7745 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
7746                                              Register yz_idx, Register idx, Register jdx,
7747                                              Register carry, Register product,
7748                                              Register carry2) {
7749   //   jlong carry, x[], y[], z[];
7750   //   int kdx = ystart+1;
7751   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7752   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
7753   //     z[kdx+idx+1] = (jlong)product;
7754   //     jlong carry2  = (jlong)(product >>> 64);
7755   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
7756   //     z[kdx+idx] = (jlong)product;
7757   //     carry  = (jlong)(product >>> 64);
7758   //   }
7759   //   idx += 2;
7760   //   if (idx > 0) {
7761   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
7762   //     z[kdx+idx] = (jlong)product;
7763   //     carry  = (jlong)(product >>> 64);
7764   //   }
7765   //
7766 
7767   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7768 
7769   movl(jdx, idx);
7770   andl(jdx, 0xFFFFFFFC);
7771   shrl(jdx, 2);
7772 
7773   bind(L_third_loop);
7774   subl(jdx, 1);
7775   jcc(Assembler::negative, L_third_loop_exit);
7776   subl(idx, 4);
7777 
7778   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
7779   movq(carry2, rdx);
7780 
7781   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
7782   movq(carry, rdx);
7783   jmp(L_third_loop);
7784 
7785   bind (L_third_loop_exit);
7786 
7787   andl (idx, 0x3);
7788   jcc(Assembler::zero, L_post_third_loop_done);
7789 
7790   Label L_check_1;
7791   subl(idx, 2);
7792   jcc(Assembler::negative, L_check_1);
7793 
7794   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
7795   movq(carry, rdx);
7796 
7797   bind (L_check_1);
7798   addl (idx, 0x2);
7799   andl (idx, 0x1);
7800   subl(idx, 1);
7801   jcc(Assembler::negative, L_post_third_loop_done);
7802 
7803   movl(yz_idx, Address(y, idx, Address::times_4,  0));
7804   movq(product, x_xstart);
7805   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
7806   movl(yz_idx, Address(z, idx, Address::times_4,  0));
7807 
7808   add2_with_carry(rdx, product, yz_idx, carry);
7809 
7810   movl(Address(z, idx, Address::times_4,  0), product);
7811   shrq(product, 32);
7812 
7813   shlq(rdx, 32);
7814   orq(product, rdx);
7815   movq(carry, product);
7816 
7817   bind(L_post_third_loop_done);
7818 }
7819 
7820 /**
7821  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
7822  *
7823  */
7824 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
7825                                                   Register carry, Register carry2,
7826                                                   Register idx, Register jdx,
7827                                                   Register yz_idx1, Register yz_idx2,
7828                                                   Register tmp, Register tmp3, Register tmp4) {
7829   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
7830 
7831   //   jlong carry, x[], y[], z[];
7832   //   int kdx = ystart+1;
7833   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7834   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
7835   //     jlong carry2  = (jlong)(tmp3 >>> 64);
7836   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
7837   //     carry  = (jlong)(tmp4 >>> 64);
7838   //     z[kdx+idx+1] = (jlong)tmp3;
7839   //     z[kdx+idx] = (jlong)tmp4;
7840   //   }
7841   //   idx += 2;
7842   //   if (idx > 0) {
7843   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
7844   //     z[kdx+idx] = (jlong)yz_idx1;
7845   //     carry  = (jlong)(yz_idx1 >>> 64);
7846   //   }
7847   //
7848 
7849   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7850 
7851   movl(jdx, idx);
7852   andl(jdx, 0xFFFFFFFC);
7853   shrl(jdx, 2);
7854 
7855   bind(L_third_loop);
7856   subl(jdx, 1);
7857   jcc(Assembler::negative, L_third_loop_exit);
7858   subl(idx, 4);
7859 
7860   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
7861   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
7862   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
7863   rorxq(yz_idx2, yz_idx2, 32);
7864 
7865   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
7866   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
7867 
7868   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
7869   rorxq(yz_idx1, yz_idx1, 32);
7870   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7871   rorxq(yz_idx2, yz_idx2, 32);
7872 
7873   if (VM_Version::supports_adx()) {
7874     adcxq(tmp3, carry);
7875     adoxq(tmp3, yz_idx1);
7876 
7877     adcxq(tmp4, tmp);
7878     adoxq(tmp4, yz_idx2);
7879 
7880     movl(carry, 0); // does not affect flags
7881     adcxq(carry2, carry);
7882     adoxq(carry2, carry);
7883   } else {
7884     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
7885     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
7886   }
7887   movq(carry, carry2);
7888 
7889   movl(Address(z, idx, Address::times_4, 12), tmp3);
7890   shrq(tmp3, 32);
7891   movl(Address(z, idx, Address::times_4,  8), tmp3);
7892 
7893   movl(Address(z, idx, Address::times_4,  4), tmp4);
7894   shrq(tmp4, 32);
7895   movl(Address(z, idx, Address::times_4,  0), tmp4);
7896 
7897   jmp(L_third_loop);
7898 
7899   bind (L_third_loop_exit);
7900 
7901   andl (idx, 0x3);
7902   jcc(Assembler::zero, L_post_third_loop_done);
7903 
7904   Label L_check_1;
7905   subl(idx, 2);
7906   jcc(Assembler::negative, L_check_1);
7907 
7908   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
7909   rorxq(yz_idx1, yz_idx1, 32);
7910   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
7911   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7912   rorxq(yz_idx2, yz_idx2, 32);
7913 
7914   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
7915 
7916   movl(Address(z, idx, Address::times_4,  4), tmp3);
7917   shrq(tmp3, 32);
7918   movl(Address(z, idx, Address::times_4,  0), tmp3);
7919   movq(carry, tmp4);
7920 
7921   bind (L_check_1);
7922   addl (idx, 0x2);
7923   andl (idx, 0x1);
7924   subl(idx, 1);
7925   jcc(Assembler::negative, L_post_third_loop_done);
7926   movl(tmp4, Address(y, idx, Address::times_4,  0));
7927   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
7928   movl(tmp4, Address(z, idx, Address::times_4,  0));
7929 
7930   add2_with_carry(carry2, tmp3, tmp4, carry);
7931 
7932   movl(Address(z, idx, Address::times_4,  0), tmp3);
7933   shrq(tmp3, 32);
7934 
7935   shlq(carry2, 32);
7936   orq(tmp3, carry2);
7937   movq(carry, tmp3);
7938 
7939   bind(L_post_third_loop_done);
7940 }
7941 
7942 /**
7943  * Code for BigInteger::multiplyToLen() instrinsic.
7944  *
7945  * rdi: x
7946  * rax: xlen
7947  * rsi: y
7948  * rcx: ylen
7949  * r8:  z
7950  * r11: zlen
7951  * r12: tmp1
7952  * r13: tmp2
7953  * r14: tmp3
7954  * r15: tmp4
7955  * rbx: tmp5
7956  *
7957  */
7958 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
7959                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
7960   ShortBranchVerifier sbv(this);
7961   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
7962 
7963   push(tmp1);
7964   push(tmp2);
7965   push(tmp3);
7966   push(tmp4);
7967   push(tmp5);
7968 
7969   push(xlen);
7970   push(zlen);
7971 
7972   const Register idx = tmp1;
7973   const Register kdx = tmp2;
7974   const Register xstart = tmp3;
7975 
7976   const Register y_idx = tmp4;
7977   const Register carry = tmp5;
7978   const Register product  = xlen;
7979   const Register x_xstart = zlen;  // reuse register
7980 
7981   // First Loop.
7982   //
7983   //  final static long LONG_MASK = 0xffffffffL;
7984   //  int xstart = xlen - 1;
7985   //  int ystart = ylen - 1;
7986   //  long carry = 0;
7987   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7988   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
7989   //    z[kdx] = (int)product;
7990   //    carry = product >>> 32;
7991   //  }
7992   //  z[xstart] = (int)carry;
7993   //
7994 
7995   movl(idx, ylen);      // idx = ylen;
7996   movl(kdx, zlen);      // kdx = xlen+ylen;
7997   xorq(carry, carry);   // carry = 0;
7998 
7999   Label L_done;
8000 
8001   movl(xstart, xlen);
8002   decrementl(xstart);
8003   jcc(Assembler::negative, L_done);
8004 
8005   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
8006 
8007   Label L_second_loop;
8008   testl(kdx, kdx);
8009   jcc(Assembler::zero, L_second_loop);
8010 
8011   Label L_carry;
8012   subl(kdx, 1);
8013   jcc(Assembler::zero, L_carry);
8014 
8015   movl(Address(z, kdx, Address::times_4,  0), carry);
8016   shrq(carry, 32);
8017   subl(kdx, 1);
8018 
8019   bind(L_carry);
8020   movl(Address(z, kdx, Address::times_4,  0), carry);
8021 
8022   // Second and third (nested) loops.
8023   //
8024   // for (int i = xstart-1; i >= 0; i--) { // Second loop
8025   //   carry = 0;
8026   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
8027   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
8028   //                    (z[k] & LONG_MASK) + carry;
8029   //     z[k] = (int)product;
8030   //     carry = product >>> 32;
8031   //   }
8032   //   z[i] = (int)carry;
8033   // }
8034   //
8035   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
8036 
8037   const Register jdx = tmp1;
8038 
8039   bind(L_second_loop);
8040   xorl(carry, carry);    // carry = 0;
8041   movl(jdx, ylen);       // j = ystart+1
8042 
8043   subl(xstart, 1);       // i = xstart-1;
8044   jcc(Assembler::negative, L_done);
8045 
8046   push (z);
8047 
8048   Label L_last_x;
8049   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
8050   subl(xstart, 1);       // i = xstart-1;
8051   jcc(Assembler::negative, L_last_x);
8052 
8053   if (UseBMI2Instructions) {
8054     movq(rdx,  Address(x, xstart, Address::times_4,  0));
8055     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
8056   } else {
8057     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
8058     rorq(x_xstart, 32);  // convert big-endian to little-endian
8059   }
8060 
8061   Label L_third_loop_prologue;
8062   bind(L_third_loop_prologue);
8063 
8064   push (x);
8065   push (xstart);
8066   push (ylen);
8067 
8068 
8069   if (UseBMI2Instructions) {
8070     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
8071   } else { // !UseBMI2Instructions
8072     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
8073   }
8074 
8075   pop(ylen);
8076   pop(xlen);
8077   pop(x);
8078   pop(z);
8079 
8080   movl(tmp3, xlen);
8081   addl(tmp3, 1);
8082   movl(Address(z, tmp3, Address::times_4,  0), carry);
8083   subl(tmp3, 1);
8084   jccb(Assembler::negative, L_done);
8085 
8086   shrq(carry, 32);
8087   movl(Address(z, tmp3, Address::times_4,  0), carry);
8088   jmp(L_second_loop);
8089 
8090   // Next infrequent code is moved outside loops.
8091   bind(L_last_x);
8092   if (UseBMI2Instructions) {
8093     movl(rdx, Address(x,  0));
8094   } else {
8095     movl(x_xstart, Address(x,  0));
8096   }
8097   jmp(L_third_loop_prologue);
8098 
8099   bind(L_done);
8100 
8101   pop(zlen);
8102   pop(xlen);
8103 
8104   pop(tmp5);
8105   pop(tmp4);
8106   pop(tmp3);
8107   pop(tmp2);
8108   pop(tmp1);
8109 }
8110 
8111 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
8112   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
8113   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
8114   Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
8115   Label VECTOR8_TAIL, VECTOR4_TAIL;
8116   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
8117   Label SAME_TILL_END, DONE;
8118   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
8119 
8120   //scale is in rcx in both Win64 and Unix
8121   ShortBranchVerifier sbv(this);
8122 
8123   shlq(length);
8124   xorq(result, result);
8125 
8126   if ((AVX3Threshold == 0) && (UseAVX > 2) &&
8127       VM_Version::supports_avx512vlbw()) {
8128     Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
8129 
8130     cmpq(length, 64);
8131     jcc(Assembler::less, VECTOR32_TAIL);
8132 
8133     movq(tmp1, length);
8134     andq(tmp1, 0x3F);      // tail count
8135     andq(length, ~(0x3F)); //vector count
8136 
8137     bind(VECTOR64_LOOP);
8138     // AVX512 code to compare 64 byte vectors.
8139     evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
8140     evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
8141     kortestql(k7, k7);
8142     jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
8143     addq(result, 64);
8144     subq(length, 64);
8145     jccb(Assembler::notZero, VECTOR64_LOOP);
8146 
8147     //bind(VECTOR64_TAIL);
8148     testq(tmp1, tmp1);
8149     jcc(Assembler::zero, SAME_TILL_END);
8150 
8151     //bind(VECTOR64_TAIL);
8152     // AVX512 code to compare upto 63 byte vectors.
8153     mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
8154     shlxq(tmp2, tmp2, tmp1);
8155     notq(tmp2);
8156     kmovql(k3, tmp2);
8157 
8158     evmovdqub(rymm0, k3, Address(obja, result), Assembler::AVX_512bit);
8159     evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit);
8160 
8161     ktestql(k7, k3);
8162     jcc(Assembler::below, SAME_TILL_END);     // not mismatch
8163 
8164     bind(VECTOR64_NOT_EQUAL);
8165     kmovql(tmp1, k7);
8166     notq(tmp1);
8167     tzcntq(tmp1, tmp1);
8168     addq(result, tmp1);
8169     shrq(result);
8170     jmp(DONE);
8171     bind(VECTOR32_TAIL);
8172   }
8173 
8174   cmpq(length, 8);
8175   jcc(Assembler::equal, VECTOR8_LOOP);
8176   jcc(Assembler::less, VECTOR4_TAIL);
8177 
8178   if (UseAVX >= 2) {
8179     Label VECTOR16_TAIL, VECTOR32_LOOP;
8180 
8181     cmpq(length, 16);
8182     jcc(Assembler::equal, VECTOR16_LOOP);
8183     jcc(Assembler::less, VECTOR8_LOOP);
8184 
8185     cmpq(length, 32);
8186     jccb(Assembler::less, VECTOR16_TAIL);
8187 
8188     subq(length, 32);
8189     bind(VECTOR32_LOOP);
8190     vmovdqu(rymm0, Address(obja, result));
8191     vmovdqu(rymm1, Address(objb, result));
8192     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
8193     vptest(rymm2, rymm2);
8194     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
8195     addq(result, 32);
8196     subq(length, 32);
8197     jcc(Assembler::greaterEqual, VECTOR32_LOOP);
8198     addq(length, 32);
8199     jcc(Assembler::equal, SAME_TILL_END);
8200     //falling through if less than 32 bytes left //close the branch here.
8201 
8202     bind(VECTOR16_TAIL);
8203     cmpq(length, 16);
8204     jccb(Assembler::less, VECTOR8_TAIL);
8205     bind(VECTOR16_LOOP);
8206     movdqu(rymm0, Address(obja, result));
8207     movdqu(rymm1, Address(objb, result));
8208     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
8209     ptest(rymm2, rymm2);
8210     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
8211     addq(result, 16);
8212     subq(length, 16);
8213     jcc(Assembler::equal, SAME_TILL_END);
8214     //falling through if less than 16 bytes left
8215   } else {//regular intrinsics
8216 
8217     cmpq(length, 16);
8218     jccb(Assembler::less, VECTOR8_TAIL);
8219 
8220     subq(length, 16);
8221     bind(VECTOR16_LOOP);
8222     movdqu(rymm0, Address(obja, result));
8223     movdqu(rymm1, Address(objb, result));
8224     pxor(rymm0, rymm1);
8225     ptest(rymm0, rymm0);
8226     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
8227     addq(result, 16);
8228     subq(length, 16);
8229     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
8230     addq(length, 16);
8231     jcc(Assembler::equal, SAME_TILL_END);
8232     //falling through if less than 16 bytes left
8233   }
8234 
8235   bind(VECTOR8_TAIL);
8236   cmpq(length, 8);
8237   jccb(Assembler::less, VECTOR4_TAIL);
8238   bind(VECTOR8_LOOP);
8239   movq(tmp1, Address(obja, result));
8240   movq(tmp2, Address(objb, result));
8241   xorq(tmp1, tmp2);
8242   testq(tmp1, tmp1);
8243   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
8244   addq(result, 8);
8245   subq(length, 8);
8246   jcc(Assembler::equal, SAME_TILL_END);
8247   //falling through if less than 8 bytes left
8248 
8249   bind(VECTOR4_TAIL);
8250   cmpq(length, 4);
8251   jccb(Assembler::less, BYTES_TAIL);
8252   bind(VECTOR4_LOOP);
8253   movl(tmp1, Address(obja, result));
8254   xorl(tmp1, Address(objb, result));
8255   testl(tmp1, tmp1);
8256   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
8257   addq(result, 4);
8258   subq(length, 4);
8259   jcc(Assembler::equal, SAME_TILL_END);
8260   //falling through if less than 4 bytes left
8261 
8262   bind(BYTES_TAIL);
8263   bind(BYTES_LOOP);
8264   load_unsigned_byte(tmp1, Address(obja, result));
8265   load_unsigned_byte(tmp2, Address(objb, result));
8266   xorl(tmp1, tmp2);
8267   testl(tmp1, tmp1);
8268   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
8269   decq(length);
8270   jcc(Assembler::zero, SAME_TILL_END);
8271   incq(result);
8272   load_unsigned_byte(tmp1, Address(obja, result));
8273   load_unsigned_byte(tmp2, Address(objb, result));
8274   xorl(tmp1, tmp2);
8275   testl(tmp1, tmp1);
8276   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
8277   decq(length);
8278   jcc(Assembler::zero, SAME_TILL_END);
8279   incq(result);
8280   load_unsigned_byte(tmp1, Address(obja, result));
8281   load_unsigned_byte(tmp2, Address(objb, result));
8282   xorl(tmp1, tmp2);
8283   testl(tmp1, tmp1);
8284   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
8285   jmp(SAME_TILL_END);
8286 
8287   if (UseAVX >= 2) {
8288     bind(VECTOR32_NOT_EQUAL);
8289     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
8290     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
8291     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
8292     vpmovmskb(tmp1, rymm0);
8293     bsfq(tmp1, tmp1);
8294     addq(result, tmp1);
8295     shrq(result);
8296     jmp(DONE);
8297   }
8298 
8299   bind(VECTOR16_NOT_EQUAL);
8300   if (UseAVX >= 2) {
8301     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
8302     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
8303     pxor(rymm0, rymm2);
8304   } else {
8305     pcmpeqb(rymm2, rymm2);
8306     pxor(rymm0, rymm1);
8307     pcmpeqb(rymm0, rymm1);
8308     pxor(rymm0, rymm2);
8309   }
8310   pmovmskb(tmp1, rymm0);
8311   bsfq(tmp1, tmp1);
8312   addq(result, tmp1);
8313   shrq(result);
8314   jmpb(DONE);
8315 
8316   bind(VECTOR8_NOT_EQUAL);
8317   bind(VECTOR4_NOT_EQUAL);
8318   bsfq(tmp1, tmp1);
8319   shrq(tmp1, 3);
8320   addq(result, tmp1);
8321   bind(BYTES_NOT_EQUAL);
8322   shrq(result);
8323   jmpb(DONE);
8324 
8325   bind(SAME_TILL_END);
8326   mov64(result, -1);
8327 
8328   bind(DONE);
8329 }
8330 
8331 //Helper functions for square_to_len()
8332 
8333 /**
8334  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
8335  * Preserves x and z and modifies rest of the registers.
8336  */
8337 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8338   // Perform square and right shift by 1
8339   // Handle odd xlen case first, then for even xlen do the following
8340   // jlong carry = 0;
8341   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
8342   //     huge_128 product = x[j:j+1] * x[j:j+1];
8343   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
8344   //     z[i+2:i+3] = (jlong)(product >>> 1);
8345   //     carry = (jlong)product;
8346   // }
8347 
8348   xorq(tmp5, tmp5);     // carry
8349   xorq(rdxReg, rdxReg);
8350   xorl(tmp1, tmp1);     // index for x
8351   xorl(tmp4, tmp4);     // index for z
8352 
8353   Label L_first_loop, L_first_loop_exit;
8354 
8355   testl(xlen, 1);
8356   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
8357 
8358   // Square and right shift by 1 the odd element using 32 bit multiply
8359   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
8360   imulq(raxReg, raxReg);
8361   shrq(raxReg, 1);
8362   adcq(tmp5, 0);
8363   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
8364   incrementl(tmp1);
8365   addl(tmp4, 2);
8366 
8367   // Square and  right shift by 1 the rest using 64 bit multiply
8368   bind(L_first_loop);
8369   cmpptr(tmp1, xlen);
8370   jccb(Assembler::equal, L_first_loop_exit);
8371 
8372   // Square
8373   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
8374   rorq(raxReg, 32);    // convert big-endian to little-endian
8375   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
8376 
8377   // Right shift by 1 and save carry
8378   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
8379   rcrq(rdxReg, 1);
8380   rcrq(raxReg, 1);
8381   adcq(tmp5, 0);
8382 
8383   // Store result in z
8384   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
8385   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
8386 
8387   // Update indices for x and z
8388   addl(tmp1, 2);
8389   addl(tmp4, 4);
8390   jmp(L_first_loop);
8391 
8392   bind(L_first_loop_exit);
8393 }
8394 
8395 
8396 /**
8397  * Perform the following multiply add operation using BMI2 instructions
8398  * carry:sum = sum + op1*op2 + carry
8399  * op2 should be in rdx
8400  * op2 is preserved, all other registers are modified
8401  */
8402 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
8403   // assert op2 is rdx
8404   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
8405   addq(sum, carry);
8406   adcq(tmp2, 0);
8407   addq(sum, op1);
8408   adcq(tmp2, 0);
8409   movq(carry, tmp2);
8410 }
8411 
8412 /**
8413  * Perform the following multiply add operation:
8414  * carry:sum = sum + op1*op2 + carry
8415  * Preserves op1, op2 and modifies rest of registers
8416  */
8417 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
8418   // rdx:rax = op1 * op2
8419   movq(raxReg, op2);
8420   mulq(op1);
8421 
8422   //  rdx:rax = sum + carry + rdx:rax
8423   addq(sum, carry);
8424   adcq(rdxReg, 0);
8425   addq(sum, raxReg);
8426   adcq(rdxReg, 0);
8427 
8428   // carry:sum = rdx:sum
8429   movq(carry, rdxReg);
8430 }
8431 
8432 /**
8433  * Add 64 bit long carry into z[] with carry propogation.
8434  * Preserves z and carry register values and modifies rest of registers.
8435  *
8436  */
8437 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
8438   Label L_fourth_loop, L_fourth_loop_exit;
8439 
8440   movl(tmp1, 1);
8441   subl(zlen, 2);
8442   addq(Address(z, zlen, Address::times_4, 0), carry);
8443 
8444   bind(L_fourth_loop);
8445   jccb(Assembler::carryClear, L_fourth_loop_exit);
8446   subl(zlen, 2);
8447   jccb(Assembler::negative, L_fourth_loop_exit);
8448   addq(Address(z, zlen, Address::times_4, 0), tmp1);
8449   jmp(L_fourth_loop);
8450   bind(L_fourth_loop_exit);
8451 }
8452 
8453 /**
8454  * Shift z[] left by 1 bit.
8455  * Preserves x, len, z and zlen registers and modifies rest of the registers.
8456  *
8457  */
8458 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
8459 
8460   Label L_fifth_loop, L_fifth_loop_exit;
8461 
8462   // Fifth loop
8463   // Perform primitiveLeftShift(z, zlen, 1)
8464 
8465   const Register prev_carry = tmp1;
8466   const Register new_carry = tmp4;
8467   const Register value = tmp2;
8468   const Register zidx = tmp3;
8469 
8470   // int zidx, carry;
8471   // long value;
8472   // carry = 0;
8473   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
8474   //    (carry:value)  = (z[i] << 1) | carry ;
8475   //    z[i] = value;
8476   // }
8477 
8478   movl(zidx, zlen);
8479   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
8480 
8481   bind(L_fifth_loop);
8482   decl(zidx);  // Use decl to preserve carry flag
8483   decl(zidx);
8484   jccb(Assembler::negative, L_fifth_loop_exit);
8485 
8486   if (UseBMI2Instructions) {
8487      movq(value, Address(z, zidx, Address::times_4, 0));
8488      rclq(value, 1);
8489      rorxq(value, value, 32);
8490      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
8491   }
8492   else {
8493     // clear new_carry
8494     xorl(new_carry, new_carry);
8495 
8496     // Shift z[i] by 1, or in previous carry and save new carry
8497     movq(value, Address(z, zidx, Address::times_4, 0));
8498     shlq(value, 1);
8499     adcl(new_carry, 0);
8500 
8501     orq(value, prev_carry);
8502     rorq(value, 0x20);
8503     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
8504 
8505     // Set previous carry = new carry
8506     movl(prev_carry, new_carry);
8507   }
8508   jmp(L_fifth_loop);
8509 
8510   bind(L_fifth_loop_exit);
8511 }
8512 
8513 
8514 /**
8515  * Code for BigInteger::squareToLen() intrinsic
8516  *
8517  * rdi: x
8518  * rsi: len
8519  * r8:  z
8520  * rcx: zlen
8521  * r12: tmp1
8522  * r13: tmp2
8523  * r14: tmp3
8524  * r15: tmp4
8525  * rbx: tmp5
8526  *
8527  */
8528 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8529 
8530   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply;
8531   push(tmp1);
8532   push(tmp2);
8533   push(tmp3);
8534   push(tmp4);
8535   push(tmp5);
8536 
8537   // First loop
8538   // Store the squares, right shifted one bit (i.e., divided by 2).
8539   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
8540 
8541   // Add in off-diagonal sums.
8542   //
8543   // Second, third (nested) and fourth loops.
8544   // zlen +=2;
8545   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
8546   //    carry = 0;
8547   //    long op2 = x[xidx:xidx+1];
8548   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
8549   //       k -= 2;
8550   //       long op1 = x[j:j+1];
8551   //       long sum = z[k:k+1];
8552   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
8553   //       z[k:k+1] = sum;
8554   //    }
8555   //    add_one_64(z, k, carry, tmp_regs);
8556   // }
8557 
8558   const Register carry = tmp5;
8559   const Register sum = tmp3;
8560   const Register op1 = tmp4;
8561   Register op2 = tmp2;
8562 
8563   push(zlen);
8564   push(len);
8565   addl(zlen,2);
8566   bind(L_second_loop);
8567   xorq(carry, carry);
8568   subl(zlen, 4);
8569   subl(len, 2);
8570   push(zlen);
8571   push(len);
8572   cmpl(len, 0);
8573   jccb(Assembler::lessEqual, L_second_loop_exit);
8574 
8575   // Multiply an array by one 64 bit long.
8576   if (UseBMI2Instructions) {
8577     op2 = rdxReg;
8578     movq(op2, Address(x, len, Address::times_4,  0));
8579     rorxq(op2, op2, 32);
8580   }
8581   else {
8582     movq(op2, Address(x, len, Address::times_4,  0));
8583     rorq(op2, 32);
8584   }
8585 
8586   bind(L_third_loop);
8587   decrementl(len);
8588   jccb(Assembler::negative, L_third_loop_exit);
8589   decrementl(len);
8590   jccb(Assembler::negative, L_last_x);
8591 
8592   movq(op1, Address(x, len, Address::times_4,  0));
8593   rorq(op1, 32);
8594 
8595   bind(L_multiply);
8596   subl(zlen, 2);
8597   movq(sum, Address(z, zlen, Address::times_4,  0));
8598 
8599   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
8600   if (UseBMI2Instructions) {
8601     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
8602   }
8603   else {
8604     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8605   }
8606 
8607   movq(Address(z, zlen, Address::times_4, 0), sum);
8608 
8609   jmp(L_third_loop);
8610   bind(L_third_loop_exit);
8611 
8612   // Fourth loop
8613   // Add 64 bit long carry into z with carry propogation.
8614   // Uses offsetted zlen.
8615   add_one_64(z, zlen, carry, tmp1);
8616 
8617   pop(len);
8618   pop(zlen);
8619   jmp(L_second_loop);
8620 
8621   // Next infrequent code is moved outside loops.
8622   bind(L_last_x);
8623   movl(op1, Address(x, 0));
8624   jmp(L_multiply);
8625 
8626   bind(L_second_loop_exit);
8627   pop(len);
8628   pop(zlen);
8629   pop(len);
8630   pop(zlen);
8631 
8632   // Fifth loop
8633   // Shift z left 1 bit.
8634   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
8635 
8636   // z[zlen-1] |= x[len-1] & 1;
8637   movl(tmp3, Address(x, len, Address::times_4, -4));
8638   andl(tmp3, 1);
8639   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
8640 
8641   pop(tmp5);
8642   pop(tmp4);
8643   pop(tmp3);
8644   pop(tmp2);
8645   pop(tmp1);
8646 }
8647 
8648 /**
8649  * Helper function for mul_add()
8650  * Multiply the in[] by int k and add to out[] starting at offset offs using
8651  * 128 bit by 32 bit multiply and return the carry in tmp5.
8652  * Only quad int aligned length of in[] is operated on in this function.
8653  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
8654  * This function preserves out, in and k registers.
8655  * len and offset point to the appropriate index in "in" & "out" correspondingly
8656  * tmp5 has the carry.
8657  * other registers are temporary and are modified.
8658  *
8659  */
8660 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
8661   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
8662   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8663 
8664   Label L_first_loop, L_first_loop_exit;
8665 
8666   movl(tmp1, len);
8667   shrl(tmp1, 2);
8668 
8669   bind(L_first_loop);
8670   subl(tmp1, 1);
8671   jccb(Assembler::negative, L_first_loop_exit);
8672 
8673   subl(len, 4);
8674   subl(offset, 4);
8675 
8676   Register op2 = tmp2;
8677   const Register sum = tmp3;
8678   const Register op1 = tmp4;
8679   const Register carry = tmp5;
8680 
8681   if (UseBMI2Instructions) {
8682     op2 = rdxReg;
8683   }
8684 
8685   movq(op1, Address(in, len, Address::times_4,  8));
8686   rorq(op1, 32);
8687   movq(sum, Address(out, offset, Address::times_4,  8));
8688   rorq(sum, 32);
8689   if (UseBMI2Instructions) {
8690     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8691   }
8692   else {
8693     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8694   }
8695   // Store back in big endian from little endian
8696   rorq(sum, 0x20);
8697   movq(Address(out, offset, Address::times_4,  8), sum);
8698 
8699   movq(op1, Address(in, len, Address::times_4,  0));
8700   rorq(op1, 32);
8701   movq(sum, Address(out, offset, Address::times_4,  0));
8702   rorq(sum, 32);
8703   if (UseBMI2Instructions) {
8704     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8705   }
8706   else {
8707     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8708   }
8709   // Store back in big endian from little endian
8710   rorq(sum, 0x20);
8711   movq(Address(out, offset, Address::times_4,  0), sum);
8712 
8713   jmp(L_first_loop);
8714   bind(L_first_loop_exit);
8715 }
8716 
8717 /**
8718  * Code for BigInteger::mulAdd() intrinsic
8719  *
8720  * rdi: out
8721  * rsi: in
8722  * r11: offs (out.length - offset)
8723  * rcx: len
8724  * r8:  k
8725  * r12: tmp1
8726  * r13: tmp2
8727  * r14: tmp3
8728  * r15: tmp4
8729  * rbx: tmp5
8730  * Multiply the in[] by word k and add to out[], return the carry in rax
8731  */
8732 void MacroAssembler::mul_add(Register out, Register in, Register offs,
8733    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
8734    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8735 
8736   Label L_carry, L_last_in, L_done;
8737 
8738 // carry = 0;
8739 // for (int j=len-1; j >= 0; j--) {
8740 //    long product = (in[j] & LONG_MASK) * kLong +
8741 //                   (out[offs] & LONG_MASK) + carry;
8742 //    out[offs--] = (int)product;
8743 //    carry = product >>> 32;
8744 // }
8745 //
8746   push(tmp1);
8747   push(tmp2);
8748   push(tmp3);
8749   push(tmp4);
8750   push(tmp5);
8751 
8752   Register op2 = tmp2;
8753   const Register sum = tmp3;
8754   const Register op1 = tmp4;
8755   const Register carry =  tmp5;
8756 
8757   if (UseBMI2Instructions) {
8758     op2 = rdxReg;
8759     movl(op2, k);
8760   }
8761   else {
8762     movl(op2, k);
8763   }
8764 
8765   xorq(carry, carry);
8766 
8767   //First loop
8768 
8769   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
8770   //The carry is in tmp5
8771   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
8772 
8773   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
8774   decrementl(len);
8775   jccb(Assembler::negative, L_carry);
8776   decrementl(len);
8777   jccb(Assembler::negative, L_last_in);
8778 
8779   movq(op1, Address(in, len, Address::times_4,  0));
8780   rorq(op1, 32);
8781 
8782   subl(offs, 2);
8783   movq(sum, Address(out, offs, Address::times_4,  0));
8784   rorq(sum, 32);
8785 
8786   if (UseBMI2Instructions) {
8787     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8788   }
8789   else {
8790     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8791   }
8792 
8793   // Store back in big endian from little endian
8794   rorq(sum, 0x20);
8795   movq(Address(out, offs, Address::times_4,  0), sum);
8796 
8797   testl(len, len);
8798   jccb(Assembler::zero, L_carry);
8799 
8800   //Multiply the last in[] entry, if any
8801   bind(L_last_in);
8802   movl(op1, Address(in, 0));
8803   movl(sum, Address(out, offs, Address::times_4,  -4));
8804 
8805   movl(raxReg, k);
8806   mull(op1); //tmp4 * eax -> edx:eax
8807   addl(sum, carry);
8808   adcl(rdxReg, 0);
8809   addl(sum, raxReg);
8810   adcl(rdxReg, 0);
8811   movl(carry, rdxReg);
8812 
8813   movl(Address(out, offs, Address::times_4,  -4), sum);
8814 
8815   bind(L_carry);
8816   //return tmp5/carry as carry in rax
8817   movl(rax, carry);
8818 
8819   bind(L_done);
8820   pop(tmp5);
8821   pop(tmp4);
8822   pop(tmp3);
8823   pop(tmp2);
8824   pop(tmp1);
8825 }
8826 #endif
8827 
8828 /**
8829  * Emits code to update CRC-32 with a byte value according to constants in table
8830  *
8831  * @param [in,out]crc   Register containing the crc.
8832  * @param [in]val       Register containing the byte to fold into the CRC.
8833  * @param [in]table     Register containing the table of crc constants.
8834  *
8835  * uint32_t crc;
8836  * val = crc_table[(val ^ crc) & 0xFF];
8837  * crc = val ^ (crc >> 8);
8838  *
8839  */
8840 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
8841   xorl(val, crc);
8842   andl(val, 0xFF);
8843   shrl(crc, 8); // unsigned shift
8844   xorl(crc, Address(table, val, Address::times_4, 0));
8845 }
8846 
8847 /**
8848 * Fold four 128-bit data chunks
8849 */
8850 void MacroAssembler::fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
8851   evpclmulhdq(xtmp, xK, xcrc, Assembler::AVX_512bit); // [123:64]
8852   evpclmulldq(xcrc, xK, xcrc, Assembler::AVX_512bit); // [63:0]
8853   evpxorq(xcrc, xcrc, Address(buf, offset), Assembler::AVX_512bit /* vector_len */);
8854   evpxorq(xcrc, xcrc, xtmp, Assembler::AVX_512bit /* vector_len */);
8855 }
8856 
8857 /**
8858  * Fold 128-bit data chunk
8859  */
8860 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
8861   if (UseAVX > 0) {
8862     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
8863     vpclmulldq(xcrc, xK, xcrc); // [63:0]
8864     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
8865     pxor(xcrc, xtmp);
8866   } else {
8867     movdqa(xtmp, xcrc);
8868     pclmulhdq(xtmp, xK);   // [123:64]
8869     pclmulldq(xcrc, xK);   // [63:0]
8870     pxor(xcrc, xtmp);
8871     movdqu(xtmp, Address(buf, offset));
8872     pxor(xcrc, xtmp);
8873   }
8874 }
8875 
8876 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
8877   if (UseAVX > 0) {
8878     vpclmulhdq(xtmp, xK, xcrc);
8879     vpclmulldq(xcrc, xK, xcrc);
8880     pxor(xcrc, xbuf);
8881     pxor(xcrc, xtmp);
8882   } else {
8883     movdqa(xtmp, xcrc);
8884     pclmulhdq(xtmp, xK);
8885     pclmulldq(xcrc, xK);
8886     pxor(xcrc, xbuf);
8887     pxor(xcrc, xtmp);
8888   }
8889 }
8890 
8891 /**
8892  * 8-bit folds to compute 32-bit CRC
8893  *
8894  * uint64_t xcrc;
8895  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
8896  */
8897 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
8898   movdl(tmp, xcrc);
8899   andl(tmp, 0xFF);
8900   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
8901   psrldq(xcrc, 1); // unsigned shift one byte
8902   pxor(xcrc, xtmp);
8903 }
8904 
8905 /**
8906  * uint32_t crc;
8907  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
8908  */
8909 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
8910   movl(tmp, crc);
8911   andl(tmp, 0xFF);
8912   shrl(crc, 8);
8913   xorl(crc, Address(table, tmp, Address::times_4, 0));
8914 }
8915 
8916 /**
8917  * @param crc   register containing existing CRC (32-bit)
8918  * @param buf   register pointing to input byte buffer (byte*)
8919  * @param len   register containing number of bytes
8920  * @param table register that will contain address of CRC table
8921  * @param tmp   scratch register
8922  */
8923 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
8924   assert_different_registers(crc, buf, len, table, tmp, rax);
8925 
8926   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
8927   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
8928 
8929   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
8930   // context for the registers used, where all instructions below are using 128-bit mode
8931   // On EVEX without VL and BW, these instructions will all be AVX.
8932   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
8933   notl(crc); // ~crc
8934   cmpl(len, 16);
8935   jcc(Assembler::less, L_tail);
8936 
8937   // Align buffer to 16 bytes
8938   movl(tmp, buf);
8939   andl(tmp, 0xF);
8940   jccb(Assembler::zero, L_aligned);
8941   subl(tmp,  16);
8942   addl(len, tmp);
8943 
8944   align(4);
8945   BIND(L_align_loop);
8946   movsbl(rax, Address(buf, 0)); // load byte with sign extension
8947   update_byte_crc32(crc, rax, table);
8948   increment(buf);
8949   incrementl(tmp);
8950   jccb(Assembler::less, L_align_loop);
8951 
8952   BIND(L_aligned);
8953   movl(tmp, len); // save
8954   shrl(len, 4);
8955   jcc(Assembler::zero, L_tail_restore);
8956 
8957   // Fold total 512 bits of polynomial on each iteration
8958   if (VM_Version::supports_vpclmulqdq()) {
8959     Label Parallel_loop, L_No_Parallel;
8960 
8961     cmpl(len, 8);
8962     jccb(Assembler::less, L_No_Parallel);
8963 
8964     movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
8965     evmovdquq(xmm1, Address(buf, 0), Assembler::AVX_512bit);
8966     movdl(xmm5, crc);
8967     evpxorq(xmm1, xmm1, xmm5, Assembler::AVX_512bit);
8968     addptr(buf, 64);
8969     subl(len, 7);
8970     evshufi64x2(xmm0, xmm0, xmm0, 0x00, Assembler::AVX_512bit); //propagate the mask from 128 bits to 512 bits
8971 
8972     BIND(Parallel_loop);
8973     fold_128bit_crc32_avx512(xmm1, xmm0, xmm5, buf, 0);
8974     addptr(buf, 64);
8975     subl(len, 4);
8976     jcc(Assembler::greater, Parallel_loop);
8977 
8978     vextracti64x2(xmm2, xmm1, 0x01);
8979     vextracti64x2(xmm3, xmm1, 0x02);
8980     vextracti64x2(xmm4, xmm1, 0x03);
8981     jmp(L_fold_512b);
8982 
8983     BIND(L_No_Parallel);
8984   }
8985   // Fold crc into first bytes of vector
8986   movdqa(xmm1, Address(buf, 0));
8987   movdl(rax, xmm1);
8988   xorl(crc, rax);
8989   if (VM_Version::supports_sse4_1()) {
8990     pinsrd(xmm1, crc, 0);
8991   } else {
8992     pinsrw(xmm1, crc, 0);
8993     shrl(crc, 16);
8994     pinsrw(xmm1, crc, 1);
8995   }
8996   addptr(buf, 16);
8997   subl(len, 4); // len > 0
8998   jcc(Assembler::less, L_fold_tail);
8999 
9000   movdqa(xmm2, Address(buf,  0));
9001   movdqa(xmm3, Address(buf, 16));
9002   movdqa(xmm4, Address(buf, 32));
9003   addptr(buf, 48);
9004   subl(len, 3);
9005   jcc(Assembler::lessEqual, L_fold_512b);
9006 
9007   // Fold total 512 bits of polynomial on each iteration,
9008   // 128 bits per each of 4 parallel streams.
9009   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
9010 
9011   align(32);
9012   BIND(L_fold_512b_loop);
9013   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
9014   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
9015   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
9016   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
9017   addptr(buf, 64);
9018   subl(len, 4);
9019   jcc(Assembler::greater, L_fold_512b_loop);
9020 
9021   // Fold 512 bits to 128 bits.
9022   BIND(L_fold_512b);
9023   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
9024   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
9025   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
9026   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
9027 
9028   // Fold the rest of 128 bits data chunks
9029   BIND(L_fold_tail);
9030   addl(len, 3);
9031   jccb(Assembler::lessEqual, L_fold_128b);
9032   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
9033 
9034   BIND(L_fold_tail_loop);
9035   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
9036   addptr(buf, 16);
9037   decrementl(len);
9038   jccb(Assembler::greater, L_fold_tail_loop);
9039 
9040   // Fold 128 bits in xmm1 down into 32 bits in crc register.
9041   BIND(L_fold_128b);
9042   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
9043   if (UseAVX > 0) {
9044     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
9045     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
9046     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
9047   } else {
9048     movdqa(xmm2, xmm0);
9049     pclmulqdq(xmm2, xmm1, 0x1);
9050     movdqa(xmm3, xmm0);
9051     pand(xmm3, xmm2);
9052     pclmulqdq(xmm0, xmm3, 0x1);
9053   }
9054   psrldq(xmm1, 8);
9055   psrldq(xmm2, 4);
9056   pxor(xmm0, xmm1);
9057   pxor(xmm0, xmm2);
9058 
9059   // 8 8-bit folds to compute 32-bit CRC.
9060   for (int j = 0; j < 4; j++) {
9061     fold_8bit_crc32(xmm0, table, xmm1, rax);
9062   }
9063   movdl(crc, xmm0); // mov 32 bits to general register
9064   for (int j = 0; j < 4; j++) {
9065     fold_8bit_crc32(crc, table, rax);
9066   }
9067 
9068   BIND(L_tail_restore);
9069   movl(len, tmp); // restore
9070   BIND(L_tail);
9071   andl(len, 0xf);
9072   jccb(Assembler::zero, L_exit);
9073 
9074   // Fold the rest of bytes
9075   align(4);
9076   BIND(L_tail_loop);
9077   movsbl(rax, Address(buf, 0)); // load byte with sign extension
9078   update_byte_crc32(crc, rax, table);
9079   increment(buf);
9080   decrementl(len);
9081   jccb(Assembler::greater, L_tail_loop);
9082 
9083   BIND(L_exit);
9084   notl(crc); // ~c
9085 }
9086 
9087 #ifdef _LP64
9088 // S. Gueron / Information Processing Letters 112 (2012) 184
9089 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
9090 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
9091 // Output: the 64-bit carry-less product of B * CONST
9092 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
9093                                      Register tmp1, Register tmp2, Register tmp3) {
9094   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
9095   if (n > 0) {
9096     addq(tmp3, n * 256 * 8);
9097   }
9098   //    Q1 = TABLEExt[n][B & 0xFF];
9099   movl(tmp1, in);
9100   andl(tmp1, 0x000000FF);
9101   shll(tmp1, 3);
9102   addq(tmp1, tmp3);
9103   movq(tmp1, Address(tmp1, 0));
9104 
9105   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
9106   movl(tmp2, in);
9107   shrl(tmp2, 8);
9108   andl(tmp2, 0x000000FF);
9109   shll(tmp2, 3);
9110   addq(tmp2, tmp3);
9111   movq(tmp2, Address(tmp2, 0));
9112 
9113   shlq(tmp2, 8);
9114   xorq(tmp1, tmp2);
9115 
9116   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
9117   movl(tmp2, in);
9118   shrl(tmp2, 16);
9119   andl(tmp2, 0x000000FF);
9120   shll(tmp2, 3);
9121   addq(tmp2, tmp3);
9122   movq(tmp2, Address(tmp2, 0));
9123 
9124   shlq(tmp2, 16);
9125   xorq(tmp1, tmp2);
9126 
9127   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
9128   shrl(in, 24);
9129   andl(in, 0x000000FF);
9130   shll(in, 3);
9131   addq(in, tmp3);
9132   movq(in, Address(in, 0));
9133 
9134   shlq(in, 24);
9135   xorq(in, tmp1);
9136   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
9137 }
9138 
9139 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
9140                                       Register in_out,
9141                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
9142                                       XMMRegister w_xtmp2,
9143                                       Register tmp1,
9144                                       Register n_tmp2, Register n_tmp3) {
9145   if (is_pclmulqdq_supported) {
9146     movdl(w_xtmp1, in_out); // modified blindly
9147 
9148     movl(tmp1, const_or_pre_comp_const_index);
9149     movdl(w_xtmp2, tmp1);
9150     pclmulqdq(w_xtmp1, w_xtmp2, 0);
9151 
9152     movdq(in_out, w_xtmp1);
9153   } else {
9154     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
9155   }
9156 }
9157 
9158 // Recombination Alternative 2: No bit-reflections
9159 // T1 = (CRC_A * U1) << 1
9160 // T2 = (CRC_B * U2) << 1
9161 // C1 = T1 >> 32
9162 // C2 = T2 >> 32
9163 // T1 = T1 & 0xFFFFFFFF
9164 // T2 = T2 & 0xFFFFFFFF
9165 // T1 = CRC32(0, T1)
9166 // T2 = CRC32(0, T2)
9167 // C1 = C1 ^ T1
9168 // C2 = C2 ^ T2
9169 // CRC = C1 ^ C2 ^ CRC_C
9170 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
9171                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9172                                      Register tmp1, Register tmp2,
9173                                      Register n_tmp3) {
9174   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9175   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9176   shlq(in_out, 1);
9177   movl(tmp1, in_out);
9178   shrq(in_out, 32);
9179   xorl(tmp2, tmp2);
9180   crc32(tmp2, tmp1, 4);
9181   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
9182   shlq(in1, 1);
9183   movl(tmp1, in1);
9184   shrq(in1, 32);
9185   xorl(tmp2, tmp2);
9186   crc32(tmp2, tmp1, 4);
9187   xorl(in1, tmp2);
9188   xorl(in_out, in1);
9189   xorl(in_out, in2);
9190 }
9191 
9192 // Set N to predefined value
9193 // Subtract from a lenght of a buffer
9194 // execute in a loop:
9195 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
9196 // for i = 1 to N do
9197 //  CRC_A = CRC32(CRC_A, A[i])
9198 //  CRC_B = CRC32(CRC_B, B[i])
9199 //  CRC_C = CRC32(CRC_C, C[i])
9200 // end for
9201 // Recombine
9202 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
9203                                        Register in_out1, Register in_out2, Register in_out3,
9204                                        Register tmp1, Register tmp2, Register tmp3,
9205                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9206                                        Register tmp4, Register tmp5,
9207                                        Register n_tmp6) {
9208   Label L_processPartitions;
9209   Label L_processPartition;
9210   Label L_exit;
9211 
9212   bind(L_processPartitions);
9213   cmpl(in_out1, 3 * size);
9214   jcc(Assembler::less, L_exit);
9215     xorl(tmp1, tmp1);
9216     xorl(tmp2, tmp2);
9217     movq(tmp3, in_out2);
9218     addq(tmp3, size);
9219 
9220     bind(L_processPartition);
9221       crc32(in_out3, Address(in_out2, 0), 8);
9222       crc32(tmp1, Address(in_out2, size), 8);
9223       crc32(tmp2, Address(in_out2, size * 2), 8);
9224       addq(in_out2, 8);
9225       cmpq(in_out2, tmp3);
9226       jcc(Assembler::less, L_processPartition);
9227     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
9228             w_xtmp1, w_xtmp2, w_xtmp3,
9229             tmp4, tmp5,
9230             n_tmp6);
9231     addq(in_out2, 2 * size);
9232     subl(in_out1, 3 * size);
9233     jmp(L_processPartitions);
9234 
9235   bind(L_exit);
9236 }
9237 #else
9238 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
9239                                      Register tmp1, Register tmp2, Register tmp3,
9240                                      XMMRegister xtmp1, XMMRegister xtmp2) {
9241   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
9242   if (n > 0) {
9243     addl(tmp3, n * 256 * 8);
9244   }
9245   //    Q1 = TABLEExt[n][B & 0xFF];
9246   movl(tmp1, in_out);
9247   andl(tmp1, 0x000000FF);
9248   shll(tmp1, 3);
9249   addl(tmp1, tmp3);
9250   movq(xtmp1, Address(tmp1, 0));
9251 
9252   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
9253   movl(tmp2, in_out);
9254   shrl(tmp2, 8);
9255   andl(tmp2, 0x000000FF);
9256   shll(tmp2, 3);
9257   addl(tmp2, tmp3);
9258   movq(xtmp2, Address(tmp2, 0));
9259 
9260   psllq(xtmp2, 8);
9261   pxor(xtmp1, xtmp2);
9262 
9263   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
9264   movl(tmp2, in_out);
9265   shrl(tmp2, 16);
9266   andl(tmp2, 0x000000FF);
9267   shll(tmp2, 3);
9268   addl(tmp2, tmp3);
9269   movq(xtmp2, Address(tmp2, 0));
9270 
9271   psllq(xtmp2, 16);
9272   pxor(xtmp1, xtmp2);
9273 
9274   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
9275   shrl(in_out, 24);
9276   andl(in_out, 0x000000FF);
9277   shll(in_out, 3);
9278   addl(in_out, tmp3);
9279   movq(xtmp2, Address(in_out, 0));
9280 
9281   psllq(xtmp2, 24);
9282   pxor(xtmp1, xtmp2); // Result in CXMM
9283   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
9284 }
9285 
9286 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
9287                                       Register in_out,
9288                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
9289                                       XMMRegister w_xtmp2,
9290                                       Register tmp1,
9291                                       Register n_tmp2, Register n_tmp3) {
9292   if (is_pclmulqdq_supported) {
9293     movdl(w_xtmp1, in_out);
9294 
9295     movl(tmp1, const_or_pre_comp_const_index);
9296     movdl(w_xtmp2, tmp1);
9297     pclmulqdq(w_xtmp1, w_xtmp2, 0);
9298     // Keep result in XMM since GPR is 32 bit in length
9299   } else {
9300     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
9301   }
9302 }
9303 
9304 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
9305                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9306                                      Register tmp1, Register tmp2,
9307                                      Register n_tmp3) {
9308   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9309   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9310 
9311   psllq(w_xtmp1, 1);
9312   movdl(tmp1, w_xtmp1);
9313   psrlq(w_xtmp1, 32);
9314   movdl(in_out, w_xtmp1);
9315 
9316   xorl(tmp2, tmp2);
9317   crc32(tmp2, tmp1, 4);
9318   xorl(in_out, tmp2);
9319 
9320   psllq(w_xtmp2, 1);
9321   movdl(tmp1, w_xtmp2);
9322   psrlq(w_xtmp2, 32);
9323   movdl(in1, w_xtmp2);
9324 
9325   xorl(tmp2, tmp2);
9326   crc32(tmp2, tmp1, 4);
9327   xorl(in1, tmp2);
9328   xorl(in_out, in1);
9329   xorl(in_out, in2);
9330 }
9331 
9332 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
9333                                        Register in_out1, Register in_out2, Register in_out3,
9334                                        Register tmp1, Register tmp2, Register tmp3,
9335                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9336                                        Register tmp4, Register tmp5,
9337                                        Register n_tmp6) {
9338   Label L_processPartitions;
9339   Label L_processPartition;
9340   Label L_exit;
9341 
9342   bind(L_processPartitions);
9343   cmpl(in_out1, 3 * size);
9344   jcc(Assembler::less, L_exit);
9345     xorl(tmp1, tmp1);
9346     xorl(tmp2, tmp2);
9347     movl(tmp3, in_out2);
9348     addl(tmp3, size);
9349 
9350     bind(L_processPartition);
9351       crc32(in_out3, Address(in_out2, 0), 4);
9352       crc32(tmp1, Address(in_out2, size), 4);
9353       crc32(tmp2, Address(in_out2, size*2), 4);
9354       crc32(in_out3, Address(in_out2, 0+4), 4);
9355       crc32(tmp1, Address(in_out2, size+4), 4);
9356       crc32(tmp2, Address(in_out2, size*2+4), 4);
9357       addl(in_out2, 8);
9358       cmpl(in_out2, tmp3);
9359       jcc(Assembler::less, L_processPartition);
9360 
9361         push(tmp3);
9362         push(in_out1);
9363         push(in_out2);
9364         tmp4 = tmp3;
9365         tmp5 = in_out1;
9366         n_tmp6 = in_out2;
9367 
9368       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
9369             w_xtmp1, w_xtmp2, w_xtmp3,
9370             tmp4, tmp5,
9371             n_tmp6);
9372 
9373         pop(in_out2);
9374         pop(in_out1);
9375         pop(tmp3);
9376 
9377     addl(in_out2, 2 * size);
9378     subl(in_out1, 3 * size);
9379     jmp(L_processPartitions);
9380 
9381   bind(L_exit);
9382 }
9383 #endif //LP64
9384 
9385 #ifdef _LP64
9386 // Algorithm 2: Pipelined usage of the CRC32 instruction.
9387 // Input: A buffer I of L bytes.
9388 // Output: the CRC32C value of the buffer.
9389 // Notations:
9390 // Write L = 24N + r, with N = floor (L/24).
9391 // r = L mod 24 (0 <= r < 24).
9392 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
9393 // N quadwords, and R consists of r bytes.
9394 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
9395 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
9396 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
9397 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
9398 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
9399                                           Register tmp1, Register tmp2, Register tmp3,
9400                                           Register tmp4, Register tmp5, Register tmp6,
9401                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9402                                           bool is_pclmulqdq_supported) {
9403   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
9404   Label L_wordByWord;
9405   Label L_byteByByteProlog;
9406   Label L_byteByByte;
9407   Label L_exit;
9408 
9409   if (is_pclmulqdq_supported ) {
9410     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
9411     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
9412 
9413     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
9414     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
9415 
9416     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
9417     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
9418     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
9419   } else {
9420     const_or_pre_comp_const_index[0] = 1;
9421     const_or_pre_comp_const_index[1] = 0;
9422 
9423     const_or_pre_comp_const_index[2] = 3;
9424     const_or_pre_comp_const_index[3] = 2;
9425 
9426     const_or_pre_comp_const_index[4] = 5;
9427     const_or_pre_comp_const_index[5] = 4;
9428    }
9429   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
9430                     in2, in1, in_out,
9431                     tmp1, tmp2, tmp3,
9432                     w_xtmp1, w_xtmp2, w_xtmp3,
9433                     tmp4, tmp5,
9434                     tmp6);
9435   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
9436                     in2, in1, in_out,
9437                     tmp1, tmp2, tmp3,
9438                     w_xtmp1, w_xtmp2, w_xtmp3,
9439                     tmp4, tmp5,
9440                     tmp6);
9441   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
9442                     in2, in1, in_out,
9443                     tmp1, tmp2, tmp3,
9444                     w_xtmp1, w_xtmp2, w_xtmp3,
9445                     tmp4, tmp5,
9446                     tmp6);
9447   movl(tmp1, in2);
9448   andl(tmp1, 0x00000007);
9449   negl(tmp1);
9450   addl(tmp1, in2);
9451   addq(tmp1, in1);
9452 
9453   BIND(L_wordByWord);
9454   cmpq(in1, tmp1);
9455   jcc(Assembler::greaterEqual, L_byteByByteProlog);
9456     crc32(in_out, Address(in1, 0), 4);
9457     addq(in1, 4);
9458     jmp(L_wordByWord);
9459 
9460   BIND(L_byteByByteProlog);
9461   andl(in2, 0x00000007);
9462   movl(tmp2, 1);
9463 
9464   BIND(L_byteByByte);
9465   cmpl(tmp2, in2);
9466   jccb(Assembler::greater, L_exit);
9467     crc32(in_out, Address(in1, 0), 1);
9468     incq(in1);
9469     incl(tmp2);
9470     jmp(L_byteByByte);
9471 
9472   BIND(L_exit);
9473 }
9474 #else
9475 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
9476                                           Register tmp1, Register  tmp2, Register tmp3,
9477                                           Register tmp4, Register  tmp5, Register tmp6,
9478                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9479                                           bool is_pclmulqdq_supported) {
9480   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
9481   Label L_wordByWord;
9482   Label L_byteByByteProlog;
9483   Label L_byteByByte;
9484   Label L_exit;
9485 
9486   if (is_pclmulqdq_supported) {
9487     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
9488     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
9489 
9490     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
9491     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
9492 
9493     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
9494     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
9495   } else {
9496     const_or_pre_comp_const_index[0] = 1;
9497     const_or_pre_comp_const_index[1] = 0;
9498 
9499     const_or_pre_comp_const_index[2] = 3;
9500     const_or_pre_comp_const_index[3] = 2;
9501 
9502     const_or_pre_comp_const_index[4] = 5;
9503     const_or_pre_comp_const_index[5] = 4;
9504   }
9505   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
9506                     in2, in1, in_out,
9507                     tmp1, tmp2, tmp3,
9508                     w_xtmp1, w_xtmp2, w_xtmp3,
9509                     tmp4, tmp5,
9510                     tmp6);
9511   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
9512                     in2, in1, in_out,
9513                     tmp1, tmp2, tmp3,
9514                     w_xtmp1, w_xtmp2, w_xtmp3,
9515                     tmp4, tmp5,
9516                     tmp6);
9517   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
9518                     in2, in1, in_out,
9519                     tmp1, tmp2, tmp3,
9520                     w_xtmp1, w_xtmp2, w_xtmp3,
9521                     tmp4, tmp5,
9522                     tmp6);
9523   movl(tmp1, in2);
9524   andl(tmp1, 0x00000007);
9525   negl(tmp1);
9526   addl(tmp1, in2);
9527   addl(tmp1, in1);
9528 
9529   BIND(L_wordByWord);
9530   cmpl(in1, tmp1);
9531   jcc(Assembler::greaterEqual, L_byteByByteProlog);
9532     crc32(in_out, Address(in1,0), 4);
9533     addl(in1, 4);
9534     jmp(L_wordByWord);
9535 
9536   BIND(L_byteByByteProlog);
9537   andl(in2, 0x00000007);
9538   movl(tmp2, 1);
9539 
9540   BIND(L_byteByByte);
9541   cmpl(tmp2, in2);
9542   jccb(Assembler::greater, L_exit);
9543     movb(tmp1, Address(in1, 0));
9544     crc32(in_out, tmp1, 1);
9545     incl(in1);
9546     incl(tmp2);
9547     jmp(L_byteByByte);
9548 
9549   BIND(L_exit);
9550 }
9551 #endif // LP64
9552 #undef BIND
9553 #undef BLOCK_COMMENT
9554 
9555 // Compress char[] array to byte[].
9556 //   ..\jdk\src\java.base\share\classes\java\lang\StringUTF16.java
9557 //   @HotSpotIntrinsicCandidate
9558 //   private static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
9559 //     for (int i = 0; i < len; i++) {
9560 //       int c = src[srcOff++];
9561 //       if (c >>> 8 != 0) {
9562 //         return 0;
9563 //       }
9564 //       dst[dstOff++] = (byte)c;
9565 //     }
9566 //     return len;
9567 //   }
9568 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
9569   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
9570   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
9571   Register tmp5, Register result) {
9572   Label copy_chars_loop, return_length, return_zero, done;
9573 
9574   // rsi: src
9575   // rdi: dst
9576   // rdx: len
9577   // rcx: tmp5
9578   // rax: result
9579 
9580   // rsi holds start addr of source char[] to be compressed
9581   // rdi holds start addr of destination byte[]
9582   // rdx holds length
9583 
9584   assert(len != result, "");
9585 
9586   // save length for return
9587   push(len);
9588 
9589   if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512
9590     VM_Version::supports_avx512vlbw() &&
9591     VM_Version::supports_bmi2()) {
9592 
9593     Label copy_32_loop, copy_loop_tail, below_threshold;
9594 
9595     // alignment
9596     Label post_alignment;
9597 
9598     // if length of the string is less than 16, handle it in an old fashioned way
9599     testl(len, -32);
9600     jcc(Assembler::zero, below_threshold);
9601 
9602     // First check whether a character is compressable ( <= 0xFF).
9603     // Create mask to test for Unicode chars inside zmm vector
9604     movl(result, 0x00FF);
9605     evpbroadcastw(tmp2Reg, result, Assembler::AVX_512bit);
9606 
9607     testl(len, -64);
9608     jcc(Assembler::zero, post_alignment);
9609 
9610     movl(tmp5, dst);
9611     andl(tmp5, (32 - 1));
9612     negl(tmp5);
9613     andl(tmp5, (32 - 1));
9614 
9615     // bail out when there is nothing to be done
9616     testl(tmp5, 0xFFFFFFFF);
9617     jcc(Assembler::zero, post_alignment);
9618 
9619     // ~(~0 << len), where len is the # of remaining elements to process
9620     movl(result, 0xFFFFFFFF);
9621     shlxl(result, result, tmp5);
9622     notl(result);
9623     kmovdl(k3, result);
9624 
9625     evmovdquw(tmp1Reg, k3, Address(src, 0), Assembler::AVX_512bit);
9626     evpcmpuw(k2, k3, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
9627     ktestd(k2, k3);
9628     jcc(Assembler::carryClear, return_zero);
9629 
9630     evpmovwb(Address(dst, 0), k3, tmp1Reg, Assembler::AVX_512bit);
9631 
9632     addptr(src, tmp5);
9633     addptr(src, tmp5);
9634     addptr(dst, tmp5);
9635     subl(len, tmp5);
9636 
9637     bind(post_alignment);
9638     // end of alignment
9639 
9640     movl(tmp5, len);
9641     andl(tmp5, (32 - 1));    // tail count (in chars)
9642     andl(len, ~(32 - 1));    // vector count (in chars)
9643     jcc(Assembler::zero, copy_loop_tail);
9644 
9645     lea(src, Address(src, len, Address::times_2));
9646     lea(dst, Address(dst, len, Address::times_1));
9647     negptr(len);
9648 
9649     bind(copy_32_loop);
9650     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
9651     evpcmpuw(k2, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
9652     kortestdl(k2, k2);
9653     jcc(Assembler::carryClear, return_zero);
9654 
9655     // All elements in current processed chunk are valid candidates for
9656     // compression. Write a truncated byte elements to the memory.
9657     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
9658     addptr(len, 32);
9659     jcc(Assembler::notZero, copy_32_loop);
9660 
9661     bind(copy_loop_tail);
9662     // bail out when there is nothing to be done
9663     testl(tmp5, 0xFFFFFFFF);
9664     jcc(Assembler::zero, return_length);
9665 
9666     movl(len, tmp5);
9667 
9668     // ~(~0 << len), where len is the # of remaining elements to process
9669     movl(result, 0xFFFFFFFF);
9670     shlxl(result, result, len);
9671     notl(result);
9672 
9673     kmovdl(k3, result);
9674 
9675     evmovdquw(tmp1Reg, k3, Address(src, 0), Assembler::AVX_512bit);
9676     evpcmpuw(k2, k3, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
9677     ktestd(k2, k3);
9678     jcc(Assembler::carryClear, return_zero);
9679 
9680     evpmovwb(Address(dst, 0), k3, tmp1Reg, Assembler::AVX_512bit);
9681     jmp(return_length);
9682 
9683     bind(below_threshold);
9684   }
9685 
9686   if (UseSSE42Intrinsics) {
9687     Label copy_32_loop, copy_16, copy_tail;
9688 
9689     movl(result, len);
9690 
9691     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
9692 
9693     // vectored compression
9694     andl(len, 0xfffffff0);    // vector count (in chars)
9695     andl(result, 0x0000000f);    // tail count (in chars)
9696     testl(len, len);
9697     jcc(Assembler::zero, copy_16);
9698 
9699     // compress 16 chars per iter
9700     movdl(tmp1Reg, tmp5);
9701     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
9702     pxor(tmp4Reg, tmp4Reg);
9703 
9704     lea(src, Address(src, len, Address::times_2));
9705     lea(dst, Address(dst, len, Address::times_1));
9706     negptr(len);
9707 
9708     bind(copy_32_loop);
9709     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
9710     por(tmp4Reg, tmp2Reg);
9711     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
9712     por(tmp4Reg, tmp3Reg);
9713     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
9714     jcc(Assembler::notZero, return_zero);
9715     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
9716     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
9717     addptr(len, 16);
9718     jcc(Assembler::notZero, copy_32_loop);
9719 
9720     // compress next vector of 8 chars (if any)
9721     bind(copy_16);
9722     movl(len, result);
9723     andl(len, 0xfffffff8);    // vector count (in chars)
9724     andl(result, 0x00000007);    // tail count (in chars)
9725     testl(len, len);
9726     jccb(Assembler::zero, copy_tail);
9727 
9728     movdl(tmp1Reg, tmp5);
9729     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
9730     pxor(tmp3Reg, tmp3Reg);
9731 
9732     movdqu(tmp2Reg, Address(src, 0));
9733     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
9734     jccb(Assembler::notZero, return_zero);
9735     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
9736     movq(Address(dst, 0), tmp2Reg);
9737     addptr(src, 16);
9738     addptr(dst, 8);
9739 
9740     bind(copy_tail);
9741     movl(len, result);
9742   }
9743   // compress 1 char per iter
9744   testl(len, len);
9745   jccb(Assembler::zero, return_length);
9746   lea(src, Address(src, len, Address::times_2));
9747   lea(dst, Address(dst, len, Address::times_1));
9748   negptr(len);
9749 
9750   bind(copy_chars_loop);
9751   load_unsigned_short(result, Address(src, len, Address::times_2));
9752   testl(result, 0xff00);      // check if Unicode char
9753   jccb(Assembler::notZero, return_zero);
9754   movb(Address(dst, len, Address::times_1), result);  // ASCII char; compress to 1 byte
9755   increment(len);
9756   jcc(Assembler::notZero, copy_chars_loop);
9757 
9758   // if compression succeeded, return length
9759   bind(return_length);
9760   pop(result);
9761   jmpb(done);
9762 
9763   // if compression failed, return 0
9764   bind(return_zero);
9765   xorl(result, result);
9766   addptr(rsp, wordSize);
9767 
9768   bind(done);
9769 }
9770 
9771 // Inflate byte[] array to char[].
9772 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
9773 //   @HotSpotIntrinsicCandidate
9774 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
9775 //     for (int i = 0; i < len; i++) {
9776 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
9777 //     }
9778 //   }
9779 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
9780   XMMRegister tmp1, Register tmp2) {
9781   Label copy_chars_loop, done, below_threshold, avx3_threshold;
9782   // rsi: src
9783   // rdi: dst
9784   // rdx: len
9785   // rcx: tmp2
9786 
9787   // rsi holds start addr of source byte[] to be inflated
9788   // rdi holds start addr of destination char[]
9789   // rdx holds length
9790   assert_different_registers(src, dst, len, tmp2);
9791   movl(tmp2, len);
9792   if ((UseAVX > 2) && // AVX512
9793     VM_Version::supports_avx512vlbw() &&
9794     VM_Version::supports_bmi2()) {
9795 
9796     Label copy_32_loop, copy_tail;
9797     Register tmp3_aliased = len;
9798 
9799     // if length of the string is less than 16, handle it in an old fashioned way
9800     testl(len, -16);
9801     jcc(Assembler::zero, below_threshold);
9802 
9803     testl(len, -1 * AVX3Threshold);
9804     jcc(Assembler::zero, avx3_threshold);
9805 
9806     // In order to use only one arithmetic operation for the main loop we use
9807     // this pre-calculation
9808     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
9809     andl(len, -32);     // vector count
9810     jccb(Assembler::zero, copy_tail);
9811 
9812     lea(src, Address(src, len, Address::times_1));
9813     lea(dst, Address(dst, len, Address::times_2));
9814     negptr(len);
9815 
9816 
9817     // inflate 32 chars per iter
9818     bind(copy_32_loop);
9819     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
9820     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
9821     addptr(len, 32);
9822     jcc(Assembler::notZero, copy_32_loop);
9823 
9824     bind(copy_tail);
9825     // bail out when there is nothing to be done
9826     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
9827     jcc(Assembler::zero, done);
9828 
9829     // ~(~0 << length), where length is the # of remaining elements to process
9830     movl(tmp3_aliased, -1);
9831     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
9832     notl(tmp3_aliased);
9833     kmovdl(k2, tmp3_aliased);
9834     evpmovzxbw(tmp1, k2, Address(src, 0), Assembler::AVX_512bit);
9835     evmovdquw(Address(dst, 0), k2, tmp1, Assembler::AVX_512bit);
9836 
9837     jmp(done);
9838     bind(avx3_threshold);
9839   }
9840   if (UseSSE42Intrinsics) {
9841     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
9842 
9843     if (UseAVX > 1) {
9844       andl(tmp2, (16 - 1));
9845       andl(len, -16);
9846       jccb(Assembler::zero, copy_new_tail);
9847     } else {
9848       andl(tmp2, 0x00000007);   // tail count (in chars)
9849       andl(len, 0xfffffff8);    // vector count (in chars)
9850       jccb(Assembler::zero, copy_tail);
9851     }
9852 
9853     // vectored inflation
9854     lea(src, Address(src, len, Address::times_1));
9855     lea(dst, Address(dst, len, Address::times_2));
9856     negptr(len);
9857 
9858     if (UseAVX > 1) {
9859       bind(copy_16_loop);
9860       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
9861       vmovdqu(Address(dst, len, Address::times_2), tmp1);
9862       addptr(len, 16);
9863       jcc(Assembler::notZero, copy_16_loop);
9864 
9865       bind(below_threshold);
9866       bind(copy_new_tail);
9867       movl(len, tmp2);
9868       andl(tmp2, 0x00000007);
9869       andl(len, 0xFFFFFFF8);
9870       jccb(Assembler::zero, copy_tail);
9871 
9872       pmovzxbw(tmp1, Address(src, 0));
9873       movdqu(Address(dst, 0), tmp1);
9874       addptr(src, 8);
9875       addptr(dst, 2 * 8);
9876 
9877       jmp(copy_tail, true);
9878     }
9879 
9880     // inflate 8 chars per iter
9881     bind(copy_8_loop);
9882     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
9883     movdqu(Address(dst, len, Address::times_2), tmp1);
9884     addptr(len, 8);
9885     jcc(Assembler::notZero, copy_8_loop);
9886 
9887     bind(copy_tail);
9888     movl(len, tmp2);
9889 
9890     cmpl(len, 4);
9891     jccb(Assembler::less, copy_bytes);
9892 
9893     movdl(tmp1, Address(src, 0));  // load 4 byte chars
9894     pmovzxbw(tmp1, tmp1);
9895     movq(Address(dst, 0), tmp1);
9896     subptr(len, 4);
9897     addptr(src, 4);
9898     addptr(dst, 8);
9899 
9900     bind(copy_bytes);
9901   } else {
9902     bind(below_threshold);
9903   }
9904 
9905   testl(len, len);
9906   jccb(Assembler::zero, done);
9907   lea(src, Address(src, len, Address::times_1));
9908   lea(dst, Address(dst, len, Address::times_2));
9909   negptr(len);
9910 
9911   // inflate 1 char per iter
9912   bind(copy_chars_loop);
9913   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
9914   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
9915   increment(len);
9916   jcc(Assembler::notZero, copy_chars_loop);
9917 
9918   bind(done);
9919 }
9920 
9921 #ifdef _LP64
9922 void MacroAssembler::cache_wb(Address line)
9923 {
9924   // 64 bit cpus always support clflush
9925   assert(VM_Version::supports_clflush(), "clflush should be available");
9926   bool optimized = VM_Version::supports_clflushopt();
9927   bool no_evict = VM_Version::supports_clwb();
9928 
9929   // prefer clwb (writeback without evict) otherwise
9930   // prefer clflushopt (potentially parallel writeback with evict)
9931   // otherwise fallback on clflush (serial writeback with evict)
9932 
9933   if (optimized) {
9934     if (no_evict) {
9935       clwb(line);
9936     } else {
9937       clflushopt(line);
9938     }
9939   } else {
9940     // no need for fence when using CLFLUSH
9941     clflush(line);
9942   }
9943 }
9944 
9945 void MacroAssembler::cache_wbsync(bool is_pre)
9946 {
9947   assert(VM_Version::supports_clflush(), "clflush should be available");
9948   bool optimized = VM_Version::supports_clflushopt();
9949   bool no_evict = VM_Version::supports_clwb();
9950 
9951   // pick the correct implementation
9952 
9953   if (!is_pre && (optimized || no_evict)) {
9954     // need an sfence for post flush when using clflushopt or clwb
9955     // otherwise no no need for any synchroniaztion
9956 
9957     sfence();
9958   }
9959 }
9960 #endif // _LP64
9961 
9962 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
9963   switch (cond) {
9964     // Note some conditions are synonyms for others
9965     case Assembler::zero:         return Assembler::notZero;
9966     case Assembler::notZero:      return Assembler::zero;
9967     case Assembler::less:         return Assembler::greaterEqual;
9968     case Assembler::lessEqual:    return Assembler::greater;
9969     case Assembler::greater:      return Assembler::lessEqual;
9970     case Assembler::greaterEqual: return Assembler::less;
9971     case Assembler::below:        return Assembler::aboveEqual;
9972     case Assembler::belowEqual:   return Assembler::above;
9973     case Assembler::above:        return Assembler::belowEqual;
9974     case Assembler::aboveEqual:   return Assembler::below;
9975     case Assembler::overflow:     return Assembler::noOverflow;
9976     case Assembler::noOverflow:   return Assembler::overflow;
9977     case Assembler::negative:     return Assembler::positive;
9978     case Assembler::positive:     return Assembler::negative;
9979     case Assembler::parity:       return Assembler::noParity;
9980     case Assembler::noParity:     return Assembler::parity;
9981   }
9982   ShouldNotReachHere(); return Assembler::overflow;
9983 }
9984 
9985 SkipIfEqual::SkipIfEqual(
9986     MacroAssembler* masm, const bool* flag_addr, bool value) {
9987   _masm = masm;
9988   _masm->cmp8(ExternalAddress((address)flag_addr), value);
9989   _masm->jcc(Assembler::equal, _label);
9990 }
9991 
9992 SkipIfEqual::~SkipIfEqual() {
9993   _masm->bind(_label);
9994 }
9995 
9996 // 32-bit Windows has its own fast-path implementation
9997 // of get_thread
9998 #if !defined(WIN32) || defined(_LP64)
9999 
10000 // This is simply a call to Thread::current()
10001 void MacroAssembler::get_thread(Register thread) {
10002   if (thread != rax) {
10003     push(rax);
10004   }
10005   LP64_ONLY(push(rdi);)
10006   LP64_ONLY(push(rsi);)
10007   push(rdx);
10008   push(rcx);
10009 #ifdef _LP64
10010   push(r8);
10011   push(r9);
10012   push(r10);
10013   push(r11);
10014 #endif
10015 
10016   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
10017 
10018 #ifdef _LP64
10019   pop(r11);
10020   pop(r10);
10021   pop(r9);
10022   pop(r8);
10023 #endif
10024   pop(rcx);
10025   pop(rdx);
10026   LP64_ONLY(pop(rsi);)
10027   LP64_ONLY(pop(rdi);)
10028   if (thread != rax) {
10029     mov(thread, rax);
10030     pop(rax);
10031   }
10032 }
10033 
10034 #endif