1 /*
   2  * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "jfr/jfrEvents.hpp"
  28 #include "jfr/support/jfrThreadId.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "oops/markWord.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/atomic.hpp"
  34 #include "runtime/handles.inline.hpp"
  35 #include "runtime/interfaceSupport.inline.hpp"
  36 #include "runtime/mutexLocker.hpp"
  37 #include "runtime/objectMonitor.hpp"
  38 #include "runtime/objectMonitor.inline.hpp"
  39 #include "runtime/orderAccess.hpp"
  40 #include "runtime/osThread.hpp"
  41 #include "runtime/safepointMechanism.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/thread.inline.hpp"
  45 #include "services/threadService.hpp"
  46 #include "utilities/dtrace.hpp"
  47 #include "utilities/macros.hpp"
  48 #include "utilities/preserveException.hpp"
  49 #if INCLUDE_JFR
  50 #include "jfr/support/jfrFlush.hpp"
  51 #endif
  52 
  53 #ifdef DTRACE_ENABLED
  54 
  55 // Only bother with this argument setup if dtrace is available
  56 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  57 
  58 
  59 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  60   char* bytes = NULL;                                                      \
  61   int len = 0;                                                             \
  62   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  63   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  64   if (klassname != NULL) {                                                 \
  65     bytes = (char*)klassname->bytes();                                     \
  66     len = klassname->utf8_length();                                        \
  67   }
  68 
  69 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  70   {                                                                        \
  71     if (DTraceMonitorProbes) {                                             \
  72       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  73       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  74                            (monitor), bytes, len, (millis));               \
  75     }                                                                      \
  76   }
  77 
  78 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  79 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  80 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  81 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  82 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  83 
  84 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  85   {                                                                        \
  86     if (DTraceMonitorProbes) {                                             \
  87       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  88       HOTSPOT_MONITOR_##probe(jtid,                                        \
  89                               (uintptr_t)(monitor), bytes, len);           \
  90     }                                                                      \
  91   }
  92 
  93 #else //  ndef DTRACE_ENABLED
  94 
  95 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
  96 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
  97 
  98 #endif // ndef DTRACE_ENABLED
  99 
 100 // Tunables ...
 101 // The knob* variables are effectively final.  Once set they should
 102 // never be modified hence.  Consider using __read_mostly with GCC.
 103 
 104 int ObjectMonitor::Knob_SpinLimit    = 5000;    // derived by an external tool -
 105 
 106 static int Knob_Bonus               = 100;     // spin success bonus
 107 static int Knob_BonusB              = 100;     // spin success bonus
 108 static int Knob_Penalty             = 200;     // spin failure penalty
 109 static int Knob_Poverty             = 1000;
 110 static int Knob_FixedSpin           = 0;
 111 static int Knob_PreSpin             = 10;      // 20-100 likely better
 112 
 113 DEBUG_ONLY(static volatile bool InitDone = false;)
 114 
 115 // -----------------------------------------------------------------------------
 116 // Theory of operations -- Monitors lists, thread residency, etc:
 117 //
 118 // * A thread acquires ownership of a monitor by successfully
 119 //   CAS()ing the _owner field from null to non-null.
 120 //
 121 // * Invariant: A thread appears on at most one monitor list --
 122 //   cxq, EntryList or WaitSet -- at any one time.
 123 //
 124 // * Contending threads "push" themselves onto the cxq with CAS
 125 //   and then spin/park.
 126 //
 127 // * After a contending thread eventually acquires the lock it must
 128 //   dequeue itself from either the EntryList or the cxq.
 129 //
 130 // * The exiting thread identifies and unparks an "heir presumptive"
 131 //   tentative successor thread on the EntryList.  Critically, the
 132 //   exiting thread doesn't unlink the successor thread from the EntryList.
 133 //   After having been unparked, the wakee will recontend for ownership of
 134 //   the monitor.   The successor (wakee) will either acquire the lock or
 135 //   re-park itself.
 136 //
 137 //   Succession is provided for by a policy of competitive handoff.
 138 //   The exiting thread does _not_ grant or pass ownership to the
 139 //   successor thread.  (This is also referred to as "handoff" succession").
 140 //   Instead the exiting thread releases ownership and possibly wakes
 141 //   a successor, so the successor can (re)compete for ownership of the lock.
 142 //   If the EntryList is empty but the cxq is populated the exiting
 143 //   thread will drain the cxq into the EntryList.  It does so by
 144 //   by detaching the cxq (installing null with CAS) and folding
 145 //   the threads from the cxq into the EntryList.  The EntryList is
 146 //   doubly linked, while the cxq is singly linked because of the
 147 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 148 //
 149 // * Concurrency invariants:
 150 //
 151 //   -- only the monitor owner may access or mutate the EntryList.
 152 //      The mutex property of the monitor itself protects the EntryList
 153 //      from concurrent interference.
 154 //   -- Only the monitor owner may detach the cxq.
 155 //
 156 // * The monitor entry list operations avoid locks, but strictly speaking
 157 //   they're not lock-free.  Enter is lock-free, exit is not.
 158 //   For a description of 'Methods and apparatus providing non-blocking access
 159 //   to a resource,' see U.S. Pat. No. 7844973.
 160 //
 161 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 162 //   detaching thread.  This mechanism is immune from the ABA corruption.
 163 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 164 //
 165 // * Taken together, the cxq and the EntryList constitute or form a
 166 //   single logical queue of threads stalled trying to acquire the lock.
 167 //   We use two distinct lists to improve the odds of a constant-time
 168 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 169 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 170 //   A key desideratum is to minimize queue & monitor metadata manipulation
 171 //   that occurs while holding the monitor lock -- that is, we want to
 172 //   minimize monitor lock holds times.  Note that even a small amount of
 173 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 174 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 175 //   locks and monitor metadata.
 176 //
 177 //   Cxq points to the set of Recently Arrived Threads attempting entry.
 178 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 179 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 180 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 181 //
 182 //   The EntryList is ordered by the prevailing queue discipline and
 183 //   can be organized in any convenient fashion, such as a doubly-linked list or
 184 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 185 //   to operate in constant-time.  If we need a priority queue then something akin
 186 //   to Solaris' sleepq would work nicely.  Viz.,
 187 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 188 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 189 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 190 //   EntryList accordingly.
 191 //
 192 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 193 //   somewhat similar to an elevator-scan.
 194 //
 195 // * The monitor synchronization subsystem avoids the use of native
 196 //   synchronization primitives except for the narrow platform-specific
 197 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 198 //   the semantics of park-unpark.  Put another way, this monitor implementation
 199 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 200 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 201 //   underlying OS manages the READY<->RUN transitions.
 202 //
 203 // * Waiting threads reside on the WaitSet list -- wait() puts
 204 //   the caller onto the WaitSet.
 205 //
 206 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 207 //   either the EntryList or cxq.  Subsequent exit() operations will
 208 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 209 //   it's likely the notifyee would simply impale itself on the lock held
 210 //   by the notifier.
 211 //
 212 // * An interesting alternative is to encode cxq as (List,LockByte) where
 213 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 214 //   variable, like _recursions, in the scheme.  The threads or Events that form
 215 //   the list would have to be aligned in 256-byte addresses.  A thread would
 216 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 217 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 218 //   Note that is is *not* word-tearing, but it does presume that full-word
 219 //   CAS operations are coherent with intermix with STB operations.  That's true
 220 //   on most common processors.
 221 //
 222 // * See also http://blogs.sun.com/dave
 223 
 224 
 225 void* ObjectMonitor::operator new (size_t size) throw() {
 226   return AllocateHeap(size, mtInternal);
 227 }
 228 void* ObjectMonitor::operator new[] (size_t size) throw() {
 229   return operator new (size);
 230 }
 231 void ObjectMonitor::operator delete(void* p) {
 232   FreeHeap(p);
 233 }
 234 void ObjectMonitor::operator delete[] (void *p) {
 235   operator delete(p);
 236 }
 237 
 238 // -----------------------------------------------------------------------------
 239 // Enter support
 240 
 241 void ObjectMonitor::enter(TRAPS) {
 242   ADIM_guarantee(ref_count() > 0, "must be positive: ref_count=%d", ref_count());
 243 
 244   // The following code is ordered to check the most common cases first
 245   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 246   Thread * const Self = THREAD;
 247 
 248   void * cur = Atomic::cmpxchg(Self, &_owner, (void*)NULL);
 249   if (cur == NULL) {
 250     assert(_recursions == 0, "invariant");
 251     return;
 252   }
 253 
 254   if (cur == Self) {
 255     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 256     _recursions++;
 257     return;
 258   }
 259 
 260   if (Self->is_lock_owned ((address)cur)) {
 261     assert(_recursions == 0, "internal state error");
 262     _recursions = 1;
 263     // Commute owner from a thread-specific on-stack BasicLockObject address to
 264     // a full-fledged "Thread *".
 265     _owner = Self;
 266     return;
 267   }
 268 
 269   if (AsyncDeflateIdleMonitors &&
 270       Atomic::cmpxchg(Self, &_owner, DEFLATER_MARKER) == DEFLATER_MARKER) {
 271     // The deflation protocol finished the first part (setting owner),
 272     // but it failed the second part (making ref_count negative) and
 273     // bailed. Or the ObjectMonitor was async deflated and reused.
 274     // Acquired the monitor.
 275     assert(_recursions == 0, "invariant");
 276     return;
 277   }
 278 
 279   // We've encountered genuine contention.
 280   assert(Self->_Stalled == 0, "invariant");
 281   Self->_Stalled = intptr_t(this);
 282 
 283   // Try one round of spinning *before* enqueueing Self
 284   // and before going through the awkward and expensive state
 285   // transitions.  The following spin is strictly optional ...
 286   // Note that if we acquire the monitor from an initial spin
 287   // we forgo posting JVMTI events and firing DTRACE probes.
 288   if (TrySpin(Self) > 0) {
 289     assert(_owner == Self, "must be Self: owner=" INTPTR_FORMAT, p2i(_owner));
 290     assert(_recursions == 0, "must be 0: recursions=" INTX_FORMAT, _recursions);
 291     assert(((oop)object())->mark() == markWord::encode(this),
 292            "object mark must match encoded this: mark=" INTPTR_FORMAT
 293            ", encoded this=" INTPTR_FORMAT, ((oop)object())->mark().value(),
 294            markWord::encode(this).value());
 295     Self->_Stalled = 0;
 296     return;
 297   }
 298 
 299   assert(_owner != Self, "invariant");
 300   assert(_succ != Self, "invariant");
 301   assert(Self->is_Java_thread(), "invariant");
 302   JavaThread * jt = (JavaThread *) Self;
 303   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 304   assert(jt->thread_state() != _thread_blocked, "invariant");
 305   assert(AsyncDeflateIdleMonitors || this->object() != NULL, "invariant");
 306   assert(_contentions >= 0, "must not be negative: contentions=%d", _contentions);
 307 
 308   // Prevent deflation. See ObjectSynchronizer::deflate_monitor(),
 309   // ObjectSynchronizer::deflate_monitor_using_JT() and is_busy().
 310   // Ensure the object <-> monitor relationship remains stable while
 311   // there's contention.
 312   Atomic::add(1, &_contentions);
 313 
 314   JFR_ONLY(JfrConditionalFlushWithStacktrace<EventJavaMonitorEnter> flush(jt);)
 315   EventJavaMonitorEnter event;
 316   if (event.should_commit()) {
 317     event.set_monitorClass(((oop)this->object())->klass());
 318     event.set_address((uintptr_t)(this->object_addr()));
 319   }
 320 
 321   { // Change java thread status to indicate blocked on monitor enter.
 322     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 323 
 324     Self->set_current_pending_monitor(this);
 325 
 326     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 327     if (JvmtiExport::should_post_monitor_contended_enter()) {
 328       JvmtiExport::post_monitor_contended_enter(jt, this);
 329 
 330       // The current thread does not yet own the monitor and does not
 331       // yet appear on any queues that would get it made the successor.
 332       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 333       // handler cannot accidentally consume an unpark() meant for the
 334       // ParkEvent associated with this ObjectMonitor.
 335     }
 336 
 337     OSThreadContendState osts(Self->osthread());
 338     ThreadBlockInVM tbivm(jt);
 339 
 340     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 341     for (;;) {
 342       jt->set_suspend_equivalent();
 343       // cleared by handle_special_suspend_equivalent_condition()
 344       // or java_suspend_self()
 345 
 346       EnterI(THREAD);
 347 
 348       if (!ExitSuspendEquivalent(jt)) break;
 349 
 350       // We have acquired the contended monitor, but while we were
 351       // waiting another thread suspended us. We don't want to enter
 352       // the monitor while suspended because that would surprise the
 353       // thread that suspended us.
 354       //
 355       _recursions = 0;
 356       _succ = NULL;
 357       exit(false, Self);
 358 
 359       jt->java_suspend_self();
 360     }
 361     Self->set_current_pending_monitor(NULL);
 362 
 363     // We cleared the pending monitor info since we've just gotten past
 364     // the enter-check-for-suspend dance and we now own the monitor free
 365     // and clear, i.e., it is no longer pending. The ThreadBlockInVM
 366     // destructor can go to a safepoint at the end of this block. If we
 367     // do a thread dump during that safepoint, then this thread will show
 368     // as having "-locked" the monitor, but the OS and java.lang.Thread
 369     // states will still report that the thread is blocked trying to
 370     // acquire it.
 371   }
 372 
 373   Atomic::dec(&_contentions);
 374   assert(_contentions >= 0, "must not be negative: contentions=%d", _contentions);
 375   Self->_Stalled = 0;
 376 
 377   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 378   assert(_recursions == 0, "invariant");
 379   assert(_owner == Self, "invariant");
 380   assert(_succ != Self, "invariant");
 381   assert(((oop)(object()))->mark() == markWord::encode(this), "invariant");
 382 
 383   // The thread -- now the owner -- is back in vm mode.
 384   // Report the glorious news via TI,DTrace and jvmstat.
 385   // The probe effect is non-trivial.  All the reportage occurs
 386   // while we hold the monitor, increasing the length of the critical
 387   // section.  Amdahl's parallel speedup law comes vividly into play.
 388   //
 389   // Another option might be to aggregate the events (thread local or
 390   // per-monitor aggregation) and defer reporting until a more opportune
 391   // time -- such as next time some thread encounters contention but has
 392   // yet to acquire the lock.  While spinning that thread could
 393   // spinning we could increment JVMStat counters, etc.
 394 
 395   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 396   if (JvmtiExport::should_post_monitor_contended_entered()) {
 397     JvmtiExport::post_monitor_contended_entered(jt, this);
 398 
 399     // The current thread already owns the monitor and is not going to
 400     // call park() for the remainder of the monitor enter protocol. So
 401     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 402     // event handler consumed an unpark() issued by the thread that
 403     // just exited the monitor.
 404   }
 405   if (event.should_commit()) {
 406     event.set_previousOwner((uintptr_t)_previous_owner_tid);
 407     event.commit();
 408   }
 409   OM_PERFDATA_OP(ContendedLockAttempts, inc());
 410 }
 411 
 412 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 413 // Callers must compensate as needed.
 414 
 415 int ObjectMonitor::TryLock(Thread * Self) {
 416   void * own = _owner;
 417   if (own != NULL) return 0;
 418   if (Atomic::replace_if_null(Self, &_owner)) {
 419     assert(_recursions == 0, "invariant");
 420     return 1;
 421   }
 422   // The lock had been free momentarily, but we lost the race to the lock.
 423   // Interference -- the CAS failed.
 424   // We can either return -1 or retry.
 425   // Retry doesn't make as much sense because the lock was just acquired.
 426   return -1;
 427 }
 428 
 429 // Install the displaced mark word (dmw) of a deflating ObjectMonitor
 430 // into the header of the object associated with the monitor. This
 431 // idempotent method is called by a thread that is deflating a
 432 // monitor and by other threads that have detected a race with the
 433 // deflation process.
 434 void ObjectMonitor::install_displaced_markword_in_object(const oop obj) {
 435   // This function must only be called when (owner == DEFLATER_MARKER
 436   // && ref_count <= 0), but we can't guarantee that here because
 437   // those values could change when the ObjectMonitor gets moved from
 438   // the global free list to a per-thread free list.
 439 
 440   guarantee(obj != NULL, "must be non-NULL");
 441   if (object() != obj) {
 442     // ObjectMonitor's object ref no longer refers to the target object
 443     // so the object's header has already been restored.
 444     return;
 445   }
 446 
 447   markWord dmw = header();
 448   if (dmw.value() == 0) {
 449     // ObjectMonitor's header/dmw has been cleared so the object's
 450     // header has already been restored.
 451     return;
 452   }
 453 
 454   // A non-NULL dmw has to be either neutral (not locked and not marked)
 455   // or is already participating in this restoration protocol.
 456   assert(dmw.is_neutral() || (dmw.is_marked() && dmw.hash() == 0),
 457          "failed precondition: dmw=" INTPTR_FORMAT, dmw.value());
 458 
 459   markWord marked_dmw = markWord::zero();
 460   if (!dmw.is_marked() && dmw.hash() == 0) {
 461     // This dmw has not yet started the restoration protocol so we
 462     // mark a copy of the dmw to begin the protocol.
 463     // Note: A dmw with a hashcode does not take this code path.
 464     marked_dmw = dmw.set_marked();
 465 
 466     // All of the callers to this function can be racing with each
 467     // other trying to update the _header field.
 468     dmw = (markWord) Atomic::cmpxchg(marked_dmw, &_header, dmw);
 469     if (dmw.value() == 0) {
 470       // ObjectMonitor's header/dmw has been cleared so the object's
 471       // header has already been restored.
 472       return;
 473     }
 474     // The _header field is now marked. The winner's 'dmw' variable
 475     // contains the original, unmarked header/dmw value and any
 476     // losers have a marked header/dmw value that will be cleaned
 477     // up below.
 478   }
 479 
 480   if (dmw.is_marked()) {
 481     // Clear the mark from the header/dmw copy in preparation for
 482     // possible restoration from this thread.
 483     assert(dmw.hash() == 0, "hashcode must be 0: dmw=" INTPTR_FORMAT,
 484            dmw.value());
 485     dmw = dmw.set_unmarked();
 486   }
 487   assert(dmw.is_neutral(), "must be neutral: dmw=" INTPTR_FORMAT, dmw.value());
 488 
 489   // Install displaced mark word if the object's header still points
 490   // to this ObjectMonitor. All racing callers to this function will
 491   // reach this point, but only one can win.
 492   obj->cas_set_mark(dmw, markWord::encode(this));
 493 
 494   // Note: It does not matter which thread restored the header/dmw
 495   // into the object's header. The thread deflating the monitor just
 496   // wanted the object's header restored and it is. The threads that
 497   // detected a race with the deflation process also wanted the
 498   // object's header restored before they retry their operation and
 499   // because it is restored they will only retry once.
 500 
 501   if (marked_dmw.value() != 0) {
 502     // Clear _header to NULL if it is still marked_dmw so a racing
 503     // install_displaced_markword_in_object() can bail out sooner.
 504     Atomic::cmpxchg(markWord::zero(), &_header, marked_dmw);
 505   }
 506 }
 507 
 508 // Convert the fields used by is_busy() to a string that can be
 509 // used for diagnostic output.
 510 const char* ObjectMonitor::is_busy_to_string(stringStream* ss) {
 511   ss->print("is_busy: contentions=%d, waiters=%d, ", _contentions, _waiters);
 512   if (!AsyncDeflateIdleMonitors) {
 513     ss->print("owner=" INTPTR_FORMAT, p2i(_owner));
 514   } else if (_owner != DEFLATER_MARKER) {
 515     ss->print("owner=" INTPTR_FORMAT, p2i(_owner));
 516   } else {
 517     ss->print("owner=" INTPTR_FORMAT, NULL);
 518   }
 519   ss->print(", cxq=" INTPTR_FORMAT ", EntryList=" INTPTR_FORMAT, p2i(_cxq),
 520             p2i(_EntryList));
 521   return ss->base();
 522 }
 523 
 524 #define MAX_RECHECK_INTERVAL 1000
 525 
 526 void ObjectMonitor::EnterI(TRAPS) {
 527   ADIM_guarantee(ref_count() > 0, "must be positive: ref_count=%d", ref_count());
 528 
 529   Thread * const Self = THREAD;
 530   assert(Self->is_Java_thread(), "invariant");
 531   assert(((JavaThread *) Self)->thread_state() == _thread_blocked, "invariant");
 532 
 533   // Try the lock - TATAS
 534   if (TryLock (Self) > 0) {
 535     assert(_succ != Self, "invariant");
 536     assert(_owner == Self, "invariant");
 537     assert(_Responsible != Self, "invariant");
 538     return;
 539   }
 540 
 541   if (AsyncDeflateIdleMonitors &&
 542       Atomic::cmpxchg(Self, &_owner, DEFLATER_MARKER) == DEFLATER_MARKER) {
 543     // The deflation protocol finished the first part (setting owner),
 544     // but it failed the second part (making ref_count negative) and
 545     // bailed. Or the ObjectMonitor was async deflated and reused.
 546     // Acquired the monitor.
 547     assert(_succ != Self, "invariant");
 548     assert(_Responsible != Self, "invariant");
 549     return;
 550   }
 551 
 552   assert(InitDone, "Unexpectedly not initialized");
 553 
 554   // We try one round of spinning *before* enqueueing Self.
 555   //
 556   // If the _owner is ready but OFFPROC we could use a YieldTo()
 557   // operation to donate the remainder of this thread's quantum
 558   // to the owner.  This has subtle but beneficial affinity
 559   // effects.
 560 
 561   if (TrySpin(Self) > 0) {
 562     assert(_owner == Self, "invariant");
 563     assert(_succ != Self, "invariant");
 564     assert(_Responsible != Self, "invariant");
 565     return;
 566   }
 567 
 568   // The Spin failed -- Enqueue and park the thread ...
 569   assert(_succ != Self, "invariant");
 570   assert(_owner != Self, "invariant");
 571   assert(_Responsible != Self, "invariant");
 572 
 573   // Enqueue "Self" on ObjectMonitor's _cxq.
 574   //
 575   // Node acts as a proxy for Self.
 576   // As an aside, if were to ever rewrite the synchronization code mostly
 577   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 578   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 579   // as well as eliminate a subset of ABA issues.
 580   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 581 
 582   ObjectWaiter node(Self);
 583   Self->_ParkEvent->reset();
 584   node._prev   = (ObjectWaiter *) 0xBAD;
 585   node.TState  = ObjectWaiter::TS_CXQ;
 586 
 587   // Push "Self" onto the front of the _cxq.
 588   // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 589   // Note that spinning tends to reduce the rate at which threads
 590   // enqueue and dequeue on EntryList|cxq.
 591   ObjectWaiter * nxt;
 592   for (;;) {
 593     node._next = nxt = _cxq;
 594     if (Atomic::cmpxchg(&node, &_cxq, nxt) == nxt) break;
 595 
 596     // Interference - the CAS failed because _cxq changed.  Just retry.
 597     // As an optional optimization we retry the lock.
 598     if (TryLock (Self) > 0) {
 599       assert(_succ != Self, "invariant");
 600       assert(_owner == Self, "invariant");
 601       assert(_Responsible != Self, "invariant");
 602       return;
 603     }
 604   }
 605 
 606   // Check for cxq|EntryList edge transition to non-null.  This indicates
 607   // the onset of contention.  While contention persists exiting threads
 608   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 609   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 610   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 611   // arrange for one of the contending thread to use a timed park() operations
 612   // to detect and recover from the race.  (Stranding is form of progress failure
 613   // where the monitor is unlocked but all the contending threads remain parked).
 614   // That is, at least one of the contended threads will periodically poll _owner.
 615   // One of the contending threads will become the designated "Responsible" thread.
 616   // The Responsible thread uses a timed park instead of a normal indefinite park
 617   // operation -- it periodically wakes and checks for and recovers from potential
 618   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 619   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 620   // be responsible for a monitor.
 621   //
 622   // Currently, one of the contended threads takes on the added role of "Responsible".
 623   // A viable alternative would be to use a dedicated "stranding checker" thread
 624   // that periodically iterated over all the threads (or active monitors) and unparked
 625   // successors where there was risk of stranding.  This would help eliminate the
 626   // timer scalability issues we see on some platforms as we'd only have one thread
 627   // -- the checker -- parked on a timer.
 628 
 629   if (nxt == NULL && _EntryList == NULL) {
 630     // Try to assume the role of responsible thread for the monitor.
 631     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 632     Atomic::replace_if_null(Self, &_Responsible);
 633   }
 634 
 635   // The lock might have been released while this thread was occupied queueing
 636   // itself onto _cxq.  To close the race and avoid "stranding" and
 637   // progress-liveness failure we must resample-retry _owner before parking.
 638   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 639   // In this case the ST-MEMBAR is accomplished with CAS().
 640   //
 641   // TODO: Defer all thread state transitions until park-time.
 642   // Since state transitions are heavy and inefficient we'd like
 643   // to defer the state transitions until absolutely necessary,
 644   // and in doing so avoid some transitions ...
 645 
 646   int nWakeups = 0;
 647   int recheckInterval = 1;
 648 
 649   for (;;) {
 650 
 651     if (TryLock(Self) > 0) break;
 652     assert(_owner != Self, "invariant");
 653 
 654     // park self
 655     if (_Responsible == Self) {
 656       Self->_ParkEvent->park((jlong) recheckInterval);
 657       // Increase the recheckInterval, but clamp the value.
 658       recheckInterval *= 8;
 659       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 660         recheckInterval = MAX_RECHECK_INTERVAL;
 661       }
 662     } else {
 663       Self->_ParkEvent->park();
 664     }
 665 
 666     if (TryLock(Self) > 0) break;
 667 
 668     if (AsyncDeflateIdleMonitors &&
 669         Atomic::cmpxchg(Self, &_owner, DEFLATER_MARKER) == DEFLATER_MARKER) {
 670       // The deflation protocol finished the first part (setting owner),
 671       // but it failed the second part (making ref_count negative) and
 672       // bailed. Or the ObjectMonitor was async deflated and reused.
 673       // Acquired the monitor.
 674       break;
 675     }
 676 
 677     // The lock is still contested.
 678     // Keep a tally of the # of futile wakeups.
 679     // Note that the counter is not protected by a lock or updated by atomics.
 680     // That is by design - we trade "lossy" counters which are exposed to
 681     // races during updates for a lower probe effect.
 682 
 683     // This PerfData object can be used in parallel with a safepoint.
 684     // See the work around in PerfDataManager::destroy().
 685     OM_PERFDATA_OP(FutileWakeups, inc());
 686     ++nWakeups;
 687 
 688     // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 689     // We can defer clearing _succ until after the spin completes
 690     // TrySpin() must tolerate being called with _succ == Self.
 691     // Try yet another round of adaptive spinning.
 692     if (TrySpin(Self) > 0) break;
 693 
 694     // We can find that we were unpark()ed and redesignated _succ while
 695     // we were spinning.  That's harmless.  If we iterate and call park(),
 696     // park() will consume the event and return immediately and we'll
 697     // just spin again.  This pattern can repeat, leaving _succ to simply
 698     // spin on a CPU.
 699 
 700     if (_succ == Self) _succ = NULL;
 701 
 702     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 703     OrderAccess::fence();
 704   }
 705 
 706   // Egress :
 707   // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 708   // Normally we'll find Self on the EntryList .
 709   // From the perspective of the lock owner (this thread), the
 710   // EntryList is stable and cxq is prepend-only.
 711   // The head of cxq is volatile but the interior is stable.
 712   // In addition, Self.TState is stable.
 713 
 714   assert(_owner == Self, "invariant");
 715   assert(object() != NULL, "invariant");
 716   // I'd like to write:
 717   //   guarantee (((oop)(object()))->mark() == markWord::encode(this), "invariant") ;
 718   // but as we're at a safepoint that's not safe.
 719 
 720   UnlinkAfterAcquire(Self, &node);
 721   if (_succ == Self) _succ = NULL;
 722 
 723   assert(_succ != Self, "invariant");
 724   if (_Responsible == Self) {
 725     _Responsible = NULL;
 726     OrderAccess::fence(); // Dekker pivot-point
 727 
 728     // We may leave threads on cxq|EntryList without a designated
 729     // "Responsible" thread.  This is benign.  When this thread subsequently
 730     // exits the monitor it can "see" such preexisting "old" threads --
 731     // threads that arrived on the cxq|EntryList before the fence, above --
 732     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 733     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 734     // non-null and elect a new "Responsible" timer thread.
 735     //
 736     // This thread executes:
 737     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 738     //    LD cxq|EntryList               (in subsequent exit)
 739     //
 740     // Entering threads in the slow/contended path execute:
 741     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 742     //    The (ST cxq; MEMBAR) is accomplished with CAS().
 743     //
 744     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 745     // exit operation from floating above the ST Responsible=null.
 746   }
 747 
 748   // We've acquired ownership with CAS().
 749   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 750   // But since the CAS() this thread may have also stored into _succ,
 751   // EntryList, cxq or Responsible.  These meta-data updates must be
 752   // visible __before this thread subsequently drops the lock.
 753   // Consider what could occur if we didn't enforce this constraint --
 754   // STs to monitor meta-data and user-data could reorder with (become
 755   // visible after) the ST in exit that drops ownership of the lock.
 756   // Some other thread could then acquire the lock, but observe inconsistent
 757   // or old monitor meta-data and heap data.  That violates the JMM.
 758   // To that end, the 1-0 exit() operation must have at least STST|LDST
 759   // "release" barrier semantics.  Specifically, there must be at least a
 760   // STST|LDST barrier in exit() before the ST of null into _owner that drops
 761   // the lock.   The barrier ensures that changes to monitor meta-data and data
 762   // protected by the lock will be visible before we release the lock, and
 763   // therefore before some other thread (CPU) has a chance to acquire the lock.
 764   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 765   //
 766   // Critically, any prior STs to _succ or EntryList must be visible before
 767   // the ST of null into _owner in the *subsequent* (following) corresponding
 768   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 769   // execute a serializing instruction.
 770 
 771   return;
 772 }
 773 
 774 // ReenterI() is a specialized inline form of the latter half of the
 775 // contended slow-path from EnterI().  We use ReenterI() only for
 776 // monitor reentry in wait().
 777 //
 778 // In the future we should reconcile EnterI() and ReenterI().
 779 
 780 void ObjectMonitor::ReenterI(Thread * Self, ObjectWaiter * SelfNode) {
 781   ADIM_guarantee(ref_count() > 0, "must be positive: ref_count=%d", ref_count());
 782 
 783   assert(Self != NULL, "invariant");
 784   assert(SelfNode != NULL, "invariant");
 785   assert(SelfNode->_thread == Self, "invariant");
 786   assert(_waiters > 0, "invariant");
 787   assert(((oop)(object()))->mark() == markWord::encode(this), "invariant");
 788   assert(((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 789   JavaThread * jt = (JavaThread *) Self;
 790 
 791   int nWakeups = 0;
 792   for (;;) {
 793     ObjectWaiter::TStates v = SelfNode->TState;
 794     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
 795     assert(_owner != Self, "invariant");
 796 
 797     if (TryLock(Self) > 0) break;
 798     if (TrySpin(Self) > 0) break;
 799 
 800     if (AsyncDeflateIdleMonitors &&
 801         Atomic::cmpxchg(Self, &_owner, DEFLATER_MARKER) == DEFLATER_MARKER) {
 802       // The deflation protocol finished the first part (setting owner),
 803       // but it failed the second part (making ref_count negative) and
 804       // bailed. Or the ObjectMonitor was async deflated and reused.
 805       // Acquired the monitor.
 806       break;
 807     }
 808 
 809     // State transition wrappers around park() ...
 810     // ReenterI() wisely defers state transitions until
 811     // it's clear we must park the thread.
 812     {
 813       OSThreadContendState osts(Self->osthread());
 814       ThreadBlockInVM tbivm(jt);
 815 
 816       // cleared by handle_special_suspend_equivalent_condition()
 817       // or java_suspend_self()
 818       jt->set_suspend_equivalent();
 819       Self->_ParkEvent->park();
 820 
 821       // were we externally suspended while we were waiting?
 822       for (;;) {
 823         if (!ExitSuspendEquivalent(jt)) break;
 824         if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 825         jt->java_suspend_self();
 826         jt->set_suspend_equivalent();
 827       }
 828     }
 829 
 830     // Try again, but just so we distinguish between futile wakeups and
 831     // successful wakeups.  The following test isn't algorithmically
 832     // necessary, but it helps us maintain sensible statistics.
 833     if (TryLock(Self) > 0) break;
 834 
 835     // The lock is still contested.
 836     // Keep a tally of the # of futile wakeups.
 837     // Note that the counter is not protected by a lock or updated by atomics.
 838     // That is by design - we trade "lossy" counters which are exposed to
 839     // races during updates for a lower probe effect.
 840     ++nWakeups;
 841 
 842     // Assuming this is not a spurious wakeup we'll normally
 843     // find that _succ == Self.
 844     if (_succ == Self) _succ = NULL;
 845 
 846     // Invariant: after clearing _succ a contending thread
 847     // *must* retry  _owner before parking.
 848     OrderAccess::fence();
 849 
 850     // This PerfData object can be used in parallel with a safepoint.
 851     // See the work around in PerfDataManager::destroy().
 852     OM_PERFDATA_OP(FutileWakeups, inc());
 853   }
 854 
 855   // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 856   // Normally we'll find Self on the EntryList.
 857   // Unlinking from the EntryList is constant-time and atomic-free.
 858   // From the perspective of the lock owner (this thread), the
 859   // EntryList is stable and cxq is prepend-only.
 860   // The head of cxq is volatile but the interior is stable.
 861   // In addition, Self.TState is stable.
 862 
 863   assert(_owner == Self, "invariant");
 864   assert(((oop)(object()))->mark() == markWord::encode(this), "invariant");
 865   UnlinkAfterAcquire(Self, SelfNode);
 866   if (_succ == Self) _succ = NULL;
 867   assert(_succ != Self, "invariant");
 868   SelfNode->TState = ObjectWaiter::TS_RUN;
 869   OrderAccess::fence();      // see comments at the end of EnterI()
 870 }
 871 
 872 // By convention we unlink a contending thread from EntryList|cxq immediately
 873 // after the thread acquires the lock in ::enter().  Equally, we could defer
 874 // unlinking the thread until ::exit()-time.
 875 
 876 void ObjectMonitor::UnlinkAfterAcquire(Thread *Self, ObjectWaiter *SelfNode) {
 877   assert(_owner == Self, "invariant");
 878   assert(SelfNode->_thread == Self, "invariant");
 879 
 880   if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 881     // Normal case: remove Self from the DLL EntryList .
 882     // This is a constant-time operation.
 883     ObjectWaiter * nxt = SelfNode->_next;
 884     ObjectWaiter * prv = SelfNode->_prev;
 885     if (nxt != NULL) nxt->_prev = prv;
 886     if (prv != NULL) prv->_next = nxt;
 887     if (SelfNode == _EntryList) _EntryList = nxt;
 888     assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
 889     assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
 890   } else {
 891     assert(SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant");
 892     // Inopportune interleaving -- Self is still on the cxq.
 893     // This usually means the enqueue of self raced an exiting thread.
 894     // Normally we'll find Self near the front of the cxq, so
 895     // dequeueing is typically fast.  If needbe we can accelerate
 896     // this with some MCS/CHL-like bidirectional list hints and advisory
 897     // back-links so dequeueing from the interior will normally operate
 898     // in constant-time.
 899     // Dequeue Self from either the head (with CAS) or from the interior
 900     // with a linear-time scan and normal non-atomic memory operations.
 901     // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 902     // and then unlink Self from EntryList.  We have to drain eventually,
 903     // so it might as well be now.
 904 
 905     ObjectWaiter * v = _cxq;
 906     assert(v != NULL, "invariant");
 907     if (v != SelfNode || Atomic::cmpxchg(SelfNode->_next, &_cxq, v) != v) {
 908       // The CAS above can fail from interference IFF a "RAT" arrived.
 909       // In that case Self must be in the interior and can no longer be
 910       // at the head of cxq.
 911       if (v == SelfNode) {
 912         assert(_cxq != v, "invariant");
 913         v = _cxq;          // CAS above failed - start scan at head of list
 914       }
 915       ObjectWaiter * p;
 916       ObjectWaiter * q = NULL;
 917       for (p = v; p != NULL && p != SelfNode; p = p->_next) {
 918         q = p;
 919         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
 920       }
 921       assert(v != SelfNode, "invariant");
 922       assert(p == SelfNode, "Node not found on cxq");
 923       assert(p != _cxq, "invariant");
 924       assert(q != NULL, "invariant");
 925       assert(q->_next == p, "invariant");
 926       q->_next = p->_next;
 927     }
 928   }
 929 
 930 #ifdef ASSERT
 931   // Diagnostic hygiene ...
 932   SelfNode->_prev  = (ObjectWaiter *) 0xBAD;
 933   SelfNode->_next  = (ObjectWaiter *) 0xBAD;
 934   SelfNode->TState = ObjectWaiter::TS_RUN;
 935 #endif
 936 }
 937 
 938 // -----------------------------------------------------------------------------
 939 // Exit support
 940 //
 941 // exit()
 942 // ~~~~~~
 943 // Note that the collector can't reclaim the objectMonitor or deflate
 944 // the object out from underneath the thread calling ::exit() as the
 945 // thread calling ::exit() never transitions to a stable state.
 946 // This inhibits GC, which in turn inhibits asynchronous (and
 947 // inopportune) reclamation of "this".
 948 //
 949 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 950 // There's one exception to the claim above, however.  EnterI() can call
 951 // exit() to drop a lock if the acquirer has been externally suspended.
 952 // In that case exit() is called with _thread_state as _thread_blocked,
 953 // but the monitor's _contentions field is > 0, which inhibits reclamation.
 954 //
 955 // 1-0 exit
 956 // ~~~~~~~~
 957 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 958 // the fast-path operators have been optimized so the common ::exit()
 959 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock().
 960 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 961 // greatly improves latency -- MEMBAR and CAS having considerable local
 962 // latency on modern processors -- but at the cost of "stranding".  Absent the
 963 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 964 // ::enter() path, resulting in the entering thread being stranding
 965 // and a progress-liveness failure.   Stranding is extremely rare.
 966 // We use timers (timed park operations) & periodic polling to detect
 967 // and recover from stranding.  Potentially stranded threads periodically
 968 // wake up and poll the lock.  See the usage of the _Responsible variable.
 969 //
 970 // The CAS() in enter provides for safety and exclusion, while the CAS or
 971 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 972 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding.
 973 // We detect and recover from stranding with timers.
 974 //
 975 // If a thread transiently strands it'll park until (a) another
 976 // thread acquires the lock and then drops the lock, at which time the
 977 // exiting thread will notice and unpark the stranded thread, or, (b)
 978 // the timer expires.  If the lock is high traffic then the stranding latency
 979 // will be low due to (a).  If the lock is low traffic then the odds of
 980 // stranding are lower, although the worst-case stranding latency
 981 // is longer.  Critically, we don't want to put excessive load in the
 982 // platform's timer subsystem.  We want to minimize both the timer injection
 983 // rate (timers created/sec) as well as the number of timers active at
 984 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 985 // the integral of the # of active timers at any instant over time).
 986 // Both impinge on OS scalability.  Given that, at most one thread parked on
 987 // a monitor will use a timer.
 988 //
 989 // There is also the risk of a futile wake-up. If we drop the lock
 990 // another thread can reacquire the lock immediately, and we can
 991 // then wake a thread unnecessarily. This is benign, and we've
 992 // structured the code so the windows are short and the frequency
 993 // of such futile wakups is low.
 994 
 995 void ObjectMonitor::exit(bool not_suspended, TRAPS) {
 996   Thread * const Self = THREAD;
 997   if (THREAD != _owner) {
 998     if (THREAD->is_lock_owned((address) _owner)) {
 999       // Transmute _owner from a BasicLock pointer to a Thread address.
1000       // We don't need to hold _mutex for this transition.
1001       // Non-null to Non-null is safe as long as all readers can
1002       // tolerate either flavor.
1003       assert(_recursions == 0, "invariant");
1004       _owner = THREAD;
1005       _recursions = 0;
1006     } else {
1007       // Apparent unbalanced locking ...
1008       // Naively we'd like to throw IllegalMonitorStateException.
1009       // As a practical matter we can neither allocate nor throw an
1010       // exception as ::exit() can be called from leaf routines.
1011       // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
1012       // Upon deeper reflection, however, in a properly run JVM the only
1013       // way we should encounter this situation is in the presence of
1014       // unbalanced JNI locking. TODO: CheckJNICalls.
1015       // See also: CR4414101
1016       assert(false, "Non-balanced monitor enter/exit! Likely JNI locking: "
1017              "owner=" INTPTR_FORMAT, p2i(_owner));
1018       return;
1019     }
1020   }
1021 
1022   if (_recursions != 0) {
1023     _recursions--;        // this is simple recursive enter
1024     return;
1025   }
1026 
1027   // Invariant: after setting Responsible=null an thread must execute
1028   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
1029   _Responsible = NULL;
1030 
1031 #if INCLUDE_JFR
1032   // get the owner's thread id for the MonitorEnter event
1033   // if it is enabled and the thread isn't suspended
1034   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
1035     _previous_owner_tid = JFR_THREAD_ID(Self);
1036   }
1037 #endif
1038 
1039   for (;;) {
1040     assert(THREAD == _owner, "invariant");
1041 
1042     // release semantics: prior loads and stores from within the critical section
1043     // must not float (reorder) past the following store that drops the lock.
1044     // On SPARC that requires MEMBAR #loadstore|#storestore.
1045     // But of course in TSO #loadstore|#storestore is not required.
1046     OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock
1047     OrderAccess::storeload();                        // See if we need to wake a successor
1048     if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1049       return;
1050     }
1051     // Other threads are blocked trying to acquire the lock.
1052 
1053     // Normally the exiting thread is responsible for ensuring succession,
1054     // but if other successors are ready or other entering threads are spinning
1055     // then this thread can simply store NULL into _owner and exit without
1056     // waking a successor.  The existence of spinners or ready successors
1057     // guarantees proper succession (liveness).  Responsibility passes to the
1058     // ready or running successors.  The exiting thread delegates the duty.
1059     // More precisely, if a successor already exists this thread is absolved
1060     // of the responsibility of waking (unparking) one.
1061     //
1062     // The _succ variable is critical to reducing futile wakeup frequency.
1063     // _succ identifies the "heir presumptive" thread that has been made
1064     // ready (unparked) but that has not yet run.  We need only one such
1065     // successor thread to guarantee progress.
1066     // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
1067     // section 3.3 "Futile Wakeup Throttling" for details.
1068     //
1069     // Note that spinners in Enter() also set _succ non-null.
1070     // In the current implementation spinners opportunistically set
1071     // _succ so that exiting threads might avoid waking a successor.
1072     // Another less appealing alternative would be for the exiting thread
1073     // to drop the lock and then spin briefly to see if a spinner managed
1074     // to acquire the lock.  If so, the exiting thread could exit
1075     // immediately without waking a successor, otherwise the exiting
1076     // thread would need to dequeue and wake a successor.
1077     // (Note that we'd need to make the post-drop spin short, but no
1078     // shorter than the worst-case round-trip cache-line migration time.
1079     // The dropped lock needs to become visible to the spinner, and then
1080     // the acquisition of the lock by the spinner must become visible to
1081     // the exiting thread).
1082 
1083     // It appears that an heir-presumptive (successor) must be made ready.
1084     // Only the current lock owner can manipulate the EntryList or
1085     // drain _cxq, so we need to reacquire the lock.  If we fail
1086     // to reacquire the lock the responsibility for ensuring succession
1087     // falls to the new owner.
1088     //
1089     if (!Atomic::replace_if_null(THREAD, &_owner)) {
1090       return;
1091     }
1092 
1093     guarantee(_owner == THREAD, "invariant");
1094 
1095     ObjectWaiter * w = NULL;
1096 
1097     w = _EntryList;
1098     if (w != NULL) {
1099       // I'd like to write: guarantee (w->_thread != Self).
1100       // But in practice an exiting thread may find itself on the EntryList.
1101       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1102       // then calls exit().  Exit release the lock by setting O._owner to NULL.
1103       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1104       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1105       // release the lock "O".  T2 resumes immediately after the ST of null into
1106       // _owner, above.  T2 notices that the EntryList is populated, so it
1107       // reacquires the lock and then finds itself on the EntryList.
1108       // Given all that, we have to tolerate the circumstance where "w" is
1109       // associated with Self.
1110       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1111       ExitEpilog(Self, w);
1112       return;
1113     }
1114 
1115     // If we find that both _cxq and EntryList are null then just
1116     // re-run the exit protocol from the top.
1117     w = _cxq;
1118     if (w == NULL) continue;
1119 
1120     // Drain _cxq into EntryList - bulk transfer.
1121     // First, detach _cxq.
1122     // The following loop is tantamount to: w = swap(&cxq, NULL)
1123     for (;;) {
1124       assert(w != NULL, "Invariant");
1125       ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1126       if (u == w) break;
1127       w = u;
1128     }
1129 
1130     assert(w != NULL, "invariant");
1131     assert(_EntryList == NULL, "invariant");
1132 
1133     // Convert the LIFO SLL anchored by _cxq into a DLL.
1134     // The list reorganization step operates in O(LENGTH(w)) time.
1135     // It's critical that this step operate quickly as
1136     // "Self" still holds the outer-lock, restricting parallelism
1137     // and effectively lengthening the critical section.
1138     // Invariant: s chases t chases u.
1139     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1140     // we have faster access to the tail.
1141 
1142     _EntryList = w;
1143     ObjectWaiter * q = NULL;
1144     ObjectWaiter * p;
1145     for (p = w; p != NULL; p = p->_next) {
1146       guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1147       p->TState = ObjectWaiter::TS_ENTER;
1148       p->_prev = q;
1149       q = p;
1150     }
1151 
1152     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1153     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1154 
1155     // See if we can abdicate to a spinner instead of waking a thread.
1156     // A primary goal of the implementation is to reduce the
1157     // context-switch rate.
1158     if (_succ != NULL) continue;
1159 
1160     w = _EntryList;
1161     if (w != NULL) {
1162       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1163       ExitEpilog(Self, w);
1164       return;
1165     }
1166   }
1167 }
1168 
1169 // ExitSuspendEquivalent:
1170 // A faster alternate to handle_special_suspend_equivalent_condition()
1171 //
1172 // handle_special_suspend_equivalent_condition() unconditionally
1173 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1174 // operations have high latency.  Note that in ::enter() we call HSSEC
1175 // while holding the monitor, so we effectively lengthen the critical sections.
1176 //
1177 // There are a number of possible solutions:
1178 //
1179 // A.  To ameliorate the problem we might also defer state transitions
1180 //     to as late as possible -- just prior to parking.
1181 //     Given that, we'd call HSSEC after having returned from park(),
1182 //     but before attempting to acquire the monitor.  This is only a
1183 //     partial solution.  It avoids calling HSSEC while holding the
1184 //     monitor (good), but it still increases successor reacquisition latency --
1185 //     the interval between unparking a successor and the time the successor
1186 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1187 //     If we use this technique we can also avoid EnterI()-exit() loop
1188 //     in ::enter() where we iteratively drop the lock and then attempt
1189 //     to reacquire it after suspending.
1190 //
1191 // B.  In the future we might fold all the suspend bits into a
1192 //     composite per-thread suspend flag and then update it with CAS().
1193 //     Alternately, a Dekker-like mechanism with multiple variables
1194 //     would suffice:
1195 //       ST Self->_suspend_equivalent = false
1196 //       MEMBAR
1197 //       LD Self_>_suspend_flags
1198 
1199 bool ObjectMonitor::ExitSuspendEquivalent(JavaThread * jSelf) {
1200   return jSelf->handle_special_suspend_equivalent_condition();
1201 }
1202 
1203 
1204 void ObjectMonitor::ExitEpilog(Thread * Self, ObjectWaiter * Wakee) {
1205   assert(_owner == Self, "invariant");
1206 
1207   // Exit protocol:
1208   // 1. ST _succ = wakee
1209   // 2. membar #loadstore|#storestore;
1210   // 2. ST _owner = NULL
1211   // 3. unpark(wakee)
1212 
1213   _succ = Wakee->_thread;
1214   ParkEvent * Trigger = Wakee->_event;
1215 
1216   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1217   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1218   // out-of-scope (non-extant).
1219   Wakee  = NULL;
1220 
1221   // Drop the lock
1222   OrderAccess::release_store(&_owner, (void*)NULL);
1223   OrderAccess::fence();                               // ST _owner vs LD in unpark()
1224 
1225   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1226   Trigger->unpark();
1227 
1228   // Maintain stats and report events to JVMTI
1229   OM_PERFDATA_OP(Parks, inc());
1230 }
1231 
1232 
1233 // -----------------------------------------------------------------------------
1234 // Class Loader deadlock handling.
1235 //
1236 // complete_exit exits a lock returning recursion count
1237 // complete_exit/reenter operate as a wait without waiting
1238 // complete_exit requires an inflated monitor
1239 // The _owner field is not always the Thread addr even with an
1240 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1241 // thread due to contention.
1242 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1243   Thread * const Self = THREAD;
1244   assert(Self->is_Java_thread(), "Must be Java thread!");
1245   JavaThread *jt = (JavaThread *)THREAD;
1246 
1247   assert(InitDone, "Unexpectedly not initialized");
1248 
1249   if (THREAD != _owner) {
1250     if (THREAD->is_lock_owned ((address)_owner)) {
1251       assert(_recursions == 0, "internal state error");
1252       _owner = THREAD;   // Convert from basiclock addr to Thread addr
1253       _recursions = 0;
1254     }
1255   }
1256 
1257   guarantee(Self == _owner, "complete_exit not owner");
1258   intptr_t save = _recursions; // record the old recursion count
1259   _recursions = 0;        // set the recursion level to be 0
1260   exit(true, Self);           // exit the monitor
1261   guarantee(_owner != Self, "invariant");
1262   return save;
1263 }
1264 
1265 // reenter() enters a lock and sets recursion count
1266 // complete_exit/reenter operate as a wait without waiting
1267 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1268   Thread * const Self = THREAD;
1269   assert(Self->is_Java_thread(), "Must be Java thread!");
1270   JavaThread *jt = (JavaThread *)THREAD;
1271 
1272   guarantee(_owner != Self, "reenter already owner");
1273   enter(THREAD);
1274   // Entered the monitor.
1275   guarantee(_recursions == 0, "reenter recursion");
1276   _recursions = recursions;
1277 }
1278 
1279 // Checks that the current THREAD owns this monitor and causes an
1280 // immediate return if it doesn't. We don't use the CHECK macro
1281 // because we want the IMSE to be the only exception that is thrown
1282 // from the call site when false is returned. Any other pending
1283 // exception is ignored.
1284 #define CHECK_OWNER()                                                  \
1285   do {                                                                 \
1286     if (!check_owner(THREAD)) {                                        \
1287        assert(HAS_PENDING_EXCEPTION, "expected a pending IMSE here."); \
1288        return;                                                         \
1289      }                                                                 \
1290   } while (false)
1291 
1292 // Returns true if the specified thread owns the ObjectMonitor.
1293 // Otherwise returns false and throws IllegalMonitorStateException
1294 // (IMSE). If there is a pending exception and the specified thread
1295 // is not the owner, that exception will be replaced by the IMSE.
1296 bool ObjectMonitor::check_owner(Thread* THREAD) {
1297   if (_owner == THREAD) {
1298     return true;
1299   }
1300   if (THREAD->is_lock_owned((address)_owner)) {
1301     _owner = THREAD;  // convert from BasicLock addr to Thread addr
1302     _recursions = 0;
1303     return true;
1304   }
1305   THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(),
1306              "current thread is not owner", false);
1307 }
1308 
1309 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1310                                     ObjectMonitor* monitor,
1311                                     jlong notifier_tid,
1312                                     jlong timeout,
1313                                     bool timedout) {
1314   assert(event != NULL, "invariant");
1315   assert(monitor != NULL, "invariant");
1316   event->set_monitorClass(((oop)monitor->object())->klass());
1317   event->set_timeout(timeout);
1318   event->set_address((uintptr_t)monitor->object_addr());
1319   event->set_notifier(notifier_tid);
1320   event->set_timedOut(timedout);
1321   event->commit();
1322 }
1323 
1324 // -----------------------------------------------------------------------------
1325 // Wait/Notify/NotifyAll
1326 //
1327 // Note: a subset of changes to ObjectMonitor::wait()
1328 // will need to be replicated in complete_exit
1329 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1330   Thread * const Self = THREAD;
1331   assert(Self->is_Java_thread(), "Must be Java thread!");
1332   JavaThread *jt = (JavaThread *)THREAD;
1333 
1334   assert(InitDone, "Unexpectedly not initialized");
1335 
1336   CHECK_OWNER();  // Throws IMSE if not owner.
1337 
1338   EventJavaMonitorWait event;
1339 
1340   // check for a pending interrupt
1341   if (interruptible && jt->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1342     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1343     if (JvmtiExport::should_post_monitor_waited()) {
1344       // Note: 'false' parameter is passed here because the
1345       // wait was not timed out due to thread interrupt.
1346       JvmtiExport::post_monitor_waited(jt, this, false);
1347 
1348       // In this short circuit of the monitor wait protocol, the
1349       // current thread never drops ownership of the monitor and
1350       // never gets added to the wait queue so the current thread
1351       // cannot be made the successor. This means that the
1352       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1353       // consume an unpark() meant for the ParkEvent associated with
1354       // this ObjectMonitor.
1355     }
1356     if (event.should_commit()) {
1357       post_monitor_wait_event(&event, this, 0, millis, false);
1358     }
1359     THROW(vmSymbols::java_lang_InterruptedException());
1360     return;
1361   }
1362 
1363   assert(Self->_Stalled == 0, "invariant");
1364   Self->_Stalled = intptr_t(this);
1365   jt->set_current_waiting_monitor(this);
1366 
1367   // create a node to be put into the queue
1368   // Critically, after we reset() the event but prior to park(), we must check
1369   // for a pending interrupt.
1370   ObjectWaiter node(Self);
1371   node.TState = ObjectWaiter::TS_WAIT;
1372   Self->_ParkEvent->reset();
1373   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1374 
1375   // Enter the waiting queue, which is a circular doubly linked list in this case
1376   // but it could be a priority queue or any data structure.
1377   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1378   // by the the owner of the monitor *except* in the case where park()
1379   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1380   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1381 
1382   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1383   AddWaiter(&node);
1384   Thread::SpinRelease(&_WaitSetLock);
1385 
1386   _Responsible = NULL;
1387 
1388   intptr_t save = _recursions; // record the old recursion count
1389   _waiters++;                  // increment the number of waiters
1390   _recursions = 0;             // set the recursion level to be 1
1391   exit(true, Self);                    // exit the monitor
1392   guarantee(_owner != Self, "invariant");
1393 
1394   // The thread is on the WaitSet list - now park() it.
1395   // On MP systems it's conceivable that a brief spin before we park
1396   // could be profitable.
1397   //
1398   // TODO-FIXME: change the following logic to a loop of the form
1399   //   while (!timeout && !interrupted && _notified == 0) park()
1400 
1401   int ret = OS_OK;
1402   int WasNotified = 0;
1403   { // State transition wrappers
1404     OSThread* osthread = Self->osthread();
1405     OSThreadWaitState osts(osthread, true);
1406     {
1407       ThreadBlockInVM tbivm(jt);
1408       // Thread is in thread_blocked state and oop access is unsafe.
1409       jt->set_suspend_equivalent();
1410 
1411       if (interruptible && (jt->is_interrupted(false) || HAS_PENDING_EXCEPTION)) {
1412         // Intentionally empty
1413       } else if (node._notified == 0) {
1414         if (millis <= 0) {
1415           Self->_ParkEvent->park();
1416         } else {
1417           ret = Self->_ParkEvent->park(millis);
1418         }
1419       }
1420 
1421       // were we externally suspended while we were waiting?
1422       if (ExitSuspendEquivalent (jt)) {
1423         // TODO-FIXME: add -- if succ == Self then succ = null.
1424         jt->java_suspend_self();
1425       }
1426 
1427     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1428 
1429     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1430     // from the WaitSet to the EntryList.
1431     // See if we need to remove Node from the WaitSet.
1432     // We use double-checked locking to avoid grabbing _WaitSetLock
1433     // if the thread is not on the wait queue.
1434     //
1435     // Note that we don't need a fence before the fetch of TState.
1436     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1437     // written by the is thread. (perhaps the fetch might even be satisfied
1438     // by a look-aside into the processor's own store buffer, although given
1439     // the length of the code path between the prior ST and this load that's
1440     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1441     // then we'll acquire the lock and then re-fetch a fresh TState value.
1442     // That is, we fail toward safety.
1443 
1444     if (node.TState == ObjectWaiter::TS_WAIT) {
1445       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1446       if (node.TState == ObjectWaiter::TS_WAIT) {
1447         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1448         assert(node._notified == 0, "invariant");
1449         node.TState = ObjectWaiter::TS_RUN;
1450       }
1451       Thread::SpinRelease(&_WaitSetLock);
1452     }
1453 
1454     // The thread is now either on off-list (TS_RUN),
1455     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1456     // The Node's TState variable is stable from the perspective of this thread.
1457     // No other threads will asynchronously modify TState.
1458     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1459     OrderAccess::loadload();
1460     if (_succ == Self) _succ = NULL;
1461     WasNotified = node._notified;
1462 
1463     // Reentry phase -- reacquire the monitor.
1464     // re-enter contended monitor after object.wait().
1465     // retain OBJECT_WAIT state until re-enter successfully completes
1466     // Thread state is thread_in_vm and oop access is again safe,
1467     // although the raw address of the object may have changed.
1468     // (Don't cache naked oops over safepoints, of course).
1469 
1470     // post monitor waited event. Note that this is past-tense, we are done waiting.
1471     if (JvmtiExport::should_post_monitor_waited()) {
1472       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1473 
1474       if (node._notified != 0 && _succ == Self) {
1475         // In this part of the monitor wait-notify-reenter protocol it
1476         // is possible (and normal) for another thread to do a fastpath
1477         // monitor enter-exit while this thread is still trying to get
1478         // to the reenter portion of the protocol.
1479         //
1480         // The ObjectMonitor was notified and the current thread is
1481         // the successor which also means that an unpark() has already
1482         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1483         // consume the unpark() that was done when the successor was
1484         // set because the same ParkEvent is shared between Java
1485         // monitors and JVM/TI RawMonitors (for now).
1486         //
1487         // We redo the unpark() to ensure forward progress, i.e., we
1488         // don't want all pending threads hanging (parked) with none
1489         // entering the unlocked monitor.
1490         node._event->unpark();
1491       }
1492     }
1493 
1494     if (event.should_commit()) {
1495       post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1496     }
1497 
1498     OrderAccess::fence();
1499 
1500     assert(Self->_Stalled != 0, "invariant");
1501     Self->_Stalled = 0;
1502 
1503     assert(_owner != Self, "invariant");
1504     ObjectWaiter::TStates v = node.TState;
1505     if (v == ObjectWaiter::TS_RUN) {
1506       enter(Self);
1507     } else {
1508       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1509       ReenterI(Self, &node);
1510       node.wait_reenter_end(this);
1511     }
1512 
1513     // Self has reacquired the lock.
1514     // Lifecycle - the node representing Self must not appear on any queues.
1515     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1516     // want residual elements associated with this thread left on any lists.
1517     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1518     assert(_owner == Self, "invariant");
1519     assert(_succ != Self, "invariant");
1520   } // OSThreadWaitState()
1521 
1522   jt->set_current_waiting_monitor(NULL);
1523 
1524   guarantee(_recursions == 0, "invariant");
1525   _recursions = save;     // restore the old recursion count
1526   _waiters--;             // decrement the number of waiters
1527 
1528   // Verify a few postconditions
1529   assert(_owner == Self, "invariant");
1530   assert(_succ != Self, "invariant");
1531   assert(((oop)(object()))->mark() == markWord::encode(this), "invariant");
1532 
1533   // check if the notification happened
1534   if (!WasNotified) {
1535     // no, it could be timeout or Thread.interrupt() or both
1536     // check for interrupt event, otherwise it is timeout
1537     if (interruptible && jt->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1538       THROW(vmSymbols::java_lang_InterruptedException());
1539     }
1540   }
1541 
1542   // NOTE: Spurious wake up will be consider as timeout.
1543   // Monitor notify has precedence over thread interrupt.
1544 }
1545 
1546 
1547 // Consider:
1548 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1549 // then instead of transferring a thread from the WaitSet to the EntryList
1550 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1551 
1552 void ObjectMonitor::INotify(Thread * Self) {
1553   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1554   ObjectWaiter * iterator = DequeueWaiter();
1555   if (iterator != NULL) {
1556     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1557     guarantee(iterator->_notified == 0, "invariant");
1558     // Disposition - what might we do with iterator ?
1559     // a.  add it directly to the EntryList - either tail (policy == 1)
1560     //     or head (policy == 0).
1561     // b.  push it onto the front of the _cxq (policy == 2).
1562     // For now we use (b).
1563 
1564     iterator->TState = ObjectWaiter::TS_ENTER;
1565 
1566     iterator->_notified = 1;
1567     iterator->_notifier_tid = JFR_THREAD_ID(Self);
1568 
1569     ObjectWaiter * list = _EntryList;
1570     if (list != NULL) {
1571       assert(list->_prev == NULL, "invariant");
1572       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1573       assert(list != iterator, "invariant");
1574     }
1575 
1576     // prepend to cxq
1577     if (list == NULL) {
1578       iterator->_next = iterator->_prev = NULL;
1579       _EntryList = iterator;
1580     } else {
1581       iterator->TState = ObjectWaiter::TS_CXQ;
1582       for (;;) {
1583         ObjectWaiter * front = _cxq;
1584         iterator->_next = front;
1585         if (Atomic::cmpxchg(iterator, &_cxq, front) == front) {
1586           break;
1587         }
1588       }
1589     }
1590 
1591     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1592     // move the add-to-EntryList operation, above, outside the critical section
1593     // protected by _WaitSetLock.  In practice that's not useful.  With the
1594     // exception of  wait() timeouts and interrupts the monitor owner
1595     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1596     // on _WaitSetLock so it's not profitable to reduce the length of the
1597     // critical section.
1598 
1599     iterator->wait_reenter_begin(this);
1600   }
1601   Thread::SpinRelease(&_WaitSetLock);
1602 }
1603 
1604 // Consider: a not-uncommon synchronization bug is to use notify() when
1605 // notifyAll() is more appropriate, potentially resulting in stranded
1606 // threads; this is one example of a lost wakeup. A useful diagnostic
1607 // option is to force all notify() operations to behave as notifyAll().
1608 //
1609 // Note: We can also detect many such problems with a "minimum wait".
1610 // When the "minimum wait" is set to a small non-zero timeout value
1611 // and the program does not hang whereas it did absent "minimum wait",
1612 // that suggests a lost wakeup bug.
1613 
1614 void ObjectMonitor::notify(TRAPS) {
1615   CHECK_OWNER();  // Throws IMSE if not owner.
1616   if (_WaitSet == NULL) {
1617     return;
1618   }
1619   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1620   INotify(THREAD);
1621   OM_PERFDATA_OP(Notifications, inc(1));
1622 }
1623 
1624 
1625 // The current implementation of notifyAll() transfers the waiters one-at-a-time
1626 // from the waitset to the EntryList. This could be done more efficiently with a
1627 // single bulk transfer but in practice it's not time-critical. Beware too,
1628 // that in prepend-mode we invert the order of the waiters. Let's say that the
1629 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1630 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1631 
1632 void ObjectMonitor::notifyAll(TRAPS) {
1633   CHECK_OWNER();  // Throws IMSE if not owner.
1634   if (_WaitSet == NULL) {
1635     return;
1636   }
1637 
1638   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1639   int tally = 0;
1640   while (_WaitSet != NULL) {
1641     tally++;
1642     INotify(THREAD);
1643   }
1644 
1645   OM_PERFDATA_OP(Notifications, inc(tally));
1646 }
1647 
1648 // -----------------------------------------------------------------------------
1649 // Adaptive Spinning Support
1650 //
1651 // Adaptive spin-then-block - rational spinning
1652 //
1653 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1654 // algorithm.  On high order SMP systems it would be better to start with
1655 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1656 // a contending thread could enqueue itself on the cxq and then spin locally
1657 // on a thread-specific variable such as its ParkEvent._Event flag.
1658 // That's left as an exercise for the reader.  Note that global spinning is
1659 // not problematic on Niagara, as the L2 cache serves the interconnect and
1660 // has both low latency and massive bandwidth.
1661 //
1662 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1663 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1664 // (duration) or we can fix the count at approximately the duration of
1665 // a context switch and vary the frequency.   Of course we could also
1666 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1667 // For a description of 'Adaptive spin-then-block mutual exclusion in
1668 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1669 //
1670 // This implementation varies the duration "D", where D varies with
1671 // the success rate of recent spin attempts. (D is capped at approximately
1672 // length of a round-trip context switch).  The success rate for recent
1673 // spin attempts is a good predictor of the success rate of future spin
1674 // attempts.  The mechanism adapts automatically to varying critical
1675 // section length (lock modality), system load and degree of parallelism.
1676 // D is maintained per-monitor in _SpinDuration and is initialized
1677 // optimistically.  Spin frequency is fixed at 100%.
1678 //
1679 // Note that _SpinDuration is volatile, but we update it without locks
1680 // or atomics.  The code is designed so that _SpinDuration stays within
1681 // a reasonable range even in the presence of races.  The arithmetic
1682 // operations on _SpinDuration are closed over the domain of legal values,
1683 // so at worst a race will install and older but still legal value.
1684 // At the very worst this introduces some apparent non-determinism.
1685 // We might spin when we shouldn't or vice-versa, but since the spin
1686 // count are relatively short, even in the worst case, the effect is harmless.
1687 //
1688 // Care must be taken that a low "D" value does not become an
1689 // an absorbing state.  Transient spinning failures -- when spinning
1690 // is overall profitable -- should not cause the system to converge
1691 // on low "D" values.  We want spinning to be stable and predictable
1692 // and fairly responsive to change and at the same time we don't want
1693 // it to oscillate, become metastable, be "too" non-deterministic,
1694 // or converge on or enter undesirable stable absorbing states.
1695 //
1696 // We implement a feedback-based control system -- using past behavior
1697 // to predict future behavior.  We face two issues: (a) if the
1698 // input signal is random then the spin predictor won't provide optimal
1699 // results, and (b) if the signal frequency is too high then the control
1700 // system, which has some natural response lag, will "chase" the signal.
1701 // (b) can arise from multimodal lock hold times.  Transient preemption
1702 // can also result in apparent bimodal lock hold times.
1703 // Although sub-optimal, neither condition is particularly harmful, as
1704 // in the worst-case we'll spin when we shouldn't or vice-versa.
1705 // The maximum spin duration is rather short so the failure modes aren't bad.
1706 // To be conservative, I've tuned the gain in system to bias toward
1707 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1708 // "rings" or oscillates between spinning and not spinning.  This happens
1709 // when spinning is just on the cusp of profitability, however, so the
1710 // situation is not dire.  The state is benign -- there's no need to add
1711 // hysteresis control to damp the transition rate between spinning and
1712 // not spinning.
1713 
1714 // Spinning: Fixed frequency (100%), vary duration
1715 int ObjectMonitor::TrySpin(Thread * Self) {
1716   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1717   int ctr = Knob_FixedSpin;
1718   if (ctr != 0) {
1719     while (--ctr >= 0) {
1720       if (TryLock(Self) > 0) return 1;
1721       SpinPause();
1722     }
1723     return 0;
1724   }
1725 
1726   for (ctr = Knob_PreSpin + 1; --ctr >= 0;) {
1727     if (TryLock(Self) > 0) {
1728       // Increase _SpinDuration ...
1729       // Note that we don't clamp SpinDuration precisely at SpinLimit.
1730       // Raising _SpurDuration to the poverty line is key.
1731       int x = _SpinDuration;
1732       if (x < Knob_SpinLimit) {
1733         if (x < Knob_Poverty) x = Knob_Poverty;
1734         _SpinDuration = x + Knob_BonusB;
1735       }
1736       return 1;
1737     }
1738     SpinPause();
1739   }
1740 
1741   // Admission control - verify preconditions for spinning
1742   //
1743   // We always spin a little bit, just to prevent _SpinDuration == 0 from
1744   // becoming an absorbing state.  Put another way, we spin briefly to
1745   // sample, just in case the system load, parallelism, contention, or lock
1746   // modality changed.
1747   //
1748   // Consider the following alternative:
1749   // Periodically set _SpinDuration = _SpinLimit and try a long/full
1750   // spin attempt.  "Periodically" might mean after a tally of
1751   // the # of failed spin attempts (or iterations) reaches some threshold.
1752   // This takes us into the realm of 1-out-of-N spinning, where we
1753   // hold the duration constant but vary the frequency.
1754 
1755   ctr = _SpinDuration;
1756   if (ctr <= 0) return 0;
1757 
1758   if (NotRunnable(Self, (Thread *) _owner)) {
1759     return 0;
1760   }
1761 
1762   // We're good to spin ... spin ingress.
1763   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1764   // when preparing to LD...CAS _owner, etc and the CAS is likely
1765   // to succeed.
1766   if (_succ == NULL) {
1767     _succ = Self;
1768   }
1769   Thread * prv = NULL;
1770 
1771   // There are three ways to exit the following loop:
1772   // 1.  A successful spin where this thread has acquired the lock.
1773   // 2.  Spin failure with prejudice
1774   // 3.  Spin failure without prejudice
1775 
1776   while (--ctr >= 0) {
1777 
1778     // Periodic polling -- Check for pending GC
1779     // Threads may spin while they're unsafe.
1780     // We don't want spinning threads to delay the JVM from reaching
1781     // a stop-the-world safepoint or to steal cycles from GC.
1782     // If we detect a pending safepoint we abort in order that
1783     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1784     // this thread, if safe, doesn't steal cycles from GC.
1785     // This is in keeping with the "no loitering in runtime" rule.
1786     // We periodically check to see if there's a safepoint pending.
1787     if ((ctr & 0xFF) == 0) {
1788       if (SafepointMechanism::should_block(Self)) {
1789         goto Abort;           // abrupt spin egress
1790       }
1791       SpinPause();
1792     }
1793 
1794     // Probe _owner with TATAS
1795     // If this thread observes the monitor transition or flicker
1796     // from locked to unlocked to locked, then the odds that this
1797     // thread will acquire the lock in this spin attempt go down
1798     // considerably.  The same argument applies if the CAS fails
1799     // or if we observe _owner change from one non-null value to
1800     // another non-null value.   In such cases we might abort
1801     // the spin without prejudice or apply a "penalty" to the
1802     // spin count-down variable "ctr", reducing it by 100, say.
1803 
1804     Thread * ox = (Thread *) _owner;
1805     if (ox == NULL) {
1806       ox = (Thread*)Atomic::cmpxchg(Self, &_owner, (void*)NULL);
1807       if (ox == NULL) {
1808         // The CAS succeeded -- this thread acquired ownership
1809         // Take care of some bookkeeping to exit spin state.
1810         if (_succ == Self) {
1811           _succ = NULL;
1812         }
1813 
1814         // Increase _SpinDuration :
1815         // The spin was successful (profitable) so we tend toward
1816         // longer spin attempts in the future.
1817         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
1818         // If we acquired the lock early in the spin cycle it
1819         // makes sense to increase _SpinDuration proportionally.
1820         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1821         int x = _SpinDuration;
1822         if (x < Knob_SpinLimit) {
1823           if (x < Knob_Poverty) x = Knob_Poverty;
1824           _SpinDuration = x + Knob_Bonus;
1825         }
1826         return 1;
1827       }
1828 
1829       // The CAS failed ... we can take any of the following actions:
1830       // * penalize: ctr -= CASPenalty
1831       // * exit spin with prejudice -- goto Abort;
1832       // * exit spin without prejudice.
1833       // * Since CAS is high-latency, retry again immediately.
1834       prv = ox;
1835       goto Abort;
1836     }
1837 
1838     // Did lock ownership change hands ?
1839     if (ox != prv && prv != NULL) {
1840       goto Abort;
1841     }
1842     prv = ox;
1843 
1844     // Abort the spin if the owner is not executing.
1845     // The owner must be executing in order to drop the lock.
1846     // Spinning while the owner is OFFPROC is idiocy.
1847     // Consider: ctr -= RunnablePenalty ;
1848     if (NotRunnable(Self, ox)) {
1849       goto Abort;
1850     }
1851     if (_succ == NULL) {
1852       _succ = Self;
1853     }
1854   }
1855 
1856   // Spin failed with prejudice -- reduce _SpinDuration.
1857   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
1858   // AIMD is globally stable.
1859   {
1860     int x = _SpinDuration;
1861     if (x > 0) {
1862       // Consider an AIMD scheme like: x -= (x >> 3) + 100
1863       // This is globally sample and tends to damp the response.
1864       x -= Knob_Penalty;
1865       if (x < 0) x = 0;
1866       _SpinDuration = x;
1867     }
1868   }
1869 
1870  Abort:
1871   if (_succ == Self) {
1872     _succ = NULL;
1873     // Invariant: after setting succ=null a contending thread
1874     // must recheck-retry _owner before parking.  This usually happens
1875     // in the normal usage of TrySpin(), but it's safest
1876     // to make TrySpin() as foolproof as possible.
1877     OrderAccess::fence();
1878     if (TryLock(Self) > 0) return 1;
1879   }
1880   return 0;
1881 }
1882 
1883 // NotRunnable() -- informed spinning
1884 //
1885 // Don't bother spinning if the owner is not eligible to drop the lock.
1886 // Spin only if the owner thread is _thread_in_Java or _thread_in_vm.
1887 // The thread must be runnable in order to drop the lock in timely fashion.
1888 // If the _owner is not runnable then spinning will not likely be
1889 // successful (profitable).
1890 //
1891 // Beware -- the thread referenced by _owner could have died
1892 // so a simply fetch from _owner->_thread_state might trap.
1893 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
1894 // Because of the lifecycle issues, the _thread_state values
1895 // observed by NotRunnable() might be garbage.  NotRunnable must
1896 // tolerate this and consider the observed _thread_state value
1897 // as advisory.
1898 //
1899 // Beware too, that _owner is sometimes a BasicLock address and sometimes
1900 // a thread pointer.
1901 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
1902 // with the LSB of _owner.  Another option would be to probabilistically probe
1903 // the putative _owner->TypeTag value.
1904 //
1905 // Checking _thread_state isn't perfect.  Even if the thread is
1906 // in_java it might be blocked on a page-fault or have been preempted
1907 // and sitting on a ready/dispatch queue.
1908 //
1909 // The return value from NotRunnable() is *advisory* -- the
1910 // result is based on sampling and is not necessarily coherent.
1911 // The caller must tolerate false-negative and false-positive errors.
1912 // Spinning, in general, is probabilistic anyway.
1913 
1914 
1915 int ObjectMonitor::NotRunnable(Thread * Self, Thread * ox) {
1916   // Check ox->TypeTag == 2BAD.
1917   if (ox == NULL) return 0;
1918 
1919   // Avoid transitive spinning ...
1920   // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
1921   // Immediately after T1 acquires L it's possible that T2, also
1922   // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
1923   // This occurs transiently after T1 acquired L but before
1924   // T1 managed to clear T1.Stalled.  T2 does not need to abort
1925   // its spin in this circumstance.
1926   intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1));
1927 
1928   if (BlockedOn == 1) return 1;
1929   if (BlockedOn != 0) {
1930     return BlockedOn != intptr_t(this) && _owner == ox;
1931   }
1932 
1933   assert(sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant");
1934   int jst = SafeFetch32((int *) &((JavaThread *) ox)->_thread_state, -1);;
1935   // consider also: jst != _thread_in_Java -- but that's overspecific.
1936   return jst == _thread_blocked || jst == _thread_in_native;
1937 }
1938 
1939 
1940 // -----------------------------------------------------------------------------
1941 // WaitSet management ...
1942 
1943 ObjectWaiter::ObjectWaiter(Thread* thread) {
1944   _next     = NULL;
1945   _prev     = NULL;
1946   _notified = 0;
1947   _notifier_tid = 0;
1948   TState    = TS_RUN;
1949   _thread   = thread;
1950   _event    = thread->_ParkEvent;
1951   _active   = false;
1952   assert(_event != NULL, "invariant");
1953 }
1954 
1955 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
1956   JavaThread *jt = (JavaThread *)this->_thread;
1957   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
1958 }
1959 
1960 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
1961   JavaThread *jt = (JavaThread *)this->_thread;
1962   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
1963 }
1964 
1965 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
1966   assert(node != NULL, "should not add NULL node");
1967   assert(node->_prev == NULL, "node already in list");
1968   assert(node->_next == NULL, "node already in list");
1969   // put node at end of queue (circular doubly linked list)
1970   if (_WaitSet == NULL) {
1971     _WaitSet = node;
1972     node->_prev = node;
1973     node->_next = node;
1974   } else {
1975     ObjectWaiter* head = _WaitSet;
1976     ObjectWaiter* tail = head->_prev;
1977     assert(tail->_next == head, "invariant check");
1978     tail->_next = node;
1979     head->_prev = node;
1980     node->_next = head;
1981     node->_prev = tail;
1982   }
1983 }
1984 
1985 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
1986   // dequeue the very first waiter
1987   ObjectWaiter* waiter = _WaitSet;
1988   if (waiter) {
1989     DequeueSpecificWaiter(waiter);
1990   }
1991   return waiter;
1992 }
1993 
1994 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
1995   assert(node != NULL, "should not dequeue NULL node");
1996   assert(node->_prev != NULL, "node already removed from list");
1997   assert(node->_next != NULL, "node already removed from list");
1998   // when the waiter has woken up because of interrupt,
1999   // timeout or other spurious wake-up, dequeue the
2000   // waiter from waiting list
2001   ObjectWaiter* next = node->_next;
2002   if (next == node) {
2003     assert(node->_prev == node, "invariant check");
2004     _WaitSet = NULL;
2005   } else {
2006     ObjectWaiter* prev = node->_prev;
2007     assert(prev->_next == node, "invariant check");
2008     assert(next->_prev == node, "invariant check");
2009     next->_prev = prev;
2010     prev->_next = next;
2011     if (_WaitSet == node) {
2012       _WaitSet = next;
2013     }
2014   }
2015   node->_next = NULL;
2016   node->_prev = NULL;
2017 }
2018 
2019 // -----------------------------------------------------------------------------
2020 // PerfData support
2021 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL;
2022 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL;
2023 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL;
2024 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL;
2025 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL;
2026 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL;
2027 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL;
2028 
2029 // One-shot global initialization for the sync subsystem.
2030 // We could also defer initialization and initialize on-demand
2031 // the first time we call ObjectSynchronizer::inflate().
2032 // Initialization would be protected - like so many things - by
2033 // the MonitorCache_lock.
2034 
2035 void ObjectMonitor::Initialize() {
2036   assert(!InitDone, "invariant");
2037 
2038   if (!os::is_MP()) {
2039     Knob_SpinLimit = 0;
2040     Knob_PreSpin   = 0;
2041     Knob_FixedSpin = -1;
2042   }
2043 
2044   if (UsePerfData) {
2045     EXCEPTION_MARK;
2046 #define NEWPERFCOUNTER(n)                                                \
2047   {                                                                      \
2048     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
2049                                         CHECK);                          \
2050   }
2051 #define NEWPERFVARIABLE(n)                                                \
2052   {                                                                       \
2053     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2054                                          CHECK);                          \
2055   }
2056     NEWPERFCOUNTER(_sync_Inflations);
2057     NEWPERFCOUNTER(_sync_Deflations);
2058     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2059     NEWPERFCOUNTER(_sync_FutileWakeups);
2060     NEWPERFCOUNTER(_sync_Parks);
2061     NEWPERFCOUNTER(_sync_Notifications);
2062     NEWPERFVARIABLE(_sync_MonExtant);
2063 #undef NEWPERFCOUNTER
2064 #undef NEWPERFVARIABLE
2065   }
2066 
2067   DEBUG_ONLY(InitDone = true;)
2068 }
2069 
2070 // For internal use by ObjectSynchronizer::monitors_iterate().
2071 ObjectMonitorHandle::ObjectMonitorHandle(ObjectMonitor * om_ptr) {
2072   om_ptr->inc_ref_count();
2073   _om_ptr = om_ptr;
2074 }
2075 
2076 ObjectMonitorHandle::~ObjectMonitorHandle() {
2077   if (_om_ptr != NULL) {
2078     _om_ptr->dec_ref_count();
2079     _om_ptr = NULL;
2080   }
2081 }
2082 
2083 // Save the ObjectMonitor* associated with the specified markWord and
2084 // increment the ref_count. This function should only be called if
2085 // the caller has verified mark.has_monitor() == true. The object
2086 // parameter is needed to verify that ObjectMonitor* has not been
2087 // deflated and reused for another object.
2088 //
2089 // This function returns true if the ObjectMonitor* has been safely
2090 // saved. This function returns false if we have lost a race with
2091 // async deflation; the caller should retry as appropriate.
2092 //
2093 bool ObjectMonitorHandle::save_om_ptr(oop object, markWord mark) {
2094   guarantee(mark.has_monitor(), "sanity check: mark=" INTPTR_FORMAT,
2095             mark.value());
2096 
2097   ObjectMonitor * om_ptr = mark.monitor();
2098   om_ptr->inc_ref_count();
2099 
2100   if (AsyncDeflateIdleMonitors) {
2101     // Race here if monitor is not owned! The above ref_count bump
2102     // will cause subsequent async deflation to skip it. However,
2103     // previous or concurrent async deflation is a race.
2104     if (om_ptr->owner_is_DEFLATER_MARKER() && om_ptr->ref_count() <= 0) {
2105       // Async deflation is in progress and our ref_count increment
2106       // above lost the race to async deflation. Attempt to restore
2107       // the header/dmw to the object's header so that we only retry
2108       // once if the deflater thread happens to be slow.
2109       om_ptr->install_displaced_markword_in_object(object);
2110       om_ptr->dec_ref_count();
2111       return false;
2112     }
2113     if (om_ptr->ref_count() <= 0) {
2114       // Async deflation is in the process of bailing out, but has not
2115       // yet restored the ref_count field so we return false to force
2116       // a retry. We want a positive ref_count value for a true return.
2117       om_ptr->dec_ref_count();
2118       return false;
2119     }
2120     // The ObjectMonitor could have been deflated and reused for
2121     // another object before we bumped the ref_count so make sure
2122     // our object still refers to this ObjectMonitor.
2123     const markWord tmp = object->mark();
2124     if (!tmp.has_monitor() || tmp.monitor() != om_ptr) {
2125       // Async deflation and reuse won the race so we have to retry.
2126       // Skip object header restoration since that's already done.
2127       om_ptr->dec_ref_count();
2128       return false;
2129     }
2130   }
2131 
2132   ADIM_guarantee(_om_ptr == NULL, "sanity check: _om_ptr=" INTPTR_FORMAT,
2133                  p2i(_om_ptr));
2134   _om_ptr = om_ptr;
2135   return true;
2136 }
2137 
2138 // For internal use by ObjectSynchronizer::inflate().
2139 void ObjectMonitorHandle::set_om_ptr(ObjectMonitor * om_ptr) {
2140   if (_om_ptr == NULL) {
2141     ADIM_guarantee(om_ptr != NULL, "cannot clear an unset om_ptr");
2142     om_ptr->inc_ref_count();
2143     _om_ptr = om_ptr;
2144   } else {
2145     ADIM_guarantee(om_ptr == NULL, "can only clear a set om_ptr");
2146     _om_ptr->dec_ref_count();
2147     _om_ptr = NULL;
2148   }
2149 }
2150 
2151 void ObjectMonitor::print_on(outputStream* st) const {
2152   // The minimal things to print for markWord printing, more can be added for debugging and logging.
2153   st->print("{contentions=0x%08x,waiters=0x%08x"
2154             ",recursions=" INTX_FORMAT ",owner=" INTPTR_FORMAT "}",
2155             contentions(), waiters(), recursions(),
2156             p2i(owner()));
2157 }
2158 void ObjectMonitor::print() const { print_on(tty); }