1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "classfile/moduleEntry.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "classfile/vmSymbols.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/compileTask.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/gcId.hpp"
  39 #include "gc/shared/gcLocker.inline.hpp"
  40 #include "gc/shared/workgroup.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "interpreter/oopMapCache.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "jvmtifiles/jvmtiEnv.hpp"
  46 #include "logging/log.hpp"
  47 #include "logging/logConfiguration.hpp"
  48 #include "logging/logStream.hpp"
  49 #include "memory/allocation.inline.hpp"
  50 #include "memory/metaspaceShared.hpp"
  51 #include "memory/oopFactory.hpp"
  52 #include "memory/resourceArea.hpp"
  53 #include "memory/universe.hpp"
  54 #include "oops/access.inline.hpp"
  55 #include "oops/instanceKlass.hpp"
  56 #include "oops/objArrayOop.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "oops/symbol.hpp"
  59 #include "oops/typeArrayOop.inline.hpp"
  60 #include "oops/verifyOopClosure.hpp"
  61 #include "prims/jvm_misc.hpp"
  62 #include "prims/jvmtiExport.hpp"
  63 #include "prims/jvmtiThreadState.hpp"
  64 #include "runtime/arguments.hpp"
  65 #include "runtime/atomic.hpp"
  66 #include "runtime/biasedLocking.hpp"
  67 #include "runtime/fieldDescriptor.inline.hpp"
  68 #include "runtime/flags/jvmFlagConstraintList.hpp"
  69 #include "runtime/flags/jvmFlagRangeList.hpp"
  70 #include "runtime/flags/jvmFlagWriteableList.hpp"
  71 #include "runtime/deoptimization.hpp"
  72 #include "runtime/frame.inline.hpp"
  73 #include "runtime/handles.inline.hpp"
  74 #include "runtime/handshake.hpp"
  75 #include "runtime/init.hpp"
  76 #include "runtime/interfaceSupport.inline.hpp"
  77 #include "runtime/java.hpp"
  78 #include "runtime/javaCalls.hpp"
  79 #include "runtime/jniHandles.inline.hpp"
  80 #include "runtime/jniPeriodicChecker.hpp"
  81 #include "runtime/memprofiler.hpp"
  82 #include "runtime/mutexLocker.hpp"
  83 #include "runtime/objectMonitor.hpp"
  84 #include "runtime/orderAccess.hpp"
  85 #include "runtime/osThread.hpp"
  86 #include "runtime/prefetch.inline.hpp"
  87 #include "runtime/safepoint.hpp"
  88 #include "runtime/safepointMechanism.inline.hpp"
  89 #include "runtime/safepointVerifiers.hpp"
  90 #include "runtime/sharedRuntime.hpp"
  91 #include "runtime/statSampler.hpp"
  92 #include "runtime/stubRoutines.hpp"
  93 #include "runtime/sweeper.hpp"
  94 #include "runtime/task.hpp"
  95 #include "runtime/thread.inline.hpp"
  96 #include "runtime/threadCritical.hpp"
  97 #include "runtime/threadSMR.inline.hpp"
  98 #include "runtime/threadStatisticalInfo.hpp"
  99 #include "runtime/timer.hpp"
 100 #include "runtime/timerTrace.hpp"
 101 #include "runtime/vframe.inline.hpp"
 102 #include "runtime/vframeArray.hpp"
 103 #include "runtime/vframe_hp.hpp"
 104 #include "runtime/vmThread.hpp"
 105 #include "runtime/vmOperations.hpp"
 106 #include "runtime/vm_version.hpp"
 107 #include "services/attachListener.hpp"
 108 #include "services/management.hpp"
 109 #include "services/memTracker.hpp"
 110 #include "services/threadService.hpp"
 111 #include "utilities/align.hpp"
 112 #include "utilities/copy.hpp"
 113 #include "utilities/defaultStream.hpp"
 114 #include "utilities/dtrace.hpp"
 115 #include "utilities/events.hpp"
 116 #include "utilities/macros.hpp"
 117 #include "utilities/preserveException.hpp"
 118 #include "utilities/singleWriterSynchronizer.hpp"
 119 #include "utilities/vmError.hpp"
 120 #if INCLUDE_JVMCI
 121 #include "jvmci/jvmci.hpp"
 122 #include "jvmci/jvmciEnv.hpp"
 123 #endif
 124 #ifdef COMPILER1
 125 #include "c1/c1_Compiler.hpp"
 126 #endif
 127 #ifdef COMPILER2
 128 #include "opto/c2compiler.hpp"
 129 #include "opto/idealGraphPrinter.hpp"
 130 #endif
 131 #if INCLUDE_RTM_OPT
 132 #include "runtime/rtmLocking.hpp"
 133 #endif
 134 #if INCLUDE_JFR
 135 #include "jfr/jfr.hpp"
 136 #endif
 137 
 138 // Initialization after module runtime initialization
 139 void universe_post_module_init();  // must happen after call_initPhase2
 140 
 141 #ifdef DTRACE_ENABLED
 142 
 143 // Only bother with this argument setup if dtrace is available
 144 
 145   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 146   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 147 
 148   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 149     {                                                                      \
 150       ResourceMark rm(this);                                               \
 151       int len = 0;                                                         \
 152       const char* name = (javathread)->get_thread_name();                  \
 153       len = strlen(name);                                                  \
 154       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 155         (char *) name, len,                                                \
 156         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 157         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 158         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 159     }
 160 
 161 #else //  ndef DTRACE_ENABLED
 162 
 163   #define DTRACE_THREAD_PROBE(probe, javathread)
 164 
 165 #endif // ndef DTRACE_ENABLED
 166 
 167 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 168 // Current thread is maintained as a thread-local variable
 169 THREAD_LOCAL Thread* Thread::_thr_current = NULL;
 170 #endif
 171 
 172 // ======= Thread ========
 173 // Support for forcing alignment of thread objects for biased locking
 174 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 175   if (UseBiasedLocking) {
 176     const size_t alignment = markWord::biased_lock_alignment;
 177     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 178     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 179                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 180                                                          AllocFailStrategy::RETURN_NULL);
 181     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 182     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 183            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 184            "JavaThread alignment code overflowed allocated storage");
 185     if (aligned_addr != real_malloc_addr) {
 186       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 187                               p2i(real_malloc_addr),
 188                               p2i(aligned_addr));
 189     }
 190     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 191     return aligned_addr;
 192   } else {
 193     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 194                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 195   }
 196 }
 197 
 198 void Thread::operator delete(void* p) {
 199   if (UseBiasedLocking) {
 200     FreeHeap(((Thread*) p)->_real_malloc_address);
 201   } else {
 202     FreeHeap(p);
 203   }
 204 }
 205 
 206 void JavaThread::smr_delete() {
 207   if (_on_thread_list) {
 208     ThreadsSMRSupport::smr_delete(this);
 209   } else {
 210     delete this;
 211   }
 212 }
 213 
 214 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 215 // JavaThread
 216 
 217 DEBUG_ONLY(Thread* Thread::_starting_thread = NULL;)
 218 
 219 Thread::Thread() {
 220 
 221   DEBUG_ONLY(_run_state = PRE_CALL_RUN;)
 222 
 223   // stack and get_thread
 224   set_stack_base(NULL);
 225   set_stack_size(0);
 226   set_lgrp_id(-1);
 227   DEBUG_ONLY(clear_suspendible_thread();)
 228 
 229   // allocated data structures
 230   set_osthread(NULL);
 231   set_resource_area(new (mtThread)ResourceArea());
 232   DEBUG_ONLY(_current_resource_mark = NULL;)
 233   set_handle_area(new (mtThread) HandleArea(NULL));
 234   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 235   set_active_handles(NULL);
 236   set_free_handle_block(NULL);
 237   set_last_handle_mark(NULL);
 238   DEBUG_ONLY(_missed_ic_stub_refill_verifier = NULL);
 239 
 240   // Initial value of zero ==> never claimed.
 241   _threads_do_token = 0;
 242   _threads_hazard_ptr = NULL;
 243   _threads_list_ptr = NULL;
 244   _nested_threads_hazard_ptr_cnt = 0;
 245   _rcu_counter = 0;
 246 
 247   // the handle mark links itself to last_handle_mark
 248   new HandleMark(this);
 249 
 250   // plain initialization
 251   debug_only(_owned_locks = NULL;)
 252   NOT_PRODUCT(_no_safepoint_count = 0;)
 253   NOT_PRODUCT(_skip_gcalot = false;)
 254   _jvmti_env_iteration_count = 0;
 255   set_allocated_bytes(0);
 256   _vm_operation_started_count = 0;
 257   _vm_operation_completed_count = 0;
 258   _current_pending_monitor = NULL;
 259   _current_pending_monitor_is_from_java = true;
 260   _current_waiting_monitor = NULL;
 261   _current_pending_raw_monitor = NULL;
 262   _num_nested_signal = 0;
 263   om_free_list = NULL;
 264   om_free_count = 0;
 265   om_free_provision = 32;
 266   om_in_use_list = NULL;
 267   om_in_use_count = 0;
 268 
 269 #ifdef ASSERT
 270   _visited_for_critical_count = false;
 271 #endif
 272 
 273   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 274                          Monitor::_safepoint_check_sometimes);
 275   _suspend_flags = 0;
 276 
 277   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 278   _hashStateX = os::random();
 279   _hashStateY = 842502087;
 280   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 281   _hashStateW = 273326509;
 282 
 283   _OnTrap   = 0;
 284   _Stalled  = 0;
 285   _TypeTag  = 0x2BAD;
 286 
 287   // Many of the following fields are effectively final - immutable
 288   // Note that nascent threads can't use the Native Monitor-Mutex
 289   // construct until the _MutexEvent is initialized ...
 290   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 291   // we might instead use a stack of ParkEvents that we could provision on-demand.
 292   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 293   // and ::Release()
 294   _ParkEvent   = ParkEvent::Allocate(this);
 295   _MuxEvent    = ParkEvent::Allocate(this);
 296 
 297 #ifdef CHECK_UNHANDLED_OOPS
 298   if (CheckUnhandledOops) {
 299     _unhandled_oops = new UnhandledOops(this);
 300   }
 301 #endif // CHECK_UNHANDLED_OOPS
 302 #ifdef ASSERT
 303   if (UseBiasedLocking) {
 304     assert(is_aligned(this, markWord::biased_lock_alignment), "forced alignment of thread object failed");
 305     assert(this == _real_malloc_address ||
 306            this == align_up(_real_malloc_address, markWord::biased_lock_alignment),
 307            "bug in forced alignment of thread objects");
 308   }
 309 #endif // ASSERT
 310 
 311   // Notify the barrier set that a thread is being created. The initial
 312   // thread is created before the barrier set is available.  The call to
 313   // BarrierSet::on_thread_create() for this thread is therefore deferred
 314   // to BarrierSet::set_barrier_set().
 315   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 316   if (barrier_set != NULL) {
 317     barrier_set->on_thread_create(this);
 318   } else {
 319     // Only the main thread should be created before the barrier set
 320     // and that happens just before Thread::current is set. No other thread
 321     // can attach as the VM is not created yet, so they can't execute this code.
 322     // If the main thread creates other threads before the barrier set that is an error.
 323     assert(Thread::current_or_null() == NULL, "creating thread before barrier set");
 324   }
 325 }
 326 
 327 void Thread::initialize_thread_current() {
 328 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 329   assert(_thr_current == NULL, "Thread::current already initialized");
 330   _thr_current = this;
 331 #endif
 332   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 333   ThreadLocalStorage::set_thread(this);
 334   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 335 }
 336 
 337 void Thread::clear_thread_current() {
 338   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 339 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 340   _thr_current = NULL;
 341 #endif
 342   ThreadLocalStorage::set_thread(NULL);
 343 }
 344 
 345 void Thread::record_stack_base_and_size() {
 346   // Note: at this point, Thread object is not yet initialized. Do not rely on
 347   // any members being initialized. Do not rely on Thread::current() being set.
 348   // If possible, refrain from doing anything which may crash or assert since
 349   // quite probably those crash dumps will be useless.
 350   set_stack_base(os::current_stack_base());
 351   set_stack_size(os::current_stack_size());
 352 
 353 #ifdef SOLARIS
 354   if (os::is_primordial_thread()) {
 355     os::Solaris::correct_stack_boundaries_for_primordial_thread(this);
 356   }
 357 #endif
 358 
 359   // Set stack limits after thread is initialized.
 360   if (is_Java_thread()) {
 361     ((JavaThread*) this)->set_stack_overflow_limit();
 362     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 363   }
 364 }
 365 
 366 #if INCLUDE_NMT
 367 void Thread::register_thread_stack_with_NMT() {
 368   MemTracker::record_thread_stack(stack_end(), stack_size());
 369 }
 370 #endif // INCLUDE_NMT
 371 
 372 void Thread::call_run() {
 373   DEBUG_ONLY(_run_state = CALL_RUN;)
 374 
 375   // At this point, Thread object should be fully initialized and
 376   // Thread::current() should be set.
 377 
 378   assert(Thread::current_or_null() != NULL, "current thread is unset");
 379   assert(Thread::current_or_null() == this, "current thread is wrong");
 380 
 381   // Perform common initialization actions
 382 
 383   register_thread_stack_with_NMT();
 384 
 385   JFR_ONLY(Jfr::on_thread_start(this);)
 386 
 387   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 388     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 389     os::current_thread_id(), p2i(stack_base() - stack_size()),
 390     p2i(stack_base()), stack_size()/1024);
 391 
 392   // Perform <ChildClass> initialization actions
 393   DEBUG_ONLY(_run_state = PRE_RUN;)
 394   this->pre_run();
 395 
 396   // Invoke <ChildClass>::run()
 397   DEBUG_ONLY(_run_state = RUN;)
 398   this->run();
 399   // Returned from <ChildClass>::run(). Thread finished.
 400 
 401   // Perform common tear-down actions
 402 
 403   assert(Thread::current_or_null() != NULL, "current thread is unset");
 404   assert(Thread::current_or_null() == this, "current thread is wrong");
 405 
 406   // Perform <ChildClass> tear-down actions
 407   DEBUG_ONLY(_run_state = POST_RUN;)
 408   this->post_run();
 409 
 410   // Note: at this point the thread object may already have deleted itself,
 411   // so from here on do not dereference *this*. Not all thread types currently
 412   // delete themselves when they terminate. But no thread should ever be deleted
 413   // asynchronously with respect to its termination - that is what _run_state can
 414   // be used to check.
 415 
 416   assert(Thread::current_or_null() == NULL, "current thread still present");
 417 }
 418 
 419 Thread::~Thread() {
 420 
 421   // Attached threads will remain in PRE_CALL_RUN, as will threads that don't actually
 422   // get started due to errors etc. Any active thread should at least reach post_run
 423   // before it is deleted (usually in post_run()).
 424   assert(_run_state == PRE_CALL_RUN ||
 425          _run_state == POST_RUN, "Active Thread deleted before post_run(): "
 426          "_run_state=%d", (int)_run_state);
 427 
 428   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 429   // set might not be available if we encountered errors during bootstrapping.
 430   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 431   if (barrier_set != NULL) {
 432     barrier_set->on_thread_destroy(this);
 433   }
 434 
 435   // stack_base can be NULL if the thread is never started or exited before
 436   // record_stack_base_and_size called. Although, we would like to ensure
 437   // that all started threads do call record_stack_base_and_size(), there is
 438   // not proper way to enforce that.
 439 #if INCLUDE_NMT
 440   if (_stack_base != NULL) {
 441     MemTracker::release_thread_stack(stack_end(), stack_size());
 442 #ifdef ASSERT
 443     set_stack_base(NULL);
 444 #endif
 445   }
 446 #endif // INCLUDE_NMT
 447 
 448   // deallocate data structures
 449   delete resource_area();
 450   // since the handle marks are using the handle area, we have to deallocated the root
 451   // handle mark before deallocating the thread's handle area,
 452   assert(last_handle_mark() != NULL, "check we have an element");
 453   delete last_handle_mark();
 454   assert(last_handle_mark() == NULL, "check we have reached the end");
 455 
 456   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 457   // We NULL out the fields for good hygiene.
 458   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 459   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 460 
 461   delete handle_area();
 462   delete metadata_handles();
 463 
 464   // SR_handler uses this as a termination indicator -
 465   // needs to happen before os::free_thread()
 466   delete _SR_lock;
 467   _SR_lock = NULL;
 468 
 469   // osthread() can be NULL, if creation of thread failed.
 470   if (osthread() != NULL) os::free_thread(osthread());
 471 
 472   // Clear Thread::current if thread is deleting itself and it has not
 473   // already been done. This must be done before the memory is deallocated.
 474   // Needed to ensure JNI correctly detects non-attached threads.
 475   if (this == Thread::current_or_null()) {
 476     Thread::clear_thread_current();
 477   }
 478 
 479   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 480 }
 481 
 482 #ifdef ASSERT
 483 // A JavaThread is considered "dangling" if it is not the current
 484 // thread, has been added the Threads list, the system is not at a
 485 // safepoint and the Thread is not "protected".
 486 //
 487 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 488   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 489          !((JavaThread *) thread)->on_thread_list() ||
 490          SafepointSynchronize::is_at_safepoint() ||
 491          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 492          "possibility of dangling Thread pointer");
 493 }
 494 #endif
 495 
 496 ThreadPriority Thread::get_priority(const Thread* const thread) {
 497   ThreadPriority priority;
 498   // Can return an error!
 499   (void)os::get_priority(thread, priority);
 500   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 501   return priority;
 502 }
 503 
 504 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 505   debug_only(check_for_dangling_thread_pointer(thread);)
 506   // Can return an error!
 507   (void)os::set_priority(thread, priority);
 508 }
 509 
 510 
 511 void Thread::start(Thread* thread) {
 512   // Start is different from resume in that its safety is guaranteed by context or
 513   // being called from a Java method synchronized on the Thread object.
 514   if (!DisableStartThread) {
 515     if (thread->is_Java_thread()) {
 516       // Initialize the thread state to RUNNABLE before starting this thread.
 517       // Can not set it after the thread started because we do not know the
 518       // exact thread state at that time. It could be in MONITOR_WAIT or
 519       // in SLEEPING or some other state.
 520       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 521                                           java_lang_Thread::RUNNABLE);
 522     }
 523     os::start_thread(thread);
 524   }
 525 }
 526 
 527 // Enqueue a VM_Operation to do the job for us - sometime later
 528 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 529   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 530   VMThread::execute(vm_stop);
 531 }
 532 
 533 
 534 // Check if an external suspend request has completed (or has been
 535 // cancelled). Returns true if the thread is externally suspended and
 536 // false otherwise.
 537 //
 538 // The bits parameter returns information about the code path through
 539 // the routine. Useful for debugging:
 540 //
 541 // set in is_ext_suspend_completed():
 542 // 0x00000001 - routine was entered
 543 // 0x00000010 - routine return false at end
 544 // 0x00000100 - thread exited (return false)
 545 // 0x00000200 - suspend request cancelled (return false)
 546 // 0x00000400 - thread suspended (return true)
 547 // 0x00001000 - thread is in a suspend equivalent state (return true)
 548 // 0x00002000 - thread is native and walkable (return true)
 549 // 0x00004000 - thread is native_trans and walkable (needed retry)
 550 //
 551 // set in wait_for_ext_suspend_completion():
 552 // 0x00010000 - routine was entered
 553 // 0x00020000 - suspend request cancelled before loop (return false)
 554 // 0x00040000 - thread suspended before loop (return true)
 555 // 0x00080000 - suspend request cancelled in loop (return false)
 556 // 0x00100000 - thread suspended in loop (return true)
 557 // 0x00200000 - suspend not completed during retry loop (return false)
 558 
 559 // Helper class for tracing suspend wait debug bits.
 560 //
 561 // 0x00000100 indicates that the target thread exited before it could
 562 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 563 // 0x00080000 each indicate a cancelled suspend request so they don't
 564 // count as wait failures either.
 565 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 566 
 567 class TraceSuspendDebugBits : public StackObj {
 568  private:
 569   JavaThread * jt;
 570   bool         is_wait;
 571   bool         called_by_wait;  // meaningful when !is_wait
 572   uint32_t *   bits;
 573 
 574  public:
 575   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 576                         uint32_t *_bits) {
 577     jt             = _jt;
 578     is_wait        = _is_wait;
 579     called_by_wait = _called_by_wait;
 580     bits           = _bits;
 581   }
 582 
 583   ~TraceSuspendDebugBits() {
 584     if (!is_wait) {
 585 #if 1
 586       // By default, don't trace bits for is_ext_suspend_completed() calls.
 587       // That trace is very chatty.
 588       return;
 589 #else
 590       if (!called_by_wait) {
 591         // If tracing for is_ext_suspend_completed() is enabled, then only
 592         // trace calls to it from wait_for_ext_suspend_completion()
 593         return;
 594       }
 595 #endif
 596     }
 597 
 598     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 599       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 600         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 601         ResourceMark rm;
 602 
 603         tty->print_cr(
 604                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 605                       jt->get_thread_name(), *bits);
 606 
 607         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 608       }
 609     }
 610   }
 611 };
 612 #undef DEBUG_FALSE_BITS
 613 
 614 
 615 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 616                                           uint32_t *bits) {
 617   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 618 
 619   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 620   bool do_trans_retry;           // flag to force the retry
 621 
 622   *bits |= 0x00000001;
 623 
 624   do {
 625     do_trans_retry = false;
 626 
 627     if (is_exiting()) {
 628       // Thread is in the process of exiting. This is always checked
 629       // first to reduce the risk of dereferencing a freed JavaThread.
 630       *bits |= 0x00000100;
 631       return false;
 632     }
 633 
 634     if (!is_external_suspend()) {
 635       // Suspend request is cancelled. This is always checked before
 636       // is_ext_suspended() to reduce the risk of a rogue resume
 637       // confusing the thread that made the suspend request.
 638       *bits |= 0x00000200;
 639       return false;
 640     }
 641 
 642     if (is_ext_suspended()) {
 643       // thread is suspended
 644       *bits |= 0x00000400;
 645       return true;
 646     }
 647 
 648     // Now that we no longer do hard suspends of threads running
 649     // native code, the target thread can be changing thread state
 650     // while we are in this routine:
 651     //
 652     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 653     //
 654     // We save a copy of the thread state as observed at this moment
 655     // and make our decision about suspend completeness based on the
 656     // copy. This closes the race where the thread state is seen as
 657     // _thread_in_native_trans in the if-thread_blocked check, but is
 658     // seen as _thread_blocked in if-thread_in_native_trans check.
 659     JavaThreadState save_state = thread_state();
 660 
 661     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 662       // If the thread's state is _thread_blocked and this blocking
 663       // condition is known to be equivalent to a suspend, then we can
 664       // consider the thread to be externally suspended. This means that
 665       // the code that sets _thread_blocked has been modified to do
 666       // self-suspension if the blocking condition releases. We also
 667       // used to check for CONDVAR_WAIT here, but that is now covered by
 668       // the _thread_blocked with self-suspension check.
 669       //
 670       // Return true since we wouldn't be here unless there was still an
 671       // external suspend request.
 672       *bits |= 0x00001000;
 673       return true;
 674     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 675       // Threads running native code will self-suspend on native==>VM/Java
 676       // transitions. If its stack is walkable (should always be the case
 677       // unless this function is called before the actual java_suspend()
 678       // call), then the wait is done.
 679       *bits |= 0x00002000;
 680       return true;
 681     } else if (!called_by_wait && !did_trans_retry &&
 682                save_state == _thread_in_native_trans &&
 683                frame_anchor()->walkable()) {
 684       // The thread is transitioning from thread_in_native to another
 685       // thread state. check_safepoint_and_suspend_for_native_trans()
 686       // will force the thread to self-suspend. If it hasn't gotten
 687       // there yet we may have caught the thread in-between the native
 688       // code check above and the self-suspend. Lucky us. If we were
 689       // called by wait_for_ext_suspend_completion(), then it
 690       // will be doing the retries so we don't have to.
 691       //
 692       // Since we use the saved thread state in the if-statement above,
 693       // there is a chance that the thread has already transitioned to
 694       // _thread_blocked by the time we get here. In that case, we will
 695       // make a single unnecessary pass through the logic below. This
 696       // doesn't hurt anything since we still do the trans retry.
 697 
 698       *bits |= 0x00004000;
 699 
 700       // Once the thread leaves thread_in_native_trans for another
 701       // thread state, we break out of this retry loop. We shouldn't
 702       // need this flag to prevent us from getting back here, but
 703       // sometimes paranoia is good.
 704       did_trans_retry = true;
 705 
 706       // We wait for the thread to transition to a more usable state.
 707       for (int i = 1; i <= SuspendRetryCount; i++) {
 708         // We used to do an "os::yield_all(i)" call here with the intention
 709         // that yielding would increase on each retry. However, the parameter
 710         // is ignored on Linux which means the yield didn't scale up. Waiting
 711         // on the SR_lock below provides a much more predictable scale up for
 712         // the delay. It also provides a simple/direct point to check for any
 713         // safepoint requests from the VMThread
 714 
 715         // temporarily drops SR_lock while doing wait with safepoint check
 716         // (if we're a JavaThread - the WatcherThread can also call this)
 717         // and increase delay with each retry
 718         if (Thread::current()->is_Java_thread()) {
 719           SR_lock()->wait(i * delay);
 720         } else {
 721           SR_lock()->wait_without_safepoint_check(i * delay);
 722         }
 723 
 724         // check the actual thread state instead of what we saved above
 725         if (thread_state() != _thread_in_native_trans) {
 726           // the thread has transitioned to another thread state so
 727           // try all the checks (except this one) one more time.
 728           do_trans_retry = true;
 729           break;
 730         }
 731       } // end retry loop
 732 
 733 
 734     }
 735   } while (do_trans_retry);
 736 
 737   *bits |= 0x00000010;
 738   return false;
 739 }
 740 
 741 // Wait for an external suspend request to complete (or be cancelled).
 742 // Returns true if the thread is externally suspended and false otherwise.
 743 //
 744 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 745                                                  uint32_t *bits) {
 746   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 747                              false /* !called_by_wait */, bits);
 748 
 749   // local flag copies to minimize SR_lock hold time
 750   bool is_suspended;
 751   bool pending;
 752   uint32_t reset_bits;
 753 
 754   // set a marker so is_ext_suspend_completed() knows we are the caller
 755   *bits |= 0x00010000;
 756 
 757   // We use reset_bits to reinitialize the bits value at the top of
 758   // each retry loop. This allows the caller to make use of any
 759   // unused bits for their own marking purposes.
 760   reset_bits = *bits;
 761 
 762   {
 763     MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 764     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 765                                             delay, bits);
 766     pending = is_external_suspend();
 767   }
 768   // must release SR_lock to allow suspension to complete
 769 
 770   if (!pending) {
 771     // A cancelled suspend request is the only false return from
 772     // is_ext_suspend_completed() that keeps us from entering the
 773     // retry loop.
 774     *bits |= 0x00020000;
 775     return false;
 776   }
 777 
 778   if (is_suspended) {
 779     *bits |= 0x00040000;
 780     return true;
 781   }
 782 
 783   for (int i = 1; i <= retries; i++) {
 784     *bits = reset_bits;  // reinit to only track last retry
 785 
 786     // We used to do an "os::yield_all(i)" call here with the intention
 787     // that yielding would increase on each retry. However, the parameter
 788     // is ignored on Linux which means the yield didn't scale up. Waiting
 789     // on the SR_lock below provides a much more predictable scale up for
 790     // the delay. It also provides a simple/direct point to check for any
 791     // safepoint requests from the VMThread
 792 
 793     {
 794       Thread* t = Thread::current();
 795       MonitorLocker ml(SR_lock(),
 796                        t->is_Java_thread() ? Mutex::_safepoint_check_flag : Mutex::_no_safepoint_check_flag);
 797       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 798       // can also call this)  and increase delay with each retry
 799       ml.wait(i * delay);
 800 
 801       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 802                                               delay, bits);
 803 
 804       // It is possible for the external suspend request to be cancelled
 805       // (by a resume) before the actual suspend operation is completed.
 806       // Refresh our local copy to see if we still need to wait.
 807       pending = is_external_suspend();
 808     }
 809 
 810     if (!pending) {
 811       // A cancelled suspend request is the only false return from
 812       // is_ext_suspend_completed() that keeps us from staying in the
 813       // retry loop.
 814       *bits |= 0x00080000;
 815       return false;
 816     }
 817 
 818     if (is_suspended) {
 819       *bits |= 0x00100000;
 820       return true;
 821     }
 822   } // end retry loop
 823 
 824   // thread did not suspend after all our retries
 825   *bits |= 0x00200000;
 826   return false;
 827 }
 828 
 829 // Called from API entry points which perform stack walking. If the
 830 // associated JavaThread is the current thread, then wait_for_suspend
 831 // is not used. Otherwise, it determines if we should wait for the
 832 // "other" thread to complete external suspension. (NOTE: in future
 833 // releases the suspension mechanism should be reimplemented so this
 834 // is not necessary.)
 835 //
 836 bool
 837 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 838   if (this != JavaThread::current()) {
 839     // "other" threads require special handling.
 840     if (wait_for_suspend) {
 841       // We are allowed to wait for the external suspend to complete
 842       // so give the other thread a chance to get suspended.
 843       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 844                                            SuspendRetryDelay, bits)) {
 845         // Didn't make it so let the caller know.
 846         return false;
 847       }
 848     }
 849     // We aren't allowed to wait for the external suspend to complete
 850     // so if the other thread isn't externally suspended we need to
 851     // let the caller know.
 852     else if (!is_ext_suspend_completed_with_lock(bits)) {
 853       return false;
 854     }
 855   }
 856 
 857   return true;
 858 }
 859 
 860 // GC Support
 861 bool Thread::claim_par_threads_do(uintx claim_token) {
 862   uintx token = _threads_do_token;
 863   if (token != claim_token) {
 864     uintx res = Atomic::cmpxchg(claim_token, &_threads_do_token, token);
 865     if (res == token) {
 866       return true;
 867     }
 868     guarantee(res == claim_token, "invariant");
 869   }
 870   return false;
 871 }
 872 
 873 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 874   active_handles()->oops_do(f);
 875   // Do oop for ThreadShadow
 876   f->do_oop((oop*)&_pending_exception);
 877   handle_area()->oops_do(f);
 878 
 879   // We scan thread local monitor lists here, and the remaining global
 880   // monitors in ObjectSynchronizer::oops_do().
 881   ObjectSynchronizer::thread_local_used_oops_do(this, f);
 882 }
 883 
 884 void Thread::metadata_handles_do(void f(Metadata*)) {
 885   // Only walk the Handles in Thread.
 886   if (metadata_handles() != NULL) {
 887     for (int i = 0; i< metadata_handles()->length(); i++) {
 888       f(metadata_handles()->at(i));
 889     }
 890   }
 891 }
 892 
 893 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 894   // get_priority assumes osthread initialized
 895   if (osthread() != NULL) {
 896     int os_prio;
 897     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 898       st->print("os_prio=%d ", os_prio);
 899     }
 900 
 901     st->print("cpu=%.2fms ",
 902               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 903               );
 904     st->print("elapsed=%.2fs ",
 905               _statistical_info.getElapsedTime() / 1000.0
 906               );
 907     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 908       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 909       st->print("allocated=" SIZE_FORMAT "%s ",
 910                 byte_size_in_proper_unit(allocated_bytes),
 911                 proper_unit_for_byte_size(allocated_bytes)
 912                 );
 913       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 914     }
 915 
 916     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 917     osthread()->print_on(st);
 918   }
 919   ThreadsSMRSupport::print_info_on(this, st);
 920   st->print(" ");
 921   debug_only(if (WizardMode) print_owned_locks_on(st);)
 922 }
 923 
 924 void Thread::print() const { print_on(tty); }
 925 
 926 // Thread::print_on_error() is called by fatal error handler. Don't use
 927 // any lock or allocate memory.
 928 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 929   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 930 
 931   if (is_VM_thread())                 { st->print("VMThread"); }
 932   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 933   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 934   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 935   else                                { st->print("Thread"); }
 936 
 937   if (is_Named_thread()) {
 938     st->print(" \"%s\"", name());
 939   }
 940 
 941   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 942             p2i(stack_end()), p2i(stack_base()));
 943 
 944   if (osthread()) {
 945     st->print(" [id=%d]", osthread()->thread_id());
 946   }
 947 
 948   ThreadsSMRSupport::print_info_on(this, st);
 949 }
 950 
 951 void Thread::print_value_on(outputStream* st) const {
 952   if (is_Named_thread()) {
 953     st->print(" \"%s\" ", name());
 954   }
 955   st->print(INTPTR_FORMAT, p2i(this));   // print address
 956 }
 957 
 958 #ifdef ASSERT
 959 void Thread::print_owned_locks_on(outputStream* st) const {
 960   Mutex* cur = _owned_locks;
 961   if (cur == NULL) {
 962     st->print(" (no locks) ");
 963   } else {
 964     st->print_cr(" Locks owned:");
 965     while (cur) {
 966       cur->print_on(st);
 967       cur = cur->next();
 968     }
 969   }
 970 }
 971 
 972 // Checks safepoint allowed and clears unhandled oops at potential safepoints.
 973 void Thread::check_possible_safepoint() {
 974   if (!is_Java_thread()) return;
 975 
 976   if (_no_safepoint_count > 0) {
 977     print_owned_locks();
 978     fatal("Possible safepoint reached by thread that does not allow it");
 979   }
 980 #ifdef CHECK_UNHANDLED_OOPS
 981   // Clear unhandled oops in JavaThreads so we get a crash right away.
 982   clear_unhandled_oops();
 983 #endif // CHECK_UNHANDLED_OOPS
 984 }
 985 
 986 void Thread::check_for_valid_safepoint_state() {
 987   if (!is_Java_thread()) return;
 988 
 989   // Check NoSafepointVerifier, which is implied by locks taken that can be
 990   // shared with the VM thread.  This makes sure that no locks with allow_vm_block
 991   // are held.
 992   check_possible_safepoint();
 993 
 994   if (((JavaThread*)this)->thread_state() != _thread_in_vm) {
 995     fatal("LEAF method calling lock?");
 996   }
 997 
 998   if (GCALotAtAllSafepoints) {
 999     // We could enter a safepoint here and thus have a gc
1000     InterfaceSupport::check_gc_alot();
1001   }
1002 }
1003 #endif // ASSERT
1004 
1005 bool Thread::is_in_stack(address adr) const {
1006   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
1007   address end = os::current_stack_pointer();
1008   // Allow non Java threads to call this without stack_base
1009   if (_stack_base == NULL) return true;
1010   if (stack_base() >= adr && adr >= end) return true;
1011 
1012   return false;
1013 }
1014 
1015 bool Thread::is_in_usable_stack(address adr) const {
1016   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1017   size_t usable_stack_size = _stack_size - stack_guard_size;
1018 
1019   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1020 }
1021 
1022 
1023 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1024 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1025 // used for compilation in the future. If that change is made, the need for these methods
1026 // should be revisited, and they should be removed if possible.
1027 
1028 bool Thread::is_lock_owned(address adr) const {
1029   return on_local_stack(adr);
1030 }
1031 
1032 bool Thread::set_as_starting_thread() {
1033   assert(_starting_thread == NULL, "already initialized: "
1034          "_starting_thread=" INTPTR_FORMAT, p2i(_starting_thread));
1035   // NOTE: this must be called inside the main thread.
1036   DEBUG_ONLY(_starting_thread = this;)
1037   return os::create_main_thread((JavaThread*)this);
1038 }
1039 
1040 static void initialize_class(Symbol* class_name, TRAPS) {
1041   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1042   InstanceKlass::cast(klass)->initialize(CHECK);
1043 }
1044 
1045 
1046 // Creates the initial ThreadGroup
1047 static Handle create_initial_thread_group(TRAPS) {
1048   Handle system_instance = JavaCalls::construct_new_instance(
1049                             SystemDictionary::ThreadGroup_klass(),
1050                             vmSymbols::void_method_signature(),
1051                             CHECK_NH);
1052   Universe::set_system_thread_group(system_instance());
1053 
1054   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1055   Handle main_instance = JavaCalls::construct_new_instance(
1056                             SystemDictionary::ThreadGroup_klass(),
1057                             vmSymbols::threadgroup_string_void_signature(),
1058                             system_instance,
1059                             string,
1060                             CHECK_NH);
1061   return main_instance;
1062 }
1063 
1064 // Creates the initial Thread
1065 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1066                                  TRAPS) {
1067   InstanceKlass* ik = SystemDictionary::Thread_klass();
1068   assert(ik->is_initialized(), "must be");
1069   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1070 
1071   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1072   // constructor calls Thread.current(), which must be set here for the
1073   // initial thread.
1074   java_lang_Thread::set_thread(thread_oop(), thread);
1075   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1076   thread->set_threadObj(thread_oop());
1077 
1078   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1079 
1080   JavaValue result(T_VOID);
1081   JavaCalls::call_special(&result, thread_oop,
1082                           ik,
1083                           vmSymbols::object_initializer_name(),
1084                           vmSymbols::threadgroup_string_void_signature(),
1085                           thread_group,
1086                           string,
1087                           CHECK_NULL);
1088   return thread_oop();
1089 }
1090 
1091 char java_runtime_name[128] = "";
1092 char java_runtime_version[128] = "";
1093 char java_runtime_vendor_version[128] = "";
1094 char java_runtime_vendor_vm_bug_url[128] = "";
1095 
1096 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1097 static const char* get_java_runtime_name(TRAPS) {
1098   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1099                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1100   fieldDescriptor fd;
1101   bool found = k != NULL &&
1102                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1103                                                         vmSymbols::string_signature(), &fd);
1104   if (found) {
1105     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1106     if (name_oop == NULL) {
1107       return NULL;
1108     }
1109     const char* name = java_lang_String::as_utf8_string(name_oop,
1110                                                         java_runtime_name,
1111                                                         sizeof(java_runtime_name));
1112     return name;
1113   } else {
1114     return NULL;
1115   }
1116 }
1117 
1118 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1119 static const char* get_java_runtime_version(TRAPS) {
1120   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1121                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1122   fieldDescriptor fd;
1123   bool found = k != NULL &&
1124                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1125                                                         vmSymbols::string_signature(), &fd);
1126   if (found) {
1127     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1128     if (name_oop == NULL) {
1129       return NULL;
1130     }
1131     const char* name = java_lang_String::as_utf8_string(name_oop,
1132                                                         java_runtime_version,
1133                                                         sizeof(java_runtime_version));
1134     return name;
1135   } else {
1136     return NULL;
1137   }
1138 }
1139 
1140 // extract the JRE vendor version from java.lang.VersionProps.VENDOR_VERSION
1141 static const char* get_java_runtime_vendor_version(TRAPS) {
1142   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1143                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1144   fieldDescriptor fd;
1145   bool found = k != NULL &&
1146                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_vendor_version_name(),
1147                                                         vmSymbols::string_signature(), &fd);
1148   if (found) {
1149     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1150     if (name_oop == NULL) {
1151       return NULL;
1152     }
1153     const char* name = java_lang_String::as_utf8_string(name_oop,
1154                                                         java_runtime_vendor_version,
1155                                                         sizeof(java_runtime_vendor_version));
1156     return name;
1157   } else {
1158     return NULL;
1159   }
1160 }
1161 
1162 // extract the JRE vendor VM bug URL from java.lang.VersionProps.VENDOR_URL_VM_BUG
1163 static const char* get_java_runtime_vendor_vm_bug_url(TRAPS) {
1164   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1165                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1166   fieldDescriptor fd;
1167   bool found = k != NULL &&
1168                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_vendor_vm_bug_url_name(),
1169                                                         vmSymbols::string_signature(), &fd);
1170   if (found) {
1171     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1172     if (name_oop == NULL) {
1173       return NULL;
1174     }
1175     const char* name = java_lang_String::as_utf8_string(name_oop,
1176                                                         java_runtime_vendor_vm_bug_url,
1177                                                         sizeof(java_runtime_vendor_vm_bug_url));
1178     return name;
1179   } else {
1180     return NULL;
1181   }
1182 }
1183 
1184 // General purpose hook into Java code, run once when the VM is initialized.
1185 // The Java library method itself may be changed independently from the VM.
1186 static void call_postVMInitHook(TRAPS) {
1187   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1188   if (klass != NULL) {
1189     JavaValue result(T_VOID);
1190     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1191                            vmSymbols::void_method_signature(),
1192                            CHECK);
1193   }
1194 }
1195 
1196 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1197                                     bool daemon, TRAPS) {
1198   assert(thread_group.not_null(), "thread group should be specified");
1199   assert(threadObj() == NULL, "should only create Java thread object once");
1200 
1201   InstanceKlass* ik = SystemDictionary::Thread_klass();
1202   assert(ik->is_initialized(), "must be");
1203   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1204 
1205   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1206   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1207   // constructor calls Thread.current(), which must be set here.
1208   java_lang_Thread::set_thread(thread_oop(), this);
1209   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1210   set_threadObj(thread_oop());
1211 
1212   JavaValue result(T_VOID);
1213   if (thread_name != NULL) {
1214     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1215     // Thread gets assigned specified name and null target
1216     JavaCalls::call_special(&result,
1217                             thread_oop,
1218                             ik,
1219                             vmSymbols::object_initializer_name(),
1220                             vmSymbols::threadgroup_string_void_signature(),
1221                             thread_group,
1222                             name,
1223                             THREAD);
1224   } else {
1225     // Thread gets assigned name "Thread-nnn" and null target
1226     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1227     JavaCalls::call_special(&result,
1228                             thread_oop,
1229                             ik,
1230                             vmSymbols::object_initializer_name(),
1231                             vmSymbols::threadgroup_runnable_void_signature(),
1232                             thread_group,
1233                             Handle(),
1234                             THREAD);
1235   }
1236 
1237 
1238   if (daemon) {
1239     java_lang_Thread::set_daemon(thread_oop());
1240   }
1241 
1242   if (HAS_PENDING_EXCEPTION) {
1243     return;
1244   }
1245 
1246   Klass* group =  SystemDictionary::ThreadGroup_klass();
1247   Handle threadObj(THREAD, this->threadObj());
1248 
1249   JavaCalls::call_special(&result,
1250                           thread_group,
1251                           group,
1252                           vmSymbols::add_method_name(),
1253                           vmSymbols::thread_void_signature(),
1254                           threadObj,          // Arg 1
1255                           THREAD);
1256 }
1257 
1258 // List of all NonJavaThreads and safe iteration over that list.
1259 
1260 class NonJavaThread::List {
1261 public:
1262   NonJavaThread* volatile _head;
1263   SingleWriterSynchronizer _protect;
1264 
1265   List() : _head(NULL), _protect() {}
1266 };
1267 
1268 NonJavaThread::List NonJavaThread::_the_list;
1269 
1270 NonJavaThread::Iterator::Iterator() :
1271   _protect_enter(_the_list._protect.enter()),
1272   _current(OrderAccess::load_acquire(&_the_list._head))
1273 {}
1274 
1275 NonJavaThread::Iterator::~Iterator() {
1276   _the_list._protect.exit(_protect_enter);
1277 }
1278 
1279 void NonJavaThread::Iterator::step() {
1280   assert(!end(), "precondition");
1281   _current = OrderAccess::load_acquire(&_current->_next);
1282 }
1283 
1284 NonJavaThread::NonJavaThread() : Thread(), _next(NULL) {
1285   assert(BarrierSet::barrier_set() != NULL, "NonJavaThread created too soon!");
1286 }
1287 
1288 NonJavaThread::~NonJavaThread() { }
1289 
1290 void NonJavaThread::add_to_the_list() {
1291   MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1292   // Initialize BarrierSet-related data before adding to list.
1293   BarrierSet::barrier_set()->on_thread_attach(this);
1294   OrderAccess::release_store(&_next, _the_list._head);
1295   OrderAccess::release_store(&_the_list._head, this);
1296 }
1297 
1298 void NonJavaThread::remove_from_the_list() {
1299   {
1300     MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1301     // Cleanup BarrierSet-related data before removing from list.
1302     BarrierSet::barrier_set()->on_thread_detach(this);
1303     NonJavaThread* volatile* p = &_the_list._head;
1304     for (NonJavaThread* t = *p; t != NULL; p = &t->_next, t = *p) {
1305       if (t == this) {
1306         *p = _next;
1307         break;
1308       }
1309     }
1310   }
1311   // Wait for any in-progress iterators.  Concurrent synchronize is not
1312   // allowed, so do it while holding a dedicated lock.  Outside and distinct
1313   // from NJTList_lock in case an iteration attempts to lock it.
1314   MutexLocker ml(NonJavaThreadsListSync_lock, Mutex::_no_safepoint_check_flag);
1315   _the_list._protect.synchronize();
1316   _next = NULL;                 // Safe to drop the link now.
1317 }
1318 
1319 void NonJavaThread::pre_run() {
1320   add_to_the_list();
1321 
1322   // This is slightly odd in that NamedThread is a subclass, but
1323   // in fact name() is defined in Thread
1324   assert(this->name() != NULL, "thread name was not set before it was started");
1325   this->set_native_thread_name(this->name());
1326 }
1327 
1328 void NonJavaThread::post_run() {
1329   JFR_ONLY(Jfr::on_thread_exit(this);)
1330   remove_from_the_list();
1331   // Ensure thread-local-storage is cleared before termination.
1332   Thread::clear_thread_current();
1333 }
1334 
1335 // NamedThread --  non-JavaThread subclasses with multiple
1336 // uniquely named instances should derive from this.
1337 NamedThread::NamedThread() :
1338   NonJavaThread(),
1339   _name(NULL),
1340   _processed_thread(NULL),
1341   _gc_id(GCId::undefined())
1342 {}
1343 
1344 NamedThread::~NamedThread() {
1345   FREE_C_HEAP_ARRAY(char, _name);
1346 }
1347 
1348 void NamedThread::set_name(const char* format, ...) {
1349   guarantee(_name == NULL, "Only get to set name once.");
1350   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1351   va_list ap;
1352   va_start(ap, format);
1353   jio_vsnprintf(_name, max_name_len, format, ap);
1354   va_end(ap);
1355 }
1356 
1357 void NamedThread::print_on(outputStream* st) const {
1358   st->print("\"%s\" ", name());
1359   Thread::print_on(st);
1360   st->cr();
1361 }
1362 
1363 
1364 // ======= WatcherThread ========
1365 
1366 // The watcher thread exists to simulate timer interrupts.  It should
1367 // be replaced by an abstraction over whatever native support for
1368 // timer interrupts exists on the platform.
1369 
1370 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1371 bool WatcherThread::_startable = false;
1372 volatile bool  WatcherThread::_should_terminate = false;
1373 
1374 WatcherThread::WatcherThread() : NonJavaThread() {
1375   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1376   if (os::create_thread(this, os::watcher_thread)) {
1377     _watcher_thread = this;
1378 
1379     // Set the watcher thread to the highest OS priority which should not be
1380     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1381     // is created. The only normal thread using this priority is the reference
1382     // handler thread, which runs for very short intervals only.
1383     // If the VMThread's priority is not lower than the WatcherThread profiling
1384     // will be inaccurate.
1385     os::set_priority(this, MaxPriority);
1386     if (!DisableStartThread) {
1387       os::start_thread(this);
1388     }
1389   }
1390 }
1391 
1392 int WatcherThread::sleep() const {
1393   // The WatcherThread does not participate in the safepoint protocol
1394   // for the PeriodicTask_lock because it is not a JavaThread.
1395   MonitorLocker ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1396 
1397   if (_should_terminate) {
1398     // check for termination before we do any housekeeping or wait
1399     return 0;  // we did not sleep.
1400   }
1401 
1402   // remaining will be zero if there are no tasks,
1403   // causing the WatcherThread to sleep until a task is
1404   // enrolled
1405   int remaining = PeriodicTask::time_to_wait();
1406   int time_slept = 0;
1407 
1408   // we expect this to timeout - we only ever get unparked when
1409   // we should terminate or when a new task has been enrolled
1410   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1411 
1412   jlong time_before_loop = os::javaTimeNanos();
1413 
1414   while (true) {
1415     bool timedout = ml.wait(remaining);
1416     jlong now = os::javaTimeNanos();
1417 
1418     if (remaining == 0) {
1419       // if we didn't have any tasks we could have waited for a long time
1420       // consider the time_slept zero and reset time_before_loop
1421       time_slept = 0;
1422       time_before_loop = now;
1423     } else {
1424       // need to recalculate since we might have new tasks in _tasks
1425       time_slept = (int) ((now - time_before_loop) / 1000000);
1426     }
1427 
1428     // Change to task list or spurious wakeup of some kind
1429     if (timedout || _should_terminate) {
1430       break;
1431     }
1432 
1433     remaining = PeriodicTask::time_to_wait();
1434     if (remaining == 0) {
1435       // Last task was just disenrolled so loop around and wait until
1436       // another task gets enrolled
1437       continue;
1438     }
1439 
1440     remaining -= time_slept;
1441     if (remaining <= 0) {
1442       break;
1443     }
1444   }
1445 
1446   return time_slept;
1447 }
1448 
1449 void WatcherThread::run() {
1450   assert(this == watcher_thread(), "just checking");
1451 
1452   this->set_active_handles(JNIHandleBlock::allocate_block());
1453   while (true) {
1454     assert(watcher_thread() == Thread::current(), "thread consistency check");
1455     assert(watcher_thread() == this, "thread consistency check");
1456 
1457     // Calculate how long it'll be until the next PeriodicTask work
1458     // should be done, and sleep that amount of time.
1459     int time_waited = sleep();
1460 
1461     if (VMError::is_error_reported()) {
1462       // A fatal error has happened, the error handler(VMError::report_and_die)
1463       // should abort JVM after creating an error log file. However in some
1464       // rare cases, the error handler itself might deadlock. Here periodically
1465       // check for error reporting timeouts, and if it happens, just proceed to
1466       // abort the VM.
1467 
1468       // This code is in WatcherThread because WatcherThread wakes up
1469       // periodically so the fatal error handler doesn't need to do anything;
1470       // also because the WatcherThread is less likely to crash than other
1471       // threads.
1472 
1473       for (;;) {
1474         // Note: we use naked sleep in this loop because we want to avoid using
1475         // any kind of VM infrastructure which may be broken at this point.
1476         if (VMError::check_timeout()) {
1477           // We hit error reporting timeout. Error reporting was interrupted and
1478           // will be wrapping things up now (closing files etc). Give it some more
1479           // time, then quit the VM.
1480           os::naked_short_sleep(200);
1481           // Print a message to stderr.
1482           fdStream err(defaultStream::output_fd());
1483           err.print_raw_cr("# [ timer expired, abort... ]");
1484           // skip atexit/vm_exit/vm_abort hooks
1485           os::die();
1486         }
1487 
1488         // Wait a second, then recheck for timeout.
1489         os::naked_short_sleep(999);
1490       }
1491     }
1492 
1493     if (_should_terminate) {
1494       // check for termination before posting the next tick
1495       break;
1496     }
1497 
1498     PeriodicTask::real_time_tick(time_waited);
1499   }
1500 
1501   // Signal that it is terminated
1502   {
1503     MutexLocker mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1504     _watcher_thread = NULL;
1505     Terminator_lock->notify_all();
1506   }
1507 }
1508 
1509 void WatcherThread::start() {
1510   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1511 
1512   if (watcher_thread() == NULL && _startable) {
1513     _should_terminate = false;
1514     // Create the single instance of WatcherThread
1515     new WatcherThread();
1516   }
1517 }
1518 
1519 void WatcherThread::make_startable() {
1520   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1521   _startable = true;
1522 }
1523 
1524 void WatcherThread::stop() {
1525   {
1526     // Follow normal safepoint aware lock enter protocol since the
1527     // WatcherThread is stopped by another JavaThread.
1528     MutexLocker ml(PeriodicTask_lock);
1529     _should_terminate = true;
1530 
1531     WatcherThread* watcher = watcher_thread();
1532     if (watcher != NULL) {
1533       // unpark the WatcherThread so it can see that it should terminate
1534       watcher->unpark();
1535     }
1536   }
1537 
1538   MonitorLocker mu(Terminator_lock);
1539 
1540   while (watcher_thread() != NULL) {
1541     // This wait should make safepoint checks, wait without a timeout,
1542     // and wait as a suspend-equivalent condition.
1543     mu.wait(0, Mutex::_as_suspend_equivalent_flag);
1544   }
1545 }
1546 
1547 void WatcherThread::unpark() {
1548   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1549   PeriodicTask_lock->notify();
1550 }
1551 
1552 void WatcherThread::print_on(outputStream* st) const {
1553   st->print("\"%s\" ", name());
1554   Thread::print_on(st);
1555   st->cr();
1556 }
1557 
1558 // ======= JavaThread ========
1559 
1560 #if INCLUDE_JVMCI
1561 
1562 jlong* JavaThread::_jvmci_old_thread_counters;
1563 
1564 bool jvmci_counters_include(JavaThread* thread) {
1565   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1566 }
1567 
1568 void JavaThread::collect_counters(jlong* array, int length) {
1569   assert(length == JVMCICounterSize, "wrong value");
1570   for (int i = 0; i < length; i++) {
1571     array[i] = _jvmci_old_thread_counters[i];
1572   }
1573   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1574     if (jvmci_counters_include(tp)) {
1575       for (int i = 0; i < length; i++) {
1576         array[i] += tp->_jvmci_counters[i];
1577       }
1578     }
1579   }
1580 }
1581 
1582 // Attempt to enlarge the array for per thread counters.
1583 jlong* resize_counters_array(jlong* old_counters, int current_size, int new_size) {
1584   jlong* new_counters = NEW_C_HEAP_ARRAY(jlong, new_size, mtJVMCI);
1585   if (old_counters == NULL) {
1586     old_counters = new_counters;
1587     memset(old_counters, 0, sizeof(jlong) * new_size);
1588   } else {
1589     for (int i = 0; i < MIN2((int) current_size, new_size); i++) {
1590       new_counters[i] = old_counters[i];
1591     }
1592     if (new_size > current_size) {
1593       memset(new_counters + current_size, 0, sizeof(jlong) * (new_size - current_size));
1594     }
1595     FREE_C_HEAP_ARRAY(jlong, old_counters);
1596   }
1597   return new_counters;
1598 }
1599 
1600 // Attempt to enlarge the array for per thread counters.
1601 void JavaThread::resize_counters(int current_size, int new_size) {
1602   _jvmci_counters = resize_counters_array(_jvmci_counters, current_size, new_size);
1603 }
1604 
1605 class VM_JVMCIResizeCounters : public VM_Operation {
1606  private:
1607   int _new_size;
1608 
1609  public:
1610   VM_JVMCIResizeCounters(int new_size) : _new_size(new_size) { }
1611   VMOp_Type type()                  const        { return VMOp_JVMCIResizeCounters; }
1612   bool allow_nested_vm_operations() const        { return true; }
1613   void doit() {
1614     // Resize the old thread counters array
1615     jlong* new_counters = resize_counters_array(JavaThread::_jvmci_old_thread_counters, JVMCICounterSize, _new_size);
1616     JavaThread::_jvmci_old_thread_counters = new_counters;
1617 
1618     // Now resize each threads array
1619     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1620       tp->resize_counters(JVMCICounterSize, _new_size);
1621     }
1622     JVMCICounterSize = _new_size;
1623   }
1624 };
1625 
1626 void JavaThread::resize_all_jvmci_counters(int new_size) {
1627   VM_JVMCIResizeCounters op(new_size);
1628   VMThread::execute(&op);
1629 }
1630 
1631 #endif // INCLUDE_JVMCI
1632 
1633 // A JavaThread is a normal Java thread
1634 
1635 void JavaThread::initialize() {
1636   // Initialize fields
1637 
1638   set_saved_exception_pc(NULL);
1639   set_threadObj(NULL);
1640   _anchor.clear();
1641   set_entry_point(NULL);
1642   set_jni_functions(jni_functions());
1643   set_callee_target(NULL);
1644   set_vm_result(NULL);
1645   set_vm_result_2(NULL);
1646   set_vframe_array_head(NULL);
1647   set_vframe_array_last(NULL);
1648   set_deferred_locals(NULL);
1649   set_deopt_mark(NULL);
1650   set_deopt_compiled_method(NULL);
1651   set_monitor_chunks(NULL);
1652   _on_thread_list = false;
1653   set_thread_state(_thread_new);
1654   _terminated = _not_terminated;
1655   _array_for_gc = NULL;
1656   _suspend_equivalent = false;
1657   _in_deopt_handler = 0;
1658   _doing_unsafe_access = false;
1659   _stack_guard_state = stack_guard_unused;
1660 #if INCLUDE_JVMCI
1661   _pending_monitorenter = false;
1662   _pending_deoptimization = -1;
1663   _pending_failed_speculation = 0;
1664   _pending_transfer_to_interpreter = false;
1665   _in_retryable_allocation = false;
1666   _jvmci._alternate_call_target = NULL;
1667   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1668   _jvmci_counters = NULL;
1669   if (JVMCICounterSize > 0) {
1670     resize_counters(0, (int) JVMCICounterSize);
1671   }
1672 #endif // INCLUDE_JVMCI
1673   _reserved_stack_activation = NULL;  // stack base not known yet
1674   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1675   _exception_pc  = 0;
1676   _exception_handler_pc = 0;
1677   _is_method_handle_return = 0;
1678   _jvmti_thread_state= NULL;
1679   _should_post_on_exceptions_flag = JNI_FALSE;
1680   _interp_only_mode    = 0;
1681   _special_runtime_exit_condition = _no_async_condition;
1682   _pending_async_exception = NULL;
1683   _thread_stat = NULL;
1684   _thread_stat = new ThreadStatistics();
1685   _jni_active_critical = 0;
1686   _pending_jni_exception_check_fn = NULL;
1687   _do_not_unlock_if_synchronized = false;
1688   _cached_monitor_info = NULL;
1689   _parker = Parker::Allocate(this);
1690   _SleepEvent = ParkEvent::Allocate(this);
1691   // Setup safepoint state info for this thread
1692   ThreadSafepointState::create(this);
1693 
1694   debug_only(_java_call_counter = 0);
1695 
1696   // JVMTI PopFrame support
1697   _popframe_condition = popframe_inactive;
1698   _popframe_preserved_args = NULL;
1699   _popframe_preserved_args_size = 0;
1700   _frames_to_pop_failed_realloc = 0;
1701 
1702   if (SafepointMechanism::uses_thread_local_poll()) {
1703     SafepointMechanism::initialize_header(this);
1704   }
1705 
1706   _class_to_be_initialized = NULL;
1707 
1708   pd_initialize();
1709 }
1710 
1711 JavaThread::JavaThread(bool is_attaching_via_jni) :
1712                        Thread() {
1713   initialize();
1714   if (is_attaching_via_jni) {
1715     _jni_attach_state = _attaching_via_jni;
1716   } else {
1717     _jni_attach_state = _not_attaching_via_jni;
1718   }
1719   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1720 }
1721 
1722 
1723 // interrupt support
1724 
1725 void JavaThread::interrupt() {
1726   debug_only(check_for_dangling_thread_pointer(this);)
1727 
1728   if (!osthread()->interrupted()) {
1729     osthread()->set_interrupted(true);
1730     // More than one thread can get here with the same value of osthread,
1731     // resulting in multiple notifications.  We do, however, want the store
1732     // to interrupted() to be visible to other threads before we execute unpark().
1733     OrderAccess::fence();
1734 
1735     // For JavaThread::sleep. Historically we only unpark if changing to the interrupted
1736     // state, in contrast to the other events below. Not clear exactly why.
1737     _SleepEvent->unpark();
1738   }
1739 
1740   // For JSR166. Unpark even if interrupt status already was set.
1741   parker()->unpark();
1742 
1743   // For ObjectMonitor and JvmtiRawMonitor
1744   _ParkEvent->unpark();
1745 }
1746 
1747 
1748 bool JavaThread::is_interrupted(bool clear_interrupted) {
1749   debug_only(check_for_dangling_thread_pointer(this);)
1750   bool interrupted = osthread()->interrupted();
1751 
1752   // NOTE that since there is no "lock" around the interrupt and
1753   // is_interrupted operations, there is the possibility that the
1754   // interrupted flag (in osThread) will be "false" but that the
1755   // low-level events will be in the signaled state. This is
1756   // intentional. The effect of this is that Object.wait() and
1757   // LockSupport.park() will appear to have a spurious wakeup, which
1758   // is allowed and not harmful, and the possibility is so rare that
1759   // it is not worth the added complexity to add yet another lock.
1760   // For the sleep event an explicit reset is performed on entry
1761   // to JavaThread::sleep, so there is no early return. It has also been
1762   // recommended not to put the interrupted flag into the "event"
1763   // structure because it hides the issue.
1764   if (interrupted && clear_interrupted) {
1765     osthread()->set_interrupted(false);
1766     // consider thread->_SleepEvent->reset() ... optional optimization
1767   }
1768 
1769   return interrupted;
1770 }
1771 
1772 bool JavaThread::reguard_stack(address cur_sp) {
1773   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1774       && _stack_guard_state != stack_guard_reserved_disabled) {
1775     return true; // Stack already guarded or guard pages not needed.
1776   }
1777 
1778   if (register_stack_overflow()) {
1779     // For those architectures which have separate register and
1780     // memory stacks, we must check the register stack to see if
1781     // it has overflowed.
1782     return false;
1783   }
1784 
1785   // Java code never executes within the yellow zone: the latter is only
1786   // there to provoke an exception during stack banging.  If java code
1787   // is executing there, either StackShadowPages should be larger, or
1788   // some exception code in c1, c2 or the interpreter isn't unwinding
1789   // when it should.
1790   guarantee(cur_sp > stack_reserved_zone_base(),
1791             "not enough space to reguard - increase StackShadowPages");
1792   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1793     enable_stack_yellow_reserved_zone();
1794     if (reserved_stack_activation() != stack_base()) {
1795       set_reserved_stack_activation(stack_base());
1796     }
1797   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1798     set_reserved_stack_activation(stack_base());
1799     enable_stack_reserved_zone();
1800   }
1801   return true;
1802 }
1803 
1804 bool JavaThread::reguard_stack(void) {
1805   return reguard_stack(os::current_stack_pointer());
1806 }
1807 
1808 
1809 void JavaThread::block_if_vm_exited() {
1810   if (_terminated == _vm_exited) {
1811     // _vm_exited is set at safepoint, and Threads_lock is never released
1812     // we will block here forever.
1813     // Here we can be doing a jump from a safe state to an unsafe state without
1814     // proper transition, but it happens after the final safepoint has begun.
1815     set_thread_state(_thread_in_vm);
1816     Threads_lock->lock();
1817     ShouldNotReachHere();
1818   }
1819 }
1820 
1821 
1822 // Remove this ifdef when C1 is ported to the compiler interface.
1823 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1824 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1825 
1826 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1827                        Thread() {
1828   initialize();
1829   _jni_attach_state = _not_attaching_via_jni;
1830   set_entry_point(entry_point);
1831   // Create the native thread itself.
1832   // %note runtime_23
1833   os::ThreadType thr_type = os::java_thread;
1834   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1835                                                      os::java_thread;
1836   os::create_thread(this, thr_type, stack_sz);
1837   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1838   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1839   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1840   // the exception consists of creating the exception object & initializing it, initialization
1841   // will leave the VM via a JavaCall and then all locks must be unlocked).
1842   //
1843   // The thread is still suspended when we reach here. Thread must be explicit started
1844   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1845   // by calling Threads:add. The reason why this is not done here, is because the thread
1846   // object must be fully initialized (take a look at JVM_Start)
1847 }
1848 
1849 JavaThread::~JavaThread() {
1850 
1851   // JSR166 -- return the parker to the free list
1852   Parker::Release(_parker);
1853   _parker = NULL;
1854 
1855   // Return the sleep event to the free list
1856   ParkEvent::Release(_SleepEvent);
1857   _SleepEvent = NULL;
1858 
1859   // Free any remaining  previous UnrollBlock
1860   vframeArray* old_array = vframe_array_last();
1861 
1862   if (old_array != NULL) {
1863     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1864     old_array->set_unroll_block(NULL);
1865     delete old_info;
1866     delete old_array;
1867   }
1868 
1869   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1870   if (deferred != NULL) {
1871     // This can only happen if thread is destroyed before deoptimization occurs.
1872     assert(deferred->length() != 0, "empty array!");
1873     do {
1874       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1875       deferred->remove_at(0);
1876       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1877       delete dlv;
1878     } while (deferred->length() != 0);
1879     delete deferred;
1880   }
1881 
1882   // All Java related clean up happens in exit
1883   ThreadSafepointState::destroy(this);
1884   if (_thread_stat != NULL) delete _thread_stat;
1885 
1886 #if INCLUDE_JVMCI
1887   if (JVMCICounterSize > 0) {
1888     if (jvmci_counters_include(this)) {
1889       for (int i = 0; i < JVMCICounterSize; i++) {
1890         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1891       }
1892     }
1893     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1894   }
1895 #endif // INCLUDE_JVMCI
1896 }
1897 
1898 
1899 // First JavaThread specific code executed by a new Java thread.
1900 void JavaThread::pre_run() {
1901   // empty - see comments in run()
1902 }
1903 
1904 // The main routine called by a new Java thread. This isn't overridden
1905 // by subclasses, instead different subclasses define a different "entry_point"
1906 // which defines the actual logic for that kind of thread.
1907 void JavaThread::run() {
1908   // initialize thread-local alloc buffer related fields
1909   this->initialize_tlab();
1910 
1911   // Used to test validity of stack trace backs.
1912   // This can't be moved into pre_run() else we invalidate
1913   // the requirement that thread_main_inner is lower on
1914   // the stack. Consequently all the initialization logic
1915   // stays here in run() rather than pre_run().
1916   this->record_base_of_stack_pointer();
1917 
1918   this->create_stack_guard_pages();
1919 
1920   this->cache_global_variables();
1921 
1922   // Thread is now sufficiently initialized to be handled by the safepoint code as being
1923   // in the VM. Change thread state from _thread_new to _thread_in_vm
1924   ThreadStateTransition::transition(this, _thread_new, _thread_in_vm);
1925   // Before a thread is on the threads list it is always safe, so after leaving the
1926   // _thread_new we should emit a instruction barrier. The distance to modified code
1927   // from here is probably far enough, but this is consistent and safe.
1928   OrderAccess::cross_modify_fence();
1929 
1930   assert(JavaThread::current() == this, "sanity check");
1931   assert(!Thread::current()->owns_locks(), "sanity check");
1932 
1933   DTRACE_THREAD_PROBE(start, this);
1934 
1935   // This operation might block. We call that after all safepoint checks for a new thread has
1936   // been completed.
1937   this->set_active_handles(JNIHandleBlock::allocate_block());
1938 
1939   if (JvmtiExport::should_post_thread_life()) {
1940     JvmtiExport::post_thread_start(this);
1941 
1942   }
1943 
1944   // We call another function to do the rest so we are sure that the stack addresses used
1945   // from there will be lower than the stack base just computed.
1946   thread_main_inner();
1947 }
1948 
1949 void JavaThread::thread_main_inner() {
1950   assert(JavaThread::current() == this, "sanity check");
1951   assert(this->threadObj() != NULL, "just checking");
1952 
1953   // Execute thread entry point unless this thread has a pending exception
1954   // or has been stopped before starting.
1955   // Note: Due to JVM_StopThread we can have pending exceptions already!
1956   if (!this->has_pending_exception() &&
1957       !java_lang_Thread::is_stillborn(this->threadObj())) {
1958     {
1959       ResourceMark rm(this);
1960       this->set_native_thread_name(this->get_thread_name());
1961     }
1962     HandleMark hm(this);
1963     this->entry_point()(this, this);
1964   }
1965 
1966   DTRACE_THREAD_PROBE(stop, this);
1967 
1968   // Cleanup is handled in post_run()
1969 }
1970 
1971 // Shared teardown for all JavaThreads
1972 void JavaThread::post_run() {
1973   this->exit(false);
1974   // Defer deletion to here to ensure 'this' is still referenceable in call_run
1975   // for any shared tear-down.
1976   this->smr_delete();
1977 }
1978 
1979 static void ensure_join(JavaThread* thread) {
1980   // We do not need to grab the Threads_lock, since we are operating on ourself.
1981   Handle threadObj(thread, thread->threadObj());
1982   assert(threadObj.not_null(), "java thread object must exist");
1983   ObjectLocker lock(threadObj, thread);
1984   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1985   thread->clear_pending_exception();
1986   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1987   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1988   // Clear the native thread instance - this makes isAlive return false and allows the join()
1989   // to complete once we've done the notify_all below
1990   java_lang_Thread::set_thread(threadObj(), NULL);
1991   lock.notify_all(thread);
1992   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1993   thread->clear_pending_exception();
1994 }
1995 
1996 static bool is_daemon(oop threadObj) {
1997   return (threadObj != NULL && java_lang_Thread::is_daemon(threadObj));
1998 }
1999 
2000 // For any new cleanup additions, please check to see if they need to be applied to
2001 // cleanup_failed_attach_current_thread as well.
2002 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
2003   assert(this == JavaThread::current(), "thread consistency check");
2004 
2005   elapsedTimer _timer_exit_phase1;
2006   elapsedTimer _timer_exit_phase2;
2007   elapsedTimer _timer_exit_phase3;
2008   elapsedTimer _timer_exit_phase4;
2009 
2010   if (log_is_enabled(Debug, os, thread, timer)) {
2011     _timer_exit_phase1.start();
2012   }
2013 
2014   HandleMark hm(this);
2015   Handle uncaught_exception(this, this->pending_exception());
2016   this->clear_pending_exception();
2017   Handle threadObj(this, this->threadObj());
2018   assert(threadObj.not_null(), "Java thread object should be created");
2019 
2020   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
2021   {
2022     EXCEPTION_MARK;
2023 
2024     CLEAR_PENDING_EXCEPTION;
2025   }
2026   if (!destroy_vm) {
2027     if (uncaught_exception.not_null()) {
2028       EXCEPTION_MARK;
2029       // Call method Thread.dispatchUncaughtException().
2030       Klass* thread_klass = SystemDictionary::Thread_klass();
2031       JavaValue result(T_VOID);
2032       JavaCalls::call_virtual(&result,
2033                               threadObj, thread_klass,
2034                               vmSymbols::dispatchUncaughtException_name(),
2035                               vmSymbols::throwable_void_signature(),
2036                               uncaught_exception,
2037                               THREAD);
2038       if (HAS_PENDING_EXCEPTION) {
2039         ResourceMark rm(this);
2040         jio_fprintf(defaultStream::error_stream(),
2041                     "\nException: %s thrown from the UncaughtExceptionHandler"
2042                     " in thread \"%s\"\n",
2043                     pending_exception()->klass()->external_name(),
2044                     get_thread_name());
2045         CLEAR_PENDING_EXCEPTION;
2046       }
2047     }
2048     JFR_ONLY(Jfr::on_java_thread_dismantle(this);)
2049 
2050     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
2051     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
2052     // is deprecated anyhow.
2053     if (!is_Compiler_thread()) {
2054       int count = 3;
2055       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
2056         EXCEPTION_MARK;
2057         JavaValue result(T_VOID);
2058         Klass* thread_klass = SystemDictionary::Thread_klass();
2059         JavaCalls::call_virtual(&result,
2060                                 threadObj, thread_klass,
2061                                 vmSymbols::exit_method_name(),
2062                                 vmSymbols::void_method_signature(),
2063                                 THREAD);
2064         CLEAR_PENDING_EXCEPTION;
2065       }
2066     }
2067     // notify JVMTI
2068     if (JvmtiExport::should_post_thread_life()) {
2069       JvmtiExport::post_thread_end(this);
2070     }
2071 
2072     // We have notified the agents that we are exiting, before we go on,
2073     // we must check for a pending external suspend request and honor it
2074     // in order to not surprise the thread that made the suspend request.
2075     while (true) {
2076       {
2077         MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2078         if (!is_external_suspend()) {
2079           set_terminated(_thread_exiting);
2080           ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
2081           break;
2082         }
2083         // Implied else:
2084         // Things get a little tricky here. We have a pending external
2085         // suspend request, but we are holding the SR_lock so we
2086         // can't just self-suspend. So we temporarily drop the lock
2087         // and then self-suspend.
2088       }
2089 
2090       ThreadBlockInVM tbivm(this);
2091       java_suspend_self();
2092 
2093       // We're done with this suspend request, but we have to loop around
2094       // and check again. Eventually we will get SR_lock without a pending
2095       // external suspend request and will be able to mark ourselves as
2096       // exiting.
2097     }
2098     // no more external suspends are allowed at this point
2099   } else {
2100     assert(!is_terminated() && !is_exiting(), "must not be exiting");
2101     // before_exit() has already posted JVMTI THREAD_END events
2102   }
2103 
2104   if (log_is_enabled(Debug, os, thread, timer)) {
2105     _timer_exit_phase1.stop();
2106     _timer_exit_phase2.start();
2107   }
2108 
2109   // Capture daemon status before the thread is marked as terminated.
2110   bool daemon = is_daemon(threadObj());
2111 
2112   // Notify waiters on thread object. This has to be done after exit() is called
2113   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
2114   // group should have the destroyed bit set before waiters are notified).
2115   ensure_join(this);
2116   assert(!this->has_pending_exception(), "ensure_join should have cleared");
2117 
2118   if (log_is_enabled(Debug, os, thread, timer)) {
2119     _timer_exit_phase2.stop();
2120     _timer_exit_phase3.start();
2121   }
2122   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
2123   // held by this thread must be released. The spec does not distinguish
2124   // between JNI-acquired and regular Java monitors. We can only see
2125   // regular Java monitors here if monitor enter-exit matching is broken.
2126   //
2127   // ensure_join() ignores IllegalThreadStateExceptions, and so does
2128   // ObjectSynchronizer::release_monitors_owned_by_thread().
2129   if (exit_type == jni_detach) {
2130     // Sanity check even though JNI DetachCurrentThread() would have
2131     // returned JNI_ERR if there was a Java frame. JavaThread exit
2132     // should be done executing Java code by the time we get here.
2133     assert(!this->has_last_Java_frame(),
2134            "should not have a Java frame when detaching or exiting");
2135     ObjectSynchronizer::release_monitors_owned_by_thread(this);
2136     assert(!this->has_pending_exception(), "release_monitors should have cleared");
2137   }
2138 
2139   // These things needs to be done while we are still a Java Thread. Make sure that thread
2140   // is in a consistent state, in case GC happens
2141   JFR_ONLY(Jfr::on_thread_exit(this);)
2142 
2143   if (active_handles() != NULL) {
2144     JNIHandleBlock* block = active_handles();
2145     set_active_handles(NULL);
2146     JNIHandleBlock::release_block(block);
2147   }
2148 
2149   if (free_handle_block() != NULL) {
2150     JNIHandleBlock* block = free_handle_block();
2151     set_free_handle_block(NULL);
2152     JNIHandleBlock::release_block(block);
2153   }
2154 
2155   // These have to be removed while this is still a valid thread.
2156   remove_stack_guard_pages();
2157 
2158   if (UseTLAB) {
2159     tlab().retire();
2160   }
2161 
2162   if (JvmtiEnv::environments_might_exist()) {
2163     JvmtiExport::cleanup_thread(this);
2164   }
2165 
2166   // We must flush any deferred card marks and other various GC barrier
2167   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2168   // before removing a thread from the list of active threads.
2169   BarrierSet::barrier_set()->on_thread_detach(this);
2170 
2171   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2172     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2173     os::current_thread_id());
2174 
2175   if (log_is_enabled(Debug, os, thread, timer)) {
2176     _timer_exit_phase3.stop();
2177     _timer_exit_phase4.start();
2178   }
2179   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2180   Threads::remove(this, daemon);
2181 
2182   if (log_is_enabled(Debug, os, thread, timer)) {
2183     _timer_exit_phase4.stop();
2184     ResourceMark rm(this);
2185     log_debug(os, thread, timer)("name='%s'"
2186                                  ", exit-phase1=" JLONG_FORMAT
2187                                  ", exit-phase2=" JLONG_FORMAT
2188                                  ", exit-phase3=" JLONG_FORMAT
2189                                  ", exit-phase4=" JLONG_FORMAT,
2190                                  get_thread_name(),
2191                                  _timer_exit_phase1.milliseconds(),
2192                                  _timer_exit_phase2.milliseconds(),
2193                                  _timer_exit_phase3.milliseconds(),
2194                                  _timer_exit_phase4.milliseconds());
2195   }
2196 }
2197 
2198 void JavaThread::cleanup_failed_attach_current_thread(bool is_daemon) {
2199   if (active_handles() != NULL) {
2200     JNIHandleBlock* block = active_handles();
2201     set_active_handles(NULL);
2202     JNIHandleBlock::release_block(block);
2203   }
2204 
2205   if (free_handle_block() != NULL) {
2206     JNIHandleBlock* block = free_handle_block();
2207     set_free_handle_block(NULL);
2208     JNIHandleBlock::release_block(block);
2209   }
2210 
2211   // These have to be removed while this is still a valid thread.
2212   remove_stack_guard_pages();
2213 
2214   if (UseTLAB) {
2215     tlab().retire();
2216   }
2217 
2218   BarrierSet::barrier_set()->on_thread_detach(this);
2219 
2220   Threads::remove(this, is_daemon);
2221   this->smr_delete();
2222 }
2223 
2224 JavaThread* JavaThread::active() {
2225   Thread* thread = Thread::current();
2226   if (thread->is_Java_thread()) {
2227     return (JavaThread*) thread;
2228   } else {
2229     assert(thread->is_VM_thread(), "this must be a vm thread");
2230     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2231     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2232     assert(ret->is_Java_thread(), "must be a Java thread");
2233     return ret;
2234   }
2235 }
2236 
2237 bool JavaThread::is_lock_owned(address adr) const {
2238   if (Thread::is_lock_owned(adr)) return true;
2239 
2240   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2241     if (chunk->contains(adr)) return true;
2242   }
2243 
2244   return false;
2245 }
2246 
2247 
2248 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2249   chunk->set_next(monitor_chunks());
2250   set_monitor_chunks(chunk);
2251 }
2252 
2253 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2254   guarantee(monitor_chunks() != NULL, "must be non empty");
2255   if (monitor_chunks() == chunk) {
2256     set_monitor_chunks(chunk->next());
2257   } else {
2258     MonitorChunk* prev = monitor_chunks();
2259     while (prev->next() != chunk) prev = prev->next();
2260     prev->set_next(chunk->next());
2261   }
2262 }
2263 
2264 // JVM support.
2265 
2266 // Note: this function shouldn't block if it's called in
2267 // _thread_in_native_trans state (such as from
2268 // check_special_condition_for_native_trans()).
2269 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2270 
2271   if (has_last_Java_frame() && has_async_condition()) {
2272     // If we are at a polling page safepoint (not a poll return)
2273     // then we must defer async exception because live registers
2274     // will be clobbered by the exception path. Poll return is
2275     // ok because the call we a returning from already collides
2276     // with exception handling registers and so there is no issue.
2277     // (The exception handling path kills call result registers but
2278     //  this is ok since the exception kills the result anyway).
2279 
2280     if (is_at_poll_safepoint()) {
2281       // if the code we are returning to has deoptimized we must defer
2282       // the exception otherwise live registers get clobbered on the
2283       // exception path before deoptimization is able to retrieve them.
2284       //
2285       RegisterMap map(this, false);
2286       frame caller_fr = last_frame().sender(&map);
2287       assert(caller_fr.is_compiled_frame(), "what?");
2288       if (caller_fr.is_deoptimized_frame()) {
2289         log_info(exceptions)("deferred async exception at compiled safepoint");
2290         return;
2291       }
2292     }
2293   }
2294 
2295   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2296   if (condition == _no_async_condition) {
2297     // Conditions have changed since has_special_runtime_exit_condition()
2298     // was called:
2299     // - if we were here only because of an external suspend request,
2300     //   then that was taken care of above (or cancelled) so we are done
2301     // - if we were here because of another async request, then it has
2302     //   been cleared between the has_special_runtime_exit_condition()
2303     //   and now so again we are done
2304     return;
2305   }
2306 
2307   // Check for pending async. exception
2308   if (_pending_async_exception != NULL) {
2309     // Only overwrite an already pending exception, if it is not a threadDeath.
2310     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2311 
2312       // We cannot call Exceptions::_throw(...) here because we cannot block
2313       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2314 
2315       LogTarget(Info, exceptions) lt;
2316       if (lt.is_enabled()) {
2317         ResourceMark rm;
2318         LogStream ls(lt);
2319         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2320           if (has_last_Java_frame()) {
2321             frame f = last_frame();
2322            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2323           }
2324         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2325       }
2326       _pending_async_exception = NULL;
2327       clear_has_async_exception();
2328     }
2329   }
2330 
2331   if (check_unsafe_error &&
2332       condition == _async_unsafe_access_error && !has_pending_exception()) {
2333     condition = _no_async_condition;  // done
2334     switch (thread_state()) {
2335     case _thread_in_vm: {
2336       JavaThread* THREAD = this;
2337       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2338     }
2339     case _thread_in_native: {
2340       ThreadInVMfromNative tiv(this);
2341       JavaThread* THREAD = this;
2342       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2343     }
2344     case _thread_in_Java: {
2345       ThreadInVMfromJava tiv(this);
2346       JavaThread* THREAD = this;
2347       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2348     }
2349     default:
2350       ShouldNotReachHere();
2351     }
2352   }
2353 
2354   assert(condition == _no_async_condition || has_pending_exception() ||
2355          (!check_unsafe_error && condition == _async_unsafe_access_error),
2356          "must have handled the async condition, if no exception");
2357 }
2358 
2359 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2360 
2361   // Check for pending external suspend.
2362   if (is_external_suspend_with_lock()) {
2363     frame_anchor()->make_walkable(this);
2364     java_suspend_self_with_safepoint_check();
2365   }
2366 
2367   // We might be here for reasons in addition to the self-suspend request
2368   // so check for other async requests.
2369   if (check_asyncs) {
2370     check_and_handle_async_exceptions();
2371   }
2372 
2373   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2374 }
2375 
2376 void JavaThread::send_thread_stop(oop java_throwable)  {
2377   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2378   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2379   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2380 
2381   // Do not throw asynchronous exceptions against the compiler thread
2382   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2383   if (!can_call_java()) return;
2384 
2385   {
2386     // Actually throw the Throwable against the target Thread - however
2387     // only if there is no thread death exception installed already.
2388     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2389       // If the topmost frame is a runtime stub, then we are calling into
2390       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2391       // must deoptimize the caller before continuing, as the compiled  exception handler table
2392       // may not be valid
2393       if (has_last_Java_frame()) {
2394         frame f = last_frame();
2395         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2396           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2397           RegisterMap reg_map(this, UseBiasedLocking);
2398           frame compiled_frame = f.sender(&reg_map);
2399           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2400             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2401           }
2402         }
2403       }
2404 
2405       // Set async. pending exception in thread.
2406       set_pending_async_exception(java_throwable);
2407 
2408       if (log_is_enabled(Info, exceptions)) {
2409          ResourceMark rm;
2410         log_info(exceptions)("Pending Async. exception installed of type: %s",
2411                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2412       }
2413       // for AbortVMOnException flag
2414       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2415     }
2416   }
2417 
2418 
2419   // Interrupt thread so it will wake up from a potential wait()/sleep()/park()
2420   this->interrupt();
2421 }
2422 
2423 // External suspension mechanism.
2424 //
2425 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2426 // to any VM_locks and it is at a transition
2427 // Self-suspension will happen on the transition out of the vm.
2428 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2429 //
2430 // Guarantees on return:
2431 //   + Target thread will not execute any new bytecode (that's why we need to
2432 //     force a safepoint)
2433 //   + Target thread will not enter any new monitors
2434 //
2435 void JavaThread::java_suspend() {
2436   ThreadsListHandle tlh;
2437   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2438     return;
2439   }
2440 
2441   { MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2442     if (!is_external_suspend()) {
2443       // a racing resume has cancelled us; bail out now
2444       return;
2445     }
2446 
2447     // suspend is done
2448     uint32_t debug_bits = 0;
2449     // Warning: is_ext_suspend_completed() may temporarily drop the
2450     // SR_lock to allow the thread to reach a stable thread state if
2451     // it is currently in a transient thread state.
2452     if (is_ext_suspend_completed(false /* !called_by_wait */,
2453                                  SuspendRetryDelay, &debug_bits)) {
2454       return;
2455     }
2456   }
2457 
2458   if (Thread::current() == this) {
2459     // Safely self-suspend.
2460     // If we don't do this explicitly it will implicitly happen
2461     // before we transition back to Java, and on some other thread-state
2462     // transition paths, but not as we exit a JVM TI SuspendThread call.
2463     // As SuspendThread(current) must not return (until resumed) we must
2464     // self-suspend here.
2465     ThreadBlockInVM tbivm(this);
2466     java_suspend_self();
2467   } else {
2468     VM_ThreadSuspend vm_suspend;
2469     VMThread::execute(&vm_suspend);
2470   }
2471 }
2472 
2473 // Part II of external suspension.
2474 // A JavaThread self suspends when it detects a pending external suspend
2475 // request. This is usually on transitions. It is also done in places
2476 // where continuing to the next transition would surprise the caller,
2477 // e.g., monitor entry.
2478 //
2479 // Returns the number of times that the thread self-suspended.
2480 //
2481 // Note: DO NOT call java_suspend_self() when you just want to block current
2482 //       thread. java_suspend_self() is the second stage of cooperative
2483 //       suspension for external suspend requests and should only be used
2484 //       to complete an external suspend request.
2485 //
2486 int JavaThread::java_suspend_self() {
2487   assert(thread_state() == _thread_blocked, "wrong state for java_suspend_self()");
2488   int ret = 0;
2489 
2490   // we are in the process of exiting so don't suspend
2491   if (is_exiting()) {
2492     clear_external_suspend();
2493     return ret;
2494   }
2495 
2496   assert(_anchor.walkable() ||
2497          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2498          "must have walkable stack");
2499 
2500   MonitorLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2501 
2502   assert(!this->is_ext_suspended(),
2503          "a thread trying to self-suspend should not already be suspended");
2504 
2505   if (this->is_suspend_equivalent()) {
2506     // If we are self-suspending as a result of the lifting of a
2507     // suspend equivalent condition, then the suspend_equivalent
2508     // flag is not cleared until we set the ext_suspended flag so
2509     // that wait_for_ext_suspend_completion() returns consistent
2510     // results.
2511     this->clear_suspend_equivalent();
2512   }
2513 
2514   // A racing resume may have cancelled us before we grabbed SR_lock
2515   // above. Or another external suspend request could be waiting for us
2516   // by the time we return from SR_lock()->wait(). The thread
2517   // that requested the suspension may already be trying to walk our
2518   // stack and if we return now, we can change the stack out from under
2519   // it. This would be a "bad thing (TM)" and cause the stack walker
2520   // to crash. We stay self-suspended until there are no more pending
2521   // external suspend requests.
2522   while (is_external_suspend()) {
2523     ret++;
2524     this->set_ext_suspended();
2525 
2526     // _ext_suspended flag is cleared by java_resume()
2527     while (is_ext_suspended()) {
2528       ml.wait();
2529     }
2530   }
2531   return ret;
2532 }
2533 
2534 // Helper routine to set up the correct thread state before calling java_suspend_self.
2535 // This is called when regular thread-state transition helpers can't be used because
2536 // we can be in various states, in particular _thread_in_native_trans.
2537 // Because this thread is external suspended the safepoint code will count it as at
2538 // a safepoint, regardless of what its actual current thread-state is. But
2539 // is_ext_suspend_completed() may be waiting to see a thread transition from
2540 // _thread_in_native_trans to _thread_blocked. So we set the thread state directly
2541 // to _thread_blocked. The problem with setting thread state directly is that a
2542 // safepoint could happen just after java_suspend_self() returns after being resumed,
2543 // and the VM thread will see the _thread_blocked state. So we must check for a safepoint
2544 // after restoring the state to make sure we won't leave while a safepoint is in progress.
2545 // However, not all initial-states are allowed when performing a safepoint check, as we
2546 // should never be blocking at a safepoint whilst in those states. Of these 'bad' states
2547 // only _thread_in_native is possible when executing this code (based on our two callers).
2548 // A thread that is _thread_in_native is already safepoint-safe and so it doesn't matter
2549 // whether the VMThread sees the _thread_blocked state, or the _thread_in_native state,
2550 // and so we don't need the explicit safepoint check.
2551 
2552 void JavaThread::java_suspend_self_with_safepoint_check() {
2553   assert(this == Thread::current(), "invariant");
2554   JavaThreadState state = thread_state();
2555   set_thread_state(_thread_blocked);
2556   java_suspend_self();
2557   set_thread_state_fence(state);
2558   // Since we are not using a regular thread-state transition helper here,
2559   // we must manually emit the instruction barrier after leaving a safe state.
2560   OrderAccess::cross_modify_fence();
2561   if (state != _thread_in_native) {
2562     SafepointMechanism::block_if_requested(this);
2563   }
2564 }
2565 
2566 #ifdef ASSERT
2567 // Verify the JavaThread has not yet been published in the Threads::list, and
2568 // hence doesn't need protection from concurrent access at this stage.
2569 void JavaThread::verify_not_published() {
2570   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2571   // since an unpublished JavaThread doesn't participate in the
2572   // Thread-SMR protocol for keeping a ThreadsList alive.
2573   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2574 }
2575 #endif
2576 
2577 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2578 // progress or when _suspend_flags is non-zero.
2579 // Current thread needs to self-suspend if there is a suspend request and/or
2580 // block if a safepoint is in progress.
2581 // Async exception ISN'T checked.
2582 // Note only the ThreadInVMfromNative transition can call this function
2583 // directly and when thread state is _thread_in_native_trans
2584 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2585   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2586 
2587   assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2588 
2589   if (thread->is_external_suspend()) {
2590     thread->java_suspend_self_with_safepoint_check();
2591   } else {
2592     SafepointMechanism::block_if_requested(thread);
2593   }
2594 
2595   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2596 }
2597 
2598 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2599 // progress or when _suspend_flags is non-zero.
2600 // Current thread needs to self-suspend if there is a suspend request and/or
2601 // block if a safepoint is in progress.
2602 // Also check for pending async exception (not including unsafe access error).
2603 // Note only the native==>VM/Java barriers can call this function and when
2604 // thread state is _thread_in_native_trans.
2605 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2606   check_safepoint_and_suspend_for_native_trans(thread);
2607 
2608   if (thread->has_async_exception()) {
2609     // We are in _thread_in_native_trans state, don't handle unsafe
2610     // access error since that may block.
2611     thread->check_and_handle_async_exceptions(false);
2612   }
2613 }
2614 
2615 // This is a variant of the normal
2616 // check_special_condition_for_native_trans with slightly different
2617 // semantics for use by critical native wrappers.  It does all the
2618 // normal checks but also performs the transition back into
2619 // thread_in_Java state.  This is required so that critical natives
2620 // can potentially block and perform a GC if they are the last thread
2621 // exiting the GCLocker.
2622 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2623   check_special_condition_for_native_trans(thread);
2624 
2625   // Finish the transition
2626   thread->set_thread_state(_thread_in_Java);
2627 
2628   if (thread->do_critical_native_unlock()) {
2629     ThreadInVMfromJavaNoAsyncException tiv(thread);
2630     GCLocker::unlock_critical(thread);
2631     thread->clear_critical_native_unlock();
2632   }
2633 }
2634 
2635 // We need to guarantee the Threads_lock here, since resumes are not
2636 // allowed during safepoint synchronization
2637 // Can only resume from an external suspension
2638 void JavaThread::java_resume() {
2639   assert_locked_or_safepoint(Threads_lock);
2640 
2641   // Sanity check: thread is gone, has started exiting or the thread
2642   // was not externally suspended.
2643   ThreadsListHandle tlh;
2644   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2645     return;
2646   }
2647 
2648   MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2649 
2650   clear_external_suspend();
2651 
2652   if (is_ext_suspended()) {
2653     clear_ext_suspended();
2654     SR_lock()->notify_all();
2655   }
2656 }
2657 
2658 size_t JavaThread::_stack_red_zone_size = 0;
2659 size_t JavaThread::_stack_yellow_zone_size = 0;
2660 size_t JavaThread::_stack_reserved_zone_size = 0;
2661 size_t JavaThread::_stack_shadow_zone_size = 0;
2662 
2663 void JavaThread::create_stack_guard_pages() {
2664   if (!os::uses_stack_guard_pages() ||
2665       _stack_guard_state != stack_guard_unused ||
2666       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2667       log_info(os, thread)("Stack guard page creation for thread "
2668                            UINTX_FORMAT " disabled", os::current_thread_id());
2669     return;
2670   }
2671   address low_addr = stack_end();
2672   size_t len = stack_guard_zone_size();
2673 
2674   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2675   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2676 
2677   int must_commit = os::must_commit_stack_guard_pages();
2678   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2679 
2680   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2681     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2682     return;
2683   }
2684 
2685   if (os::guard_memory((char *) low_addr, len)) {
2686     _stack_guard_state = stack_guard_enabled;
2687   } else {
2688     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2689       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2690     if (os::uncommit_memory((char *) low_addr, len)) {
2691       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2692     }
2693     return;
2694   }
2695 
2696   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2697     PTR_FORMAT "-" PTR_FORMAT ".",
2698     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2699 }
2700 
2701 void JavaThread::remove_stack_guard_pages() {
2702   assert(Thread::current() == this, "from different thread");
2703   if (_stack_guard_state == stack_guard_unused) return;
2704   address low_addr = stack_end();
2705   size_t len = stack_guard_zone_size();
2706 
2707   if (os::must_commit_stack_guard_pages()) {
2708     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2709       _stack_guard_state = stack_guard_unused;
2710     } else {
2711       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2712         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2713       return;
2714     }
2715   } else {
2716     if (_stack_guard_state == stack_guard_unused) return;
2717     if (os::unguard_memory((char *) low_addr, len)) {
2718       _stack_guard_state = stack_guard_unused;
2719     } else {
2720       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2721         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2722       return;
2723     }
2724   }
2725 
2726   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2727     PTR_FORMAT "-" PTR_FORMAT ".",
2728     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2729 }
2730 
2731 void JavaThread::enable_stack_reserved_zone() {
2732   assert(_stack_guard_state == stack_guard_reserved_disabled, "inconsistent state");
2733 
2734   // The base notation is from the stack's point of view, growing downward.
2735   // We need to adjust it to work correctly with guard_memory()
2736   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2737 
2738   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2739   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2740 
2741   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2742     _stack_guard_state = stack_guard_enabled;
2743   } else {
2744     warning("Attempt to guard stack reserved zone failed.");
2745   }
2746   enable_register_stack_guard();
2747 }
2748 
2749 void JavaThread::disable_stack_reserved_zone() {
2750   assert(_stack_guard_state == stack_guard_enabled, "inconsistent state");
2751 
2752   // Simply return if called for a thread that does not use guard pages.
2753   if (_stack_guard_state != stack_guard_enabled) return;
2754 
2755   // The base notation is from the stack's point of view, growing downward.
2756   // We need to adjust it to work correctly with guard_memory()
2757   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2758 
2759   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2760     _stack_guard_state = stack_guard_reserved_disabled;
2761   } else {
2762     warning("Attempt to unguard stack reserved zone failed.");
2763   }
2764   disable_register_stack_guard();
2765 }
2766 
2767 void JavaThread::enable_stack_yellow_reserved_zone() {
2768   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2769   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2770 
2771   // The base notation is from the stacks point of view, growing downward.
2772   // We need to adjust it to work correctly with guard_memory()
2773   address base = stack_red_zone_base();
2774 
2775   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2776   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2777 
2778   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2779     _stack_guard_state = stack_guard_enabled;
2780   } else {
2781     warning("Attempt to guard stack yellow zone failed.");
2782   }
2783   enable_register_stack_guard();
2784 }
2785 
2786 void JavaThread::disable_stack_yellow_reserved_zone() {
2787   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2788   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2789 
2790   // Simply return if called for a thread that does not use guard pages.
2791   if (_stack_guard_state == stack_guard_unused) return;
2792 
2793   // The base notation is from the stacks point of view, growing downward.
2794   // We need to adjust it to work correctly with guard_memory()
2795   address base = stack_red_zone_base();
2796 
2797   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2798     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2799   } else {
2800     warning("Attempt to unguard stack yellow zone failed.");
2801   }
2802   disable_register_stack_guard();
2803 }
2804 
2805 void JavaThread::enable_stack_red_zone() {
2806   // The base notation is from the stacks point of view, growing downward.
2807   // We need to adjust it to work correctly with guard_memory()
2808   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2809   address base = stack_red_zone_base() - stack_red_zone_size();
2810 
2811   guarantee(base < stack_base(), "Error calculating stack red zone");
2812   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2813 
2814   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2815     warning("Attempt to guard stack red zone failed.");
2816   }
2817 }
2818 
2819 void JavaThread::disable_stack_red_zone() {
2820   // The base notation is from the stacks point of view, growing downward.
2821   // We need to adjust it to work correctly with guard_memory()
2822   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2823   address base = stack_red_zone_base() - stack_red_zone_size();
2824   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2825     warning("Attempt to unguard stack red zone failed.");
2826   }
2827 }
2828 
2829 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2830   // ignore is there is no stack
2831   if (!has_last_Java_frame()) return;
2832   // traverse the stack frames. Starts from top frame.
2833   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2834     frame* fr = fst.current();
2835     f(fr, fst.register_map());
2836   }
2837 }
2838 
2839 
2840 #ifndef PRODUCT
2841 // Deoptimization
2842 // Function for testing deoptimization
2843 void JavaThread::deoptimize() {
2844   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2845   StackFrameStream fst(this, UseBiasedLocking);
2846   bool deopt = false;           // Dump stack only if a deopt actually happens.
2847   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2848   // Iterate over all frames in the thread and deoptimize
2849   for (; !fst.is_done(); fst.next()) {
2850     if (fst.current()->can_be_deoptimized()) {
2851 
2852       if (only_at) {
2853         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2854         // consists of comma or carriage return separated numbers so
2855         // search for the current bci in that string.
2856         address pc = fst.current()->pc();
2857         nmethod* nm =  (nmethod*) fst.current()->cb();
2858         ScopeDesc* sd = nm->scope_desc_at(pc);
2859         char buffer[8];
2860         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2861         size_t len = strlen(buffer);
2862         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2863         while (found != NULL) {
2864           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2865               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2866             // Check that the bci found is bracketed by terminators.
2867             break;
2868           }
2869           found = strstr(found + 1, buffer);
2870         }
2871         if (!found) {
2872           continue;
2873         }
2874       }
2875 
2876       if (DebugDeoptimization && !deopt) {
2877         deopt = true; // One-time only print before deopt
2878         tty->print_cr("[BEFORE Deoptimization]");
2879         trace_frames();
2880         trace_stack();
2881       }
2882       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2883     }
2884   }
2885 
2886   if (DebugDeoptimization && deopt) {
2887     tty->print_cr("[AFTER Deoptimization]");
2888     trace_frames();
2889   }
2890 }
2891 
2892 
2893 // Make zombies
2894 void JavaThread::make_zombies() {
2895   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2896     if (fst.current()->can_be_deoptimized()) {
2897       // it is a Java nmethod
2898       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2899       nm->make_not_entrant();
2900     }
2901   }
2902 }
2903 #endif // PRODUCT
2904 
2905 
2906 void JavaThread::deoptimize_marked_methods() {
2907   if (!has_last_Java_frame()) return;
2908   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2909   StackFrameStream fst(this, UseBiasedLocking);
2910   for (; !fst.is_done(); fst.next()) {
2911     if (fst.current()->should_be_deoptimized()) {
2912       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2913     }
2914   }
2915 }
2916 
2917 // If the caller is a NamedThread, then remember, in the current scope,
2918 // the given JavaThread in its _processed_thread field.
2919 class RememberProcessedThread: public StackObj {
2920   NamedThread* _cur_thr;
2921  public:
2922   RememberProcessedThread(JavaThread* jthr) {
2923     Thread* thread = Thread::current();
2924     if (thread->is_Named_thread()) {
2925       _cur_thr = (NamedThread *)thread;
2926       _cur_thr->set_processed_thread(jthr);
2927     } else {
2928       _cur_thr = NULL;
2929     }
2930   }
2931 
2932   ~RememberProcessedThread() {
2933     if (_cur_thr) {
2934       _cur_thr->set_processed_thread(NULL);
2935     }
2936   }
2937 };
2938 
2939 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2940   // Verify that the deferred card marks have been flushed.
2941   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2942 
2943   // Traverse the GCHandles
2944   Thread::oops_do(f, cf);
2945 
2946   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2947          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2948 
2949   if (has_last_Java_frame()) {
2950     // Record JavaThread to GC thread
2951     RememberProcessedThread rpt(this);
2952 
2953     // traverse the registered growable array
2954     if (_array_for_gc != NULL) {
2955       for (int index = 0; index < _array_for_gc->length(); index++) {
2956         f->do_oop(_array_for_gc->adr_at(index));
2957       }
2958     }
2959 
2960     // Traverse the monitor chunks
2961     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2962       chunk->oops_do(f);
2963     }
2964 
2965     // Traverse the execution stack
2966     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2967       fst.current()->oops_do(f, cf, fst.register_map());
2968     }
2969   }
2970 
2971   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2972   // If we have deferred set_locals there might be oops waiting to be
2973   // written
2974   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2975   if (list != NULL) {
2976     for (int i = 0; i < list->length(); i++) {
2977       list->at(i)->oops_do(f);
2978     }
2979   }
2980 
2981   // Traverse instance variables at the end since the GC may be moving things
2982   // around using this function
2983   f->do_oop((oop*) &_threadObj);
2984   f->do_oop((oop*) &_vm_result);
2985   f->do_oop((oop*) &_exception_oop);
2986   f->do_oop((oop*) &_pending_async_exception);
2987 
2988   if (jvmti_thread_state() != NULL) {
2989     jvmti_thread_state()->oops_do(f);
2990   }
2991 }
2992 
2993 #ifdef ASSERT
2994 void JavaThread::verify_states_for_handshake() {
2995   // This checks that the thread has a correct frame state during a handshake.
2996   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2997          (has_last_Java_frame() && java_call_counter() > 0),
2998          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
2999          has_last_Java_frame(), java_call_counter());
3000 }
3001 #endif
3002 
3003 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
3004   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
3005          (has_last_Java_frame() && java_call_counter() > 0),
3006          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
3007          has_last_Java_frame(), java_call_counter());
3008 
3009   if (has_last_Java_frame()) {
3010     // Traverse the execution stack
3011     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3012       fst.current()->nmethods_do(cf);
3013     }
3014   }
3015 }
3016 
3017 void JavaThread::metadata_do(MetadataClosure* f) {
3018   if (has_last_Java_frame()) {
3019     // Traverse the execution stack to call f() on the methods in the stack
3020     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3021       fst.current()->metadata_do(f);
3022     }
3023   } else if (is_Compiler_thread()) {
3024     // need to walk ciMetadata in current compile tasks to keep alive.
3025     CompilerThread* ct = (CompilerThread*)this;
3026     if (ct->env() != NULL) {
3027       ct->env()->metadata_do(f);
3028     }
3029     CompileTask* task = ct->task();
3030     if (task != NULL) {
3031       task->metadata_do(f);
3032     }
3033   }
3034 }
3035 
3036 // Printing
3037 const char* _get_thread_state_name(JavaThreadState _thread_state) {
3038   switch (_thread_state) {
3039   case _thread_uninitialized:     return "_thread_uninitialized";
3040   case _thread_new:               return "_thread_new";
3041   case _thread_new_trans:         return "_thread_new_trans";
3042   case _thread_in_native:         return "_thread_in_native";
3043   case _thread_in_native_trans:   return "_thread_in_native_trans";
3044   case _thread_in_vm:             return "_thread_in_vm";
3045   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
3046   case _thread_in_Java:           return "_thread_in_Java";
3047   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
3048   case _thread_blocked:           return "_thread_blocked";
3049   case _thread_blocked_trans:     return "_thread_blocked_trans";
3050   default:                        return "unknown thread state";
3051   }
3052 }
3053 
3054 #ifndef PRODUCT
3055 void JavaThread::print_thread_state_on(outputStream *st) const {
3056   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
3057 };
3058 #endif // PRODUCT
3059 
3060 // Called by Threads::print() for VM_PrintThreads operation
3061 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
3062   st->print_raw("\"");
3063   st->print_raw(get_thread_name());
3064   st->print_raw("\" ");
3065   oop thread_oop = threadObj();
3066   if (thread_oop != NULL) {
3067     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
3068     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
3069     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
3070   }
3071   Thread::print_on(st, print_extended_info);
3072   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
3073   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
3074   if (thread_oop != NULL) {
3075     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
3076   }
3077 #ifndef PRODUCT
3078   _safepoint_state->print_on(st);
3079 #endif // PRODUCT
3080   if (is_Compiler_thread()) {
3081     CompileTask *task = ((CompilerThread*)this)->task();
3082     if (task != NULL) {
3083       st->print("   Compiling: ");
3084       task->print(st, NULL, true, false);
3085     } else {
3086       st->print("   No compile task");
3087     }
3088     st->cr();
3089   }
3090 }
3091 
3092 void JavaThread::print() const { print_on(tty); }
3093 
3094 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
3095   st->print("%s", get_thread_name_string(buf, buflen));
3096 }
3097 
3098 // Called by fatal error handler. The difference between this and
3099 // JavaThread::print() is that we can't grab lock or allocate memory.
3100 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
3101   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
3102   oop thread_obj = threadObj();
3103   if (thread_obj != NULL) {
3104     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
3105   }
3106   st->print(" [");
3107   st->print("%s", _get_thread_state_name(_thread_state));
3108   if (osthread()) {
3109     st->print(", id=%d", osthread()->thread_id());
3110   }
3111   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3112             p2i(stack_end()), p2i(stack_base()));
3113   st->print("]");
3114 
3115   ThreadsSMRSupport::print_info_on(this, st);
3116   return;
3117 }
3118 
3119 // Verification
3120 
3121 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3122 
3123 void JavaThread::verify() {
3124   // Verify oops in the thread.
3125   oops_do(&VerifyOopClosure::verify_oop, NULL);
3126 
3127   // Verify the stack frames.
3128   frames_do(frame_verify);
3129 }
3130 
3131 // CR 6300358 (sub-CR 2137150)
3132 // Most callers of this method assume that it can't return NULL but a
3133 // thread may not have a name whilst it is in the process of attaching to
3134 // the VM - see CR 6412693, and there are places where a JavaThread can be
3135 // seen prior to having it's threadObj set (eg JNI attaching threads and
3136 // if vm exit occurs during initialization). These cases can all be accounted
3137 // for such that this method never returns NULL.
3138 const char* JavaThread::get_thread_name() const {
3139 #ifdef ASSERT
3140   // early safepoints can hit while current thread does not yet have TLS
3141   if (!SafepointSynchronize::is_at_safepoint()) {
3142     Thread *cur = Thread::current();
3143     if (!(cur->is_Java_thread() && cur == this)) {
3144       // Current JavaThreads are allowed to get their own name without
3145       // the Threads_lock.
3146       assert_locked_or_safepoint(Threads_lock);
3147     }
3148   }
3149 #endif // ASSERT
3150   return get_thread_name_string();
3151 }
3152 
3153 // Returns a non-NULL representation of this thread's name, or a suitable
3154 // descriptive string if there is no set name
3155 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3156   const char* name_str;
3157   oop thread_obj = threadObj();
3158   if (thread_obj != NULL) {
3159     oop name = java_lang_Thread::name(thread_obj);
3160     if (name != NULL) {
3161       if (buf == NULL) {
3162         name_str = java_lang_String::as_utf8_string(name);
3163       } else {
3164         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3165       }
3166     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3167       name_str = "<no-name - thread is attaching>";
3168     } else {
3169       name_str = Thread::name();
3170     }
3171   } else {
3172     name_str = Thread::name();
3173   }
3174   assert(name_str != NULL, "unexpected NULL thread name");
3175   return name_str;
3176 }
3177 
3178 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3179 
3180   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3181   assert(NoPriority <= prio && prio <= MaxPriority, "sanity check");
3182   // Link Java Thread object <-> C++ Thread
3183 
3184   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3185   // and put it into a new Handle.  The Handle "thread_oop" can then
3186   // be used to pass the C++ thread object to other methods.
3187 
3188   // Set the Java level thread object (jthread) field of the
3189   // new thread (a JavaThread *) to C++ thread object using the
3190   // "thread_oop" handle.
3191 
3192   // Set the thread field (a JavaThread *) of the
3193   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3194 
3195   Handle thread_oop(Thread::current(),
3196                     JNIHandles::resolve_non_null(jni_thread));
3197   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3198          "must be initialized");
3199   set_threadObj(thread_oop());
3200   java_lang_Thread::set_thread(thread_oop(), this);
3201 
3202   if (prio == NoPriority) {
3203     prio = java_lang_Thread::priority(thread_oop());
3204     assert(prio != NoPriority, "A valid priority should be present");
3205   }
3206 
3207   // Push the Java priority down to the native thread; needs Threads_lock
3208   Thread::set_priority(this, prio);
3209 
3210   // Add the new thread to the Threads list and set it in motion.
3211   // We must have threads lock in order to call Threads::add.
3212   // It is crucial that we do not block before the thread is
3213   // added to the Threads list for if a GC happens, then the java_thread oop
3214   // will not be visited by GC.
3215   Threads::add(this);
3216 }
3217 
3218 oop JavaThread::current_park_blocker() {
3219   // Support for JSR-166 locks
3220   oop thread_oop = threadObj();
3221   if (thread_oop != NULL) {
3222     return java_lang_Thread::park_blocker(thread_oop);
3223   }
3224   return NULL;
3225 }
3226 
3227 
3228 void JavaThread::print_stack_on(outputStream* st) {
3229   if (!has_last_Java_frame()) return;
3230   ResourceMark rm;
3231   HandleMark   hm;
3232 
3233   RegisterMap reg_map(this);
3234   vframe* start_vf = last_java_vframe(&reg_map);
3235   int count = 0;
3236   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3237     if (f->is_java_frame()) {
3238       javaVFrame* jvf = javaVFrame::cast(f);
3239       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3240 
3241       // Print out lock information
3242       if (JavaMonitorsInStackTrace) {
3243         jvf->print_lock_info_on(st, count);
3244       }
3245     } else {
3246       // Ignore non-Java frames
3247     }
3248 
3249     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3250     count++;
3251     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3252   }
3253 }
3254 
3255 
3256 // JVMTI PopFrame support
3257 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3258   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3259   if (in_bytes(size_in_bytes) != 0) {
3260     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3261     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3262     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3263   }
3264 }
3265 
3266 void* JavaThread::popframe_preserved_args() {
3267   return _popframe_preserved_args;
3268 }
3269 
3270 ByteSize JavaThread::popframe_preserved_args_size() {
3271   return in_ByteSize(_popframe_preserved_args_size);
3272 }
3273 
3274 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3275   int sz = in_bytes(popframe_preserved_args_size());
3276   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3277   return in_WordSize(sz / wordSize);
3278 }
3279 
3280 void JavaThread::popframe_free_preserved_args() {
3281   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3282   FREE_C_HEAP_ARRAY(char, (char*)_popframe_preserved_args);
3283   _popframe_preserved_args = NULL;
3284   _popframe_preserved_args_size = 0;
3285 }
3286 
3287 #ifndef PRODUCT
3288 
3289 void JavaThread::trace_frames() {
3290   tty->print_cr("[Describe stack]");
3291   int frame_no = 1;
3292   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3293     tty->print("  %d. ", frame_no++);
3294     fst.current()->print_value_on(tty, this);
3295     tty->cr();
3296   }
3297 }
3298 
3299 class PrintAndVerifyOopClosure: public OopClosure {
3300  protected:
3301   template <class T> inline void do_oop_work(T* p) {
3302     oop obj = RawAccess<>::oop_load(p);
3303     if (obj == NULL) return;
3304     tty->print(INTPTR_FORMAT ": ", p2i(p));
3305     if (oopDesc::is_oop_or_null(obj)) {
3306       if (obj->is_objArray()) {
3307         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3308       } else {
3309         obj->print();
3310       }
3311     } else {
3312       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3313     }
3314     tty->cr();
3315   }
3316  public:
3317   virtual void do_oop(oop* p) { do_oop_work(p); }
3318   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3319 };
3320 
3321 #ifdef ASSERT
3322 // Print or validate the layout of stack frames
3323 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3324   ResourceMark rm;
3325   PRESERVE_EXCEPTION_MARK;
3326   FrameValues values;
3327   int frame_no = 0;
3328   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3329     fst.current()->describe(values, ++frame_no);
3330     if (depth == frame_no) break;
3331   }
3332   if (validate_only) {
3333     values.validate();
3334   } else {
3335     tty->print_cr("[Describe stack layout]");
3336     values.print(this);
3337   }
3338 }
3339 #endif
3340 
3341 void JavaThread::trace_stack_from(vframe* start_vf) {
3342   ResourceMark rm;
3343   int vframe_no = 1;
3344   for (vframe* f = start_vf; f; f = f->sender()) {
3345     if (f->is_java_frame()) {
3346       javaVFrame::cast(f)->print_activation(vframe_no++);
3347     } else {
3348       f->print();
3349     }
3350     if (vframe_no > StackPrintLimit) {
3351       tty->print_cr("...<more frames>...");
3352       return;
3353     }
3354   }
3355 }
3356 
3357 
3358 void JavaThread::trace_stack() {
3359   if (!has_last_Java_frame()) return;
3360   ResourceMark rm;
3361   HandleMark   hm;
3362   RegisterMap reg_map(this);
3363   trace_stack_from(last_java_vframe(&reg_map));
3364 }
3365 
3366 
3367 #endif // PRODUCT
3368 
3369 
3370 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3371   assert(reg_map != NULL, "a map must be given");
3372   frame f = last_frame();
3373   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3374     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3375   }
3376   return NULL;
3377 }
3378 
3379 
3380 Klass* JavaThread::security_get_caller_class(int depth) {
3381   vframeStream vfst(this);
3382   vfst.security_get_caller_frame(depth);
3383   if (!vfst.at_end()) {
3384     return vfst.method()->method_holder();
3385   }
3386   return NULL;
3387 }
3388 
3389 // java.lang.Thread.sleep support
3390 // Returns true if sleep time elapsed as expected, and false
3391 // if the thread was interrupted.
3392 bool JavaThread::sleep(jlong millis) {
3393   assert(this == Thread::current(),  "thread consistency check");
3394 
3395   ParkEvent * const slp = this->_SleepEvent;
3396   // Because there can be races with thread interruption sending an unpark()
3397   // to the event, we explicitly reset it here to avoid an immediate return.
3398   // The actual interrupt state will be checked before we park().
3399   slp->reset();
3400   // Thread interruption establishes a happens-before ordering in the
3401   // Java Memory Model, so we need to ensure we synchronize with the
3402   // interrupt state.
3403   OrderAccess::fence();
3404 
3405   jlong prevtime = os::javaTimeNanos();
3406 
3407   for (;;) {
3408     // interruption has precedence over timing out
3409     if (this->is_interrupted(true)) {
3410       return false;
3411     }
3412 
3413     if (millis <= 0) {
3414       return true;
3415     }
3416 
3417     {
3418       ThreadBlockInVM tbivm(this);
3419       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
3420 
3421       this->set_suspend_equivalent();
3422       // cleared by handle_special_suspend_equivalent_condition() or
3423       // java_suspend_self() via check_and_wait_while_suspended()
3424 
3425       slp->park(millis);
3426 
3427       // were we externally suspended while we were waiting?
3428       this->check_and_wait_while_suspended();
3429     }
3430 
3431     // Update elapsed time tracking
3432     jlong newtime = os::javaTimeNanos();
3433     if (newtime - prevtime < 0) {
3434       // time moving backwards, should only happen if no monotonic clock
3435       // not a guarantee() because JVM should not abort on kernel/glibc bugs
3436       assert(!os::supports_monotonic_clock(),
3437              "unexpected time moving backwards detected in JavaThread::sleep()");
3438     } else {
3439       millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3440     }
3441     prevtime = newtime;
3442   }
3443 }
3444 
3445 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3446   assert(thread->is_Compiler_thread(), "must be compiler thread");
3447   CompileBroker::compiler_thread_loop();
3448 }
3449 
3450 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3451   NMethodSweeper::sweeper_loop();
3452 }
3453 
3454 // Create a CompilerThread
3455 CompilerThread::CompilerThread(CompileQueue* queue,
3456                                CompilerCounters* counters)
3457                                : JavaThread(&compiler_thread_entry) {
3458   _env   = NULL;
3459   _log   = NULL;
3460   _task  = NULL;
3461   _queue = queue;
3462   _counters = counters;
3463   _buffer_blob = NULL;
3464   _compiler = NULL;
3465 
3466   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3467   resource_area()->bias_to(mtCompiler);
3468 
3469 #ifndef PRODUCT
3470   _ideal_graph_printer = NULL;
3471 #endif
3472 }
3473 
3474 CompilerThread::~CompilerThread() {
3475   // Delete objects which were allocated on heap.
3476   delete _counters;
3477 }
3478 
3479 bool CompilerThread::can_call_java() const {
3480   return _compiler != NULL && _compiler->is_jvmci();
3481 }
3482 
3483 // Create sweeper thread
3484 CodeCacheSweeperThread::CodeCacheSweeperThread()
3485 : JavaThread(&sweeper_thread_entry) {
3486   _scanned_compiled_method = NULL;
3487 }
3488 
3489 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3490   JavaThread::oops_do(f, cf);
3491   if (_scanned_compiled_method != NULL && cf != NULL) {
3492     // Safepoints can occur when the sweeper is scanning an nmethod so
3493     // process it here to make sure it isn't unloaded in the middle of
3494     // a scan.
3495     cf->do_code_blob(_scanned_compiled_method);
3496   }
3497 }
3498 
3499 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3500   JavaThread::nmethods_do(cf);
3501   if (_scanned_compiled_method != NULL && cf != NULL) {
3502     // Safepoints can occur when the sweeper is scanning an nmethod so
3503     // process it here to make sure it isn't unloaded in the middle of
3504     // a scan.
3505     cf->do_code_blob(_scanned_compiled_method);
3506   }
3507 }
3508 
3509 
3510 // ======= Threads ========
3511 
3512 // The Threads class links together all active threads, and provides
3513 // operations over all threads. It is protected by the Threads_lock,
3514 // which is also used in other global contexts like safepointing.
3515 // ThreadsListHandles are used to safely perform operations on one
3516 // or more threads without the risk of the thread exiting during the
3517 // operation.
3518 //
3519 // Note: The Threads_lock is currently more widely used than we
3520 // would like. We are actively migrating Threads_lock uses to other
3521 // mechanisms in order to reduce Threads_lock contention.
3522 
3523 int         Threads::_number_of_threads = 0;
3524 int         Threads::_number_of_non_daemon_threads = 0;
3525 int         Threads::_return_code = 0;
3526 uintx       Threads::_thread_claim_token = 1; // Never zero.
3527 size_t      JavaThread::_stack_size_at_create = 0;
3528 
3529 #ifdef ASSERT
3530 bool        Threads::_vm_complete = false;
3531 #endif
3532 
3533 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3534   Prefetch::read((void*)addr, prefetch_interval);
3535   return *addr;
3536 }
3537 
3538 // Possibly the ugliest for loop the world has seen. C++ does not allow
3539 // multiple types in the declaration section of the for loop. In this case
3540 // we are only dealing with pointers and hence can cast them. It looks ugly
3541 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3542 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3543     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3544              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3545              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3546              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3547              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3548          MACRO_current_p != MACRO_end;                                                                                    \
3549          MACRO_current_p++,                                                                                               \
3550              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3551 
3552 // All JavaThreads
3553 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3554 
3555 // All NonJavaThreads (i.e., every non-JavaThread in the system).
3556 void Threads::non_java_threads_do(ThreadClosure* tc) {
3557   NoSafepointVerifier nsv;
3558   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
3559     tc->do_thread(njti.current());
3560   }
3561 }
3562 
3563 // All JavaThreads
3564 void Threads::java_threads_do(ThreadClosure* tc) {
3565   assert_locked_or_safepoint(Threads_lock);
3566   // ALL_JAVA_THREADS iterates through all JavaThreads.
3567   ALL_JAVA_THREADS(p) {
3568     tc->do_thread(p);
3569   }
3570 }
3571 
3572 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3573   assert_locked_or_safepoint(Threads_lock);
3574   java_threads_do(tc);
3575   tc->do_thread(VMThread::vm_thread());
3576 }
3577 
3578 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3579 void Threads::threads_do(ThreadClosure* tc) {
3580   assert_locked_or_safepoint(Threads_lock);
3581   java_threads_do(tc);
3582   non_java_threads_do(tc);
3583 }
3584 
3585 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3586   uintx claim_token = Threads::thread_claim_token();
3587   ALL_JAVA_THREADS(p) {
3588     if (p->claim_threads_do(is_par, claim_token)) {
3589       tc->do_thread(p);
3590     }
3591   }
3592   VMThread* vmt = VMThread::vm_thread();
3593   if (vmt->claim_threads_do(is_par, claim_token)) {
3594     tc->do_thread(vmt);
3595   }
3596 }
3597 
3598 // The system initialization in the library has three phases.
3599 //
3600 // Phase 1: java.lang.System class initialization
3601 //     java.lang.System is a primordial class loaded and initialized
3602 //     by the VM early during startup.  java.lang.System.<clinit>
3603 //     only does registerNatives and keeps the rest of the class
3604 //     initialization work later until thread initialization completes.
3605 //
3606 //     System.initPhase1 initializes the system properties, the static
3607 //     fields in, out, and err. Set up java signal handlers, OS-specific
3608 //     system settings, and thread group of the main thread.
3609 static void call_initPhase1(TRAPS) {
3610   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3611   JavaValue result(T_VOID);
3612   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3613                                          vmSymbols::void_method_signature(), CHECK);
3614 }
3615 
3616 // Phase 2. Module system initialization
3617 //     This will initialize the module system.  Only java.base classes
3618 //     can be loaded until phase 2 completes.
3619 //
3620 //     Call System.initPhase2 after the compiler initialization and jsr292
3621 //     classes get initialized because module initialization runs a lot of java
3622 //     code, that for performance reasons, should be compiled.  Also, this will
3623 //     enable the startup code to use lambda and other language features in this
3624 //     phase and onward.
3625 //
3626 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3627 static void call_initPhase2(TRAPS) {
3628   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3629 
3630   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3631 
3632   JavaValue result(T_INT);
3633   JavaCallArguments args;
3634   args.push_int(DisplayVMOutputToStderr);
3635   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3636   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3637                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3638   if (result.get_jint() != JNI_OK) {
3639     vm_exit_during_initialization(); // no message or exception
3640   }
3641 
3642   universe_post_module_init();
3643 }
3644 
3645 // Phase 3. final setup - set security manager, system class loader and TCCL
3646 //
3647 //     This will instantiate and set the security manager, set the system class
3648 //     loader as well as the thread context class loader.  The security manager
3649 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3650 //     other modules or the application's classpath.
3651 static void call_initPhase3(TRAPS) {
3652   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3653   JavaValue result(T_VOID);
3654   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3655                                          vmSymbols::void_method_signature(), CHECK);
3656 }
3657 
3658 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3659   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3660 
3661   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3662     create_vm_init_libraries();
3663   }
3664 
3665   initialize_class(vmSymbols::java_lang_String(), CHECK);
3666 
3667   // Inject CompactStrings value after the static initializers for String ran.
3668   java_lang_String::set_compact_strings(CompactStrings);
3669 
3670   // Initialize java_lang.System (needed before creating the thread)
3671   initialize_class(vmSymbols::java_lang_System(), CHECK);
3672   // The VM creates & returns objects of this class. Make sure it's initialized.
3673   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3674   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3675   Handle thread_group = create_initial_thread_group(CHECK);
3676   Universe::set_main_thread_group(thread_group());
3677   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3678   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3679   main_thread->set_threadObj(thread_object);
3680 
3681   // Set thread status to running since main thread has
3682   // been started and running.
3683   java_lang_Thread::set_thread_status(thread_object,
3684                                       java_lang_Thread::RUNNABLE);
3685 
3686   // The VM creates objects of this class.
3687   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3688 
3689 #ifdef ASSERT
3690   InstanceKlass *k = SystemDictionary::UnsafeConstants_klass();
3691   assert(k->is_not_initialized(), "UnsafeConstants should not already be initialized");
3692 #endif
3693 
3694   // initialize the hardware-specific constants needed by Unsafe
3695   initialize_class(vmSymbols::jdk_internal_misc_UnsafeConstants(), CHECK);
3696   jdk_internal_misc_UnsafeConstants::set_unsafe_constants();
3697 
3698   // The VM preresolves methods to these classes. Make sure that they get initialized
3699   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3700   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3701 
3702   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3703   call_initPhase1(CHECK);
3704 
3705   // get the Java runtime name, version, and vendor info after java.lang.System is initialized
3706   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3707   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3708   JDK_Version::set_runtime_vendor_version(get_java_runtime_vendor_version(THREAD));
3709   JDK_Version::set_runtime_vendor_vm_bug_url(get_java_runtime_vendor_vm_bug_url(THREAD));
3710 
3711   // an instance of OutOfMemory exception has been allocated earlier
3712   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3713   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3714   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3715   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3716   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3717   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3718   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3719   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3720 
3721   // Eager box cache initialization only if AOT is on and any library is loaded.
3722   AOTLoader::initialize_box_caches(CHECK);
3723 }
3724 
3725 void Threads::initialize_jsr292_core_classes(TRAPS) {
3726   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3727 
3728   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3729   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3730   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3731   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3732 }
3733 
3734 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3735   extern void JDK_Version_init();
3736 
3737   // Preinitialize version info.
3738   VM_Version::early_initialize();
3739 
3740   // Check version
3741   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3742 
3743   // Initialize library-based TLS
3744   ThreadLocalStorage::init();
3745 
3746   // Initialize the output stream module
3747   ostream_init();
3748 
3749   // Process java launcher properties.
3750   Arguments::process_sun_java_launcher_properties(args);
3751 
3752   // Initialize the os module
3753   os::init();
3754 
3755   // Record VM creation timing statistics
3756   TraceVmCreationTime create_vm_timer;
3757   create_vm_timer.start();
3758 
3759   // Initialize system properties.
3760   Arguments::init_system_properties();
3761 
3762   // So that JDK version can be used as a discriminator when parsing arguments
3763   JDK_Version_init();
3764 
3765   // Update/Initialize System properties after JDK version number is known
3766   Arguments::init_version_specific_system_properties();
3767 
3768   // Make sure to initialize log configuration *before* parsing arguments
3769   LogConfiguration::initialize(create_vm_timer.begin_time());
3770 
3771   // Parse arguments
3772   // Note: this internally calls os::init_container_support()
3773   jint parse_result = Arguments::parse(args);
3774   if (parse_result != JNI_OK) return parse_result;
3775 
3776   os::init_before_ergo();
3777 
3778   jint ergo_result = Arguments::apply_ergo();
3779   if (ergo_result != JNI_OK) return ergo_result;
3780 
3781   // Final check of all ranges after ergonomics which may change values.
3782   if (!JVMFlagRangeList::check_ranges()) {
3783     return JNI_EINVAL;
3784   }
3785 
3786   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3787   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3788   if (!constraint_result) {
3789     return JNI_EINVAL;
3790   }
3791 
3792   JVMFlagWriteableList::mark_startup();
3793 
3794   if (PauseAtStartup) {
3795     os::pause();
3796   }
3797 
3798   HOTSPOT_VM_INIT_BEGIN();
3799 
3800   // Timing (must come after argument parsing)
3801   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3802 
3803   // Initialize the os module after parsing the args
3804   jint os_init_2_result = os::init_2();
3805   if (os_init_2_result != JNI_OK) return os_init_2_result;
3806 
3807 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3808   // Initialize assert poison page mechanism.
3809   if (ShowRegistersOnAssert) {
3810     initialize_assert_poison();
3811   }
3812 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3813 
3814   SafepointMechanism::initialize();
3815 
3816   jint adjust_after_os_result = Arguments::adjust_after_os();
3817   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3818 
3819   // Initialize output stream logging
3820   ostream_init_log();
3821 
3822   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3823   // Must be before create_vm_init_agents()
3824   if (Arguments::init_libraries_at_startup()) {
3825     convert_vm_init_libraries_to_agents();
3826   }
3827 
3828   // Launch -agentlib/-agentpath and converted -Xrun agents
3829   if (Arguments::init_agents_at_startup()) {
3830     create_vm_init_agents();
3831   }
3832 
3833   // Initialize Threads state
3834   _number_of_threads = 0;
3835   _number_of_non_daemon_threads = 0;
3836 
3837   // Initialize global data structures and create system classes in heap
3838   vm_init_globals();
3839 
3840 #if INCLUDE_JVMCI
3841   if (JVMCICounterSize > 0) {
3842     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtJVMCI);
3843     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3844   } else {
3845     JavaThread::_jvmci_old_thread_counters = NULL;
3846   }
3847 #endif // INCLUDE_JVMCI
3848 
3849   // Attach the main thread to this os thread
3850   JavaThread* main_thread = new JavaThread();
3851   main_thread->set_thread_state(_thread_in_vm);
3852   main_thread->initialize_thread_current();
3853   // must do this before set_active_handles
3854   main_thread->record_stack_base_and_size();
3855   main_thread->register_thread_stack_with_NMT();
3856   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3857 
3858   if (!main_thread->set_as_starting_thread()) {
3859     vm_shutdown_during_initialization(
3860                                       "Failed necessary internal allocation. Out of swap space");
3861     main_thread->smr_delete();
3862     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3863     return JNI_ENOMEM;
3864   }
3865 
3866   // Enable guard page *after* os::create_main_thread(), otherwise it would
3867   // crash Linux VM, see notes in os_linux.cpp.
3868   main_thread->create_stack_guard_pages();
3869 
3870   // Initialize Java-Level synchronization subsystem
3871   ObjectMonitor::Initialize();
3872 
3873   // Initialize global modules
3874   jint status = init_globals();
3875   if (status != JNI_OK) {
3876     main_thread->smr_delete();
3877     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3878     return status;
3879   }
3880 
3881   JFR_ONLY(Jfr::on_vm_init();)
3882 
3883   // Should be done after the heap is fully created
3884   main_thread->cache_global_variables();
3885 
3886   HandleMark hm;
3887 
3888   { MutexLocker mu(Threads_lock);
3889     Threads::add(main_thread);
3890   }
3891 
3892   // Any JVMTI raw monitors entered in onload will transition into
3893   // real raw monitor. VM is setup enough here for raw monitor enter.
3894   JvmtiExport::transition_pending_onload_raw_monitors();
3895 
3896   // Create the VMThread
3897   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3898 
3899     VMThread::create();
3900     Thread* vmthread = VMThread::vm_thread();
3901 
3902     if (!os::create_thread(vmthread, os::vm_thread)) {
3903       vm_exit_during_initialization("Cannot create VM thread. "
3904                                     "Out of system resources.");
3905     }
3906 
3907     // Wait for the VM thread to become ready, and VMThread::run to initialize
3908     // Monitors can have spurious returns, must always check another state flag
3909     {
3910       MonitorLocker ml(Notify_lock);
3911       os::start_thread(vmthread);
3912       while (vmthread->active_handles() == NULL) {
3913         ml.wait();
3914       }
3915     }
3916   }
3917 
3918   assert(Universe::is_fully_initialized(), "not initialized");
3919   if (VerifyDuringStartup) {
3920     // Make sure we're starting with a clean slate.
3921     VM_Verify verify_op;
3922     VMThread::execute(&verify_op);
3923   }
3924 
3925   // We need this to update the java.vm.info property in case any flags used
3926   // to initially define it have been changed. This is needed for both CDS and
3927   // AOT, since UseSharedSpaces and UseAOT may be changed after java.vm.info
3928   // is initially computed. See Abstract_VM_Version::vm_info_string().
3929   // This update must happen before we initialize the java classes, but
3930   // after any initialization logic that might modify the flags.
3931   Arguments::update_vm_info_property(VM_Version::vm_info_string());
3932 
3933   Thread* THREAD = Thread::current();
3934 
3935   // Always call even when there are not JVMTI environments yet, since environments
3936   // may be attached late and JVMTI must track phases of VM execution
3937   JvmtiExport::enter_early_start_phase();
3938 
3939   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3940   JvmtiExport::post_early_vm_start();
3941 
3942   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3943 
3944   quicken_jni_functions();
3945 
3946   // No more stub generation allowed after that point.
3947   StubCodeDesc::freeze();
3948 
3949   // Set flag that basic initialization has completed. Used by exceptions and various
3950   // debug stuff, that does not work until all basic classes have been initialized.
3951   set_init_completed();
3952 
3953   LogConfiguration::post_initialize();
3954   Metaspace::post_initialize();
3955 
3956   HOTSPOT_VM_INIT_END();
3957 
3958   // record VM initialization completion time
3959 #if INCLUDE_MANAGEMENT
3960   Management::record_vm_init_completed();
3961 #endif // INCLUDE_MANAGEMENT
3962 
3963   // Signal Dispatcher needs to be started before VMInit event is posted
3964   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
3965 
3966   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3967   if (!DisableAttachMechanism) {
3968     AttachListener::vm_start();
3969     if (StartAttachListener || AttachListener::init_at_startup()) {
3970       AttachListener::init();
3971     }
3972   }
3973 
3974   // Launch -Xrun agents
3975   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3976   // back-end can launch with -Xdebug -Xrunjdwp.
3977   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3978     create_vm_init_libraries();
3979   }
3980 
3981   if (CleanChunkPoolAsync) {
3982     Chunk::start_chunk_pool_cleaner_task();
3983   }
3984 
3985 
3986   // initialize compiler(s)
3987 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3988 #if INCLUDE_JVMCI
3989   bool force_JVMCI_intialization = false;
3990   if (EnableJVMCI) {
3991     // Initialize JVMCI eagerly when it is explicitly requested.
3992     // Or when JVMCILibDumpJNIConfig or JVMCIPrintProperties is enabled.
3993     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties || JVMCILibDumpJNIConfig;
3994 
3995     if (!force_JVMCI_intialization) {
3996       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3997       // compilations via JVMCI will not actually block until JVMCI is initialized.
3998       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3999     }
4000   }
4001 #endif
4002   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
4003   // Postpone completion of compiler initialization to after JVMCI
4004   // is initialized to avoid timeouts of blocking compilations.
4005   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
4006     CompileBroker::compilation_init_phase2();
4007   }
4008 #endif
4009 
4010   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
4011   // It is done after compilers are initialized, because otherwise compilations of
4012   // signature polymorphic MH intrinsics can be missed
4013   // (see SystemDictionary::find_method_handle_intrinsic).
4014   initialize_jsr292_core_classes(CHECK_JNI_ERR);
4015 
4016   // This will initialize the module system.  Only java.base classes can be
4017   // loaded until phase 2 completes
4018   call_initPhase2(CHECK_JNI_ERR);
4019 
4020   // Always call even when there are not JVMTI environments yet, since environments
4021   // may be attached late and JVMTI must track phases of VM execution
4022   JvmtiExport::enter_start_phase();
4023 
4024   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
4025   JvmtiExport::post_vm_start();
4026 
4027   // Final system initialization including security manager and system class loader
4028   call_initPhase3(CHECK_JNI_ERR);
4029 
4030   // cache the system and platform class loaders
4031   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
4032 
4033 #if INCLUDE_CDS
4034   // capture the module path info from the ModuleEntryTable
4035   ClassLoader::initialize_module_path(THREAD);
4036 #endif
4037 
4038 #if INCLUDE_JVMCI
4039   if (force_JVMCI_intialization) {
4040     JVMCI::initialize_compiler(CHECK_JNI_ERR);
4041     CompileBroker::compilation_init_phase2();
4042   }
4043 #endif
4044 
4045   // Always call even when there are not JVMTI environments yet, since environments
4046   // may be attached late and JVMTI must track phases of VM execution
4047   JvmtiExport::enter_live_phase();
4048 
4049   // Make perfmemory accessible
4050   PerfMemory::set_accessible(true);
4051 
4052   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
4053   JvmtiExport::post_vm_initialized();
4054 
4055   JFR_ONLY(Jfr::on_vm_start();)
4056 
4057 #if INCLUDE_MANAGEMENT
4058   Management::initialize(THREAD);
4059 
4060   if (HAS_PENDING_EXCEPTION) {
4061     // management agent fails to start possibly due to
4062     // configuration problem and is responsible for printing
4063     // stack trace if appropriate. Simply exit VM.
4064     vm_exit(1);
4065   }
4066 #endif // INCLUDE_MANAGEMENT
4067 
4068   if (MemProfiling)                   MemProfiler::engage();
4069   StatSampler::engage();
4070   if (CheckJNICalls)                  JniPeriodicChecker::engage();
4071 
4072   BiasedLocking::init();
4073 
4074 #if INCLUDE_RTM_OPT
4075   RTMLockingCounters::init();
4076 #endif
4077 
4078   call_postVMInitHook(THREAD);
4079   // The Java side of PostVMInitHook.run must deal with all
4080   // exceptions and provide means of diagnosis.
4081   if (HAS_PENDING_EXCEPTION) {
4082     CLEAR_PENDING_EXCEPTION;
4083   }
4084 
4085   {
4086     MutexLocker ml(PeriodicTask_lock);
4087     // Make sure the WatcherThread can be started by WatcherThread::start()
4088     // or by dynamic enrollment.
4089     WatcherThread::make_startable();
4090     // Start up the WatcherThread if there are any periodic tasks
4091     // NOTE:  All PeriodicTasks should be registered by now. If they
4092     //   aren't, late joiners might appear to start slowly (we might
4093     //   take a while to process their first tick).
4094     if (PeriodicTask::num_tasks() > 0) {
4095       WatcherThread::start();
4096     }
4097   }
4098 
4099   create_vm_timer.end();
4100 #ifdef ASSERT
4101   _vm_complete = true;
4102 #endif
4103 
4104   if (DumpSharedSpaces) {
4105     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
4106     ShouldNotReachHere();
4107   }
4108 
4109   return JNI_OK;
4110 }
4111 
4112 // type for the Agent_OnLoad and JVM_OnLoad entry points
4113 extern "C" {
4114   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
4115 }
4116 // Find a command line agent library and return its entry point for
4117 //         -agentlib:  -agentpath:   -Xrun
4118 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4119 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4120                                     const char *on_load_symbols[],
4121                                     size_t num_symbol_entries) {
4122   OnLoadEntry_t on_load_entry = NULL;
4123   void *library = NULL;
4124 
4125   if (!agent->valid()) {
4126     char buffer[JVM_MAXPATHLEN];
4127     char ebuf[1024] = "";
4128     const char *name = agent->name();
4129     const char *msg = "Could not find agent library ";
4130 
4131     // First check to see if agent is statically linked into executable
4132     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4133       library = agent->os_lib();
4134     } else if (agent->is_absolute_path()) {
4135       library = os::dll_load(name, ebuf, sizeof ebuf);
4136       if (library == NULL) {
4137         const char *sub_msg = " in absolute path, with error: ";
4138         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4139         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4140         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4141         // If we can't find the agent, exit.
4142         vm_exit_during_initialization(buf, NULL);
4143         FREE_C_HEAP_ARRAY(char, buf);
4144       }
4145     } else {
4146       // Try to load the agent from the standard dll directory
4147       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4148                              name)) {
4149         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4150       }
4151       if (library == NULL) { // Try the library path directory.
4152         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4153           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4154         }
4155         if (library == NULL) {
4156           const char *sub_msg = " on the library path, with error: ";
4157           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4158 
4159           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4160                        strlen(ebuf) + strlen(sub_msg2) + 1;
4161           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4162           if (!agent->is_instrument_lib()) {
4163             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4164           } else {
4165             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4166           }
4167           // If we can't find the agent, exit.
4168           vm_exit_during_initialization(buf, NULL);
4169           FREE_C_HEAP_ARRAY(char, buf);
4170         }
4171       }
4172     }
4173     agent->set_os_lib(library);
4174     agent->set_valid();
4175   }
4176 
4177   // Find the OnLoad function.
4178   on_load_entry =
4179     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4180                                                           false,
4181                                                           on_load_symbols,
4182                                                           num_symbol_entries));
4183   return on_load_entry;
4184 }
4185 
4186 // Find the JVM_OnLoad entry point
4187 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4188   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4189   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4190 }
4191 
4192 // Find the Agent_OnLoad entry point
4193 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4194   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4195   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4196 }
4197 
4198 // For backwards compatibility with -Xrun
4199 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4200 // treated like -agentpath:
4201 // Must be called before agent libraries are created
4202 void Threads::convert_vm_init_libraries_to_agents() {
4203   AgentLibrary* agent;
4204   AgentLibrary* next;
4205 
4206   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4207     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4208     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4209 
4210     // If there is an JVM_OnLoad function it will get called later,
4211     // otherwise see if there is an Agent_OnLoad
4212     if (on_load_entry == NULL) {
4213       on_load_entry = lookup_agent_on_load(agent);
4214       if (on_load_entry != NULL) {
4215         // switch it to the agent list -- so that Agent_OnLoad will be called,
4216         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4217         Arguments::convert_library_to_agent(agent);
4218       } else {
4219         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4220       }
4221     }
4222   }
4223 }
4224 
4225 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4226 // Invokes Agent_OnLoad
4227 // Called very early -- before JavaThreads exist
4228 void Threads::create_vm_init_agents() {
4229   extern struct JavaVM_ main_vm;
4230   AgentLibrary* agent;
4231 
4232   JvmtiExport::enter_onload_phase();
4233 
4234   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4235     // CDS dumping does not support native JVMTI agent.
4236     // CDS dumping supports Java agent if the AllowArchivingWithJavaAgent diagnostic option is specified.
4237     if (Arguments::is_dumping_archive()) {
4238       if(!agent->is_instrument_lib()) {
4239         vm_exit_during_cds_dumping("CDS dumping does not support native JVMTI agent, name", agent->name());
4240       } else if (!AllowArchivingWithJavaAgent) {
4241         vm_exit_during_cds_dumping(
4242           "Must enable AllowArchivingWithJavaAgent in order to run Java agent during CDS dumping");
4243       }
4244     }
4245 
4246     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4247 
4248     if (on_load_entry != NULL) {
4249       // Invoke the Agent_OnLoad function
4250       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4251       if (err != JNI_OK) {
4252         vm_exit_during_initialization("agent library failed to init", agent->name());
4253       }
4254     } else {
4255       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4256     }
4257   }
4258 
4259   JvmtiExport::enter_primordial_phase();
4260 }
4261 
4262 extern "C" {
4263   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4264 }
4265 
4266 void Threads::shutdown_vm_agents() {
4267   // Send any Agent_OnUnload notifications
4268   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4269   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4270   extern struct JavaVM_ main_vm;
4271   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4272 
4273     // Find the Agent_OnUnload function.
4274     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4275                                                    os::find_agent_function(agent,
4276                                                    false,
4277                                                    on_unload_symbols,
4278                                                    num_symbol_entries));
4279 
4280     // Invoke the Agent_OnUnload function
4281     if (unload_entry != NULL) {
4282       JavaThread* thread = JavaThread::current();
4283       ThreadToNativeFromVM ttn(thread);
4284       HandleMark hm(thread);
4285       (*unload_entry)(&main_vm);
4286     }
4287   }
4288 }
4289 
4290 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4291 // Invokes JVM_OnLoad
4292 void Threads::create_vm_init_libraries() {
4293   extern struct JavaVM_ main_vm;
4294   AgentLibrary* agent;
4295 
4296   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4297     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4298 
4299     if (on_load_entry != NULL) {
4300       // Invoke the JVM_OnLoad function
4301       JavaThread* thread = JavaThread::current();
4302       ThreadToNativeFromVM ttn(thread);
4303       HandleMark hm(thread);
4304       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4305       if (err != JNI_OK) {
4306         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4307       }
4308     } else {
4309       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4310     }
4311   }
4312 }
4313 
4314 
4315 // Last thread running calls java.lang.Shutdown.shutdown()
4316 void JavaThread::invoke_shutdown_hooks() {
4317   HandleMark hm(this);
4318 
4319   // We could get here with a pending exception, if so clear it now.
4320   if (this->has_pending_exception()) {
4321     this->clear_pending_exception();
4322   }
4323 
4324   EXCEPTION_MARK;
4325   Klass* shutdown_klass =
4326     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4327                                       THREAD);
4328   if (shutdown_klass != NULL) {
4329     // SystemDictionary::resolve_or_null will return null if there was
4330     // an exception.  If we cannot load the Shutdown class, just don't
4331     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4332     // won't be run.  Note that if a shutdown hook was registered,
4333     // the Shutdown class would have already been loaded
4334     // (Runtime.addShutdownHook will load it).
4335     JavaValue result(T_VOID);
4336     JavaCalls::call_static(&result,
4337                            shutdown_klass,
4338                            vmSymbols::shutdown_name(),
4339                            vmSymbols::void_method_signature(),
4340                            THREAD);
4341   }
4342   CLEAR_PENDING_EXCEPTION;
4343 }
4344 
4345 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4346 // the program falls off the end of main(). Another VM exit path is through
4347 // vm_exit() when the program calls System.exit() to return a value or when
4348 // there is a serious error in VM. The two shutdown paths are not exactly
4349 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4350 // and VM_Exit op at VM level.
4351 //
4352 // Shutdown sequence:
4353 //   + Shutdown native memory tracking if it is on
4354 //   + Wait until we are the last non-daemon thread to execute
4355 //     <-- every thing is still working at this moment -->
4356 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4357 //        shutdown hooks
4358 //   + Call before_exit(), prepare for VM exit
4359 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4360 //        currently the only user of this mechanism is File.deleteOnExit())
4361 //      > stop StatSampler, watcher thread, CMS threads,
4362 //        post thread end and vm death events to JVMTI,
4363 //        stop signal thread
4364 //   + Call JavaThread::exit(), it will:
4365 //      > release JNI handle blocks, remove stack guard pages
4366 //      > remove this thread from Threads list
4367 //     <-- no more Java code from this thread after this point -->
4368 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4369 //     the compiler threads at safepoint
4370 //     <-- do not use anything that could get blocked by Safepoint -->
4371 //   + Disable tracing at JNI/JVM barriers
4372 //   + Set _vm_exited flag for threads that are still running native code
4373 //   + Call exit_globals()
4374 //      > deletes tty
4375 //      > deletes PerfMemory resources
4376 //   + Delete this thread
4377 //   + Return to caller
4378 
4379 bool Threads::destroy_vm() {
4380   JavaThread* thread = JavaThread::current();
4381 
4382 #ifdef ASSERT
4383   _vm_complete = false;
4384 #endif
4385   // Wait until we are the last non-daemon thread to execute
4386   { MonitorLocker nu(Threads_lock);
4387     while (Threads::number_of_non_daemon_threads() > 1)
4388       // This wait should make safepoint checks, wait without a timeout,
4389       // and wait as a suspend-equivalent condition.
4390       nu.wait(0, Mutex::_as_suspend_equivalent_flag);
4391   }
4392 
4393   EventShutdown e;
4394   if (e.should_commit()) {
4395     e.set_reason("No remaining non-daemon Java threads");
4396     e.commit();
4397   }
4398 
4399   // Hang forever on exit if we are reporting an error.
4400   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4401     os::infinite_sleep();
4402   }
4403   os::wait_for_keypress_at_exit();
4404 
4405   // run Java level shutdown hooks
4406   thread->invoke_shutdown_hooks();
4407 
4408   before_exit(thread);
4409 
4410   thread->exit(true);
4411 
4412   // Stop VM thread.
4413   {
4414     // 4945125 The vm thread comes to a safepoint during exit.
4415     // GC vm_operations can get caught at the safepoint, and the
4416     // heap is unparseable if they are caught. Grab the Heap_lock
4417     // to prevent this. The GC vm_operations will not be able to
4418     // queue until after the vm thread is dead. After this point,
4419     // we'll never emerge out of the safepoint before the VM exits.
4420 
4421     MutexLocker ml(Heap_lock, Mutex::_no_safepoint_check_flag);
4422 
4423     VMThread::wait_for_vm_thread_exit();
4424     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4425     VMThread::destroy();
4426   }
4427 
4428   // Now, all Java threads are gone except daemon threads. Daemon threads
4429   // running Java code or in VM are stopped by the Safepoint. However,
4430   // daemon threads executing native code are still running.  But they
4431   // will be stopped at native=>Java/VM barriers. Note that we can't
4432   // simply kill or suspend them, as it is inherently deadlock-prone.
4433 
4434   VM_Exit::set_vm_exited();
4435 
4436   // Clean up ideal graph printers after the VMThread has started
4437   // the final safepoint which will block all the Compiler threads.
4438   // Note that this Thread has already logically exited so the
4439   // clean_up() function's use of a JavaThreadIteratorWithHandle
4440   // would be a problem except set_vm_exited() has remembered the
4441   // shutdown thread which is granted a policy exception.
4442 #if defined(COMPILER2) && !defined(PRODUCT)
4443   IdealGraphPrinter::clean_up();
4444 #endif
4445 
4446   notify_vm_shutdown();
4447 
4448   // exit_globals() will delete tty
4449   exit_globals();
4450 
4451   // We are after VM_Exit::set_vm_exited() so we can't call
4452   // thread->smr_delete() or we will block on the Threads_lock.
4453   // Deleting the shutdown thread here is safe because another
4454   // JavaThread cannot have an active ThreadsListHandle for
4455   // this JavaThread.
4456   delete thread;
4457 
4458 #if INCLUDE_JVMCI
4459   if (JVMCICounterSize > 0) {
4460     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4461   }
4462 #endif
4463 
4464   LogConfiguration::finalize();
4465 
4466   return true;
4467 }
4468 
4469 
4470 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4471   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4472   return is_supported_jni_version(version);
4473 }
4474 
4475 
4476 jboolean Threads::is_supported_jni_version(jint version) {
4477   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4478   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4479   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4480   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4481   if (version == JNI_VERSION_9) return JNI_TRUE;
4482   if (version == JNI_VERSION_10) return JNI_TRUE;
4483   return JNI_FALSE;
4484 }
4485 
4486 
4487 void Threads::add(JavaThread* p, bool force_daemon) {
4488   // The threads lock must be owned at this point
4489   assert(Threads_lock->owned_by_self(), "must have threads lock");
4490 
4491   BarrierSet::barrier_set()->on_thread_attach(p);
4492 
4493   // Once a JavaThread is added to the Threads list, smr_delete() has
4494   // to be used to delete it. Otherwise we can just delete it directly.
4495   p->set_on_thread_list();
4496 
4497   _number_of_threads++;
4498   oop threadObj = p->threadObj();
4499   bool daemon = true;
4500   // Bootstrapping problem: threadObj can be null for initial
4501   // JavaThread (or for threads attached via JNI)
4502   if ((!force_daemon) && !is_daemon((threadObj))) {
4503     _number_of_non_daemon_threads++;
4504     daemon = false;
4505   }
4506 
4507   ThreadService::add_thread(p, daemon);
4508 
4509   // Maintain fast thread list
4510   ThreadsSMRSupport::add_thread(p);
4511 
4512   // Possible GC point.
4513   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4514 }
4515 
4516 void Threads::remove(JavaThread* p, bool is_daemon) {
4517 
4518   // Reclaim the ObjectMonitors from the om_in_use_list and om_free_list of the moribund thread.
4519   ObjectSynchronizer::om_flush(p);
4520 
4521   // Extra scope needed for Thread_lock, so we can check
4522   // that we do not remove thread without safepoint code notice
4523   { MonitorLocker ml(Threads_lock);
4524 
4525     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4526 
4527     // Maintain fast thread list
4528     ThreadsSMRSupport::remove_thread(p);
4529 
4530     _number_of_threads--;
4531     if (!is_daemon) {
4532       _number_of_non_daemon_threads--;
4533 
4534       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4535       // on destroy_vm will wake up.
4536       if (number_of_non_daemon_threads() == 1) {
4537         ml.notify_all();
4538       }
4539     }
4540     ThreadService::remove_thread(p, is_daemon);
4541 
4542     // Make sure that safepoint code disregard this thread. This is needed since
4543     // the thread might mess around with locks after this point. This can cause it
4544     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4545     // of this thread since it is removed from the queue.
4546     p->set_terminated_value();
4547   } // unlock Threads_lock
4548 
4549   // Since Events::log uses a lock, we grab it outside the Threads_lock
4550   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4551 }
4552 
4553 // Operations on the Threads list for GC.  These are not explicitly locked,
4554 // but the garbage collector must provide a safe context for them to run.
4555 // In particular, these things should never be called when the Threads_lock
4556 // is held by some other thread. (Note: the Safepoint abstraction also
4557 // uses the Threads_lock to guarantee this property. It also makes sure that
4558 // all threads gets blocked when exiting or starting).
4559 
4560 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4561   ALL_JAVA_THREADS(p) {
4562     p->oops_do(f, cf);
4563   }
4564   VMThread::vm_thread()->oops_do(f, cf);
4565 }
4566 
4567 void Threads::change_thread_claim_token() {
4568   if (++_thread_claim_token == 0) {
4569     // On overflow of the token counter, there is a risk of future
4570     // collisions between a new global token value and a stale token
4571     // for a thread, because not all iterations visit all threads.
4572     // (Though it's pretty much a theoretical concern for non-trivial
4573     // token counter sizes.)  To deal with the possibility, reset all
4574     // the thread tokens to zero on global token overflow.
4575     struct ResetClaims : public ThreadClosure {
4576       virtual void do_thread(Thread* t) {
4577         t->claim_threads_do(false, 0);
4578       }
4579     } reset_claims;
4580     Threads::threads_do(&reset_claims);
4581     // On overflow, update the global token to non-zero, to
4582     // avoid the special "never claimed" initial thread value.
4583     _thread_claim_token = 1;
4584   }
4585 }
4586 
4587 #ifdef ASSERT
4588 void assert_thread_claimed(const char* kind, Thread* t, uintx expected) {
4589   const uintx token = t->threads_do_token();
4590   assert(token == expected,
4591          "%s " PTR_FORMAT " has incorrect value " UINTX_FORMAT " != "
4592          UINTX_FORMAT, kind, p2i(t), token, expected);
4593 }
4594 
4595 void Threads::assert_all_threads_claimed() {
4596   ALL_JAVA_THREADS(p) {
4597     assert_thread_claimed("Thread", p, _thread_claim_token);
4598   }
4599   assert_thread_claimed("VMThread", VMThread::vm_thread(), _thread_claim_token);
4600 }
4601 #endif // ASSERT
4602 
4603 class ParallelOopsDoThreadClosure : public ThreadClosure {
4604 private:
4605   OopClosure* _f;
4606   CodeBlobClosure* _cf;
4607 public:
4608   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4609   void do_thread(Thread* t) {
4610     t->oops_do(_f, _cf);
4611   }
4612 };
4613 
4614 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4615   ParallelOopsDoThreadClosure tc(f, cf);
4616   possibly_parallel_threads_do(is_par, &tc);
4617 }
4618 
4619 void Threads::nmethods_do(CodeBlobClosure* cf) {
4620   ALL_JAVA_THREADS(p) {
4621     // This is used by the code cache sweeper to mark nmethods that are active
4622     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4623     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4624     if(!p->is_Code_cache_sweeper_thread()) {
4625       p->nmethods_do(cf);
4626     }
4627   }
4628 }
4629 
4630 void Threads::metadata_do(MetadataClosure* f) {
4631   ALL_JAVA_THREADS(p) {
4632     p->metadata_do(f);
4633   }
4634 }
4635 
4636 class ThreadHandlesClosure : public ThreadClosure {
4637   void (*_f)(Metadata*);
4638  public:
4639   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4640   virtual void do_thread(Thread* thread) {
4641     thread->metadata_handles_do(_f);
4642   }
4643 };
4644 
4645 void Threads::metadata_handles_do(void f(Metadata*)) {
4646   // Only walk the Handles in Thread.
4647   ThreadHandlesClosure handles_closure(f);
4648   threads_do(&handles_closure);
4649 }
4650 
4651 // Get count Java threads that are waiting to enter the specified monitor.
4652 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4653                                                          int count,
4654                                                          address monitor) {
4655   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4656 
4657   int i = 0;
4658   DO_JAVA_THREADS(t_list, p) {
4659     if (!p->can_call_java()) continue;
4660 
4661     address pending = (address)p->current_pending_monitor();
4662     if (pending == monitor) {             // found a match
4663       if (i < count) result->append(p);   // save the first count matches
4664       i++;
4665     }
4666   }
4667 
4668   return result;
4669 }
4670 
4671 
4672 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4673                                                       address owner) {
4674   // NULL owner means not locked so we can skip the search
4675   if (owner == NULL) return NULL;
4676 
4677   DO_JAVA_THREADS(t_list, p) {
4678     // first, see if owner is the address of a Java thread
4679     if (owner == (address)p) return p;
4680   }
4681 
4682   // Cannot assert on lack of success here since this function may be
4683   // used by code that is trying to report useful problem information
4684   // like deadlock detection.
4685   if (UseHeavyMonitors) return NULL;
4686 
4687   // If we didn't find a matching Java thread and we didn't force use of
4688   // heavyweight monitors, then the owner is the stack address of the
4689   // Lock Word in the owning Java thread's stack.
4690   //
4691   JavaThread* the_owner = NULL;
4692   DO_JAVA_THREADS(t_list, q) {
4693     if (q->is_lock_owned(owner)) {
4694       the_owner = q;
4695       break;
4696     }
4697   }
4698 
4699   // cannot assert on lack of success here; see above comment
4700   return the_owner;
4701 }
4702 
4703 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4704 void Threads::print_on(outputStream* st, bool print_stacks,
4705                        bool internal_format, bool print_concurrent_locks,
4706                        bool print_extended_info) {
4707   char buf[32];
4708   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4709 
4710   st->print_cr("Full thread dump %s (%s %s):",
4711                VM_Version::vm_name(),
4712                VM_Version::vm_release(),
4713                VM_Version::vm_info_string());
4714   st->cr();
4715 
4716 #if INCLUDE_SERVICES
4717   // Dump concurrent locks
4718   ConcurrentLocksDump concurrent_locks;
4719   if (print_concurrent_locks) {
4720     concurrent_locks.dump_at_safepoint();
4721   }
4722 #endif // INCLUDE_SERVICES
4723 
4724   ThreadsSMRSupport::print_info_on(st);
4725   st->cr();
4726 
4727   ALL_JAVA_THREADS(p) {
4728     ResourceMark rm;
4729     p->print_on(st, print_extended_info);
4730     if (print_stacks) {
4731       if (internal_format) {
4732         p->trace_stack();
4733       } else {
4734         p->print_stack_on(st);
4735       }
4736     }
4737     st->cr();
4738 #if INCLUDE_SERVICES
4739     if (print_concurrent_locks) {
4740       concurrent_locks.print_locks_on(p, st);
4741     }
4742 #endif // INCLUDE_SERVICES
4743   }
4744 
4745   VMThread::vm_thread()->print_on(st);
4746   st->cr();
4747   Universe::heap()->print_gc_threads_on(st);
4748   WatcherThread* wt = WatcherThread::watcher_thread();
4749   if (wt != NULL) {
4750     wt->print_on(st);
4751     st->cr();
4752   }
4753 
4754   st->flush();
4755 }
4756 
4757 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4758                              int buflen, bool* found_current) {
4759   if (this_thread != NULL) {
4760     bool is_current = (current == this_thread);
4761     *found_current = *found_current || is_current;
4762     st->print("%s", is_current ? "=>" : "  ");
4763 
4764     st->print(PTR_FORMAT, p2i(this_thread));
4765     st->print(" ");
4766     this_thread->print_on_error(st, buf, buflen);
4767     st->cr();
4768   }
4769 }
4770 
4771 class PrintOnErrorClosure : public ThreadClosure {
4772   outputStream* _st;
4773   Thread* _current;
4774   char* _buf;
4775   int _buflen;
4776   bool* _found_current;
4777  public:
4778   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4779                       int buflen, bool* found_current) :
4780    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4781 
4782   virtual void do_thread(Thread* thread) {
4783     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4784   }
4785 };
4786 
4787 // Threads::print_on_error() is called by fatal error handler. It's possible
4788 // that VM is not at safepoint and/or current thread is inside signal handler.
4789 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4790 // memory (even in resource area), it might deadlock the error handler.
4791 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4792                              int buflen) {
4793   ThreadsSMRSupport::print_info_on(st);
4794   st->cr();
4795 
4796   bool found_current = false;
4797   st->print_cr("Java Threads: ( => current thread )");
4798   ALL_JAVA_THREADS(thread) {
4799     print_on_error(thread, st, current, buf, buflen, &found_current);
4800   }
4801   st->cr();
4802 
4803   st->print_cr("Other Threads:");
4804   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4805   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4806 
4807   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4808   Universe::heap()->gc_threads_do(&print_closure);
4809 
4810   if (!found_current) {
4811     st->cr();
4812     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4813     current->print_on_error(st, buf, buflen);
4814     st->cr();
4815   }
4816   st->cr();
4817 
4818   st->print_cr("Threads with active compile tasks:");
4819   print_threads_compiling(st, buf, buflen);
4820 }
4821 
4822 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen, bool short_form) {
4823   ALL_JAVA_THREADS(thread) {
4824     if (thread->is_Compiler_thread()) {
4825       CompilerThread* ct = (CompilerThread*) thread;
4826 
4827       // Keep task in local variable for NULL check.
4828       // ct->_task might be set to NULL by concurring compiler thread
4829       // because it completed the compilation. The task is never freed,
4830       // though, just returned to a free list.
4831       CompileTask* task = ct->task();
4832       if (task != NULL) {
4833         thread->print_name_on_error(st, buf, buflen);
4834         st->print("  ");
4835         task->print(st, NULL, short_form, true);
4836       }
4837     }
4838   }
4839 }
4840 
4841 
4842 // Internal SpinLock and Mutex
4843 // Based on ParkEvent
4844 
4845 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4846 //
4847 // We employ SpinLocks _only for low-contention, fixed-length
4848 // short-duration critical sections where we're concerned
4849 // about native mutex_t or HotSpot Mutex:: latency.
4850 // The mux construct provides a spin-then-block mutual exclusion
4851 // mechanism.
4852 //
4853 // Testing has shown that contention on the ListLock guarding gFreeList
4854 // is common.  If we implement ListLock as a simple SpinLock it's common
4855 // for the JVM to devolve to yielding with little progress.  This is true
4856 // despite the fact that the critical sections protected by ListLock are
4857 // extremely short.
4858 //
4859 // TODO-FIXME: ListLock should be of type SpinLock.
4860 // We should make this a 1st-class type, integrated into the lock
4861 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4862 // should have sufficient padding to avoid false-sharing and excessive
4863 // cache-coherency traffic.
4864 
4865 
4866 typedef volatile int SpinLockT;
4867 
4868 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4869   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4870     return;   // normal fast-path return
4871   }
4872 
4873   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4874   int ctr = 0;
4875   int Yields = 0;
4876   for (;;) {
4877     while (*adr != 0) {
4878       ++ctr;
4879       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4880         if (Yields > 5) {
4881           os::naked_short_sleep(1);
4882         } else {
4883           os::naked_yield();
4884           ++Yields;
4885         }
4886       } else {
4887         SpinPause();
4888       }
4889     }
4890     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4891   }
4892 }
4893 
4894 void Thread::SpinRelease(volatile int * adr) {
4895   assert(*adr != 0, "invariant");
4896   OrderAccess::fence();      // guarantee at least release consistency.
4897   // Roach-motel semantics.
4898   // It's safe if subsequent LDs and STs float "up" into the critical section,
4899   // but prior LDs and STs within the critical section can't be allowed
4900   // to reorder or float past the ST that releases the lock.
4901   // Loads and stores in the critical section - which appear in program
4902   // order before the store that releases the lock - must also appear
4903   // before the store that releases the lock in memory visibility order.
4904   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4905   // the ST of 0 into the lock-word which releases the lock, so fence
4906   // more than covers this on all platforms.
4907   *adr = 0;
4908 }
4909 
4910 // muxAcquire and muxRelease:
4911 //
4912 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4913 //    The LSB of the word is set IFF the lock is held.
4914 //    The remainder of the word points to the head of a singly-linked list
4915 //    of threads blocked on the lock.
4916 //
4917 // *  The current implementation of muxAcquire-muxRelease uses its own
4918 //    dedicated Thread._MuxEvent instance.  If we're interested in
4919 //    minimizing the peak number of extant ParkEvent instances then
4920 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4921 //    as certain invariants were satisfied.  Specifically, care would need
4922 //    to be taken with regards to consuming unpark() "permits".
4923 //    A safe rule of thumb is that a thread would never call muxAcquire()
4924 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4925 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4926 //    consume an unpark() permit intended for monitorenter, for instance.
4927 //    One way around this would be to widen the restricted-range semaphore
4928 //    implemented in park().  Another alternative would be to provide
4929 //    multiple instances of the PlatformEvent() for each thread.  One
4930 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4931 //
4932 // *  Usage:
4933 //    -- Only as leaf locks
4934 //    -- for short-term locking only as muxAcquire does not perform
4935 //       thread state transitions.
4936 //
4937 // Alternatives:
4938 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4939 //    but with parking or spin-then-park instead of pure spinning.
4940 // *  Use Taura-Oyama-Yonenzawa locks.
4941 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4942 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4943 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4944 //    acquiring threads use timers (ParkTimed) to detect and recover from
4945 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4946 //    boundaries by using placement-new.
4947 // *  Augment MCS with advisory back-link fields maintained with CAS().
4948 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4949 //    The validity of the backlinks must be ratified before we trust the value.
4950 //    If the backlinks are invalid the exiting thread must back-track through the
4951 //    the forward links, which are always trustworthy.
4952 // *  Add a successor indication.  The LockWord is currently encoded as
4953 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4954 //    to provide the usual futile-wakeup optimization.
4955 //    See RTStt for details.
4956 //
4957 
4958 
4959 const intptr_t LOCKBIT = 1;
4960 
4961 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4962   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4963   if (w == 0) return;
4964   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4965     return;
4966   }
4967 
4968   ParkEvent * const Self = Thread::current()->_MuxEvent;
4969   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4970   for (;;) {
4971     int its = (os::is_MP() ? 100 : 0) + 1;
4972 
4973     // Optional spin phase: spin-then-park strategy
4974     while (--its >= 0) {
4975       w = *Lock;
4976       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4977         return;
4978       }
4979     }
4980 
4981     Self->reset();
4982     Self->OnList = intptr_t(Lock);
4983     // The following fence() isn't _strictly necessary as the subsequent
4984     // CAS() both serializes execution and ratifies the fetched *Lock value.
4985     OrderAccess::fence();
4986     for (;;) {
4987       w = *Lock;
4988       if ((w & LOCKBIT) == 0) {
4989         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4990           Self->OnList = 0;   // hygiene - allows stronger asserts
4991           return;
4992         }
4993         continue;      // Interference -- *Lock changed -- Just retry
4994       }
4995       assert(w & LOCKBIT, "invariant");
4996       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4997       if (Atomic::cmpxchg(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4998     }
4999 
5000     while (Self->OnList != 0) {
5001       Self->park();
5002     }
5003   }
5004 }
5005 
5006 // Release() must extract a successor from the list and then wake that thread.
5007 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
5008 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
5009 // Release() would :
5010 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
5011 // (B) Extract a successor from the private list "in-hand"
5012 // (C) attempt to CAS() the residual back into *Lock over null.
5013 //     If there were any newly arrived threads and the CAS() would fail.
5014 //     In that case Release() would detach the RATs, re-merge the list in-hand
5015 //     with the RATs and repeat as needed.  Alternately, Release() might
5016 //     detach and extract a successor, but then pass the residual list to the wakee.
5017 //     The wakee would be responsible for reattaching and remerging before it
5018 //     competed for the lock.
5019 //
5020 // Both "pop" and DMR are immune from ABA corruption -- there can be
5021 // multiple concurrent pushers, but only one popper or detacher.
5022 // This implementation pops from the head of the list.  This is unfair,
5023 // but tends to provide excellent throughput as hot threads remain hot.
5024 // (We wake recently run threads first).
5025 //
5026 // All paths through muxRelease() will execute a CAS.
5027 // Release consistency -- We depend on the CAS in muxRelease() to provide full
5028 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
5029 // executed within the critical section are complete and globally visible before the
5030 // store (CAS) to the lock-word that releases the lock becomes globally visible.
5031 void Thread::muxRelease(volatile intptr_t * Lock)  {
5032   for (;;) {
5033     const intptr_t w = Atomic::cmpxchg((intptr_t)0, Lock, LOCKBIT);
5034     assert(w & LOCKBIT, "invariant");
5035     if (w == LOCKBIT) return;
5036     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
5037     assert(List != NULL, "invariant");
5038     assert(List->OnList == intptr_t(Lock), "invariant");
5039     ParkEvent * const nxt = List->ListNext;
5040     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
5041 
5042     // The following CAS() releases the lock and pops the head element.
5043     // The CAS() also ratifies the previously fetched lock-word value.
5044     if (Atomic::cmpxchg(intptr_t(nxt), Lock, w) != w) {
5045       continue;
5046     }
5047     List->OnList = 0;
5048     OrderAccess::fence();
5049     List->unpark();
5050     return;
5051   }
5052 }
5053 
5054 
5055 void Threads::verify() {
5056   ALL_JAVA_THREADS(p) {
5057     p->verify();
5058   }
5059   VMThread* thread = VMThread::vm_thread();
5060   if (thread != NULL) thread->verify();
5061 }