1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "asm/assembler.hpp"
  28 #include "asm/assembler.inline.hpp"
  29 #include "compiler/disassembler.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/barrierSetAssembler.hpp"
  32 #include "gc/shared/collectedHeap.inline.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "memory/universe.hpp"
  36 #include "oops/accessDecorators.hpp"
  37 #include "oops/compressedOops.inline.hpp"
  38 #include "oops/klass.inline.hpp"
  39 #include "prims/methodHandles.hpp"
  40 #include "runtime/biasedLocking.hpp"
  41 #include "runtime/flags/flagSetting.hpp"
  42 #include "runtime/interfaceSupport.inline.hpp"
  43 #include "runtime/objectMonitor.hpp"
  44 #include "runtime/os.hpp"
  45 #include "runtime/safepoint.hpp"
  46 #include "runtime/safepointMechanism.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "runtime/stubRoutines.hpp"
  49 #include "runtime/thread.hpp"
  50 #include "utilities/macros.hpp"
  51 #include "crc32c.h"
  52 #ifdef COMPILER2
  53 #include "opto/intrinsicnode.hpp"
  54 #endif
  55 
  56 #ifdef PRODUCT
  57 #define BLOCK_COMMENT(str) /* nothing */
  58 #define STOP(error) stop(error)
  59 #else
  60 #define BLOCK_COMMENT(str) block_comment(str)
  61 #define STOP(error) block_comment(error); stop(error)
  62 #endif
  63 
  64 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  65 
  66 #ifdef ASSERT
  67 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  68 #endif
  69 
  70 static Assembler::Condition reverse[] = {
  71     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  72     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  73     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  74     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  75     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  76     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  77     Assembler::above          /* belowEqual    = 0x6 */ ,
  78     Assembler::belowEqual     /* above         = 0x7 */ ,
  79     Assembler::positive       /* negative      = 0x8 */ ,
  80     Assembler::negative       /* positive      = 0x9 */ ,
  81     Assembler::noParity       /* parity        = 0xa */ ,
  82     Assembler::parity         /* noParity      = 0xb */ ,
  83     Assembler::greaterEqual   /* less          = 0xc */ ,
  84     Assembler::less           /* greaterEqual  = 0xd */ ,
  85     Assembler::greater        /* lessEqual     = 0xe */ ,
  86     Assembler::lessEqual      /* greater       = 0xf, */
  87 
  88 };
  89 
  90 
  91 // Implementation of MacroAssembler
  92 
  93 // First all the versions that have distinct versions depending on 32/64 bit
  94 // Unless the difference is trivial (1 line or so).
  95 
  96 #ifndef _LP64
  97 
  98 // 32bit versions
  99 
 100 Address MacroAssembler::as_Address(AddressLiteral adr) {
 101   return Address(adr.target(), adr.rspec());
 102 }
 103 
 104 Address MacroAssembler::as_Address(ArrayAddress adr) {
 105   return Address::make_array(adr);
 106 }
 107 
 108 void MacroAssembler::call_VM_leaf_base(address entry_point,
 109                                        int number_of_arguments) {
 110   call(RuntimeAddress(entry_point));
 111   increment(rsp, number_of_arguments * wordSize);
 112 }
 113 
 114 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 115   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 116 }
 117 
 118 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 119   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 120 }
 121 
 122 void MacroAssembler::cmpoop_raw(Address src1, jobject obj) {
 123   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 124 }
 125 
 126 void MacroAssembler::cmpoop_raw(Register src1, jobject obj) {
 127   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 128 }
 129 
 130 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 131   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 132   bs->obj_equals(this, src1, obj);
 133 }
 134 
 135 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 136   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 137   bs->obj_equals(this, src1, obj);
 138 }
 139 
 140 void MacroAssembler::extend_sign(Register hi, Register lo) {
 141   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 142   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 143     cdql();
 144   } else {
 145     movl(hi, lo);
 146     sarl(hi, 31);
 147   }
 148 }
 149 
 150 void MacroAssembler::jC2(Register tmp, Label& L) {
 151   // set parity bit if FPU flag C2 is set (via rax)
 152   save_rax(tmp);
 153   fwait(); fnstsw_ax();
 154   sahf();
 155   restore_rax(tmp);
 156   // branch
 157   jcc(Assembler::parity, L);
 158 }
 159 
 160 void MacroAssembler::jnC2(Register tmp, Label& L) {
 161   // set parity bit if FPU flag C2 is set (via rax)
 162   save_rax(tmp);
 163   fwait(); fnstsw_ax();
 164   sahf();
 165   restore_rax(tmp);
 166   // branch
 167   jcc(Assembler::noParity, L);
 168 }
 169 
 170 // 32bit can do a case table jump in one instruction but we no longer allow the base
 171 // to be installed in the Address class
 172 void MacroAssembler::jump(ArrayAddress entry) {
 173   jmp(as_Address(entry));
 174 }
 175 
 176 // Note: y_lo will be destroyed
 177 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 178   // Long compare for Java (semantics as described in JVM spec.)
 179   Label high, low, done;
 180 
 181   cmpl(x_hi, y_hi);
 182   jcc(Assembler::less, low);
 183   jcc(Assembler::greater, high);
 184   // x_hi is the return register
 185   xorl(x_hi, x_hi);
 186   cmpl(x_lo, y_lo);
 187   jcc(Assembler::below, low);
 188   jcc(Assembler::equal, done);
 189 
 190   bind(high);
 191   xorl(x_hi, x_hi);
 192   increment(x_hi);
 193   jmp(done);
 194 
 195   bind(low);
 196   xorl(x_hi, x_hi);
 197   decrementl(x_hi);
 198 
 199   bind(done);
 200 }
 201 
 202 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 203     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 204 }
 205 
 206 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 207   // leal(dst, as_Address(adr));
 208   // see note in movl as to why we must use a move
 209   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 210 }
 211 
 212 void MacroAssembler::leave() {
 213   mov(rsp, rbp);
 214   pop(rbp);
 215 }
 216 
 217 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 218   // Multiplication of two Java long values stored on the stack
 219   // as illustrated below. Result is in rdx:rax.
 220   //
 221   // rsp ---> [  ??  ] \               \
 222   //            ....    | y_rsp_offset  |
 223   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 224   //          [ y_hi ]                  | (in bytes)
 225   //            ....                    |
 226   //          [ x_lo ]                 /
 227   //          [ x_hi ]
 228   //            ....
 229   //
 230   // Basic idea: lo(result) = lo(x_lo * y_lo)
 231   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 232   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 233   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 234   Label quick;
 235   // load x_hi, y_hi and check if quick
 236   // multiplication is possible
 237   movl(rbx, x_hi);
 238   movl(rcx, y_hi);
 239   movl(rax, rbx);
 240   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 241   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 242   // do full multiplication
 243   // 1st step
 244   mull(y_lo);                                    // x_hi * y_lo
 245   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 246   // 2nd step
 247   movl(rax, x_lo);
 248   mull(rcx);                                     // x_lo * y_hi
 249   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 250   // 3rd step
 251   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 252   movl(rax, x_lo);
 253   mull(y_lo);                                    // x_lo * y_lo
 254   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 255 }
 256 
 257 void MacroAssembler::lneg(Register hi, Register lo) {
 258   negl(lo);
 259   adcl(hi, 0);
 260   negl(hi);
 261 }
 262 
 263 void MacroAssembler::lshl(Register hi, Register lo) {
 264   // Java shift left long support (semantics as described in JVM spec., p.305)
 265   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 266   // shift value is in rcx !
 267   assert(hi != rcx, "must not use rcx");
 268   assert(lo != rcx, "must not use rcx");
 269   const Register s = rcx;                        // shift count
 270   const int      n = BitsPerWord;
 271   Label L;
 272   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 273   cmpl(s, n);                                    // if (s < n)
 274   jcc(Assembler::less, L);                       // else (s >= n)
 275   movl(hi, lo);                                  // x := x << n
 276   xorl(lo, lo);
 277   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 278   bind(L);                                       // s (mod n) < n
 279   shldl(hi, lo);                                 // x := x << s
 280   shll(lo);
 281 }
 282 
 283 
 284 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 285   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 286   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 287   assert(hi != rcx, "must not use rcx");
 288   assert(lo != rcx, "must not use rcx");
 289   const Register s = rcx;                        // shift count
 290   const int      n = BitsPerWord;
 291   Label L;
 292   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 293   cmpl(s, n);                                    // if (s < n)
 294   jcc(Assembler::less, L);                       // else (s >= n)
 295   movl(lo, hi);                                  // x := x >> n
 296   if (sign_extension) sarl(hi, 31);
 297   else                xorl(hi, hi);
 298   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 299   bind(L);                                       // s (mod n) < n
 300   shrdl(lo, hi);                                 // x := x >> s
 301   if (sign_extension) sarl(hi);
 302   else                shrl(hi);
 303 }
 304 
 305 void MacroAssembler::movoop(Register dst, jobject obj) {
 306   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 307 }
 308 
 309 void MacroAssembler::movoop(Address dst, jobject obj) {
 310   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 311 }
 312 
 313 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 314   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 315 }
 316 
 317 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 318   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 319 }
 320 
 321 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 322   // scratch register is not used,
 323   // it is defined to match parameters of 64-bit version of this method.
 324   if (src.is_lval()) {
 325     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 326   } else {
 327     movl(dst, as_Address(src));
 328   }
 329 }
 330 
 331 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 332   movl(as_Address(dst), src);
 333 }
 334 
 335 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 336   movl(dst, as_Address(src));
 337 }
 338 
 339 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 340 void MacroAssembler::movptr(Address dst, intptr_t src) {
 341   movl(dst, src);
 342 }
 343 
 344 
 345 void MacroAssembler::pop_callee_saved_registers() {
 346   pop(rcx);
 347   pop(rdx);
 348   pop(rdi);
 349   pop(rsi);
 350 }
 351 
 352 void MacroAssembler::pop_fTOS() {
 353   fld_d(Address(rsp, 0));
 354   addl(rsp, 2 * wordSize);
 355 }
 356 
 357 void MacroAssembler::push_callee_saved_registers() {
 358   push(rsi);
 359   push(rdi);
 360   push(rdx);
 361   push(rcx);
 362 }
 363 
 364 void MacroAssembler::push_fTOS() {
 365   subl(rsp, 2 * wordSize);
 366   fstp_d(Address(rsp, 0));
 367 }
 368 
 369 
 370 void MacroAssembler::pushoop(jobject obj) {
 371   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 372 }
 373 
 374 void MacroAssembler::pushklass(Metadata* obj) {
 375   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 376 }
 377 
 378 void MacroAssembler::pushptr(AddressLiteral src) {
 379   if (src.is_lval()) {
 380     push_literal32((int32_t)src.target(), src.rspec());
 381   } else {
 382     pushl(as_Address(src));
 383   }
 384 }
 385 
 386 void MacroAssembler::set_word_if_not_zero(Register dst) {
 387   xorl(dst, dst);
 388   set_byte_if_not_zero(dst);
 389 }
 390 
 391 static void pass_arg0(MacroAssembler* masm, Register arg) {
 392   masm->push(arg);
 393 }
 394 
 395 static void pass_arg1(MacroAssembler* masm, Register arg) {
 396   masm->push(arg);
 397 }
 398 
 399 static void pass_arg2(MacroAssembler* masm, Register arg) {
 400   masm->push(arg);
 401 }
 402 
 403 static void pass_arg3(MacroAssembler* masm, Register arg) {
 404   masm->push(arg);
 405 }
 406 
 407 #ifndef PRODUCT
 408 extern "C" void findpc(intptr_t x);
 409 #endif
 410 
 411 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 412   // In order to get locks to work, we need to fake a in_VM state
 413   JavaThread* thread = JavaThread::current();
 414   JavaThreadState saved_state = thread->thread_state();
 415   thread->set_thread_state(_thread_in_vm);
 416   if (ShowMessageBoxOnError) {
 417     JavaThread* thread = JavaThread::current();
 418     JavaThreadState saved_state = thread->thread_state();
 419     thread->set_thread_state(_thread_in_vm);
 420     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 421       ttyLocker ttyl;
 422       BytecodeCounter::print();
 423     }
 424     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 425     // This is the value of eip which points to where verify_oop will return.
 426     if (os::message_box(msg, "Execution stopped, print registers?")) {
 427       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 428       BREAKPOINT;
 429     }
 430   }
 431   fatal("DEBUG MESSAGE: %s", msg);
 432 }
 433 
 434 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 435   ttyLocker ttyl;
 436   FlagSetting fs(Debugging, true);
 437   tty->print_cr("eip = 0x%08x", eip);
 438 #ifndef PRODUCT
 439   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 440     tty->cr();
 441     findpc(eip);
 442     tty->cr();
 443   }
 444 #endif
 445 #define PRINT_REG(rax) \
 446   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 447   PRINT_REG(rax);
 448   PRINT_REG(rbx);
 449   PRINT_REG(rcx);
 450   PRINT_REG(rdx);
 451   PRINT_REG(rdi);
 452   PRINT_REG(rsi);
 453   PRINT_REG(rbp);
 454   PRINT_REG(rsp);
 455 #undef PRINT_REG
 456   // Print some words near top of staack.
 457   int* dump_sp = (int*) rsp;
 458   for (int col1 = 0; col1 < 8; col1++) {
 459     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 460     os::print_location(tty, *dump_sp++);
 461   }
 462   for (int row = 0; row < 16; row++) {
 463     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 464     for (int col = 0; col < 8; col++) {
 465       tty->print(" 0x%08x", *dump_sp++);
 466     }
 467     tty->cr();
 468   }
 469   // Print some instructions around pc:
 470   Disassembler::decode((address)eip-64, (address)eip);
 471   tty->print_cr("--------");
 472   Disassembler::decode((address)eip, (address)eip+32);
 473 }
 474 
 475 void MacroAssembler::stop(const char* msg) {
 476   ExternalAddress message((address)msg);
 477   // push address of message
 478   pushptr(message.addr());
 479   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 480   pusha();                                            // push registers
 481   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 482   hlt();
 483 }
 484 
 485 void MacroAssembler::warn(const char* msg) {
 486   push_CPU_state();
 487 
 488   ExternalAddress message((address) msg);
 489   // push address of message
 490   pushptr(message.addr());
 491 
 492   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 493   addl(rsp, wordSize);       // discard argument
 494   pop_CPU_state();
 495 }
 496 
 497 void MacroAssembler::print_state() {
 498   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 499   pusha();                                            // push registers
 500 
 501   push_CPU_state();
 502   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 503   pop_CPU_state();
 504 
 505   popa();
 506   addl(rsp, wordSize);
 507 }
 508 
 509 #else // _LP64
 510 
 511 // 64 bit versions
 512 
 513 Address MacroAssembler::as_Address(AddressLiteral adr) {
 514   // amd64 always does this as a pc-rel
 515   // we can be absolute or disp based on the instruction type
 516   // jmp/call are displacements others are absolute
 517   assert(!adr.is_lval(), "must be rval");
 518   assert(reachable(adr), "must be");
 519   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 520 
 521 }
 522 
 523 Address MacroAssembler::as_Address(ArrayAddress adr) {
 524   AddressLiteral base = adr.base();
 525   lea(rscratch1, base);
 526   Address index = adr.index();
 527   assert(index._disp == 0, "must not have disp"); // maybe it can?
 528   Address array(rscratch1, index._index, index._scale, index._disp);
 529   return array;
 530 }
 531 
 532 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 533   Label L, E;
 534 
 535 #ifdef _WIN64
 536   // Windows always allocates space for it's register args
 537   assert(num_args <= 4, "only register arguments supported");
 538   subq(rsp,  frame::arg_reg_save_area_bytes);
 539 #endif
 540 
 541   // Align stack if necessary
 542   testl(rsp, 15);
 543   jcc(Assembler::zero, L);
 544 
 545   subq(rsp, 8);
 546   {
 547     call(RuntimeAddress(entry_point));
 548   }
 549   addq(rsp, 8);
 550   jmp(E);
 551 
 552   bind(L);
 553   {
 554     call(RuntimeAddress(entry_point));
 555   }
 556 
 557   bind(E);
 558 
 559 #ifdef _WIN64
 560   // restore stack pointer
 561   addq(rsp, frame::arg_reg_save_area_bytes);
 562 #endif
 563 
 564 }
 565 
 566 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 567   assert(!src2.is_lval(), "should use cmpptr");
 568 
 569   if (reachable(src2)) {
 570     cmpq(src1, as_Address(src2));
 571   } else {
 572     lea(rscratch1, src2);
 573     Assembler::cmpq(src1, Address(rscratch1, 0));
 574   }
 575 }
 576 
 577 int MacroAssembler::corrected_idivq(Register reg) {
 578   // Full implementation of Java ldiv and lrem; checks for special
 579   // case as described in JVM spec., p.243 & p.271.  The function
 580   // returns the (pc) offset of the idivl instruction - may be needed
 581   // for implicit exceptions.
 582   //
 583   //         normal case                           special case
 584   //
 585   // input : rax: dividend                         min_long
 586   //         reg: divisor   (may not be eax/edx)   -1
 587   //
 588   // output: rax: quotient  (= rax idiv reg)       min_long
 589   //         rdx: remainder (= rax irem reg)       0
 590   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 591   static const int64_t min_long = 0x8000000000000000;
 592   Label normal_case, special_case;
 593 
 594   // check for special case
 595   cmp64(rax, ExternalAddress((address) &min_long));
 596   jcc(Assembler::notEqual, normal_case);
 597   xorl(rdx, rdx); // prepare rdx for possible special case (where
 598                   // remainder = 0)
 599   cmpq(reg, -1);
 600   jcc(Assembler::equal, special_case);
 601 
 602   // handle normal case
 603   bind(normal_case);
 604   cdqq();
 605   int idivq_offset = offset();
 606   idivq(reg);
 607 
 608   // normal and special case exit
 609   bind(special_case);
 610 
 611   return idivq_offset;
 612 }
 613 
 614 void MacroAssembler::decrementq(Register reg, int value) {
 615   if (value == min_jint) { subq(reg, value); return; }
 616   if (value <  0) { incrementq(reg, -value); return; }
 617   if (value == 0) {                        ; return; }
 618   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 619   /* else */      { subq(reg, value)       ; return; }
 620 }
 621 
 622 void MacroAssembler::decrementq(Address dst, int value) {
 623   if (value == min_jint) { subq(dst, value); return; }
 624   if (value <  0) { incrementq(dst, -value); return; }
 625   if (value == 0) {                        ; return; }
 626   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 627   /* else */      { subq(dst, value)       ; return; }
 628 }
 629 
 630 void MacroAssembler::incrementq(AddressLiteral dst) {
 631   if (reachable(dst)) {
 632     incrementq(as_Address(dst));
 633   } else {
 634     lea(rscratch1, dst);
 635     incrementq(Address(rscratch1, 0));
 636   }
 637 }
 638 
 639 void MacroAssembler::incrementq(Register reg, int value) {
 640   if (value == min_jint) { addq(reg, value); return; }
 641   if (value <  0) { decrementq(reg, -value); return; }
 642   if (value == 0) {                        ; return; }
 643   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 644   /* else */      { addq(reg, value)       ; return; }
 645 }
 646 
 647 void MacroAssembler::incrementq(Address dst, int value) {
 648   if (value == min_jint) { addq(dst, value); return; }
 649   if (value <  0) { decrementq(dst, -value); return; }
 650   if (value == 0) {                        ; return; }
 651   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 652   /* else */      { addq(dst, value)       ; return; }
 653 }
 654 
 655 // 32bit can do a case table jump in one instruction but we no longer allow the base
 656 // to be installed in the Address class
 657 void MacroAssembler::jump(ArrayAddress entry) {
 658   lea(rscratch1, entry.base());
 659   Address dispatch = entry.index();
 660   assert(dispatch._base == noreg, "must be");
 661   dispatch._base = rscratch1;
 662   jmp(dispatch);
 663 }
 664 
 665 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 666   ShouldNotReachHere(); // 64bit doesn't use two regs
 667   cmpq(x_lo, y_lo);
 668 }
 669 
 670 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 671     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 672 }
 673 
 674 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 675   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 676   movptr(dst, rscratch1);
 677 }
 678 
 679 void MacroAssembler::leave() {
 680   // %%% is this really better? Why not on 32bit too?
 681   emit_int8((unsigned char)0xC9); // LEAVE
 682 }
 683 
 684 void MacroAssembler::lneg(Register hi, Register lo) {
 685   ShouldNotReachHere(); // 64bit doesn't use two regs
 686   negq(lo);
 687 }
 688 
 689 void MacroAssembler::movoop(Register dst, jobject obj) {
 690   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 691 }
 692 
 693 void MacroAssembler::movoop(Address dst, jobject obj) {
 694   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 695   movq(dst, rscratch1);
 696 }
 697 
 698 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 699   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 700 }
 701 
 702 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 703   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 704   movq(dst, rscratch1);
 705 }
 706 
 707 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 708   if (src.is_lval()) {
 709     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 710   } else {
 711     if (reachable(src)) {
 712       movq(dst, as_Address(src));
 713     } else {
 714       lea(scratch, src);
 715       movq(dst, Address(scratch, 0));
 716     }
 717   }
 718 }
 719 
 720 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 721   movq(as_Address(dst), src);
 722 }
 723 
 724 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 725   movq(dst, as_Address(src));
 726 }
 727 
 728 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 729 void MacroAssembler::movptr(Address dst, intptr_t src) {
 730   mov64(rscratch1, src);
 731   movq(dst, rscratch1);
 732 }
 733 
 734 // These are mostly for initializing NULL
 735 void MacroAssembler::movptr(Address dst, int32_t src) {
 736   movslq(dst, src);
 737 }
 738 
 739 void MacroAssembler::movptr(Register dst, int32_t src) {
 740   mov64(dst, (intptr_t)src);
 741 }
 742 
 743 void MacroAssembler::pushoop(jobject obj) {
 744   movoop(rscratch1, obj);
 745   push(rscratch1);
 746 }
 747 
 748 void MacroAssembler::pushklass(Metadata* obj) {
 749   mov_metadata(rscratch1, obj);
 750   push(rscratch1);
 751 }
 752 
 753 void MacroAssembler::pushptr(AddressLiteral src) {
 754   lea(rscratch1, src);
 755   if (src.is_lval()) {
 756     push(rscratch1);
 757   } else {
 758     pushq(Address(rscratch1, 0));
 759   }
 760 }
 761 
 762 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
 763   // we must set sp to zero to clear frame
 764   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 765   // must clear fp, so that compiled frames are not confused; it is
 766   // possible that we need it only for debugging
 767   if (clear_fp) {
 768     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 769   }
 770 
 771   // Always clear the pc because it could have been set by make_walkable()
 772   movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 773   vzeroupper();
 774 }
 775 
 776 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 777                                          Register last_java_fp,
 778                                          address  last_java_pc) {
 779   vzeroupper();
 780   // determine last_java_sp register
 781   if (!last_java_sp->is_valid()) {
 782     last_java_sp = rsp;
 783   }
 784 
 785   // last_java_fp is optional
 786   if (last_java_fp->is_valid()) {
 787     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 788            last_java_fp);
 789   }
 790 
 791   // last_java_pc is optional
 792   if (last_java_pc != NULL) {
 793     Address java_pc(r15_thread,
 794                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 795     lea(rscratch1, InternalAddress(last_java_pc));
 796     movptr(java_pc, rscratch1);
 797   }
 798 
 799   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 800 }
 801 
 802 static void pass_arg0(MacroAssembler* masm, Register arg) {
 803   if (c_rarg0 != arg ) {
 804     masm->mov(c_rarg0, arg);
 805   }
 806 }
 807 
 808 static void pass_arg1(MacroAssembler* masm, Register arg) {
 809   if (c_rarg1 != arg ) {
 810     masm->mov(c_rarg1, arg);
 811   }
 812 }
 813 
 814 static void pass_arg2(MacroAssembler* masm, Register arg) {
 815   if (c_rarg2 != arg ) {
 816     masm->mov(c_rarg2, arg);
 817   }
 818 }
 819 
 820 static void pass_arg3(MacroAssembler* masm, Register arg) {
 821   if (c_rarg3 != arg ) {
 822     masm->mov(c_rarg3, arg);
 823   }
 824 }
 825 
 826 void MacroAssembler::stop(const char* msg) {
 827   if (ShowMessageBoxOnError) {
 828     address rip = pc();
 829     pusha(); // get regs on stack
 830     lea(c_rarg1, InternalAddress(rip));
 831     movq(c_rarg2, rsp); // pass pointer to regs array
 832   }
 833   lea(c_rarg0, ExternalAddress((address) msg));
 834   andq(rsp, -16); // align stack as required by ABI
 835   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 836   hlt();
 837 }
 838 
 839 void MacroAssembler::warn(const char* msg) {
 840   push(rbp);
 841   movq(rbp, rsp);
 842   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 843   push_CPU_state();   // keeps alignment at 16 bytes
 844   lea(c_rarg0, ExternalAddress((address) msg));
 845   lea(rax, ExternalAddress(CAST_FROM_FN_PTR(address, warning)));
 846   call(rax);
 847   pop_CPU_state();
 848   mov(rsp, rbp);
 849   pop(rbp);
 850 }
 851 
 852 void MacroAssembler::print_state() {
 853   address rip = pc();
 854   pusha();            // get regs on stack
 855   push(rbp);
 856   movq(rbp, rsp);
 857   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 858   push_CPU_state();   // keeps alignment at 16 bytes
 859 
 860   lea(c_rarg0, InternalAddress(rip));
 861   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 862   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 863 
 864   pop_CPU_state();
 865   mov(rsp, rbp);
 866   pop(rbp);
 867   popa();
 868 }
 869 
 870 #ifndef PRODUCT
 871 extern "C" void findpc(intptr_t x);
 872 #endif
 873 
 874 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 875   // In order to get locks to work, we need to fake a in_VM state
 876   if (ShowMessageBoxOnError) {
 877     JavaThread* thread = JavaThread::current();
 878     JavaThreadState saved_state = thread->thread_state();
 879     thread->set_thread_state(_thread_in_vm);
 880 #ifndef PRODUCT
 881     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 882       ttyLocker ttyl;
 883       BytecodeCounter::print();
 884     }
 885 #endif
 886     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 887     // XXX correct this offset for amd64
 888     // This is the value of eip which points to where verify_oop will return.
 889     if (os::message_box(msg, "Execution stopped, print registers?")) {
 890       print_state64(pc, regs);
 891       BREAKPOINT;
 892     }
 893   }
 894   fatal("DEBUG MESSAGE: %s", msg);
 895 }
 896 
 897 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 898   ttyLocker ttyl;
 899   FlagSetting fs(Debugging, true);
 900   tty->print_cr("rip = 0x%016lx", (intptr_t)pc);
 901 #ifndef PRODUCT
 902   tty->cr();
 903   findpc(pc);
 904   tty->cr();
 905 #endif
 906 #define PRINT_REG(rax, value) \
 907   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 908   PRINT_REG(rax, regs[15]);
 909   PRINT_REG(rbx, regs[12]);
 910   PRINT_REG(rcx, regs[14]);
 911   PRINT_REG(rdx, regs[13]);
 912   PRINT_REG(rdi, regs[8]);
 913   PRINT_REG(rsi, regs[9]);
 914   PRINT_REG(rbp, regs[10]);
 915   PRINT_REG(rsp, regs[11]);
 916   PRINT_REG(r8 , regs[7]);
 917   PRINT_REG(r9 , regs[6]);
 918   PRINT_REG(r10, regs[5]);
 919   PRINT_REG(r11, regs[4]);
 920   PRINT_REG(r12, regs[3]);
 921   PRINT_REG(r13, regs[2]);
 922   PRINT_REG(r14, regs[1]);
 923   PRINT_REG(r15, regs[0]);
 924 #undef PRINT_REG
 925   // Print some words near top of staack.
 926   int64_t* rsp = (int64_t*) regs[11];
 927   int64_t* dump_sp = rsp;
 928   for (int col1 = 0; col1 < 8; col1++) {
 929     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 930     os::print_location(tty, *dump_sp++);
 931   }
 932   for (int row = 0; row < 25; row++) {
 933     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 934     for (int col = 0; col < 4; col++) {
 935       tty->print(" 0x%016lx", (intptr_t)*dump_sp++);
 936     }
 937     tty->cr();
 938   }
 939   // Print some instructions around pc:
 940   Disassembler::decode((address)pc-64, (address)pc);
 941   tty->print_cr("--------");
 942   Disassembler::decode((address)pc, (address)pc+32);
 943 }
 944 
 945 #endif // _LP64
 946 
 947 // Now versions that are common to 32/64 bit
 948 
 949 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 950   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 951 }
 952 
 953 void MacroAssembler::addptr(Register dst, Register src) {
 954   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 955 }
 956 
 957 void MacroAssembler::addptr(Address dst, Register src) {
 958   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 959 }
 960 
 961 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 962   if (reachable(src)) {
 963     Assembler::addsd(dst, as_Address(src));
 964   } else {
 965     lea(rscratch1, src);
 966     Assembler::addsd(dst, Address(rscratch1, 0));
 967   }
 968 }
 969 
 970 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 971   if (reachable(src)) {
 972     addss(dst, as_Address(src));
 973   } else {
 974     lea(rscratch1, src);
 975     addss(dst, Address(rscratch1, 0));
 976   }
 977 }
 978 
 979 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) {
 980   if (reachable(src)) {
 981     Assembler::addpd(dst, as_Address(src));
 982   } else {
 983     lea(rscratch1, src);
 984     Assembler::addpd(dst, Address(rscratch1, 0));
 985   }
 986 }
 987 
 988 void MacroAssembler::align(int modulus) {
 989   align(modulus, offset());
 990 }
 991 
 992 void MacroAssembler::align(int modulus, int target) {
 993   if (target % modulus != 0) {
 994     nop(modulus - (target % modulus));
 995   }
 996 }
 997 
 998 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
 999   // Used in sign-masking with aligned address.
1000   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1001   if (reachable(src)) {
1002     Assembler::andpd(dst, as_Address(src));
1003   } else {
1004     lea(scratch_reg, src);
1005     Assembler::andpd(dst, Address(scratch_reg, 0));
1006   }
1007 }
1008 
1009 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
1010   // Used in sign-masking with aligned address.
1011   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1012   if (reachable(src)) {
1013     Assembler::andps(dst, as_Address(src));
1014   } else {
1015     lea(scratch_reg, src);
1016     Assembler::andps(dst, Address(scratch_reg, 0));
1017   }
1018 }
1019 
1020 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1021   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1022 }
1023 
1024 void MacroAssembler::atomic_incl(Address counter_addr) {
1025   lock();
1026   incrementl(counter_addr);
1027 }
1028 
1029 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1030   if (reachable(counter_addr)) {
1031     atomic_incl(as_Address(counter_addr));
1032   } else {
1033     lea(scr, counter_addr);
1034     atomic_incl(Address(scr, 0));
1035   }
1036 }
1037 
1038 #ifdef _LP64
1039 void MacroAssembler::atomic_incq(Address counter_addr) {
1040   lock();
1041   incrementq(counter_addr);
1042 }
1043 
1044 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1045   if (reachable(counter_addr)) {
1046     atomic_incq(as_Address(counter_addr));
1047   } else {
1048     lea(scr, counter_addr);
1049     atomic_incq(Address(scr, 0));
1050   }
1051 }
1052 #endif
1053 
1054 // Writes to stack successive pages until offset reached to check for
1055 // stack overflow + shadow pages.  This clobbers tmp.
1056 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1057   movptr(tmp, rsp);
1058   // Bang stack for total size given plus shadow page size.
1059   // Bang one page at a time because large size can bang beyond yellow and
1060   // red zones.
1061   Label loop;
1062   bind(loop);
1063   movl(Address(tmp, (-os::vm_page_size())), size );
1064   subptr(tmp, os::vm_page_size());
1065   subl(size, os::vm_page_size());
1066   jcc(Assembler::greater, loop);
1067 
1068   // Bang down shadow pages too.
1069   // At this point, (tmp-0) is the last address touched, so don't
1070   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1071   // was post-decremented.)  Skip this address by starting at i=1, and
1072   // touch a few more pages below.  N.B.  It is important to touch all
1073   // the way down including all pages in the shadow zone.
1074   for (int i = 1; i < ((int)JavaThread::stack_shadow_zone_size() / os::vm_page_size()); i++) {
1075     // this could be any sized move but this is can be a debugging crumb
1076     // so the bigger the better.
1077     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1078   }
1079 }
1080 
1081 void MacroAssembler::reserved_stack_check() {
1082     // testing if reserved zone needs to be enabled
1083     Label no_reserved_zone_enabling;
1084     Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
1085     NOT_LP64(get_thread(rsi);)
1086 
1087     cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
1088     jcc(Assembler::below, no_reserved_zone_enabling);
1089 
1090     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
1091     jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
1092     should_not_reach_here();
1093 
1094     bind(no_reserved_zone_enabling);
1095 }
1096 
1097 int MacroAssembler::biased_locking_enter(Register lock_reg,
1098                                          Register obj_reg,
1099                                          Register swap_reg,
1100                                          Register tmp_reg,
1101                                          bool swap_reg_contains_mark,
1102                                          Label& done,
1103                                          Label* slow_case,
1104                                          BiasedLockingCounters* counters) {
1105   assert(UseBiasedLocking, "why call this otherwise?");
1106   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1107   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1108   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1109   assert(markWord::age_shift == markWord::lock_bits + markWord::biased_lock_bits, "biased locking makes assumptions about bit layout");
1110   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1111   NOT_LP64( Address saved_mark_addr(lock_reg, 0); )
1112 
1113   if (PrintBiasedLockingStatistics && counters == NULL) {
1114     counters = BiasedLocking::counters();
1115   }
1116   // Biased locking
1117   // See whether the lock is currently biased toward our thread and
1118   // whether the epoch is still valid
1119   // Note that the runtime guarantees sufficient alignment of JavaThread
1120   // pointers to allow age to be placed into low bits
1121   // First check to see whether biasing is even enabled for this object
1122   Label cas_label;
1123   int null_check_offset = -1;
1124   if (!swap_reg_contains_mark) {
1125     null_check_offset = offset();
1126     movptr(swap_reg, mark_addr);
1127   }
1128   movptr(tmp_reg, swap_reg);
1129   andptr(tmp_reg, markWord::biased_lock_mask_in_place);
1130   cmpptr(tmp_reg, markWord::biased_lock_pattern);
1131   jcc(Assembler::notEqual, cas_label);
1132   // The bias pattern is present in the object's header. Need to check
1133   // whether the bias owner and the epoch are both still current.
1134 #ifndef _LP64
1135   // Note that because there is no current thread register on x86_32 we
1136   // need to store off the mark word we read out of the object to
1137   // avoid reloading it and needing to recheck invariants below. This
1138   // store is unfortunate but it makes the overall code shorter and
1139   // simpler.
1140   movptr(saved_mark_addr, swap_reg);
1141 #endif
1142   if (swap_reg_contains_mark) {
1143     null_check_offset = offset();
1144   }
1145   load_prototype_header(tmp_reg, obj_reg);
1146 #ifdef _LP64
1147   orptr(tmp_reg, r15_thread);
1148   xorptr(tmp_reg, swap_reg);
1149   Register header_reg = tmp_reg;
1150 #else
1151   xorptr(tmp_reg, swap_reg);
1152   get_thread(swap_reg);
1153   xorptr(swap_reg, tmp_reg);
1154   Register header_reg = swap_reg;
1155 #endif
1156   andptr(header_reg, ~((int) markWord::age_mask_in_place));
1157   if (counters != NULL) {
1158     cond_inc32(Assembler::zero,
1159                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1160   }
1161   jcc(Assembler::equal, done);
1162 
1163   Label try_revoke_bias;
1164   Label try_rebias;
1165 
1166   // At this point we know that the header has the bias pattern and
1167   // that we are not the bias owner in the current epoch. We need to
1168   // figure out more details about the state of the header in order to
1169   // know what operations can be legally performed on the object's
1170   // header.
1171 
1172   // If the low three bits in the xor result aren't clear, that means
1173   // the prototype header is no longer biased and we have to revoke
1174   // the bias on this object.
1175   testptr(header_reg, markWord::biased_lock_mask_in_place);
1176   jccb(Assembler::notZero, try_revoke_bias);
1177 
1178   // Biasing is still enabled for this data type. See whether the
1179   // epoch of the current bias is still valid, meaning that the epoch
1180   // bits of the mark word are equal to the epoch bits of the
1181   // prototype header. (Note that the prototype header's epoch bits
1182   // only change at a safepoint.) If not, attempt to rebias the object
1183   // toward the current thread. Note that we must be absolutely sure
1184   // that the current epoch is invalid in order to do this because
1185   // otherwise the manipulations it performs on the mark word are
1186   // illegal.
1187   testptr(header_reg, markWord::epoch_mask_in_place);
1188   jccb(Assembler::notZero, try_rebias);
1189 
1190   // The epoch of the current bias is still valid but we know nothing
1191   // about the owner; it might be set or it might be clear. Try to
1192   // acquire the bias of the object using an atomic operation. If this
1193   // fails we will go in to the runtime to revoke the object's bias.
1194   // Note that we first construct the presumed unbiased header so we
1195   // don't accidentally blow away another thread's valid bias.
1196   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1197   andptr(swap_reg,
1198          markWord::biased_lock_mask_in_place | markWord::age_mask_in_place | markWord::epoch_mask_in_place);
1199 #ifdef _LP64
1200   movptr(tmp_reg, swap_reg);
1201   orptr(tmp_reg, r15_thread);
1202 #else
1203   get_thread(tmp_reg);
1204   orptr(tmp_reg, swap_reg);
1205 #endif
1206   lock();
1207   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1208   // If the biasing toward our thread failed, this means that
1209   // another thread succeeded in biasing it toward itself and we
1210   // need to revoke that bias. The revocation will occur in the
1211   // interpreter runtime in the slow case.
1212   if (counters != NULL) {
1213     cond_inc32(Assembler::zero,
1214                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1215   }
1216   if (slow_case != NULL) {
1217     jcc(Assembler::notZero, *slow_case);
1218   }
1219   jmp(done);
1220 
1221   bind(try_rebias);
1222   // At this point we know the epoch has expired, meaning that the
1223   // current "bias owner", if any, is actually invalid. Under these
1224   // circumstances _only_, we are allowed to use the current header's
1225   // value as the comparison value when doing the cas to acquire the
1226   // bias in the current epoch. In other words, we allow transfer of
1227   // the bias from one thread to another directly in this situation.
1228   //
1229   // FIXME: due to a lack of registers we currently blow away the age
1230   // bits in this situation. Should attempt to preserve them.
1231   load_prototype_header(tmp_reg, obj_reg);
1232 #ifdef _LP64
1233   orptr(tmp_reg, r15_thread);
1234 #else
1235   get_thread(swap_reg);
1236   orptr(tmp_reg, swap_reg);
1237   movptr(swap_reg, saved_mark_addr);
1238 #endif
1239   lock();
1240   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1241   // If the biasing toward our thread failed, then another thread
1242   // succeeded in biasing it toward itself and we need to revoke that
1243   // bias. The revocation will occur in the runtime in the slow case.
1244   if (counters != NULL) {
1245     cond_inc32(Assembler::zero,
1246                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1247   }
1248   if (slow_case != NULL) {
1249     jcc(Assembler::notZero, *slow_case);
1250   }
1251   jmp(done);
1252 
1253   bind(try_revoke_bias);
1254   // The prototype mark in the klass doesn't have the bias bit set any
1255   // more, indicating that objects of this data type are not supposed
1256   // to be biased any more. We are going to try to reset the mark of
1257   // this object to the prototype value and fall through to the
1258   // CAS-based locking scheme. Note that if our CAS fails, it means
1259   // that another thread raced us for the privilege of revoking the
1260   // bias of this particular object, so it's okay to continue in the
1261   // normal locking code.
1262   //
1263   // FIXME: due to a lack of registers we currently blow away the age
1264   // bits in this situation. Should attempt to preserve them.
1265   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1266   load_prototype_header(tmp_reg, obj_reg);
1267   lock();
1268   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1269   // Fall through to the normal CAS-based lock, because no matter what
1270   // the result of the above CAS, some thread must have succeeded in
1271   // removing the bias bit from the object's header.
1272   if (counters != NULL) {
1273     cond_inc32(Assembler::zero,
1274                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1275   }
1276 
1277   bind(cas_label);
1278 
1279   return null_check_offset;
1280 }
1281 
1282 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1283   assert(UseBiasedLocking, "why call this otherwise?");
1284 
1285   // Check for biased locking unlock case, which is a no-op
1286   // Note: we do not have to check the thread ID for two reasons.
1287   // First, the interpreter checks for IllegalMonitorStateException at
1288   // a higher level. Second, if the bias was revoked while we held the
1289   // lock, the object could not be rebiased toward another thread, so
1290   // the bias bit would be clear.
1291   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1292   andptr(temp_reg, markWord::biased_lock_mask_in_place);
1293   cmpptr(temp_reg, markWord::biased_lock_pattern);
1294   jcc(Assembler::equal, done);
1295 }
1296 
1297 #ifdef COMPILER2
1298 
1299 // Increment the ObjectMonitor's ref_count for safety or force a branch
1300 // to 'done' with ICC.ZF=0 to indicate failure/take the slow path.
1301 void MacroAssembler::inc_om_ref_count(Register obj_reg, Register om_reg, Register tmp_reg, Label& done) {
1302   atomic_incl(Address(om_reg, OM_OFFSET_NO_MONITOR_VALUE_TAG(ref_count)));
1303 
1304   Label LGoSlowPath;
1305   if (AsyncDeflateIdleMonitors) {
1306     // Race here if monitor is not owned! The above ref_count bump
1307     // will cause subsequent async deflation to skip it. However,
1308     // previous or concurrent async deflation is a race.
1309 
1310     // First check: if the owner field == DEFLATER_MARKER:
1311     movptr(tmp_reg, Address(om_reg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1312     // DEFLATER_MARKER == reinterpret_cast<void*>(-1) so the compiler
1313     // doesn't like to use the define here:
1314     cmpptr(tmp_reg, -1);
1315     // If marked for async deflation, then take the slow path. This is a
1316     // simpler check than what ObjectMonitorHandle::save_om_ptr() does
1317     // so ObjectMonitor::install_displaced_markword_in_object() doesn't
1318     // have to be implemented in macro assembler.
1319     jccb(Assembler::equal, LGoSlowPath);
1320 
1321     // Second check: if ref_count field <= 0:
1322     movptr(tmp_reg, Address(om_reg, OM_OFFSET_NO_MONITOR_VALUE_TAG(ref_count)));
1323     cmpptr(tmp_reg, 0);
1324     // If async deflation is in the process of bailing out, but has not
1325     // yet restored the ref_count field, then we take the slow path. We
1326     // want a stable ref_count value for the fast path.
1327     jccb(Assembler::lessEqual, LGoSlowPath);
1328 
1329     // Final check: if object field == obj_reg:
1330     cmpptr(obj_reg, Address(om_reg, OM_OFFSET_NO_MONITOR_VALUE_TAG(object)));
1331     // If the ObjectMonitor has been deflated and recycled, then take
1332     // the slow path.
1333     jccb(Assembler::notEqual, LGoSlowPath);
1334   }
1335 
1336   Label LRetToCaller;
1337   // We leave the ref_count incremented to protect the caller's code
1338   // paths against async deflation.
1339   jmpb(LRetToCaller);
1340 
1341   bind(LGoSlowPath);
1342   lock();
1343   decrementl(Address(om_reg, OM_OFFSET_NO_MONITOR_VALUE_TAG(ref_count)));
1344   // Jump to 'done' with ICC.ZF=0 to indicate failure/take the slow path.
1345   orl(tmp_reg, 1);
1346   jmp(done);
1347 
1348   bind(LRetToCaller);
1349 }
1350 
1351 #if INCLUDE_RTM_OPT
1352 
1353 // Update rtm_counters based on abort status
1354 // input: abort_status
1355 //        rtm_counters (RTMLockingCounters*)
1356 // flags are killed
1357 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1358 
1359   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1360   if (PrintPreciseRTMLockingStatistics) {
1361     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1362       Label check_abort;
1363       testl(abort_status, (1<<i));
1364       jccb(Assembler::equal, check_abort);
1365       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1366       bind(check_abort);
1367     }
1368   }
1369 }
1370 
1371 // Branch if (random & (count-1) != 0), count is 2^n
1372 // tmp, scr and flags are killed
1373 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1374   assert(tmp == rax, "");
1375   assert(scr == rdx, "");
1376   rdtsc(); // modifies EDX:EAX
1377   andptr(tmp, count-1);
1378   jccb(Assembler::notZero, brLabel);
1379 }
1380 
1381 // Perform abort ratio calculation, set no_rtm bit if high ratio
1382 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1383 // tmpReg, rtm_counters_Reg and flags are killed
1384 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1385                                                  Register rtm_counters_Reg,
1386                                                  RTMLockingCounters* rtm_counters,
1387                                                  Metadata* method_data) {
1388   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1389 
1390   if (RTMLockingCalculationDelay > 0) {
1391     // Delay calculation
1392     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1393     testptr(tmpReg, tmpReg);
1394     jccb(Assembler::equal, L_done);
1395   }
1396   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1397   //   Aborted transactions = abort_count * 100
1398   //   All transactions = total_count *  RTMTotalCountIncrRate
1399   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1400 
1401   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1402   cmpptr(tmpReg, RTMAbortThreshold);
1403   jccb(Assembler::below, L_check_always_rtm2);
1404   imulptr(tmpReg, tmpReg, 100);
1405 
1406   Register scrReg = rtm_counters_Reg;
1407   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1408   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1409   imulptr(scrReg, scrReg, RTMAbortRatio);
1410   cmpptr(tmpReg, scrReg);
1411   jccb(Assembler::below, L_check_always_rtm1);
1412   if (method_data != NULL) {
1413     // set rtm_state to "no rtm" in MDO
1414     mov_metadata(tmpReg, method_data);
1415     lock();
1416     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1417   }
1418   jmpb(L_done);
1419   bind(L_check_always_rtm1);
1420   // Reload RTMLockingCounters* address
1421   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1422   bind(L_check_always_rtm2);
1423   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1424   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1425   jccb(Assembler::below, L_done);
1426   if (method_data != NULL) {
1427     // set rtm_state to "always rtm" in MDO
1428     mov_metadata(tmpReg, method_data);
1429     lock();
1430     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1431   }
1432   bind(L_done);
1433 }
1434 
1435 // Update counters and perform abort ratio calculation
1436 // input:  abort_status_Reg
1437 // rtm_counters_Reg, flags are killed
1438 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1439                                    Register rtm_counters_Reg,
1440                                    RTMLockingCounters* rtm_counters,
1441                                    Metadata* method_data,
1442                                    bool profile_rtm) {
1443 
1444   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1445   // update rtm counters based on rax value at abort
1446   // reads abort_status_Reg, updates flags
1447   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1448   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1449   if (profile_rtm) {
1450     // Save abort status because abort_status_Reg is used by following code.
1451     if (RTMRetryCount > 0) {
1452       push(abort_status_Reg);
1453     }
1454     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1455     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1456     // restore abort status
1457     if (RTMRetryCount > 0) {
1458       pop(abort_status_Reg);
1459     }
1460   }
1461 }
1462 
1463 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1464 // inputs: retry_count_Reg
1465 //       : abort_status_Reg
1466 // output: retry_count_Reg decremented by 1
1467 // flags are killed
1468 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1469   Label doneRetry;
1470   assert(abort_status_Reg == rax, "");
1471   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1472   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1473   // if reason is in 0x6 and retry count != 0 then retry
1474   andptr(abort_status_Reg, 0x6);
1475   jccb(Assembler::zero, doneRetry);
1476   testl(retry_count_Reg, retry_count_Reg);
1477   jccb(Assembler::zero, doneRetry);
1478   pause();
1479   decrementl(retry_count_Reg);
1480   jmp(retryLabel);
1481   bind(doneRetry);
1482 }
1483 
1484 // Spin and retry if lock is busy,
1485 // inputs: box_Reg (monitor address)
1486 //       : retry_count_Reg
1487 // output: retry_count_Reg decremented by 1
1488 //       : clear z flag if retry count exceeded
1489 // tmp_Reg, scr_Reg, flags are killed
1490 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1491                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1492   Label SpinLoop, SpinExit, doneRetry;
1493   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1494 
1495   testl(retry_count_Reg, retry_count_Reg);
1496   jccb(Assembler::zero, doneRetry);
1497   decrementl(retry_count_Reg);
1498   movptr(scr_Reg, RTMSpinLoopCount);
1499 
1500   bind(SpinLoop);
1501   pause();
1502   decrementl(scr_Reg);
1503   jccb(Assembler::lessEqual, SpinExit);
1504   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1505   testptr(tmp_Reg, tmp_Reg);
1506   jccb(Assembler::notZero, SpinLoop);
1507 
1508   bind(SpinExit);
1509   jmp(retryLabel);
1510   bind(doneRetry);
1511   incrementl(retry_count_Reg); // clear z flag
1512 }
1513 
1514 // Use RTM for normal stack locks
1515 // Input: objReg (object to lock)
1516 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1517                                        Register retry_on_abort_count_Reg,
1518                                        RTMLockingCounters* stack_rtm_counters,
1519                                        Metadata* method_data, bool profile_rtm,
1520                                        Label& DONE_LABEL, Label& IsInflated) {
1521   assert(UseRTMForStackLocks, "why call this otherwise?");
1522   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1523   assert(tmpReg == rax, "");
1524   assert(scrReg == rdx, "");
1525   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1526 
1527   if (RTMRetryCount > 0) {
1528     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1529     bind(L_rtm_retry);
1530   }
1531   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1532   testptr(tmpReg, markWord::monitor_value);  // inflated vs stack-locked|neutral|biased
1533   jcc(Assembler::notZero, IsInflated);
1534 
1535   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1536     Label L_noincrement;
1537     if (RTMTotalCountIncrRate > 1) {
1538       // tmpReg, scrReg and flags are killed
1539       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1540     }
1541     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1542     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1543     bind(L_noincrement);
1544   }
1545   xbegin(L_on_abort);
1546   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));       // fetch markword
1547   andptr(tmpReg, markWord::biased_lock_mask_in_place); // look at 3 lock bits
1548   cmpptr(tmpReg, markWord::unlocked_value);            // bits = 001 unlocked
1549   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1550 
1551   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1552   if (UseRTMXendForLockBusy) {
1553     xend();
1554     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1555     jmp(L_decrement_retry);
1556   }
1557   else {
1558     xabort(0);
1559   }
1560   bind(L_on_abort);
1561   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1562     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1563   }
1564   bind(L_decrement_retry);
1565   if (RTMRetryCount > 0) {
1566     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1567     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1568   }
1569 }
1570 
1571 // Use RTM for inflating locks
1572 // inputs: objReg (object to lock)
1573 //         boxReg (on-stack box address (displaced header location) - KILLED)
1574 //         tmpReg (ObjectMonitor address + markWord::monitor_value)
1575 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1576                                           Register scrReg, Register retry_on_busy_count_Reg,
1577                                           Register retry_on_abort_count_Reg,
1578                                           RTMLockingCounters* rtm_counters,
1579                                           Metadata* method_data, bool profile_rtm,
1580                                           Label& DONE_LABEL) {
1581   assert(UseRTMLocking, "why call this otherwise?");
1582   assert(tmpReg == rax, "");
1583   assert(scrReg == rdx, "");
1584   Label L_rtm_retry, L_decrement_retry, L_on_abort, L_local_done;
1585   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1586 
1587   // Without cast to int32_t this style of movptr will destroy r10 which is typically obj.
1588   movptr(Address(boxReg, 0), (int32_t)intptr_t(markWord::unused_mark().value()));
1589 
1590   if (!HandshakeAfterDeflateIdleMonitors) {
1591     // Increment the ObjectMonitor's ref_count for safety or force the
1592     // enter slow path via DONE_LABEL.
1593     // In rtm_inflated_locking(), initially tmpReg contains the object's
1594     // mark word which, in this case, is the (ObjectMonitor* | monitor_value).
1595     // Also this code uses scrReg as its temporary register.
1596     inc_om_ref_count(objReg, tmpReg /* om_reg */, scrReg /* tmp_reg */, DONE_LABEL);
1597   }
1598 
1599   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1600 
1601   if (RTMRetryCount > 0) {
1602     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1603     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1604     bind(L_rtm_retry);
1605   }
1606   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1607     Label L_noincrement;
1608     if (RTMTotalCountIncrRate > 1) {
1609       // tmpReg, scrReg and flags are killed
1610       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1611     }
1612     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1613     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1614     bind(L_noincrement);
1615   }
1616   xbegin(L_on_abort);
1617   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1618   movptr(tmpReg, Address(tmpReg, owner_offset));
1619   testptr(tmpReg, tmpReg);
1620   jcc(Assembler::zero, L_local_done);
1621   if (UseRTMXendForLockBusy) {
1622     xend();
1623     jmp(L_decrement_retry);
1624   }
1625   else {
1626     xabort(0);
1627   }
1628   bind(L_on_abort);
1629   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1630   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1631     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1632   }
1633   if (RTMRetryCount > 0) {
1634     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1635     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1636   }
1637 
1638   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1639   testptr(tmpReg, tmpReg) ;
1640   jccb(Assembler::notZero, L_decrement_retry) ;
1641 
1642   // Appears unlocked - try to swing _owner from null to non-null.
1643   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1644 #ifdef _LP64
1645   Register threadReg = r15_thread;
1646 #else
1647   get_thread(scrReg);
1648   Register threadReg = scrReg;
1649 #endif
1650   lock();
1651   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1652 
1653   if (RTMRetryCount > 0) {
1654     // success done else retry
1655     jccb(Assembler::equal, L_local_done);
1656     bind(L_decrement_retry);
1657     // Spin and retry if lock is busy.
1658     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1659   }
1660   else {
1661     bind(L_decrement_retry);
1662   }
1663 
1664   // rtm_inflated_locking() exit paths come here except for a failed
1665   // inc_om_ref_count() which goes directly to DONE_LABEL.
1666   bind(L_local_done);
1667   if (!HandshakeAfterDeflateIdleMonitors) {
1668     pushf();  // Preserve flags.
1669     // Decrement the ObjectMonitor's ref_count.
1670     lock();
1671     decrementl(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(ref_count)));
1672     popf();  // Restore flags so we have the proper ICC.ZF value.
1673   }
1674 
1675   jmp(DONE_LABEL) ;
1676 }
1677 
1678 #endif //  INCLUDE_RTM_OPT
1679 
1680 // fast_lock and fast_unlock used by C2
1681 
1682 // Because the transitions from emitted code to the runtime
1683 // monitorenter/exit helper stubs are so slow it's critical that
1684 // we inline both the stack-locking fast path and the inflated fast path.
1685 //
1686 // See also: cmpFastLock and cmpFastUnlock.
1687 //
1688 // What follows is a specialized inline transliteration of the code
1689 // in enter() and exit(). If we're concerned about I$ bloat another
1690 // option would be to emit TrySlowEnter and TrySlowExit methods
1691 // at startup-time.  These methods would accept arguments as
1692 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1693 // indications in the icc.ZFlag.  fast_lock and fast_unlock would simply
1694 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1695 // In practice, however, the # of lock sites is bounded and is usually small.
1696 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1697 // if the processor uses simple bimodal branch predictors keyed by EIP
1698 // Since the helper routines would be called from multiple synchronization
1699 // sites.
1700 //
1701 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1702 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1703 // to those specialized methods.  That'd give us a mostly platform-independent
1704 // implementation that the JITs could optimize and inline at their pleasure.
1705 // Done correctly, the only time we'd need to cross to native could would be
1706 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1707 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1708 // (b) explicit barriers or fence operations.
1709 //
1710 // TODO:
1711 //
1712 // *  Arrange for C2 to pass "Self" into fast_lock and fast_unlock in one of the registers (scr).
1713 //    This avoids manifesting the Self pointer in the fast_lock and fast_unlock terminals.
1714 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1715 //    the lock operators would typically be faster than reifying Self.
1716 //
1717 // *  Ideally I'd define the primitives as:
1718 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1719 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1720 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1721 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1722 //    Furthermore the register assignments are overconstrained, possibly resulting in
1723 //    sub-optimal code near the synchronization site.
1724 //
1725 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1726 //    Alternately, use a better sp-proximity test.
1727 //
1728 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1729 //    Either one is sufficient to uniquely identify a thread.
1730 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1731 //
1732 // *  Intrinsify notify() and notifyAll() for the common cases where the
1733 //    object is locked by the calling thread but the waitlist is empty.
1734 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1735 //
1736 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1737 //    But beware of excessive branch density on AMD Opterons.
1738 //
1739 // *  Both fast_lock and fast_unlock set the ICC.ZF to indicate success
1740 //    or failure of the fast path.  If the fast path fails then we pass
1741 //    control to the slow path, typically in C.  In fast_lock and
1742 //    fast_unlock we often branch to DONE_LABEL, just to find that C2
1743 //    will emit a conditional branch immediately after the node.
1744 //    So we have branches to branches and lots of ICC.ZF games.
1745 //    Instead, it might be better to have C2 pass a "FailureLabel"
1746 //    into fast_lock and fast_unlock.  In the case of success, control
1747 //    will drop through the node.  ICC.ZF is undefined at exit.
1748 //    In the case of failure, the node will branch directly to the
1749 //    FailureLabel
1750 
1751 
1752 // obj: object to lock
1753 // box: on-stack box address (displaced header location) - KILLED
1754 // rax,: tmp -- KILLED
1755 // scr: tmp -- KILLED
1756 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1757                                Register scrReg, Register cx1Reg, Register cx2Reg,
1758                                BiasedLockingCounters* counters,
1759                                RTMLockingCounters* rtm_counters,
1760                                RTMLockingCounters* stack_rtm_counters,
1761                                Metadata* method_data,
1762                                bool use_rtm, bool profile_rtm) {
1763   // Ensure the register assignments are disjoint
1764   assert(tmpReg == rax, "");
1765 
1766   if (use_rtm) {
1767     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1768   } else {
1769     assert(cx1Reg == noreg, "");
1770     assert(cx2Reg == noreg, "");
1771     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1772   }
1773 
1774   if (counters != NULL) {
1775     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1776   }
1777 
1778   // Possible cases that we'll encounter in fast_lock
1779   // ------------------------------------------------
1780   // * Inflated
1781   //    -- unlocked
1782   //    -- Locked
1783   //       = by self
1784   //       = by other
1785   // * biased
1786   //    -- by Self
1787   //    -- by other
1788   // * neutral
1789   // * stack-locked
1790   //    -- by self
1791   //       = sp-proximity test hits
1792   //       = sp-proximity test generates false-negative
1793   //    -- by other
1794   //
1795 
1796   Label IsInflated, DONE_LABEL;
1797 
1798   // it's stack-locked, biased or neutral
1799   // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1800   // order to reduce the number of conditional branches in the most common cases.
1801   // Beware -- there's a subtle invariant that fetch of the markword
1802   // at [FETCH], below, will never observe a biased encoding (*101b).
1803   // If this invariant is not held we risk exclusion (safety) failure.
1804   if (UseBiasedLocking && !UseOptoBiasInlining) {
1805     biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1806   }
1807 
1808 #if INCLUDE_RTM_OPT
1809   if (UseRTMForStackLocks && use_rtm) {
1810     rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1811                       stack_rtm_counters, method_data, profile_rtm,
1812                       DONE_LABEL, IsInflated);
1813   }
1814 #endif // INCLUDE_RTM_OPT
1815 
1816   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));          // [FETCH]
1817   testptr(tmpReg, markWord::monitor_value); // inflated vs stack-locked|neutral|biased
1818   jccb(Assembler::notZero, IsInflated);
1819 
1820   // Attempt stack-locking ...
1821   orptr (tmpReg, markWord::unlocked_value);
1822   movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1823   lock();
1824   cmpxchgptr(boxReg, Address(objReg, oopDesc::mark_offset_in_bytes()));      // Updates tmpReg
1825   if (counters != NULL) {
1826     cond_inc32(Assembler::equal,
1827                ExternalAddress((address)counters->fast_path_entry_count_addr()));
1828   }
1829   jcc(Assembler::equal, DONE_LABEL);           // Success
1830 
1831   // Recursive locking.
1832   // The object is stack-locked: markword contains stack pointer to BasicLock.
1833   // Locked by current thread if difference with current SP is less than one page.
1834   subptr(tmpReg, rsp);
1835   // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1836   andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1837   movptr(Address(boxReg, 0), tmpReg);
1838   if (counters != NULL) {
1839     cond_inc32(Assembler::equal,
1840                ExternalAddress((address)counters->fast_path_entry_count_addr()));
1841   }
1842   jmp(DONE_LABEL);
1843 
1844   bind(IsInflated);
1845   // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markWord::monitor_value
1846 
1847 #if INCLUDE_RTM_OPT
1848   // Use the same RTM locking code in 32- and 64-bit VM.
1849   if (use_rtm) {
1850     rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1851                          rtm_counters, method_data, profile_rtm, DONE_LABEL);
1852   } else {
1853 #endif // INCLUDE_RTM_OPT
1854 
1855 #ifndef _LP64
1856   // The object is inflated.
1857 
1858   // boxReg refers to the on-stack BasicLock in the current frame.
1859   // We'd like to write:
1860   //   set box->_displaced_header = markWord::unused_mark().  Any non-0 value suffices.
1861   // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1862   // additional latency as we have another ST in the store buffer that must drain.
1863 
1864   // avoid ST-before-CAS
1865   // register juggle because we need tmpReg for cmpxchgptr below
1866   movptr(scrReg, boxReg);
1867   movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1868 
1869   // Optimistic form: consider XORL tmpReg,tmpReg
1870   movptr(tmpReg, NULL_WORD);
1871 
1872   // Appears unlocked - try to swing _owner from null to non-null.
1873   // Ideally, I'd manifest "Self" with get_thread and then attempt
1874   // to CAS the register containing Self into m->Owner.
1875   // But we don't have enough registers, so instead we can either try to CAS
1876   // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1877   // we later store "Self" into m->Owner.  Transiently storing a stack address
1878   // (rsp or the address of the box) into  m->owner is harmless.
1879   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1880   lock();
1881   cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1882   movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1883   // If we weren't able to swing _owner from NULL to the BasicLock
1884   // then take the slow path.
1885   jccb  (Assembler::notZero, DONE_LABEL);
1886   // update _owner from BasicLock to thread
1887   get_thread (scrReg);                    // beware: clobbers ICCs
1888   movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1889   xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1890 
1891   // If the CAS fails we can either retry or pass control to the slow path.
1892   // We use the latter tactic.
1893   // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1894   // If the CAS was successful ...
1895   //   Self has acquired the lock
1896   //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1897   // Intentional fall-through into DONE_LABEL ...
1898 #else // _LP64
1899   // It's inflated and we use scrReg for ObjectMonitor* in this section.
1900   movq(scrReg, tmpReg);
1901 
1902   // Unconditionally set box->_displaced_header = markWord::unused_mark().
1903   // Without cast to int32_t this style of movptr will destroy r10 which is typically obj.
1904   movptr(Address(boxReg, 0), (int32_t)intptr_t(markWord::unused_mark().value()));
1905 
1906   if (!HandshakeAfterDeflateIdleMonitors) {
1907     // Increment the ObjectMonitor's ref_count for safety or force the
1908     // enter slow path via DONE_LABEL.
1909     // In fast_lock(), scrReg contains the object's mark word which,
1910     // in this case, is the (ObjectMonitor* | monitor_value). Also this
1911     // code uses tmpReg as its temporary register.
1912     inc_om_ref_count(objReg, scrReg /* om_reg */, tmpReg /* tmp_reg */, DONE_LABEL);
1913   }
1914 
1915   xorq(tmpReg, tmpReg);
1916   lock();
1917   cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1918   // Intentional fall-through into DONE_LABEL ...
1919   // Propagate ICC.ZF from CAS above into DONE_LABEL.
1920 
1921   if (!HandshakeAfterDeflateIdleMonitors) {
1922     pushf();  // Preserve flags.
1923     // Decrement the ObjectMonitor's ref_count.
1924     lock();
1925     decrementl(Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(ref_count)));
1926     popf();  // Restore flags so we have the proper ICC.ZF value.
1927   }
1928 #endif // _LP64
1929 #if INCLUDE_RTM_OPT
1930   } // use_rtm()
1931 #endif
1932   // DONE_LABEL is a hot target - we'd really like to place it at the
1933   // start of cache line by padding with NOPs.
1934   // See the AMD and Intel software optimization manuals for the
1935   // most efficient "long" NOP encodings.
1936   // Unfortunately none of our alignment mechanisms suffice.
1937   bind(DONE_LABEL);
1938 
1939   // At DONE_LABEL the icc ZFlag is set as follows ...
1940   // fast_unlock uses the same protocol.
1941   // ZFlag == 1 -> Success
1942   // ZFlag == 0 -> Failure - force control through the slow path
1943 }
1944 
1945 // obj: object to unlock
1946 // box: box address (displaced header location), killed.  Must be EAX.
1947 // tmp: killed, cannot be obj nor box.
1948 //
1949 // Some commentary on balanced locking:
1950 //
1951 // fast_lock and fast_unlock are emitted only for provably balanced lock sites.
1952 // Methods that don't have provably balanced locking are forced to run in the
1953 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1954 // The interpreter provides two properties:
1955 // I1:  At return-time the interpreter automatically and quietly unlocks any
1956 //      objects acquired the current activation (frame).  Recall that the
1957 //      interpreter maintains an on-stack list of locks currently held by
1958 //      a frame.
1959 // I2:  If a method attempts to unlock an object that is not held by the
1960 //      the frame the interpreter throws IMSX.
1961 //
1962 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1963 // B() doesn't have provably balanced locking so it runs in the interpreter.
1964 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1965 // is still locked by A().
1966 //
1967 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1968 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1969 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1970 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1971 // Arguably given that the spec legislates the JNI case as undefined our implementation
1972 // could reasonably *avoid* checking owner in fast_unlock().
1973 // In the interest of performance we elide m->Owner==Self check in unlock.
1974 // A perfectly viable alternative is to elide the owner check except when
1975 // Xcheck:jni is enabled.
1976 
1977 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1978   assert(boxReg == rax, "");
1979   assert_different_registers(objReg, boxReg, tmpReg);
1980 
1981   Label DONE_LABEL, Stacked, CheckSucc;
1982 
1983   // Critically, the biased locking test must have precedence over
1984   // and appear before the (box->dhw == 0) recursive stack-lock test.
1985   if (UseBiasedLocking && !UseOptoBiasInlining) {
1986     biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1987   }
1988 
1989 #if INCLUDE_RTM_OPT
1990   if (UseRTMForStackLocks && use_rtm) {
1991     assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1992     Label L_regular_unlock;
1993     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // fetch markword
1994     andptr(tmpReg, markWord::biased_lock_mask_in_place);              // look at 3 lock bits
1995     cmpptr(tmpReg, markWord::unlocked_value);                         // bits = 001 unlocked
1996     jccb(Assembler::notEqual, L_regular_unlock);                      // if !HLE RegularLock
1997     xend();                                                           // otherwise end...
1998     jmp(DONE_LABEL);                                                  // ... and we're done
1999     bind(L_regular_unlock);
2000   }
2001 #endif
2002 
2003   cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD);                   // Examine the displaced header
2004   jcc   (Assembler::zero, DONE_LABEL);                              // 0 indicates recursive stack-lock
2005   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Examine the object's markword
2006   testptr(tmpReg, markWord::monitor_value);                         // Inflated?
2007   jcc  (Assembler::zero, Stacked);
2008 
2009   // It's inflated.
2010 #if INCLUDE_RTM_OPT
2011   if (use_rtm) {
2012     Label L_regular_inflated_unlock;
2013     int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
2014     movptr(boxReg, Address(tmpReg, owner_offset));
2015     testptr(boxReg, boxReg);
2016     jccb(Assembler::notZero, L_regular_inflated_unlock);
2017     xend();
2018     jmp(DONE_LABEL);
2019     bind(L_regular_inflated_unlock);
2020   }
2021 #endif
2022 
2023   // Despite our balanced locking property we still check that m->_owner == Self
2024   // as java routines or native JNI code called by this thread might
2025   // have released the lock.
2026   // Refer to the comments in synchronizer.cpp for how we might encode extra
2027   // state in _succ so we can avoid fetching EntryList|cxq.
2028   //
2029   // I'd like to add more cases in fast_lock() and fast_unlock() --
2030   // such as recursive enter and exit -- but we have to be wary of
2031   // I$ bloat, T$ effects and BP$ effects.
2032   //
2033   // If there's no contention try a 1-0 exit.  That is, exit without
2034   // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2035   // we detect and recover from the race that the 1-0 exit admits.
2036   //
2037   // Conceptually fast_unlock() must execute a STST|LDST "release" barrier
2038   // before it STs null into _owner, releasing the lock.  Updates
2039   // to data protected by the critical section must be visible before
2040   // we drop the lock (and thus before any other thread could acquire
2041   // the lock and observe the fields protected by the lock).
2042   // IA32's memory-model is SPO, so STs are ordered with respect to
2043   // each other and there's no need for an explicit barrier (fence).
2044   // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2045 #ifndef _LP64
2046   get_thread (boxReg);
2047 
2048   // Note that we could employ various encoding schemes to reduce
2049   // the number of loads below (currently 4) to just 2 or 3.
2050   // Refer to the comments in synchronizer.cpp.
2051   // In practice the chain of fetches doesn't seem to impact performance, however.
2052   xorptr(boxReg, boxReg);
2053   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2054   jccb  (Assembler::notZero, DONE_LABEL);
2055   movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2056   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2057   jccb  (Assembler::notZero, CheckSucc);
2058   movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2059   jmpb  (DONE_LABEL);
2060 
2061   bind (Stacked);
2062   // It's not inflated and it's not recursively stack-locked and it's not biased.
2063   // It must be stack-locked.
2064   // Try to reset the header to displaced header.
2065   // The "box" value on the stack is stable, so we can reload
2066   // and be assured we observe the same value as above.
2067   movptr(tmpReg, Address(boxReg, 0));
2068   lock();
2069   cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2070   // Intention fall-thru into DONE_LABEL
2071 
2072   // DONE_LABEL is a hot target - we'd really like to place it at the
2073   // start of cache line by padding with NOPs.
2074   // See the AMD and Intel software optimization manuals for the
2075   // most efficient "long" NOP encodings.
2076   // Unfortunately none of our alignment mechanisms suffice.
2077   bind (CheckSucc);
2078 #else // _LP64
2079   // It's inflated
2080 
2081   if (!HandshakeAfterDeflateIdleMonitors) {
2082     // Increment the ObjectMonitor's ref_count for safety or force the
2083     // exit slow path via DONE_LABEL.
2084     // In fast_unlock(), tmpReg contains the object's mark word which,
2085     // in this case, is the (ObjectMonitor* | monitor_value). Also this
2086     // code uses boxReg as its temporary register.
2087     inc_om_ref_count(objReg, tmpReg /* om_reg */, boxReg /* tmp_reg */, DONE_LABEL);
2088   }
2089 
2090   // Try to avoid passing control into the slow path ...
2091   Label LSuccess, LGoSlowPath;
2092   xorptr(boxReg, boxReg);
2093   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2094   jccb(Assembler::notZero, LGoSlowPath);
2095   movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2096   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2097   jccb  (Assembler::notZero, CheckSucc);
2098   // Without cast to int32_t this style of movptr will destroy r10 which is typically obj.
2099   movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2100   jmpb(LSuccess);
2101 
2102   bind  (CheckSucc);
2103 
2104   // The following optional optimization can be elided if necessary
2105   // Effectively: if (succ == null) goto slow path
2106   // The code reduces the window for a race, however,
2107   // and thus benefits performance.
2108   cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2109   jccb  (Assembler::zero, LGoSlowPath);
2110 
2111   xorptr(boxReg, boxReg);
2112   // Without cast to int32_t this style of movptr will destroy r10 which is typically obj.
2113   movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2114 
2115   // Memory barrier/fence
2116   // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2117   // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2118   // This is faster on Nehalem and AMD Shanghai/Barcelona.
2119   // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2120   // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2121   // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2122   lock(); addl(Address(rsp, 0), 0);
2123 
2124   cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2125   jccb  (Assembler::notZero, LSuccess);
2126 
2127   // Rare inopportune interleaving - race.
2128   // The successor vanished in the small window above.
2129   // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2130   // We need to ensure progress and succession.
2131   // Try to reacquire the lock.
2132   // If that fails then the new owner is responsible for succession and this
2133   // thread needs to take no further action and can exit via the fast path (success).
2134   // If the re-acquire succeeds then pass control into the slow path.
2135   // As implemented, this latter mode is horrible because we generated more
2136   // coherence traffic on the lock *and* artifically extended the critical section
2137   // length while by virtue of passing control into the slow path.
2138 
2139   // box is really RAX -- the following CMPXCHG depends on that binding
2140   // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2141   lock();
2142   cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2143   // There's no successor so we tried to regrab the lock.
2144   // If that didn't work, then another thread grabbed the
2145   // lock so we're done (and exit was a success).
2146   jccb  (Assembler::notEqual, LSuccess);
2147   // Intentional fall-through into slow path
2148 
2149   bind  (LGoSlowPath);
2150   if (!HandshakeAfterDeflateIdleMonitors) {
2151     lock();
2152     decrementl(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(ref_count)));
2153   }
2154   orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2155   jmpb  (DONE_LABEL);
2156 
2157   bind  (LSuccess);
2158   if (!HandshakeAfterDeflateIdleMonitors) {
2159     lock();
2160     decrementl(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(ref_count)));
2161   }
2162   testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2163   jmpb  (DONE_LABEL);
2164 
2165   bind  (Stacked);
2166   movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2167   lock();
2168   cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2169 
2170 #endif
2171   bind(DONE_LABEL);
2172 }
2173 #endif // COMPILER2
2174 
2175 void MacroAssembler::c2bool(Register x) {
2176   // implements x == 0 ? 0 : 1
2177   // note: must only look at least-significant byte of x
2178   //       since C-style booleans are stored in one byte
2179   //       only! (was bug)
2180   andl(x, 0xFF);
2181   setb(Assembler::notZero, x);
2182 }
2183 
2184 // Wouldn't need if AddressLiteral version had new name
2185 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2186   Assembler::call(L, rtype);
2187 }
2188 
2189 void MacroAssembler::call(Register entry) {
2190   Assembler::call(entry);
2191 }
2192 
2193 void MacroAssembler::call(AddressLiteral entry) {
2194   if (reachable(entry)) {
2195     Assembler::call_literal(entry.target(), entry.rspec());
2196   } else {
2197     lea(rscratch1, entry);
2198     Assembler::call(rscratch1);
2199   }
2200 }
2201 
2202 void MacroAssembler::ic_call(address entry, jint method_index) {
2203   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
2204   movptr(rax, (intptr_t)Universe::non_oop_word());
2205   call(AddressLiteral(entry, rh));
2206 }
2207 
2208 // Implementation of call_VM versions
2209 
2210 void MacroAssembler::call_VM(Register oop_result,
2211                              address entry_point,
2212                              bool check_exceptions) {
2213   Label C, E;
2214   call(C, relocInfo::none);
2215   jmp(E);
2216 
2217   bind(C);
2218   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2219   ret(0);
2220 
2221   bind(E);
2222 }
2223 
2224 void MacroAssembler::call_VM(Register oop_result,
2225                              address entry_point,
2226                              Register arg_1,
2227                              bool check_exceptions) {
2228   Label C, E;
2229   call(C, relocInfo::none);
2230   jmp(E);
2231 
2232   bind(C);
2233   pass_arg1(this, arg_1);
2234   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2235   ret(0);
2236 
2237   bind(E);
2238 }
2239 
2240 void MacroAssembler::call_VM(Register oop_result,
2241                              address entry_point,
2242                              Register arg_1,
2243                              Register arg_2,
2244                              bool check_exceptions) {
2245   Label C, E;
2246   call(C, relocInfo::none);
2247   jmp(E);
2248 
2249   bind(C);
2250 
2251   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2252 
2253   pass_arg2(this, arg_2);
2254   pass_arg1(this, arg_1);
2255   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2256   ret(0);
2257 
2258   bind(E);
2259 }
2260 
2261 void MacroAssembler::call_VM(Register oop_result,
2262                              address entry_point,
2263                              Register arg_1,
2264                              Register arg_2,
2265                              Register arg_3,
2266                              bool check_exceptions) {
2267   Label C, E;
2268   call(C, relocInfo::none);
2269   jmp(E);
2270 
2271   bind(C);
2272 
2273   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2274   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2275   pass_arg3(this, arg_3);
2276 
2277   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2278   pass_arg2(this, arg_2);
2279 
2280   pass_arg1(this, arg_1);
2281   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2282   ret(0);
2283 
2284   bind(E);
2285 }
2286 
2287 void MacroAssembler::call_VM(Register oop_result,
2288                              Register last_java_sp,
2289                              address entry_point,
2290                              int number_of_arguments,
2291                              bool check_exceptions) {
2292   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2293   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2294 }
2295 
2296 void MacroAssembler::call_VM(Register oop_result,
2297                              Register last_java_sp,
2298                              address entry_point,
2299                              Register arg_1,
2300                              bool check_exceptions) {
2301   pass_arg1(this, arg_1);
2302   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2303 }
2304 
2305 void MacroAssembler::call_VM(Register oop_result,
2306                              Register last_java_sp,
2307                              address entry_point,
2308                              Register arg_1,
2309                              Register arg_2,
2310                              bool check_exceptions) {
2311 
2312   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2313   pass_arg2(this, arg_2);
2314   pass_arg1(this, arg_1);
2315   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2316 }
2317 
2318 void MacroAssembler::call_VM(Register oop_result,
2319                              Register last_java_sp,
2320                              address entry_point,
2321                              Register arg_1,
2322                              Register arg_2,
2323                              Register arg_3,
2324                              bool check_exceptions) {
2325   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2326   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2327   pass_arg3(this, arg_3);
2328   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2329   pass_arg2(this, arg_2);
2330   pass_arg1(this, arg_1);
2331   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2332 }
2333 
2334 void MacroAssembler::super_call_VM(Register oop_result,
2335                                    Register last_java_sp,
2336                                    address entry_point,
2337                                    int number_of_arguments,
2338                                    bool check_exceptions) {
2339   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2340   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2341 }
2342 
2343 void MacroAssembler::super_call_VM(Register oop_result,
2344                                    Register last_java_sp,
2345                                    address entry_point,
2346                                    Register arg_1,
2347                                    bool check_exceptions) {
2348   pass_arg1(this, arg_1);
2349   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2350 }
2351 
2352 void MacroAssembler::super_call_VM(Register oop_result,
2353                                    Register last_java_sp,
2354                                    address entry_point,
2355                                    Register arg_1,
2356                                    Register arg_2,
2357                                    bool check_exceptions) {
2358 
2359   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2360   pass_arg2(this, arg_2);
2361   pass_arg1(this, arg_1);
2362   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2363 }
2364 
2365 void MacroAssembler::super_call_VM(Register oop_result,
2366                                    Register last_java_sp,
2367                                    address entry_point,
2368                                    Register arg_1,
2369                                    Register arg_2,
2370                                    Register arg_3,
2371                                    bool check_exceptions) {
2372   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2373   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2374   pass_arg3(this, arg_3);
2375   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2376   pass_arg2(this, arg_2);
2377   pass_arg1(this, arg_1);
2378   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2379 }
2380 
2381 void MacroAssembler::call_VM_base(Register oop_result,
2382                                   Register java_thread,
2383                                   Register last_java_sp,
2384                                   address  entry_point,
2385                                   int      number_of_arguments,
2386                                   bool     check_exceptions) {
2387   // determine java_thread register
2388   if (!java_thread->is_valid()) {
2389 #ifdef _LP64
2390     java_thread = r15_thread;
2391 #else
2392     java_thread = rdi;
2393     get_thread(java_thread);
2394 #endif // LP64
2395   }
2396   // determine last_java_sp register
2397   if (!last_java_sp->is_valid()) {
2398     last_java_sp = rsp;
2399   }
2400   // debugging support
2401   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2402   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2403 #ifdef ASSERT
2404   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2405   // r12 is the heapbase.
2406   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2407 #endif // ASSERT
2408 
2409   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2410   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2411 
2412   // push java thread (becomes first argument of C function)
2413 
2414   NOT_LP64(push(java_thread); number_of_arguments++);
2415   LP64_ONLY(mov(c_rarg0, r15_thread));
2416 
2417   // set last Java frame before call
2418   assert(last_java_sp != rbp, "can't use ebp/rbp");
2419 
2420   // Only interpreter should have to set fp
2421   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2422 
2423   // do the call, remove parameters
2424   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2425 
2426   // restore the thread (cannot use the pushed argument since arguments
2427   // may be overwritten by C code generated by an optimizing compiler);
2428   // however can use the register value directly if it is callee saved.
2429   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2430     // rdi & rsi (also r15) are callee saved -> nothing to do
2431 #ifdef ASSERT
2432     guarantee(java_thread != rax, "change this code");
2433     push(rax);
2434     { Label L;
2435       get_thread(rax);
2436       cmpptr(java_thread, rax);
2437       jcc(Assembler::equal, L);
2438       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2439       bind(L);
2440     }
2441     pop(rax);
2442 #endif
2443   } else {
2444     get_thread(java_thread);
2445   }
2446   // reset last Java frame
2447   // Only interpreter should have to clear fp
2448   reset_last_Java_frame(java_thread, true);
2449 
2450    // C++ interp handles this in the interpreter
2451   check_and_handle_popframe(java_thread);
2452   check_and_handle_earlyret(java_thread);
2453 
2454   if (check_exceptions) {
2455     // check for pending exceptions (java_thread is set upon return)
2456     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2457 #ifndef _LP64
2458     jump_cc(Assembler::notEqual,
2459             RuntimeAddress(StubRoutines::forward_exception_entry()));
2460 #else
2461     // This used to conditionally jump to forward_exception however it is
2462     // possible if we relocate that the branch will not reach. So we must jump
2463     // around so we can always reach
2464 
2465     Label ok;
2466     jcc(Assembler::equal, ok);
2467     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2468     bind(ok);
2469 #endif // LP64
2470   }
2471 
2472   // get oop result if there is one and reset the value in the thread
2473   if (oop_result->is_valid()) {
2474     get_vm_result(oop_result, java_thread);
2475   }
2476 }
2477 
2478 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2479 
2480   // Calculate the value for last_Java_sp
2481   // somewhat subtle. call_VM does an intermediate call
2482   // which places a return address on the stack just under the
2483   // stack pointer as the user finsihed with it. This allows
2484   // use to retrieve last_Java_pc from last_Java_sp[-1].
2485   // On 32bit we then have to push additional args on the stack to accomplish
2486   // the actual requested call. On 64bit call_VM only can use register args
2487   // so the only extra space is the return address that call_VM created.
2488   // This hopefully explains the calculations here.
2489 
2490 #ifdef _LP64
2491   // We've pushed one address, correct last_Java_sp
2492   lea(rax, Address(rsp, wordSize));
2493 #else
2494   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2495 #endif // LP64
2496 
2497   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2498 
2499 }
2500 
2501 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
2502 void MacroAssembler::call_VM_leaf0(address entry_point) {
2503   MacroAssembler::call_VM_leaf_base(entry_point, 0);
2504 }
2505 
2506 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2507   call_VM_leaf_base(entry_point, number_of_arguments);
2508 }
2509 
2510 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2511   pass_arg0(this, arg_0);
2512   call_VM_leaf(entry_point, 1);
2513 }
2514 
2515 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2516 
2517   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2518   pass_arg1(this, arg_1);
2519   pass_arg0(this, arg_0);
2520   call_VM_leaf(entry_point, 2);
2521 }
2522 
2523 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2524   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2525   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2526   pass_arg2(this, arg_2);
2527   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2528   pass_arg1(this, arg_1);
2529   pass_arg0(this, arg_0);
2530   call_VM_leaf(entry_point, 3);
2531 }
2532 
2533 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2534   pass_arg0(this, arg_0);
2535   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2536 }
2537 
2538 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2539 
2540   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2541   pass_arg1(this, arg_1);
2542   pass_arg0(this, arg_0);
2543   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2544 }
2545 
2546 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2547   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2548   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2549   pass_arg2(this, arg_2);
2550   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2551   pass_arg1(this, arg_1);
2552   pass_arg0(this, arg_0);
2553   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2554 }
2555 
2556 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2557   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2558   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2559   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2560   pass_arg3(this, arg_3);
2561   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2562   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2563   pass_arg2(this, arg_2);
2564   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2565   pass_arg1(this, arg_1);
2566   pass_arg0(this, arg_0);
2567   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2568 }
2569 
2570 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2571   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2572   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2573   verify_oop(oop_result, "broken oop in call_VM_base");
2574 }
2575 
2576 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2577   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2578   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2579 }
2580 
2581 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2582 }
2583 
2584 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2585 }
2586 
2587 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2588   if (reachable(src1)) {
2589     cmpl(as_Address(src1), imm);
2590   } else {
2591     lea(rscratch1, src1);
2592     cmpl(Address(rscratch1, 0), imm);
2593   }
2594 }
2595 
2596 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2597   assert(!src2.is_lval(), "use cmpptr");
2598   if (reachable(src2)) {
2599     cmpl(src1, as_Address(src2));
2600   } else {
2601     lea(rscratch1, src2);
2602     cmpl(src1, Address(rscratch1, 0));
2603   }
2604 }
2605 
2606 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2607   Assembler::cmpl(src1, imm);
2608 }
2609 
2610 void MacroAssembler::cmp32(Register src1, Address src2) {
2611   Assembler::cmpl(src1, src2);
2612 }
2613 
2614 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2615   ucomisd(opr1, opr2);
2616 
2617   Label L;
2618   if (unordered_is_less) {
2619     movl(dst, -1);
2620     jcc(Assembler::parity, L);
2621     jcc(Assembler::below , L);
2622     movl(dst, 0);
2623     jcc(Assembler::equal , L);
2624     increment(dst);
2625   } else { // unordered is greater
2626     movl(dst, 1);
2627     jcc(Assembler::parity, L);
2628     jcc(Assembler::above , L);
2629     movl(dst, 0);
2630     jcc(Assembler::equal , L);
2631     decrementl(dst);
2632   }
2633   bind(L);
2634 }
2635 
2636 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2637   ucomiss(opr1, opr2);
2638 
2639   Label L;
2640   if (unordered_is_less) {
2641     movl(dst, -1);
2642     jcc(Assembler::parity, L);
2643     jcc(Assembler::below , L);
2644     movl(dst, 0);
2645     jcc(Assembler::equal , L);
2646     increment(dst);
2647   } else { // unordered is greater
2648     movl(dst, 1);
2649     jcc(Assembler::parity, L);
2650     jcc(Assembler::above , L);
2651     movl(dst, 0);
2652     jcc(Assembler::equal , L);
2653     decrementl(dst);
2654   }
2655   bind(L);
2656 }
2657 
2658 
2659 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2660   if (reachable(src1)) {
2661     cmpb(as_Address(src1), imm);
2662   } else {
2663     lea(rscratch1, src1);
2664     cmpb(Address(rscratch1, 0), imm);
2665   }
2666 }
2667 
2668 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2669 #ifdef _LP64
2670   if (src2.is_lval()) {
2671     movptr(rscratch1, src2);
2672     Assembler::cmpq(src1, rscratch1);
2673   } else if (reachable(src2)) {
2674     cmpq(src1, as_Address(src2));
2675   } else {
2676     lea(rscratch1, src2);
2677     Assembler::cmpq(src1, Address(rscratch1, 0));
2678   }
2679 #else
2680   if (src2.is_lval()) {
2681     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2682   } else {
2683     cmpl(src1, as_Address(src2));
2684   }
2685 #endif // _LP64
2686 }
2687 
2688 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2689   assert(src2.is_lval(), "not a mem-mem compare");
2690 #ifdef _LP64
2691   // moves src2's literal address
2692   movptr(rscratch1, src2);
2693   Assembler::cmpq(src1, rscratch1);
2694 #else
2695   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2696 #endif // _LP64
2697 }
2698 
2699 void MacroAssembler::cmpoop(Register src1, Register src2) {
2700   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2701   bs->obj_equals(this, src1, src2);
2702 }
2703 
2704 void MacroAssembler::cmpoop(Register src1, Address src2) {
2705   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2706   bs->obj_equals(this, src1, src2);
2707 }
2708 
2709 #ifdef _LP64
2710 void MacroAssembler::cmpoop(Register src1, jobject src2) {
2711   movoop(rscratch1, src2);
2712   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2713   bs->obj_equals(this, src1, rscratch1);
2714 }
2715 #endif
2716 
2717 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2718   if (reachable(adr)) {
2719     lock();
2720     cmpxchgptr(reg, as_Address(adr));
2721   } else {
2722     lea(rscratch1, adr);
2723     lock();
2724     cmpxchgptr(reg, Address(rscratch1, 0));
2725   }
2726 }
2727 
2728 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2729   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2730 }
2731 
2732 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2733   if (reachable(src)) {
2734     Assembler::comisd(dst, as_Address(src));
2735   } else {
2736     lea(rscratch1, src);
2737     Assembler::comisd(dst, Address(rscratch1, 0));
2738   }
2739 }
2740 
2741 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2742   if (reachable(src)) {
2743     Assembler::comiss(dst, as_Address(src));
2744   } else {
2745     lea(rscratch1, src);
2746     Assembler::comiss(dst, Address(rscratch1, 0));
2747   }
2748 }
2749 
2750 
2751 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2752   Condition negated_cond = negate_condition(cond);
2753   Label L;
2754   jcc(negated_cond, L);
2755   pushf(); // Preserve flags
2756   atomic_incl(counter_addr);
2757   popf();
2758   bind(L);
2759 }
2760 
2761 int MacroAssembler::corrected_idivl(Register reg) {
2762   // Full implementation of Java idiv and irem; checks for
2763   // special case as described in JVM spec., p.243 & p.271.
2764   // The function returns the (pc) offset of the idivl
2765   // instruction - may be needed for implicit exceptions.
2766   //
2767   //         normal case                           special case
2768   //
2769   // input : rax,: dividend                         min_int
2770   //         reg: divisor   (may not be rax,/rdx)   -1
2771   //
2772   // output: rax,: quotient  (= rax, idiv reg)       min_int
2773   //         rdx: remainder (= rax, irem reg)       0
2774   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2775   const int min_int = 0x80000000;
2776   Label normal_case, special_case;
2777 
2778   // check for special case
2779   cmpl(rax, min_int);
2780   jcc(Assembler::notEqual, normal_case);
2781   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2782   cmpl(reg, -1);
2783   jcc(Assembler::equal, special_case);
2784 
2785   // handle normal case
2786   bind(normal_case);
2787   cdql();
2788   int idivl_offset = offset();
2789   idivl(reg);
2790 
2791   // normal and special case exit
2792   bind(special_case);
2793 
2794   return idivl_offset;
2795 }
2796 
2797 
2798 
2799 void MacroAssembler::decrementl(Register reg, int value) {
2800   if (value == min_jint) {subl(reg, value) ; return; }
2801   if (value <  0) { incrementl(reg, -value); return; }
2802   if (value == 0) {                        ; return; }
2803   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2804   /* else */      { subl(reg, value)       ; return; }
2805 }
2806 
2807 void MacroAssembler::decrementl(Address dst, int value) {
2808   if (value == min_jint) {subl(dst, value) ; return; }
2809   if (value <  0) { incrementl(dst, -value); return; }
2810   if (value == 0) {                        ; return; }
2811   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2812   /* else */      { subl(dst, value)       ; return; }
2813 }
2814 
2815 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2816   assert (shift_value > 0, "illegal shift value");
2817   Label _is_positive;
2818   testl (reg, reg);
2819   jcc (Assembler::positive, _is_positive);
2820   int offset = (1 << shift_value) - 1 ;
2821 
2822   if (offset == 1) {
2823     incrementl(reg);
2824   } else {
2825     addl(reg, offset);
2826   }
2827 
2828   bind (_is_positive);
2829   sarl(reg, shift_value);
2830 }
2831 
2832 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2833   if (reachable(src)) {
2834     Assembler::divsd(dst, as_Address(src));
2835   } else {
2836     lea(rscratch1, src);
2837     Assembler::divsd(dst, Address(rscratch1, 0));
2838   }
2839 }
2840 
2841 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2842   if (reachable(src)) {
2843     Assembler::divss(dst, as_Address(src));
2844   } else {
2845     lea(rscratch1, src);
2846     Assembler::divss(dst, Address(rscratch1, 0));
2847   }
2848 }
2849 
2850 // !defined(COMPILER2) is because of stupid core builds
2851 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
2852 void MacroAssembler::empty_FPU_stack() {
2853   if (VM_Version::supports_mmx()) {
2854     emms();
2855   } else {
2856     for (int i = 8; i-- > 0; ) ffree(i);
2857   }
2858 }
2859 #endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
2860 
2861 
2862 void MacroAssembler::enter() {
2863   push(rbp);
2864   mov(rbp, rsp);
2865 }
2866 
2867 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2868 void MacroAssembler::fat_nop() {
2869   if (UseAddressNop) {
2870     addr_nop_5();
2871   } else {
2872     emit_int8(0x26); // es:
2873     emit_int8(0x2e); // cs:
2874     emit_int8(0x64); // fs:
2875     emit_int8(0x65); // gs:
2876     emit_int8((unsigned char)0x90);
2877   }
2878 }
2879 
2880 void MacroAssembler::fcmp(Register tmp) {
2881   fcmp(tmp, 1, true, true);
2882 }
2883 
2884 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2885   assert(!pop_right || pop_left, "usage error");
2886   if (VM_Version::supports_cmov()) {
2887     assert(tmp == noreg, "unneeded temp");
2888     if (pop_left) {
2889       fucomip(index);
2890     } else {
2891       fucomi(index);
2892     }
2893     if (pop_right) {
2894       fpop();
2895     }
2896   } else {
2897     assert(tmp != noreg, "need temp");
2898     if (pop_left) {
2899       if (pop_right) {
2900         fcompp();
2901       } else {
2902         fcomp(index);
2903       }
2904     } else {
2905       fcom(index);
2906     }
2907     // convert FPU condition into eflags condition via rax,
2908     save_rax(tmp);
2909     fwait(); fnstsw_ax();
2910     sahf();
2911     restore_rax(tmp);
2912   }
2913   // condition codes set as follows:
2914   //
2915   // CF (corresponds to C0) if x < y
2916   // PF (corresponds to C2) if unordered
2917   // ZF (corresponds to C3) if x = y
2918 }
2919 
2920 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
2921   fcmp2int(dst, unordered_is_less, 1, true, true);
2922 }
2923 
2924 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
2925   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
2926   Label L;
2927   if (unordered_is_less) {
2928     movl(dst, -1);
2929     jcc(Assembler::parity, L);
2930     jcc(Assembler::below , L);
2931     movl(dst, 0);
2932     jcc(Assembler::equal , L);
2933     increment(dst);
2934   } else { // unordered is greater
2935     movl(dst, 1);
2936     jcc(Assembler::parity, L);
2937     jcc(Assembler::above , L);
2938     movl(dst, 0);
2939     jcc(Assembler::equal , L);
2940     decrementl(dst);
2941   }
2942   bind(L);
2943 }
2944 
2945 void MacroAssembler::fld_d(AddressLiteral src) {
2946   fld_d(as_Address(src));
2947 }
2948 
2949 void MacroAssembler::fld_s(AddressLiteral src) {
2950   fld_s(as_Address(src));
2951 }
2952 
2953 void MacroAssembler::fld_x(AddressLiteral src) {
2954   Assembler::fld_x(as_Address(src));
2955 }
2956 
2957 void MacroAssembler::fldcw(AddressLiteral src) {
2958   Assembler::fldcw(as_Address(src));
2959 }
2960 
2961 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
2962   if (reachable(src)) {
2963     Assembler::mulpd(dst, as_Address(src));
2964   } else {
2965     lea(rscratch1, src);
2966     Assembler::mulpd(dst, Address(rscratch1, 0));
2967   }
2968 }
2969 
2970 void MacroAssembler::increase_precision() {
2971   subptr(rsp, BytesPerWord);
2972   fnstcw(Address(rsp, 0));
2973   movl(rax, Address(rsp, 0));
2974   orl(rax, 0x300);
2975   push(rax);
2976   fldcw(Address(rsp, 0));
2977   pop(rax);
2978 }
2979 
2980 void MacroAssembler::restore_precision() {
2981   fldcw(Address(rsp, 0));
2982   addptr(rsp, BytesPerWord);
2983 }
2984 
2985 void MacroAssembler::fpop() {
2986   ffree();
2987   fincstp();
2988 }
2989 
2990 void MacroAssembler::load_float(Address src) {
2991   if (UseSSE >= 1) {
2992     movflt(xmm0, src);
2993   } else {
2994     LP64_ONLY(ShouldNotReachHere());
2995     NOT_LP64(fld_s(src));
2996   }
2997 }
2998 
2999 void MacroAssembler::store_float(Address dst) {
3000   if (UseSSE >= 1) {
3001     movflt(dst, xmm0);
3002   } else {
3003     LP64_ONLY(ShouldNotReachHere());
3004     NOT_LP64(fstp_s(dst));
3005   }
3006 }
3007 
3008 void MacroAssembler::load_double(Address src) {
3009   if (UseSSE >= 2) {
3010     movdbl(xmm0, src);
3011   } else {
3012     LP64_ONLY(ShouldNotReachHere());
3013     NOT_LP64(fld_d(src));
3014   }
3015 }
3016 
3017 void MacroAssembler::store_double(Address dst) {
3018   if (UseSSE >= 2) {
3019     movdbl(dst, xmm0);
3020   } else {
3021     LP64_ONLY(ShouldNotReachHere());
3022     NOT_LP64(fstp_d(dst));
3023   }
3024 }
3025 
3026 void MacroAssembler::fremr(Register tmp) {
3027   save_rax(tmp);
3028   { Label L;
3029     bind(L);
3030     fprem();
3031     fwait(); fnstsw_ax();
3032 #ifdef _LP64
3033     testl(rax, 0x400);
3034     jcc(Assembler::notEqual, L);
3035 #else
3036     sahf();
3037     jcc(Assembler::parity, L);
3038 #endif // _LP64
3039   }
3040   restore_rax(tmp);
3041   // Result is in ST0.
3042   // Note: fxch & fpop to get rid of ST1
3043   // (otherwise FPU stack could overflow eventually)
3044   fxch(1);
3045   fpop();
3046 }
3047 
3048 // dst = c = a * b + c
3049 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
3050   Assembler::vfmadd231sd(c, a, b);
3051   if (dst != c) {
3052     movdbl(dst, c);
3053   }
3054 }
3055 
3056 // dst = c = a * b + c
3057 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
3058   Assembler::vfmadd231ss(c, a, b);
3059   if (dst != c) {
3060     movflt(dst, c);
3061   }
3062 }
3063 
3064 // dst = c = a * b + c
3065 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
3066   Assembler::vfmadd231pd(c, a, b, vector_len);
3067   if (dst != c) {
3068     vmovdqu(dst, c);
3069   }
3070 }
3071 
3072 // dst = c = a * b + c
3073 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
3074   Assembler::vfmadd231ps(c, a, b, vector_len);
3075   if (dst != c) {
3076     vmovdqu(dst, c);
3077   }
3078 }
3079 
3080 // dst = c = a * b + c
3081 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
3082   Assembler::vfmadd231pd(c, a, b, vector_len);
3083   if (dst != c) {
3084     vmovdqu(dst, c);
3085   }
3086 }
3087 
3088 // dst = c = a * b + c
3089 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
3090   Assembler::vfmadd231ps(c, a, b, vector_len);
3091   if (dst != c) {
3092     vmovdqu(dst, c);
3093   }
3094 }
3095 
3096 void MacroAssembler::incrementl(AddressLiteral dst) {
3097   if (reachable(dst)) {
3098     incrementl(as_Address(dst));
3099   } else {
3100     lea(rscratch1, dst);
3101     incrementl(Address(rscratch1, 0));
3102   }
3103 }
3104 
3105 void MacroAssembler::incrementl(ArrayAddress dst) {
3106   incrementl(as_Address(dst));
3107 }
3108 
3109 void MacroAssembler::incrementl(Register reg, int value) {
3110   if (value == min_jint) {addl(reg, value) ; return; }
3111   if (value <  0) { decrementl(reg, -value); return; }
3112   if (value == 0) {                        ; return; }
3113   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3114   /* else */      { addl(reg, value)       ; return; }
3115 }
3116 
3117 void MacroAssembler::incrementl(Address dst, int value) {
3118   if (value == min_jint) {addl(dst, value) ; return; }
3119   if (value <  0) { decrementl(dst, -value); return; }
3120   if (value == 0) {                        ; return; }
3121   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3122   /* else */      { addl(dst, value)       ; return; }
3123 }
3124 
3125 void MacroAssembler::jump(AddressLiteral dst) {
3126   if (reachable(dst)) {
3127     jmp_literal(dst.target(), dst.rspec());
3128   } else {
3129     lea(rscratch1, dst);
3130     jmp(rscratch1);
3131   }
3132 }
3133 
3134 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3135   if (reachable(dst)) {
3136     InstructionMark im(this);
3137     relocate(dst.reloc());
3138     const int short_size = 2;
3139     const int long_size = 6;
3140     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3141     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3142       // 0111 tttn #8-bit disp
3143       emit_int8(0x70 | cc);
3144       emit_int8((offs - short_size) & 0xFF);
3145     } else {
3146       // 0000 1111 1000 tttn #32-bit disp
3147       emit_int8(0x0F);
3148       emit_int8((unsigned char)(0x80 | cc));
3149       emit_int32(offs - long_size);
3150     }
3151   } else {
3152 #ifdef ASSERT
3153     warning("reversing conditional branch");
3154 #endif /* ASSERT */
3155     Label skip;
3156     jccb(reverse[cc], skip);
3157     lea(rscratch1, dst);
3158     Assembler::jmp(rscratch1);
3159     bind(skip);
3160   }
3161 }
3162 
3163 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3164   if (reachable(src)) {
3165     Assembler::ldmxcsr(as_Address(src));
3166   } else {
3167     lea(rscratch1, src);
3168     Assembler::ldmxcsr(Address(rscratch1, 0));
3169   }
3170 }
3171 
3172 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3173   int off;
3174   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3175     off = offset();
3176     movsbl(dst, src); // movsxb
3177   } else {
3178     off = load_unsigned_byte(dst, src);
3179     shll(dst, 24);
3180     sarl(dst, 24);
3181   }
3182   return off;
3183 }
3184 
3185 // Note: load_signed_short used to be called load_signed_word.
3186 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3187 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3188 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3189 int MacroAssembler::load_signed_short(Register dst, Address src) {
3190   int off;
3191   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3192     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3193     // version but this is what 64bit has always done. This seems to imply
3194     // that users are only using 32bits worth.
3195     off = offset();
3196     movswl(dst, src); // movsxw
3197   } else {
3198     off = load_unsigned_short(dst, src);
3199     shll(dst, 16);
3200     sarl(dst, 16);
3201   }
3202   return off;
3203 }
3204 
3205 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3206   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3207   // and "3.9 Partial Register Penalties", p. 22).
3208   int off;
3209   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3210     off = offset();
3211     movzbl(dst, src); // movzxb
3212   } else {
3213     xorl(dst, dst);
3214     off = offset();
3215     movb(dst, src);
3216   }
3217   return off;
3218 }
3219 
3220 // Note: load_unsigned_short used to be called load_unsigned_word.
3221 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3222   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3223   // and "3.9 Partial Register Penalties", p. 22).
3224   int off;
3225   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3226     off = offset();
3227     movzwl(dst, src); // movzxw
3228   } else {
3229     xorl(dst, dst);
3230     off = offset();
3231     movw(dst, src);
3232   }
3233   return off;
3234 }
3235 
3236 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3237   switch (size_in_bytes) {
3238 #ifndef _LP64
3239   case  8:
3240     assert(dst2 != noreg, "second dest register required");
3241     movl(dst,  src);
3242     movl(dst2, src.plus_disp(BytesPerInt));
3243     break;
3244 #else
3245   case  8:  movq(dst, src); break;
3246 #endif
3247   case  4:  movl(dst, src); break;
3248   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3249   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3250   default:  ShouldNotReachHere();
3251   }
3252 }
3253 
3254 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3255   switch (size_in_bytes) {
3256 #ifndef _LP64
3257   case  8:
3258     assert(src2 != noreg, "second source register required");
3259     movl(dst,                        src);
3260     movl(dst.plus_disp(BytesPerInt), src2);
3261     break;
3262 #else
3263   case  8:  movq(dst, src); break;
3264 #endif
3265   case  4:  movl(dst, src); break;
3266   case  2:  movw(dst, src); break;
3267   case  1:  movb(dst, src); break;
3268   default:  ShouldNotReachHere();
3269   }
3270 }
3271 
3272 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3273   if (reachable(dst)) {
3274     movl(as_Address(dst), src);
3275   } else {
3276     lea(rscratch1, dst);
3277     movl(Address(rscratch1, 0), src);
3278   }
3279 }
3280 
3281 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3282   if (reachable(src)) {
3283     movl(dst, as_Address(src));
3284   } else {
3285     lea(rscratch1, src);
3286     movl(dst, Address(rscratch1, 0));
3287   }
3288 }
3289 
3290 // C++ bool manipulation
3291 
3292 void MacroAssembler::movbool(Register dst, Address src) {
3293   if(sizeof(bool) == 1)
3294     movb(dst, src);
3295   else if(sizeof(bool) == 2)
3296     movw(dst, src);
3297   else if(sizeof(bool) == 4)
3298     movl(dst, src);
3299   else
3300     // unsupported
3301     ShouldNotReachHere();
3302 }
3303 
3304 void MacroAssembler::movbool(Address dst, bool boolconst) {
3305   if(sizeof(bool) == 1)
3306     movb(dst, (int) boolconst);
3307   else if(sizeof(bool) == 2)
3308     movw(dst, (int) boolconst);
3309   else if(sizeof(bool) == 4)
3310     movl(dst, (int) boolconst);
3311   else
3312     // unsupported
3313     ShouldNotReachHere();
3314 }
3315 
3316 void MacroAssembler::movbool(Address dst, Register src) {
3317   if(sizeof(bool) == 1)
3318     movb(dst, src);
3319   else if(sizeof(bool) == 2)
3320     movw(dst, src);
3321   else if(sizeof(bool) == 4)
3322     movl(dst, src);
3323   else
3324     // unsupported
3325     ShouldNotReachHere();
3326 }
3327 
3328 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3329   movb(as_Address(dst), src);
3330 }
3331 
3332 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3333   if (reachable(src)) {
3334     movdl(dst, as_Address(src));
3335   } else {
3336     lea(rscratch1, src);
3337     movdl(dst, Address(rscratch1, 0));
3338   }
3339 }
3340 
3341 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3342   if (reachable(src)) {
3343     movq(dst, as_Address(src));
3344   } else {
3345     lea(rscratch1, src);
3346     movq(dst, Address(rscratch1, 0));
3347   }
3348 }
3349 
3350 #ifdef COMPILER2
3351 void MacroAssembler::setvectmask(Register dst, Register src) {
3352   guarantee(PostLoopMultiversioning, "must be");
3353   Assembler::movl(dst, 1);
3354   Assembler::shlxl(dst, dst, src);
3355   Assembler::decl(dst);
3356   Assembler::kmovdl(k1, dst);
3357   Assembler::movl(dst, src);
3358 }
3359 
3360 void MacroAssembler::restorevectmask() {
3361   guarantee(PostLoopMultiversioning, "must be");
3362   Assembler::knotwl(k1, k0);
3363 }
3364 #endif // COMPILER2
3365 
3366 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3367   if (reachable(src)) {
3368     if (UseXmmLoadAndClearUpper) {
3369       movsd (dst, as_Address(src));
3370     } else {
3371       movlpd(dst, as_Address(src));
3372     }
3373   } else {
3374     lea(rscratch1, src);
3375     if (UseXmmLoadAndClearUpper) {
3376       movsd (dst, Address(rscratch1, 0));
3377     } else {
3378       movlpd(dst, Address(rscratch1, 0));
3379     }
3380   }
3381 }
3382 
3383 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3384   if (reachable(src)) {
3385     movss(dst, as_Address(src));
3386   } else {
3387     lea(rscratch1, src);
3388     movss(dst, Address(rscratch1, 0));
3389   }
3390 }
3391 
3392 void MacroAssembler::movptr(Register dst, Register src) {
3393   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3394 }
3395 
3396 void MacroAssembler::movptr(Register dst, Address src) {
3397   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3398 }
3399 
3400 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3401 void MacroAssembler::movptr(Register dst, intptr_t src) {
3402   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3403 }
3404 
3405 void MacroAssembler::movptr(Address dst, Register src) {
3406   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3407 }
3408 
3409 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
3410     assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3411     Assembler::movdqu(dst, src);
3412 }
3413 
3414 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
3415     assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3416     Assembler::movdqu(dst, src);
3417 }
3418 
3419 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
3420     assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3421     Assembler::movdqu(dst, src);
3422 }
3423 
3424 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg) {
3425   if (reachable(src)) {
3426     movdqu(dst, as_Address(src));
3427   } else {
3428     lea(scratchReg, src);
3429     movdqu(dst, Address(scratchReg, 0));
3430   }
3431 }
3432 
3433 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
3434     assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3435     Assembler::vmovdqu(dst, src);
3436 }
3437 
3438 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
3439     assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3440     Assembler::vmovdqu(dst, src);
3441 }
3442 
3443 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
3444     assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3445     Assembler::vmovdqu(dst, src);
3446 }
3447 
3448 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
3449   if (reachable(src)) {
3450     vmovdqu(dst, as_Address(src));
3451   }
3452   else {
3453     lea(scratch_reg, src);
3454     vmovdqu(dst, Address(scratch_reg, 0));
3455   }
3456 }
3457 
3458 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
3459   if (reachable(src)) {
3460     Assembler::evmovdquq(dst, as_Address(src), vector_len);
3461   } else {
3462     lea(rscratch, src);
3463     Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len);
3464   }
3465 }
3466 
3467 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3468   if (reachable(src)) {
3469     Assembler::movdqa(dst, as_Address(src));
3470   } else {
3471     lea(rscratch1, src);
3472     Assembler::movdqa(dst, Address(rscratch1, 0));
3473   }
3474 }
3475 
3476 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3477   if (reachable(src)) {
3478     Assembler::movsd(dst, as_Address(src));
3479   } else {
3480     lea(rscratch1, src);
3481     Assembler::movsd(dst, Address(rscratch1, 0));
3482   }
3483 }
3484 
3485 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3486   if (reachable(src)) {
3487     Assembler::movss(dst, as_Address(src));
3488   } else {
3489     lea(rscratch1, src);
3490     Assembler::movss(dst, Address(rscratch1, 0));
3491   }
3492 }
3493 
3494 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3495   if (reachable(src)) {
3496     Assembler::mulsd(dst, as_Address(src));
3497   } else {
3498     lea(rscratch1, src);
3499     Assembler::mulsd(dst, Address(rscratch1, 0));
3500   }
3501 }
3502 
3503 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3504   if (reachable(src)) {
3505     Assembler::mulss(dst, as_Address(src));
3506   } else {
3507     lea(rscratch1, src);
3508     Assembler::mulss(dst, Address(rscratch1, 0));
3509   }
3510 }
3511 
3512 void MacroAssembler::null_check(Register reg, int offset) {
3513   if (needs_explicit_null_check(offset)) {
3514     // provoke OS NULL exception if reg = NULL by
3515     // accessing M[reg] w/o changing any (non-CC) registers
3516     // NOTE: cmpl is plenty here to provoke a segv
3517     cmpptr(rax, Address(reg, 0));
3518     // Note: should probably use testl(rax, Address(reg, 0));
3519     //       may be shorter code (however, this version of
3520     //       testl needs to be implemented first)
3521   } else {
3522     // nothing to do, (later) access of M[reg + offset]
3523     // will provoke OS NULL exception if reg = NULL
3524   }
3525 }
3526 
3527 void MacroAssembler::os_breakpoint() {
3528   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3529   // (e.g., MSVC can't call ps() otherwise)
3530   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3531 }
3532 
3533 void MacroAssembler::unimplemented(const char* what) {
3534   const char* buf = NULL;
3535   {
3536     ResourceMark rm;
3537     stringStream ss;
3538     ss.print("unimplemented: %s", what);
3539     buf = code_string(ss.as_string());
3540   }
3541   stop(buf);
3542 }
3543 
3544 #ifdef _LP64
3545 #define XSTATE_BV 0x200
3546 #endif
3547 
3548 void MacroAssembler::pop_CPU_state() {
3549   pop_FPU_state();
3550   pop_IU_state();
3551 }
3552 
3553 void MacroAssembler::pop_FPU_state() {
3554 #ifndef _LP64
3555   frstor(Address(rsp, 0));
3556 #else
3557   fxrstor(Address(rsp, 0));
3558 #endif
3559   addptr(rsp, FPUStateSizeInWords * wordSize);
3560 }
3561 
3562 void MacroAssembler::pop_IU_state() {
3563   popa();
3564   LP64_ONLY(addq(rsp, 8));
3565   popf();
3566 }
3567 
3568 // Save Integer and Float state
3569 // Warning: Stack must be 16 byte aligned (64bit)
3570 void MacroAssembler::push_CPU_state() {
3571   push_IU_state();
3572   push_FPU_state();
3573 }
3574 
3575 void MacroAssembler::push_FPU_state() {
3576   subptr(rsp, FPUStateSizeInWords * wordSize);
3577 #ifndef _LP64
3578   fnsave(Address(rsp, 0));
3579   fwait();
3580 #else
3581   fxsave(Address(rsp, 0));
3582 #endif // LP64
3583 }
3584 
3585 void MacroAssembler::push_IU_state() {
3586   // Push flags first because pusha kills them
3587   pushf();
3588   // Make sure rsp stays 16-byte aligned
3589   LP64_ONLY(subq(rsp, 8));
3590   pusha();
3591 }
3592 
3593 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
3594   if (!java_thread->is_valid()) {
3595     java_thread = rdi;
3596     get_thread(java_thread);
3597   }
3598   // we must set sp to zero to clear frame
3599   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3600   if (clear_fp) {
3601     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3602   }
3603 
3604   // Always clear the pc because it could have been set by make_walkable()
3605   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3606 
3607   vzeroupper();
3608 }
3609 
3610 void MacroAssembler::restore_rax(Register tmp) {
3611   if (tmp == noreg) pop(rax);
3612   else if (tmp != rax) mov(rax, tmp);
3613 }
3614 
3615 void MacroAssembler::round_to(Register reg, int modulus) {
3616   addptr(reg, modulus - 1);
3617   andptr(reg, -modulus);
3618 }
3619 
3620 void MacroAssembler::save_rax(Register tmp) {
3621   if (tmp == noreg) push(rax);
3622   else if (tmp != rax) mov(tmp, rax);
3623 }
3624 
3625 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg) {
3626   if (SafepointMechanism::uses_thread_local_poll()) {
3627 #ifdef _LP64
3628     assert(thread_reg == r15_thread, "should be");
3629 #else
3630     if (thread_reg == noreg) {
3631       thread_reg = temp_reg;
3632       get_thread(thread_reg);
3633     }
3634 #endif
3635     testb(Address(thread_reg, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
3636     jcc(Assembler::notZero, slow_path); // handshake bit set implies poll
3637   } else {
3638     cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
3639         SafepointSynchronize::_not_synchronized);
3640     jcc(Assembler::notEqual, slow_path);
3641   }
3642 }
3643 
3644 // Calls to C land
3645 //
3646 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3647 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3648 // has to be reset to 0. This is required to allow proper stack traversal.
3649 void MacroAssembler::set_last_Java_frame(Register java_thread,
3650                                          Register last_java_sp,
3651                                          Register last_java_fp,
3652                                          address  last_java_pc) {
3653   vzeroupper();
3654   // determine java_thread register
3655   if (!java_thread->is_valid()) {
3656     java_thread = rdi;
3657     get_thread(java_thread);
3658   }
3659   // determine last_java_sp register
3660   if (!last_java_sp->is_valid()) {
3661     last_java_sp = rsp;
3662   }
3663 
3664   // last_java_fp is optional
3665 
3666   if (last_java_fp->is_valid()) {
3667     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3668   }
3669 
3670   // last_java_pc is optional
3671 
3672   if (last_java_pc != NULL) {
3673     lea(Address(java_thread,
3674                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3675         InternalAddress(last_java_pc));
3676 
3677   }
3678   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3679 }
3680 
3681 void MacroAssembler::shlptr(Register dst, int imm8) {
3682   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3683 }
3684 
3685 void MacroAssembler::shrptr(Register dst, int imm8) {
3686   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3687 }
3688 
3689 void MacroAssembler::sign_extend_byte(Register reg) {
3690   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3691     movsbl(reg, reg); // movsxb
3692   } else {
3693     shll(reg, 24);
3694     sarl(reg, 24);
3695   }
3696 }
3697 
3698 void MacroAssembler::sign_extend_short(Register reg) {
3699   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3700     movswl(reg, reg); // movsxw
3701   } else {
3702     shll(reg, 16);
3703     sarl(reg, 16);
3704   }
3705 }
3706 
3707 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3708   assert(reachable(src), "Address should be reachable");
3709   testl(dst, as_Address(src));
3710 }
3711 
3712 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3713   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3714   Assembler::pcmpeqb(dst, src);
3715 }
3716 
3717 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3718   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3719   Assembler::pcmpeqw(dst, src);
3720 }
3721 
3722 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3723   assert((dst->encoding() < 16),"XMM register should be 0-15");
3724   Assembler::pcmpestri(dst, src, imm8);
3725 }
3726 
3727 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3728   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
3729   Assembler::pcmpestri(dst, src, imm8);
3730 }
3731 
3732 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3733   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3734   Assembler::pmovzxbw(dst, src);
3735 }
3736 
3737 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
3738   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3739   Assembler::pmovzxbw(dst, src);
3740 }
3741 
3742 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
3743   assert((src->encoding() < 16),"XMM register should be 0-15");
3744   Assembler::pmovmskb(dst, src);
3745 }
3746 
3747 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
3748   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
3749   Assembler::ptest(dst, src);
3750 }
3751 
3752 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
3753   if (reachable(src)) {
3754     Assembler::sqrtsd(dst, as_Address(src));
3755   } else {
3756     lea(rscratch1, src);
3757     Assembler::sqrtsd(dst, Address(rscratch1, 0));
3758   }
3759 }
3760 
3761 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
3762   if (reachable(src)) {
3763     Assembler::sqrtss(dst, as_Address(src));
3764   } else {
3765     lea(rscratch1, src);
3766     Assembler::sqrtss(dst, Address(rscratch1, 0));
3767   }
3768 }
3769 
3770 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
3771   if (reachable(src)) {
3772     Assembler::subsd(dst, as_Address(src));
3773   } else {
3774     lea(rscratch1, src);
3775     Assembler::subsd(dst, Address(rscratch1, 0));
3776   }
3777 }
3778 
3779 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register scratch_reg) {
3780   if (reachable(src)) {
3781     Assembler::roundsd(dst, as_Address(src), rmode);
3782   } else {
3783     lea(scratch_reg, src);
3784     Assembler::roundsd(dst, Address(scratch_reg, 0), rmode);
3785   }
3786 }
3787 
3788 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
3789   if (reachable(src)) {
3790     Assembler::subss(dst, as_Address(src));
3791   } else {
3792     lea(rscratch1, src);
3793     Assembler::subss(dst, Address(rscratch1, 0));
3794   }
3795 }
3796 
3797 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
3798   if (reachable(src)) {
3799     Assembler::ucomisd(dst, as_Address(src));
3800   } else {
3801     lea(rscratch1, src);
3802     Assembler::ucomisd(dst, Address(rscratch1, 0));
3803   }
3804 }
3805 
3806 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
3807   if (reachable(src)) {
3808     Assembler::ucomiss(dst, as_Address(src));
3809   } else {
3810     lea(rscratch1, src);
3811     Assembler::ucomiss(dst, Address(rscratch1, 0));
3812   }
3813 }
3814 
3815 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
3816   // Used in sign-bit flipping with aligned address.
3817   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3818   if (reachable(src)) {
3819     Assembler::xorpd(dst, as_Address(src));
3820   } else {
3821     lea(scratch_reg, src);
3822     Assembler::xorpd(dst, Address(scratch_reg, 0));
3823   }
3824 }
3825 
3826 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
3827   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
3828     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
3829   }
3830   else {
3831     Assembler::xorpd(dst, src);
3832   }
3833 }
3834 
3835 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
3836   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
3837     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
3838   } else {
3839     Assembler::xorps(dst, src);
3840   }
3841 }
3842 
3843 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
3844   // Used in sign-bit flipping with aligned address.
3845   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3846   if (reachable(src)) {
3847     Assembler::xorps(dst, as_Address(src));
3848   } else {
3849     lea(scratch_reg, src);
3850     Assembler::xorps(dst, Address(scratch_reg, 0));
3851   }
3852 }
3853 
3854 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
3855   // Used in sign-bit flipping with aligned address.
3856   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
3857   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
3858   if (reachable(src)) {
3859     Assembler::pshufb(dst, as_Address(src));
3860   } else {
3861     lea(rscratch1, src);
3862     Assembler::pshufb(dst, Address(rscratch1, 0));
3863   }
3864 }
3865 
3866 // AVX 3-operands instructions
3867 
3868 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3869   if (reachable(src)) {
3870     vaddsd(dst, nds, as_Address(src));
3871   } else {
3872     lea(rscratch1, src);
3873     vaddsd(dst, nds, Address(rscratch1, 0));
3874   }
3875 }
3876 
3877 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3878   if (reachable(src)) {
3879     vaddss(dst, nds, as_Address(src));
3880   } else {
3881     lea(rscratch1, src);
3882     vaddss(dst, nds, Address(rscratch1, 0));
3883   }
3884 }
3885 
3886 void MacroAssembler::vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
3887   assert(UseAVX > 0, "requires some form of AVX");
3888   if (reachable(src)) {
3889     Assembler::vpaddd(dst, nds, as_Address(src), vector_len);
3890   } else {
3891     lea(rscratch, src);
3892     Assembler::vpaddd(dst, nds, Address(rscratch, 0), vector_len);
3893   }
3894 }
3895 
3896 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
3897   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
3898   vandps(dst, nds, negate_field, vector_len);
3899 }
3900 
3901 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
3902   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
3903   vandpd(dst, nds, negate_field, vector_len);
3904 }
3905 
3906 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3907   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3908   Assembler::vpaddb(dst, nds, src, vector_len);
3909 }
3910 
3911 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3912   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3913   Assembler::vpaddb(dst, nds, src, vector_len);
3914 }
3915 
3916 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3917   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3918   Assembler::vpaddw(dst, nds, src, vector_len);
3919 }
3920 
3921 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3922   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3923   Assembler::vpaddw(dst, nds, src, vector_len);
3924 }
3925 
3926 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
3927   if (reachable(src)) {
3928     Assembler::vpand(dst, nds, as_Address(src), vector_len);
3929   } else {
3930     lea(scratch_reg, src);
3931     Assembler::vpand(dst, nds, Address(scratch_reg, 0), vector_len);
3932   }
3933 }
3934 
3935 void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
3936   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3937   Assembler::vpbroadcastw(dst, src, vector_len);
3938 }
3939 
3940 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3941   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3942   Assembler::vpcmpeqb(dst, nds, src, vector_len);
3943 }
3944 
3945 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3946   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3947   Assembler::vpcmpeqw(dst, nds, src, vector_len);
3948 }
3949 
3950 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
3951   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3952   Assembler::vpmovzxbw(dst, src, vector_len);
3953 }
3954 
3955 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) {
3956   assert((src->encoding() < 16),"XMM register should be 0-15");
3957   Assembler::vpmovmskb(dst, src);
3958 }
3959 
3960 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3961   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3962   Assembler::vpmullw(dst, nds, src, vector_len);
3963 }
3964 
3965 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3966   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3967   Assembler::vpmullw(dst, nds, src, vector_len);
3968 }
3969 
3970 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3971   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3972   Assembler::vpsubb(dst, nds, src, vector_len);
3973 }
3974 
3975 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3976   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3977   Assembler::vpsubb(dst, nds, src, vector_len);
3978 }
3979 
3980 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3981   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3982   Assembler::vpsubw(dst, nds, src, vector_len);
3983 }
3984 
3985 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3986   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3987   Assembler::vpsubw(dst, nds, src, vector_len);
3988 }
3989 
3990 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3991   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3992   Assembler::vpsraw(dst, nds, shift, vector_len);
3993 }
3994 
3995 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3996   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3997   Assembler::vpsraw(dst, nds, shift, vector_len);
3998 }
3999 
4000 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4001   assert(UseAVX > 2,"");
4002   if (!VM_Version::supports_avx512vl() && vector_len < 2) {
4003      vector_len = 2;
4004   }
4005   Assembler::evpsraq(dst, nds, shift, vector_len);
4006 }
4007 
4008 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4009   assert(UseAVX > 2,"");
4010   if (!VM_Version::supports_avx512vl() && vector_len < 2) {
4011      vector_len = 2;
4012   }
4013   Assembler::evpsraq(dst, nds, shift, vector_len);
4014 }
4015 
4016 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4017   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
4018   Assembler::vpsrlw(dst, nds, shift, vector_len);
4019 }
4020 
4021 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4022   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
4023   Assembler::vpsrlw(dst, nds, shift, vector_len);
4024 }
4025 
4026 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4027   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
4028   Assembler::vpsllw(dst, nds, shift, vector_len);
4029 }
4030 
4031 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4032   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
4033   Assembler::vpsllw(dst, nds, shift, vector_len);
4034 }
4035 
4036 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
4037   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
4038   Assembler::vptest(dst, src);
4039 }
4040 
4041 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4042   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
4043   Assembler::punpcklbw(dst, src);
4044 }
4045 
4046 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) {
4047   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
4048   Assembler::pshufd(dst, src, mode);
4049 }
4050 
4051 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
4052   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
4053   Assembler::pshuflw(dst, src, mode);
4054 }
4055 
4056 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
4057   if (reachable(src)) {
4058     vandpd(dst, nds, as_Address(src), vector_len);
4059   } else {
4060     lea(scratch_reg, src);
4061     vandpd(dst, nds, Address(scratch_reg, 0), vector_len);
4062   }
4063 }
4064 
4065 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
4066   if (reachable(src)) {
4067     vandps(dst, nds, as_Address(src), vector_len);
4068   } else {
4069     lea(scratch_reg, src);
4070     vandps(dst, nds, Address(scratch_reg, 0), vector_len);
4071   }
4072 }
4073 
4074 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4075   if (reachable(src)) {
4076     vdivsd(dst, nds, as_Address(src));
4077   } else {
4078     lea(rscratch1, src);
4079     vdivsd(dst, nds, Address(rscratch1, 0));
4080   }
4081 }
4082 
4083 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4084   if (reachable(src)) {
4085     vdivss(dst, nds, as_Address(src));
4086   } else {
4087     lea(rscratch1, src);
4088     vdivss(dst, nds, Address(rscratch1, 0));
4089   }
4090 }
4091 
4092 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4093   if (reachable(src)) {
4094     vmulsd(dst, nds, as_Address(src));
4095   } else {
4096     lea(rscratch1, src);
4097     vmulsd(dst, nds, Address(rscratch1, 0));
4098   }
4099 }
4100 
4101 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4102   if (reachable(src)) {
4103     vmulss(dst, nds, as_Address(src));
4104   } else {
4105     lea(rscratch1, src);
4106     vmulss(dst, nds, Address(rscratch1, 0));
4107   }
4108 }
4109 
4110 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4111   if (reachable(src)) {
4112     vsubsd(dst, nds, as_Address(src));
4113   } else {
4114     lea(rscratch1, src);
4115     vsubsd(dst, nds, Address(rscratch1, 0));
4116   }
4117 }
4118 
4119 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4120   if (reachable(src)) {
4121     vsubss(dst, nds, as_Address(src));
4122   } else {
4123     lea(rscratch1, src);
4124     vsubss(dst, nds, Address(rscratch1, 0));
4125   }
4126 }
4127 
4128 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4129   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
4130   vxorps(dst, nds, src, Assembler::AVX_128bit);
4131 }
4132 
4133 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4134   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
4135   vxorpd(dst, nds, src, Assembler::AVX_128bit);
4136 }
4137 
4138 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
4139   if (reachable(src)) {
4140     vxorpd(dst, nds, as_Address(src), vector_len);
4141   } else {
4142     lea(scratch_reg, src);
4143     vxorpd(dst, nds, Address(scratch_reg, 0), vector_len);
4144   }
4145 }
4146 
4147 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
4148   if (reachable(src)) {
4149     vxorps(dst, nds, as_Address(src), vector_len);
4150   } else {
4151     lea(scratch_reg, src);
4152     vxorps(dst, nds, Address(scratch_reg, 0), vector_len);
4153   }
4154 }
4155 
4156 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
4157   if (UseAVX > 1 || (vector_len < 1)) {
4158     if (reachable(src)) {
4159       Assembler::vpxor(dst, nds, as_Address(src), vector_len);
4160     } else {
4161       lea(scratch_reg, src);
4162       Assembler::vpxor(dst, nds, Address(scratch_reg, 0), vector_len);
4163     }
4164   }
4165   else {
4166     MacroAssembler::vxorpd(dst, nds, src, vector_len, scratch_reg);
4167   }
4168 }
4169 
4170 //-------------------------------------------------------------------------------------------
4171 #ifdef COMPILER2
4172 // Generic instructions support for use in .ad files C2 code generation
4173 
4174 void MacroAssembler::vabsnegd(int opcode, XMMRegister dst, Register scr) {
4175   if (opcode == Op_AbsVD) {
4176     andpd(dst, ExternalAddress(StubRoutines::x86::vector_double_sign_mask()), scr);
4177   } else {
4178     assert((opcode == Op_NegVD),"opcode should be Op_NegD");
4179     xorpd(dst, ExternalAddress(StubRoutines::x86::vector_double_sign_flip()), scr);
4180   }
4181 }
4182 
4183 void MacroAssembler::vabsnegd(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr) {
4184   if (opcode == Op_AbsVD) {
4185     vandpd(dst, src, ExternalAddress(StubRoutines::x86::vector_double_sign_mask()), vector_len, scr);
4186   } else {
4187     assert((opcode == Op_NegVD),"opcode should be Op_NegD");
4188     vxorpd(dst, src, ExternalAddress(StubRoutines::x86::vector_double_sign_flip()), vector_len, scr);
4189   }
4190 }
4191 
4192 void MacroAssembler::vabsnegf(int opcode, XMMRegister dst, Register scr) {
4193   if (opcode == Op_AbsVF) {
4194     andps(dst, ExternalAddress(StubRoutines::x86::vector_float_sign_mask()), scr);
4195   } else {
4196     assert((opcode == Op_NegVF),"opcode should be Op_NegF");
4197     xorps(dst, ExternalAddress(StubRoutines::x86::vector_float_sign_flip()), scr);
4198   }
4199 }
4200 
4201 void MacroAssembler::vabsnegf(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr) {
4202   if (opcode == Op_AbsVF) {
4203     vandps(dst, src, ExternalAddress(StubRoutines::x86::vector_float_sign_mask()), vector_len, scr);
4204   } else {
4205     assert((opcode == Op_NegVF),"opcode should be Op_NegF");
4206     vxorps(dst, src, ExternalAddress(StubRoutines::x86::vector_float_sign_flip()), vector_len, scr);
4207   }
4208 }
4209 
4210 void MacroAssembler::vextendbw(bool sign, XMMRegister dst, XMMRegister src) {
4211   if (sign) {
4212     pmovsxbw(dst, src);
4213   } else {
4214     pmovzxbw(dst, src);
4215   }
4216 }
4217 
4218 void MacroAssembler::vextendbw(bool sign, XMMRegister dst, XMMRegister src, int vector_len) {
4219   if (sign) {
4220     vpmovsxbw(dst, src, vector_len);
4221   } else {
4222     vpmovzxbw(dst, src, vector_len);
4223   }
4224 }
4225 
4226 void MacroAssembler::vshiftd(int opcode, XMMRegister dst, XMMRegister src) {
4227   if (opcode == Op_RShiftVI) {
4228     psrad(dst, src);
4229   } else if (opcode == Op_LShiftVI) {
4230     pslld(dst, src);
4231   } else {
4232     assert((opcode == Op_URShiftVI),"opcode should be Op_URShiftVI");
4233     psrld(dst, src);
4234   }
4235 }
4236 
4237 void MacroAssembler::vshiftd(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4238   if (opcode == Op_RShiftVI) {
4239     vpsrad(dst, nds, src, vector_len);
4240   } else if (opcode == Op_LShiftVI) {
4241     vpslld(dst, nds, src, vector_len);
4242   } else {
4243     assert((opcode == Op_URShiftVI),"opcode should be Op_URShiftVI");
4244     vpsrld(dst, nds, src, vector_len);
4245   }
4246 }
4247 
4248 void MacroAssembler::vshiftw(int opcode, XMMRegister dst, XMMRegister src) {
4249   if ((opcode == Op_RShiftVS) || (opcode == Op_RShiftVB)) {
4250     psraw(dst, src);
4251   } else if ((opcode == Op_LShiftVS) || (opcode == Op_LShiftVB)) {
4252     psllw(dst, src);
4253   } else {
4254     assert(((opcode == Op_URShiftVS) || (opcode == Op_URShiftVB)),"opcode should be one of Op_URShiftVS or Op_URShiftVB");
4255     psrlw(dst, src);
4256   }
4257 }
4258 
4259 void MacroAssembler::vshiftw(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4260   if ((opcode == Op_RShiftVS) || (opcode == Op_RShiftVB)) {
4261     vpsraw(dst, nds, src, vector_len);
4262   } else if ((opcode == Op_LShiftVS) || (opcode == Op_LShiftVB)) {
4263     vpsllw(dst, nds, src, vector_len);
4264   } else {
4265     assert(((opcode == Op_URShiftVS) || (opcode == Op_URShiftVB)),"opcode should be one of Op_URShiftVS or Op_URShiftVB");
4266     vpsrlw(dst, nds, src, vector_len);
4267   }
4268 }
4269 
4270 void MacroAssembler::vshiftq(int opcode, XMMRegister dst, XMMRegister src) {
4271   if (opcode == Op_RShiftVL) {
4272     psrlq(dst, src);  // using srl to implement sra on pre-avs512 systems
4273   } else if (opcode == Op_LShiftVL) {
4274     psllq(dst, src);
4275   } else {
4276     assert((opcode == Op_URShiftVL),"opcode should be Op_URShiftVL");
4277     psrlq(dst, src);
4278   }
4279 }
4280 
4281 void MacroAssembler::vshiftq(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4282   if (opcode == Op_RShiftVL) {
4283     evpsraq(dst, nds, src, vector_len);
4284   } else if (opcode == Op_LShiftVL) {
4285     vpsllq(dst, nds, src, vector_len);
4286   } else {
4287     assert((opcode == Op_URShiftVL),"opcode should be Op_URShiftVL");
4288     vpsrlq(dst, nds, src, vector_len);
4289   }
4290 }
4291 #endif
4292 //-------------------------------------------------------------------------------------------
4293 
4294 void MacroAssembler::clear_jweak_tag(Register possibly_jweak) {
4295   const int32_t inverted_jweak_mask = ~static_cast<int32_t>(JNIHandles::weak_tag_mask);
4296   STATIC_ASSERT(inverted_jweak_mask == -2); // otherwise check this code
4297   // The inverted mask is sign-extended
4298   andptr(possibly_jweak, inverted_jweak_mask);
4299 }
4300 
4301 void MacroAssembler::resolve_jobject(Register value,
4302                                      Register thread,
4303                                      Register tmp) {
4304   assert_different_registers(value, thread, tmp);
4305   Label done, not_weak;
4306   testptr(value, value);
4307   jcc(Assembler::zero, done);                // Use NULL as-is.
4308   testptr(value, JNIHandles::weak_tag_mask); // Test for jweak tag.
4309   jcc(Assembler::zero, not_weak);
4310   // Resolve jweak.
4311   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
4312                  value, Address(value, -JNIHandles::weak_tag_value), tmp, thread);
4313   verify_oop(value);
4314   jmp(done);
4315   bind(not_weak);
4316   // Resolve (untagged) jobject.
4317   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, 0), tmp, thread);
4318   verify_oop(value);
4319   bind(done);
4320 }
4321 
4322 void MacroAssembler::subptr(Register dst, int32_t imm32) {
4323   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
4324 }
4325 
4326 // Force generation of a 4 byte immediate value even if it fits into 8bit
4327 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
4328   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
4329 }
4330 
4331 void MacroAssembler::subptr(Register dst, Register src) {
4332   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
4333 }
4334 
4335 // C++ bool manipulation
4336 void MacroAssembler::testbool(Register dst) {
4337   if(sizeof(bool) == 1)
4338     testb(dst, 0xff);
4339   else if(sizeof(bool) == 2) {
4340     // testw implementation needed for two byte bools
4341     ShouldNotReachHere();
4342   } else if(sizeof(bool) == 4)
4343     testl(dst, dst);
4344   else
4345     // unsupported
4346     ShouldNotReachHere();
4347 }
4348 
4349 void MacroAssembler::testptr(Register dst, Register src) {
4350   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
4351 }
4352 
4353 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
4354 void MacroAssembler::tlab_allocate(Register thread, Register obj,
4355                                    Register var_size_in_bytes,
4356                                    int con_size_in_bytes,
4357                                    Register t1,
4358                                    Register t2,
4359                                    Label& slow_case) {
4360   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
4361   bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
4362 }
4363 
4364 // Defines obj, preserves var_size_in_bytes
4365 void MacroAssembler::eden_allocate(Register thread, Register obj,
4366                                    Register var_size_in_bytes,
4367                                    int con_size_in_bytes,
4368                                    Register t1,
4369                                    Label& slow_case) {
4370   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
4371   bs->eden_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case);
4372 }
4373 
4374 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
4375 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
4376   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
4377   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
4378   Label done;
4379 
4380   testptr(length_in_bytes, length_in_bytes);
4381   jcc(Assembler::zero, done);
4382 
4383   // initialize topmost word, divide index by 2, check if odd and test if zero
4384   // note: for the remaining code to work, index must be a multiple of BytesPerWord
4385 #ifdef ASSERT
4386   {
4387     Label L;
4388     testptr(length_in_bytes, BytesPerWord - 1);
4389     jcc(Assembler::zero, L);
4390     stop("length must be a multiple of BytesPerWord");
4391     bind(L);
4392   }
4393 #endif
4394   Register index = length_in_bytes;
4395   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
4396   if (UseIncDec) {
4397     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
4398   } else {
4399     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
4400     shrptr(index, 1);
4401   }
4402 #ifndef _LP64
4403   // index could have not been a multiple of 8 (i.e., bit 2 was set)
4404   {
4405     Label even;
4406     // note: if index was a multiple of 8, then it cannot
4407     //       be 0 now otherwise it must have been 0 before
4408     //       => if it is even, we don't need to check for 0 again
4409     jcc(Assembler::carryClear, even);
4410     // clear topmost word (no jump would be needed if conditional assignment worked here)
4411     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
4412     // index could be 0 now, must check again
4413     jcc(Assembler::zero, done);
4414     bind(even);
4415   }
4416 #endif // !_LP64
4417   // initialize remaining object fields: index is a multiple of 2 now
4418   {
4419     Label loop;
4420     bind(loop);
4421     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
4422     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
4423     decrement(index);
4424     jcc(Assembler::notZero, loop);
4425   }
4426 
4427   bind(done);
4428 }
4429 
4430 // Look up the method for a megamorphic invokeinterface call.
4431 // The target method is determined by <intf_klass, itable_index>.
4432 // The receiver klass is in recv_klass.
4433 // On success, the result will be in method_result, and execution falls through.
4434 // On failure, execution transfers to the given label.
4435 void MacroAssembler::lookup_interface_method(Register recv_klass,
4436                                              Register intf_klass,
4437                                              RegisterOrConstant itable_index,
4438                                              Register method_result,
4439                                              Register scan_temp,
4440                                              Label& L_no_such_interface,
4441                                              bool return_method) {
4442   assert_different_registers(recv_klass, intf_klass, scan_temp);
4443   assert_different_registers(method_result, intf_klass, scan_temp);
4444   assert(recv_klass != method_result || !return_method,
4445          "recv_klass can be destroyed when method isn't needed");
4446 
4447   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
4448          "caller must use same register for non-constant itable index as for method");
4449 
4450   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
4451   int vtable_base = in_bytes(Klass::vtable_start_offset());
4452   int itentry_off = itableMethodEntry::method_offset_in_bytes();
4453   int scan_step   = itableOffsetEntry::size() * wordSize;
4454   int vte_size    = vtableEntry::size_in_bytes();
4455   Address::ScaleFactor times_vte_scale = Address::times_ptr;
4456   assert(vte_size == wordSize, "else adjust times_vte_scale");
4457 
4458   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
4459 
4460   // %%% Could store the aligned, prescaled offset in the klassoop.
4461   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
4462 
4463   if (return_method) {
4464     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
4465     assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
4466     lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
4467   }
4468 
4469   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
4470   //   if (scan->interface() == intf) {
4471   //     result = (klass + scan->offset() + itable_index);
4472   //   }
4473   // }
4474   Label search, found_method;
4475 
4476   for (int peel = 1; peel >= 0; peel--) {
4477     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
4478     cmpptr(intf_klass, method_result);
4479 
4480     if (peel) {
4481       jccb(Assembler::equal, found_method);
4482     } else {
4483       jccb(Assembler::notEqual, search);
4484       // (invert the test to fall through to found_method...)
4485     }
4486 
4487     if (!peel)  break;
4488 
4489     bind(search);
4490 
4491     // Check that the previous entry is non-null.  A null entry means that
4492     // the receiver class doesn't implement the interface, and wasn't the
4493     // same as when the caller was compiled.
4494     testptr(method_result, method_result);
4495     jcc(Assembler::zero, L_no_such_interface);
4496     addptr(scan_temp, scan_step);
4497   }
4498 
4499   bind(found_method);
4500 
4501   if (return_method) {
4502     // Got a hit.
4503     movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
4504     movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
4505   }
4506 }
4507 
4508 
4509 // virtual method calling
4510 void MacroAssembler::lookup_virtual_method(Register recv_klass,
4511                                            RegisterOrConstant vtable_index,
4512                                            Register method_result) {
4513   const int base = in_bytes(Klass::vtable_start_offset());
4514   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
4515   Address vtable_entry_addr(recv_klass,
4516                             vtable_index, Address::times_ptr,
4517                             base + vtableEntry::method_offset_in_bytes());
4518   movptr(method_result, vtable_entry_addr);
4519 }
4520 
4521 
4522 void MacroAssembler::check_klass_subtype(Register sub_klass,
4523                            Register super_klass,
4524                            Register temp_reg,
4525                            Label& L_success) {
4526   Label L_failure;
4527   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
4528   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
4529   bind(L_failure);
4530 }
4531 
4532 
4533 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
4534                                                    Register super_klass,
4535                                                    Register temp_reg,
4536                                                    Label* L_success,
4537                                                    Label* L_failure,
4538                                                    Label* L_slow_path,
4539                                         RegisterOrConstant super_check_offset) {
4540   assert_different_registers(sub_klass, super_klass, temp_reg);
4541   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
4542   if (super_check_offset.is_register()) {
4543     assert_different_registers(sub_klass, super_klass,
4544                                super_check_offset.as_register());
4545   } else if (must_load_sco) {
4546     assert(temp_reg != noreg, "supply either a temp or a register offset");
4547   }
4548 
4549   Label L_fallthrough;
4550   int label_nulls = 0;
4551   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4552   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4553   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
4554   assert(label_nulls <= 1, "at most one NULL in the batch");
4555 
4556   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4557   int sco_offset = in_bytes(Klass::super_check_offset_offset());
4558   Address super_check_offset_addr(super_klass, sco_offset);
4559 
4560   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
4561   // range of a jccb.  If this routine grows larger, reconsider at
4562   // least some of these.
4563 #define local_jcc(assembler_cond, label)                                \
4564   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
4565   else                             jcc( assembler_cond, label) /*omit semi*/
4566 
4567   // Hacked jmp, which may only be used just before L_fallthrough.
4568 #define final_jmp(label)                                                \
4569   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
4570   else                            jmp(label)                /*omit semi*/
4571 
4572   // If the pointers are equal, we are done (e.g., String[] elements).
4573   // This self-check enables sharing of secondary supertype arrays among
4574   // non-primary types such as array-of-interface.  Otherwise, each such
4575   // type would need its own customized SSA.
4576   // We move this check to the front of the fast path because many
4577   // type checks are in fact trivially successful in this manner,
4578   // so we get a nicely predicted branch right at the start of the check.
4579   cmpptr(sub_klass, super_klass);
4580   local_jcc(Assembler::equal, *L_success);
4581 
4582   // Check the supertype display:
4583   if (must_load_sco) {
4584     // Positive movl does right thing on LP64.
4585     movl(temp_reg, super_check_offset_addr);
4586     super_check_offset = RegisterOrConstant(temp_reg);
4587   }
4588   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
4589   cmpptr(super_klass, super_check_addr); // load displayed supertype
4590 
4591   // This check has worked decisively for primary supers.
4592   // Secondary supers are sought in the super_cache ('super_cache_addr').
4593   // (Secondary supers are interfaces and very deeply nested subtypes.)
4594   // This works in the same check above because of a tricky aliasing
4595   // between the super_cache and the primary super display elements.
4596   // (The 'super_check_addr' can address either, as the case requires.)
4597   // Note that the cache is updated below if it does not help us find
4598   // what we need immediately.
4599   // So if it was a primary super, we can just fail immediately.
4600   // Otherwise, it's the slow path for us (no success at this point).
4601 
4602   if (super_check_offset.is_register()) {
4603     local_jcc(Assembler::equal, *L_success);
4604     cmpl(super_check_offset.as_register(), sc_offset);
4605     if (L_failure == &L_fallthrough) {
4606       local_jcc(Assembler::equal, *L_slow_path);
4607     } else {
4608       local_jcc(Assembler::notEqual, *L_failure);
4609       final_jmp(*L_slow_path);
4610     }
4611   } else if (super_check_offset.as_constant() == sc_offset) {
4612     // Need a slow path; fast failure is impossible.
4613     if (L_slow_path == &L_fallthrough) {
4614       local_jcc(Assembler::equal, *L_success);
4615     } else {
4616       local_jcc(Assembler::notEqual, *L_slow_path);
4617       final_jmp(*L_success);
4618     }
4619   } else {
4620     // No slow path; it's a fast decision.
4621     if (L_failure == &L_fallthrough) {
4622       local_jcc(Assembler::equal, *L_success);
4623     } else {
4624       local_jcc(Assembler::notEqual, *L_failure);
4625       final_jmp(*L_success);
4626     }
4627   }
4628 
4629   bind(L_fallthrough);
4630 
4631 #undef local_jcc
4632 #undef final_jmp
4633 }
4634 
4635 
4636 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
4637                                                    Register super_klass,
4638                                                    Register temp_reg,
4639                                                    Register temp2_reg,
4640                                                    Label* L_success,
4641                                                    Label* L_failure,
4642                                                    bool set_cond_codes) {
4643   assert_different_registers(sub_klass, super_klass, temp_reg);
4644   if (temp2_reg != noreg)
4645     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
4646 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
4647 
4648   Label L_fallthrough;
4649   int label_nulls = 0;
4650   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4651   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4652   assert(label_nulls <= 1, "at most one NULL in the batch");
4653 
4654   // a couple of useful fields in sub_klass:
4655   int ss_offset = in_bytes(Klass::secondary_supers_offset());
4656   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4657   Address secondary_supers_addr(sub_klass, ss_offset);
4658   Address super_cache_addr(     sub_klass, sc_offset);
4659 
4660   // Do a linear scan of the secondary super-klass chain.
4661   // This code is rarely used, so simplicity is a virtue here.
4662   // The repne_scan instruction uses fixed registers, which we must spill.
4663   // Don't worry too much about pre-existing connections with the input regs.
4664 
4665   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
4666   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
4667 
4668   // Get super_klass value into rax (even if it was in rdi or rcx).
4669   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
4670   if (super_klass != rax || UseCompressedOops) {
4671     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
4672     mov(rax, super_klass);
4673   }
4674   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
4675   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
4676 
4677 #ifndef PRODUCT
4678   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
4679   ExternalAddress pst_counter_addr((address) pst_counter);
4680   NOT_LP64(  incrementl(pst_counter_addr) );
4681   LP64_ONLY( lea(rcx, pst_counter_addr) );
4682   LP64_ONLY( incrementl(Address(rcx, 0)) );
4683 #endif //PRODUCT
4684 
4685   // We will consult the secondary-super array.
4686   movptr(rdi, secondary_supers_addr);
4687   // Load the array length.  (Positive movl does right thing on LP64.)
4688   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
4689   // Skip to start of data.
4690   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
4691 
4692   // Scan RCX words at [RDI] for an occurrence of RAX.
4693   // Set NZ/Z based on last compare.
4694   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
4695   // not change flags (only scas instruction which is repeated sets flags).
4696   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
4697 
4698     testptr(rax,rax); // Set Z = 0
4699     repne_scan();
4700 
4701   // Unspill the temp. registers:
4702   if (pushed_rdi)  pop(rdi);
4703   if (pushed_rcx)  pop(rcx);
4704   if (pushed_rax)  pop(rax);
4705 
4706   if (set_cond_codes) {
4707     // Special hack for the AD files:  rdi is guaranteed non-zero.
4708     assert(!pushed_rdi, "rdi must be left non-NULL");
4709     // Also, the condition codes are properly set Z/NZ on succeed/failure.
4710   }
4711 
4712   if (L_failure == &L_fallthrough)
4713         jccb(Assembler::notEqual, *L_failure);
4714   else  jcc(Assembler::notEqual, *L_failure);
4715 
4716   // Success.  Cache the super we found and proceed in triumph.
4717   movptr(super_cache_addr, super_klass);
4718 
4719   if (L_success != &L_fallthrough) {
4720     jmp(*L_success);
4721   }
4722 
4723 #undef IS_A_TEMP
4724 
4725   bind(L_fallthrough);
4726 }
4727 
4728 void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) {
4729   assert(L_fast_path != NULL || L_slow_path != NULL, "at least one is required");
4730 
4731   Label L_fallthrough;
4732   if (L_fast_path == NULL) {
4733     L_fast_path = &L_fallthrough;
4734   } else if (L_slow_path == NULL) {
4735     L_slow_path = &L_fallthrough;
4736   }
4737 
4738   // Fast path check: class is fully initialized
4739   cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
4740   jcc(Assembler::equal, *L_fast_path);
4741 
4742   // Fast path check: current thread is initializer thread
4743   cmpptr(thread, Address(klass, InstanceKlass::init_thread_offset()));
4744   if (L_slow_path == &L_fallthrough) {
4745     jcc(Assembler::equal, *L_fast_path);
4746     bind(*L_slow_path);
4747   } else if (L_fast_path == &L_fallthrough) {
4748     jcc(Assembler::notEqual, *L_slow_path);
4749     bind(*L_fast_path);
4750   } else {
4751     Unimplemented();
4752   }
4753 }
4754 
4755 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
4756   if (VM_Version::supports_cmov()) {
4757     cmovl(cc, dst, src);
4758   } else {
4759     Label L;
4760     jccb(negate_condition(cc), L);
4761     movl(dst, src);
4762     bind(L);
4763   }
4764 }
4765 
4766 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
4767   if (VM_Version::supports_cmov()) {
4768     cmovl(cc, dst, src);
4769   } else {
4770     Label L;
4771     jccb(negate_condition(cc), L);
4772     movl(dst, src);
4773     bind(L);
4774   }
4775 }
4776 
4777 void MacroAssembler::verify_oop(Register reg, const char* s) {
4778   if (!VerifyOops) return;
4779 
4780   // Pass register number to verify_oop_subroutine
4781   const char* b = NULL;
4782   {
4783     ResourceMark rm;
4784     stringStream ss;
4785     ss.print("verify_oop: %s: %s", reg->name(), s);
4786     b = code_string(ss.as_string());
4787   }
4788   BLOCK_COMMENT("verify_oop {");
4789 #ifdef _LP64
4790   push(rscratch1);                    // save r10, trashed by movptr()
4791 #endif
4792   push(rax);                          // save rax,
4793   push(reg);                          // pass register argument
4794   ExternalAddress buffer((address) b);
4795   // avoid using pushptr, as it modifies scratch registers
4796   // and our contract is not to modify anything
4797   movptr(rax, buffer.addr());
4798   push(rax);
4799   // call indirectly to solve generation ordering problem
4800   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
4801   call(rax);
4802   // Caller pops the arguments (oop, message) and restores rax, r10
4803   BLOCK_COMMENT("} verify_oop");
4804 }
4805 
4806 
4807 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
4808                                                       Register tmp,
4809                                                       int offset) {
4810   intptr_t value = *delayed_value_addr;
4811   if (value != 0)
4812     return RegisterOrConstant(value + offset);
4813 
4814   // load indirectly to solve generation ordering problem
4815   movptr(tmp, ExternalAddress((address) delayed_value_addr));
4816 
4817 #ifdef ASSERT
4818   { Label L;
4819     testptr(tmp, tmp);
4820     if (WizardMode) {
4821       const char* buf = NULL;
4822       {
4823         ResourceMark rm;
4824         stringStream ss;
4825         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
4826         buf = code_string(ss.as_string());
4827       }
4828       jcc(Assembler::notZero, L);
4829       STOP(buf);
4830     } else {
4831       jccb(Assembler::notZero, L);
4832       hlt();
4833     }
4834     bind(L);
4835   }
4836 #endif
4837 
4838   if (offset != 0)
4839     addptr(tmp, offset);
4840 
4841   return RegisterOrConstant(tmp);
4842 }
4843 
4844 
4845 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
4846                                          int extra_slot_offset) {
4847   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
4848   int stackElementSize = Interpreter::stackElementSize;
4849   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
4850 #ifdef ASSERT
4851   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
4852   assert(offset1 - offset == stackElementSize, "correct arithmetic");
4853 #endif
4854   Register             scale_reg    = noreg;
4855   Address::ScaleFactor scale_factor = Address::no_scale;
4856   if (arg_slot.is_constant()) {
4857     offset += arg_slot.as_constant() * stackElementSize;
4858   } else {
4859     scale_reg    = arg_slot.as_register();
4860     scale_factor = Address::times(stackElementSize);
4861   }
4862   offset += wordSize;           // return PC is on stack
4863   return Address(rsp, scale_reg, scale_factor, offset);
4864 }
4865 
4866 
4867 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
4868   if (!VerifyOops) return;
4869 
4870   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
4871   // Pass register number to verify_oop_subroutine
4872   const char* b = NULL;
4873   {
4874     ResourceMark rm;
4875     stringStream ss;
4876     ss.print("verify_oop_addr: %s", s);
4877     b = code_string(ss.as_string());
4878   }
4879 #ifdef _LP64
4880   push(rscratch1);                    // save r10, trashed by movptr()
4881 #endif
4882   push(rax);                          // save rax,
4883   // addr may contain rsp so we will have to adjust it based on the push
4884   // we just did (and on 64 bit we do two pushes)
4885   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
4886   // stores rax into addr which is backwards of what was intended.
4887   if (addr.uses(rsp)) {
4888     lea(rax, addr);
4889     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
4890   } else {
4891     pushptr(addr);
4892   }
4893 
4894   ExternalAddress buffer((address) b);
4895   // pass msg argument
4896   // avoid using pushptr, as it modifies scratch registers
4897   // and our contract is not to modify anything
4898   movptr(rax, buffer.addr());
4899   push(rax);
4900 
4901   // call indirectly to solve generation ordering problem
4902   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
4903   call(rax);
4904   // Caller pops the arguments (addr, message) and restores rax, r10.
4905 }
4906 
4907 void MacroAssembler::verify_tlab() {
4908 #ifdef ASSERT
4909   if (UseTLAB && VerifyOops) {
4910     Label next, ok;
4911     Register t1 = rsi;
4912     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
4913 
4914     push(t1);
4915     NOT_LP64(push(thread_reg));
4916     NOT_LP64(get_thread(thread_reg));
4917 
4918     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4919     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
4920     jcc(Assembler::aboveEqual, next);
4921     STOP("assert(top >= start)");
4922     should_not_reach_here();
4923 
4924     bind(next);
4925     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
4926     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4927     jcc(Assembler::aboveEqual, ok);
4928     STOP("assert(top <= end)");
4929     should_not_reach_here();
4930 
4931     bind(ok);
4932     NOT_LP64(pop(thread_reg));
4933     pop(t1);
4934   }
4935 #endif
4936 }
4937 
4938 class ControlWord {
4939  public:
4940   int32_t _value;
4941 
4942   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
4943   int  precision_control() const       { return  (_value >>  8) & 3      ; }
4944   bool precision() const               { return ((_value >>  5) & 1) != 0; }
4945   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
4946   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
4947   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
4948   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
4949   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
4950 
4951   void print() const {
4952     // rounding control
4953     const char* rc;
4954     switch (rounding_control()) {
4955       case 0: rc = "round near"; break;
4956       case 1: rc = "round down"; break;
4957       case 2: rc = "round up  "; break;
4958       case 3: rc = "chop      "; break;
4959     };
4960     // precision control
4961     const char* pc;
4962     switch (precision_control()) {
4963       case 0: pc = "24 bits "; break;
4964       case 1: pc = "reserved"; break;
4965       case 2: pc = "53 bits "; break;
4966       case 3: pc = "64 bits "; break;
4967     };
4968     // flags
4969     char f[9];
4970     f[0] = ' ';
4971     f[1] = ' ';
4972     f[2] = (precision   ()) ? 'P' : 'p';
4973     f[3] = (underflow   ()) ? 'U' : 'u';
4974     f[4] = (overflow    ()) ? 'O' : 'o';
4975     f[5] = (zero_divide ()) ? 'Z' : 'z';
4976     f[6] = (denormalized()) ? 'D' : 'd';
4977     f[7] = (invalid     ()) ? 'I' : 'i';
4978     f[8] = '\x0';
4979     // output
4980     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
4981   }
4982 
4983 };
4984 
4985 class StatusWord {
4986  public:
4987   int32_t _value;
4988 
4989   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
4990   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
4991   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
4992   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
4993   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
4994   int  top() const                     { return  (_value >> 11) & 7      ; }
4995   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
4996   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
4997   bool precision() const               { return ((_value >>  5) & 1) != 0; }
4998   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
4999   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5000   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5001   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5002   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5003 
5004   void print() const {
5005     // condition codes
5006     char c[5];
5007     c[0] = (C3()) ? '3' : '-';
5008     c[1] = (C2()) ? '2' : '-';
5009     c[2] = (C1()) ? '1' : '-';
5010     c[3] = (C0()) ? '0' : '-';
5011     c[4] = '\x0';
5012     // flags
5013     char f[9];
5014     f[0] = (error_status()) ? 'E' : '-';
5015     f[1] = (stack_fault ()) ? 'S' : '-';
5016     f[2] = (precision   ()) ? 'P' : '-';
5017     f[3] = (underflow   ()) ? 'U' : '-';
5018     f[4] = (overflow    ()) ? 'O' : '-';
5019     f[5] = (zero_divide ()) ? 'Z' : '-';
5020     f[6] = (denormalized()) ? 'D' : '-';
5021     f[7] = (invalid     ()) ? 'I' : '-';
5022     f[8] = '\x0';
5023     // output
5024     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
5025   }
5026 
5027 };
5028 
5029 class TagWord {
5030  public:
5031   int32_t _value;
5032 
5033   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
5034 
5035   void print() const {
5036     printf("%04x", _value & 0xFFFF);
5037   }
5038 
5039 };
5040 
5041 class FPU_Register {
5042  public:
5043   int32_t _m0;
5044   int32_t _m1;
5045   int16_t _ex;
5046 
5047   bool is_indefinite() const           {
5048     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
5049   }
5050 
5051   void print() const {
5052     char  sign = (_ex < 0) ? '-' : '+';
5053     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
5054     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
5055   };
5056 
5057 };
5058 
5059 class FPU_State {
5060  public:
5061   enum {
5062     register_size       = 10,
5063     number_of_registers =  8,
5064     register_mask       =  7
5065   };
5066 
5067   ControlWord  _control_word;
5068   StatusWord   _status_word;
5069   TagWord      _tag_word;
5070   int32_t      _error_offset;
5071   int32_t      _error_selector;
5072   int32_t      _data_offset;
5073   int32_t      _data_selector;
5074   int8_t       _register[register_size * number_of_registers];
5075 
5076   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
5077   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
5078 
5079   const char* tag_as_string(int tag) const {
5080     switch (tag) {
5081       case 0: return "valid";
5082       case 1: return "zero";
5083       case 2: return "special";
5084       case 3: return "empty";
5085     }
5086     ShouldNotReachHere();
5087     return NULL;
5088   }
5089 
5090   void print() const {
5091     // print computation registers
5092     { int t = _status_word.top();
5093       for (int i = 0; i < number_of_registers; i++) {
5094         int j = (i - t) & register_mask;
5095         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
5096         st(j)->print();
5097         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
5098       }
5099     }
5100     printf("\n");
5101     // print control registers
5102     printf("ctrl = "); _control_word.print(); printf("\n");
5103     printf("stat = "); _status_word .print(); printf("\n");
5104     printf("tags = "); _tag_word    .print(); printf("\n");
5105   }
5106 
5107 };
5108 
5109 class Flag_Register {
5110  public:
5111   int32_t _value;
5112 
5113   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
5114   bool direction() const               { return ((_value >> 10) & 1) != 0; }
5115   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
5116   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
5117   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
5118   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
5119   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
5120 
5121   void print() const {
5122     // flags
5123     char f[8];
5124     f[0] = (overflow       ()) ? 'O' : '-';
5125     f[1] = (direction      ()) ? 'D' : '-';
5126     f[2] = (sign           ()) ? 'S' : '-';
5127     f[3] = (zero           ()) ? 'Z' : '-';
5128     f[4] = (auxiliary_carry()) ? 'A' : '-';
5129     f[5] = (parity         ()) ? 'P' : '-';
5130     f[6] = (carry          ()) ? 'C' : '-';
5131     f[7] = '\x0';
5132     // output
5133     printf("%08x  flags = %s", _value, f);
5134   }
5135 
5136 };
5137 
5138 class IU_Register {
5139  public:
5140   int32_t _value;
5141 
5142   void print() const {
5143     printf("%08x  %11d", _value, _value);
5144   }
5145 
5146 };
5147 
5148 class IU_State {
5149  public:
5150   Flag_Register _eflags;
5151   IU_Register   _rdi;
5152   IU_Register   _rsi;
5153   IU_Register   _rbp;
5154   IU_Register   _rsp;
5155   IU_Register   _rbx;
5156   IU_Register   _rdx;
5157   IU_Register   _rcx;
5158   IU_Register   _rax;
5159 
5160   void print() const {
5161     // computation registers
5162     printf("rax,  = "); _rax.print(); printf("\n");
5163     printf("rbx,  = "); _rbx.print(); printf("\n");
5164     printf("rcx  = "); _rcx.print(); printf("\n");
5165     printf("rdx  = "); _rdx.print(); printf("\n");
5166     printf("rdi  = "); _rdi.print(); printf("\n");
5167     printf("rsi  = "); _rsi.print(); printf("\n");
5168     printf("rbp,  = "); _rbp.print(); printf("\n");
5169     printf("rsp  = "); _rsp.print(); printf("\n");
5170     printf("\n");
5171     // control registers
5172     printf("flgs = "); _eflags.print(); printf("\n");
5173   }
5174 };
5175 
5176 
5177 class CPU_State {
5178  public:
5179   FPU_State _fpu_state;
5180   IU_State  _iu_state;
5181 
5182   void print() const {
5183     printf("--------------------------------------------------\n");
5184     _iu_state .print();
5185     printf("\n");
5186     _fpu_state.print();
5187     printf("--------------------------------------------------\n");
5188   }
5189 
5190 };
5191 
5192 
5193 static void _print_CPU_state(CPU_State* state) {
5194   state->print();
5195 };
5196 
5197 
5198 void MacroAssembler::print_CPU_state() {
5199   push_CPU_state();
5200   push(rsp);                // pass CPU state
5201   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
5202   addptr(rsp, wordSize);       // discard argument
5203   pop_CPU_state();
5204 }
5205 
5206 
5207 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
5208   static int counter = 0;
5209   FPU_State* fs = &state->_fpu_state;
5210   counter++;
5211   // For leaf calls, only verify that the top few elements remain empty.
5212   // We only need 1 empty at the top for C2 code.
5213   if( stack_depth < 0 ) {
5214     if( fs->tag_for_st(7) != 3 ) {
5215       printf("FPR7 not empty\n");
5216       state->print();
5217       assert(false, "error");
5218       return false;
5219     }
5220     return true;                // All other stack states do not matter
5221   }
5222 
5223   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
5224          "bad FPU control word");
5225 
5226   // compute stack depth
5227   int i = 0;
5228   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
5229   int d = i;
5230   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
5231   // verify findings
5232   if (i != FPU_State::number_of_registers) {
5233     // stack not contiguous
5234     printf("%s: stack not contiguous at ST%d\n", s, i);
5235     state->print();
5236     assert(false, "error");
5237     return false;
5238   }
5239   // check if computed stack depth corresponds to expected stack depth
5240   if (stack_depth < 0) {
5241     // expected stack depth is -stack_depth or less
5242     if (d > -stack_depth) {
5243       // too many elements on the stack
5244       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
5245       state->print();
5246       assert(false, "error");
5247       return false;
5248     }
5249   } else {
5250     // expected stack depth is stack_depth
5251     if (d != stack_depth) {
5252       // wrong stack depth
5253       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
5254       state->print();
5255       assert(false, "error");
5256       return false;
5257     }
5258   }
5259   // everything is cool
5260   return true;
5261 }
5262 
5263 
5264 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
5265   if (!VerifyFPU) return;
5266   push_CPU_state();
5267   push(rsp);                // pass CPU state
5268   ExternalAddress msg((address) s);
5269   // pass message string s
5270   pushptr(msg.addr());
5271   push(stack_depth);        // pass stack depth
5272   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
5273   addptr(rsp, 3 * wordSize);   // discard arguments
5274   // check for error
5275   { Label L;
5276     testl(rax, rax);
5277     jcc(Assembler::notZero, L);
5278     int3();                  // break if error condition
5279     bind(L);
5280   }
5281   pop_CPU_state();
5282 }
5283 
5284 void MacroAssembler::restore_cpu_control_state_after_jni() {
5285   // Either restore the MXCSR register after returning from the JNI Call
5286   // or verify that it wasn't changed (with -Xcheck:jni flag).
5287   if (VM_Version::supports_sse()) {
5288     if (RestoreMXCSROnJNICalls) {
5289       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
5290     } else if (CheckJNICalls) {
5291       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
5292     }
5293   }
5294   // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
5295   vzeroupper();
5296   // Reset k1 to 0xffff.
5297 
5298 #ifdef COMPILER2
5299   if (PostLoopMultiversioning && VM_Version::supports_evex()) {
5300     push(rcx);
5301     movl(rcx, 0xffff);
5302     kmovwl(k1, rcx);
5303     pop(rcx);
5304   }
5305 #endif // COMPILER2
5306 
5307 #ifndef _LP64
5308   // Either restore the x87 floating pointer control word after returning
5309   // from the JNI call or verify that it wasn't changed.
5310   if (CheckJNICalls) {
5311     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
5312   }
5313 #endif // _LP64
5314 }
5315 
5316 // ((OopHandle)result).resolve();
5317 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) {
5318   assert_different_registers(result, tmp);
5319 
5320   // Only 64 bit platforms support GCs that require a tmp register
5321   // Only IN_HEAP loads require a thread_tmp register
5322   // OopHandle::resolve is an indirection like jobject.
5323   access_load_at(T_OBJECT, IN_NATIVE,
5324                  result, Address(result, 0), tmp, /*tmp_thread*/noreg);
5325 }
5326 
5327 // ((WeakHandle)result).resolve();
5328 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) {
5329   assert_different_registers(rresult, rtmp);
5330   Label resolved;
5331 
5332   // A null weak handle resolves to null.
5333   cmpptr(rresult, 0);
5334   jcc(Assembler::equal, resolved);
5335 
5336   // Only 64 bit platforms support GCs that require a tmp register
5337   // Only IN_HEAP loads require a thread_tmp register
5338   // WeakHandle::resolve is an indirection like jweak.
5339   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
5340                  rresult, Address(rresult, 0), rtmp, /*tmp_thread*/noreg);
5341   bind(resolved);
5342 }
5343 
5344 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) {
5345   // get mirror
5346   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
5347   load_method_holder(mirror, method);
5348   movptr(mirror, Address(mirror, mirror_offset));
5349   resolve_oop_handle(mirror, tmp);
5350 }
5351 
5352 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
5353   load_method_holder(rresult, rmethod);
5354   movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
5355 }
5356 
5357 void MacroAssembler::load_method_holder(Register holder, Register method) {
5358   movptr(holder, Address(method, Method::const_offset()));                      // ConstMethod*
5359   movptr(holder, Address(holder, ConstMethod::constants_offset()));             // ConstantPool*
5360   movptr(holder, Address(holder, ConstantPool::pool_holder_offset_in_bytes())); // InstanceKlass*
5361 }
5362 
5363 void MacroAssembler::load_klass(Register dst, Register src) {
5364 #ifdef _LP64
5365   if (UseCompressedClassPointers) {
5366     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5367     decode_klass_not_null(dst);
5368   } else
5369 #endif
5370     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5371 }
5372 
5373 void MacroAssembler::load_prototype_header(Register dst, Register src) {
5374   load_klass(dst, src);
5375   movptr(dst, Address(dst, Klass::prototype_header_offset()));
5376 }
5377 
5378 void MacroAssembler::store_klass(Register dst, Register src) {
5379 #ifdef _LP64
5380   if (UseCompressedClassPointers) {
5381     encode_klass_not_null(src);
5382     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5383   } else
5384 #endif
5385     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5386 }
5387 
5388 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
5389                                     Register tmp1, Register thread_tmp) {
5390   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5391   decorators = AccessInternal::decorator_fixup(decorators);
5392   bool as_raw = (decorators & AS_RAW) != 0;
5393   if (as_raw) {
5394     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
5395   } else {
5396     bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
5397   }
5398 }
5399 
5400 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
5401                                      Register tmp1, Register tmp2) {
5402   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5403   decorators = AccessInternal::decorator_fixup(decorators);
5404   bool as_raw = (decorators & AS_RAW) != 0;
5405   if (as_raw) {
5406     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, src, tmp1, tmp2);
5407   } else {
5408     bs->store_at(this, decorators, type, dst, src, tmp1, tmp2);
5409   }
5410 }
5411 
5412 void MacroAssembler::resolve(DecoratorSet decorators, Register obj) {
5413   // Use stronger ACCESS_WRITE|ACCESS_READ by default.
5414   if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
5415     decorators |= ACCESS_READ | ACCESS_WRITE;
5416   }
5417   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5418   return bs->resolve(this, decorators, obj);
5419 }
5420 
5421 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
5422                                    Register thread_tmp, DecoratorSet decorators) {
5423   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
5424 }
5425 
5426 // Doesn't do verfication, generates fixed size code
5427 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
5428                                             Register thread_tmp, DecoratorSet decorators) {
5429   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp);
5430 }
5431 
5432 void MacroAssembler::store_heap_oop(Address dst, Register src, Register tmp1,
5433                                     Register tmp2, DecoratorSet decorators) {
5434   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
5435 }
5436 
5437 // Used for storing NULLs.
5438 void MacroAssembler::store_heap_oop_null(Address dst) {
5439   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg);
5440 }
5441 
5442 #ifdef _LP64
5443 void MacroAssembler::store_klass_gap(Register dst, Register src) {
5444   if (UseCompressedClassPointers) {
5445     // Store to klass gap in destination
5446     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
5447   }
5448 }
5449 
5450 #ifdef ASSERT
5451 void MacroAssembler::verify_heapbase(const char* msg) {
5452   assert (UseCompressedOops, "should be compressed");
5453   assert (Universe::heap() != NULL, "java heap should be initialized");
5454   if (CheckCompressedOops) {
5455     Label ok;
5456     push(rscratch1); // cmpptr trashes rscratch1
5457     cmpptr(r12_heapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr()));
5458     jcc(Assembler::equal, ok);
5459     STOP(msg);
5460     bind(ok);
5461     pop(rscratch1);
5462   }
5463 }
5464 #endif
5465 
5466 // Algorithm must match oop.inline.hpp encode_heap_oop.
5467 void MacroAssembler::encode_heap_oop(Register r) {
5468 #ifdef ASSERT
5469   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
5470 #endif
5471   verify_oop(r, "broken oop in encode_heap_oop");
5472   if (CompressedOops::base() == NULL) {
5473     if (CompressedOops::shift() != 0) {
5474       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5475       shrq(r, LogMinObjAlignmentInBytes);
5476     }
5477     return;
5478   }
5479   testq(r, r);
5480   cmovq(Assembler::equal, r, r12_heapbase);
5481   subq(r, r12_heapbase);
5482   shrq(r, LogMinObjAlignmentInBytes);
5483 }
5484 
5485 void MacroAssembler::encode_heap_oop_not_null(Register r) {
5486 #ifdef ASSERT
5487   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
5488   if (CheckCompressedOops) {
5489     Label ok;
5490     testq(r, r);
5491     jcc(Assembler::notEqual, ok);
5492     STOP("null oop passed to encode_heap_oop_not_null");
5493     bind(ok);
5494   }
5495 #endif
5496   verify_oop(r, "broken oop in encode_heap_oop_not_null");
5497   if (CompressedOops::base() != NULL) {
5498     subq(r, r12_heapbase);
5499   }
5500   if (CompressedOops::shift() != 0) {
5501     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5502     shrq(r, LogMinObjAlignmentInBytes);
5503   }
5504 }
5505 
5506 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
5507 #ifdef ASSERT
5508   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
5509   if (CheckCompressedOops) {
5510     Label ok;
5511     testq(src, src);
5512     jcc(Assembler::notEqual, ok);
5513     STOP("null oop passed to encode_heap_oop_not_null2");
5514     bind(ok);
5515   }
5516 #endif
5517   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
5518   if (dst != src) {
5519     movq(dst, src);
5520   }
5521   if (CompressedOops::base() != NULL) {
5522     subq(dst, r12_heapbase);
5523   }
5524   if (CompressedOops::shift() != 0) {
5525     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5526     shrq(dst, LogMinObjAlignmentInBytes);
5527   }
5528 }
5529 
5530 void  MacroAssembler::decode_heap_oop(Register r) {
5531 #ifdef ASSERT
5532   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
5533 #endif
5534   if (CompressedOops::base() == NULL) {
5535     if (CompressedOops::shift() != 0) {
5536       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5537       shlq(r, LogMinObjAlignmentInBytes);
5538     }
5539   } else {
5540     Label done;
5541     shlq(r, LogMinObjAlignmentInBytes);
5542     jccb(Assembler::equal, done);
5543     addq(r, r12_heapbase);
5544     bind(done);
5545   }
5546   verify_oop(r, "broken oop in decode_heap_oop");
5547 }
5548 
5549 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
5550   // Note: it will change flags
5551   assert (UseCompressedOops, "should only be used for compressed headers");
5552   assert (Universe::heap() != NULL, "java heap should be initialized");
5553   // Cannot assert, unverified entry point counts instructions (see .ad file)
5554   // vtableStubs also counts instructions in pd_code_size_limit.
5555   // Also do not verify_oop as this is called by verify_oop.
5556   if (CompressedOops::shift() != 0) {
5557     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5558     shlq(r, LogMinObjAlignmentInBytes);
5559     if (CompressedOops::base() != NULL) {
5560       addq(r, r12_heapbase);
5561     }
5562   } else {
5563     assert (CompressedOops::base() == NULL, "sanity");
5564   }
5565 }
5566 
5567 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
5568   // Note: it will change flags
5569   assert (UseCompressedOops, "should only be used for compressed headers");
5570   assert (Universe::heap() != NULL, "java heap should be initialized");
5571   // Cannot assert, unverified entry point counts instructions (see .ad file)
5572   // vtableStubs also counts instructions in pd_code_size_limit.
5573   // Also do not verify_oop as this is called by verify_oop.
5574   if (CompressedOops::shift() != 0) {
5575     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5576     if (LogMinObjAlignmentInBytes == Address::times_8) {
5577       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
5578     } else {
5579       if (dst != src) {
5580         movq(dst, src);
5581       }
5582       shlq(dst, LogMinObjAlignmentInBytes);
5583       if (CompressedOops::base() != NULL) {
5584         addq(dst, r12_heapbase);
5585       }
5586     }
5587   } else {
5588     assert (CompressedOops::base() == NULL, "sanity");
5589     if (dst != src) {
5590       movq(dst, src);
5591     }
5592   }
5593 }
5594 
5595 void MacroAssembler::encode_klass_not_null(Register r) {
5596   if (CompressedKlassPointers::base() != NULL) {
5597     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5598     assert(r != r12_heapbase, "Encoding a klass in r12");
5599     mov64(r12_heapbase, (int64_t)CompressedKlassPointers::base());
5600     subq(r, r12_heapbase);
5601   }
5602   if (CompressedKlassPointers::shift() != 0) {
5603     assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
5604     shrq(r, LogKlassAlignmentInBytes);
5605   }
5606   if (CompressedKlassPointers::base() != NULL) {
5607     reinit_heapbase();
5608   }
5609 }
5610 
5611 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
5612   if (dst == src) {
5613     encode_klass_not_null(src);
5614   } else {
5615     if (CompressedKlassPointers::base() != NULL) {
5616       mov64(dst, (int64_t)CompressedKlassPointers::base());
5617       negq(dst);
5618       addq(dst, src);
5619     } else {
5620       movptr(dst, src);
5621     }
5622     if (CompressedKlassPointers::shift() != 0) {
5623       assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
5624       shrq(dst, LogKlassAlignmentInBytes);
5625     }
5626   }
5627 }
5628 
5629 // Function instr_size_for_decode_klass_not_null() counts the instructions
5630 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
5631 // when (Universe::heap() != NULL).  Hence, if the instructions they
5632 // generate change, then this method needs to be updated.
5633 int MacroAssembler::instr_size_for_decode_klass_not_null() {
5634   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
5635   if (CompressedKlassPointers::base() != NULL) {
5636     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
5637     return (CompressedKlassPointers::shift() == 0 ? 20 : 24);
5638   } else {
5639     // longest load decode klass function, mov64, leaq
5640     return 16;
5641   }
5642 }
5643 
5644 // !!! If the instructions that get generated here change then function
5645 // instr_size_for_decode_klass_not_null() needs to get updated.
5646 void  MacroAssembler::decode_klass_not_null(Register r) {
5647   // Note: it will change flags
5648   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5649   assert(r != r12_heapbase, "Decoding a klass in r12");
5650   // Cannot assert, unverified entry point counts instructions (see .ad file)
5651   // vtableStubs also counts instructions in pd_code_size_limit.
5652   // Also do not verify_oop as this is called by verify_oop.
5653   if (CompressedKlassPointers::shift() != 0) {
5654     assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
5655     shlq(r, LogKlassAlignmentInBytes);
5656   }
5657   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5658   if (CompressedKlassPointers::base() != NULL) {
5659     mov64(r12_heapbase, (int64_t)CompressedKlassPointers::base());
5660     addq(r, r12_heapbase);
5661     reinit_heapbase();
5662   }
5663 }
5664 
5665 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
5666   // Note: it will change flags
5667   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5668   if (dst == src) {
5669     decode_klass_not_null(dst);
5670   } else {
5671     // Cannot assert, unverified entry point counts instructions (see .ad file)
5672     // vtableStubs also counts instructions in pd_code_size_limit.
5673     // Also do not verify_oop as this is called by verify_oop.
5674     mov64(dst, (int64_t)CompressedKlassPointers::base());
5675     if (CompressedKlassPointers::shift() != 0) {
5676       assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
5677       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
5678       leaq(dst, Address(dst, src, Address::times_8, 0));
5679     } else {
5680       addq(dst, src);
5681     }
5682   }
5683 }
5684 
5685 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
5686   assert (UseCompressedOops, "should only be used for compressed headers");
5687   assert (Universe::heap() != NULL, "java heap should be initialized");
5688   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5689   int oop_index = oop_recorder()->find_index(obj);
5690   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5691   mov_narrow_oop(dst, oop_index, rspec);
5692 }
5693 
5694 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
5695   assert (UseCompressedOops, "should only be used for compressed headers");
5696   assert (Universe::heap() != NULL, "java heap should be initialized");
5697   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5698   int oop_index = oop_recorder()->find_index(obj);
5699   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5700   mov_narrow_oop(dst, oop_index, rspec);
5701 }
5702 
5703 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
5704   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5705   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5706   int klass_index = oop_recorder()->find_index(k);
5707   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5708   mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5709 }
5710 
5711 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
5712   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5713   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5714   int klass_index = oop_recorder()->find_index(k);
5715   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5716   mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5717 }
5718 
5719 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
5720   assert (UseCompressedOops, "should only be used for compressed headers");
5721   assert (Universe::heap() != NULL, "java heap should be initialized");
5722   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5723   int oop_index = oop_recorder()->find_index(obj);
5724   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5725   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
5726 }
5727 
5728 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
5729   assert (UseCompressedOops, "should only be used for compressed headers");
5730   assert (Universe::heap() != NULL, "java heap should be initialized");
5731   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5732   int oop_index = oop_recorder()->find_index(obj);
5733   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5734   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
5735 }
5736 
5737 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
5738   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5739   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5740   int klass_index = oop_recorder()->find_index(k);
5741   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5742   Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5743 }
5744 
5745 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
5746   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5747   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5748   int klass_index = oop_recorder()->find_index(k);
5749   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5750   Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5751 }
5752 
5753 void MacroAssembler::reinit_heapbase() {
5754   if (UseCompressedOops || UseCompressedClassPointers) {
5755     if (Universe::heap() != NULL) {
5756       if (CompressedOops::base() == NULL) {
5757         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
5758       } else {
5759         mov64(r12_heapbase, (int64_t)CompressedOops::ptrs_base());
5760       }
5761     } else {
5762       movptr(r12_heapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr()));
5763     }
5764   }
5765 }
5766 
5767 #endif // _LP64
5768 
5769 // C2 compiled method's prolog code.
5770 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b, bool is_stub) {
5771 
5772   // WARNING: Initial instruction MUST be 5 bytes or longer so that
5773   // NativeJump::patch_verified_entry will be able to patch out the entry
5774   // code safely. The push to verify stack depth is ok at 5 bytes,
5775   // the frame allocation can be either 3 or 6 bytes. So if we don't do
5776   // stack bang then we must use the 6 byte frame allocation even if
5777   // we have no frame. :-(
5778   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
5779 
5780   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
5781   // Remove word for return addr
5782   framesize -= wordSize;
5783   stack_bang_size -= wordSize;
5784 
5785   // Calls to C2R adapters often do not accept exceptional returns.
5786   // We require that their callers must bang for them.  But be careful, because
5787   // some VM calls (such as call site linkage) can use several kilobytes of
5788   // stack.  But the stack safety zone should account for that.
5789   // See bugs 4446381, 4468289, 4497237.
5790   if (stack_bang_size > 0) {
5791     generate_stack_overflow_check(stack_bang_size);
5792 
5793     // We always push rbp, so that on return to interpreter rbp, will be
5794     // restored correctly and we can correct the stack.
5795     push(rbp);
5796     // Save caller's stack pointer into RBP if the frame pointer is preserved.
5797     if (PreserveFramePointer) {
5798       mov(rbp, rsp);
5799     }
5800     // Remove word for ebp
5801     framesize -= wordSize;
5802 
5803     // Create frame
5804     if (framesize) {
5805       subptr(rsp, framesize);
5806     }
5807   } else {
5808     // Create frame (force generation of a 4 byte immediate value)
5809     subptr_imm32(rsp, framesize);
5810 
5811     // Save RBP register now.
5812     framesize -= wordSize;
5813     movptr(Address(rsp, framesize), rbp);
5814     // Save caller's stack pointer into RBP if the frame pointer is preserved.
5815     if (PreserveFramePointer) {
5816       movptr(rbp, rsp);
5817       if (framesize > 0) {
5818         addptr(rbp, framesize);
5819       }
5820     }
5821   }
5822 
5823   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
5824     framesize -= wordSize;
5825     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
5826   }
5827 
5828 #ifndef _LP64
5829   // If method sets FPU control word do it now
5830   if (fp_mode_24b) {
5831     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
5832   }
5833   if (UseSSE >= 2 && VerifyFPU) {
5834     verify_FPU(0, "FPU stack must be clean on entry");
5835   }
5836 #endif
5837 
5838 #ifdef ASSERT
5839   if (VerifyStackAtCalls) {
5840     Label L;
5841     push(rax);
5842     mov(rax, rsp);
5843     andptr(rax, StackAlignmentInBytes-1);
5844     cmpptr(rax, StackAlignmentInBytes-wordSize);
5845     pop(rax);
5846     jcc(Assembler::equal, L);
5847     STOP("Stack is not properly aligned!");
5848     bind(L);
5849   }
5850 #endif
5851 
5852   if (!is_stub) {
5853     BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5854     bs->nmethod_entry_barrier(this);
5855   }
5856 }
5857 
5858 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
5859 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, XMMRegister xtmp) {
5860   // cnt - number of qwords (8-byte words).
5861   // base - start address, qword aligned.
5862   Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end;
5863   if (UseAVX >= 2) {
5864     vpxor(xtmp, xtmp, xtmp, AVX_256bit);
5865   } else {
5866     pxor(xtmp, xtmp);
5867   }
5868   jmp(L_zero_64_bytes);
5869 
5870   BIND(L_loop);
5871   if (UseAVX >= 2) {
5872     vmovdqu(Address(base,  0), xtmp);
5873     vmovdqu(Address(base, 32), xtmp);
5874   } else {
5875     movdqu(Address(base,  0), xtmp);
5876     movdqu(Address(base, 16), xtmp);
5877     movdqu(Address(base, 32), xtmp);
5878     movdqu(Address(base, 48), xtmp);
5879   }
5880   addptr(base, 64);
5881 
5882   BIND(L_zero_64_bytes);
5883   subptr(cnt, 8);
5884   jccb(Assembler::greaterEqual, L_loop);
5885   addptr(cnt, 4);
5886   jccb(Assembler::less, L_tail);
5887   // Copy trailing 32 bytes
5888   if (UseAVX >= 2) {
5889     vmovdqu(Address(base, 0), xtmp);
5890   } else {
5891     movdqu(Address(base,  0), xtmp);
5892     movdqu(Address(base, 16), xtmp);
5893   }
5894   addptr(base, 32);
5895   subptr(cnt, 4);
5896 
5897   BIND(L_tail);
5898   addptr(cnt, 4);
5899   jccb(Assembler::lessEqual, L_end);
5900   decrement(cnt);
5901 
5902   BIND(L_sloop);
5903   movq(Address(base, 0), xtmp);
5904   addptr(base, 8);
5905   decrement(cnt);
5906   jccb(Assembler::greaterEqual, L_sloop);
5907   BIND(L_end);
5908 }
5909 
5910 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp, bool is_large) {
5911   // cnt - number of qwords (8-byte words).
5912   // base - start address, qword aligned.
5913   // is_large - if optimizers know cnt is larger than InitArrayShortSize
5914   assert(base==rdi, "base register must be edi for rep stos");
5915   assert(tmp==rax,   "tmp register must be eax for rep stos");
5916   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
5917   assert(InitArrayShortSize % BytesPerLong == 0,
5918     "InitArrayShortSize should be the multiple of BytesPerLong");
5919 
5920   Label DONE;
5921 
5922   if (!is_large || !UseXMMForObjInit) {
5923     xorptr(tmp, tmp);
5924   }
5925 
5926   if (!is_large) {
5927     Label LOOP, LONG;
5928     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
5929     jccb(Assembler::greater, LONG);
5930 
5931     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
5932 
5933     decrement(cnt);
5934     jccb(Assembler::negative, DONE); // Zero length
5935 
5936     // Use individual pointer-sized stores for small counts:
5937     BIND(LOOP);
5938     movptr(Address(base, cnt, Address::times_ptr), tmp);
5939     decrement(cnt);
5940     jccb(Assembler::greaterEqual, LOOP);
5941     jmpb(DONE);
5942 
5943     BIND(LONG);
5944   }
5945 
5946   // Use longer rep-prefixed ops for non-small counts:
5947   if (UseFastStosb) {
5948     shlptr(cnt, 3); // convert to number of bytes
5949     rep_stosb();
5950   } else if (UseXMMForObjInit) {
5951     movptr(tmp, base);
5952     xmm_clear_mem(tmp, cnt, xtmp);
5953   } else {
5954     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
5955     rep_stos();
5956   }
5957 
5958   BIND(DONE);
5959 }
5960 
5961 #ifdef COMPILER2
5962 
5963 // IndexOf for constant substrings with size >= 8 chars
5964 // which don't need to be loaded through stack.
5965 void MacroAssembler::string_indexofC8(Register str1, Register str2,
5966                                       Register cnt1, Register cnt2,
5967                                       int int_cnt2,  Register result,
5968                                       XMMRegister vec, Register tmp,
5969                                       int ae) {
5970   ShortBranchVerifier sbv(this);
5971   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
5972   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
5973 
5974   // This method uses the pcmpestri instruction with bound registers
5975   //   inputs:
5976   //     xmm - substring
5977   //     rax - substring length (elements count)
5978   //     mem - scanned string
5979   //     rdx - string length (elements count)
5980   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
5981   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
5982   //   outputs:
5983   //     rcx - matched index in string
5984   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
5985   int mode   = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
5986   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
5987   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
5988   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
5989 
5990   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
5991         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
5992         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
5993 
5994   // Note, inline_string_indexOf() generates checks:
5995   // if (substr.count > string.count) return -1;
5996   // if (substr.count == 0) return 0;
5997   assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars");
5998 
5999   // Load substring.
6000   if (ae == StrIntrinsicNode::UL) {
6001     pmovzxbw(vec, Address(str2, 0));
6002   } else {
6003     movdqu(vec, Address(str2, 0));
6004   }
6005   movl(cnt2, int_cnt2);
6006   movptr(result, str1); // string addr
6007 
6008   if (int_cnt2 > stride) {
6009     jmpb(SCAN_TO_SUBSTR);
6010 
6011     // Reload substr for rescan, this code
6012     // is executed only for large substrings (> 8 chars)
6013     bind(RELOAD_SUBSTR);
6014     if (ae == StrIntrinsicNode::UL) {
6015       pmovzxbw(vec, Address(str2, 0));
6016     } else {
6017       movdqu(vec, Address(str2, 0));
6018     }
6019     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
6020 
6021     bind(RELOAD_STR);
6022     // We came here after the beginning of the substring was
6023     // matched but the rest of it was not so we need to search
6024     // again. Start from the next element after the previous match.
6025 
6026     // cnt2 is number of substring reminding elements and
6027     // cnt1 is number of string reminding elements when cmp failed.
6028     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
6029     subl(cnt1, cnt2);
6030     addl(cnt1, int_cnt2);
6031     movl(cnt2, int_cnt2); // Now restore cnt2
6032 
6033     decrementl(cnt1);     // Shift to next element
6034     cmpl(cnt1, cnt2);
6035     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6036 
6037     addptr(result, (1<<scale1));
6038 
6039   } // (int_cnt2 > 8)
6040 
6041   // Scan string for start of substr in 16-byte vectors
6042   bind(SCAN_TO_SUBSTR);
6043   pcmpestri(vec, Address(result, 0), mode);
6044   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6045   subl(cnt1, stride);
6046   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6047   cmpl(cnt1, cnt2);
6048   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6049   addptr(result, 16);
6050   jmpb(SCAN_TO_SUBSTR);
6051 
6052   // Found a potential substr
6053   bind(FOUND_CANDIDATE);
6054   // Matched whole vector if first element matched (tmp(rcx) == 0).
6055   if (int_cnt2 == stride) {
6056     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
6057   } else { // int_cnt2 > 8
6058     jccb(Assembler::overflow, FOUND_SUBSTR);
6059   }
6060   // After pcmpestri tmp(rcx) contains matched element index
6061   // Compute start addr of substr
6062   lea(result, Address(result, tmp, scale1));
6063 
6064   // Make sure string is still long enough
6065   subl(cnt1, tmp);
6066   cmpl(cnt1, cnt2);
6067   if (int_cnt2 == stride) {
6068     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6069   } else { // int_cnt2 > 8
6070     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
6071   }
6072   // Left less then substring.
6073 
6074   bind(RET_NOT_FOUND);
6075   movl(result, -1);
6076   jmp(EXIT);
6077 
6078   if (int_cnt2 > stride) {
6079     // This code is optimized for the case when whole substring
6080     // is matched if its head is matched.
6081     bind(MATCH_SUBSTR_HEAD);
6082     pcmpestri(vec, Address(result, 0), mode);
6083     // Reload only string if does not match
6084     jcc(Assembler::noOverflow, RELOAD_STR); // OF == 0
6085 
6086     Label CONT_SCAN_SUBSTR;
6087     // Compare the rest of substring (> 8 chars).
6088     bind(FOUND_SUBSTR);
6089     // First 8 chars are already matched.
6090     negptr(cnt2);
6091     addptr(cnt2, stride);
6092 
6093     bind(SCAN_SUBSTR);
6094     subl(cnt1, stride);
6095     cmpl(cnt2, -stride); // Do not read beyond substring
6096     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
6097     // Back-up strings to avoid reading beyond substring:
6098     // cnt1 = cnt1 - cnt2 + 8
6099     addl(cnt1, cnt2); // cnt2 is negative
6100     addl(cnt1, stride);
6101     movl(cnt2, stride); negptr(cnt2);
6102     bind(CONT_SCAN_SUBSTR);
6103     if (int_cnt2 < (int)G) {
6104       int tail_off1 = int_cnt2<<scale1;
6105       int tail_off2 = int_cnt2<<scale2;
6106       if (ae == StrIntrinsicNode::UL) {
6107         pmovzxbw(vec, Address(str2, cnt2, scale2, tail_off2));
6108       } else {
6109         movdqu(vec, Address(str2, cnt2, scale2, tail_off2));
6110       }
6111       pcmpestri(vec, Address(result, cnt2, scale1, tail_off1), mode);
6112     } else {
6113       // calculate index in register to avoid integer overflow (int_cnt2*2)
6114       movl(tmp, int_cnt2);
6115       addptr(tmp, cnt2);
6116       if (ae == StrIntrinsicNode::UL) {
6117         pmovzxbw(vec, Address(str2, tmp, scale2, 0));
6118       } else {
6119         movdqu(vec, Address(str2, tmp, scale2, 0));
6120       }
6121       pcmpestri(vec, Address(result, tmp, scale1, 0), mode);
6122     }
6123     // Need to reload strings pointers if not matched whole vector
6124     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6125     addptr(cnt2, stride);
6126     jcc(Assembler::negative, SCAN_SUBSTR);
6127     // Fall through if found full substring
6128 
6129   } // (int_cnt2 > 8)
6130 
6131   bind(RET_FOUND);
6132   // Found result if we matched full small substring.
6133   // Compute substr offset
6134   subptr(result, str1);
6135   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
6136     shrl(result, 1); // index
6137   }
6138   bind(EXIT);
6139 
6140 } // string_indexofC8
6141 
6142 // Small strings are loaded through stack if they cross page boundary.
6143 void MacroAssembler::string_indexof(Register str1, Register str2,
6144                                     Register cnt1, Register cnt2,
6145                                     int int_cnt2,  Register result,
6146                                     XMMRegister vec, Register tmp,
6147                                     int ae) {
6148   ShortBranchVerifier sbv(this);
6149   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
6150   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
6151 
6152   //
6153   // int_cnt2 is length of small (< 8 chars) constant substring
6154   // or (-1) for non constant substring in which case its length
6155   // is in cnt2 register.
6156   //
6157   // Note, inline_string_indexOf() generates checks:
6158   // if (substr.count > string.count) return -1;
6159   // if (substr.count == 0) return 0;
6160   //
6161   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
6162   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0");
6163   // This method uses the pcmpestri instruction with bound registers
6164   //   inputs:
6165   //     xmm - substring
6166   //     rax - substring length (elements count)
6167   //     mem - scanned string
6168   //     rdx - string length (elements count)
6169   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6170   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
6171   //   outputs:
6172   //     rcx - matched index in string
6173   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6174   int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
6175   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
6176   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
6177 
6178   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
6179         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
6180         FOUND_CANDIDATE;
6181 
6182   { //========================================================
6183     // We don't know where these strings are located
6184     // and we can't read beyond them. Load them through stack.
6185     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
6186 
6187     movptr(tmp, rsp); // save old SP
6188 
6189     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
6190       if (int_cnt2 == (1>>scale2)) { // One byte
6191         assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding");
6192         load_unsigned_byte(result, Address(str2, 0));
6193         movdl(vec, result); // move 32 bits
6194       } else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) {  // Three bytes
6195         // Not enough header space in 32-bit VM: 12+3 = 15.
6196         movl(result, Address(str2, -1));
6197         shrl(result, 8);
6198         movdl(vec, result); // move 32 bits
6199       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) {  // One char
6200         load_unsigned_short(result, Address(str2, 0));
6201         movdl(vec, result); // move 32 bits
6202       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars
6203         movdl(vec, Address(str2, 0)); // move 32 bits
6204       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars
6205         movq(vec, Address(str2, 0));  // move 64 bits
6206       } else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7})
6207         // Array header size is 12 bytes in 32-bit VM
6208         // + 6 bytes for 3 chars == 18 bytes,
6209         // enough space to load vec and shift.
6210         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
6211         if (ae == StrIntrinsicNode::UL) {
6212           int tail_off = int_cnt2-8;
6213           pmovzxbw(vec, Address(str2, tail_off));
6214           psrldq(vec, -2*tail_off);
6215         }
6216         else {
6217           int tail_off = int_cnt2*(1<<scale2);
6218           movdqu(vec, Address(str2, tail_off-16));
6219           psrldq(vec, 16-tail_off);
6220         }
6221       }
6222     } else { // not constant substring
6223       cmpl(cnt2, stride);
6224       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
6225 
6226       // We can read beyond string if srt+16 does not cross page boundary
6227       // since heaps are aligned and mapped by pages.
6228       assert(os::vm_page_size() < (int)G, "default page should be small");
6229       movl(result, str2); // We need only low 32 bits
6230       andl(result, (os::vm_page_size()-1));
6231       cmpl(result, (os::vm_page_size()-16));
6232       jccb(Assembler::belowEqual, CHECK_STR);
6233 
6234       // Move small strings to stack to allow load 16 bytes into vec.
6235       subptr(rsp, 16);
6236       int stk_offset = wordSize-(1<<scale2);
6237       push(cnt2);
6238 
6239       bind(COPY_SUBSTR);
6240       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL) {
6241         load_unsigned_byte(result, Address(str2, cnt2, scale2, -1));
6242         movb(Address(rsp, cnt2, scale2, stk_offset), result);
6243       } else if (ae == StrIntrinsicNode::UU) {
6244         load_unsigned_short(result, Address(str2, cnt2, scale2, -2));
6245         movw(Address(rsp, cnt2, scale2, stk_offset), result);
6246       }
6247       decrement(cnt2);
6248       jccb(Assembler::notZero, COPY_SUBSTR);
6249 
6250       pop(cnt2);
6251       movptr(str2, rsp);  // New substring address
6252     } // non constant
6253 
6254     bind(CHECK_STR);
6255     cmpl(cnt1, stride);
6256     jccb(Assembler::aboveEqual, BIG_STRINGS);
6257 
6258     // Check cross page boundary.
6259     movl(result, str1); // We need only low 32 bits
6260     andl(result, (os::vm_page_size()-1));
6261     cmpl(result, (os::vm_page_size()-16));
6262     jccb(Assembler::belowEqual, BIG_STRINGS);
6263 
6264     subptr(rsp, 16);
6265     int stk_offset = -(1<<scale1);
6266     if (int_cnt2 < 0) { // not constant
6267       push(cnt2);
6268       stk_offset += wordSize;
6269     }
6270     movl(cnt2, cnt1);
6271 
6272     bind(COPY_STR);
6273     if (ae == StrIntrinsicNode::LL) {
6274       load_unsigned_byte(result, Address(str1, cnt2, scale1, -1));
6275       movb(Address(rsp, cnt2, scale1, stk_offset), result);
6276     } else {
6277       load_unsigned_short(result, Address(str1, cnt2, scale1, -2));
6278       movw(Address(rsp, cnt2, scale1, stk_offset), result);
6279     }
6280     decrement(cnt2);
6281     jccb(Assembler::notZero, COPY_STR);
6282 
6283     if (int_cnt2 < 0) { // not constant
6284       pop(cnt2);
6285     }
6286     movptr(str1, rsp);  // New string address
6287 
6288     bind(BIG_STRINGS);
6289     // Load substring.
6290     if (int_cnt2 < 0) { // -1
6291       if (ae == StrIntrinsicNode::UL) {
6292         pmovzxbw(vec, Address(str2, 0));
6293       } else {
6294         movdqu(vec, Address(str2, 0));
6295       }
6296       push(cnt2);       // substr count
6297       push(str2);       // substr addr
6298       push(str1);       // string addr
6299     } else {
6300       // Small (< 8 chars) constant substrings are loaded already.
6301       movl(cnt2, int_cnt2);
6302     }
6303     push(tmp);  // original SP
6304 
6305   } // Finished loading
6306 
6307   //========================================================
6308   // Start search
6309   //
6310 
6311   movptr(result, str1); // string addr
6312 
6313   if (int_cnt2  < 0) {  // Only for non constant substring
6314     jmpb(SCAN_TO_SUBSTR);
6315 
6316     // SP saved at sp+0
6317     // String saved at sp+1*wordSize
6318     // Substr saved at sp+2*wordSize
6319     // Substr count saved at sp+3*wordSize
6320 
6321     // Reload substr for rescan, this code
6322     // is executed only for large substrings (> 8 chars)
6323     bind(RELOAD_SUBSTR);
6324     movptr(str2, Address(rsp, 2*wordSize));
6325     movl(cnt2, Address(rsp, 3*wordSize));
6326     if (ae == StrIntrinsicNode::UL) {
6327       pmovzxbw(vec, Address(str2, 0));
6328     } else {
6329       movdqu(vec, Address(str2, 0));
6330     }
6331     // We came here after the beginning of the substring was
6332     // matched but the rest of it was not so we need to search
6333     // again. Start from the next element after the previous match.
6334     subptr(str1, result); // Restore counter
6335     if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
6336       shrl(str1, 1);
6337     }
6338     addl(cnt1, str1);
6339     decrementl(cnt1);   // Shift to next element
6340     cmpl(cnt1, cnt2);
6341     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6342 
6343     addptr(result, (1<<scale1));
6344   } // non constant
6345 
6346   // Scan string for start of substr in 16-byte vectors
6347   bind(SCAN_TO_SUBSTR);
6348   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6349   pcmpestri(vec, Address(result, 0), mode);
6350   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6351   subl(cnt1, stride);
6352   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6353   cmpl(cnt1, cnt2);
6354   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6355   addptr(result, 16);
6356 
6357   bind(ADJUST_STR);
6358   cmpl(cnt1, stride); // Do not read beyond string
6359   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6360   // Back-up string to avoid reading beyond string.
6361   lea(result, Address(result, cnt1, scale1, -16));
6362   movl(cnt1, stride);
6363   jmpb(SCAN_TO_SUBSTR);
6364 
6365   // Found a potential substr
6366   bind(FOUND_CANDIDATE);
6367   // After pcmpestri tmp(rcx) contains matched element index
6368 
6369   // Make sure string is still long enough
6370   subl(cnt1, tmp);
6371   cmpl(cnt1, cnt2);
6372   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
6373   // Left less then substring.
6374 
6375   bind(RET_NOT_FOUND);
6376   movl(result, -1);
6377   jmp(CLEANUP);
6378 
6379   bind(FOUND_SUBSTR);
6380   // Compute start addr of substr
6381   lea(result, Address(result, tmp, scale1));
6382   if (int_cnt2 > 0) { // Constant substring
6383     // Repeat search for small substring (< 8 chars)
6384     // from new point without reloading substring.
6385     // Have to check that we don't read beyond string.
6386     cmpl(tmp, stride-int_cnt2);
6387     jccb(Assembler::greater, ADJUST_STR);
6388     // Fall through if matched whole substring.
6389   } else { // non constant
6390     assert(int_cnt2 == -1, "should be != 0");
6391 
6392     addl(tmp, cnt2);
6393     // Found result if we matched whole substring.
6394     cmpl(tmp, stride);
6395     jcc(Assembler::lessEqual, RET_FOUND);
6396 
6397     // Repeat search for small substring (<= 8 chars)
6398     // from new point 'str1' without reloading substring.
6399     cmpl(cnt2, stride);
6400     // Have to check that we don't read beyond string.
6401     jccb(Assembler::lessEqual, ADJUST_STR);
6402 
6403     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
6404     // Compare the rest of substring (> 8 chars).
6405     movptr(str1, result);
6406 
6407     cmpl(tmp, cnt2);
6408     // First 8 chars are already matched.
6409     jccb(Assembler::equal, CHECK_NEXT);
6410 
6411     bind(SCAN_SUBSTR);
6412     pcmpestri(vec, Address(str1, 0), mode);
6413     // Need to reload strings pointers if not matched whole vector
6414     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6415 
6416     bind(CHECK_NEXT);
6417     subl(cnt2, stride);
6418     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
6419     addptr(str1, 16);
6420     if (ae == StrIntrinsicNode::UL) {
6421       addptr(str2, 8);
6422     } else {
6423       addptr(str2, 16);
6424     }
6425     subl(cnt1, stride);
6426     cmpl(cnt2, stride); // Do not read beyond substring
6427     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
6428     // Back-up strings to avoid reading beyond substring.
6429 
6430     if (ae == StrIntrinsicNode::UL) {
6431       lea(str2, Address(str2, cnt2, scale2, -8));
6432       lea(str1, Address(str1, cnt2, scale1, -16));
6433     } else {
6434       lea(str2, Address(str2, cnt2, scale2, -16));
6435       lea(str1, Address(str1, cnt2, scale1, -16));
6436     }
6437     subl(cnt1, cnt2);
6438     movl(cnt2, stride);
6439     addl(cnt1, stride);
6440     bind(CONT_SCAN_SUBSTR);
6441     if (ae == StrIntrinsicNode::UL) {
6442       pmovzxbw(vec, Address(str2, 0));
6443     } else {
6444       movdqu(vec, Address(str2, 0));
6445     }
6446     jmp(SCAN_SUBSTR);
6447 
6448     bind(RET_FOUND_LONG);
6449     movptr(str1, Address(rsp, wordSize));
6450   } // non constant
6451 
6452   bind(RET_FOUND);
6453   // Compute substr offset
6454   subptr(result, str1);
6455   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
6456     shrl(result, 1); // index
6457   }
6458   bind(CLEANUP);
6459   pop(rsp); // restore SP
6460 
6461 } // string_indexof
6462 
6463 void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
6464                                          XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) {
6465   ShortBranchVerifier sbv(this);
6466   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
6467 
6468   int stride = 8;
6469 
6470   Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP,
6471         SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP,
6472         RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT,
6473         FOUND_SEQ_CHAR, DONE_LABEL;
6474 
6475   movptr(result, str1);
6476   if (UseAVX >= 2) {
6477     cmpl(cnt1, stride);
6478     jcc(Assembler::less, SCAN_TO_CHAR);
6479     cmpl(cnt1, 2*stride);
6480     jcc(Assembler::less, SCAN_TO_8_CHAR_INIT);
6481     movdl(vec1, ch);
6482     vpbroadcastw(vec1, vec1, Assembler::AVX_256bit);
6483     vpxor(vec2, vec2);
6484     movl(tmp, cnt1);
6485     andl(tmp, 0xFFFFFFF0);  //vector count (in chars)
6486     andl(cnt1,0x0000000F);  //tail count (in chars)
6487 
6488     bind(SCAN_TO_16_CHAR_LOOP);
6489     vmovdqu(vec3, Address(result, 0));
6490     vpcmpeqw(vec3, vec3, vec1, 1);
6491     vptest(vec2, vec3);
6492     jcc(Assembler::carryClear, FOUND_CHAR);
6493     addptr(result, 32);
6494     subl(tmp, 2*stride);
6495     jcc(Assembler::notZero, SCAN_TO_16_CHAR_LOOP);
6496     jmp(SCAN_TO_8_CHAR);
6497     bind(SCAN_TO_8_CHAR_INIT);
6498     movdl(vec1, ch);
6499     pshuflw(vec1, vec1, 0x00);
6500     pshufd(vec1, vec1, 0);
6501     pxor(vec2, vec2);
6502   }
6503   bind(SCAN_TO_8_CHAR);
6504   cmpl(cnt1, stride);
6505   jcc(Assembler::less, SCAN_TO_CHAR);
6506   if (UseAVX < 2) {
6507     movdl(vec1, ch);
6508     pshuflw(vec1, vec1, 0x00);
6509     pshufd(vec1, vec1, 0);
6510     pxor(vec2, vec2);
6511   }
6512   movl(tmp, cnt1);
6513   andl(tmp, 0xFFFFFFF8);  //vector count (in chars)
6514   andl(cnt1,0x00000007);  //tail count (in chars)
6515 
6516   bind(SCAN_TO_8_CHAR_LOOP);
6517   movdqu(vec3, Address(result, 0));
6518   pcmpeqw(vec3, vec1);
6519   ptest(vec2, vec3);
6520   jcc(Assembler::carryClear, FOUND_CHAR);
6521   addptr(result, 16);
6522   subl(tmp, stride);
6523   jcc(Assembler::notZero, SCAN_TO_8_CHAR_LOOP);
6524   bind(SCAN_TO_CHAR);
6525   testl(cnt1, cnt1);
6526   jcc(Assembler::zero, RET_NOT_FOUND);
6527   bind(SCAN_TO_CHAR_LOOP);
6528   load_unsigned_short(tmp, Address(result, 0));
6529   cmpl(ch, tmp);
6530   jccb(Assembler::equal, FOUND_SEQ_CHAR);
6531   addptr(result, 2);
6532   subl(cnt1, 1);
6533   jccb(Assembler::zero, RET_NOT_FOUND);
6534   jmp(SCAN_TO_CHAR_LOOP);
6535 
6536   bind(RET_NOT_FOUND);
6537   movl(result, -1);
6538   jmpb(DONE_LABEL);
6539 
6540   bind(FOUND_CHAR);
6541   if (UseAVX >= 2) {
6542     vpmovmskb(tmp, vec3);
6543   } else {
6544     pmovmskb(tmp, vec3);
6545   }
6546   bsfl(ch, tmp);
6547   addl(result, ch);
6548 
6549   bind(FOUND_SEQ_CHAR);
6550   subptr(result, str1);
6551   shrl(result, 1);
6552 
6553   bind(DONE_LABEL);
6554 } // string_indexof_char
6555 
6556 // helper function for string_compare
6557 void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
6558                                         Address::ScaleFactor scale, Address::ScaleFactor scale1,
6559                                         Address::ScaleFactor scale2, Register index, int ae) {
6560   if (ae == StrIntrinsicNode::LL) {
6561     load_unsigned_byte(elem1, Address(str1, index, scale, 0));
6562     load_unsigned_byte(elem2, Address(str2, index, scale, 0));
6563   } else if (ae == StrIntrinsicNode::UU) {
6564     load_unsigned_short(elem1, Address(str1, index, scale, 0));
6565     load_unsigned_short(elem2, Address(str2, index, scale, 0));
6566   } else {
6567     load_unsigned_byte(elem1, Address(str1, index, scale1, 0));
6568     load_unsigned_short(elem2, Address(str2, index, scale2, 0));
6569   }
6570 }
6571 
6572 // Compare strings, used for char[] and byte[].
6573 void MacroAssembler::string_compare(Register str1, Register str2,
6574                                     Register cnt1, Register cnt2, Register result,
6575                                     XMMRegister vec1, int ae) {
6576   ShortBranchVerifier sbv(this);
6577   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
6578   Label COMPARE_WIDE_VECTORS_LOOP_FAILED;  // used only _LP64 && AVX3
6579   int stride, stride2, adr_stride, adr_stride1, adr_stride2;
6580   int stride2x2 = 0x40;
6581   Address::ScaleFactor scale = Address::no_scale;
6582   Address::ScaleFactor scale1 = Address::no_scale;
6583   Address::ScaleFactor scale2 = Address::no_scale;
6584 
6585   if (ae != StrIntrinsicNode::LL) {
6586     stride2x2 = 0x20;
6587   }
6588 
6589   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
6590     shrl(cnt2, 1);
6591   }
6592   // Compute the minimum of the string lengths and the
6593   // difference of the string lengths (stack).
6594   // Do the conditional move stuff
6595   movl(result, cnt1);
6596   subl(cnt1, cnt2);
6597   push(cnt1);
6598   cmov32(Assembler::lessEqual, cnt2, result);    // cnt2 = min(cnt1, cnt2)
6599 
6600   // Is the minimum length zero?
6601   testl(cnt2, cnt2);
6602   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6603   if (ae == StrIntrinsicNode::LL) {
6604     // Load first bytes
6605     load_unsigned_byte(result, Address(str1, 0));  // result = str1[0]
6606     load_unsigned_byte(cnt1, Address(str2, 0));    // cnt1   = str2[0]
6607   } else if (ae == StrIntrinsicNode::UU) {
6608     // Load first characters
6609     load_unsigned_short(result, Address(str1, 0));
6610     load_unsigned_short(cnt1, Address(str2, 0));
6611   } else {
6612     load_unsigned_byte(result, Address(str1, 0));
6613     load_unsigned_short(cnt1, Address(str2, 0));
6614   }
6615   subl(result, cnt1);
6616   jcc(Assembler::notZero,  POP_LABEL);
6617 
6618   if (ae == StrIntrinsicNode::UU) {
6619     // Divide length by 2 to get number of chars
6620     shrl(cnt2, 1);
6621   }
6622   cmpl(cnt2, 1);
6623   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6624 
6625   // Check if the strings start at the same location and setup scale and stride
6626   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6627     cmpptr(str1, str2);
6628     jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6629     if (ae == StrIntrinsicNode::LL) {
6630       scale = Address::times_1;
6631       stride = 16;
6632     } else {
6633       scale = Address::times_2;
6634       stride = 8;
6635     }
6636   } else {
6637     scale1 = Address::times_1;
6638     scale2 = Address::times_2;
6639     // scale not used
6640     stride = 8;
6641   }
6642 
6643   if (UseAVX >= 2 && UseSSE42Intrinsics) {
6644     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
6645     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
6646     Label COMPARE_WIDE_VECTORS_LOOP_AVX2;
6647     Label COMPARE_TAIL_LONG;
6648     Label COMPARE_WIDE_VECTORS_LOOP_AVX3;  // used only _LP64 && AVX3
6649 
6650     int pcmpmask = 0x19;
6651     if (ae == StrIntrinsicNode::LL) {
6652       pcmpmask &= ~0x01;
6653     }
6654 
6655     // Setup to compare 16-chars (32-bytes) vectors,
6656     // start from first character again because it has aligned address.
6657     if (ae == StrIntrinsicNode::LL) {
6658       stride2 = 32;
6659     } else {
6660       stride2 = 16;
6661     }
6662     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6663       adr_stride = stride << scale;
6664     } else {
6665       adr_stride1 = 8;  //stride << scale1;
6666       adr_stride2 = 16; //stride << scale2;
6667     }
6668 
6669     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6670     // rax and rdx are used by pcmpestri as elements counters
6671     movl(result, cnt2);
6672     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
6673     jcc(Assembler::zero, COMPARE_TAIL_LONG);
6674 
6675     // fast path : compare first 2 8-char vectors.
6676     bind(COMPARE_16_CHARS);
6677     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6678       movdqu(vec1, Address(str1, 0));
6679     } else {
6680       pmovzxbw(vec1, Address(str1, 0));
6681     }
6682     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6683     jccb(Assembler::below, COMPARE_INDEX_CHAR);
6684 
6685     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6686       movdqu(vec1, Address(str1, adr_stride));
6687       pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
6688     } else {
6689       pmovzxbw(vec1, Address(str1, adr_stride1));
6690       pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask);
6691     }
6692     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
6693     addl(cnt1, stride);
6694 
6695     // Compare the characters at index in cnt1
6696     bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character
6697     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
6698     subl(result, cnt2);
6699     jmp(POP_LABEL);
6700 
6701     // Setup the registers to start vector comparison loop
6702     bind(COMPARE_WIDE_VECTORS);
6703     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6704       lea(str1, Address(str1, result, scale));
6705       lea(str2, Address(str2, result, scale));
6706     } else {
6707       lea(str1, Address(str1, result, scale1));
6708       lea(str2, Address(str2, result, scale2));
6709     }
6710     subl(result, stride2);
6711     subl(cnt2, stride2);
6712     jcc(Assembler::zero, COMPARE_WIDE_TAIL);
6713     negptr(result);
6714 
6715     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
6716     bind(COMPARE_WIDE_VECTORS_LOOP);
6717 
6718 #ifdef _LP64
6719     if ((AVX3Threshold == 0) && VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
6720       cmpl(cnt2, stride2x2);
6721       jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2);
6722       testl(cnt2, stride2x2-1);   // cnt2 holds the vector count
6723       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2);   // means we cannot subtract by 0x40
6724 
6725       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
6726       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6727         evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit);
6728         evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
6729       } else {
6730         vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit);
6731         evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
6732       }
6733       kortestql(k7, k7);
6734       jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED);     // miscompare
6735       addptr(result, stride2x2);  // update since we already compared at this addr
6736       subl(cnt2, stride2x2);      // and sub the size too
6737       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3);
6738 
6739       vpxor(vec1, vec1);
6740       jmpb(COMPARE_WIDE_TAIL);
6741     }//if (VM_Version::supports_avx512vlbw())
6742 #endif // _LP64
6743 
6744 
6745     bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
6746     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6747       vmovdqu(vec1, Address(str1, result, scale));
6748       vpxor(vec1, Address(str2, result, scale));
6749     } else {
6750       vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit);
6751       vpxor(vec1, Address(str2, result, scale2));
6752     }
6753     vptest(vec1, vec1);
6754     jcc(Assembler::notZero, VECTOR_NOT_EQUAL);
6755     addptr(result, stride2);
6756     subl(cnt2, stride2);
6757     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
6758     // clean upper bits of YMM registers
6759     vpxor(vec1, vec1);
6760 
6761     // compare wide vectors tail
6762     bind(COMPARE_WIDE_TAIL);
6763     testptr(result, result);
6764     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6765 
6766     movl(result, stride2);
6767     movl(cnt2, result);
6768     negptr(result);
6769     jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2);
6770 
6771     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
6772     bind(VECTOR_NOT_EQUAL);
6773     // clean upper bits of YMM registers
6774     vpxor(vec1, vec1);
6775     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6776       lea(str1, Address(str1, result, scale));
6777       lea(str2, Address(str2, result, scale));
6778     } else {
6779       lea(str1, Address(str1, result, scale1));
6780       lea(str2, Address(str2, result, scale2));
6781     }
6782     jmp(COMPARE_16_CHARS);
6783 
6784     // Compare tail chars, length between 1 to 15 chars
6785     bind(COMPARE_TAIL_LONG);
6786     movl(cnt2, result);
6787     cmpl(cnt2, stride);
6788     jcc(Assembler::less, COMPARE_SMALL_STR);
6789 
6790     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6791       movdqu(vec1, Address(str1, 0));
6792     } else {
6793       pmovzxbw(vec1, Address(str1, 0));
6794     }
6795     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6796     jcc(Assembler::below, COMPARE_INDEX_CHAR);
6797     subptr(cnt2, stride);
6798     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6799     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6800       lea(str1, Address(str1, result, scale));
6801       lea(str2, Address(str2, result, scale));
6802     } else {
6803       lea(str1, Address(str1, result, scale1));
6804       lea(str2, Address(str2, result, scale2));
6805     }
6806     negptr(cnt2);
6807     jmpb(WHILE_HEAD_LABEL);
6808 
6809     bind(COMPARE_SMALL_STR);
6810   } else if (UseSSE42Intrinsics) {
6811     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
6812     int pcmpmask = 0x19;
6813     // Setup to compare 8-char (16-byte) vectors,
6814     // start from first character again because it has aligned address.
6815     movl(result, cnt2);
6816     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
6817     if (ae == StrIntrinsicNode::LL) {
6818       pcmpmask &= ~0x01;
6819     }
6820     jcc(Assembler::zero, COMPARE_TAIL);
6821     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6822       lea(str1, Address(str1, result, scale));
6823       lea(str2, Address(str2, result, scale));
6824     } else {
6825       lea(str1, Address(str1, result, scale1));
6826       lea(str2, Address(str2, result, scale2));
6827     }
6828     negptr(result);
6829 
6830     // pcmpestri
6831     //   inputs:
6832     //     vec1- substring
6833     //     rax - negative string length (elements count)
6834     //     mem - scanned string
6835     //     rdx - string length (elements count)
6836     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
6837     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
6838     //   outputs:
6839     //     rcx - first mismatched element index
6840     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6841 
6842     bind(COMPARE_WIDE_VECTORS);
6843     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6844       movdqu(vec1, Address(str1, result, scale));
6845       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6846     } else {
6847       pmovzxbw(vec1, Address(str1, result, scale1));
6848       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
6849     }
6850     // After pcmpestri cnt1(rcx) contains mismatched element index
6851 
6852     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
6853     addptr(result, stride);
6854     subptr(cnt2, stride);
6855     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
6856 
6857     // compare wide vectors tail
6858     testptr(result, result);
6859     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6860 
6861     movl(cnt2, stride);
6862     movl(result, stride);
6863     negptr(result);
6864     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6865       movdqu(vec1, Address(str1, result, scale));
6866       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6867     } else {
6868       pmovzxbw(vec1, Address(str1, result, scale1));
6869       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
6870     }
6871     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
6872 
6873     // Mismatched characters in the vectors
6874     bind(VECTOR_NOT_EQUAL);
6875     addptr(cnt1, result);
6876     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
6877     subl(result, cnt2);
6878     jmpb(POP_LABEL);
6879 
6880     bind(COMPARE_TAIL); // limit is zero
6881     movl(cnt2, result);
6882     // Fallthru to tail compare
6883   }
6884   // Shift str2 and str1 to the end of the arrays, negate min
6885   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6886     lea(str1, Address(str1, cnt2, scale));
6887     lea(str2, Address(str2, cnt2, scale));
6888   } else {
6889     lea(str1, Address(str1, cnt2, scale1));
6890     lea(str2, Address(str2, cnt2, scale2));
6891   }
6892   decrementl(cnt2);  // first character was compared already
6893   negptr(cnt2);
6894 
6895   // Compare the rest of the elements
6896   bind(WHILE_HEAD_LABEL);
6897   load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae);
6898   subl(result, cnt1);
6899   jccb(Assembler::notZero, POP_LABEL);
6900   increment(cnt2);
6901   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
6902 
6903   // Strings are equal up to min length.  Return the length difference.
6904   bind(LENGTH_DIFF_LABEL);
6905   pop(result);
6906   if (ae == StrIntrinsicNode::UU) {
6907     // Divide diff by 2 to get number of chars
6908     sarl(result, 1);
6909   }
6910   jmpb(DONE_LABEL);
6911 
6912 #ifdef _LP64
6913   if (VM_Version::supports_avx512vlbw()) {
6914 
6915     bind(COMPARE_WIDE_VECTORS_LOOP_FAILED);
6916 
6917     kmovql(cnt1, k7);
6918     notq(cnt1);
6919     bsfq(cnt2, cnt1);
6920     if (ae != StrIntrinsicNode::LL) {
6921       // Divide diff by 2 to get number of chars
6922       sarl(cnt2, 1);
6923     }
6924     addq(result, cnt2);
6925     if (ae == StrIntrinsicNode::LL) {
6926       load_unsigned_byte(cnt1, Address(str2, result));
6927       load_unsigned_byte(result, Address(str1, result));
6928     } else if (ae == StrIntrinsicNode::UU) {
6929       load_unsigned_short(cnt1, Address(str2, result, scale));
6930       load_unsigned_short(result, Address(str1, result, scale));
6931     } else {
6932       load_unsigned_short(cnt1, Address(str2, result, scale2));
6933       load_unsigned_byte(result, Address(str1, result, scale1));
6934     }
6935     subl(result, cnt1);
6936     jmpb(POP_LABEL);
6937   }//if (VM_Version::supports_avx512vlbw())
6938 #endif // _LP64
6939 
6940   // Discard the stored length difference
6941   bind(POP_LABEL);
6942   pop(cnt1);
6943 
6944   // That's it
6945   bind(DONE_LABEL);
6946   if(ae == StrIntrinsicNode::UL) {
6947     negl(result);
6948   }
6949 
6950 }
6951 
6952 // Search for Non-ASCII character (Negative byte value) in a byte array,
6953 // return true if it has any and false otherwise.
6954 //   ..\jdk\src\java.base\share\classes\java\lang\StringCoding.java
6955 //   @HotSpotIntrinsicCandidate
6956 //   private static boolean hasNegatives(byte[] ba, int off, int len) {
6957 //     for (int i = off; i < off + len; i++) {
6958 //       if (ba[i] < 0) {
6959 //         return true;
6960 //       }
6961 //     }
6962 //     return false;
6963 //   }
6964 void MacroAssembler::has_negatives(Register ary1, Register len,
6965   Register result, Register tmp1,
6966   XMMRegister vec1, XMMRegister vec2) {
6967   // rsi: byte array
6968   // rcx: len
6969   // rax: result
6970   ShortBranchVerifier sbv(this);
6971   assert_different_registers(ary1, len, result, tmp1);
6972   assert_different_registers(vec1, vec2);
6973   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE;
6974 
6975   // len == 0
6976   testl(len, len);
6977   jcc(Assembler::zero, FALSE_LABEL);
6978 
6979   if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512
6980     VM_Version::supports_avx512vlbw() &&
6981     VM_Version::supports_bmi2()) {
6982 
6983     Label test_64_loop, test_tail;
6984     Register tmp3_aliased = len;
6985 
6986     movl(tmp1, len);
6987     vpxor(vec2, vec2, vec2, Assembler::AVX_512bit);
6988 
6989     andl(tmp1, 64 - 1);   // tail count (in chars) 0x3F
6990     andl(len, ~(64 - 1));    // vector count (in chars)
6991     jccb(Assembler::zero, test_tail);
6992 
6993     lea(ary1, Address(ary1, len, Address::times_1));
6994     negptr(len);
6995 
6996     bind(test_64_loop);
6997     // Check whether our 64 elements of size byte contain negatives
6998     evpcmpgtb(k2, vec2, Address(ary1, len, Address::times_1), Assembler::AVX_512bit);
6999     kortestql(k2, k2);
7000     jcc(Assembler::notZero, TRUE_LABEL);
7001 
7002     addptr(len, 64);
7003     jccb(Assembler::notZero, test_64_loop);
7004 
7005 
7006     bind(test_tail);
7007     // bail out when there is nothing to be done
7008     testl(tmp1, -1);
7009     jcc(Assembler::zero, FALSE_LABEL);
7010 
7011     // ~(~0 << len) applied up to two times (for 32-bit scenario)
7012 #ifdef _LP64
7013     mov64(tmp3_aliased, 0xFFFFFFFFFFFFFFFF);
7014     shlxq(tmp3_aliased, tmp3_aliased, tmp1);
7015     notq(tmp3_aliased);
7016     kmovql(k3, tmp3_aliased);
7017 #else
7018     Label k_init;
7019     jmp(k_init);
7020 
7021     // We could not read 64-bits from a general purpose register thus we move
7022     // data required to compose 64 1's to the instruction stream
7023     // We emit 64 byte wide series of elements from 0..63 which later on would
7024     // be used as a compare targets with tail count contained in tmp1 register.
7025     // Result would be a k register having tmp1 consecutive number or 1
7026     // counting from least significant bit.
7027     address tmp = pc();
7028     emit_int64(0x0706050403020100);
7029     emit_int64(0x0F0E0D0C0B0A0908);
7030     emit_int64(0x1716151413121110);
7031     emit_int64(0x1F1E1D1C1B1A1918);
7032     emit_int64(0x2726252423222120);
7033     emit_int64(0x2F2E2D2C2B2A2928);
7034     emit_int64(0x3736353433323130);
7035     emit_int64(0x3F3E3D3C3B3A3938);
7036 
7037     bind(k_init);
7038     lea(len, InternalAddress(tmp));
7039     // create mask to test for negative byte inside a vector
7040     evpbroadcastb(vec1, tmp1, Assembler::AVX_512bit);
7041     evpcmpgtb(k3, vec1, Address(len, 0), Assembler::AVX_512bit);
7042 
7043 #endif
7044     evpcmpgtb(k2, k3, vec2, Address(ary1, 0), Assembler::AVX_512bit);
7045     ktestq(k2, k3);
7046     jcc(Assembler::notZero, TRUE_LABEL);
7047 
7048     jmp(FALSE_LABEL);
7049   } else {
7050     movl(result, len); // copy
7051 
7052     if (UseAVX >= 2 && UseSSE >= 2) {
7053       // With AVX2, use 32-byte vector compare
7054       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7055 
7056       // Compare 32-byte vectors
7057       andl(result, 0x0000001f);  //   tail count (in bytes)
7058       andl(len, 0xffffffe0);   // vector count (in bytes)
7059       jccb(Assembler::zero, COMPARE_TAIL);
7060 
7061       lea(ary1, Address(ary1, len, Address::times_1));
7062       negptr(len);
7063 
7064       movl(tmp1, 0x80808080);   // create mask to test for Unicode chars in vector
7065       movdl(vec2, tmp1);
7066       vpbroadcastd(vec2, vec2, Assembler::AVX_256bit);
7067 
7068       bind(COMPARE_WIDE_VECTORS);
7069       vmovdqu(vec1, Address(ary1, len, Address::times_1));
7070       vptest(vec1, vec2);
7071       jccb(Assembler::notZero, TRUE_LABEL);
7072       addptr(len, 32);
7073       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7074 
7075       testl(result, result);
7076       jccb(Assembler::zero, FALSE_LABEL);
7077 
7078       vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
7079       vptest(vec1, vec2);
7080       jccb(Assembler::notZero, TRUE_LABEL);
7081       jmpb(FALSE_LABEL);
7082 
7083       bind(COMPARE_TAIL); // len is zero
7084       movl(len, result);
7085       // Fallthru to tail compare
7086     } else if (UseSSE42Intrinsics) {
7087       // With SSE4.2, use double quad vector compare
7088       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7089 
7090       // Compare 16-byte vectors
7091       andl(result, 0x0000000f);  //   tail count (in bytes)
7092       andl(len, 0xfffffff0);   // vector count (in bytes)
7093       jcc(Assembler::zero, COMPARE_TAIL);
7094 
7095       lea(ary1, Address(ary1, len, Address::times_1));
7096       negptr(len);
7097 
7098       movl(tmp1, 0x80808080);
7099       movdl(vec2, tmp1);
7100       pshufd(vec2, vec2, 0);
7101 
7102       bind(COMPARE_WIDE_VECTORS);
7103       movdqu(vec1, Address(ary1, len, Address::times_1));
7104       ptest(vec1, vec2);
7105       jcc(Assembler::notZero, TRUE_LABEL);
7106       addptr(len, 16);
7107       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7108 
7109       testl(result, result);
7110       jcc(Assembler::zero, FALSE_LABEL);
7111 
7112       movdqu(vec1, Address(ary1, result, Address::times_1, -16));
7113       ptest(vec1, vec2);
7114       jccb(Assembler::notZero, TRUE_LABEL);
7115       jmpb(FALSE_LABEL);
7116 
7117       bind(COMPARE_TAIL); // len is zero
7118       movl(len, result);
7119       // Fallthru to tail compare
7120     }
7121   }
7122   // Compare 4-byte vectors
7123   andl(len, 0xfffffffc); // vector count (in bytes)
7124   jccb(Assembler::zero, COMPARE_CHAR);
7125 
7126   lea(ary1, Address(ary1, len, Address::times_1));
7127   negptr(len);
7128 
7129   bind(COMPARE_VECTORS);
7130   movl(tmp1, Address(ary1, len, Address::times_1));
7131   andl(tmp1, 0x80808080);
7132   jccb(Assembler::notZero, TRUE_LABEL);
7133   addptr(len, 4);
7134   jcc(Assembler::notZero, COMPARE_VECTORS);
7135 
7136   // Compare trailing char (final 2 bytes), if any
7137   bind(COMPARE_CHAR);
7138   testl(result, 0x2);   // tail  char
7139   jccb(Assembler::zero, COMPARE_BYTE);
7140   load_unsigned_short(tmp1, Address(ary1, 0));
7141   andl(tmp1, 0x00008080);
7142   jccb(Assembler::notZero, TRUE_LABEL);
7143   subptr(result, 2);
7144   lea(ary1, Address(ary1, 2));
7145 
7146   bind(COMPARE_BYTE);
7147   testl(result, 0x1);   // tail  byte
7148   jccb(Assembler::zero, FALSE_LABEL);
7149   load_unsigned_byte(tmp1, Address(ary1, 0));
7150   andl(tmp1, 0x00000080);
7151   jccb(Assembler::notEqual, TRUE_LABEL);
7152   jmpb(FALSE_LABEL);
7153 
7154   bind(TRUE_LABEL);
7155   movl(result, 1);   // return true
7156   jmpb(DONE);
7157 
7158   bind(FALSE_LABEL);
7159   xorl(result, result); // return false
7160 
7161   // That's it
7162   bind(DONE);
7163   if (UseAVX >= 2 && UseSSE >= 2) {
7164     // clean upper bits of YMM registers
7165     vpxor(vec1, vec1);
7166     vpxor(vec2, vec2);
7167   }
7168 }
7169 // Compare char[] or byte[] arrays aligned to 4 bytes or substrings.
7170 void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2,
7171                                    Register limit, Register result, Register chr,
7172                                    XMMRegister vec1, XMMRegister vec2, bool is_char) {
7173   ShortBranchVerifier sbv(this);
7174   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE;
7175 
7176   int length_offset  = arrayOopDesc::length_offset_in_bytes();
7177   int base_offset    = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE);
7178 
7179   if (is_array_equ) {
7180     // Check the input args
7181     cmpoop(ary1, ary2);
7182     jcc(Assembler::equal, TRUE_LABEL);
7183 
7184     // Need additional checks for arrays_equals.
7185     testptr(ary1, ary1);
7186     jcc(Assembler::zero, FALSE_LABEL);
7187     testptr(ary2, ary2);
7188     jcc(Assembler::zero, FALSE_LABEL);
7189 
7190     // Check the lengths
7191     movl(limit, Address(ary1, length_offset));
7192     cmpl(limit, Address(ary2, length_offset));
7193     jcc(Assembler::notEqual, FALSE_LABEL);
7194   }
7195 
7196   // count == 0
7197   testl(limit, limit);
7198   jcc(Assembler::zero, TRUE_LABEL);
7199 
7200   if (is_array_equ) {
7201     // Load array address
7202     lea(ary1, Address(ary1, base_offset));
7203     lea(ary2, Address(ary2, base_offset));
7204   }
7205 
7206   if (is_array_equ && is_char) {
7207     // arrays_equals when used for char[].
7208     shll(limit, 1);      // byte count != 0
7209   }
7210   movl(result, limit); // copy
7211 
7212   if (UseAVX >= 2) {
7213     // With AVX2, use 32-byte vector compare
7214     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7215 
7216     // Compare 32-byte vectors
7217     andl(result, 0x0000001f);  //   tail count (in bytes)
7218     andl(limit, 0xffffffe0);   // vector count (in bytes)
7219     jcc(Assembler::zero, COMPARE_TAIL);
7220 
7221     lea(ary1, Address(ary1, limit, Address::times_1));
7222     lea(ary2, Address(ary2, limit, Address::times_1));
7223     negptr(limit);
7224 
7225 #ifdef _LP64
7226     if ((AVX3Threshold == 0) && VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
7227       Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3;
7228 
7229       cmpl(limit, -64);
7230       jcc(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2);
7231 
7232       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
7233 
7234       evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit);
7235       evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit);
7236       kortestql(k7, k7);
7237       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
7238       addptr(limit, 64);  // update since we already compared at this addr
7239       cmpl(limit, -64);
7240       jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3);
7241 
7242       // At this point we may still need to compare -limit+result bytes.
7243       // We could execute the next two instruction and just continue via non-wide path:
7244       //  cmpl(limit, 0);
7245       //  jcc(Assembler::equal, COMPARE_TAIL);  // true
7246       // But since we stopped at the points ary{1,2}+limit which are
7247       // not farther than 64 bytes from the ends of arrays ary{1,2}+result
7248       // (|limit| <= 32 and result < 32),
7249       // we may just compare the last 64 bytes.
7250       //
7251       addptr(result, -64);   // it is safe, bc we just came from this area
7252       evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit);
7253       evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit);
7254       kortestql(k7, k7);
7255       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
7256 
7257       jmp(TRUE_LABEL);
7258 
7259       bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7260 
7261     }//if (VM_Version::supports_avx512vlbw())
7262 #endif //_LP64
7263     bind(COMPARE_WIDE_VECTORS);
7264     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
7265     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
7266     vpxor(vec1, vec2);
7267 
7268     vptest(vec1, vec1);
7269     jcc(Assembler::notZero, FALSE_LABEL);
7270     addptr(limit, 32);
7271     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7272 
7273     testl(result, result);
7274     jcc(Assembler::zero, TRUE_LABEL);
7275 
7276     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
7277     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
7278     vpxor(vec1, vec2);
7279 
7280     vptest(vec1, vec1);
7281     jccb(Assembler::notZero, FALSE_LABEL);
7282     jmpb(TRUE_LABEL);
7283 
7284     bind(COMPARE_TAIL); // limit is zero
7285     movl(limit, result);
7286     // Fallthru to tail compare
7287   } else if (UseSSE42Intrinsics) {
7288     // With SSE4.2, use double quad vector compare
7289     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7290 
7291     // Compare 16-byte vectors
7292     andl(result, 0x0000000f);  //   tail count (in bytes)
7293     andl(limit, 0xfffffff0);   // vector count (in bytes)
7294     jcc(Assembler::zero, COMPARE_TAIL);
7295 
7296     lea(ary1, Address(ary1, limit, Address::times_1));
7297     lea(ary2, Address(ary2, limit, Address::times_1));
7298     negptr(limit);
7299 
7300     bind(COMPARE_WIDE_VECTORS);
7301     movdqu(vec1, Address(ary1, limit, Address::times_1));
7302     movdqu(vec2, Address(ary2, limit, Address::times_1));
7303     pxor(vec1, vec2);
7304 
7305     ptest(vec1, vec1);
7306     jcc(Assembler::notZero, FALSE_LABEL);
7307     addptr(limit, 16);
7308     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7309 
7310     testl(result, result);
7311     jcc(Assembler::zero, TRUE_LABEL);
7312 
7313     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
7314     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
7315     pxor(vec1, vec2);
7316 
7317     ptest(vec1, vec1);
7318     jccb(Assembler::notZero, FALSE_LABEL);
7319     jmpb(TRUE_LABEL);
7320 
7321     bind(COMPARE_TAIL); // limit is zero
7322     movl(limit, result);
7323     // Fallthru to tail compare
7324   }
7325 
7326   // Compare 4-byte vectors
7327   andl(limit, 0xfffffffc); // vector count (in bytes)
7328   jccb(Assembler::zero, COMPARE_CHAR);
7329 
7330   lea(ary1, Address(ary1, limit, Address::times_1));
7331   lea(ary2, Address(ary2, limit, Address::times_1));
7332   negptr(limit);
7333 
7334   bind(COMPARE_VECTORS);
7335   movl(chr, Address(ary1, limit, Address::times_1));
7336   cmpl(chr, Address(ary2, limit, Address::times_1));
7337   jccb(Assembler::notEqual, FALSE_LABEL);
7338   addptr(limit, 4);
7339   jcc(Assembler::notZero, COMPARE_VECTORS);
7340 
7341   // Compare trailing char (final 2 bytes), if any
7342   bind(COMPARE_CHAR);
7343   testl(result, 0x2);   // tail  char
7344   jccb(Assembler::zero, COMPARE_BYTE);
7345   load_unsigned_short(chr, Address(ary1, 0));
7346   load_unsigned_short(limit, Address(ary2, 0));
7347   cmpl(chr, limit);
7348   jccb(Assembler::notEqual, FALSE_LABEL);
7349 
7350   if (is_array_equ && is_char) {
7351     bind(COMPARE_BYTE);
7352   } else {
7353     lea(ary1, Address(ary1, 2));
7354     lea(ary2, Address(ary2, 2));
7355 
7356     bind(COMPARE_BYTE);
7357     testl(result, 0x1);   // tail  byte
7358     jccb(Assembler::zero, TRUE_LABEL);
7359     load_unsigned_byte(chr, Address(ary1, 0));
7360     load_unsigned_byte(limit, Address(ary2, 0));
7361     cmpl(chr, limit);
7362     jccb(Assembler::notEqual, FALSE_LABEL);
7363   }
7364   bind(TRUE_LABEL);
7365   movl(result, 1);   // return true
7366   jmpb(DONE);
7367 
7368   bind(FALSE_LABEL);
7369   xorl(result, result); // return false
7370 
7371   // That's it
7372   bind(DONE);
7373   if (UseAVX >= 2) {
7374     // clean upper bits of YMM registers
7375     vpxor(vec1, vec1);
7376     vpxor(vec2, vec2);
7377   }
7378 }
7379 
7380 #endif
7381 
7382 void MacroAssembler::generate_fill(BasicType t, bool aligned,
7383                                    Register to, Register value, Register count,
7384                                    Register rtmp, XMMRegister xtmp) {
7385   ShortBranchVerifier sbv(this);
7386   assert_different_registers(to, value, count, rtmp);
7387   Label L_exit;
7388   Label L_fill_2_bytes, L_fill_4_bytes;
7389 
7390   int shift = -1;
7391   switch (t) {
7392     case T_BYTE:
7393       shift = 2;
7394       break;
7395     case T_SHORT:
7396       shift = 1;
7397       break;
7398     case T_INT:
7399       shift = 0;
7400       break;
7401     default: ShouldNotReachHere();
7402   }
7403 
7404   if (t == T_BYTE) {
7405     andl(value, 0xff);
7406     movl(rtmp, value);
7407     shll(rtmp, 8);
7408     orl(value, rtmp);
7409   }
7410   if (t == T_SHORT) {
7411     andl(value, 0xffff);
7412   }
7413   if (t == T_BYTE || t == T_SHORT) {
7414     movl(rtmp, value);
7415     shll(rtmp, 16);
7416     orl(value, rtmp);
7417   }
7418 
7419   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
7420   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
7421   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
7422     Label L_skip_align2;
7423     // align source address at 4 bytes address boundary
7424     if (t == T_BYTE) {
7425       Label L_skip_align1;
7426       // One byte misalignment happens only for byte arrays
7427       testptr(to, 1);
7428       jccb(Assembler::zero, L_skip_align1);
7429       movb(Address(to, 0), value);
7430       increment(to);
7431       decrement(count);
7432       BIND(L_skip_align1);
7433     }
7434     // Two bytes misalignment happens only for byte and short (char) arrays
7435     testptr(to, 2);
7436     jccb(Assembler::zero, L_skip_align2);
7437     movw(Address(to, 0), value);
7438     addptr(to, 2);
7439     subl(count, 1<<(shift-1));
7440     BIND(L_skip_align2);
7441   }
7442   if (UseSSE < 2) {
7443     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7444     // Fill 32-byte chunks
7445     subl(count, 8 << shift);
7446     jcc(Assembler::less, L_check_fill_8_bytes);
7447     align(16);
7448 
7449     BIND(L_fill_32_bytes_loop);
7450 
7451     for (int i = 0; i < 32; i += 4) {
7452       movl(Address(to, i), value);
7453     }
7454 
7455     addptr(to, 32);
7456     subl(count, 8 << shift);
7457     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7458     BIND(L_check_fill_8_bytes);
7459     addl(count, 8 << shift);
7460     jccb(Assembler::zero, L_exit);
7461     jmpb(L_fill_8_bytes);
7462 
7463     //
7464     // length is too short, just fill qwords
7465     //
7466     BIND(L_fill_8_bytes_loop);
7467     movl(Address(to, 0), value);
7468     movl(Address(to, 4), value);
7469     addptr(to, 8);
7470     BIND(L_fill_8_bytes);
7471     subl(count, 1 << (shift + 1));
7472     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7473     // fall through to fill 4 bytes
7474   } else {
7475     Label L_fill_32_bytes;
7476     if (!UseUnalignedLoadStores) {
7477       // align to 8 bytes, we know we are 4 byte aligned to start
7478       testptr(to, 4);
7479       jccb(Assembler::zero, L_fill_32_bytes);
7480       movl(Address(to, 0), value);
7481       addptr(to, 4);
7482       subl(count, 1<<shift);
7483     }
7484     BIND(L_fill_32_bytes);
7485     {
7486       assert( UseSSE >= 2, "supported cpu only" );
7487       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7488       movdl(xtmp, value);
7489       if (UseAVX >= 2 && UseUnalignedLoadStores) {
7490         Label L_check_fill_32_bytes;
7491         if (UseAVX > 2) {
7492           // Fill 64-byte chunks
7493           Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2;
7494 
7495           // If number of bytes to fill < AVX3Threshold, perform fill using AVX2
7496           cmpl(count, AVX3Threshold);
7497           jccb(Assembler::below, L_check_fill_64_bytes_avx2);
7498 
7499           vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
7500 
7501           subl(count, 16 << shift);
7502           jccb(Assembler::less, L_check_fill_32_bytes);
7503           align(16);
7504 
7505           BIND(L_fill_64_bytes_loop_avx3);
7506           evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
7507           addptr(to, 64);
7508           subl(count, 16 << shift);
7509           jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3);
7510           jmpb(L_check_fill_32_bytes);
7511 
7512           BIND(L_check_fill_64_bytes_avx2);
7513         }
7514         // Fill 64-byte chunks
7515         Label L_fill_64_bytes_loop;
7516         vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit);
7517 
7518         subl(count, 16 << shift);
7519         jcc(Assembler::less, L_check_fill_32_bytes);
7520         align(16);
7521 
7522         BIND(L_fill_64_bytes_loop);
7523         vmovdqu(Address(to, 0), xtmp);
7524         vmovdqu(Address(to, 32), xtmp);
7525         addptr(to, 64);
7526         subl(count, 16 << shift);
7527         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7528 
7529         BIND(L_check_fill_32_bytes);
7530         addl(count, 8 << shift);
7531         jccb(Assembler::less, L_check_fill_8_bytes);
7532         vmovdqu(Address(to, 0), xtmp);
7533         addptr(to, 32);
7534         subl(count, 8 << shift);
7535 
7536         BIND(L_check_fill_8_bytes);
7537         // clean upper bits of YMM registers
7538         movdl(xtmp, value);
7539         pshufd(xtmp, xtmp, 0);
7540       } else {
7541         // Fill 32-byte chunks
7542         pshufd(xtmp, xtmp, 0);
7543 
7544         subl(count, 8 << shift);
7545         jcc(Assembler::less, L_check_fill_8_bytes);
7546         align(16);
7547 
7548         BIND(L_fill_32_bytes_loop);
7549 
7550         if (UseUnalignedLoadStores) {
7551           movdqu(Address(to, 0), xtmp);
7552           movdqu(Address(to, 16), xtmp);
7553         } else {
7554           movq(Address(to, 0), xtmp);
7555           movq(Address(to, 8), xtmp);
7556           movq(Address(to, 16), xtmp);
7557           movq(Address(to, 24), xtmp);
7558         }
7559 
7560         addptr(to, 32);
7561         subl(count, 8 << shift);
7562         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7563 
7564         BIND(L_check_fill_8_bytes);
7565       }
7566       addl(count, 8 << shift);
7567       jccb(Assembler::zero, L_exit);
7568       jmpb(L_fill_8_bytes);
7569 
7570       //
7571       // length is too short, just fill qwords
7572       //
7573       BIND(L_fill_8_bytes_loop);
7574       movq(Address(to, 0), xtmp);
7575       addptr(to, 8);
7576       BIND(L_fill_8_bytes);
7577       subl(count, 1 << (shift + 1));
7578       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7579     }
7580   }
7581   // fill trailing 4 bytes
7582   BIND(L_fill_4_bytes);
7583   testl(count, 1<<shift);
7584   jccb(Assembler::zero, L_fill_2_bytes);
7585   movl(Address(to, 0), value);
7586   if (t == T_BYTE || t == T_SHORT) {
7587     Label L_fill_byte;
7588     addptr(to, 4);
7589     BIND(L_fill_2_bytes);
7590     // fill trailing 2 bytes
7591     testl(count, 1<<(shift-1));
7592     jccb(Assembler::zero, L_fill_byte);
7593     movw(Address(to, 0), value);
7594     if (t == T_BYTE) {
7595       addptr(to, 2);
7596       BIND(L_fill_byte);
7597       // fill trailing byte
7598       testl(count, 1);
7599       jccb(Assembler::zero, L_exit);
7600       movb(Address(to, 0), value);
7601     } else {
7602       BIND(L_fill_byte);
7603     }
7604   } else {
7605     BIND(L_fill_2_bytes);
7606   }
7607   BIND(L_exit);
7608 }
7609 
7610 // encode char[] to byte[] in ISO_8859_1
7611    //@HotSpotIntrinsicCandidate
7612    //private static int implEncodeISOArray(byte[] sa, int sp,
7613    //byte[] da, int dp, int len) {
7614    //  int i = 0;
7615    //  for (; i < len; i++) {
7616    //    char c = StringUTF16.getChar(sa, sp++);
7617    //    if (c > '\u00FF')
7618    //      break;
7619    //    da[dp++] = (byte)c;
7620    //  }
7621    //  return i;
7622    //}
7623 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
7624   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
7625   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
7626   Register tmp5, Register result) {
7627 
7628   // rsi: src
7629   // rdi: dst
7630   // rdx: len
7631   // rcx: tmp5
7632   // rax: result
7633   ShortBranchVerifier sbv(this);
7634   assert_different_registers(src, dst, len, tmp5, result);
7635   Label L_done, L_copy_1_char, L_copy_1_char_exit;
7636 
7637   // set result
7638   xorl(result, result);
7639   // check for zero length
7640   testl(len, len);
7641   jcc(Assembler::zero, L_done);
7642 
7643   movl(result, len);
7644 
7645   // Setup pointers
7646   lea(src, Address(src, len, Address::times_2)); // char[]
7647   lea(dst, Address(dst, len, Address::times_1)); // byte[]
7648   negptr(len);
7649 
7650   if (UseSSE42Intrinsics || UseAVX >= 2) {
7651     Label L_copy_8_chars, L_copy_8_chars_exit;
7652     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
7653 
7654     if (UseAVX >= 2) {
7655       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
7656       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7657       movdl(tmp1Reg, tmp5);
7658       vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit);
7659       jmp(L_chars_32_check);
7660 
7661       bind(L_copy_32_chars);
7662       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
7663       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
7664       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7665       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7666       jccb(Assembler::notZero, L_copy_32_chars_exit);
7667       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7668       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
7669       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
7670 
7671       bind(L_chars_32_check);
7672       addptr(len, 32);
7673       jcc(Assembler::lessEqual, L_copy_32_chars);
7674 
7675       bind(L_copy_32_chars_exit);
7676       subptr(len, 16);
7677       jccb(Assembler::greater, L_copy_16_chars_exit);
7678 
7679     } else if (UseSSE42Intrinsics) {
7680       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7681       movdl(tmp1Reg, tmp5);
7682       pshufd(tmp1Reg, tmp1Reg, 0);
7683       jmpb(L_chars_16_check);
7684     }
7685 
7686     bind(L_copy_16_chars);
7687     if (UseAVX >= 2) {
7688       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
7689       vptest(tmp2Reg, tmp1Reg);
7690       jcc(Assembler::notZero, L_copy_16_chars_exit);
7691       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
7692       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
7693     } else {
7694       if (UseAVX > 0) {
7695         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7696         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7697         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
7698       } else {
7699         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7700         por(tmp2Reg, tmp3Reg);
7701         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7702         por(tmp2Reg, tmp4Reg);
7703       }
7704       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7705       jccb(Assembler::notZero, L_copy_16_chars_exit);
7706       packuswb(tmp3Reg, tmp4Reg);
7707     }
7708     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
7709 
7710     bind(L_chars_16_check);
7711     addptr(len, 16);
7712     jcc(Assembler::lessEqual, L_copy_16_chars);
7713 
7714     bind(L_copy_16_chars_exit);
7715     if (UseAVX >= 2) {
7716       // clean upper bits of YMM registers
7717       vpxor(tmp2Reg, tmp2Reg);
7718       vpxor(tmp3Reg, tmp3Reg);
7719       vpxor(tmp4Reg, tmp4Reg);
7720       movdl(tmp1Reg, tmp5);
7721       pshufd(tmp1Reg, tmp1Reg, 0);
7722     }
7723     subptr(len, 8);
7724     jccb(Assembler::greater, L_copy_8_chars_exit);
7725 
7726     bind(L_copy_8_chars);
7727     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
7728     ptest(tmp3Reg, tmp1Reg);
7729     jccb(Assembler::notZero, L_copy_8_chars_exit);
7730     packuswb(tmp3Reg, tmp1Reg);
7731     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
7732     addptr(len, 8);
7733     jccb(Assembler::lessEqual, L_copy_8_chars);
7734 
7735     bind(L_copy_8_chars_exit);
7736     subptr(len, 8);
7737     jccb(Assembler::zero, L_done);
7738   }
7739 
7740   bind(L_copy_1_char);
7741   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
7742   testl(tmp5, 0xff00);      // check if Unicode char
7743   jccb(Assembler::notZero, L_copy_1_char_exit);
7744   movb(Address(dst, len, Address::times_1, 0), tmp5);
7745   addptr(len, 1);
7746   jccb(Assembler::less, L_copy_1_char);
7747 
7748   bind(L_copy_1_char_exit);
7749   addptr(result, len); // len is negative count of not processed elements
7750 
7751   bind(L_done);
7752 }
7753 
7754 #ifdef _LP64
7755 /**
7756  * Helper for multiply_to_len().
7757  */
7758 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
7759   addq(dest_lo, src1);
7760   adcq(dest_hi, 0);
7761   addq(dest_lo, src2);
7762   adcq(dest_hi, 0);
7763 }
7764 
7765 /**
7766  * Multiply 64 bit by 64 bit first loop.
7767  */
7768 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
7769                                            Register y, Register y_idx, Register z,
7770                                            Register carry, Register product,
7771                                            Register idx, Register kdx) {
7772   //
7773   //  jlong carry, x[], y[], z[];
7774   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7775   //    huge_128 product = y[idx] * x[xstart] + carry;
7776   //    z[kdx] = (jlong)product;
7777   //    carry  = (jlong)(product >>> 64);
7778   //  }
7779   //  z[xstart] = carry;
7780   //
7781 
7782   Label L_first_loop, L_first_loop_exit;
7783   Label L_one_x, L_one_y, L_multiply;
7784 
7785   decrementl(xstart);
7786   jcc(Assembler::negative, L_one_x);
7787 
7788   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7789   rorq(x_xstart, 32); // convert big-endian to little-endian
7790 
7791   bind(L_first_loop);
7792   decrementl(idx);
7793   jcc(Assembler::negative, L_first_loop_exit);
7794   decrementl(idx);
7795   jcc(Assembler::negative, L_one_y);
7796   movq(y_idx, Address(y, idx, Address::times_4,  0));
7797   rorq(y_idx, 32); // convert big-endian to little-endian
7798   bind(L_multiply);
7799   movq(product, x_xstart);
7800   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
7801   addq(product, carry);
7802   adcq(rdx, 0);
7803   subl(kdx, 2);
7804   movl(Address(z, kdx, Address::times_4,  4), product);
7805   shrq(product, 32);
7806   movl(Address(z, kdx, Address::times_4,  0), product);
7807   movq(carry, rdx);
7808   jmp(L_first_loop);
7809 
7810   bind(L_one_y);
7811   movl(y_idx, Address(y,  0));
7812   jmp(L_multiply);
7813 
7814   bind(L_one_x);
7815   movl(x_xstart, Address(x,  0));
7816   jmp(L_first_loop);
7817 
7818   bind(L_first_loop_exit);
7819 }
7820 
7821 /**
7822  * Multiply 64 bit by 64 bit and add 128 bit.
7823  */
7824 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
7825                                             Register yz_idx, Register idx,
7826                                             Register carry, Register product, int offset) {
7827   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
7828   //     z[kdx] = (jlong)product;
7829 
7830   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
7831   rorq(yz_idx, 32); // convert big-endian to little-endian
7832   movq(product, x_xstart);
7833   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
7834   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
7835   rorq(yz_idx, 32); // convert big-endian to little-endian
7836 
7837   add2_with_carry(rdx, product, carry, yz_idx);
7838 
7839   movl(Address(z, idx, Address::times_4,  offset+4), product);
7840   shrq(product, 32);
7841   movl(Address(z, idx, Address::times_4,  offset), product);
7842 
7843 }
7844 
7845 /**
7846  * Multiply 128 bit by 128 bit. Unrolled inner loop.
7847  */
7848 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
7849                                              Register yz_idx, Register idx, Register jdx,
7850                                              Register carry, Register product,
7851                                              Register carry2) {
7852   //   jlong carry, x[], y[], z[];
7853   //   int kdx = ystart+1;
7854   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7855   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
7856   //     z[kdx+idx+1] = (jlong)product;
7857   //     jlong carry2  = (jlong)(product >>> 64);
7858   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
7859   //     z[kdx+idx] = (jlong)product;
7860   //     carry  = (jlong)(product >>> 64);
7861   //   }
7862   //   idx += 2;
7863   //   if (idx > 0) {
7864   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
7865   //     z[kdx+idx] = (jlong)product;
7866   //     carry  = (jlong)(product >>> 64);
7867   //   }
7868   //
7869 
7870   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7871 
7872   movl(jdx, idx);
7873   andl(jdx, 0xFFFFFFFC);
7874   shrl(jdx, 2);
7875 
7876   bind(L_third_loop);
7877   subl(jdx, 1);
7878   jcc(Assembler::negative, L_third_loop_exit);
7879   subl(idx, 4);
7880 
7881   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
7882   movq(carry2, rdx);
7883 
7884   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
7885   movq(carry, rdx);
7886   jmp(L_third_loop);
7887 
7888   bind (L_third_loop_exit);
7889 
7890   andl (idx, 0x3);
7891   jcc(Assembler::zero, L_post_third_loop_done);
7892 
7893   Label L_check_1;
7894   subl(idx, 2);
7895   jcc(Assembler::negative, L_check_1);
7896 
7897   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
7898   movq(carry, rdx);
7899 
7900   bind (L_check_1);
7901   addl (idx, 0x2);
7902   andl (idx, 0x1);
7903   subl(idx, 1);
7904   jcc(Assembler::negative, L_post_third_loop_done);
7905 
7906   movl(yz_idx, Address(y, idx, Address::times_4,  0));
7907   movq(product, x_xstart);
7908   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
7909   movl(yz_idx, Address(z, idx, Address::times_4,  0));
7910 
7911   add2_with_carry(rdx, product, yz_idx, carry);
7912 
7913   movl(Address(z, idx, Address::times_4,  0), product);
7914   shrq(product, 32);
7915 
7916   shlq(rdx, 32);
7917   orq(product, rdx);
7918   movq(carry, product);
7919 
7920   bind(L_post_third_loop_done);
7921 }
7922 
7923 /**
7924  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
7925  *
7926  */
7927 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
7928                                                   Register carry, Register carry2,
7929                                                   Register idx, Register jdx,
7930                                                   Register yz_idx1, Register yz_idx2,
7931                                                   Register tmp, Register tmp3, Register tmp4) {
7932   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
7933 
7934   //   jlong carry, x[], y[], z[];
7935   //   int kdx = ystart+1;
7936   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7937   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
7938   //     jlong carry2  = (jlong)(tmp3 >>> 64);
7939   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
7940   //     carry  = (jlong)(tmp4 >>> 64);
7941   //     z[kdx+idx+1] = (jlong)tmp3;
7942   //     z[kdx+idx] = (jlong)tmp4;
7943   //   }
7944   //   idx += 2;
7945   //   if (idx > 0) {
7946   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
7947   //     z[kdx+idx] = (jlong)yz_idx1;
7948   //     carry  = (jlong)(yz_idx1 >>> 64);
7949   //   }
7950   //
7951 
7952   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7953 
7954   movl(jdx, idx);
7955   andl(jdx, 0xFFFFFFFC);
7956   shrl(jdx, 2);
7957 
7958   bind(L_third_loop);
7959   subl(jdx, 1);
7960   jcc(Assembler::negative, L_third_loop_exit);
7961   subl(idx, 4);
7962 
7963   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
7964   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
7965   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
7966   rorxq(yz_idx2, yz_idx2, 32);
7967 
7968   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
7969   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
7970 
7971   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
7972   rorxq(yz_idx1, yz_idx1, 32);
7973   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7974   rorxq(yz_idx2, yz_idx2, 32);
7975 
7976   if (VM_Version::supports_adx()) {
7977     adcxq(tmp3, carry);
7978     adoxq(tmp3, yz_idx1);
7979 
7980     adcxq(tmp4, tmp);
7981     adoxq(tmp4, yz_idx2);
7982 
7983     movl(carry, 0); // does not affect flags
7984     adcxq(carry2, carry);
7985     adoxq(carry2, carry);
7986   } else {
7987     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
7988     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
7989   }
7990   movq(carry, carry2);
7991 
7992   movl(Address(z, idx, Address::times_4, 12), tmp3);
7993   shrq(tmp3, 32);
7994   movl(Address(z, idx, Address::times_4,  8), tmp3);
7995 
7996   movl(Address(z, idx, Address::times_4,  4), tmp4);
7997   shrq(tmp4, 32);
7998   movl(Address(z, idx, Address::times_4,  0), tmp4);
7999 
8000   jmp(L_third_loop);
8001 
8002   bind (L_third_loop_exit);
8003 
8004   andl (idx, 0x3);
8005   jcc(Assembler::zero, L_post_third_loop_done);
8006 
8007   Label L_check_1;
8008   subl(idx, 2);
8009   jcc(Assembler::negative, L_check_1);
8010 
8011   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
8012   rorxq(yz_idx1, yz_idx1, 32);
8013   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
8014   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
8015   rorxq(yz_idx2, yz_idx2, 32);
8016 
8017   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
8018 
8019   movl(Address(z, idx, Address::times_4,  4), tmp3);
8020   shrq(tmp3, 32);
8021   movl(Address(z, idx, Address::times_4,  0), tmp3);
8022   movq(carry, tmp4);
8023 
8024   bind (L_check_1);
8025   addl (idx, 0x2);
8026   andl (idx, 0x1);
8027   subl(idx, 1);
8028   jcc(Assembler::negative, L_post_third_loop_done);
8029   movl(tmp4, Address(y, idx, Address::times_4,  0));
8030   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
8031   movl(tmp4, Address(z, idx, Address::times_4,  0));
8032 
8033   add2_with_carry(carry2, tmp3, tmp4, carry);
8034 
8035   movl(Address(z, idx, Address::times_4,  0), tmp3);
8036   shrq(tmp3, 32);
8037 
8038   shlq(carry2, 32);
8039   orq(tmp3, carry2);
8040   movq(carry, tmp3);
8041 
8042   bind(L_post_third_loop_done);
8043 }
8044 
8045 /**
8046  * Code for BigInteger::multiplyToLen() instrinsic.
8047  *
8048  * rdi: x
8049  * rax: xlen
8050  * rsi: y
8051  * rcx: ylen
8052  * r8:  z
8053  * r11: zlen
8054  * r12: tmp1
8055  * r13: tmp2
8056  * r14: tmp3
8057  * r15: tmp4
8058  * rbx: tmp5
8059  *
8060  */
8061 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
8062                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
8063   ShortBranchVerifier sbv(this);
8064   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
8065 
8066   push(tmp1);
8067   push(tmp2);
8068   push(tmp3);
8069   push(tmp4);
8070   push(tmp5);
8071 
8072   push(xlen);
8073   push(zlen);
8074 
8075   const Register idx = tmp1;
8076   const Register kdx = tmp2;
8077   const Register xstart = tmp3;
8078 
8079   const Register y_idx = tmp4;
8080   const Register carry = tmp5;
8081   const Register product  = xlen;
8082   const Register x_xstart = zlen;  // reuse register
8083 
8084   // First Loop.
8085   //
8086   //  final static long LONG_MASK = 0xffffffffL;
8087   //  int xstart = xlen - 1;
8088   //  int ystart = ylen - 1;
8089   //  long carry = 0;
8090   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
8091   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
8092   //    z[kdx] = (int)product;
8093   //    carry = product >>> 32;
8094   //  }
8095   //  z[xstart] = (int)carry;
8096   //
8097 
8098   movl(idx, ylen);      // idx = ylen;
8099   movl(kdx, zlen);      // kdx = xlen+ylen;
8100   xorq(carry, carry);   // carry = 0;
8101 
8102   Label L_done;
8103 
8104   movl(xstart, xlen);
8105   decrementl(xstart);
8106   jcc(Assembler::negative, L_done);
8107 
8108   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
8109 
8110   Label L_second_loop;
8111   testl(kdx, kdx);
8112   jcc(Assembler::zero, L_second_loop);
8113 
8114   Label L_carry;
8115   subl(kdx, 1);
8116   jcc(Assembler::zero, L_carry);
8117 
8118   movl(Address(z, kdx, Address::times_4,  0), carry);
8119   shrq(carry, 32);
8120   subl(kdx, 1);
8121 
8122   bind(L_carry);
8123   movl(Address(z, kdx, Address::times_4,  0), carry);
8124 
8125   // Second and third (nested) loops.
8126   //
8127   // for (int i = xstart-1; i >= 0; i--) { // Second loop
8128   //   carry = 0;
8129   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
8130   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
8131   //                    (z[k] & LONG_MASK) + carry;
8132   //     z[k] = (int)product;
8133   //     carry = product >>> 32;
8134   //   }
8135   //   z[i] = (int)carry;
8136   // }
8137   //
8138   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
8139 
8140   const Register jdx = tmp1;
8141 
8142   bind(L_second_loop);
8143   xorl(carry, carry);    // carry = 0;
8144   movl(jdx, ylen);       // j = ystart+1
8145 
8146   subl(xstart, 1);       // i = xstart-1;
8147   jcc(Assembler::negative, L_done);
8148 
8149   push (z);
8150 
8151   Label L_last_x;
8152   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
8153   subl(xstart, 1);       // i = xstart-1;
8154   jcc(Assembler::negative, L_last_x);
8155 
8156   if (UseBMI2Instructions) {
8157     movq(rdx,  Address(x, xstart, Address::times_4,  0));
8158     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
8159   } else {
8160     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
8161     rorq(x_xstart, 32);  // convert big-endian to little-endian
8162   }
8163 
8164   Label L_third_loop_prologue;
8165   bind(L_third_loop_prologue);
8166 
8167   push (x);
8168   push (xstart);
8169   push (ylen);
8170 
8171 
8172   if (UseBMI2Instructions) {
8173     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
8174   } else { // !UseBMI2Instructions
8175     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
8176   }
8177 
8178   pop(ylen);
8179   pop(xlen);
8180   pop(x);
8181   pop(z);
8182 
8183   movl(tmp3, xlen);
8184   addl(tmp3, 1);
8185   movl(Address(z, tmp3, Address::times_4,  0), carry);
8186   subl(tmp3, 1);
8187   jccb(Assembler::negative, L_done);
8188 
8189   shrq(carry, 32);
8190   movl(Address(z, tmp3, Address::times_4,  0), carry);
8191   jmp(L_second_loop);
8192 
8193   // Next infrequent code is moved outside loops.
8194   bind(L_last_x);
8195   if (UseBMI2Instructions) {
8196     movl(rdx, Address(x,  0));
8197   } else {
8198     movl(x_xstart, Address(x,  0));
8199   }
8200   jmp(L_third_loop_prologue);
8201 
8202   bind(L_done);
8203 
8204   pop(zlen);
8205   pop(xlen);
8206 
8207   pop(tmp5);
8208   pop(tmp4);
8209   pop(tmp3);
8210   pop(tmp2);
8211   pop(tmp1);
8212 }
8213 
8214 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
8215   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
8216   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
8217   Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
8218   Label VECTOR8_TAIL, VECTOR4_TAIL;
8219   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
8220   Label SAME_TILL_END, DONE;
8221   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
8222 
8223   //scale is in rcx in both Win64 and Unix
8224   ShortBranchVerifier sbv(this);
8225 
8226   shlq(length);
8227   xorq(result, result);
8228 
8229   if ((AVX3Threshold == 0) && (UseAVX > 2) &&
8230       VM_Version::supports_avx512vlbw()) {
8231     Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
8232 
8233     cmpq(length, 64);
8234     jcc(Assembler::less, VECTOR32_TAIL);
8235 
8236     movq(tmp1, length);
8237     andq(tmp1, 0x3F);      // tail count
8238     andq(length, ~(0x3F)); //vector count
8239 
8240     bind(VECTOR64_LOOP);
8241     // AVX512 code to compare 64 byte vectors.
8242     evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
8243     evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
8244     kortestql(k7, k7);
8245     jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
8246     addq(result, 64);
8247     subq(length, 64);
8248     jccb(Assembler::notZero, VECTOR64_LOOP);
8249 
8250     //bind(VECTOR64_TAIL);
8251     testq(tmp1, tmp1);
8252     jcc(Assembler::zero, SAME_TILL_END);
8253 
8254     //bind(VECTOR64_TAIL);
8255     // AVX512 code to compare upto 63 byte vectors.
8256     mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
8257     shlxq(tmp2, tmp2, tmp1);
8258     notq(tmp2);
8259     kmovql(k3, tmp2);
8260 
8261     evmovdqub(rymm0, k3, Address(obja, result), Assembler::AVX_512bit);
8262     evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit);
8263 
8264     ktestql(k7, k3);
8265     jcc(Assembler::below, SAME_TILL_END);     // not mismatch
8266 
8267     bind(VECTOR64_NOT_EQUAL);
8268     kmovql(tmp1, k7);
8269     notq(tmp1);
8270     tzcntq(tmp1, tmp1);
8271     addq(result, tmp1);
8272     shrq(result);
8273     jmp(DONE);
8274     bind(VECTOR32_TAIL);
8275   }
8276 
8277   cmpq(length, 8);
8278   jcc(Assembler::equal, VECTOR8_LOOP);
8279   jcc(Assembler::less, VECTOR4_TAIL);
8280 
8281   if (UseAVX >= 2) {
8282     Label VECTOR16_TAIL, VECTOR32_LOOP;
8283 
8284     cmpq(length, 16);
8285     jcc(Assembler::equal, VECTOR16_LOOP);
8286     jcc(Assembler::less, VECTOR8_LOOP);
8287 
8288     cmpq(length, 32);
8289     jccb(Assembler::less, VECTOR16_TAIL);
8290 
8291     subq(length, 32);
8292     bind(VECTOR32_LOOP);
8293     vmovdqu(rymm0, Address(obja, result));
8294     vmovdqu(rymm1, Address(objb, result));
8295     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
8296     vptest(rymm2, rymm2);
8297     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
8298     addq(result, 32);
8299     subq(length, 32);
8300     jcc(Assembler::greaterEqual, VECTOR32_LOOP);
8301     addq(length, 32);
8302     jcc(Assembler::equal, SAME_TILL_END);
8303     //falling through if less than 32 bytes left //close the branch here.
8304 
8305     bind(VECTOR16_TAIL);
8306     cmpq(length, 16);
8307     jccb(Assembler::less, VECTOR8_TAIL);
8308     bind(VECTOR16_LOOP);
8309     movdqu(rymm0, Address(obja, result));
8310     movdqu(rymm1, Address(objb, result));
8311     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
8312     ptest(rymm2, rymm2);
8313     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
8314     addq(result, 16);
8315     subq(length, 16);
8316     jcc(Assembler::equal, SAME_TILL_END);
8317     //falling through if less than 16 bytes left
8318   } else {//regular intrinsics
8319 
8320     cmpq(length, 16);
8321     jccb(Assembler::less, VECTOR8_TAIL);
8322 
8323     subq(length, 16);
8324     bind(VECTOR16_LOOP);
8325     movdqu(rymm0, Address(obja, result));
8326     movdqu(rymm1, Address(objb, result));
8327     pxor(rymm0, rymm1);
8328     ptest(rymm0, rymm0);
8329     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
8330     addq(result, 16);
8331     subq(length, 16);
8332     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
8333     addq(length, 16);
8334     jcc(Assembler::equal, SAME_TILL_END);
8335     //falling through if less than 16 bytes left
8336   }
8337 
8338   bind(VECTOR8_TAIL);
8339   cmpq(length, 8);
8340   jccb(Assembler::less, VECTOR4_TAIL);
8341   bind(VECTOR8_LOOP);
8342   movq(tmp1, Address(obja, result));
8343   movq(tmp2, Address(objb, result));
8344   xorq(tmp1, tmp2);
8345   testq(tmp1, tmp1);
8346   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
8347   addq(result, 8);
8348   subq(length, 8);
8349   jcc(Assembler::equal, SAME_TILL_END);
8350   //falling through if less than 8 bytes left
8351 
8352   bind(VECTOR4_TAIL);
8353   cmpq(length, 4);
8354   jccb(Assembler::less, BYTES_TAIL);
8355   bind(VECTOR4_LOOP);
8356   movl(tmp1, Address(obja, result));
8357   xorl(tmp1, Address(objb, result));
8358   testl(tmp1, tmp1);
8359   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
8360   addq(result, 4);
8361   subq(length, 4);
8362   jcc(Assembler::equal, SAME_TILL_END);
8363   //falling through if less than 4 bytes left
8364 
8365   bind(BYTES_TAIL);
8366   bind(BYTES_LOOP);
8367   load_unsigned_byte(tmp1, Address(obja, result));
8368   load_unsigned_byte(tmp2, Address(objb, result));
8369   xorl(tmp1, tmp2);
8370   testl(tmp1, tmp1);
8371   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
8372   decq(length);
8373   jcc(Assembler::zero, SAME_TILL_END);
8374   incq(result);
8375   load_unsigned_byte(tmp1, Address(obja, result));
8376   load_unsigned_byte(tmp2, Address(objb, result));
8377   xorl(tmp1, tmp2);
8378   testl(tmp1, tmp1);
8379   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
8380   decq(length);
8381   jcc(Assembler::zero, SAME_TILL_END);
8382   incq(result);
8383   load_unsigned_byte(tmp1, Address(obja, result));
8384   load_unsigned_byte(tmp2, Address(objb, result));
8385   xorl(tmp1, tmp2);
8386   testl(tmp1, tmp1);
8387   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
8388   jmp(SAME_TILL_END);
8389 
8390   if (UseAVX >= 2) {
8391     bind(VECTOR32_NOT_EQUAL);
8392     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
8393     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
8394     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
8395     vpmovmskb(tmp1, rymm0);
8396     bsfq(tmp1, tmp1);
8397     addq(result, tmp1);
8398     shrq(result);
8399     jmp(DONE);
8400   }
8401 
8402   bind(VECTOR16_NOT_EQUAL);
8403   if (UseAVX >= 2) {
8404     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
8405     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
8406     pxor(rymm0, rymm2);
8407   } else {
8408     pcmpeqb(rymm2, rymm2);
8409     pxor(rymm0, rymm1);
8410     pcmpeqb(rymm0, rymm1);
8411     pxor(rymm0, rymm2);
8412   }
8413   pmovmskb(tmp1, rymm0);
8414   bsfq(tmp1, tmp1);
8415   addq(result, tmp1);
8416   shrq(result);
8417   jmpb(DONE);
8418 
8419   bind(VECTOR8_NOT_EQUAL);
8420   bind(VECTOR4_NOT_EQUAL);
8421   bsfq(tmp1, tmp1);
8422   shrq(tmp1, 3);
8423   addq(result, tmp1);
8424   bind(BYTES_NOT_EQUAL);
8425   shrq(result);
8426   jmpb(DONE);
8427 
8428   bind(SAME_TILL_END);
8429   mov64(result, -1);
8430 
8431   bind(DONE);
8432 }
8433 
8434 //Helper functions for square_to_len()
8435 
8436 /**
8437  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
8438  * Preserves x and z and modifies rest of the registers.
8439  */
8440 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8441   // Perform square and right shift by 1
8442   // Handle odd xlen case first, then for even xlen do the following
8443   // jlong carry = 0;
8444   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
8445   //     huge_128 product = x[j:j+1] * x[j:j+1];
8446   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
8447   //     z[i+2:i+3] = (jlong)(product >>> 1);
8448   //     carry = (jlong)product;
8449   // }
8450 
8451   xorq(tmp5, tmp5);     // carry
8452   xorq(rdxReg, rdxReg);
8453   xorl(tmp1, tmp1);     // index for x
8454   xorl(tmp4, tmp4);     // index for z
8455 
8456   Label L_first_loop, L_first_loop_exit;
8457 
8458   testl(xlen, 1);
8459   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
8460 
8461   // Square and right shift by 1 the odd element using 32 bit multiply
8462   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
8463   imulq(raxReg, raxReg);
8464   shrq(raxReg, 1);
8465   adcq(tmp5, 0);
8466   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
8467   incrementl(tmp1);
8468   addl(tmp4, 2);
8469 
8470   // Square and  right shift by 1 the rest using 64 bit multiply
8471   bind(L_first_loop);
8472   cmpptr(tmp1, xlen);
8473   jccb(Assembler::equal, L_first_loop_exit);
8474 
8475   // Square
8476   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
8477   rorq(raxReg, 32);    // convert big-endian to little-endian
8478   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
8479 
8480   // Right shift by 1 and save carry
8481   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
8482   rcrq(rdxReg, 1);
8483   rcrq(raxReg, 1);
8484   adcq(tmp5, 0);
8485 
8486   // Store result in z
8487   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
8488   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
8489 
8490   // Update indices for x and z
8491   addl(tmp1, 2);
8492   addl(tmp4, 4);
8493   jmp(L_first_loop);
8494 
8495   bind(L_first_loop_exit);
8496 }
8497 
8498 
8499 /**
8500  * Perform the following multiply add operation using BMI2 instructions
8501  * carry:sum = sum + op1*op2 + carry
8502  * op2 should be in rdx
8503  * op2 is preserved, all other registers are modified
8504  */
8505 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
8506   // assert op2 is rdx
8507   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
8508   addq(sum, carry);
8509   adcq(tmp2, 0);
8510   addq(sum, op1);
8511   adcq(tmp2, 0);
8512   movq(carry, tmp2);
8513 }
8514 
8515 /**
8516  * Perform the following multiply add operation:
8517  * carry:sum = sum + op1*op2 + carry
8518  * Preserves op1, op2 and modifies rest of registers
8519  */
8520 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
8521   // rdx:rax = op1 * op2
8522   movq(raxReg, op2);
8523   mulq(op1);
8524 
8525   //  rdx:rax = sum + carry + rdx:rax
8526   addq(sum, carry);
8527   adcq(rdxReg, 0);
8528   addq(sum, raxReg);
8529   adcq(rdxReg, 0);
8530 
8531   // carry:sum = rdx:sum
8532   movq(carry, rdxReg);
8533 }
8534 
8535 /**
8536  * Add 64 bit long carry into z[] with carry propogation.
8537  * Preserves z and carry register values and modifies rest of registers.
8538  *
8539  */
8540 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
8541   Label L_fourth_loop, L_fourth_loop_exit;
8542 
8543   movl(tmp1, 1);
8544   subl(zlen, 2);
8545   addq(Address(z, zlen, Address::times_4, 0), carry);
8546 
8547   bind(L_fourth_loop);
8548   jccb(Assembler::carryClear, L_fourth_loop_exit);
8549   subl(zlen, 2);
8550   jccb(Assembler::negative, L_fourth_loop_exit);
8551   addq(Address(z, zlen, Address::times_4, 0), tmp1);
8552   jmp(L_fourth_loop);
8553   bind(L_fourth_loop_exit);
8554 }
8555 
8556 /**
8557  * Shift z[] left by 1 bit.
8558  * Preserves x, len, z and zlen registers and modifies rest of the registers.
8559  *
8560  */
8561 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
8562 
8563   Label L_fifth_loop, L_fifth_loop_exit;
8564 
8565   // Fifth loop
8566   // Perform primitiveLeftShift(z, zlen, 1)
8567 
8568   const Register prev_carry = tmp1;
8569   const Register new_carry = tmp4;
8570   const Register value = tmp2;
8571   const Register zidx = tmp3;
8572 
8573   // int zidx, carry;
8574   // long value;
8575   // carry = 0;
8576   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
8577   //    (carry:value)  = (z[i] << 1) | carry ;
8578   //    z[i] = value;
8579   // }
8580 
8581   movl(zidx, zlen);
8582   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
8583 
8584   bind(L_fifth_loop);
8585   decl(zidx);  // Use decl to preserve carry flag
8586   decl(zidx);
8587   jccb(Assembler::negative, L_fifth_loop_exit);
8588 
8589   if (UseBMI2Instructions) {
8590      movq(value, Address(z, zidx, Address::times_4, 0));
8591      rclq(value, 1);
8592      rorxq(value, value, 32);
8593      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
8594   }
8595   else {
8596     // clear new_carry
8597     xorl(new_carry, new_carry);
8598 
8599     // Shift z[i] by 1, or in previous carry and save new carry
8600     movq(value, Address(z, zidx, Address::times_4, 0));
8601     shlq(value, 1);
8602     adcl(new_carry, 0);
8603 
8604     orq(value, prev_carry);
8605     rorq(value, 0x20);
8606     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
8607 
8608     // Set previous carry = new carry
8609     movl(prev_carry, new_carry);
8610   }
8611   jmp(L_fifth_loop);
8612 
8613   bind(L_fifth_loop_exit);
8614 }
8615 
8616 
8617 /**
8618  * Code for BigInteger::squareToLen() intrinsic
8619  *
8620  * rdi: x
8621  * rsi: len
8622  * r8:  z
8623  * rcx: zlen
8624  * r12: tmp1
8625  * r13: tmp2
8626  * r14: tmp3
8627  * r15: tmp4
8628  * rbx: tmp5
8629  *
8630  */
8631 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8632 
8633   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply;
8634   push(tmp1);
8635   push(tmp2);
8636   push(tmp3);
8637   push(tmp4);
8638   push(tmp5);
8639 
8640   // First loop
8641   // Store the squares, right shifted one bit (i.e., divided by 2).
8642   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
8643 
8644   // Add in off-diagonal sums.
8645   //
8646   // Second, third (nested) and fourth loops.
8647   // zlen +=2;
8648   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
8649   //    carry = 0;
8650   //    long op2 = x[xidx:xidx+1];
8651   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
8652   //       k -= 2;
8653   //       long op1 = x[j:j+1];
8654   //       long sum = z[k:k+1];
8655   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
8656   //       z[k:k+1] = sum;
8657   //    }
8658   //    add_one_64(z, k, carry, tmp_regs);
8659   // }
8660 
8661   const Register carry = tmp5;
8662   const Register sum = tmp3;
8663   const Register op1 = tmp4;
8664   Register op2 = tmp2;
8665 
8666   push(zlen);
8667   push(len);
8668   addl(zlen,2);
8669   bind(L_second_loop);
8670   xorq(carry, carry);
8671   subl(zlen, 4);
8672   subl(len, 2);
8673   push(zlen);
8674   push(len);
8675   cmpl(len, 0);
8676   jccb(Assembler::lessEqual, L_second_loop_exit);
8677 
8678   // Multiply an array by one 64 bit long.
8679   if (UseBMI2Instructions) {
8680     op2 = rdxReg;
8681     movq(op2, Address(x, len, Address::times_4,  0));
8682     rorxq(op2, op2, 32);
8683   }
8684   else {
8685     movq(op2, Address(x, len, Address::times_4,  0));
8686     rorq(op2, 32);
8687   }
8688 
8689   bind(L_third_loop);
8690   decrementl(len);
8691   jccb(Assembler::negative, L_third_loop_exit);
8692   decrementl(len);
8693   jccb(Assembler::negative, L_last_x);
8694 
8695   movq(op1, Address(x, len, Address::times_4,  0));
8696   rorq(op1, 32);
8697 
8698   bind(L_multiply);
8699   subl(zlen, 2);
8700   movq(sum, Address(z, zlen, Address::times_4,  0));
8701 
8702   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
8703   if (UseBMI2Instructions) {
8704     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
8705   }
8706   else {
8707     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8708   }
8709 
8710   movq(Address(z, zlen, Address::times_4, 0), sum);
8711 
8712   jmp(L_third_loop);
8713   bind(L_third_loop_exit);
8714 
8715   // Fourth loop
8716   // Add 64 bit long carry into z with carry propogation.
8717   // Uses offsetted zlen.
8718   add_one_64(z, zlen, carry, tmp1);
8719 
8720   pop(len);
8721   pop(zlen);
8722   jmp(L_second_loop);
8723 
8724   // Next infrequent code is moved outside loops.
8725   bind(L_last_x);
8726   movl(op1, Address(x, 0));
8727   jmp(L_multiply);
8728 
8729   bind(L_second_loop_exit);
8730   pop(len);
8731   pop(zlen);
8732   pop(len);
8733   pop(zlen);
8734 
8735   // Fifth loop
8736   // Shift z left 1 bit.
8737   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
8738 
8739   // z[zlen-1] |= x[len-1] & 1;
8740   movl(tmp3, Address(x, len, Address::times_4, -4));
8741   andl(tmp3, 1);
8742   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
8743 
8744   pop(tmp5);
8745   pop(tmp4);
8746   pop(tmp3);
8747   pop(tmp2);
8748   pop(tmp1);
8749 }
8750 
8751 /**
8752  * Helper function for mul_add()
8753  * Multiply the in[] by int k and add to out[] starting at offset offs using
8754  * 128 bit by 32 bit multiply and return the carry in tmp5.
8755  * Only quad int aligned length of in[] is operated on in this function.
8756  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
8757  * This function preserves out, in and k registers.
8758  * len and offset point to the appropriate index in "in" & "out" correspondingly
8759  * tmp5 has the carry.
8760  * other registers are temporary and are modified.
8761  *
8762  */
8763 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
8764   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
8765   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8766 
8767   Label L_first_loop, L_first_loop_exit;
8768 
8769   movl(tmp1, len);
8770   shrl(tmp1, 2);
8771 
8772   bind(L_first_loop);
8773   subl(tmp1, 1);
8774   jccb(Assembler::negative, L_first_loop_exit);
8775 
8776   subl(len, 4);
8777   subl(offset, 4);
8778 
8779   Register op2 = tmp2;
8780   const Register sum = tmp3;
8781   const Register op1 = tmp4;
8782   const Register carry = tmp5;
8783 
8784   if (UseBMI2Instructions) {
8785     op2 = rdxReg;
8786   }
8787 
8788   movq(op1, Address(in, len, Address::times_4,  8));
8789   rorq(op1, 32);
8790   movq(sum, Address(out, offset, Address::times_4,  8));
8791   rorq(sum, 32);
8792   if (UseBMI2Instructions) {
8793     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8794   }
8795   else {
8796     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8797   }
8798   // Store back in big endian from little endian
8799   rorq(sum, 0x20);
8800   movq(Address(out, offset, Address::times_4,  8), sum);
8801 
8802   movq(op1, Address(in, len, Address::times_4,  0));
8803   rorq(op1, 32);
8804   movq(sum, Address(out, offset, Address::times_4,  0));
8805   rorq(sum, 32);
8806   if (UseBMI2Instructions) {
8807     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8808   }
8809   else {
8810     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8811   }
8812   // Store back in big endian from little endian
8813   rorq(sum, 0x20);
8814   movq(Address(out, offset, Address::times_4,  0), sum);
8815 
8816   jmp(L_first_loop);
8817   bind(L_first_loop_exit);
8818 }
8819 
8820 /**
8821  * Code for BigInteger::mulAdd() intrinsic
8822  *
8823  * rdi: out
8824  * rsi: in
8825  * r11: offs (out.length - offset)
8826  * rcx: len
8827  * r8:  k
8828  * r12: tmp1
8829  * r13: tmp2
8830  * r14: tmp3
8831  * r15: tmp4
8832  * rbx: tmp5
8833  * Multiply the in[] by word k and add to out[], return the carry in rax
8834  */
8835 void MacroAssembler::mul_add(Register out, Register in, Register offs,
8836    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
8837    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8838 
8839   Label L_carry, L_last_in, L_done;
8840 
8841 // carry = 0;
8842 // for (int j=len-1; j >= 0; j--) {
8843 //    long product = (in[j] & LONG_MASK) * kLong +
8844 //                   (out[offs] & LONG_MASK) + carry;
8845 //    out[offs--] = (int)product;
8846 //    carry = product >>> 32;
8847 // }
8848 //
8849   push(tmp1);
8850   push(tmp2);
8851   push(tmp3);
8852   push(tmp4);
8853   push(tmp5);
8854 
8855   Register op2 = tmp2;
8856   const Register sum = tmp3;
8857   const Register op1 = tmp4;
8858   const Register carry =  tmp5;
8859 
8860   if (UseBMI2Instructions) {
8861     op2 = rdxReg;
8862     movl(op2, k);
8863   }
8864   else {
8865     movl(op2, k);
8866   }
8867 
8868   xorq(carry, carry);
8869 
8870   //First loop
8871 
8872   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
8873   //The carry is in tmp5
8874   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
8875 
8876   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
8877   decrementl(len);
8878   jccb(Assembler::negative, L_carry);
8879   decrementl(len);
8880   jccb(Assembler::negative, L_last_in);
8881 
8882   movq(op1, Address(in, len, Address::times_4,  0));
8883   rorq(op1, 32);
8884 
8885   subl(offs, 2);
8886   movq(sum, Address(out, offs, Address::times_4,  0));
8887   rorq(sum, 32);
8888 
8889   if (UseBMI2Instructions) {
8890     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8891   }
8892   else {
8893     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8894   }
8895 
8896   // Store back in big endian from little endian
8897   rorq(sum, 0x20);
8898   movq(Address(out, offs, Address::times_4,  0), sum);
8899 
8900   testl(len, len);
8901   jccb(Assembler::zero, L_carry);
8902 
8903   //Multiply the last in[] entry, if any
8904   bind(L_last_in);
8905   movl(op1, Address(in, 0));
8906   movl(sum, Address(out, offs, Address::times_4,  -4));
8907 
8908   movl(raxReg, k);
8909   mull(op1); //tmp4 * eax -> edx:eax
8910   addl(sum, carry);
8911   adcl(rdxReg, 0);
8912   addl(sum, raxReg);
8913   adcl(rdxReg, 0);
8914   movl(carry, rdxReg);
8915 
8916   movl(Address(out, offs, Address::times_4,  -4), sum);
8917 
8918   bind(L_carry);
8919   //return tmp5/carry as carry in rax
8920   movl(rax, carry);
8921 
8922   bind(L_done);
8923   pop(tmp5);
8924   pop(tmp4);
8925   pop(tmp3);
8926   pop(tmp2);
8927   pop(tmp1);
8928 }
8929 #endif
8930 
8931 /**
8932  * Emits code to update CRC-32 with a byte value according to constants in table
8933  *
8934  * @param [in,out]crc   Register containing the crc.
8935  * @param [in]val       Register containing the byte to fold into the CRC.
8936  * @param [in]table     Register containing the table of crc constants.
8937  *
8938  * uint32_t crc;
8939  * val = crc_table[(val ^ crc) & 0xFF];
8940  * crc = val ^ (crc >> 8);
8941  *
8942  */
8943 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
8944   xorl(val, crc);
8945   andl(val, 0xFF);
8946   shrl(crc, 8); // unsigned shift
8947   xorl(crc, Address(table, val, Address::times_4, 0));
8948 }
8949 
8950 /**
8951 * Fold four 128-bit data chunks
8952 */
8953 void MacroAssembler::fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
8954   evpclmulhdq(xtmp, xK, xcrc, Assembler::AVX_512bit); // [123:64]
8955   evpclmulldq(xcrc, xK, xcrc, Assembler::AVX_512bit); // [63:0]
8956   evpxorq(xcrc, xcrc, Address(buf, offset), Assembler::AVX_512bit /* vector_len */);
8957   evpxorq(xcrc, xcrc, xtmp, Assembler::AVX_512bit /* vector_len */);
8958 }
8959 
8960 /**
8961  * Fold 128-bit data chunk
8962  */
8963 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
8964   if (UseAVX > 0) {
8965     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
8966     vpclmulldq(xcrc, xK, xcrc); // [63:0]
8967     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
8968     pxor(xcrc, xtmp);
8969   } else {
8970     movdqa(xtmp, xcrc);
8971     pclmulhdq(xtmp, xK);   // [123:64]
8972     pclmulldq(xcrc, xK);   // [63:0]
8973     pxor(xcrc, xtmp);
8974     movdqu(xtmp, Address(buf, offset));
8975     pxor(xcrc, xtmp);
8976   }
8977 }
8978 
8979 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
8980   if (UseAVX > 0) {
8981     vpclmulhdq(xtmp, xK, xcrc);
8982     vpclmulldq(xcrc, xK, xcrc);
8983     pxor(xcrc, xbuf);
8984     pxor(xcrc, xtmp);
8985   } else {
8986     movdqa(xtmp, xcrc);
8987     pclmulhdq(xtmp, xK);
8988     pclmulldq(xcrc, xK);
8989     pxor(xcrc, xbuf);
8990     pxor(xcrc, xtmp);
8991   }
8992 }
8993 
8994 /**
8995  * 8-bit folds to compute 32-bit CRC
8996  *
8997  * uint64_t xcrc;
8998  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
8999  */
9000 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
9001   movdl(tmp, xcrc);
9002   andl(tmp, 0xFF);
9003   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
9004   psrldq(xcrc, 1); // unsigned shift one byte
9005   pxor(xcrc, xtmp);
9006 }
9007 
9008 /**
9009  * uint32_t crc;
9010  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
9011  */
9012 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
9013   movl(tmp, crc);
9014   andl(tmp, 0xFF);
9015   shrl(crc, 8);
9016   xorl(crc, Address(table, tmp, Address::times_4, 0));
9017 }
9018 
9019 /**
9020  * @param crc   register containing existing CRC (32-bit)
9021  * @param buf   register pointing to input byte buffer (byte*)
9022  * @param len   register containing number of bytes
9023  * @param table register that will contain address of CRC table
9024  * @param tmp   scratch register
9025  */
9026 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
9027   assert_different_registers(crc, buf, len, table, tmp, rax);
9028 
9029   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
9030   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
9031 
9032   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
9033   // context for the registers used, where all instructions below are using 128-bit mode
9034   // On EVEX without VL and BW, these instructions will all be AVX.
9035   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
9036   notl(crc); // ~crc
9037   cmpl(len, 16);
9038   jcc(Assembler::less, L_tail);
9039 
9040   // Align buffer to 16 bytes
9041   movl(tmp, buf);
9042   andl(tmp, 0xF);
9043   jccb(Assembler::zero, L_aligned);
9044   subl(tmp,  16);
9045   addl(len, tmp);
9046 
9047   align(4);
9048   BIND(L_align_loop);
9049   movsbl(rax, Address(buf, 0)); // load byte with sign extension
9050   update_byte_crc32(crc, rax, table);
9051   increment(buf);
9052   incrementl(tmp);
9053   jccb(Assembler::less, L_align_loop);
9054 
9055   BIND(L_aligned);
9056   movl(tmp, len); // save
9057   shrl(len, 4);
9058   jcc(Assembler::zero, L_tail_restore);
9059 
9060   // Fold total 512 bits of polynomial on each iteration
9061   if (VM_Version::supports_vpclmulqdq()) {
9062     Label Parallel_loop, L_No_Parallel;
9063 
9064     cmpl(len, 8);
9065     jccb(Assembler::less, L_No_Parallel);
9066 
9067     movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
9068     evmovdquq(xmm1, Address(buf, 0), Assembler::AVX_512bit);
9069     movdl(xmm5, crc);
9070     evpxorq(xmm1, xmm1, xmm5, Assembler::AVX_512bit);
9071     addptr(buf, 64);
9072     subl(len, 7);
9073     evshufi64x2(xmm0, xmm0, xmm0, 0x00, Assembler::AVX_512bit); //propagate the mask from 128 bits to 512 bits
9074 
9075     BIND(Parallel_loop);
9076     fold_128bit_crc32_avx512(xmm1, xmm0, xmm5, buf, 0);
9077     addptr(buf, 64);
9078     subl(len, 4);
9079     jcc(Assembler::greater, Parallel_loop);
9080 
9081     vextracti64x2(xmm2, xmm1, 0x01);
9082     vextracti64x2(xmm3, xmm1, 0x02);
9083     vextracti64x2(xmm4, xmm1, 0x03);
9084     jmp(L_fold_512b);
9085 
9086     BIND(L_No_Parallel);
9087   }
9088   // Fold crc into first bytes of vector
9089   movdqa(xmm1, Address(buf, 0));
9090   movdl(rax, xmm1);
9091   xorl(crc, rax);
9092   if (VM_Version::supports_sse4_1()) {
9093     pinsrd(xmm1, crc, 0);
9094   } else {
9095     pinsrw(xmm1, crc, 0);
9096     shrl(crc, 16);
9097     pinsrw(xmm1, crc, 1);
9098   }
9099   addptr(buf, 16);
9100   subl(len, 4); // len > 0
9101   jcc(Assembler::less, L_fold_tail);
9102 
9103   movdqa(xmm2, Address(buf,  0));
9104   movdqa(xmm3, Address(buf, 16));
9105   movdqa(xmm4, Address(buf, 32));
9106   addptr(buf, 48);
9107   subl(len, 3);
9108   jcc(Assembler::lessEqual, L_fold_512b);
9109 
9110   // Fold total 512 bits of polynomial on each iteration,
9111   // 128 bits per each of 4 parallel streams.
9112   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
9113 
9114   align(32);
9115   BIND(L_fold_512b_loop);
9116   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
9117   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
9118   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
9119   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
9120   addptr(buf, 64);
9121   subl(len, 4);
9122   jcc(Assembler::greater, L_fold_512b_loop);
9123 
9124   // Fold 512 bits to 128 bits.
9125   BIND(L_fold_512b);
9126   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
9127   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
9128   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
9129   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
9130 
9131   // Fold the rest of 128 bits data chunks
9132   BIND(L_fold_tail);
9133   addl(len, 3);
9134   jccb(Assembler::lessEqual, L_fold_128b);
9135   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
9136 
9137   BIND(L_fold_tail_loop);
9138   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
9139   addptr(buf, 16);
9140   decrementl(len);
9141   jccb(Assembler::greater, L_fold_tail_loop);
9142 
9143   // Fold 128 bits in xmm1 down into 32 bits in crc register.
9144   BIND(L_fold_128b);
9145   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
9146   if (UseAVX > 0) {
9147     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
9148     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
9149     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
9150   } else {
9151     movdqa(xmm2, xmm0);
9152     pclmulqdq(xmm2, xmm1, 0x1);
9153     movdqa(xmm3, xmm0);
9154     pand(xmm3, xmm2);
9155     pclmulqdq(xmm0, xmm3, 0x1);
9156   }
9157   psrldq(xmm1, 8);
9158   psrldq(xmm2, 4);
9159   pxor(xmm0, xmm1);
9160   pxor(xmm0, xmm2);
9161 
9162   // 8 8-bit folds to compute 32-bit CRC.
9163   for (int j = 0; j < 4; j++) {
9164     fold_8bit_crc32(xmm0, table, xmm1, rax);
9165   }
9166   movdl(crc, xmm0); // mov 32 bits to general register
9167   for (int j = 0; j < 4; j++) {
9168     fold_8bit_crc32(crc, table, rax);
9169   }
9170 
9171   BIND(L_tail_restore);
9172   movl(len, tmp); // restore
9173   BIND(L_tail);
9174   andl(len, 0xf);
9175   jccb(Assembler::zero, L_exit);
9176 
9177   // Fold the rest of bytes
9178   align(4);
9179   BIND(L_tail_loop);
9180   movsbl(rax, Address(buf, 0)); // load byte with sign extension
9181   update_byte_crc32(crc, rax, table);
9182   increment(buf);
9183   decrementl(len);
9184   jccb(Assembler::greater, L_tail_loop);
9185 
9186   BIND(L_exit);
9187   notl(crc); // ~c
9188 }
9189 
9190 #ifdef _LP64
9191 // S. Gueron / Information Processing Letters 112 (2012) 184
9192 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
9193 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
9194 // Output: the 64-bit carry-less product of B * CONST
9195 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
9196                                      Register tmp1, Register tmp2, Register tmp3) {
9197   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
9198   if (n > 0) {
9199     addq(tmp3, n * 256 * 8);
9200   }
9201   //    Q1 = TABLEExt[n][B & 0xFF];
9202   movl(tmp1, in);
9203   andl(tmp1, 0x000000FF);
9204   shll(tmp1, 3);
9205   addq(tmp1, tmp3);
9206   movq(tmp1, Address(tmp1, 0));
9207 
9208   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
9209   movl(tmp2, in);
9210   shrl(tmp2, 8);
9211   andl(tmp2, 0x000000FF);
9212   shll(tmp2, 3);
9213   addq(tmp2, tmp3);
9214   movq(tmp2, Address(tmp2, 0));
9215 
9216   shlq(tmp2, 8);
9217   xorq(tmp1, tmp2);
9218 
9219   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
9220   movl(tmp2, in);
9221   shrl(tmp2, 16);
9222   andl(tmp2, 0x000000FF);
9223   shll(tmp2, 3);
9224   addq(tmp2, tmp3);
9225   movq(tmp2, Address(tmp2, 0));
9226 
9227   shlq(tmp2, 16);
9228   xorq(tmp1, tmp2);
9229 
9230   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
9231   shrl(in, 24);
9232   andl(in, 0x000000FF);
9233   shll(in, 3);
9234   addq(in, tmp3);
9235   movq(in, Address(in, 0));
9236 
9237   shlq(in, 24);
9238   xorq(in, tmp1);
9239   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
9240 }
9241 
9242 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
9243                                       Register in_out,
9244                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
9245                                       XMMRegister w_xtmp2,
9246                                       Register tmp1,
9247                                       Register n_tmp2, Register n_tmp3) {
9248   if (is_pclmulqdq_supported) {
9249     movdl(w_xtmp1, in_out); // modified blindly
9250 
9251     movl(tmp1, const_or_pre_comp_const_index);
9252     movdl(w_xtmp2, tmp1);
9253     pclmulqdq(w_xtmp1, w_xtmp2, 0);
9254 
9255     movdq(in_out, w_xtmp1);
9256   } else {
9257     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
9258   }
9259 }
9260 
9261 // Recombination Alternative 2: No bit-reflections
9262 // T1 = (CRC_A * U1) << 1
9263 // T2 = (CRC_B * U2) << 1
9264 // C1 = T1 >> 32
9265 // C2 = T2 >> 32
9266 // T1 = T1 & 0xFFFFFFFF
9267 // T2 = T2 & 0xFFFFFFFF
9268 // T1 = CRC32(0, T1)
9269 // T2 = CRC32(0, T2)
9270 // C1 = C1 ^ T1
9271 // C2 = C2 ^ T2
9272 // CRC = C1 ^ C2 ^ CRC_C
9273 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
9274                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9275                                      Register tmp1, Register tmp2,
9276                                      Register n_tmp3) {
9277   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9278   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9279   shlq(in_out, 1);
9280   movl(tmp1, in_out);
9281   shrq(in_out, 32);
9282   xorl(tmp2, tmp2);
9283   crc32(tmp2, tmp1, 4);
9284   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
9285   shlq(in1, 1);
9286   movl(tmp1, in1);
9287   shrq(in1, 32);
9288   xorl(tmp2, tmp2);
9289   crc32(tmp2, tmp1, 4);
9290   xorl(in1, tmp2);
9291   xorl(in_out, in1);
9292   xorl(in_out, in2);
9293 }
9294 
9295 // Set N to predefined value
9296 // Subtract from a lenght of a buffer
9297 // execute in a loop:
9298 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
9299 // for i = 1 to N do
9300 //  CRC_A = CRC32(CRC_A, A[i])
9301 //  CRC_B = CRC32(CRC_B, B[i])
9302 //  CRC_C = CRC32(CRC_C, C[i])
9303 // end for
9304 // Recombine
9305 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
9306                                        Register in_out1, Register in_out2, Register in_out3,
9307                                        Register tmp1, Register tmp2, Register tmp3,
9308                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9309                                        Register tmp4, Register tmp5,
9310                                        Register n_tmp6) {
9311   Label L_processPartitions;
9312   Label L_processPartition;
9313   Label L_exit;
9314 
9315   bind(L_processPartitions);
9316   cmpl(in_out1, 3 * size);
9317   jcc(Assembler::less, L_exit);
9318     xorl(tmp1, tmp1);
9319     xorl(tmp2, tmp2);
9320     movq(tmp3, in_out2);
9321     addq(tmp3, size);
9322 
9323     bind(L_processPartition);
9324       crc32(in_out3, Address(in_out2, 0), 8);
9325       crc32(tmp1, Address(in_out2, size), 8);
9326       crc32(tmp2, Address(in_out2, size * 2), 8);
9327       addq(in_out2, 8);
9328       cmpq(in_out2, tmp3);
9329       jcc(Assembler::less, L_processPartition);
9330     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
9331             w_xtmp1, w_xtmp2, w_xtmp3,
9332             tmp4, tmp5,
9333             n_tmp6);
9334     addq(in_out2, 2 * size);
9335     subl(in_out1, 3 * size);
9336     jmp(L_processPartitions);
9337 
9338   bind(L_exit);
9339 }
9340 #else
9341 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
9342                                      Register tmp1, Register tmp2, Register tmp3,
9343                                      XMMRegister xtmp1, XMMRegister xtmp2) {
9344   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
9345   if (n > 0) {
9346     addl(tmp3, n * 256 * 8);
9347   }
9348   //    Q1 = TABLEExt[n][B & 0xFF];
9349   movl(tmp1, in_out);
9350   andl(tmp1, 0x000000FF);
9351   shll(tmp1, 3);
9352   addl(tmp1, tmp3);
9353   movq(xtmp1, Address(tmp1, 0));
9354 
9355   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
9356   movl(tmp2, in_out);
9357   shrl(tmp2, 8);
9358   andl(tmp2, 0x000000FF);
9359   shll(tmp2, 3);
9360   addl(tmp2, tmp3);
9361   movq(xtmp2, Address(tmp2, 0));
9362 
9363   psllq(xtmp2, 8);
9364   pxor(xtmp1, xtmp2);
9365 
9366   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
9367   movl(tmp2, in_out);
9368   shrl(tmp2, 16);
9369   andl(tmp2, 0x000000FF);
9370   shll(tmp2, 3);
9371   addl(tmp2, tmp3);
9372   movq(xtmp2, Address(tmp2, 0));
9373 
9374   psllq(xtmp2, 16);
9375   pxor(xtmp1, xtmp2);
9376 
9377   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
9378   shrl(in_out, 24);
9379   andl(in_out, 0x000000FF);
9380   shll(in_out, 3);
9381   addl(in_out, tmp3);
9382   movq(xtmp2, Address(in_out, 0));
9383 
9384   psllq(xtmp2, 24);
9385   pxor(xtmp1, xtmp2); // Result in CXMM
9386   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
9387 }
9388 
9389 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
9390                                       Register in_out,
9391                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
9392                                       XMMRegister w_xtmp2,
9393                                       Register tmp1,
9394                                       Register n_tmp2, Register n_tmp3) {
9395   if (is_pclmulqdq_supported) {
9396     movdl(w_xtmp1, in_out);
9397 
9398     movl(tmp1, const_or_pre_comp_const_index);
9399     movdl(w_xtmp2, tmp1);
9400     pclmulqdq(w_xtmp1, w_xtmp2, 0);
9401     // Keep result in XMM since GPR is 32 bit in length
9402   } else {
9403     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
9404   }
9405 }
9406 
9407 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
9408                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9409                                      Register tmp1, Register tmp2,
9410                                      Register n_tmp3) {
9411   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9412   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9413 
9414   psllq(w_xtmp1, 1);
9415   movdl(tmp1, w_xtmp1);
9416   psrlq(w_xtmp1, 32);
9417   movdl(in_out, w_xtmp1);
9418 
9419   xorl(tmp2, tmp2);
9420   crc32(tmp2, tmp1, 4);
9421   xorl(in_out, tmp2);
9422 
9423   psllq(w_xtmp2, 1);
9424   movdl(tmp1, w_xtmp2);
9425   psrlq(w_xtmp2, 32);
9426   movdl(in1, w_xtmp2);
9427 
9428   xorl(tmp2, tmp2);
9429   crc32(tmp2, tmp1, 4);
9430   xorl(in1, tmp2);
9431   xorl(in_out, in1);
9432   xorl(in_out, in2);
9433 }
9434 
9435 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
9436                                        Register in_out1, Register in_out2, Register in_out3,
9437                                        Register tmp1, Register tmp2, Register tmp3,
9438                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9439                                        Register tmp4, Register tmp5,
9440                                        Register n_tmp6) {
9441   Label L_processPartitions;
9442   Label L_processPartition;
9443   Label L_exit;
9444 
9445   bind(L_processPartitions);
9446   cmpl(in_out1, 3 * size);
9447   jcc(Assembler::less, L_exit);
9448     xorl(tmp1, tmp1);
9449     xorl(tmp2, tmp2);
9450     movl(tmp3, in_out2);
9451     addl(tmp3, size);
9452 
9453     bind(L_processPartition);
9454       crc32(in_out3, Address(in_out2, 0), 4);
9455       crc32(tmp1, Address(in_out2, size), 4);
9456       crc32(tmp2, Address(in_out2, size*2), 4);
9457       crc32(in_out3, Address(in_out2, 0+4), 4);
9458       crc32(tmp1, Address(in_out2, size+4), 4);
9459       crc32(tmp2, Address(in_out2, size*2+4), 4);
9460       addl(in_out2, 8);
9461       cmpl(in_out2, tmp3);
9462       jcc(Assembler::less, L_processPartition);
9463 
9464         push(tmp3);
9465         push(in_out1);
9466         push(in_out2);
9467         tmp4 = tmp3;
9468         tmp5 = in_out1;
9469         n_tmp6 = in_out2;
9470 
9471       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
9472             w_xtmp1, w_xtmp2, w_xtmp3,
9473             tmp4, tmp5,
9474             n_tmp6);
9475 
9476         pop(in_out2);
9477         pop(in_out1);
9478         pop(tmp3);
9479 
9480     addl(in_out2, 2 * size);
9481     subl(in_out1, 3 * size);
9482     jmp(L_processPartitions);
9483 
9484   bind(L_exit);
9485 }
9486 #endif //LP64
9487 
9488 #ifdef _LP64
9489 // Algorithm 2: Pipelined usage of the CRC32 instruction.
9490 // Input: A buffer I of L bytes.
9491 // Output: the CRC32C value of the buffer.
9492 // Notations:
9493 // Write L = 24N + r, with N = floor (L/24).
9494 // r = L mod 24 (0 <= r < 24).
9495 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
9496 // N quadwords, and R consists of r bytes.
9497 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
9498 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
9499 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
9500 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
9501 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
9502                                           Register tmp1, Register tmp2, Register tmp3,
9503                                           Register tmp4, Register tmp5, Register tmp6,
9504                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9505                                           bool is_pclmulqdq_supported) {
9506   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
9507   Label L_wordByWord;
9508   Label L_byteByByteProlog;
9509   Label L_byteByByte;
9510   Label L_exit;
9511 
9512   if (is_pclmulqdq_supported ) {
9513     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
9514     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
9515 
9516     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
9517     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
9518 
9519     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
9520     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
9521     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
9522   } else {
9523     const_or_pre_comp_const_index[0] = 1;
9524     const_or_pre_comp_const_index[1] = 0;
9525 
9526     const_or_pre_comp_const_index[2] = 3;
9527     const_or_pre_comp_const_index[3] = 2;
9528 
9529     const_or_pre_comp_const_index[4] = 5;
9530     const_or_pre_comp_const_index[5] = 4;
9531    }
9532   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
9533                     in2, in1, in_out,
9534                     tmp1, tmp2, tmp3,
9535                     w_xtmp1, w_xtmp2, w_xtmp3,
9536                     tmp4, tmp5,
9537                     tmp6);
9538   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
9539                     in2, in1, in_out,
9540                     tmp1, tmp2, tmp3,
9541                     w_xtmp1, w_xtmp2, w_xtmp3,
9542                     tmp4, tmp5,
9543                     tmp6);
9544   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
9545                     in2, in1, in_out,
9546                     tmp1, tmp2, tmp3,
9547                     w_xtmp1, w_xtmp2, w_xtmp3,
9548                     tmp4, tmp5,
9549                     tmp6);
9550   movl(tmp1, in2);
9551   andl(tmp1, 0x00000007);
9552   negl(tmp1);
9553   addl(tmp1, in2);
9554   addq(tmp1, in1);
9555 
9556   BIND(L_wordByWord);
9557   cmpq(in1, tmp1);
9558   jcc(Assembler::greaterEqual, L_byteByByteProlog);
9559     crc32(in_out, Address(in1, 0), 4);
9560     addq(in1, 4);
9561     jmp(L_wordByWord);
9562 
9563   BIND(L_byteByByteProlog);
9564   andl(in2, 0x00000007);
9565   movl(tmp2, 1);
9566 
9567   BIND(L_byteByByte);
9568   cmpl(tmp2, in2);
9569   jccb(Assembler::greater, L_exit);
9570     crc32(in_out, Address(in1, 0), 1);
9571     incq(in1);
9572     incl(tmp2);
9573     jmp(L_byteByByte);
9574 
9575   BIND(L_exit);
9576 }
9577 #else
9578 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
9579                                           Register tmp1, Register  tmp2, Register tmp3,
9580                                           Register tmp4, Register  tmp5, Register tmp6,
9581                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9582                                           bool is_pclmulqdq_supported) {
9583   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
9584   Label L_wordByWord;
9585   Label L_byteByByteProlog;
9586   Label L_byteByByte;
9587   Label L_exit;
9588 
9589   if (is_pclmulqdq_supported) {
9590     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
9591     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
9592 
9593     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
9594     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
9595 
9596     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
9597     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
9598   } else {
9599     const_or_pre_comp_const_index[0] = 1;
9600     const_or_pre_comp_const_index[1] = 0;
9601 
9602     const_or_pre_comp_const_index[2] = 3;
9603     const_or_pre_comp_const_index[3] = 2;
9604 
9605     const_or_pre_comp_const_index[4] = 5;
9606     const_or_pre_comp_const_index[5] = 4;
9607   }
9608   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
9609                     in2, in1, in_out,
9610                     tmp1, tmp2, tmp3,
9611                     w_xtmp1, w_xtmp2, w_xtmp3,
9612                     tmp4, tmp5,
9613                     tmp6);
9614   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
9615                     in2, in1, in_out,
9616                     tmp1, tmp2, tmp3,
9617                     w_xtmp1, w_xtmp2, w_xtmp3,
9618                     tmp4, tmp5,
9619                     tmp6);
9620   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
9621                     in2, in1, in_out,
9622                     tmp1, tmp2, tmp3,
9623                     w_xtmp1, w_xtmp2, w_xtmp3,
9624                     tmp4, tmp5,
9625                     tmp6);
9626   movl(tmp1, in2);
9627   andl(tmp1, 0x00000007);
9628   negl(tmp1);
9629   addl(tmp1, in2);
9630   addl(tmp1, in1);
9631 
9632   BIND(L_wordByWord);
9633   cmpl(in1, tmp1);
9634   jcc(Assembler::greaterEqual, L_byteByByteProlog);
9635     crc32(in_out, Address(in1,0), 4);
9636     addl(in1, 4);
9637     jmp(L_wordByWord);
9638 
9639   BIND(L_byteByByteProlog);
9640   andl(in2, 0x00000007);
9641   movl(tmp2, 1);
9642 
9643   BIND(L_byteByByte);
9644   cmpl(tmp2, in2);
9645   jccb(Assembler::greater, L_exit);
9646     movb(tmp1, Address(in1, 0));
9647     crc32(in_out, tmp1, 1);
9648     incl(in1);
9649     incl(tmp2);
9650     jmp(L_byteByByte);
9651 
9652   BIND(L_exit);
9653 }
9654 #endif // LP64
9655 #undef BIND
9656 #undef BLOCK_COMMENT
9657 
9658 // Compress char[] array to byte[].
9659 //   ..\jdk\src\java.base\share\classes\java\lang\StringUTF16.java
9660 //   @HotSpotIntrinsicCandidate
9661 //   private static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
9662 //     for (int i = 0; i < len; i++) {
9663 //       int c = src[srcOff++];
9664 //       if (c >>> 8 != 0) {
9665 //         return 0;
9666 //       }
9667 //       dst[dstOff++] = (byte)c;
9668 //     }
9669 //     return len;
9670 //   }
9671 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
9672   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
9673   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
9674   Register tmp5, Register result) {
9675   Label copy_chars_loop, return_length, return_zero, done;
9676 
9677   // rsi: src
9678   // rdi: dst
9679   // rdx: len
9680   // rcx: tmp5
9681   // rax: result
9682 
9683   // rsi holds start addr of source char[] to be compressed
9684   // rdi holds start addr of destination byte[]
9685   // rdx holds length
9686 
9687   assert(len != result, "");
9688 
9689   // save length for return
9690   push(len);
9691 
9692   if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512
9693     VM_Version::supports_avx512vlbw() &&
9694     VM_Version::supports_bmi2()) {
9695 
9696     Label copy_32_loop, copy_loop_tail, below_threshold;
9697 
9698     // alignment
9699     Label post_alignment;
9700 
9701     // if length of the string is less than 16, handle it in an old fashioned way
9702     testl(len, -32);
9703     jcc(Assembler::zero, below_threshold);
9704 
9705     // First check whether a character is compressable ( <= 0xFF).
9706     // Create mask to test for Unicode chars inside zmm vector
9707     movl(result, 0x00FF);
9708     evpbroadcastw(tmp2Reg, result, Assembler::AVX_512bit);
9709 
9710     testl(len, -64);
9711     jcc(Assembler::zero, post_alignment);
9712 
9713     movl(tmp5, dst);
9714     andl(tmp5, (32 - 1));
9715     negl(tmp5);
9716     andl(tmp5, (32 - 1));
9717 
9718     // bail out when there is nothing to be done
9719     testl(tmp5, 0xFFFFFFFF);
9720     jcc(Assembler::zero, post_alignment);
9721 
9722     // ~(~0 << len), where len is the # of remaining elements to process
9723     movl(result, 0xFFFFFFFF);
9724     shlxl(result, result, tmp5);
9725     notl(result);
9726     kmovdl(k3, result);
9727 
9728     evmovdquw(tmp1Reg, k3, Address(src, 0), Assembler::AVX_512bit);
9729     evpcmpuw(k2, k3, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
9730     ktestd(k2, k3);
9731     jcc(Assembler::carryClear, return_zero);
9732 
9733     evpmovwb(Address(dst, 0), k3, tmp1Reg, Assembler::AVX_512bit);
9734 
9735     addptr(src, tmp5);
9736     addptr(src, tmp5);
9737     addptr(dst, tmp5);
9738     subl(len, tmp5);
9739 
9740     bind(post_alignment);
9741     // end of alignment
9742 
9743     movl(tmp5, len);
9744     andl(tmp5, (32 - 1));    // tail count (in chars)
9745     andl(len, ~(32 - 1));    // vector count (in chars)
9746     jcc(Assembler::zero, copy_loop_tail);
9747 
9748     lea(src, Address(src, len, Address::times_2));
9749     lea(dst, Address(dst, len, Address::times_1));
9750     negptr(len);
9751 
9752     bind(copy_32_loop);
9753     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
9754     evpcmpuw(k2, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
9755     kortestdl(k2, k2);
9756     jcc(Assembler::carryClear, return_zero);
9757 
9758     // All elements in current processed chunk are valid candidates for
9759     // compression. Write a truncated byte elements to the memory.
9760     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
9761     addptr(len, 32);
9762     jcc(Assembler::notZero, copy_32_loop);
9763 
9764     bind(copy_loop_tail);
9765     // bail out when there is nothing to be done
9766     testl(tmp5, 0xFFFFFFFF);
9767     jcc(Assembler::zero, return_length);
9768 
9769     movl(len, tmp5);
9770 
9771     // ~(~0 << len), where len is the # of remaining elements to process
9772     movl(result, 0xFFFFFFFF);
9773     shlxl(result, result, len);
9774     notl(result);
9775 
9776     kmovdl(k3, result);
9777 
9778     evmovdquw(tmp1Reg, k3, Address(src, 0), Assembler::AVX_512bit);
9779     evpcmpuw(k2, k3, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
9780     ktestd(k2, k3);
9781     jcc(Assembler::carryClear, return_zero);
9782 
9783     evpmovwb(Address(dst, 0), k3, tmp1Reg, Assembler::AVX_512bit);
9784     jmp(return_length);
9785 
9786     bind(below_threshold);
9787   }
9788 
9789   if (UseSSE42Intrinsics) {
9790     Label copy_32_loop, copy_16, copy_tail;
9791 
9792     movl(result, len);
9793 
9794     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
9795 
9796     // vectored compression
9797     andl(len, 0xfffffff0);    // vector count (in chars)
9798     andl(result, 0x0000000f);    // tail count (in chars)
9799     testl(len, len);
9800     jcc(Assembler::zero, copy_16);
9801 
9802     // compress 16 chars per iter
9803     movdl(tmp1Reg, tmp5);
9804     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
9805     pxor(tmp4Reg, tmp4Reg);
9806 
9807     lea(src, Address(src, len, Address::times_2));
9808     lea(dst, Address(dst, len, Address::times_1));
9809     negptr(len);
9810 
9811     bind(copy_32_loop);
9812     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
9813     por(tmp4Reg, tmp2Reg);
9814     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
9815     por(tmp4Reg, tmp3Reg);
9816     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
9817     jcc(Assembler::notZero, return_zero);
9818     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
9819     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
9820     addptr(len, 16);
9821     jcc(Assembler::notZero, copy_32_loop);
9822 
9823     // compress next vector of 8 chars (if any)
9824     bind(copy_16);
9825     movl(len, result);
9826     andl(len, 0xfffffff8);    // vector count (in chars)
9827     andl(result, 0x00000007);    // tail count (in chars)
9828     testl(len, len);
9829     jccb(Assembler::zero, copy_tail);
9830 
9831     movdl(tmp1Reg, tmp5);
9832     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
9833     pxor(tmp3Reg, tmp3Reg);
9834 
9835     movdqu(tmp2Reg, Address(src, 0));
9836     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
9837     jccb(Assembler::notZero, return_zero);
9838     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
9839     movq(Address(dst, 0), tmp2Reg);
9840     addptr(src, 16);
9841     addptr(dst, 8);
9842 
9843     bind(copy_tail);
9844     movl(len, result);
9845   }
9846   // compress 1 char per iter
9847   testl(len, len);
9848   jccb(Assembler::zero, return_length);
9849   lea(src, Address(src, len, Address::times_2));
9850   lea(dst, Address(dst, len, Address::times_1));
9851   negptr(len);
9852 
9853   bind(copy_chars_loop);
9854   load_unsigned_short(result, Address(src, len, Address::times_2));
9855   testl(result, 0xff00);      // check if Unicode char
9856   jccb(Assembler::notZero, return_zero);
9857   movb(Address(dst, len, Address::times_1), result);  // ASCII char; compress to 1 byte
9858   increment(len);
9859   jcc(Assembler::notZero, copy_chars_loop);
9860 
9861   // if compression succeeded, return length
9862   bind(return_length);
9863   pop(result);
9864   jmpb(done);
9865 
9866   // if compression failed, return 0
9867   bind(return_zero);
9868   xorl(result, result);
9869   addptr(rsp, wordSize);
9870 
9871   bind(done);
9872 }
9873 
9874 // Inflate byte[] array to char[].
9875 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
9876 //   @HotSpotIntrinsicCandidate
9877 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
9878 //     for (int i = 0; i < len; i++) {
9879 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
9880 //     }
9881 //   }
9882 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
9883   XMMRegister tmp1, Register tmp2) {
9884   Label copy_chars_loop, done, below_threshold, avx3_threshold;
9885   // rsi: src
9886   // rdi: dst
9887   // rdx: len
9888   // rcx: tmp2
9889 
9890   // rsi holds start addr of source byte[] to be inflated
9891   // rdi holds start addr of destination char[]
9892   // rdx holds length
9893   assert_different_registers(src, dst, len, tmp2);
9894   movl(tmp2, len);
9895   if ((UseAVX > 2) && // AVX512
9896     VM_Version::supports_avx512vlbw() &&
9897     VM_Version::supports_bmi2()) {
9898 
9899     Label copy_32_loop, copy_tail;
9900     Register tmp3_aliased = len;
9901 
9902     // if length of the string is less than 16, handle it in an old fashioned way
9903     testl(len, -16);
9904     jcc(Assembler::zero, below_threshold);
9905 
9906     testl(len, -1 * AVX3Threshold);
9907     jcc(Assembler::zero, avx3_threshold);
9908 
9909     // In order to use only one arithmetic operation for the main loop we use
9910     // this pre-calculation
9911     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
9912     andl(len, -32);     // vector count
9913     jccb(Assembler::zero, copy_tail);
9914 
9915     lea(src, Address(src, len, Address::times_1));
9916     lea(dst, Address(dst, len, Address::times_2));
9917     negptr(len);
9918 
9919 
9920     // inflate 32 chars per iter
9921     bind(copy_32_loop);
9922     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
9923     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
9924     addptr(len, 32);
9925     jcc(Assembler::notZero, copy_32_loop);
9926 
9927     bind(copy_tail);
9928     // bail out when there is nothing to be done
9929     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
9930     jcc(Assembler::zero, done);
9931 
9932     // ~(~0 << length), where length is the # of remaining elements to process
9933     movl(tmp3_aliased, -1);
9934     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
9935     notl(tmp3_aliased);
9936     kmovdl(k2, tmp3_aliased);
9937     evpmovzxbw(tmp1, k2, Address(src, 0), Assembler::AVX_512bit);
9938     evmovdquw(Address(dst, 0), k2, tmp1, Assembler::AVX_512bit);
9939 
9940     jmp(done);
9941     bind(avx3_threshold);
9942   }
9943   if (UseSSE42Intrinsics) {
9944     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
9945 
9946     if (UseAVX > 1) {
9947       andl(tmp2, (16 - 1));
9948       andl(len, -16);
9949       jccb(Assembler::zero, copy_new_tail);
9950     } else {
9951       andl(tmp2, 0x00000007);   // tail count (in chars)
9952       andl(len, 0xfffffff8);    // vector count (in chars)
9953       jccb(Assembler::zero, copy_tail);
9954     }
9955 
9956     // vectored inflation
9957     lea(src, Address(src, len, Address::times_1));
9958     lea(dst, Address(dst, len, Address::times_2));
9959     negptr(len);
9960 
9961     if (UseAVX > 1) {
9962       bind(copy_16_loop);
9963       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
9964       vmovdqu(Address(dst, len, Address::times_2), tmp1);
9965       addptr(len, 16);
9966       jcc(Assembler::notZero, copy_16_loop);
9967 
9968       bind(below_threshold);
9969       bind(copy_new_tail);
9970       movl(len, tmp2);
9971       andl(tmp2, 0x00000007);
9972       andl(len, 0xFFFFFFF8);
9973       jccb(Assembler::zero, copy_tail);
9974 
9975       pmovzxbw(tmp1, Address(src, 0));
9976       movdqu(Address(dst, 0), tmp1);
9977       addptr(src, 8);
9978       addptr(dst, 2 * 8);
9979 
9980       jmp(copy_tail, true);
9981     }
9982 
9983     // inflate 8 chars per iter
9984     bind(copy_8_loop);
9985     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
9986     movdqu(Address(dst, len, Address::times_2), tmp1);
9987     addptr(len, 8);
9988     jcc(Assembler::notZero, copy_8_loop);
9989 
9990     bind(copy_tail);
9991     movl(len, tmp2);
9992 
9993     cmpl(len, 4);
9994     jccb(Assembler::less, copy_bytes);
9995 
9996     movdl(tmp1, Address(src, 0));  // load 4 byte chars
9997     pmovzxbw(tmp1, tmp1);
9998     movq(Address(dst, 0), tmp1);
9999     subptr(len, 4);
10000     addptr(src, 4);
10001     addptr(dst, 8);
10002 
10003     bind(copy_bytes);
10004   } else {
10005     bind(below_threshold);
10006   }
10007 
10008   testl(len, len);
10009   jccb(Assembler::zero, done);
10010   lea(src, Address(src, len, Address::times_1));
10011   lea(dst, Address(dst, len, Address::times_2));
10012   negptr(len);
10013 
10014   // inflate 1 char per iter
10015   bind(copy_chars_loop);
10016   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
10017   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
10018   increment(len);
10019   jcc(Assembler::notZero, copy_chars_loop);
10020 
10021   bind(done);
10022 }
10023 
10024 #ifdef _LP64
10025 void MacroAssembler::cache_wb(Address line)
10026 {
10027   // 64 bit cpus always support clflush
10028   assert(VM_Version::supports_clflush(), "clflush should be available");
10029   bool optimized = VM_Version::supports_clflushopt();
10030   bool no_evict = VM_Version::supports_clwb();
10031 
10032   // prefer clwb (writeback without evict) otherwise
10033   // prefer clflushopt (potentially parallel writeback with evict)
10034   // otherwise fallback on clflush (serial writeback with evict)
10035 
10036   if (optimized) {
10037     if (no_evict) {
10038       clwb(line);
10039     } else {
10040       clflushopt(line);
10041     }
10042   } else {
10043     // no need for fence when using CLFLUSH
10044     clflush(line);
10045   }
10046 }
10047 
10048 void MacroAssembler::cache_wbsync(bool is_pre)
10049 {
10050   assert(VM_Version::supports_clflush(), "clflush should be available");
10051   bool optimized = VM_Version::supports_clflushopt();
10052   bool no_evict = VM_Version::supports_clwb();
10053 
10054   // pick the correct implementation
10055 
10056   if (!is_pre && (optimized || no_evict)) {
10057     // need an sfence for post flush when using clflushopt or clwb
10058     // otherwise no no need for any synchroniaztion
10059 
10060     sfence();
10061   }
10062 }
10063 #endif // _LP64
10064 
10065 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
10066   switch (cond) {
10067     // Note some conditions are synonyms for others
10068     case Assembler::zero:         return Assembler::notZero;
10069     case Assembler::notZero:      return Assembler::zero;
10070     case Assembler::less:         return Assembler::greaterEqual;
10071     case Assembler::lessEqual:    return Assembler::greater;
10072     case Assembler::greater:      return Assembler::lessEqual;
10073     case Assembler::greaterEqual: return Assembler::less;
10074     case Assembler::below:        return Assembler::aboveEqual;
10075     case Assembler::belowEqual:   return Assembler::above;
10076     case Assembler::above:        return Assembler::belowEqual;
10077     case Assembler::aboveEqual:   return Assembler::below;
10078     case Assembler::overflow:     return Assembler::noOverflow;
10079     case Assembler::noOverflow:   return Assembler::overflow;
10080     case Assembler::negative:     return Assembler::positive;
10081     case Assembler::positive:     return Assembler::negative;
10082     case Assembler::parity:       return Assembler::noParity;
10083     case Assembler::noParity:     return Assembler::parity;
10084   }
10085   ShouldNotReachHere(); return Assembler::overflow;
10086 }
10087 
10088 SkipIfEqual::SkipIfEqual(
10089     MacroAssembler* masm, const bool* flag_addr, bool value) {
10090   _masm = masm;
10091   _masm->cmp8(ExternalAddress((address)flag_addr), value);
10092   _masm->jcc(Assembler::equal, _label);
10093 }
10094 
10095 SkipIfEqual::~SkipIfEqual() {
10096   _masm->bind(_label);
10097 }
10098 
10099 // 32-bit Windows has its own fast-path implementation
10100 // of get_thread
10101 #if !defined(WIN32) || defined(_LP64)
10102 
10103 // This is simply a call to Thread::current()
10104 void MacroAssembler::get_thread(Register thread) {
10105   if (thread != rax) {
10106     push(rax);
10107   }
10108   LP64_ONLY(push(rdi);)
10109   LP64_ONLY(push(rsi);)
10110   push(rdx);
10111   push(rcx);
10112 #ifdef _LP64
10113   push(r8);
10114   push(r9);
10115   push(r10);
10116   push(r11);
10117 #endif
10118 
10119   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
10120 
10121 #ifdef _LP64
10122   pop(r11);
10123   pop(r10);
10124   pop(r9);
10125   pop(r8);
10126 #endif
10127   pop(rcx);
10128   pop(rdx);
10129   LP64_ONLY(pop(rsi);)
10130   LP64_ONLY(pop(rdi);)
10131   if (thread != rax) {
10132     mov(thread, rax);
10133     pop(rax);
10134   }
10135 }
10136 
10137 #endif