1 /*
   2  * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "jfr/jfrEvents.hpp"
  28 #include "jfr/support/jfrThreadId.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "oops/markWord.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/atomic.hpp"
  34 #include "runtime/handles.inline.hpp"
  35 #include "runtime/interfaceSupport.inline.hpp"
  36 #include "runtime/mutexLocker.hpp"
  37 #include "runtime/objectMonitor.hpp"
  38 #include "runtime/objectMonitor.inline.hpp"
  39 #include "runtime/orderAccess.hpp"
  40 #include "runtime/osThread.hpp"
  41 #include "runtime/safepointMechanism.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/thread.inline.hpp"
  45 #include "services/threadService.hpp"
  46 #include "utilities/dtrace.hpp"
  47 #include "utilities/macros.hpp"
  48 #include "utilities/preserveException.hpp"
  49 #if INCLUDE_JFR
  50 #include "jfr/support/jfrFlush.hpp"
  51 #endif
  52 
  53 #ifdef DTRACE_ENABLED
  54 
  55 // Only bother with this argument setup if dtrace is available
  56 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  57 
  58 
  59 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  60   char* bytes = NULL;                                                      \
  61   int len = 0;                                                             \
  62   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  63   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  64   if (klassname != NULL) {                                                 \
  65     bytes = (char*)klassname->bytes();                                     \
  66     len = klassname->utf8_length();                                        \
  67   }
  68 
  69 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  70   {                                                                        \
  71     if (DTraceMonitorProbes) {                                             \
  72       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  73       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  74                            (monitor), bytes, len, (millis));               \
  75     }                                                                      \
  76   }
  77 
  78 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  79 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  80 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  81 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  82 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  83 
  84 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  85   {                                                                        \
  86     if (DTraceMonitorProbes) {                                             \
  87       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  88       HOTSPOT_MONITOR_##probe(jtid,                                        \
  89                               (uintptr_t)(monitor), bytes, len);           \
  90     }                                                                      \
  91   }
  92 
  93 #else //  ndef DTRACE_ENABLED
  94 
  95 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
  96 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
  97 
  98 #endif // ndef DTRACE_ENABLED
  99 
 100 // Tunables ...
 101 // The knob* variables are effectively final.  Once set they should
 102 // never be modified hence.  Consider using __read_mostly with GCC.
 103 
 104 int ObjectMonitor::Knob_SpinLimit    = 5000;    // derived by an external tool -
 105 
 106 static int Knob_Bonus               = 100;     // spin success bonus
 107 static int Knob_BonusB              = 100;     // spin success bonus
 108 static int Knob_Penalty             = 200;     // spin failure penalty
 109 static int Knob_Poverty             = 1000;
 110 static int Knob_FixedSpin           = 0;
 111 static int Knob_PreSpin             = 10;      // 20-100 likely better
 112 
 113 DEBUG_ONLY(static volatile bool InitDone = false;)
 114 
 115 // -----------------------------------------------------------------------------
 116 // Theory of operations -- Monitors lists, thread residency, etc:
 117 //
 118 // * A thread acquires ownership of a monitor by successfully
 119 //   CAS()ing the _owner field from null to non-null.
 120 //
 121 // * Invariant: A thread appears on at most one monitor list --
 122 //   cxq, EntryList or WaitSet -- at any one time.
 123 //
 124 // * Contending threads "push" themselves onto the cxq with CAS
 125 //   and then spin/park.
 126 //
 127 // * After a contending thread eventually acquires the lock it must
 128 //   dequeue itself from either the EntryList or the cxq.
 129 //
 130 // * The exiting thread identifies and unparks an "heir presumptive"
 131 //   tentative successor thread on the EntryList.  Critically, the
 132 //   exiting thread doesn't unlink the successor thread from the EntryList.
 133 //   After having been unparked, the wakee will recontend for ownership of
 134 //   the monitor.   The successor (wakee) will either acquire the lock or
 135 //   re-park itself.
 136 //
 137 //   Succession is provided for by a policy of competitive handoff.
 138 //   The exiting thread does _not_ grant or pass ownership to the
 139 //   successor thread.  (This is also referred to as "handoff" succession").
 140 //   Instead the exiting thread releases ownership and possibly wakes
 141 //   a successor, so the successor can (re)compete for ownership of the lock.
 142 //   If the EntryList is empty but the cxq is populated the exiting
 143 //   thread will drain the cxq into the EntryList.  It does so by
 144 //   by detaching the cxq (installing null with CAS) and folding
 145 //   the threads from the cxq into the EntryList.  The EntryList is
 146 //   doubly linked, while the cxq is singly linked because of the
 147 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 148 //
 149 // * Concurrency invariants:
 150 //
 151 //   -- only the monitor owner may access or mutate the EntryList.
 152 //      The mutex property of the monitor itself protects the EntryList
 153 //      from concurrent interference.
 154 //   -- Only the monitor owner may detach the cxq.
 155 //
 156 // * The monitor entry list operations avoid locks, but strictly speaking
 157 //   they're not lock-free.  Enter is lock-free, exit is not.
 158 //   For a description of 'Methods and apparatus providing non-blocking access
 159 //   to a resource,' see U.S. Pat. No. 7844973.
 160 //
 161 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 162 //   detaching thread.  This mechanism is immune from the ABA corruption.
 163 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 164 //
 165 // * Taken together, the cxq and the EntryList constitute or form a
 166 //   single logical queue of threads stalled trying to acquire the lock.
 167 //   We use two distinct lists to improve the odds of a constant-time
 168 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 169 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 170 //   A key desideratum is to minimize queue & monitor metadata manipulation
 171 //   that occurs while holding the monitor lock -- that is, we want to
 172 //   minimize monitor lock holds times.  Note that even a small amount of
 173 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 174 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 175 //   locks and monitor metadata.
 176 //
 177 //   Cxq points to the set of Recently Arrived Threads attempting entry.
 178 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 179 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 180 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 181 //
 182 //   The EntryList is ordered by the prevailing queue discipline and
 183 //   can be organized in any convenient fashion, such as a doubly-linked list or
 184 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 185 //   to operate in constant-time.  If we need a priority queue then something akin
 186 //   to Solaris' sleepq would work nicely.  Viz.,
 187 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 188 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 189 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 190 //   EntryList accordingly.
 191 //
 192 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 193 //   somewhat similar to an elevator-scan.
 194 //
 195 // * The monitor synchronization subsystem avoids the use of native
 196 //   synchronization primitives except for the narrow platform-specific
 197 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 198 //   the semantics of park-unpark.  Put another way, this monitor implementation
 199 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 200 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 201 //   underlying OS manages the READY<->RUN transitions.
 202 //
 203 // * Waiting threads reside on the WaitSet list -- wait() puts
 204 //   the caller onto the WaitSet.
 205 //
 206 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 207 //   either the EntryList or cxq.  Subsequent exit() operations will
 208 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 209 //   it's likely the notifyee would simply impale itself on the lock held
 210 //   by the notifier.
 211 //
 212 // * An interesting alternative is to encode cxq as (List,LockByte) where
 213 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 214 //   variable, like _recursions, in the scheme.  The threads or Events that form
 215 //   the list would have to be aligned in 256-byte addresses.  A thread would
 216 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 217 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 218 //   Note that is is *not* word-tearing, but it does presume that full-word
 219 //   CAS operations are coherent with intermix with STB operations.  That's true
 220 //   on most common processors.
 221 //
 222 // * See also http://blogs.sun.com/dave
 223 
 224 
 225 void* ObjectMonitor::operator new (size_t size) throw() {
 226   return AllocateHeap(size, mtInternal);
 227 }
 228 void* ObjectMonitor::operator new[] (size_t size) throw() {
 229   return operator new (size);
 230 }
 231 void ObjectMonitor::operator delete(void* p) {
 232   FreeHeap(p);
 233 }
 234 void ObjectMonitor::operator delete[] (void *p) {
 235   operator delete(p);
 236 }
 237 
 238 // -----------------------------------------------------------------------------
 239 // Enter support
 240 
 241 void ObjectMonitor::enter(TRAPS) {
 242   ADIM_guarantee(ref_count() > 0, "must be positive: ref_count=%d", ref_count());
 243 
 244   // The following code is ordered to check the most common cases first
 245   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 246   Thread * const Self = THREAD;
 247 
 248   void* cur = try_set_owner_from(Self, NULL);
 249   if (cur == NULL) {
 250     assert(_recursions == 0, "invariant");
 251     return;
 252   }
 253 
 254   if (cur == Self) {
 255     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 256     _recursions++;
 257     return;
 258   }
 259 
 260   if (Self->is_lock_owned ((address)cur)) {
 261     assert(_recursions == 0, "internal state error");
 262     _recursions = 1;
 263     set_owner_from_BasicLock(Self, cur);  // Convert from BasicLock* to Thread*.
 264     return;
 265   }
 266 
 267   if (AsyncDeflateIdleMonitors &&
 268       try_set_owner_from(Self, DEFLATER_MARKER) == DEFLATER_MARKER) {
 269     // The deflation protocol finished the first part (setting owner),
 270     // but it failed the second part (making ref_count negative) and
 271     // bailed. Or the ObjectMonitor was async deflated and reused.
 272     // Acquired the monitor.
 273     assert(_recursions == 0, "invariant");
 274     return;
 275   }
 276 
 277   // We've encountered genuine contention.
 278   assert(Self->_Stalled == 0, "invariant");
 279   Self->_Stalled = intptr_t(this);
 280 
 281   // Try one round of spinning *before* enqueueing Self
 282   // and before going through the awkward and expensive state
 283   // transitions.  The following spin is strictly optional ...
 284   // Note that if we acquire the monitor from an initial spin
 285   // we forgo posting JVMTI events and firing DTRACE probes.
 286   if (TrySpin(Self) > 0) {
 287     assert(_owner == Self, "must be Self: owner=" INTPTR_FORMAT, p2i(_owner));
 288     assert(_recursions == 0, "must be 0: recursions=" INTX_FORMAT, _recursions);
 289     assert(((oop)object())->mark() == markWord::encode(this),
 290            "object mark must match encoded this: mark=" INTPTR_FORMAT
 291            ", encoded this=" INTPTR_FORMAT, ((oop)object())->mark().value(),
 292            markWord::encode(this).value());
 293     Self->_Stalled = 0;
 294     return;
 295   }
 296 
 297   assert(_owner != Self, "invariant");
 298   assert(_succ != Self, "invariant");
 299   assert(Self->is_Java_thread(), "invariant");
 300   JavaThread * jt = (JavaThread *) Self;
 301   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 302   assert(jt->thread_state() != _thread_blocked, "invariant");
 303   assert(AsyncDeflateIdleMonitors || this->object() != NULL, "invariant");
 304   assert(_contentions >= 0, "must not be negative: contentions=%d", _contentions);
 305 
 306   // Prevent deflation. See ObjectSynchronizer::deflate_monitor(),
 307   // ObjectSynchronizer::deflate_monitor_using_JT() and is_busy().
 308   // Ensure the object <-> monitor relationship remains stable while
 309   // there's contention.
 310   Atomic::add(1, &_contentions);
 311 
 312   JFR_ONLY(JfrConditionalFlushWithStacktrace<EventJavaMonitorEnter> flush(jt);)
 313   EventJavaMonitorEnter event;
 314   if (event.should_commit()) {
 315     event.set_monitorClass(((oop)this->object())->klass());
 316     event.set_address((uintptr_t)(this->object_addr()));
 317   }
 318 
 319   { // Change java thread status to indicate blocked on monitor enter.
 320     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 321 
 322     Self->set_current_pending_monitor(this);
 323 
 324     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 325     if (JvmtiExport::should_post_monitor_contended_enter()) {
 326       JvmtiExport::post_monitor_contended_enter(jt, this);
 327 
 328       // The current thread does not yet own the monitor and does not
 329       // yet appear on any queues that would get it made the successor.
 330       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 331       // handler cannot accidentally consume an unpark() meant for the
 332       // ParkEvent associated with this ObjectMonitor.
 333     }
 334 
 335     OSThreadContendState osts(Self->osthread());
 336     ThreadBlockInVM tbivm(jt);
 337 
 338     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 339     for (;;) {
 340       jt->set_suspend_equivalent();
 341       // cleared by handle_special_suspend_equivalent_condition()
 342       // or java_suspend_self()
 343 
 344       EnterI(THREAD);
 345 
 346       if (!ExitSuspendEquivalent(jt)) break;
 347 
 348       // We have acquired the contended monitor, but while we were
 349       // waiting another thread suspended us. We don't want to enter
 350       // the monitor while suspended because that would surprise the
 351       // thread that suspended us.
 352       //
 353       _recursions = 0;
 354       _succ = NULL;
 355       exit(false, Self);
 356 
 357       jt->java_suspend_self();
 358     }
 359     Self->set_current_pending_monitor(NULL);
 360 
 361     // We cleared the pending monitor info since we've just gotten past
 362     // the enter-check-for-suspend dance and we now own the monitor free
 363     // and clear, i.e., it is no longer pending. The ThreadBlockInVM
 364     // destructor can go to a safepoint at the end of this block. If we
 365     // do a thread dump during that safepoint, then this thread will show
 366     // as having "-locked" the monitor, but the OS and java.lang.Thread
 367     // states will still report that the thread is blocked trying to
 368     // acquire it.
 369   }
 370 
 371   Atomic::dec(&_contentions);
 372   assert(_contentions >= 0, "must not be negative: contentions=%d", _contentions);
 373   Self->_Stalled = 0;
 374 
 375   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 376   assert(_recursions == 0, "invariant");
 377   assert(_owner == Self, "invariant");
 378   assert(_succ != Self, "invariant");
 379   assert(((oop)(object()))->mark() == markWord::encode(this), "invariant");
 380 
 381   // The thread -- now the owner -- is back in vm mode.
 382   // Report the glorious news via TI,DTrace and jvmstat.
 383   // The probe effect is non-trivial.  All the reportage occurs
 384   // while we hold the monitor, increasing the length of the critical
 385   // section.  Amdahl's parallel speedup law comes vividly into play.
 386   //
 387   // Another option might be to aggregate the events (thread local or
 388   // per-monitor aggregation) and defer reporting until a more opportune
 389   // time -- such as next time some thread encounters contention but has
 390   // yet to acquire the lock.  While spinning that thread could
 391   // spinning we could increment JVMStat counters, etc.
 392 
 393   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 394   if (JvmtiExport::should_post_monitor_contended_entered()) {
 395     JvmtiExport::post_monitor_contended_entered(jt, this);
 396 
 397     // The current thread already owns the monitor and is not going to
 398     // call park() for the remainder of the monitor enter protocol. So
 399     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 400     // event handler consumed an unpark() issued by the thread that
 401     // just exited the monitor.
 402   }
 403   if (event.should_commit()) {
 404     event.set_previousOwner((uintptr_t)_previous_owner_tid);
 405     event.commit();
 406   }
 407   OM_PERFDATA_OP(ContendedLockAttempts, inc());
 408 }
 409 
 410 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 411 // Callers must compensate as needed.
 412 
 413 int ObjectMonitor::TryLock(Thread * Self) {
 414   void * own = _owner;
 415   if (own != NULL) return 0;
 416   if (try_set_owner_from(Self, NULL) == NULL) {
 417     assert(_recursions == 0, "invariant");
 418     return 1;
 419   }
 420   // The lock had been free momentarily, but we lost the race to the lock.
 421   // Interference -- the CAS failed.
 422   // We can either return -1 or retry.
 423   // Retry doesn't make as much sense because the lock was just acquired.
 424   return -1;
 425 }
 426 
 427 // Install the displaced mark word (dmw) of a deflating ObjectMonitor
 428 // into the header of the object associated with the monitor. This
 429 // idempotent method is called by a thread that is deflating a
 430 // monitor and by other threads that have detected a race with the
 431 // deflation process.
 432 void ObjectMonitor::install_displaced_markword_in_object(const oop obj) {
 433   // This function must only be called when (owner == DEFLATER_MARKER
 434   // && ref_count <= 0), but we can't guarantee that here because
 435   // those values could change when the ObjectMonitor gets moved from
 436   // the global free list to a per-thread free list.
 437 
 438   guarantee(obj != NULL, "must be non-NULL");
 439   if (object() != obj) {
 440     // ObjectMonitor's object ref no longer refers to the target object
 441     // so the object's header has already been restored.
 442     return;
 443   }
 444 
 445   markWord dmw = header();
 446   if (dmw.value() == 0) {
 447     // ObjectMonitor's header/dmw has been cleared so the ObjectMonitor
 448     // has been deflated and taken off the global free list.
 449     return;
 450   }
 451 
 452   // A non-NULL dmw has to be either neutral (not locked and not marked)
 453   // or is already participating in this restoration protocol.
 454   assert(dmw.is_neutral() || (dmw.is_marked() && dmw.hash() == 0),
 455          "failed precondition: dmw=" INTPTR_FORMAT, dmw.value());
 456 
 457   markWord marked_dmw = markWord::zero();
 458   if (!dmw.is_marked() && dmw.hash() == 0) {
 459     // This dmw has not yet started the restoration protocol so we
 460     // mark a copy of the dmw to begin the protocol.
 461     // Note: A dmw with a hashcode does not take this code path.
 462     marked_dmw = dmw.set_marked();
 463 
 464     // All of the callers to this function can be racing with each
 465     // other trying to update the _header field.
 466     dmw = (markWord) Atomic::cmpxchg(marked_dmw, &_header, dmw);
 467     if (dmw.value() == 0) {
 468       // ObjectMonitor's header/dmw has been cleared so the object's
 469       // header has already been restored.
 470       return;
 471     }
 472     // The _header field is now marked. The winner's 'dmw' variable
 473     // contains the original, unmarked header/dmw value and any
 474     // losers have a marked header/dmw value that will be cleaned
 475     // up below.
 476   }
 477 
 478   if (dmw.is_marked()) {
 479     // Clear the mark from the header/dmw copy in preparation for
 480     // possible restoration from this thread.
 481     assert(dmw.hash() == 0, "hashcode must be 0: dmw=" INTPTR_FORMAT,
 482            dmw.value());
 483     dmw = dmw.set_unmarked();
 484   }
 485   assert(dmw.is_neutral(), "must be neutral: dmw=" INTPTR_FORMAT, dmw.value());
 486 
 487   // Install displaced mark word if the object's header still points
 488   // to this ObjectMonitor. All racing callers to this function will
 489   // reach this point, but only one can win.
 490   obj->cas_set_mark(dmw, markWord::encode(this));
 491 
 492   // Note: It does not matter which thread restored the header/dmw
 493   // into the object's header. The thread deflating the monitor just
 494   // wanted the object's header restored and it is. The threads that
 495   // detected a race with the deflation process also wanted the
 496   // object's header restored before they retry their operation and
 497   // because it is restored they will only retry once.
 498 }
 499 
 500 // Convert the fields used by is_busy() to a string that can be
 501 // used for diagnostic output.
 502 const char* ObjectMonitor::is_busy_to_string(stringStream* ss) {
 503   ss->print("is_busy: contentions=%d, waiters=%d, ", _contentions, _waiters);
 504   if (!AsyncDeflateIdleMonitors) {
 505     ss->print("owner=" INTPTR_FORMAT, p2i(_owner));
 506   } else if (_owner != DEFLATER_MARKER) {
 507     ss->print("owner=" INTPTR_FORMAT, p2i(_owner));
 508   } else {
 509     ss->print("owner=" INTPTR_FORMAT, NULL);
 510   }
 511   ss->print(", cxq=" INTPTR_FORMAT ", EntryList=" INTPTR_FORMAT, p2i(_cxq),
 512             p2i(_EntryList));
 513   return ss->base();
 514 }
 515 
 516 #define MAX_RECHECK_INTERVAL 1000
 517 
 518 void ObjectMonitor::EnterI(TRAPS) {
 519   ADIM_guarantee(ref_count() > 0, "must be positive: ref_count=%d", ref_count());
 520 
 521   Thread * const Self = THREAD;
 522   assert(Self->is_Java_thread(), "invariant");
 523   assert(((JavaThread *) Self)->thread_state() == _thread_blocked, "invariant");
 524 
 525   // Try the lock - TATAS
 526   if (TryLock (Self) > 0) {
 527     assert(_succ != Self, "invariant");
 528     assert(_owner == Self, "invariant");
 529     assert(_Responsible != Self, "invariant");
 530     return;
 531   }
 532 
 533   if (AsyncDeflateIdleMonitors &&
 534       try_set_owner_from(Self, DEFLATER_MARKER) == DEFLATER_MARKER) {
 535     // The deflation protocol finished the first part (setting owner),
 536     // but it failed the second part (making ref_count negative) and
 537     // bailed. Or the ObjectMonitor was async deflated and reused.
 538     // Acquired the monitor.
 539     assert(_succ != Self, "invariant");
 540     assert(_Responsible != Self, "invariant");
 541     return;
 542   }
 543 
 544   assert(InitDone, "Unexpectedly not initialized");
 545 
 546   // We try one round of spinning *before* enqueueing Self.
 547   //
 548   // If the _owner is ready but OFFPROC we could use a YieldTo()
 549   // operation to donate the remainder of this thread's quantum
 550   // to the owner.  This has subtle but beneficial affinity
 551   // effects.
 552 
 553   if (TrySpin(Self) > 0) {
 554     assert(_owner == Self, "invariant");
 555     assert(_succ != Self, "invariant");
 556     assert(_Responsible != Self, "invariant");
 557     return;
 558   }
 559 
 560   // The Spin failed -- Enqueue and park the thread ...
 561   assert(_succ != Self, "invariant");
 562   assert(_owner != Self, "invariant");
 563   assert(_Responsible != Self, "invariant");
 564 
 565   // Enqueue "Self" on ObjectMonitor's _cxq.
 566   //
 567   // Node acts as a proxy for Self.
 568   // As an aside, if were to ever rewrite the synchronization code mostly
 569   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 570   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 571   // as well as eliminate a subset of ABA issues.
 572   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 573 
 574   ObjectWaiter node(Self);
 575   Self->_ParkEvent->reset();
 576   node._prev   = (ObjectWaiter *) 0xBAD;
 577   node.TState  = ObjectWaiter::TS_CXQ;
 578 
 579   // Push "Self" onto the front of the _cxq.
 580   // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 581   // Note that spinning tends to reduce the rate at which threads
 582   // enqueue and dequeue on EntryList|cxq.
 583   ObjectWaiter * nxt;
 584   for (;;) {
 585     node._next = nxt = _cxq;
 586     if (Atomic::cmpxchg(&node, &_cxq, nxt) == nxt) break;
 587 
 588     // Interference - the CAS failed because _cxq changed.  Just retry.
 589     // As an optional optimization we retry the lock.
 590     if (TryLock (Self) > 0) {
 591       assert(_succ != Self, "invariant");
 592       assert(_owner == Self, "invariant");
 593       assert(_Responsible != Self, "invariant");
 594       return;
 595     }
 596   }
 597 
 598   // Check for cxq|EntryList edge transition to non-null.  This indicates
 599   // the onset of contention.  While contention persists exiting threads
 600   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 601   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 602   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 603   // arrange for one of the contending thread to use a timed park() operations
 604   // to detect and recover from the race.  (Stranding is form of progress failure
 605   // where the monitor is unlocked but all the contending threads remain parked).
 606   // That is, at least one of the contended threads will periodically poll _owner.
 607   // One of the contending threads will become the designated "Responsible" thread.
 608   // The Responsible thread uses a timed park instead of a normal indefinite park
 609   // operation -- it periodically wakes and checks for and recovers from potential
 610   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 611   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 612   // be responsible for a monitor.
 613   //
 614   // Currently, one of the contended threads takes on the added role of "Responsible".
 615   // A viable alternative would be to use a dedicated "stranding checker" thread
 616   // that periodically iterated over all the threads (or active monitors) and unparked
 617   // successors where there was risk of stranding.  This would help eliminate the
 618   // timer scalability issues we see on some platforms as we'd only have one thread
 619   // -- the checker -- parked on a timer.
 620 
 621   if (nxt == NULL && _EntryList == NULL) {
 622     // Try to assume the role of responsible thread for the monitor.
 623     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 624     Atomic::replace_if_null(Self, &_Responsible);
 625   }
 626 
 627   // The lock might have been released while this thread was occupied queueing
 628   // itself onto _cxq.  To close the race and avoid "stranding" and
 629   // progress-liveness failure we must resample-retry _owner before parking.
 630   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 631   // In this case the ST-MEMBAR is accomplished with CAS().
 632   //
 633   // TODO: Defer all thread state transitions until park-time.
 634   // Since state transitions are heavy and inefficient we'd like
 635   // to defer the state transitions until absolutely necessary,
 636   // and in doing so avoid some transitions ...
 637 
 638   int nWakeups = 0;
 639   int recheckInterval = 1;
 640 
 641   for (;;) {
 642 
 643     if (TryLock(Self) > 0) break;
 644     assert(_owner != Self, "invariant");
 645 
 646     // park self
 647     if (_Responsible == Self) {
 648       Self->_ParkEvent->park((jlong) recheckInterval);
 649       // Increase the recheckInterval, but clamp the value.
 650       recheckInterval *= 8;
 651       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 652         recheckInterval = MAX_RECHECK_INTERVAL;
 653       }
 654     } else {
 655       Self->_ParkEvent->park();
 656     }
 657 
 658     if (TryLock(Self) > 0) break;
 659 
 660     if (AsyncDeflateIdleMonitors &&
 661         try_set_owner_from(Self, DEFLATER_MARKER) == DEFLATER_MARKER) {
 662       // The deflation protocol finished the first part (setting owner),
 663       // but it failed the second part (making ref_count negative) and
 664       // bailed. Or the ObjectMonitor was async deflated and reused.
 665       // Acquired the monitor.
 666       break;
 667     }
 668 
 669     // The lock is still contested.
 670     // Keep a tally of the # of futile wakeups.
 671     // Note that the counter is not protected by a lock or updated by atomics.
 672     // That is by design - we trade "lossy" counters which are exposed to
 673     // races during updates for a lower probe effect.
 674 
 675     // This PerfData object can be used in parallel with a safepoint.
 676     // See the work around in PerfDataManager::destroy().
 677     OM_PERFDATA_OP(FutileWakeups, inc());
 678     ++nWakeups;
 679 
 680     // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 681     // We can defer clearing _succ until after the spin completes
 682     // TrySpin() must tolerate being called with _succ == Self.
 683     // Try yet another round of adaptive spinning.
 684     if (TrySpin(Self) > 0) break;
 685 
 686     // We can find that we were unpark()ed and redesignated _succ while
 687     // we were spinning.  That's harmless.  If we iterate and call park(),
 688     // park() will consume the event and return immediately and we'll
 689     // just spin again.  This pattern can repeat, leaving _succ to simply
 690     // spin on a CPU.
 691 
 692     if (_succ == Self) _succ = NULL;
 693 
 694     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 695     OrderAccess::fence();
 696   }
 697 
 698   // Egress :
 699   // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 700   // Normally we'll find Self on the EntryList .
 701   // From the perspective of the lock owner (this thread), the
 702   // EntryList is stable and cxq is prepend-only.
 703   // The head of cxq is volatile but the interior is stable.
 704   // In addition, Self.TState is stable.
 705 
 706   assert(_owner == Self, "invariant");
 707   assert(object() != NULL, "invariant");
 708   // I'd like to write:
 709   //   guarantee (((oop)(object()))->mark() == markWord::encode(this), "invariant") ;
 710   // but as we're at a safepoint that's not safe.
 711 
 712   UnlinkAfterAcquire(Self, &node);
 713   if (_succ == Self) _succ = NULL;
 714 
 715   assert(_succ != Self, "invariant");
 716   if (_Responsible == Self) {
 717     _Responsible = NULL;
 718     OrderAccess::fence(); // Dekker pivot-point
 719 
 720     // We may leave threads on cxq|EntryList without a designated
 721     // "Responsible" thread.  This is benign.  When this thread subsequently
 722     // exits the monitor it can "see" such preexisting "old" threads --
 723     // threads that arrived on the cxq|EntryList before the fence, above --
 724     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 725     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 726     // non-null and elect a new "Responsible" timer thread.
 727     //
 728     // This thread executes:
 729     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 730     //    LD cxq|EntryList               (in subsequent exit)
 731     //
 732     // Entering threads in the slow/contended path execute:
 733     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 734     //    The (ST cxq; MEMBAR) is accomplished with CAS().
 735     //
 736     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 737     // exit operation from floating above the ST Responsible=null.
 738   }
 739 
 740   // We've acquired ownership with CAS().
 741   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 742   // But since the CAS() this thread may have also stored into _succ,
 743   // EntryList, cxq or Responsible.  These meta-data updates must be
 744   // visible __before this thread subsequently drops the lock.
 745   // Consider what could occur if we didn't enforce this constraint --
 746   // STs to monitor meta-data and user-data could reorder with (become
 747   // visible after) the ST in exit that drops ownership of the lock.
 748   // Some other thread could then acquire the lock, but observe inconsistent
 749   // or old monitor meta-data and heap data.  That violates the JMM.
 750   // To that end, the 1-0 exit() operation must have at least STST|LDST
 751   // "release" barrier semantics.  Specifically, there must be at least a
 752   // STST|LDST barrier in exit() before the ST of null into _owner that drops
 753   // the lock.   The barrier ensures that changes to monitor meta-data and data
 754   // protected by the lock will be visible before we release the lock, and
 755   // therefore before some other thread (CPU) has a chance to acquire the lock.
 756   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 757   //
 758   // Critically, any prior STs to _succ or EntryList must be visible before
 759   // the ST of null into _owner in the *subsequent* (following) corresponding
 760   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 761   // execute a serializing instruction.
 762 
 763   return;
 764 }
 765 
 766 // ReenterI() is a specialized inline form of the latter half of the
 767 // contended slow-path from EnterI().  We use ReenterI() only for
 768 // monitor reentry in wait().
 769 //
 770 // In the future we should reconcile EnterI() and ReenterI().
 771 
 772 void ObjectMonitor::ReenterI(Thread * Self, ObjectWaiter * SelfNode) {
 773   ADIM_guarantee(ref_count() > 0, "must be positive: ref_count=%d", ref_count());
 774 
 775   assert(Self != NULL, "invariant");
 776   assert(SelfNode != NULL, "invariant");
 777   assert(SelfNode->_thread == Self, "invariant");
 778   assert(_waiters > 0, "invariant");
 779   assert(((oop)(object()))->mark() == markWord::encode(this), "invariant");
 780   assert(((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 781   JavaThread * jt = (JavaThread *) Self;
 782 
 783   int nWakeups = 0;
 784   for (;;) {
 785     ObjectWaiter::TStates v = SelfNode->TState;
 786     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
 787     assert(_owner != Self, "invariant");
 788 
 789     if (TryLock(Self) > 0) break;
 790     if (TrySpin(Self) > 0) break;
 791 
 792     if (AsyncDeflateIdleMonitors &&
 793         try_set_owner_from(Self, DEFLATER_MARKER) == DEFLATER_MARKER) {
 794       // The deflation protocol finished the first part (setting owner),
 795       // but it failed the second part (making ref_count negative) and
 796       // bailed. Or the ObjectMonitor was async deflated and reused.
 797       // Acquired the monitor.
 798       break;
 799     }
 800 
 801     // State transition wrappers around park() ...
 802     // ReenterI() wisely defers state transitions until
 803     // it's clear we must park the thread.
 804     {
 805       OSThreadContendState osts(Self->osthread());
 806       ThreadBlockInVM tbivm(jt);
 807 
 808       // cleared by handle_special_suspend_equivalent_condition()
 809       // or java_suspend_self()
 810       jt->set_suspend_equivalent();
 811       Self->_ParkEvent->park();
 812 
 813       // were we externally suspended while we were waiting?
 814       for (;;) {
 815         if (!ExitSuspendEquivalent(jt)) break;
 816         if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 817         jt->java_suspend_self();
 818         jt->set_suspend_equivalent();
 819       }
 820     }
 821 
 822     // Try again, but just so we distinguish between futile wakeups and
 823     // successful wakeups.  The following test isn't algorithmically
 824     // necessary, but it helps us maintain sensible statistics.
 825     if (TryLock(Self) > 0) break;
 826 
 827     // The lock is still contested.
 828     // Keep a tally of the # of futile wakeups.
 829     // Note that the counter is not protected by a lock or updated by atomics.
 830     // That is by design - we trade "lossy" counters which are exposed to
 831     // races during updates for a lower probe effect.
 832     ++nWakeups;
 833 
 834     // Assuming this is not a spurious wakeup we'll normally
 835     // find that _succ == Self.
 836     if (_succ == Self) _succ = NULL;
 837 
 838     // Invariant: after clearing _succ a contending thread
 839     // *must* retry  _owner before parking.
 840     OrderAccess::fence();
 841 
 842     // This PerfData object can be used in parallel with a safepoint.
 843     // See the work around in PerfDataManager::destroy().
 844     OM_PERFDATA_OP(FutileWakeups, inc());
 845   }
 846 
 847   // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 848   // Normally we'll find Self on the EntryList.
 849   // Unlinking from the EntryList is constant-time and atomic-free.
 850   // From the perspective of the lock owner (this thread), the
 851   // EntryList is stable and cxq is prepend-only.
 852   // The head of cxq is volatile but the interior is stable.
 853   // In addition, Self.TState is stable.
 854 
 855   assert(_owner == Self, "invariant");
 856   assert(((oop)(object()))->mark() == markWord::encode(this), "invariant");
 857   UnlinkAfterAcquire(Self, SelfNode);
 858   if (_succ == Self) _succ = NULL;
 859   assert(_succ != Self, "invariant");
 860   SelfNode->TState = ObjectWaiter::TS_RUN;
 861   OrderAccess::fence();      // see comments at the end of EnterI()
 862 }
 863 
 864 // By convention we unlink a contending thread from EntryList|cxq immediately
 865 // after the thread acquires the lock in ::enter().  Equally, we could defer
 866 // unlinking the thread until ::exit()-time.
 867 
 868 void ObjectMonitor::UnlinkAfterAcquire(Thread *Self, ObjectWaiter *SelfNode) {
 869   assert(_owner == Self, "invariant");
 870   assert(SelfNode->_thread == Self, "invariant");
 871 
 872   if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 873     // Normal case: remove Self from the DLL EntryList .
 874     // This is a constant-time operation.
 875     ObjectWaiter * nxt = SelfNode->_next;
 876     ObjectWaiter * prv = SelfNode->_prev;
 877     if (nxt != NULL) nxt->_prev = prv;
 878     if (prv != NULL) prv->_next = nxt;
 879     if (SelfNode == _EntryList) _EntryList = nxt;
 880     assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
 881     assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
 882   } else {
 883     assert(SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant");
 884     // Inopportune interleaving -- Self is still on the cxq.
 885     // This usually means the enqueue of self raced an exiting thread.
 886     // Normally we'll find Self near the front of the cxq, so
 887     // dequeueing is typically fast.  If needbe we can accelerate
 888     // this with some MCS/CHL-like bidirectional list hints and advisory
 889     // back-links so dequeueing from the interior will normally operate
 890     // in constant-time.
 891     // Dequeue Self from either the head (with CAS) or from the interior
 892     // with a linear-time scan and normal non-atomic memory operations.
 893     // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 894     // and then unlink Self from EntryList.  We have to drain eventually,
 895     // so it might as well be now.
 896 
 897     ObjectWaiter * v = _cxq;
 898     assert(v != NULL, "invariant");
 899     if (v != SelfNode || Atomic::cmpxchg(SelfNode->_next, &_cxq, v) != v) {
 900       // The CAS above can fail from interference IFF a "RAT" arrived.
 901       // In that case Self must be in the interior and can no longer be
 902       // at the head of cxq.
 903       if (v == SelfNode) {
 904         assert(_cxq != v, "invariant");
 905         v = _cxq;          // CAS above failed - start scan at head of list
 906       }
 907       ObjectWaiter * p;
 908       ObjectWaiter * q = NULL;
 909       for (p = v; p != NULL && p != SelfNode; p = p->_next) {
 910         q = p;
 911         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
 912       }
 913       assert(v != SelfNode, "invariant");
 914       assert(p == SelfNode, "Node not found on cxq");
 915       assert(p != _cxq, "invariant");
 916       assert(q != NULL, "invariant");
 917       assert(q->_next == p, "invariant");
 918       q->_next = p->_next;
 919     }
 920   }
 921 
 922 #ifdef ASSERT
 923   // Diagnostic hygiene ...
 924   SelfNode->_prev  = (ObjectWaiter *) 0xBAD;
 925   SelfNode->_next  = (ObjectWaiter *) 0xBAD;
 926   SelfNode->TState = ObjectWaiter::TS_RUN;
 927 #endif
 928 }
 929 
 930 // -----------------------------------------------------------------------------
 931 // Exit support
 932 //
 933 // exit()
 934 // ~~~~~~
 935 // Note that the collector can't reclaim the objectMonitor or deflate
 936 // the object out from underneath the thread calling ::exit() as the
 937 // thread calling ::exit() never transitions to a stable state.
 938 // This inhibits GC, which in turn inhibits asynchronous (and
 939 // inopportune) reclamation of "this".
 940 //
 941 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 942 // There's one exception to the claim above, however.  EnterI() can call
 943 // exit() to drop a lock if the acquirer has been externally suspended.
 944 // In that case exit() is called with _thread_state as _thread_blocked,
 945 // but the monitor's _contentions field is > 0, which inhibits reclamation.
 946 //
 947 // 1-0 exit
 948 // ~~~~~~~~
 949 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 950 // the fast-path operators have been optimized so the common ::exit()
 951 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock().
 952 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 953 // greatly improves latency -- MEMBAR and CAS having considerable local
 954 // latency on modern processors -- but at the cost of "stranding".  Absent the
 955 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 956 // ::enter() path, resulting in the entering thread being stranding
 957 // and a progress-liveness failure.   Stranding is extremely rare.
 958 // We use timers (timed park operations) & periodic polling to detect
 959 // and recover from stranding.  Potentially stranded threads periodically
 960 // wake up and poll the lock.  See the usage of the _Responsible variable.
 961 //
 962 // The CAS() in enter provides for safety and exclusion, while the CAS or
 963 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 964 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding.
 965 // We detect and recover from stranding with timers.
 966 //
 967 // If a thread transiently strands it'll park until (a) another
 968 // thread acquires the lock and then drops the lock, at which time the
 969 // exiting thread will notice and unpark the stranded thread, or, (b)
 970 // the timer expires.  If the lock is high traffic then the stranding latency
 971 // will be low due to (a).  If the lock is low traffic then the odds of
 972 // stranding are lower, although the worst-case stranding latency
 973 // is longer.  Critically, we don't want to put excessive load in the
 974 // platform's timer subsystem.  We want to minimize both the timer injection
 975 // rate (timers created/sec) as well as the number of timers active at
 976 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 977 // the integral of the # of active timers at any instant over time).
 978 // Both impinge on OS scalability.  Given that, at most one thread parked on
 979 // a monitor will use a timer.
 980 //
 981 // There is also the risk of a futile wake-up. If we drop the lock
 982 // another thread can reacquire the lock immediately, and we can
 983 // then wake a thread unnecessarily. This is benign, and we've
 984 // structured the code so the windows are short and the frequency
 985 // of such futile wakups is low.
 986 
 987 void ObjectMonitor::exit(bool not_suspended, TRAPS) {
 988   Thread * const Self = THREAD;
 989   if (THREAD != _owner) {
 990     void* cur = _owner;
 991     if (THREAD->is_lock_owned((address)cur)) {
 992       assert(_recursions == 0, "invariant");
 993       set_owner_from_BasicLock(Self, cur);  // Convert from BasicLock* to Thread*.
 994       _recursions = 0;
 995     } else {
 996       // Apparent unbalanced locking ...
 997       // Naively we'd like to throw IllegalMonitorStateException.
 998       // As a practical matter we can neither allocate nor throw an
 999       // exception as ::exit() can be called from leaf routines.
1000       // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
1001       // Upon deeper reflection, however, in a properly run JVM the only
1002       // way we should encounter this situation is in the presence of
1003       // unbalanced JNI locking. TODO: CheckJNICalls.
1004       // See also: CR4414101
1005       tty->print_cr("ERROR: ObjectMonitor::exit(): thread=" INTPTR_FORMAT
1006                     " is exiting an ObjectMonitor it does not own.",
1007                     p2i(THREAD));
1008       tty->print_cr("The imbalance is possibly caused by JNI locking.");
1009       print_debug_style_on(tty);
1010       // Changing this from an assert() to ADIM_guarantee() may run
1011       // afoul of any test that is inducing non-balanced JNI locking.
1012       ADIM_guarantee(false, "Non-balanced monitor enter/exit!");
1013       return;
1014     }
1015   }
1016 
1017   if (_recursions != 0) {
1018     _recursions--;        // this is simple recursive enter
1019     return;
1020   }
1021 
1022   // Invariant: after setting Responsible=null an thread must execute
1023   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
1024   _Responsible = NULL;
1025 
1026 #if INCLUDE_JFR
1027   // get the owner's thread id for the MonitorEnter event
1028   // if it is enabled and the thread isn't suspended
1029   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
1030     _previous_owner_tid = JFR_THREAD_ID(Self);
1031   }
1032 #endif
1033 
1034   for (;;) {
1035     assert(THREAD == _owner, "invariant");
1036 
1037     // release semantics: prior loads and stores from within the critical section
1038     // must not float (reorder) past the following store that drops the lock.
1039     // On SPARC that requires MEMBAR #loadstore|#storestore.
1040     // But of course in TSO #loadstore|#storestore is not required.
1041     if (AsyncDeflateIdleMonitors) {
1042       set_owner_from(NULL, Self);
1043     } else {
1044       OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock
1045       OrderAccess::storeload();                        // See if we need to wake a successor
1046     }
1047     if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1048       return;
1049     }
1050     // Other threads are blocked trying to acquire the lock.
1051 
1052     // Normally the exiting thread is responsible for ensuring succession,
1053     // but if other successors are ready or other entering threads are spinning
1054     // then this thread can simply store NULL into _owner and exit without
1055     // waking a successor.  The existence of spinners or ready successors
1056     // guarantees proper succession (liveness).  Responsibility passes to the
1057     // ready or running successors.  The exiting thread delegates the duty.
1058     // More precisely, if a successor already exists this thread is absolved
1059     // of the responsibility of waking (unparking) one.
1060     //
1061     // The _succ variable is critical to reducing futile wakeup frequency.
1062     // _succ identifies the "heir presumptive" thread that has been made
1063     // ready (unparked) but that has not yet run.  We need only one such
1064     // successor thread to guarantee progress.
1065     // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
1066     // section 3.3 "Futile Wakeup Throttling" for details.
1067     //
1068     // Note that spinners in Enter() also set _succ non-null.
1069     // In the current implementation spinners opportunistically set
1070     // _succ so that exiting threads might avoid waking a successor.
1071     // Another less appealing alternative would be for the exiting thread
1072     // to drop the lock and then spin briefly to see if a spinner managed
1073     // to acquire the lock.  If so, the exiting thread could exit
1074     // immediately without waking a successor, otherwise the exiting
1075     // thread would need to dequeue and wake a successor.
1076     // (Note that we'd need to make the post-drop spin short, but no
1077     // shorter than the worst-case round-trip cache-line migration time.
1078     // The dropped lock needs to become visible to the spinner, and then
1079     // the acquisition of the lock by the spinner must become visible to
1080     // the exiting thread).
1081 
1082     // It appears that an heir-presumptive (successor) must be made ready.
1083     // Only the current lock owner can manipulate the EntryList or
1084     // drain _cxq, so we need to reacquire the lock.  If we fail
1085     // to reacquire the lock the responsibility for ensuring succession
1086     // falls to the new owner.
1087     //
1088     if (try_set_owner_from(Self, NULL) != NULL) {
1089       return;
1090     }
1091 
1092     guarantee(_owner == THREAD, "invariant");
1093 
1094     ObjectWaiter * w = NULL;
1095 
1096     w = _EntryList;
1097     if (w != NULL) {
1098       // I'd like to write: guarantee (w->_thread != Self).
1099       // But in practice an exiting thread may find itself on the EntryList.
1100       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1101       // then calls exit().  Exit release the lock by setting O._owner to NULL.
1102       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1103       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1104       // release the lock "O".  T2 resumes immediately after the ST of null into
1105       // _owner, above.  T2 notices that the EntryList is populated, so it
1106       // reacquires the lock and then finds itself on the EntryList.
1107       // Given all that, we have to tolerate the circumstance where "w" is
1108       // associated with Self.
1109       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1110       ExitEpilog(Self, w);
1111       return;
1112     }
1113 
1114     // If we find that both _cxq and EntryList are null then just
1115     // re-run the exit protocol from the top.
1116     w = _cxq;
1117     if (w == NULL) continue;
1118 
1119     // Drain _cxq into EntryList - bulk transfer.
1120     // First, detach _cxq.
1121     // The following loop is tantamount to: w = swap(&cxq, NULL)
1122     for (;;) {
1123       assert(w != NULL, "Invariant");
1124       ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1125       if (u == w) break;
1126       w = u;
1127     }
1128 
1129     assert(w != NULL, "invariant");
1130     assert(_EntryList == NULL, "invariant");
1131 
1132     // Convert the LIFO SLL anchored by _cxq into a DLL.
1133     // The list reorganization step operates in O(LENGTH(w)) time.
1134     // It's critical that this step operate quickly as
1135     // "Self" still holds the outer-lock, restricting parallelism
1136     // and effectively lengthening the critical section.
1137     // Invariant: s chases t chases u.
1138     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1139     // we have faster access to the tail.
1140 
1141     _EntryList = w;
1142     ObjectWaiter * q = NULL;
1143     ObjectWaiter * p;
1144     for (p = w; p != NULL; p = p->_next) {
1145       guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1146       p->TState = ObjectWaiter::TS_ENTER;
1147       p->_prev = q;
1148       q = p;
1149     }
1150 
1151     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1152     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1153 
1154     // See if we can abdicate to a spinner instead of waking a thread.
1155     // A primary goal of the implementation is to reduce the
1156     // context-switch rate.
1157     if (_succ != NULL) continue;
1158 
1159     w = _EntryList;
1160     if (w != NULL) {
1161       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1162       ExitEpilog(Self, w);
1163       return;
1164     }
1165   }
1166 }
1167 
1168 // ExitSuspendEquivalent:
1169 // A faster alternate to handle_special_suspend_equivalent_condition()
1170 //
1171 // handle_special_suspend_equivalent_condition() unconditionally
1172 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1173 // operations have high latency.  Note that in ::enter() we call HSSEC
1174 // while holding the monitor, so we effectively lengthen the critical sections.
1175 //
1176 // There are a number of possible solutions:
1177 //
1178 // A.  To ameliorate the problem we might also defer state transitions
1179 //     to as late as possible -- just prior to parking.
1180 //     Given that, we'd call HSSEC after having returned from park(),
1181 //     but before attempting to acquire the monitor.  This is only a
1182 //     partial solution.  It avoids calling HSSEC while holding the
1183 //     monitor (good), but it still increases successor reacquisition latency --
1184 //     the interval between unparking a successor and the time the successor
1185 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1186 //     If we use this technique we can also avoid EnterI()-exit() loop
1187 //     in ::enter() where we iteratively drop the lock and then attempt
1188 //     to reacquire it after suspending.
1189 //
1190 // B.  In the future we might fold all the suspend bits into a
1191 //     composite per-thread suspend flag and then update it with CAS().
1192 //     Alternately, a Dekker-like mechanism with multiple variables
1193 //     would suffice:
1194 //       ST Self->_suspend_equivalent = false
1195 //       MEMBAR
1196 //       LD Self_>_suspend_flags
1197 
1198 bool ObjectMonitor::ExitSuspendEquivalent(JavaThread * jSelf) {
1199   return jSelf->handle_special_suspend_equivalent_condition();
1200 }
1201 
1202 
1203 void ObjectMonitor::ExitEpilog(Thread * Self, ObjectWaiter * Wakee) {
1204   assert(_owner == Self, "invariant");
1205 
1206   // Exit protocol:
1207   // 1. ST _succ = wakee
1208   // 2. membar #loadstore|#storestore;
1209   // 2. ST _owner = NULL
1210   // 3. unpark(wakee)
1211 
1212   _succ = Wakee->_thread;
1213   ParkEvent * Trigger = Wakee->_event;
1214 
1215   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1216   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1217   // out-of-scope (non-extant).
1218   Wakee  = NULL;
1219 
1220   // Drop the lock
1221   if (AsyncDeflateIdleMonitors) {
1222     set_owner_from(NULL, Self);
1223   } else {
1224     OrderAccess::release_store(&_owner, (void*)NULL);
1225     OrderAccess::fence();                               // ST _owner vs LD in unpark()
1226   }
1227 
1228   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1229   Trigger->unpark();
1230 
1231   // Maintain stats and report events to JVMTI
1232   OM_PERFDATA_OP(Parks, inc());
1233 }
1234 
1235 
1236 // -----------------------------------------------------------------------------
1237 // Class Loader deadlock handling.
1238 //
1239 // complete_exit exits a lock returning recursion count
1240 // complete_exit/reenter operate as a wait without waiting
1241 // complete_exit requires an inflated monitor
1242 // The _owner field is not always the Thread addr even with an
1243 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1244 // thread due to contention.
1245 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1246   Thread * const Self = THREAD;
1247   assert(Self->is_Java_thread(), "Must be Java thread!");
1248   JavaThread *jt = (JavaThread *)THREAD;
1249 
1250   assert(InitDone, "Unexpectedly not initialized");
1251 
1252   if (THREAD != _owner) {
1253     void* cur = _owner;
1254     if (THREAD->is_lock_owned((address)cur)) {
1255       assert(_recursions == 0, "internal state error");
1256       set_owner_from_BasicLock(Self, cur);  // Convert from BasicLock* to Thread*.
1257       _recursions = 0;
1258     }
1259   }
1260 
1261   guarantee(Self == _owner, "complete_exit not owner");
1262   intptr_t save = _recursions; // record the old recursion count
1263   _recursions = 0;        // set the recursion level to be 0
1264   exit(true, Self);           // exit the monitor
1265   guarantee(_owner != Self, "invariant");
1266   return save;
1267 }
1268 
1269 // reenter() enters a lock and sets recursion count
1270 // complete_exit/reenter operate as a wait without waiting
1271 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1272   Thread * const Self = THREAD;
1273   assert(Self->is_Java_thread(), "Must be Java thread!");
1274   JavaThread *jt = (JavaThread *)THREAD;
1275 
1276   guarantee(_owner != Self, "reenter already owner");
1277   enter(THREAD);
1278   // Entered the monitor.
1279   guarantee(_recursions == 0, "reenter recursion");
1280   _recursions = recursions;
1281 }
1282 
1283 // Checks that the current THREAD owns this monitor and causes an
1284 // immediate return if it doesn't. We don't use the CHECK macro
1285 // because we want the IMSE to be the only exception that is thrown
1286 // from the call site when false is returned. Any other pending
1287 // exception is ignored.
1288 #define CHECK_OWNER()                                                  \
1289   do {                                                                 \
1290     if (!check_owner(THREAD)) {                                        \
1291        assert(HAS_PENDING_EXCEPTION, "expected a pending IMSE here."); \
1292        return;                                                         \
1293      }                                                                 \
1294   } while (false)
1295 
1296 // Returns true if the specified thread owns the ObjectMonitor.
1297 // Otherwise returns false and throws IllegalMonitorStateException
1298 // (IMSE). If there is a pending exception and the specified thread
1299 // is not the owner, that exception will be replaced by the IMSE.
1300 bool ObjectMonitor::check_owner(Thread* THREAD) {
1301   if (_owner == THREAD) {
1302     return true;
1303   }
1304   void* cur = _owner;
1305   if (THREAD->is_lock_owned((address)cur)) {
1306     set_owner_from_BasicLock(THREAD, cur);  // Convert from BasicLock* to Thread*.
1307     _recursions = 0;
1308     return true;
1309   }
1310   THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(),
1311              "current thread is not owner", false);
1312 }
1313 
1314 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1315                                     ObjectMonitor* monitor,
1316                                     jlong notifier_tid,
1317                                     jlong timeout,
1318                                     bool timedout) {
1319   assert(event != NULL, "invariant");
1320   assert(monitor != NULL, "invariant");
1321   event->set_monitorClass(((oop)monitor->object())->klass());
1322   event->set_timeout(timeout);
1323   event->set_address((uintptr_t)monitor->object_addr());
1324   event->set_notifier(notifier_tid);
1325   event->set_timedOut(timedout);
1326   event->commit();
1327 }
1328 
1329 // -----------------------------------------------------------------------------
1330 // Wait/Notify/NotifyAll
1331 //
1332 // Note: a subset of changes to ObjectMonitor::wait()
1333 // will need to be replicated in complete_exit
1334 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1335   Thread * const Self = THREAD;
1336   assert(Self->is_Java_thread(), "Must be Java thread!");
1337   JavaThread *jt = (JavaThread *)THREAD;
1338 
1339   assert(InitDone, "Unexpectedly not initialized");
1340 
1341   CHECK_OWNER();  // Throws IMSE if not owner.
1342 
1343   EventJavaMonitorWait event;
1344 
1345   // check for a pending interrupt
1346   if (interruptible && jt->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1347     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1348     if (JvmtiExport::should_post_monitor_waited()) {
1349       // Note: 'false' parameter is passed here because the
1350       // wait was not timed out due to thread interrupt.
1351       JvmtiExport::post_monitor_waited(jt, this, false);
1352 
1353       // In this short circuit of the monitor wait protocol, the
1354       // current thread never drops ownership of the monitor and
1355       // never gets added to the wait queue so the current thread
1356       // cannot be made the successor. This means that the
1357       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1358       // consume an unpark() meant for the ParkEvent associated with
1359       // this ObjectMonitor.
1360     }
1361     if (event.should_commit()) {
1362       post_monitor_wait_event(&event, this, 0, millis, false);
1363     }
1364     THROW(vmSymbols::java_lang_InterruptedException());
1365     return;
1366   }
1367 
1368   assert(Self->_Stalled == 0, "invariant");
1369   Self->_Stalled = intptr_t(this);
1370   jt->set_current_waiting_monitor(this);
1371 
1372   // create a node to be put into the queue
1373   // Critically, after we reset() the event but prior to park(), we must check
1374   // for a pending interrupt.
1375   ObjectWaiter node(Self);
1376   node.TState = ObjectWaiter::TS_WAIT;
1377   Self->_ParkEvent->reset();
1378   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1379 
1380   // Enter the waiting queue, which is a circular doubly linked list in this case
1381   // but it could be a priority queue or any data structure.
1382   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1383   // by the the owner of the monitor *except* in the case where park()
1384   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1385   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1386 
1387   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1388   AddWaiter(&node);
1389   Thread::SpinRelease(&_WaitSetLock);
1390 
1391   _Responsible = NULL;
1392 
1393   intptr_t save = _recursions; // record the old recursion count
1394   _waiters++;                  // increment the number of waiters
1395   _recursions = 0;             // set the recursion level to be 1
1396   exit(true, Self);                    // exit the monitor
1397   guarantee(_owner != Self, "invariant");
1398 
1399   // The thread is on the WaitSet list - now park() it.
1400   // On MP systems it's conceivable that a brief spin before we park
1401   // could be profitable.
1402   //
1403   // TODO-FIXME: change the following logic to a loop of the form
1404   //   while (!timeout && !interrupted && _notified == 0) park()
1405 
1406   int ret = OS_OK;
1407   int WasNotified = 0;
1408   { // State transition wrappers
1409     OSThread* osthread = Self->osthread();
1410     OSThreadWaitState osts(osthread, true);
1411     {
1412       ThreadBlockInVM tbivm(jt);
1413       // Thread is in thread_blocked state and oop access is unsafe.
1414       jt->set_suspend_equivalent();
1415 
1416       if (interruptible && (jt->is_interrupted(false) || HAS_PENDING_EXCEPTION)) {
1417         // Intentionally empty
1418       } else if (node._notified == 0) {
1419         if (millis <= 0) {
1420           Self->_ParkEvent->park();
1421         } else {
1422           ret = Self->_ParkEvent->park(millis);
1423         }
1424       }
1425 
1426       // were we externally suspended while we were waiting?
1427       if (ExitSuspendEquivalent (jt)) {
1428         // TODO-FIXME: add -- if succ == Self then succ = null.
1429         jt->java_suspend_self();
1430       }
1431 
1432     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1433 
1434     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1435     // from the WaitSet to the EntryList.
1436     // See if we need to remove Node from the WaitSet.
1437     // We use double-checked locking to avoid grabbing _WaitSetLock
1438     // if the thread is not on the wait queue.
1439     //
1440     // Note that we don't need a fence before the fetch of TState.
1441     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1442     // written by the is thread. (perhaps the fetch might even be satisfied
1443     // by a look-aside into the processor's own store buffer, although given
1444     // the length of the code path between the prior ST and this load that's
1445     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1446     // then we'll acquire the lock and then re-fetch a fresh TState value.
1447     // That is, we fail toward safety.
1448 
1449     if (node.TState == ObjectWaiter::TS_WAIT) {
1450       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1451       if (node.TState == ObjectWaiter::TS_WAIT) {
1452         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1453         assert(node._notified == 0, "invariant");
1454         node.TState = ObjectWaiter::TS_RUN;
1455       }
1456       Thread::SpinRelease(&_WaitSetLock);
1457     }
1458 
1459     // The thread is now either on off-list (TS_RUN),
1460     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1461     // The Node's TState variable is stable from the perspective of this thread.
1462     // No other threads will asynchronously modify TState.
1463     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1464     OrderAccess::loadload();
1465     if (_succ == Self) _succ = NULL;
1466     WasNotified = node._notified;
1467 
1468     // Reentry phase -- reacquire the monitor.
1469     // re-enter contended monitor after object.wait().
1470     // retain OBJECT_WAIT state until re-enter successfully completes
1471     // Thread state is thread_in_vm and oop access is again safe,
1472     // although the raw address of the object may have changed.
1473     // (Don't cache naked oops over safepoints, of course).
1474 
1475     // post monitor waited event. Note that this is past-tense, we are done waiting.
1476     if (JvmtiExport::should_post_monitor_waited()) {
1477       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1478 
1479       if (node._notified != 0 && _succ == Self) {
1480         // In this part of the monitor wait-notify-reenter protocol it
1481         // is possible (and normal) for another thread to do a fastpath
1482         // monitor enter-exit while this thread is still trying to get
1483         // to the reenter portion of the protocol.
1484         //
1485         // The ObjectMonitor was notified and the current thread is
1486         // the successor which also means that an unpark() has already
1487         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1488         // consume the unpark() that was done when the successor was
1489         // set because the same ParkEvent is shared between Java
1490         // monitors and JVM/TI RawMonitors (for now).
1491         //
1492         // We redo the unpark() to ensure forward progress, i.e., we
1493         // don't want all pending threads hanging (parked) with none
1494         // entering the unlocked monitor.
1495         node._event->unpark();
1496       }
1497     }
1498 
1499     if (event.should_commit()) {
1500       post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1501     }
1502 
1503     OrderAccess::fence();
1504 
1505     assert(Self->_Stalled != 0, "invariant");
1506     Self->_Stalled = 0;
1507 
1508     assert(_owner != Self, "invariant");
1509     ObjectWaiter::TStates v = node.TState;
1510     if (v == ObjectWaiter::TS_RUN) {
1511       enter(Self);
1512     } else {
1513       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1514       ReenterI(Self, &node);
1515       node.wait_reenter_end(this);
1516     }
1517 
1518     // Self has reacquired the lock.
1519     // Lifecycle - the node representing Self must not appear on any queues.
1520     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1521     // want residual elements associated with this thread left on any lists.
1522     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1523     assert(_owner == Self, "invariant");
1524     assert(_succ != Self, "invariant");
1525   } // OSThreadWaitState()
1526 
1527   jt->set_current_waiting_monitor(NULL);
1528 
1529   guarantee(_recursions == 0, "invariant");
1530   _recursions = save;     // restore the old recursion count
1531   _waiters--;             // decrement the number of waiters
1532 
1533   // Verify a few postconditions
1534   assert(_owner == Self, "invariant");
1535   assert(_succ != Self, "invariant");
1536   assert(((oop)(object()))->mark() == markWord::encode(this), "invariant");
1537 
1538   // check if the notification happened
1539   if (!WasNotified) {
1540     // no, it could be timeout or Thread.interrupt() or both
1541     // check for interrupt event, otherwise it is timeout
1542     if (interruptible && jt->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1543       THROW(vmSymbols::java_lang_InterruptedException());
1544     }
1545   }
1546 
1547   // NOTE: Spurious wake up will be consider as timeout.
1548   // Monitor notify has precedence over thread interrupt.
1549 }
1550 
1551 
1552 // Consider:
1553 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1554 // then instead of transferring a thread from the WaitSet to the EntryList
1555 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1556 
1557 void ObjectMonitor::INotify(Thread * Self) {
1558   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1559   ObjectWaiter * iterator = DequeueWaiter();
1560   if (iterator != NULL) {
1561     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1562     guarantee(iterator->_notified == 0, "invariant");
1563     // Disposition - what might we do with iterator ?
1564     // a.  add it directly to the EntryList - either tail (policy == 1)
1565     //     or head (policy == 0).
1566     // b.  push it onto the front of the _cxq (policy == 2).
1567     // For now we use (b).
1568 
1569     iterator->TState = ObjectWaiter::TS_ENTER;
1570 
1571     iterator->_notified = 1;
1572     iterator->_notifier_tid = JFR_THREAD_ID(Self);
1573 
1574     ObjectWaiter * list = _EntryList;
1575     if (list != NULL) {
1576       assert(list->_prev == NULL, "invariant");
1577       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1578       assert(list != iterator, "invariant");
1579     }
1580 
1581     // prepend to cxq
1582     if (list == NULL) {
1583       iterator->_next = iterator->_prev = NULL;
1584       _EntryList = iterator;
1585     } else {
1586       iterator->TState = ObjectWaiter::TS_CXQ;
1587       for (;;) {
1588         ObjectWaiter * front = _cxq;
1589         iterator->_next = front;
1590         if (Atomic::cmpxchg(iterator, &_cxq, front) == front) {
1591           break;
1592         }
1593       }
1594     }
1595 
1596     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1597     // move the add-to-EntryList operation, above, outside the critical section
1598     // protected by _WaitSetLock.  In practice that's not useful.  With the
1599     // exception of  wait() timeouts and interrupts the monitor owner
1600     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1601     // on _WaitSetLock so it's not profitable to reduce the length of the
1602     // critical section.
1603 
1604     iterator->wait_reenter_begin(this);
1605   }
1606   Thread::SpinRelease(&_WaitSetLock);
1607 }
1608 
1609 // Consider: a not-uncommon synchronization bug is to use notify() when
1610 // notifyAll() is more appropriate, potentially resulting in stranded
1611 // threads; this is one example of a lost wakeup. A useful diagnostic
1612 // option is to force all notify() operations to behave as notifyAll().
1613 //
1614 // Note: We can also detect many such problems with a "minimum wait".
1615 // When the "minimum wait" is set to a small non-zero timeout value
1616 // and the program does not hang whereas it did absent "minimum wait",
1617 // that suggests a lost wakeup bug.
1618 
1619 void ObjectMonitor::notify(TRAPS) {
1620   CHECK_OWNER();  // Throws IMSE if not owner.
1621   if (_WaitSet == NULL) {
1622     return;
1623   }
1624   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1625   INotify(THREAD);
1626   OM_PERFDATA_OP(Notifications, inc(1));
1627 }
1628 
1629 
1630 // The current implementation of notifyAll() transfers the waiters one-at-a-time
1631 // from the waitset to the EntryList. This could be done more efficiently with a
1632 // single bulk transfer but in practice it's not time-critical. Beware too,
1633 // that in prepend-mode we invert the order of the waiters. Let's say that the
1634 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1635 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1636 
1637 void ObjectMonitor::notifyAll(TRAPS) {
1638   CHECK_OWNER();  // Throws IMSE if not owner.
1639   if (_WaitSet == NULL) {
1640     return;
1641   }
1642 
1643   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1644   int tally = 0;
1645   while (_WaitSet != NULL) {
1646     tally++;
1647     INotify(THREAD);
1648   }
1649 
1650   OM_PERFDATA_OP(Notifications, inc(tally));
1651 }
1652 
1653 // -----------------------------------------------------------------------------
1654 // Adaptive Spinning Support
1655 //
1656 // Adaptive spin-then-block - rational spinning
1657 //
1658 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1659 // algorithm.  On high order SMP systems it would be better to start with
1660 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1661 // a contending thread could enqueue itself on the cxq and then spin locally
1662 // on a thread-specific variable such as its ParkEvent._Event flag.
1663 // That's left as an exercise for the reader.  Note that global spinning is
1664 // not problematic on Niagara, as the L2 cache serves the interconnect and
1665 // has both low latency and massive bandwidth.
1666 //
1667 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1668 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1669 // (duration) or we can fix the count at approximately the duration of
1670 // a context switch and vary the frequency.   Of course we could also
1671 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1672 // For a description of 'Adaptive spin-then-block mutual exclusion in
1673 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1674 //
1675 // This implementation varies the duration "D", where D varies with
1676 // the success rate of recent spin attempts. (D is capped at approximately
1677 // length of a round-trip context switch).  The success rate for recent
1678 // spin attempts is a good predictor of the success rate of future spin
1679 // attempts.  The mechanism adapts automatically to varying critical
1680 // section length (lock modality), system load and degree of parallelism.
1681 // D is maintained per-monitor in _SpinDuration and is initialized
1682 // optimistically.  Spin frequency is fixed at 100%.
1683 //
1684 // Note that _SpinDuration is volatile, but we update it without locks
1685 // or atomics.  The code is designed so that _SpinDuration stays within
1686 // a reasonable range even in the presence of races.  The arithmetic
1687 // operations on _SpinDuration are closed over the domain of legal values,
1688 // so at worst a race will install and older but still legal value.
1689 // At the very worst this introduces some apparent non-determinism.
1690 // We might spin when we shouldn't or vice-versa, but since the spin
1691 // count are relatively short, even in the worst case, the effect is harmless.
1692 //
1693 // Care must be taken that a low "D" value does not become an
1694 // an absorbing state.  Transient spinning failures -- when spinning
1695 // is overall profitable -- should not cause the system to converge
1696 // on low "D" values.  We want spinning to be stable and predictable
1697 // and fairly responsive to change and at the same time we don't want
1698 // it to oscillate, become metastable, be "too" non-deterministic,
1699 // or converge on or enter undesirable stable absorbing states.
1700 //
1701 // We implement a feedback-based control system -- using past behavior
1702 // to predict future behavior.  We face two issues: (a) if the
1703 // input signal is random then the spin predictor won't provide optimal
1704 // results, and (b) if the signal frequency is too high then the control
1705 // system, which has some natural response lag, will "chase" the signal.
1706 // (b) can arise from multimodal lock hold times.  Transient preemption
1707 // can also result in apparent bimodal lock hold times.
1708 // Although sub-optimal, neither condition is particularly harmful, as
1709 // in the worst-case we'll spin when we shouldn't or vice-versa.
1710 // The maximum spin duration is rather short so the failure modes aren't bad.
1711 // To be conservative, I've tuned the gain in system to bias toward
1712 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1713 // "rings" or oscillates between spinning and not spinning.  This happens
1714 // when spinning is just on the cusp of profitability, however, so the
1715 // situation is not dire.  The state is benign -- there's no need to add
1716 // hysteresis control to damp the transition rate between spinning and
1717 // not spinning.
1718 
1719 // Spinning: Fixed frequency (100%), vary duration
1720 int ObjectMonitor::TrySpin(Thread * Self) {
1721   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1722   int ctr = Knob_FixedSpin;
1723   if (ctr != 0) {
1724     while (--ctr >= 0) {
1725       if (TryLock(Self) > 0) return 1;
1726       SpinPause();
1727     }
1728     return 0;
1729   }
1730 
1731   for (ctr = Knob_PreSpin + 1; --ctr >= 0;) {
1732     if (TryLock(Self) > 0) {
1733       // Increase _SpinDuration ...
1734       // Note that we don't clamp SpinDuration precisely at SpinLimit.
1735       // Raising _SpurDuration to the poverty line is key.
1736       int x = _SpinDuration;
1737       if (x < Knob_SpinLimit) {
1738         if (x < Knob_Poverty) x = Knob_Poverty;
1739         _SpinDuration = x + Knob_BonusB;
1740       }
1741       return 1;
1742     }
1743     SpinPause();
1744   }
1745 
1746   // Admission control - verify preconditions for spinning
1747   //
1748   // We always spin a little bit, just to prevent _SpinDuration == 0 from
1749   // becoming an absorbing state.  Put another way, we spin briefly to
1750   // sample, just in case the system load, parallelism, contention, or lock
1751   // modality changed.
1752   //
1753   // Consider the following alternative:
1754   // Periodically set _SpinDuration = _SpinLimit and try a long/full
1755   // spin attempt.  "Periodically" might mean after a tally of
1756   // the # of failed spin attempts (or iterations) reaches some threshold.
1757   // This takes us into the realm of 1-out-of-N spinning, where we
1758   // hold the duration constant but vary the frequency.
1759 
1760   ctr = _SpinDuration;
1761   if (ctr <= 0) return 0;
1762 
1763   if (NotRunnable(Self, (Thread *) _owner)) {
1764     return 0;
1765   }
1766 
1767   // We're good to spin ... spin ingress.
1768   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1769   // when preparing to LD...CAS _owner, etc and the CAS is likely
1770   // to succeed.
1771   if (_succ == NULL) {
1772     _succ = Self;
1773   }
1774   Thread * prv = NULL;
1775 
1776   // There are three ways to exit the following loop:
1777   // 1.  A successful spin where this thread has acquired the lock.
1778   // 2.  Spin failure with prejudice
1779   // 3.  Spin failure without prejudice
1780 
1781   while (--ctr >= 0) {
1782 
1783     // Periodic polling -- Check for pending GC
1784     // Threads may spin while they're unsafe.
1785     // We don't want spinning threads to delay the JVM from reaching
1786     // a stop-the-world safepoint or to steal cycles from GC.
1787     // If we detect a pending safepoint we abort in order that
1788     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1789     // this thread, if safe, doesn't steal cycles from GC.
1790     // This is in keeping with the "no loitering in runtime" rule.
1791     // We periodically check to see if there's a safepoint pending.
1792     if ((ctr & 0xFF) == 0) {
1793       if (SafepointMechanism::should_block(Self)) {
1794         goto Abort;           // abrupt spin egress
1795       }
1796       SpinPause();
1797     }
1798 
1799     // Probe _owner with TATAS
1800     // If this thread observes the monitor transition or flicker
1801     // from locked to unlocked to locked, then the odds that this
1802     // thread will acquire the lock in this spin attempt go down
1803     // considerably.  The same argument applies if the CAS fails
1804     // or if we observe _owner change from one non-null value to
1805     // another non-null value.   In such cases we might abort
1806     // the spin without prejudice or apply a "penalty" to the
1807     // spin count-down variable "ctr", reducing it by 100, say.
1808 
1809     Thread * ox = (Thread *) _owner;
1810     if (ox == NULL) {
1811       ox = (Thread*)try_set_owner_from(Self, NULL);
1812       if (ox == NULL) {
1813         // The CAS succeeded -- this thread acquired ownership
1814         // Take care of some bookkeeping to exit spin state.
1815         if (_succ == Self) {
1816           _succ = NULL;
1817         }
1818 
1819         // Increase _SpinDuration :
1820         // The spin was successful (profitable) so we tend toward
1821         // longer spin attempts in the future.
1822         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
1823         // If we acquired the lock early in the spin cycle it
1824         // makes sense to increase _SpinDuration proportionally.
1825         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1826         int x = _SpinDuration;
1827         if (x < Knob_SpinLimit) {
1828           if (x < Knob_Poverty) x = Knob_Poverty;
1829           _SpinDuration = x + Knob_Bonus;
1830         }
1831         return 1;
1832       }
1833 
1834       // The CAS failed ... we can take any of the following actions:
1835       // * penalize: ctr -= CASPenalty
1836       // * exit spin with prejudice -- goto Abort;
1837       // * exit spin without prejudice.
1838       // * Since CAS is high-latency, retry again immediately.
1839       prv = ox;
1840       goto Abort;
1841     }
1842 
1843     // Did lock ownership change hands ?
1844     if (ox != prv && prv != NULL) {
1845       goto Abort;
1846     }
1847     prv = ox;
1848 
1849     // Abort the spin if the owner is not executing.
1850     // The owner must be executing in order to drop the lock.
1851     // Spinning while the owner is OFFPROC is idiocy.
1852     // Consider: ctr -= RunnablePenalty ;
1853     if (NotRunnable(Self, ox)) {
1854       goto Abort;
1855     }
1856     if (_succ == NULL) {
1857       _succ = Self;
1858     }
1859   }
1860 
1861   // Spin failed with prejudice -- reduce _SpinDuration.
1862   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
1863   // AIMD is globally stable.
1864   {
1865     int x = _SpinDuration;
1866     if (x > 0) {
1867       // Consider an AIMD scheme like: x -= (x >> 3) + 100
1868       // This is globally sample and tends to damp the response.
1869       x -= Knob_Penalty;
1870       if (x < 0) x = 0;
1871       _SpinDuration = x;
1872     }
1873   }
1874 
1875  Abort:
1876   if (_succ == Self) {
1877     _succ = NULL;
1878     // Invariant: after setting succ=null a contending thread
1879     // must recheck-retry _owner before parking.  This usually happens
1880     // in the normal usage of TrySpin(), but it's safest
1881     // to make TrySpin() as foolproof as possible.
1882     OrderAccess::fence();
1883     if (TryLock(Self) > 0) return 1;
1884   }
1885   return 0;
1886 }
1887 
1888 // NotRunnable() -- informed spinning
1889 //
1890 // Don't bother spinning if the owner is not eligible to drop the lock.
1891 // Spin only if the owner thread is _thread_in_Java or _thread_in_vm.
1892 // The thread must be runnable in order to drop the lock in timely fashion.
1893 // If the _owner is not runnable then spinning will not likely be
1894 // successful (profitable).
1895 //
1896 // Beware -- the thread referenced by _owner could have died
1897 // so a simply fetch from _owner->_thread_state might trap.
1898 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
1899 // Because of the lifecycle issues, the _thread_state values
1900 // observed by NotRunnable() might be garbage.  NotRunnable must
1901 // tolerate this and consider the observed _thread_state value
1902 // as advisory.
1903 //
1904 // Beware too, that _owner is sometimes a BasicLock address and sometimes
1905 // a thread pointer.
1906 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
1907 // with the LSB of _owner.  Another option would be to probabilistically probe
1908 // the putative _owner->TypeTag value.
1909 //
1910 // Checking _thread_state isn't perfect.  Even if the thread is
1911 // in_java it might be blocked on a page-fault or have been preempted
1912 // and sitting on a ready/dispatch queue.
1913 //
1914 // The return value from NotRunnable() is *advisory* -- the
1915 // result is based on sampling and is not necessarily coherent.
1916 // The caller must tolerate false-negative and false-positive errors.
1917 // Spinning, in general, is probabilistic anyway.
1918 
1919 
1920 int ObjectMonitor::NotRunnable(Thread * Self, Thread * ox) {
1921   // Check ox->TypeTag == 2BAD.
1922   if (ox == NULL) return 0;
1923 
1924   // Avoid transitive spinning ...
1925   // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
1926   // Immediately after T1 acquires L it's possible that T2, also
1927   // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
1928   // This occurs transiently after T1 acquired L but before
1929   // T1 managed to clear T1.Stalled.  T2 does not need to abort
1930   // its spin in this circumstance.
1931   intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1));
1932 
1933   if (BlockedOn == 1) return 1;
1934   if (BlockedOn != 0) {
1935     return BlockedOn != intptr_t(this) && _owner == ox;
1936   }
1937 
1938   assert(sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant");
1939   int jst = SafeFetch32((int *) &((JavaThread *) ox)->_thread_state, -1);;
1940   // consider also: jst != _thread_in_Java -- but that's overspecific.
1941   return jst == _thread_blocked || jst == _thread_in_native;
1942 }
1943 
1944 
1945 // -----------------------------------------------------------------------------
1946 // WaitSet management ...
1947 
1948 ObjectWaiter::ObjectWaiter(Thread* thread) {
1949   _next     = NULL;
1950   _prev     = NULL;
1951   _notified = 0;
1952   _notifier_tid = 0;
1953   TState    = TS_RUN;
1954   _thread   = thread;
1955   _event    = thread->_ParkEvent;
1956   _active   = false;
1957   assert(_event != NULL, "invariant");
1958 }
1959 
1960 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
1961   JavaThread *jt = (JavaThread *)this->_thread;
1962   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
1963 }
1964 
1965 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
1966   JavaThread *jt = (JavaThread *)this->_thread;
1967   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
1968 }
1969 
1970 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
1971   assert(node != NULL, "should not add NULL node");
1972   assert(node->_prev == NULL, "node already in list");
1973   assert(node->_next == NULL, "node already in list");
1974   // put node at end of queue (circular doubly linked list)
1975   if (_WaitSet == NULL) {
1976     _WaitSet = node;
1977     node->_prev = node;
1978     node->_next = node;
1979   } else {
1980     ObjectWaiter* head = _WaitSet;
1981     ObjectWaiter* tail = head->_prev;
1982     assert(tail->_next == head, "invariant check");
1983     tail->_next = node;
1984     head->_prev = node;
1985     node->_next = head;
1986     node->_prev = tail;
1987   }
1988 }
1989 
1990 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
1991   // dequeue the very first waiter
1992   ObjectWaiter* waiter = _WaitSet;
1993   if (waiter) {
1994     DequeueSpecificWaiter(waiter);
1995   }
1996   return waiter;
1997 }
1998 
1999 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2000   assert(node != NULL, "should not dequeue NULL node");
2001   assert(node->_prev != NULL, "node already removed from list");
2002   assert(node->_next != NULL, "node already removed from list");
2003   // when the waiter has woken up because of interrupt,
2004   // timeout or other spurious wake-up, dequeue the
2005   // waiter from waiting list
2006   ObjectWaiter* next = node->_next;
2007   if (next == node) {
2008     assert(node->_prev == node, "invariant check");
2009     _WaitSet = NULL;
2010   } else {
2011     ObjectWaiter* prev = node->_prev;
2012     assert(prev->_next == node, "invariant check");
2013     assert(next->_prev == node, "invariant check");
2014     next->_prev = prev;
2015     prev->_next = next;
2016     if (_WaitSet == node) {
2017       _WaitSet = next;
2018     }
2019   }
2020   node->_next = NULL;
2021   node->_prev = NULL;
2022 }
2023 
2024 // -----------------------------------------------------------------------------
2025 // PerfData support
2026 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL;
2027 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL;
2028 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL;
2029 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL;
2030 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL;
2031 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL;
2032 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL;
2033 
2034 // One-shot global initialization for the sync subsystem.
2035 // We could also defer initialization and initialize on-demand
2036 // the first time we call ObjectSynchronizer::inflate().
2037 // Initialization would be protected - like so many things - by
2038 // the MonitorCache_lock.
2039 
2040 void ObjectMonitor::Initialize() {
2041   assert(!InitDone, "invariant");
2042 
2043   if (!os::is_MP()) {
2044     Knob_SpinLimit = 0;
2045     Knob_PreSpin   = 0;
2046     Knob_FixedSpin = -1;
2047   }
2048 
2049   if (UsePerfData) {
2050     EXCEPTION_MARK;
2051 #define NEWPERFCOUNTER(n)                                                \
2052   {                                                                      \
2053     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
2054                                         CHECK);                          \
2055   }
2056 #define NEWPERFVARIABLE(n)                                                \
2057   {                                                                       \
2058     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2059                                          CHECK);                          \
2060   }
2061     NEWPERFCOUNTER(_sync_Inflations);
2062     NEWPERFCOUNTER(_sync_Deflations);
2063     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2064     NEWPERFCOUNTER(_sync_FutileWakeups);
2065     NEWPERFCOUNTER(_sync_Parks);
2066     NEWPERFCOUNTER(_sync_Notifications);
2067     NEWPERFVARIABLE(_sync_MonExtant);
2068 #undef NEWPERFCOUNTER
2069 #undef NEWPERFVARIABLE
2070   }
2071 
2072   DEBUG_ONLY(InitDone = true;)
2073 }
2074 
2075 // For internal use by ObjectSynchronizer::monitors_iterate().
2076 ObjectMonitorHandle::ObjectMonitorHandle(ObjectMonitor * om_ptr) {
2077   om_ptr->inc_ref_count();
2078   _om_ptr = om_ptr;
2079 }
2080 
2081 ObjectMonitorHandle::~ObjectMonitorHandle() {
2082   if (_om_ptr != NULL) {
2083     _om_ptr->dec_ref_count();
2084     _om_ptr = NULL;
2085   }
2086 }
2087 
2088 // Save the ObjectMonitor* associated with the specified markWord and
2089 // increment the ref_count. This function should only be called if
2090 // the caller has verified mark.has_monitor() == true. The object
2091 // parameter is needed to verify that ObjectMonitor* has not been
2092 // deflated and reused for another object.
2093 //
2094 // This function returns true if the ObjectMonitor* has been safely
2095 // saved. This function returns false if we have lost a race with
2096 // async deflation; the caller should retry as appropriate.
2097 //
2098 bool ObjectMonitorHandle::save_om_ptr(oop object, markWord mark) {
2099   guarantee(mark.has_monitor(), "sanity check: mark=" INTPTR_FORMAT,
2100             mark.value());
2101 
2102   ObjectMonitor * om_ptr = mark.monitor();
2103   om_ptr->inc_ref_count();
2104 
2105   if (AsyncDeflateIdleMonitors) {
2106     // Race here if monitor is not owned! The above ref_count bump
2107     // will cause subsequent async deflation to skip it. However,
2108     // previous or concurrent async deflation is a race.
2109     if (om_ptr->owner_is_DEFLATER_MARKER() && om_ptr->ref_count() <= 0) {
2110       // Async deflation is in progress and our ref_count increment
2111       // above lost the race to async deflation. Attempt to restore
2112       // the header/dmw to the object's header so that we only retry
2113       // once if the deflater thread happens to be slow.
2114       om_ptr->install_displaced_markword_in_object(object);
2115       om_ptr->dec_ref_count();
2116       return false;
2117     }
2118     if (om_ptr->ref_count() <= 0) {
2119       // Async deflation is in the process of bailing out, but has not
2120       // yet restored the ref_count field so we return false to force
2121       // a retry. We want a positive ref_count value for a true return.
2122       om_ptr->dec_ref_count();
2123       return false;
2124     }
2125     // The ObjectMonitor could have been deflated and reused for
2126     // another object before we bumped the ref_count so make sure
2127     // our object still refers to this ObjectMonitor.
2128     const markWord tmp = object->mark();
2129     if (!tmp.has_monitor() || tmp.monitor() != om_ptr) {
2130       // Async deflation and reuse won the race so we have to retry.
2131       // Skip object header restoration since that's already done.
2132       om_ptr->dec_ref_count();
2133       return false;
2134     }
2135   }
2136 
2137   ADIM_guarantee(_om_ptr == NULL, "sanity check: _om_ptr=" INTPTR_FORMAT,
2138                  p2i(_om_ptr));
2139   _om_ptr = om_ptr;
2140   return true;
2141 }
2142 
2143 // For internal use by ObjectSynchronizer::inflate().
2144 void ObjectMonitorHandle::set_om_ptr(ObjectMonitor * om_ptr) {
2145   if (_om_ptr == NULL) {
2146     ADIM_guarantee(om_ptr != NULL, "cannot clear an unset om_ptr");
2147     om_ptr->inc_ref_count();
2148     _om_ptr = om_ptr;
2149   } else {
2150     ADIM_guarantee(om_ptr == NULL, "can only clear a set om_ptr");
2151     _om_ptr->dec_ref_count();
2152     _om_ptr = NULL;
2153   }
2154 }
2155 
2156 void ObjectMonitor::print_on(outputStream* st) const {
2157   // The minimal things to print for markWord printing, more can be added for debugging and logging.
2158   st->print("{contentions=0x%08x,waiters=0x%08x"
2159             ",recursions=" INTX_FORMAT ",owner=" INTPTR_FORMAT "}",
2160             contentions(), waiters(), recursions(),
2161             p2i(owner()));
2162 }
2163 void ObjectMonitor::print() const { print_on(tty); }
2164 
2165 // Print the ObjectMonitor like a debugger would:
2166 //
2167 // (ObjectMonitor) 0x00007fdfb6012e40 = {
2168 //   _header = (_value = 1)
2169 //   _object = 0x000000070ff45fd0
2170 //   _allocation_state = Old
2171 //   _pad_buf0 = {
2172 //     [0] = '\0'
2173 //     ...
2174 //     [43] = '\0'
2175 //   }
2176 //   _owner = 0x0000000000000000
2177 //   _previous_owner_tid = 0
2178 //   _pad_buf1 = {
2179 //     [0] = '\0'
2180 //     ...
2181 //     [47] = '\0'
2182 //   }
2183 //   _ref_count = 1
2184 //   _pad_buf2 = {
2185 //     [0] = '\0'
2186 //     ...
2187 //     [59] = '\0'
2188 //   }
2189 //   _next_om = 0x0000000000000000
2190 //   _recursions = 0
2191 //   _EntryList = 0x0000000000000000
2192 //   _cxq = 0x0000000000000000
2193 //   _succ = 0x0000000000000000
2194 //   _Responsible = 0x0000000000000000
2195 //   _Spinner = 0
2196 //   _SpinDuration = 5000
2197 //   _contentions = 0
2198 //   _WaitSet = 0x0000700009756248
2199 //   _waiters = 1
2200 //   _WaitSetLock = 0
2201 // }
2202 //
2203 void ObjectMonitor::print_debug_style_on(outputStream* st) const {
2204   st->print_cr("(ObjectMonitor *) " INTPTR_FORMAT " = {", p2i(this));
2205   st->print_cr("  _header = " INTPTR_FORMAT, header().value());
2206   st->print_cr("  _object = " INTPTR_FORMAT, p2i(_object));
2207   st->print("  _allocation_state = ");
2208   if (is_free()) {
2209     st->print("Free");
2210   } else if (is_old()) {
2211     st->print("Old");
2212   } else if (is_new()) {
2213     st->print("New");
2214   } else {
2215     st->print("unknown=%d", _allocation_state);
2216   }
2217   st->cr();
2218   st->print_cr("  _pad_buf0 = {");
2219   st->print_cr("    [0] = '\\0'");
2220   st->print_cr("    ...");
2221   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf0) - 1);
2222   st->print_cr("  }");
2223   st->print_cr("  _owner = " INTPTR_FORMAT, p2i(_owner));
2224   st->print_cr("  _previous_owner_tid = " JLONG_FORMAT, _previous_owner_tid);
2225   st->print_cr("  _pad_buf1 = {");
2226   st->print_cr("    [0] = '\\0'");
2227   st->print_cr("    ...");
2228   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf1) - 1);
2229   st->print_cr("  }");
2230   st->print_cr("  _ref_count = %d", ref_count());
2231   st->print_cr("  _pad_buf2 = {");
2232   st->print_cr("    [0] = '\\0'");
2233   st->print_cr("    ...");
2234   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf1) - 1);
2235   st->print_cr("  }");
2236   st->print_cr("  _next_om = " INTPTR_FORMAT, p2i(_next_om));
2237   st->print_cr("  _recursions = " INTX_FORMAT, _recursions);
2238   st->print_cr("  _EntryList = " INTPTR_FORMAT, p2i(_EntryList));
2239   st->print_cr("  _cxq = " INTPTR_FORMAT, p2i(_cxq));
2240   st->print_cr("  _succ = " INTPTR_FORMAT, p2i(_succ));
2241   st->print_cr("  _Responsible = " INTPTR_FORMAT, p2i(_Responsible));
2242   st->print_cr("  _Spinner = %d", _Spinner);
2243   st->print_cr("  _SpinDuration = %d", _SpinDuration);
2244   st->print_cr("  _contentions = %d", _contentions);
2245   st->print_cr("  _WaitSet = " INTPTR_FORMAT, p2i(_WaitSet));
2246   st->print_cr("  _waiters = %d", _waiters);
2247   st->print_cr("  _WaitSetLock = %d", _WaitSetLock);
2248   st->print_cr("}");
2249 }