1 /*
   2  * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "logging/log.hpp"
  28 #include "logging/logStream.hpp"
  29 #include "jfr/jfrEvents.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/metaspaceShared.hpp"
  32 #include "memory/padded.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "memory/universe.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "runtime/atomic.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/handles.inline.hpp"
  40 #include "runtime/handshake.hpp"
  41 #include "runtime/interfaceSupport.inline.hpp"
  42 #include "runtime/mutexLocker.hpp"
  43 #include "runtime/objectMonitor.hpp"
  44 #include "runtime/objectMonitor.inline.hpp"
  45 #include "runtime/osThread.hpp"
  46 #include "runtime/safepointMechanism.inline.hpp"
  47 #include "runtime/safepointVerifiers.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/synchronizer.hpp"
  51 #include "runtime/thread.inline.hpp"
  52 #include "runtime/timer.hpp"
  53 #include "runtime/vframe.hpp"
  54 #include "runtime/vmThread.hpp"
  55 #include "utilities/align.hpp"
  56 #include "utilities/dtrace.hpp"
  57 #include "utilities/events.hpp"
  58 #include "utilities/preserveException.hpp"
  59 
  60 // The "core" versions of monitor enter and exit reside in this file.
  61 // The interpreter and compilers contain specialized transliterated
  62 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  63 // for instance.  If you make changes here, make sure to modify the
  64 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  65 //
  66 // -----------------------------------------------------------------------------
  67 
  68 #ifdef DTRACE_ENABLED
  69 
  70 // Only bother with this argument setup if dtrace is available
  71 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  72 
  73 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  74   char* bytes = NULL;                                                      \
  75   int len = 0;                                                             \
  76   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  77   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  78   if (klassname != NULL) {                                                 \
  79     bytes = (char*)klassname->bytes();                                     \
  80     len = klassname->utf8_length();                                        \
  81   }
  82 
  83 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  84   {                                                                        \
  85     if (DTraceMonitorProbes) {                                             \
  86       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  87       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  88                            (uintptr_t)(monitor), bytes, len, (millis));    \
  89     }                                                                      \
  90   }
  91 
  92 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
  93 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  94 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
  95 
  96 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  97   {                                                                        \
  98     if (DTraceMonitorProbes) {                                             \
  99       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 100       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
 101                                     (uintptr_t)(monitor), bytes, len);     \
 102     }                                                                      \
 103   }
 104 
 105 #else //  ndef DTRACE_ENABLED
 106 
 107 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 108 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 109 
 110 #endif // ndef DTRACE_ENABLED
 111 
 112 // This exists only as a workaround of dtrace bug 6254741
 113 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 114   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 115   return 0;
 116 }
 117 
 118 #define NINFLATIONLOCKS 256
 119 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 120 
 121 // global list of blocks of monitors
 122 PaddedObjectMonitor* ObjectSynchronizer::g_block_list = NULL;
 123 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false;
 124 bool volatile ObjectSynchronizer::_is_special_deflation_requested = false;
 125 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0;
 126 
 127 struct ListGlobals {
 128   char         _pad_prefix[OM_CACHE_LINE_SIZE];
 129   // These are highly shared list related variables.
 130   // To avoid false-sharing they need to be the sole occupants of a cache line.
 131 
 132   // Global ObjectMonitor free list. Newly allocated and deflated
 133   // ObjectMonitors are prepended here.
 134   ObjectMonitor* free_list;
 135   DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(ObjectMonitor*));
 136 
 137   // Global ObjectMonitor in-use list. When a JavaThread is exiting,
 138   // ObjectMonitors on its per-thread in-use list are prepended here.
 139   ObjectMonitor* in_use_list;
 140   DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(ObjectMonitor*));
 141 
 142   // Global ObjectMonitor wait list. If HandshakeAfterDeflateIdleMonitors
 143   // is true, deflated ObjectMonitors wait on this list until after a
 144   // handshake or a safepoint for platforms that don't support handshakes.
 145   // After the handshake or safepoint, the deflated ObjectMonitors are
 146   // prepended to free_list.
 147   ObjectMonitor* wait_list;
 148   DEFINE_PAD_MINUS_SIZE(3, OM_CACHE_LINE_SIZE, sizeof(ObjectMonitor*));
 149 
 150   int free_count;    // # on free_list
 151   DEFINE_PAD_MINUS_SIZE(4, OM_CACHE_LINE_SIZE, sizeof(int));
 152 
 153   int in_use_count;  // # on in_use_list
 154   DEFINE_PAD_MINUS_SIZE(5, OM_CACHE_LINE_SIZE, sizeof(int));
 155 
 156   int population;    // # Extant -- in circulation
 157   DEFINE_PAD_MINUS_SIZE(6, OM_CACHE_LINE_SIZE, sizeof(int));
 158 
 159   int wait_count;    // # on wait_list
 160   DEFINE_PAD_MINUS_SIZE(7, OM_CACHE_LINE_SIZE, sizeof(int));
 161 };
 162 static ListGlobals LVars;
 163 
 164 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 165 
 166 
 167 // =====================> Spinlock functions
 168 
 169 // ObjectMonitors are not lockable outside of this file. We use spinlocks
 170 // implemented using a bit in the _next_om field instead of the heavier
 171 // weight locking mechanisms for faster list management.
 172 
 173 #define OM_LOCK_BIT 0x1
 174 
 175 // Return true if the ObjectMonitor is locked.
 176 // Otherwise returns false.
 177 static bool is_locked(ObjectMonitor* om) {
 178   return ((intptr_t)Atomic::load(&om->_next_om) & OM_LOCK_BIT) == OM_LOCK_BIT;
 179 }
 180 
 181 // Mark an ObjectMonitor* with OM_LOCK_BIT and return it.
 182 // Note: the om parameter may or may not have been marked originally.
 183 static ObjectMonitor* mark_om_ptr(ObjectMonitor* om) {
 184   return (ObjectMonitor*)((intptr_t)om | OM_LOCK_BIT);
 185 }
 186 
 187 // Try to lock an ObjectMonitor. Returns true if locking was successful.
 188 // Otherwise returns false.
 189 static bool try_om_lock(ObjectMonitor* om) {
 190   // Get current next field without any OM_LOCK_BIT value.
 191   ObjectMonitor* next = (ObjectMonitor*)((intptr_t)Atomic::load(&om->_next_om) & ~OM_LOCK_BIT);
 192   if (Atomic::cmpxchg(&om->_next_om, next, mark_om_ptr(next)) != next) {
 193     return false;  // Cannot lock the ObjectMonitor.
 194   }
 195   return true;
 196 }
 197 
 198 // Lock an ObjectMonitor.
 199 static void om_lock(ObjectMonitor* om) {
 200   while (true) {
 201     if (try_om_lock(om)) {
 202       return;
 203     }
 204   }
 205 }
 206 
 207 // Unlock an ObjectMonitor.
 208 static void om_unlock(ObjectMonitor* om) {
 209   ObjectMonitor* next = Atomic::load(&om->_next_om);
 210   guarantee(((intptr_t)next & OM_LOCK_BIT) == OM_LOCK_BIT, "next=" INTPTR_FORMAT
 211             " must have OM_LOCK_BIT=%x set.", p2i(next), OM_LOCK_BIT);
 212 
 213   next = (ObjectMonitor*)((intptr_t)next & ~OM_LOCK_BIT);  // Clear OM_LOCK_BIT.
 214   Atomic::store(&om->_next_om, next);
 215 }
 216 
 217 // Get the list head after locking it. Returns the list head or NULL
 218 // if the list is empty.
 219 static ObjectMonitor* get_list_head_locked(ObjectMonitor** list_p) {
 220   while (true) {
 221     ObjectMonitor* mid = Atomic::load(list_p);
 222     if (mid == NULL) {
 223       return NULL;  // The list is empty.
 224     }
 225     if (try_om_lock(mid)) {
 226       if (Atomic::load(list_p) != mid) {
 227         // The list head changed so we have to retry.
 228         om_unlock(mid);
 229         continue;
 230       }
 231       return mid;
 232     }
 233   }
 234 }
 235 
 236 // Return the unmarked next field in an ObjectMonitor. Note: the next
 237 // field may or may not have been marked with OM_LOCK_BIT originally.
 238 static ObjectMonitor* unmarked_next(ObjectMonitor* om) {
 239   return (ObjectMonitor*)((intptr_t)Atomic::load(&om->_next_om) & ~OM_LOCK_BIT);
 240 }
 241 
 242 #undef OM_LOCK_BIT
 243 
 244 
 245 // =====================> List Management functions
 246 
 247 // Set the next field in an ObjectMonitor to the specified value.
 248 static void set_next(ObjectMonitor* om, ObjectMonitor* value) {
 249   Atomic::store(&om->_next_om, value);
 250 }
 251 
 252 // Prepend a list of ObjectMonitors to the specified *list_p. 'tail' is
 253 // the last ObjectMonitor in the list and there are 'count' on the list.
 254 // Also updates the specified *count_p.
 255 static void prepend_list_to_common(ObjectMonitor* list, ObjectMonitor* tail,
 256                                    int count, ObjectMonitor** list_p,
 257                                    int* count_p) {
 258   while (true) {
 259     ObjectMonitor* cur = Atomic::load(list_p);
 260     // Prepend list to *list_p.
 261     if (!try_om_lock(tail)) {
 262       continue;  // failed to lock tail so try it all again
 263     }
 264     set_next(tail, cur);  // tail now points to cur (and unlocks tail)
 265     if (cur == NULL) {
 266       // No potential race with takers or other prependers since
 267       // *list_p is empty.
 268       if (Atomic::cmpxchg(list_p, cur, list) == cur) {
 269         // Successfully switched *list_p to the list value.
 270         Atomic::add(count_p, count);
 271         break;
 272       }
 273       // Implied else: try it all again
 274     } else {
 275       if (!try_om_lock(cur)) {
 276         continue;  // failed to lock cur so try it all again
 277       }
 278       // We locked cur so try to switch *list_p to the list value.
 279       if (Atomic::cmpxchg(list_p, cur, list) != cur) {
 280         // The list head has changed so unlock cur and try again:
 281         om_unlock(cur);
 282         continue;
 283       }
 284       Atomic::add(count_p, count);
 285       om_unlock(cur);
 286       break;
 287     }
 288   }
 289 }
 290 
 291 // Prepend a newly allocated block of ObjectMonitors to g_block_list and
 292 // LVars.free_list. Also updates LVars.population and LVars.free_count.
 293 void ObjectSynchronizer::prepend_block_to_lists(PaddedObjectMonitor* new_blk) {
 294   // First we handle g_block_list:
 295   while (true) {
 296     PaddedObjectMonitor* cur = Atomic::load(&g_block_list);
 297     // Prepend new_blk to g_block_list. The first ObjectMonitor in
 298     // a block is reserved for use as linkage to the next block.
 299     new_blk[0]._next_om = cur;
 300     if (Atomic::cmpxchg(&g_block_list, cur, new_blk) == cur) {
 301       // Successfully switched g_block_list to the new_blk value.
 302       Atomic::add(&LVars.population, _BLOCKSIZE - 1);
 303       break;
 304     }
 305     // Implied else: try it all again
 306   }
 307 
 308   // Second we handle LVars.free_list:
 309   prepend_list_to_common(new_blk + 1, &new_blk[_BLOCKSIZE - 1], _BLOCKSIZE - 1,
 310                          &LVars.free_list, &LVars.free_count);
 311 }
 312 
 313 // Prepend a list of ObjectMonitors to LVars.free_list. 'tail' is the last
 314 // ObjectMonitor in the list and there are 'count' on the list. Also
 315 // updates LVars.free_count.
 316 static void prepend_list_to_global_free_list(ObjectMonitor* list,
 317                                              ObjectMonitor* tail, int count) {
 318   prepend_list_to_common(list, tail, count, &LVars.free_list, &LVars.free_count);
 319 }
 320 
 321 // Prepend a list of ObjectMonitors to LVars.wait_list. 'tail' is the last
 322 // ObjectMonitor in the list and there are 'count' on the list. Also
 323 // updates LVars.wait_count.
 324 static void prepend_list_to_global_wait_list(ObjectMonitor* list,
 325                                              ObjectMonitor* tail, int count) {
 326   assert(HandshakeAfterDeflateIdleMonitors, "sanity check");
 327   prepend_list_to_common(list, tail, count, &LVars.wait_list, &LVars.wait_count);
 328 }
 329 
 330 // Prepend a list of ObjectMonitors to LVars.in_use_list. 'tail' is the last
 331 // ObjectMonitor in the list and there are 'count' on the list. Also
 332 // updates LVars.in_use_list.
 333 static void prepend_list_to_global_in_use_list(ObjectMonitor* list,
 334                                                ObjectMonitor* tail, int count) {
 335   prepend_list_to_common(list, tail, count, &LVars.in_use_list, &LVars.in_use_count);
 336 }
 337 
 338 // Prepend an ObjectMonitor to the specified list. Also updates
 339 // the specified counter.
 340 static void prepend_to_common(ObjectMonitor* m, ObjectMonitor** list_p,
 341                               int* count_p) {
 342   while (true) {
 343     om_lock(m);  // Lock m so we can safely update its next field.
 344     ObjectMonitor* cur = NULL;
 345     // Lock the list head to guard against A-B-A race:
 346     if ((cur = get_list_head_locked(list_p)) != NULL) {
 347       // List head is now locked so we can safely switch it.
 348       set_next(m, cur);  // m now points to cur (and unlocks m)
 349       Atomic::store(list_p, m);  // Switch list head to unlocked m.
 350       om_unlock(cur);
 351       break;
 352     }
 353     // The list is empty so try to set the list head.
 354     assert(cur == NULL, "cur must be NULL: cur=" INTPTR_FORMAT, p2i(cur));
 355     set_next(m, cur);  // m now points to NULL (and unlocks m)
 356     if (Atomic::cmpxchg(list_p, cur, m) == cur) {
 357       // List head is now unlocked m.
 358       break;
 359     }
 360     // Implied else: try it all again
 361   }
 362   Atomic::inc(count_p);
 363 }
 364 
 365 // Prepend an ObjectMonitor to a per-thread om_free_list.
 366 // Also updates the per-thread om_free_count.
 367 static void prepend_to_om_free_list(Thread* self, ObjectMonitor* m) {
 368   prepend_to_common(m, &self->om_free_list, &self->om_free_count);
 369 }
 370 
 371 // Prepend an ObjectMonitor to a per-thread om_in_use_list.
 372 // Also updates the per-thread om_in_use_count.
 373 static void prepend_to_om_in_use_list(Thread* self, ObjectMonitor* m) {
 374   prepend_to_common(m, &self->om_in_use_list, &self->om_in_use_count);
 375 }
 376 
 377 // Take an ObjectMonitor from the start of the specified list. Also
 378 // decrements the specified counter. Returns NULL if none are available.
 379 static ObjectMonitor* take_from_start_of_common(ObjectMonitor** list_p,
 380                                                 int* count_p) {
 381   ObjectMonitor* take = NULL;
 382   // Lock the list head to guard against A-B-A race:
 383   if ((take = get_list_head_locked(list_p)) == NULL) {
 384     return NULL;  // None are available.
 385   }
 386   ObjectMonitor* next = unmarked_next(take);
 387   // Switch locked list head to next (which unlocks the list head, but
 388   // leaves take locked):
 389   Atomic::store(list_p, next);
 390   Atomic::dec(count_p);
 391   // Unlock take, but leave the next value for any lagging list
 392   // walkers. It will get cleaned up when take is prepended to
 393   // the in-use list:
 394   om_unlock(take);
 395   return take;
 396 }
 397 
 398 // Take an ObjectMonitor from the start of the LVars.free_list. Also
 399 // updates LVars.free_count. Returns NULL if none are available.
 400 static ObjectMonitor* take_from_start_of_global_free_list() {
 401   return take_from_start_of_common(&LVars.free_list, &LVars.free_count);
 402 }
 403 
 404 // Take an ObjectMonitor from the start of a per-thread free-list.
 405 // Also updates om_free_count. Returns NULL if none are available.
 406 static ObjectMonitor* take_from_start_of_om_free_list(Thread* self) {
 407   return take_from_start_of_common(&self->om_free_list, &self->om_free_count);
 408 }
 409 
 410 
 411 // =====================> Quick functions
 412 
 413 // The quick_* forms are special fast-path variants used to improve
 414 // performance.  In the simplest case, a "quick_*" implementation could
 415 // simply return false, in which case the caller will perform the necessary
 416 // state transitions and call the slow-path form.
 417 // The fast-path is designed to handle frequently arising cases in an efficient
 418 // manner and is just a degenerate "optimistic" variant of the slow-path.
 419 // returns true  -- to indicate the call was satisfied.
 420 // returns false -- to indicate the call needs the services of the slow-path.
 421 // A no-loitering ordinance is in effect for code in the quick_* family
 422 // operators: safepoints or indefinite blocking (blocking that might span a
 423 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 424 // entry.
 425 //
 426 // Consider: An interesting optimization is to have the JIT recognize the
 427 // following common idiom:
 428 //   synchronized (someobj) { .... ; notify(); }
 429 // That is, we find a notify() or notifyAll() call that immediately precedes
 430 // the monitorexit operation.  In that case the JIT could fuse the operations
 431 // into a single notifyAndExit() runtime primitive.
 432 
 433 bool ObjectSynchronizer::quick_notify(oopDesc* obj, Thread* self, bool all) {
 434   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 435   assert(self->is_Java_thread(), "invariant");
 436   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 437   NoSafepointVerifier nsv;
 438   if (obj == NULL) return false;  // slow-path for invalid obj
 439   const markWord mark = obj->mark();
 440 
 441   if (mark.has_locker() && self->is_lock_owned((address)mark.locker())) {
 442     // Degenerate notify
 443     // stack-locked by caller so by definition the implied waitset is empty.
 444     return true;
 445   }
 446 
 447   if (mark.has_monitor()) {
 448     ObjectMonitor* const mon = mark.monitor();
 449     assert(mon->object() == obj, "invariant");
 450     if (mon->owner() != self) return false;  // slow-path for IMS exception
 451 
 452     if (mon->first_waiter() != NULL) {
 453       // We have one or more waiters. Since this is an inflated monitor
 454       // that we own, we can transfer one or more threads from the waitset
 455       // to the entrylist here and now, avoiding the slow-path.
 456       if (all) {
 457         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, self);
 458       } else {
 459         DTRACE_MONITOR_PROBE(notify, mon, obj, self);
 460       }
 461       int free_count = 0;
 462       do {
 463         mon->INotify(self);
 464         ++free_count;
 465       } while (mon->first_waiter() != NULL && all);
 466       OM_PERFDATA_OP(Notifications, inc(free_count));
 467     }
 468     return true;
 469   }
 470 
 471   // biased locking and any other IMS exception states take the slow-path
 472   return false;
 473 }
 474 
 475 
 476 // The LockNode emitted directly at the synchronization site would have
 477 // been too big if it were to have included support for the cases of inflated
 478 // recursive enter and exit, so they go here instead.
 479 // Note that we can't safely call AsyncPrintJavaStack() from within
 480 // quick_enter() as our thread state remains _in_Java.
 481 
 482 bool ObjectSynchronizer::quick_enter(oop obj, Thread* self,
 483                                      BasicLock * lock) {
 484   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 485   assert(self->is_Java_thread(), "invariant");
 486   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 487   NoSafepointVerifier nsv;
 488   if (obj == NULL) return false;       // Need to throw NPE
 489 
 490   while (true) {
 491     const markWord mark = obj->mark();
 492 
 493     if (mark.has_monitor()) {
 494       ObjectMonitorHandle omh;
 495       if (!omh.save_om_ptr(obj, mark)) {
 496         // Lost a race with async deflation so try again.
 497         assert(AsyncDeflateIdleMonitors, "sanity check");
 498         continue;
 499       }
 500       ObjectMonitor* const m = omh.om_ptr();
 501       assert(m->object() == obj, "invariant");
 502       Thread* const owner = (Thread *) m->_owner;
 503 
 504       // Lock contention and Transactional Lock Elision (TLE) diagnostics
 505       // and observability
 506       // Case: light contention possibly amenable to TLE
 507       // Case: TLE inimical operations such as nested/recursive synchronization
 508 
 509       if (owner == self) {
 510         m->_recursions++;
 511         return true;
 512       }
 513 
 514       // This Java Monitor is inflated so obj's header will never be
 515       // displaced to this thread's BasicLock. Make the displaced header
 516       // non-NULL so this BasicLock is not seen as recursive nor as
 517       // being locked. We do this unconditionally so that this thread's
 518       // BasicLock cannot be mis-interpreted by any stack walkers. For
 519       // performance reasons, stack walkers generally first check for
 520       // Biased Locking in the object's header, the second check is for
 521       // stack-locking in the object's header, the third check is for
 522       // recursive stack-locking in the displaced header in the BasicLock,
 523       // and last are the inflated Java Monitor (ObjectMonitor) checks.
 524       lock->set_displaced_header(markWord::unused_mark());
 525 
 526       if (owner == NULL && m->try_set_owner_from(self, NULL) == NULL) {
 527         assert(m->_recursions == 0, "invariant");
 528         return true;
 529       }
 530 
 531       if (AsyncDeflateIdleMonitors &&
 532           m->try_set_owner_from(self, DEFLATER_MARKER) == DEFLATER_MARKER) {
 533         // The deflation protocol finished the first part (setting owner),
 534         // but it failed the second part (making ref_count negative) and
 535         // bailed. Or the ObjectMonitor was async deflated and reused.
 536         // Acquired the monitor.
 537         assert(m->_recursions == 0, "invariant");
 538         return true;
 539       }
 540     }
 541     break;
 542   }
 543 
 544   // Note that we could inflate in quick_enter.
 545   // This is likely a useful optimization
 546   // Critically, in quick_enter() we must not:
 547   // -- perform bias revocation, or
 548   // -- block indefinitely, or
 549   // -- reach a safepoint
 550 
 551   return false;        // revert to slow-path
 552 }
 553 
 554 // -----------------------------------------------------------------------------
 555 // Monitor Enter/Exit
 556 // The interpreter and compiler assembly code tries to lock using the fast path
 557 // of this algorithm. Make sure to update that code if the following function is
 558 // changed. The implementation is extremely sensitive to race condition. Be careful.
 559 
 560 void ObjectSynchronizer::enter(Handle obj, BasicLock* lock, TRAPS) {
 561   if (UseBiasedLocking) {
 562     if (!SafepointSynchronize::is_at_safepoint()) {
 563       BiasedLocking::revoke(obj, THREAD);
 564     } else {
 565       BiasedLocking::revoke_at_safepoint(obj);
 566     }
 567   }
 568 
 569   markWord mark = obj->mark();
 570   assert(!mark.has_bias_pattern(), "should not see bias pattern here");
 571 
 572   if (mark.is_neutral()) {
 573     // Anticipate successful CAS -- the ST of the displaced mark must
 574     // be visible <= the ST performed by the CAS.
 575     lock->set_displaced_header(mark);
 576     if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) {
 577       return;
 578     }
 579     // Fall through to inflate() ...
 580   } else if (mark.has_locker() &&
 581              THREAD->is_lock_owned((address)mark.locker())) {
 582     assert(lock != mark.locker(), "must not re-lock the same lock");
 583     assert(lock != (BasicLock*)obj->mark().value(), "don't relock with same BasicLock");
 584     lock->set_displaced_header(markWord::from_pointer(NULL));
 585     return;
 586   }
 587 
 588   // The object header will never be displaced to this lock,
 589   // so it does not matter what the value is, except that it
 590   // must be non-zero to avoid looking like a re-entrant lock,
 591   // and must not look locked either.
 592   lock->set_displaced_header(markWord::unused_mark());
 593   ObjectMonitorHandle omh;
 594   inflate(&omh, THREAD, obj(), inflate_cause_monitor_enter);
 595   omh.om_ptr()->enter(THREAD);
 596 }
 597 
 598 void ObjectSynchronizer::exit(oop object, BasicLock* lock, TRAPS) {
 599   markWord mark = object->mark();
 600   // We cannot check for Biased Locking if we are racing an inflation.
 601   assert(mark == markWord::INFLATING() ||
 602          !mark.has_bias_pattern(), "should not see bias pattern here");
 603 
 604   markWord dhw = lock->displaced_header();
 605   if (dhw.value() == 0) {
 606     // If the displaced header is NULL, then this exit matches up with
 607     // a recursive enter. No real work to do here except for diagnostics.
 608 #ifndef PRODUCT
 609     if (mark != markWord::INFLATING()) {
 610       // Only do diagnostics if we are not racing an inflation. Simply
 611       // exiting a recursive enter of a Java Monitor that is being
 612       // inflated is safe; see the has_monitor() comment below.
 613       assert(!mark.is_neutral(), "invariant");
 614       assert(!mark.has_locker() ||
 615              THREAD->is_lock_owned((address)mark.locker()), "invariant");
 616       if (mark.has_monitor()) {
 617         // The BasicLock's displaced_header is marked as a recursive
 618         // enter and we have an inflated Java Monitor (ObjectMonitor).
 619         // This is a special case where the Java Monitor was inflated
 620         // after this thread entered the stack-lock recursively. When a
 621         // Java Monitor is inflated, we cannot safely walk the Java
 622         // Monitor owner's stack and update the BasicLocks because a
 623         // Java Monitor can be asynchronously inflated by a thread that
 624         // does not own the Java Monitor.
 625         ObjectMonitor* m = mark.monitor();
 626         assert(((oop)(m->object()))->mark() == mark, "invariant");
 627         assert(m->is_entered(THREAD), "invariant");
 628       }
 629     }
 630 #endif
 631     return;
 632   }
 633 
 634   if (mark == markWord::from_pointer(lock)) {
 635     // If the object is stack-locked by the current thread, try to
 636     // swing the displaced header from the BasicLock back to the mark.
 637     assert(dhw.is_neutral(), "invariant");
 638     if (object->cas_set_mark(dhw, mark) == mark) {
 639       return;
 640     }
 641   }
 642 
 643   // We have to take the slow-path of possible inflation and then exit.
 644   ObjectMonitorHandle omh;
 645   inflate(&omh, THREAD, object, inflate_cause_vm_internal);
 646   omh.om_ptr()->exit(true, THREAD);
 647 }
 648 
 649 // -----------------------------------------------------------------------------
 650 // Class Loader  support to workaround deadlocks on the class loader lock objects
 651 // Also used by GC
 652 // complete_exit()/reenter() are used to wait on a nested lock
 653 // i.e. to give up an outer lock completely and then re-enter
 654 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 655 //  1) complete_exit lock1 - saving recursion count
 656 //  2) wait on lock2
 657 //  3) when notified on lock2, unlock lock2
 658 //  4) reenter lock1 with original recursion count
 659 //  5) lock lock2
 660 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 661 intx ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 662   if (UseBiasedLocking) {
 663     BiasedLocking::revoke(obj, THREAD);
 664     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 665   }
 666 
 667   ObjectMonitorHandle omh;
 668   inflate(&omh, THREAD, obj(), inflate_cause_vm_internal);
 669   intptr_t ret_code = omh.om_ptr()->complete_exit(THREAD);
 670   return ret_code;
 671 }
 672 
 673 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 674 void ObjectSynchronizer::reenter(Handle obj, intx recursions, TRAPS) {
 675   if (UseBiasedLocking) {
 676     BiasedLocking::revoke(obj, THREAD);
 677     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 678   }
 679 
 680   ObjectMonitorHandle omh;
 681   inflate(&omh, THREAD, obj(), inflate_cause_vm_internal);
 682   omh.om_ptr()->reenter(recursions, THREAD);
 683 }
 684 // -----------------------------------------------------------------------------
 685 // JNI locks on java objects
 686 // NOTE: must use heavy weight monitor to handle jni monitor enter
 687 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) {
 688   // the current locking is from JNI instead of Java code
 689   if (UseBiasedLocking) {
 690     BiasedLocking::revoke(obj, THREAD);
 691     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 692   }
 693   THREAD->set_current_pending_monitor_is_from_java(false);
 694   ObjectMonitorHandle omh;
 695   inflate(&omh, THREAD, obj(), inflate_cause_jni_enter);
 696   omh.om_ptr()->enter(THREAD);
 697   THREAD->set_current_pending_monitor_is_from_java(true);
 698 }
 699 
 700 // NOTE: must use heavy weight monitor to handle jni monitor exit
 701 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 702   if (UseBiasedLocking) {
 703     Handle h_obj(THREAD, obj);
 704     BiasedLocking::revoke(h_obj, THREAD);
 705     obj = h_obj();
 706   }
 707   assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 708 
 709   ObjectMonitorHandle omh;
 710   inflate(&omh, THREAD, obj, inflate_cause_jni_exit);
 711   ObjectMonitor* monitor = omh.om_ptr();
 712   // If this thread has locked the object, exit the monitor. We
 713   // intentionally do not use CHECK here because we must exit the
 714   // monitor even if an exception is pending.
 715   if (monitor->check_owner(THREAD)) {
 716     monitor->exit(true, THREAD);
 717   }
 718 }
 719 
 720 // -----------------------------------------------------------------------------
 721 // Internal VM locks on java objects
 722 // standard constructor, allows locking failures
 723 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool do_lock) {
 724   _dolock = do_lock;
 725   _thread = thread;
 726   _thread->check_for_valid_safepoint_state();
 727   _obj = obj;
 728 
 729   if (_dolock) {
 730     ObjectSynchronizer::enter(_obj, &_lock, _thread);
 731   }
 732 }
 733 
 734 ObjectLocker::~ObjectLocker() {
 735   if (_dolock) {
 736     ObjectSynchronizer::exit(_obj(), &_lock, _thread);
 737   }
 738 }
 739 
 740 
 741 // -----------------------------------------------------------------------------
 742 //  Wait/Notify/NotifyAll
 743 // NOTE: must use heavy weight monitor to handle wait()
 744 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 745   if (UseBiasedLocking) {
 746     BiasedLocking::revoke(obj, THREAD);
 747     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 748   }
 749   if (millis < 0) {
 750     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 751   }
 752   ObjectMonitorHandle omh;
 753   inflate(&omh, THREAD, obj(), inflate_cause_wait);
 754   ObjectMonitor* monitor = omh.om_ptr();
 755 
 756   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 757   monitor->wait(millis, true, THREAD);
 758 
 759   // This dummy call is in place to get around dtrace bug 6254741.  Once
 760   // that's fixed we can uncomment the following line, remove the call
 761   // and change this function back into a "void" func.
 762   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 763   int ret_code = dtrace_waited_probe(monitor, obj, THREAD);
 764   return ret_code;
 765 }
 766 
 767 void ObjectSynchronizer::wait_uninterruptibly(Handle obj, jlong millis, TRAPS) {
 768   if (UseBiasedLocking) {
 769     BiasedLocking::revoke(obj, THREAD);
 770     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 771   }
 772   if (millis < 0) {
 773     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 774   }
 775   ObjectMonitorHandle omh;
 776   inflate(&omh, THREAD, obj(), inflate_cause_wait);
 777   omh.om_ptr()->wait(millis, false, THREAD);
 778 }
 779 
 780 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 781   if (UseBiasedLocking) {
 782     BiasedLocking::revoke(obj, THREAD);
 783     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 784   }
 785 
 786   markWord mark = obj->mark();
 787   if (mark.has_locker() && THREAD->is_lock_owned((address)mark.locker())) {
 788     return;
 789   }
 790   ObjectMonitorHandle omh;
 791   inflate(&omh, THREAD, obj(), inflate_cause_notify);
 792   omh.om_ptr()->notify(THREAD);
 793 }
 794 
 795 // NOTE: see comment of notify()
 796 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 797   if (UseBiasedLocking) {
 798     BiasedLocking::revoke(obj, THREAD);
 799     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 800   }
 801 
 802   markWord mark = obj->mark();
 803   if (mark.has_locker() && THREAD->is_lock_owned((address)mark.locker())) {
 804     return;
 805   }
 806   ObjectMonitorHandle omh;
 807   inflate(&omh, THREAD, obj(), inflate_cause_notify);
 808   omh.om_ptr()->notifyAll(THREAD);
 809 }
 810 
 811 // -----------------------------------------------------------------------------
 812 // Hash Code handling
 813 //
 814 // Performance concern:
 815 // OrderAccess::storestore() calls release() which at one time stored 0
 816 // into the global volatile OrderAccess::dummy variable. This store was
 817 // unnecessary for correctness. Many threads storing into a common location
 818 // causes considerable cache migration or "sloshing" on large SMP systems.
 819 // As such, I avoided using OrderAccess::storestore(). In some cases
 820 // OrderAccess::fence() -- which incurs local latency on the executing
 821 // processor -- is a better choice as it scales on SMP systems.
 822 //
 823 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 824 // a discussion of coherency costs. Note that all our current reference
 825 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 826 // x64, and SPARC.
 827 //
 828 // As a general policy we use "volatile" to control compiler-based reordering
 829 // and explicit fences (barriers) to control for architectural reordering
 830 // performed by the CPU(s) or platform.
 831 
 832 struct SharedGlobals {
 833   char         _pad_prefix[OM_CACHE_LINE_SIZE];
 834   // These are highly shared mostly-read variables.
 835   // To avoid false-sharing they need to be the sole occupants of a cache line.
 836   volatile int stw_random;
 837   volatile int stw_cycle;
 838   DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int) * 2);
 839   // Hot RW variable -- Sequester to avoid false-sharing
 840   volatile int hc_sequence;
 841   DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 842 };
 843 
 844 static SharedGlobals GVars;
 845 static int _forceMonitorScavenge = 0; // Scavenge required and pending
 846 
 847 static markWord read_stable_mark(oop obj) {
 848   markWord mark = obj->mark();
 849   if (!mark.is_being_inflated()) {
 850     return mark;       // normal fast-path return
 851   }
 852 
 853   int its = 0;
 854   for (;;) {
 855     markWord mark = obj->mark();
 856     if (!mark.is_being_inflated()) {
 857       return mark;    // normal fast-path return
 858     }
 859 
 860     // The object is being inflated by some other thread.
 861     // The caller of read_stable_mark() must wait for inflation to complete.
 862     // Avoid live-lock
 863     // TODO: consider calling SafepointSynchronize::do_call_back() while
 864     // spinning to see if there's a safepoint pending.  If so, immediately
 865     // yielding or blocking would be appropriate.  Avoid spinning while
 866     // there is a safepoint pending.
 867     // TODO: add inflation contention performance counters.
 868     // TODO: restrict the aggregate number of spinners.
 869 
 870     ++its;
 871     if (its > 10000 || !os::is_MP()) {
 872       if (its & 1) {
 873         os::naked_yield();
 874       } else {
 875         // Note that the following code attenuates the livelock problem but is not
 876         // a complete remedy.  A more complete solution would require that the inflating
 877         // thread hold the associated inflation lock.  The following code simply restricts
 878         // the number of spinners to at most one.  We'll have N-2 threads blocked
 879         // on the inflationlock, 1 thread holding the inflation lock and using
 880         // a yield/park strategy, and 1 thread in the midst of inflation.
 881         // A more refined approach would be to change the encoding of INFLATING
 882         // to allow encapsulation of a native thread pointer.  Threads waiting for
 883         // inflation to complete would use CAS to push themselves onto a singly linked
 884         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 885         // and calling park().  When inflation was complete the thread that accomplished inflation
 886         // would detach the list and set the markword to inflated with a single CAS and
 887         // then for each thread on the list, set the flag and unpark() the thread.
 888         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 889         // wakes at most one thread whereas we need to wake the entire list.
 890         int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
 891         int YieldThenBlock = 0;
 892         assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
 893         assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant");
 894         Thread::muxAcquire(gInflationLocks + ix, "gInflationLock");
 895         while (obj->mark() == markWord::INFLATING()) {
 896           // Beware: NakedYield() is advisory and has almost no effect on some platforms
 897           // so we periodically call self->_ParkEvent->park(1).
 898           // We use a mixed spin/yield/block mechanism.
 899           if ((YieldThenBlock++) >= 16) {
 900             Thread::current()->_ParkEvent->park(1);
 901           } else {
 902             os::naked_yield();
 903           }
 904         }
 905         Thread::muxRelease(gInflationLocks + ix);
 906       }
 907     } else {
 908       SpinPause();       // SMP-polite spinning
 909     }
 910   }
 911 }
 912 
 913 // hashCode() generation :
 914 //
 915 // Possibilities:
 916 // * MD5Digest of {obj,stw_random}
 917 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function.
 918 // * A DES- or AES-style SBox[] mechanism
 919 // * One of the Phi-based schemes, such as:
 920 //   2654435761 = 2^32 * Phi (golden ratio)
 921 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ;
 922 // * A variation of Marsaglia's shift-xor RNG scheme.
 923 // * (obj ^ stw_random) is appealing, but can result
 924 //   in undesirable regularity in the hashCode values of adjacent objects
 925 //   (objects allocated back-to-back, in particular).  This could potentially
 926 //   result in hashtable collisions and reduced hashtable efficiency.
 927 //   There are simple ways to "diffuse" the middle address bits over the
 928 //   generated hashCode values:
 929 
 930 static inline intptr_t get_next_hash(Thread* self, oop obj) {
 931   intptr_t value = 0;
 932   if (hashCode == 0) {
 933     // This form uses global Park-Miller RNG.
 934     // On MP system we'll have lots of RW access to a global, so the
 935     // mechanism induces lots of coherency traffic.
 936     value = os::random();
 937   } else if (hashCode == 1) {
 938     // This variation has the property of being stable (idempotent)
 939     // between STW operations.  This can be useful in some of the 1-0
 940     // synchronization schemes.
 941     intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3;
 942     value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random;
 943   } else if (hashCode == 2) {
 944     value = 1;            // for sensitivity testing
 945   } else if (hashCode == 3) {
 946     value = ++GVars.hc_sequence;
 947   } else if (hashCode == 4) {
 948     value = cast_from_oop<intptr_t>(obj);
 949   } else {
 950     // Marsaglia's xor-shift scheme with thread-specific state
 951     // This is probably the best overall implementation -- we'll
 952     // likely make this the default in future releases.
 953     unsigned t = self->_hashStateX;
 954     t ^= (t << 11);
 955     self->_hashStateX = self->_hashStateY;
 956     self->_hashStateY = self->_hashStateZ;
 957     self->_hashStateZ = self->_hashStateW;
 958     unsigned v = self->_hashStateW;
 959     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 960     self->_hashStateW = v;
 961     value = v;
 962   }
 963 
 964   value &= markWord::hash_mask;
 965   if (value == 0) value = 0xBAD;
 966   assert(value != markWord::no_hash, "invariant");
 967   return value;
 968 }
 969 
 970 intptr_t ObjectSynchronizer::FastHashCode(Thread* self, oop obj) {
 971   if (UseBiasedLocking) {
 972     // NOTE: many places throughout the JVM do not expect a safepoint
 973     // to be taken here, in particular most operations on perm gen
 974     // objects. However, we only ever bias Java instances and all of
 975     // the call sites of identity_hash that might revoke biases have
 976     // been checked to make sure they can handle a safepoint. The
 977     // added check of the bias pattern is to avoid useless calls to
 978     // thread-local storage.
 979     if (obj->mark().has_bias_pattern()) {
 980       // Handle for oop obj in case of STW safepoint
 981       Handle hobj(self, obj);
 982       // Relaxing assertion for bug 6320749.
 983       assert(Universe::verify_in_progress() ||
 984              !SafepointSynchronize::is_at_safepoint(),
 985              "biases should not be seen by VM thread here");
 986       BiasedLocking::revoke(hobj, JavaThread::current());
 987       obj = hobj();
 988       assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 989     }
 990   }
 991 
 992   // hashCode() is a heap mutator ...
 993   // Relaxing assertion for bug 6320749.
 994   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 995          !SafepointSynchronize::is_at_safepoint(), "invariant");
 996   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 997          self->is_Java_thread() , "invariant");
 998   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 999          ((JavaThread *)self)->thread_state() != _thread_blocked, "invariant");
1000 
1001   while (true) {
1002     ObjectMonitor* monitor = NULL;
1003     markWord temp, test;
1004     intptr_t hash;
1005     markWord mark = read_stable_mark(obj);
1006 
1007     // object should remain ineligible for biased locking
1008     assert(!mark.has_bias_pattern(), "invariant");
1009 
1010     if (mark.is_neutral()) {            // if this is a normal header
1011       hash = mark.hash();
1012       if (hash != 0) {                  // if it has a hash, just return it
1013         return hash;
1014       }
1015       hash = get_next_hash(self, obj);  // get a new hash
1016       temp = mark.copy_set_hash(hash);  // merge the hash into header
1017                                         // try to install the hash
1018       test = obj->cas_set_mark(temp, mark);
1019       if (test == mark) {               // if the hash was installed, return it
1020         return hash;
1021       }
1022       // Failed to install the hash. It could be that another thread
1023       // installed the hash just before our attempt or inflation has
1024       // occurred or... so we fall thru to inflate the monitor for
1025       // stability and then install the hash.
1026     } else if (mark.has_monitor()) {
1027       ObjectMonitorHandle omh;
1028       if (!omh.save_om_ptr(obj, mark)) {
1029         // Lost a race with async deflation so try again.
1030         assert(AsyncDeflateIdleMonitors, "sanity check");
1031         continue;
1032       }
1033       monitor = omh.om_ptr();
1034       temp = monitor->header();
1035       // Allow for a lagging install_displaced_markword_in_object() to
1036       // have marked the ObjectMonitor's header/dmw field.
1037       assert(temp.is_neutral() || (AsyncDeflateIdleMonitors && temp.is_marked()),
1038              "invariant: header=" INTPTR_FORMAT, temp.value());
1039       hash = temp.hash();
1040       if (hash != 0) {                  // if it has a hash, just return it
1041         return hash;
1042       }
1043       // Fall thru so we only have one place that installs the hash in
1044       // the ObjectMonitor.
1045     } else if (self->is_lock_owned((address)mark.locker())) {
1046       // This is a stack lock owned by the calling thread so fetch the
1047       // displaced markWord from the BasicLock on the stack.
1048       temp = mark.displaced_mark_helper();
1049       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1050       hash = temp.hash();
1051       if (hash != 0) {                  // if it has a hash, just return it
1052         return hash;
1053       }
1054       // WARNING:
1055       // The displaced header in the BasicLock on a thread's stack
1056       // is strictly immutable. It CANNOT be changed in ANY cases.
1057       // So we have to inflate the stack lock into an ObjectMonitor
1058       // even if the current thread owns the lock. The BasicLock on
1059       // a thread's stack can be asynchronously read by other threads
1060       // during an inflate() call so any change to that stack memory
1061       // may not propagate to other threads correctly.
1062     }
1063 
1064     // Inflate the monitor to set the hash.
1065     ObjectMonitorHandle omh;
1066     inflate(&omh, self, obj, inflate_cause_hash_code);
1067     monitor = omh.om_ptr();
1068     // Load ObjectMonitor's header/dmw field and see if it has a hash.
1069     mark = monitor->header();
1070     // Allow for a lagging install_displaced_markword_in_object() to
1071     // have marked the ObjectMonitor's header/dmw field.
1072     assert(mark.is_neutral() || (AsyncDeflateIdleMonitors && mark.is_marked()),
1073            "invariant: header=" INTPTR_FORMAT, mark.value());
1074     hash = mark.hash();
1075     if (hash == 0) {                    // if it does not have a hash
1076       hash = get_next_hash(self, obj);  // get a new hash
1077       temp = mark.copy_set_hash(hash);  // merge the hash into header
1078       if (AsyncDeflateIdleMonitors && temp.is_marked()) {
1079         // A lagging install_displaced_markword_in_object() has marked
1080         // the ObjectMonitor's header/dmw field. We clear it to avoid
1081         // any confusion if we are able to set the hash.
1082         temp.set_unmarked();
1083       }
1084       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1085       uintptr_t v = Atomic::cmpxchg((volatile uintptr_t*)monitor->header_addr(), mark.value(), temp.value());
1086       test = markWord(v);
1087       if (test != mark) {
1088         // The attempt to update the ObjectMonitor's header/dmw field
1089         // did not work. This can happen if another thread managed to
1090         // merge in the hash just before our cmpxchg(). With async
1091         // deflation, a lagging install_displaced_markword_in_object()
1092         // could have just marked or just unmarked the header/dmw field.
1093         // If we add any new usages of the header/dmw field, this code
1094         // will need to be updated.
1095         if (AsyncDeflateIdleMonitors) {
1096           // Since async deflation gives us two possible reasons for
1097           // the cmwxchg() to fail, it is easier to simply retry.
1098           continue;
1099         }
1100         hash = test.hash();
1101         assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value());
1102         assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash");
1103       }
1104     }
1105     // We finally get the hash.
1106     return hash;
1107   }
1108 }
1109 
1110 // Deprecated -- use FastHashCode() instead.
1111 
1112 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
1113   return FastHashCode(Thread::current(), obj());
1114 }
1115 
1116 
1117 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
1118                                                    Handle h_obj) {
1119   if (UseBiasedLocking) {
1120     BiasedLocking::revoke(h_obj, thread);
1121     assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now");
1122   }
1123 
1124   assert(thread == JavaThread::current(), "Can only be called on current thread");
1125   oop obj = h_obj();
1126 
1127   while (true) {
1128     markWord mark = read_stable_mark(obj);
1129 
1130     // Uncontended case, header points to stack
1131     if (mark.has_locker()) {
1132       return thread->is_lock_owned((address)mark.locker());
1133     }
1134     // Contended case, header points to ObjectMonitor (tagged pointer)
1135     if (mark.has_monitor()) {
1136       ObjectMonitorHandle omh;
1137       if (!omh.save_om_ptr(obj, mark)) {
1138         // Lost a race with async deflation so try again.
1139         assert(AsyncDeflateIdleMonitors, "sanity check");
1140         continue;
1141       }
1142       bool ret_code = omh.om_ptr()->is_entered(thread) != 0;
1143       return ret_code;
1144     }
1145     // Unlocked case, header in place
1146     assert(mark.is_neutral(), "sanity check");
1147     return false;
1148   }
1149 }
1150 
1151 // Be aware of this method could revoke bias of the lock object.
1152 // This method queries the ownership of the lock handle specified by 'h_obj'.
1153 // If the current thread owns the lock, it returns owner_self. If no
1154 // thread owns the lock, it returns owner_none. Otherwise, it will return
1155 // owner_other.
1156 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
1157 (JavaThread *self, Handle h_obj) {
1158   // The caller must beware this method can revoke bias, and
1159   // revocation can result in a safepoint.
1160   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
1161   assert(self->thread_state() != _thread_blocked, "invariant");
1162 
1163   // Possible mark states: neutral, biased, stack-locked, inflated
1164 
1165   if (UseBiasedLocking && h_obj()->mark().has_bias_pattern()) {
1166     // CASE: biased
1167     BiasedLocking::revoke(h_obj, self);
1168     assert(!h_obj->mark().has_bias_pattern(),
1169            "biases should be revoked by now");
1170   }
1171 
1172   assert(self == JavaThread::current(), "Can only be called on current thread");
1173   oop obj = h_obj();
1174 
1175   while (true) {
1176     markWord mark = read_stable_mark(obj);
1177 
1178     // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
1179     if (mark.has_locker()) {
1180       return self->is_lock_owned((address)mark.locker()) ?
1181         owner_self : owner_other;
1182     }
1183 
1184     // CASE: inflated. Mark (tagged pointer) points to an ObjectMonitor.
1185     // The Object:ObjectMonitor relationship is stable as long as we're
1186     // not at a safepoint and AsyncDeflateIdleMonitors is false.
1187     if (mark.has_monitor()) {
1188       ObjectMonitorHandle omh;
1189       if (!omh.save_om_ptr(obj, mark)) {
1190         // Lost a race with async deflation so try again.
1191         assert(AsyncDeflateIdleMonitors, "sanity check");
1192         continue;
1193       }
1194       ObjectMonitor* monitor = omh.om_ptr();
1195       void* owner = monitor->_owner;
1196       if (owner == NULL) return owner_none;
1197       return (owner == self ||
1198               self->is_lock_owned((address)owner)) ? owner_self : owner_other;
1199     }
1200 
1201     // CASE: neutral
1202     assert(mark.is_neutral(), "sanity check");
1203     return owner_none;           // it's unlocked
1204   }
1205 }
1206 
1207 // FIXME: jvmti should call this
1208 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
1209   if (UseBiasedLocking) {
1210     if (SafepointSynchronize::is_at_safepoint()) {
1211       BiasedLocking::revoke_at_safepoint(h_obj);
1212     } else {
1213       BiasedLocking::revoke(h_obj, JavaThread::current());
1214     }
1215     assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now");
1216   }
1217 
1218   oop obj = h_obj();
1219 
1220   while (true) {
1221     address owner = NULL;
1222     markWord mark = read_stable_mark(obj);
1223 
1224     // Uncontended case, header points to stack
1225     if (mark.has_locker()) {
1226       owner = (address) mark.locker();
1227     }
1228 
1229     // Contended case, header points to ObjectMonitor (tagged pointer)
1230     else if (mark.has_monitor()) {
1231       ObjectMonitorHandle omh;
1232       if (!omh.save_om_ptr(obj, mark)) {
1233         // Lost a race with async deflation so try again.
1234         assert(AsyncDeflateIdleMonitors, "sanity check");
1235         continue;
1236       }
1237       ObjectMonitor* monitor = omh.om_ptr();
1238       assert(monitor != NULL, "monitor should be non-null");
1239       owner = (address) monitor->owner();
1240     }
1241 
1242     if (owner != NULL) {
1243       // owning_thread_from_monitor_owner() may also return NULL here
1244       return Threads::owning_thread_from_monitor_owner(t_list, owner);
1245     }
1246 
1247     // Unlocked case, header in place
1248     // Cannot have assertion since this object may have been
1249     // locked by another thread when reaching here.
1250     // assert(mark.is_neutral(), "sanity check");
1251 
1252     return NULL;
1253   }
1254 }
1255 
1256 // Visitors ...
1257 
1258 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
1259   PaddedObjectMonitor* block = Atomic::load(&g_block_list);
1260   while (block != NULL) {
1261     assert(block->object() == CHAINMARKER, "must be a block header");
1262     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
1263       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
1264       ObjectMonitorHandle omh;
1265       if (!mid->is_free() && omh.set_om_ptr_if_safe(mid)) {
1266         // The ObjectMonitor* is not free and it has been made safe.
1267         if (mid->object() == NULL) {
1268           // Only process with closure if the object is set.
1269           continue;
1270         }
1271         closure->do_monitor(mid);
1272       }
1273     }
1274     // unmarked_next() is not needed with g_block_list (no locking
1275     // used with with block linkage _next_om fields).
1276     block = (PaddedObjectMonitor*)Atomic::load(&block->_next_om);
1277   }
1278 }
1279 
1280 static bool monitors_used_above_threshold() {
1281   if (Atomic::load(&LVars.population) == 0) {
1282     return false;
1283   }
1284   if (MonitorUsedDeflationThreshold > 0) {
1285     int monitors_used = Atomic::load(&LVars.population) - Atomic::load(&LVars.free_count);
1286     if (HandshakeAfterDeflateIdleMonitors) {
1287       monitors_used -= Atomic::load(&LVars.wait_count);
1288     }
1289     int monitor_usage = (monitors_used * 100LL) / Atomic::load(&LVars.population);
1290     return monitor_usage > MonitorUsedDeflationThreshold;
1291   }
1292   return false;
1293 }
1294 
1295 // Returns true if MonitorBound is set (> 0) and if the specified
1296 // cnt is > MonitorBound. Otherwise returns false.
1297 static bool is_MonitorBound_exceeded(const int cnt) {
1298   const int mx = MonitorBound;
1299   return mx > 0 && cnt > mx;
1300 }
1301 
1302 bool ObjectSynchronizer::is_async_deflation_needed() {
1303   if (!AsyncDeflateIdleMonitors) {
1304     return false;
1305   }
1306   if (is_async_deflation_requested()) {
1307     // Async deflation request.
1308     return true;
1309   }
1310   if (AsyncDeflationInterval > 0 &&
1311       time_since_last_async_deflation_ms() > AsyncDeflationInterval &&
1312       monitors_used_above_threshold()) {
1313     // It's been longer than our specified deflate interval and there
1314     // are too many monitors in use. We don't deflate more frequently
1315     // than AsyncDeflationInterval (unless is_async_deflation_requested)
1316     // in order to not swamp the ServiceThread.
1317     _last_async_deflation_time_ns = os::javaTimeNanos();
1318     return true;
1319   }
1320   int monitors_used = Atomic::load(&LVars.population) - Atomic::load(&LVars.free_count);
1321   if (HandshakeAfterDeflateIdleMonitors) {
1322     monitors_used -= Atomic::load(&LVars.wait_count);
1323   }
1324   if (is_MonitorBound_exceeded(monitors_used)) {
1325     // Not enough ObjectMonitors on the global free list.
1326     return true;
1327   }
1328   return false;
1329 }
1330 
1331 bool ObjectSynchronizer::needs_monitor_scavenge() {
1332   if (Atomic::load(&_forceMonitorScavenge) == 1) {
1333     log_info(monitorinflation)("Monitor scavenge needed, triggering safepoint cleanup.");
1334     return true;
1335   }
1336   return false;
1337 }
1338 
1339 bool ObjectSynchronizer::is_safepoint_deflation_needed() {
1340   if (!AsyncDeflateIdleMonitors) {
1341     if (monitors_used_above_threshold()) {
1342       // Too many monitors in use.
1343       return true;
1344     }
1345      return needs_monitor_scavenge();
1346   }
1347   if (is_special_deflation_requested()) {
1348     // For AsyncDeflateIdleMonitors only do a safepoint deflation
1349     // if there is a special deflation request.
1350     return true;
1351   }
1352   return false;
1353 }
1354 
1355 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() {
1356   return (os::javaTimeNanos() - _last_async_deflation_time_ns) / (NANOUNITS / MILLIUNITS);
1357 }
1358 
1359 void ObjectSynchronizer::oops_do(OopClosure* f) {
1360   // We only scan the global used list here (for moribund threads), and
1361   // the thread-local monitors in Thread::oops_do().
1362   global_used_oops_do(f);
1363 }
1364 
1365 void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
1366   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1367   list_oops_do(Atomic::load(&LVars.in_use_list), Atomic::load(&LVars.in_use_count), f);
1368 }
1369 
1370 void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
1371   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1372   list_oops_do(thread->om_in_use_list, thread->om_in_use_count, f);
1373 }
1374 
1375 void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, int count, OopClosure* f) {
1376   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1377   // The oops_do() phase does not overlap with monitor deflation
1378   // so no need to update the ObjectMonitor's ref_count for this
1379   // ObjectMonitor* use and no need to mark ObjectMonitors for the
1380   // list traversal.
1381   for (ObjectMonitor* mid = list; mid != NULL; mid = unmarked_next(mid)) {
1382     if (mid->object() != NULL) {
1383       f->do_oop((oop*)mid->object_addr());
1384     }
1385   }
1386 }
1387 
1388 
1389 // -----------------------------------------------------------------------------
1390 // ObjectMonitor Lifecycle
1391 // -----------------------
1392 // Inflation unlinks monitors from LVars.free_list or a per-thread free
1393 // list and associates them with objects. Deflation -- which occurs at
1394 // STW-time or asynchronously -- disassociates idle monitors from objects.
1395 // Such scavenged monitors are returned to the LVars.free_list.
1396 //
1397 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
1398 //
1399 // Lifecycle:
1400 // --   unassigned and on the LVars.free_list
1401 // --   unassigned and on a per-thread free list
1402 // --   assigned to an object.  The object is inflated and the mark refers
1403 //      to the ObjectMonitor.
1404 
1405 
1406 // Constraining monitor pool growth via MonitorBound ...
1407 //
1408 // If MonitorBound is not set (<= 0), MonitorBound checks are disabled.
1409 //
1410 // When safepoint deflation is being used (!AsyncDeflateIdleMonitors):
1411 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
1412 // the rate of scavenging is driven primarily by GC.  As such,  we can find
1413 // an inordinate number of monitors in circulation.
1414 // To avoid that scenario we can artificially induce a STW safepoint
1415 // if the pool appears to be growing past some reasonable bound.
1416 // Generally we favor time in space-time tradeoffs, but as there's no
1417 // natural back-pressure on the # of extant monitors we need to impose some
1418 // type of limit.  Beware that if MonitorBound is set to too low a value
1419 // we could just loop. In addition, if MonitorBound is set to a low value
1420 // we'll incur more safepoints, which are harmful to performance.
1421 // See also: GuaranteedSafepointInterval
1422 //
1423 // When safepoint deflation is being used and MonitorBound is set, the
1424 // boundry applies to
1425 //     (LVars.population - LVars.free_count)
1426 // i.e., if there are not enough ObjectMonitors on the global free list,
1427 // then a safepoint deflation is induced. Picking a good MonitorBound value
1428 // is non-trivial.
1429 //
1430 // When async deflation is being used:
1431 // The monitor pool is still grow-only. Async deflation is requested
1432 // by a safepoint's cleanup phase or by the ServiceThread at periodic
1433 // intervals when is_async_deflation_needed() returns true. In
1434 // addition to other policies that are checked, if there are not
1435 // enough ObjectMonitors on the global free list, then
1436 // is_async_deflation_needed() will return true. The ServiceThread
1437 // calls deflate_global_idle_monitors_using_JT() and also calls
1438 // deflate_per_thread_idle_monitors_using_JT() as needed.
1439 
1440 static void InduceScavenge(Thread* self, const char * Whence) {
1441   assert(!AsyncDeflateIdleMonitors, "is not used by async deflation");
1442 
1443   // Induce STW safepoint to trim monitors
1444   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
1445   // More precisely, trigger a cleanup safepoint as the number
1446   // of active monitors passes the specified threshold.
1447   // TODO: assert thread state is reasonable
1448 
1449   if (Atomic::xchg(&_forceMonitorScavenge, 1) == 0) {
1450     VMThread::check_for_forced_cleanup();
1451   }
1452 }
1453 
1454 ObjectMonitor* ObjectSynchronizer::om_alloc(Thread* self,
1455                                            const InflateCause cause) {
1456   // A large MAXPRIVATE value reduces both list lock contention
1457   // and list coherency traffic, but also tends to increase the
1458   // number of ObjectMonitors in circulation as well as the STW
1459   // scavenge costs.  As usual, we lean toward time in space-time
1460   // tradeoffs.
1461   const int MAXPRIVATE = 1024;
1462 
1463   stringStream ss;
1464   for (;;) {
1465     ObjectMonitor* m;
1466 
1467     // 1: try to allocate from the thread's local om_free_list.
1468     // Threads will attempt to allocate first from their local list, then
1469     // from the global list, and only after those attempts fail will the
1470     // thread attempt to instantiate new monitors. Thread-local free lists
1471     // improve allocation latency, as well as reducing coherency traffic
1472     // on the shared global list.
1473     m = take_from_start_of_om_free_list(self);
1474     if (m != NULL) {
1475       guarantee(m->object() == NULL, "invariant");
1476       m->set_allocation_state(ObjectMonitor::New);
1477       prepend_to_om_in_use_list(self, m);
1478       return m;
1479     }
1480 
1481     // 2: try to allocate from the global LVars.free_list
1482     // CONSIDER: use muxTry() instead of muxAcquire().
1483     // If the muxTry() fails then drop immediately into case 3.
1484     // If we're using thread-local free lists then try
1485     // to reprovision the caller's free list.
1486     if (Atomic::load(&LVars.free_list) != NULL) {
1487       // Reprovision the thread's om_free_list.
1488       // Use bulk transfers to reduce the allocation rate and heat
1489       // on various locks.
1490       for (int i = self->om_free_provision; --i >= 0;) {
1491         ObjectMonitor* take = take_from_start_of_global_free_list();
1492         if (take == NULL) {
1493           break;  // No more are available.
1494         }
1495         guarantee(take->object() == NULL, "invariant");
1496         if (AsyncDeflateIdleMonitors) {
1497           // We allowed 3 field values to linger during async deflation.
1498           // We clear header and restore ref_count here, but we leave
1499           // owner == DEFLATER_MARKER so the simple C2 ObjectMonitor
1500           // enter optimization can no longer race with async deflation
1501           // and reuse.
1502           take->set_header(markWord::zero());
1503           if (take->ref_count() < 0) {
1504             // Add back max_jint to restore the ref_count field to its
1505             // proper value.
1506             Atomic::add(&take->_ref_count, max_jint);
1507 
1508 #ifdef ASSERT
1509             jint l_ref_count = take->ref_count();
1510 #endif
1511             assert(l_ref_count >= 0, "must not be negative: l_ref_count=%d, ref_count=%d",
1512                    l_ref_count, take->ref_count());
1513           }
1514         }
1515         take->Recycle();
1516         // Since we're taking from the global free-list, take must be Free.
1517         // om_release() also sets the allocation state to Free because it
1518         // is called from other code paths.
1519         assert(take->is_free(), "invariant");
1520         om_release(self, take, false);
1521       }
1522       self->om_free_provision += 1 + (self->om_free_provision / 2);
1523       if (self->om_free_provision > MAXPRIVATE) self->om_free_provision = MAXPRIVATE;
1524 
1525       if (!AsyncDeflateIdleMonitors &&
1526           is_MonitorBound_exceeded(Atomic::load(&LVars.population) - Atomic::load(&LVars.free_count))) {
1527         // Not enough ObjectMonitors on the global free list.
1528         // We can't safely induce a STW safepoint from om_alloc() as our thread
1529         // state may not be appropriate for such activities and callers may hold
1530         // naked oops, so instead we defer the action.
1531         InduceScavenge(self, "om_alloc");
1532       }
1533       continue;
1534     }
1535 
1536     // 3: allocate a block of new ObjectMonitors
1537     // Both the local and global free lists are empty -- resort to malloc().
1538     // In the current implementation ObjectMonitors are TSM - immortal.
1539     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1540     // each ObjectMonitor to start at the beginning of a cache line,
1541     // so we use align_up().
1542     // A better solution would be to use C++ placement-new.
1543     // BEWARE: As it stands currently, we don't run the ctors!
1544     assert(_BLOCKSIZE > 1, "invariant");
1545     size_t neededsize = sizeof(PaddedObjectMonitor) * _BLOCKSIZE;
1546     PaddedObjectMonitor* temp;
1547     size_t aligned_size = neededsize + (OM_CACHE_LINE_SIZE - 1);
1548     void* real_malloc_addr = NEW_C_HEAP_ARRAY(char, aligned_size, mtInternal);
1549     temp = (PaddedObjectMonitor*)align_up(real_malloc_addr, OM_CACHE_LINE_SIZE);
1550     (void)memset((void *) temp, 0, neededsize);
1551 
1552     // Format the block.
1553     // initialize the linked list, each monitor points to its next
1554     // forming the single linked free list, the very first monitor
1555     // will points to next block, which forms the block list.
1556     // The trick of using the 1st element in the block as g_block_list
1557     // linkage should be reconsidered.  A better implementation would
1558     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1559 
1560     for (int i = 1; i < _BLOCKSIZE; i++) {
1561       temp[i]._next_om = (ObjectMonitor*)&temp[i + 1];
1562       assert(temp[i].is_free(), "invariant");
1563     }
1564 
1565     // terminate the last monitor as the end of list
1566     temp[_BLOCKSIZE - 1]._next_om = (ObjectMonitor*)NULL;
1567 
1568     // Element [0] is reserved for global list linkage
1569     temp[0].set_object(CHAINMARKER);
1570 
1571     // Consider carving out this thread's current request from the
1572     // block in hand.  This avoids some lock traffic and redundant
1573     // list activity.
1574 
1575     prepend_block_to_lists(temp);
1576   }
1577 }
1578 
1579 // Place "m" on the caller's private per-thread om_free_list.
1580 // In practice there's no need to clamp or limit the number of
1581 // monitors on a thread's om_free_list as the only non-allocation time
1582 // we'll call om_release() is to return a monitor to the free list after
1583 // a CAS attempt failed. This doesn't allow unbounded #s of monitors to
1584 // accumulate on a thread's free list.
1585 //
1586 // Key constraint: all ObjectMonitors on a thread's free list and the global
1587 // free list must have their object field set to null. This prevents the
1588 // scavenger -- deflate_monitor_list() or deflate_monitor_list_using_JT()
1589 // -- from reclaiming them while we are trying to release them.
1590 
1591 void ObjectSynchronizer::om_release(Thread* self, ObjectMonitor* m,
1592                                     bool from_per_thread_alloc) {
1593   guarantee(m->header().value() == 0, "invariant");
1594   guarantee(m->object() == NULL, "invariant");
1595   stringStream ss;
1596   guarantee((m->is_busy() | m->_recursions) == 0, "freeing in-use monitor: "
1597             "%s, recursions=" INTX_FORMAT, m->is_busy_to_string(&ss),
1598             m->_recursions);
1599   m->set_allocation_state(ObjectMonitor::Free);
1600   // _next_om is used for both per-thread in-use and free lists so
1601   // we have to remove 'm' from the in-use list first (as needed).
1602   if (from_per_thread_alloc) {
1603     // Need to remove 'm' from om_in_use_list.
1604     // We use the more complicated lock-cur_mid_in_use-and-mid-as-we-go
1605     // protocol because async deflation can do list deletions in parallel.
1606     ObjectMonitor* cur_mid_in_use = NULL;
1607     ObjectMonitor* mid = NULL;
1608     ObjectMonitor* next = NULL;
1609     bool extracted = false;
1610 
1611     if ((mid = get_list_head_locked(&self->om_in_use_list)) == NULL) {
1612       fatal("thread=" INTPTR_FORMAT " in-use list must not be empty.", p2i(self));
1613     }
1614     next = unmarked_next(mid);
1615     while (true) {
1616       if (m == mid) {
1617         // We found 'm' on the per-thread in-use list so try to extract it.
1618         if (cur_mid_in_use == NULL) {
1619           // mid is the list head and it is locked. Switch the list head
1620           // to next which unlocks the list head, but leaves mid locked:
1621           Atomic::store(&self->om_in_use_list, next);
1622         } else {
1623           // mid and cur_mid_in_use are locked. Switch cur_mid_in_use's
1624           // next field to next which unlocks cur_mid_in_use, but leaves
1625           // mid locked:
1626           set_next(cur_mid_in_use, next);
1627         }
1628         extracted = true;
1629         Atomic::dec(&self->om_in_use_count);
1630         // Unlock mid, but leave the next value for any lagging list
1631         // walkers. It will get cleaned up when mid is prepended to
1632         // the thread's free list:
1633         om_unlock(mid);
1634         break;
1635       }
1636       if (cur_mid_in_use != NULL) {
1637         om_unlock(cur_mid_in_use);
1638       }
1639       // The next cur_mid_in_use keeps mid's locked state so
1640       // that it is stable for a possible next field change. It
1641       // cannot be deflated while it is locked.
1642       cur_mid_in_use = mid;
1643       mid = next;
1644       if (mid == NULL) {
1645         // Reached end of the list and didn't find m so:
1646         fatal("must find m=" INTPTR_FORMAT "on om_in_use_list=" INTPTR_FORMAT,
1647               p2i(m), p2i(self->om_in_use_list));
1648       }
1649       // Lock mid so we can possibly extract it:
1650       om_lock(mid);
1651       next = unmarked_next(mid);
1652     }
1653   }
1654 
1655   prepend_to_om_free_list(self, m);
1656   guarantee(m->is_free(), "invariant");
1657 }
1658 
1659 // Return ObjectMonitors on a moribund thread's free and in-use
1660 // lists to the appropriate global lists. The ObjectMonitors on the
1661 // per-thread in-use list may still be in use by other threads.
1662 //
1663 // We currently call om_flush() from Threads::remove() before the
1664 // thread has been excised from the thread list and is no longer a
1665 // mutator. This means that om_flush() cannot run concurrently with
1666 // a safepoint and interleave with deflate_idle_monitors(). In
1667 // particular, this ensures that the thread's in-use monitors are
1668 // scanned by a GC safepoint, either via Thread::oops_do() (before
1669 // om_flush() is called) or via ObjectSynchronizer::oops_do() (after
1670 // om_flush() is called).
1671 //
1672 // With AsyncDeflateIdleMonitors, deflate_global_idle_monitors_using_JT()
1673 // and deflate_per_thread_idle_monitors_using_JT() (in another thread) can
1674 // run at the same time as om_flush() so we have to follow a careful
1675 // protocol to prevent list corruption.
1676 
1677 void ObjectSynchronizer::om_flush(Thread* self) {
1678   // This function can race with an async deflater thread. Since
1679   // deflation has to process the per-thread in-use list before
1680   // prepending the deflated ObjectMonitors to the global free list,
1681   // we process the per-thread lists in the same order to prevent
1682   // ordering races.
1683   int in_use_count = 0;
1684   ObjectMonitor* in_use_list = NULL;
1685   ObjectMonitor* in_use_tail = NULL;
1686 
1687   // An async deflation thread checks to see if the target thread
1688   // is exiting, but if it has made it past that check before we
1689   // started exiting, then it is racing to get to the in-use list.
1690   if ((in_use_list = get_list_head_locked(&self->om_in_use_list)) != NULL) {
1691     // At this point, we have marked the in-use list head so an
1692     // async deflation thread cannot come in after us. If an async
1693     // deflation thread is ahead of us, then we'll detect that and
1694     // wait for it to finish its work.
1695     //
1696     // The thread is going away, however the ObjectMonitors on the
1697     // om_in_use_list may still be in-use by other threads. Link
1698     // them to in_use_tail, which will be linked into the global
1699     // in-use list (LVars.in_use_list) below.
1700     //
1701     // Account for the in-use list head before the loop since it is
1702     // already marked (by this thread):
1703     in_use_tail = in_use_list;
1704     in_use_count++;
1705     for (ObjectMonitor* cur_om = unmarked_next(in_use_list); cur_om != NULL;) {
1706       if (is_locked(cur_om)) {
1707         // cur_om is locked so there must be an async deflater
1708         // thread ahead of us so we'll give it a chance to finish.
1709         while (is_locked(cur_om)) {
1710           os::naked_short_sleep(1);
1711         }
1712         // Refetch the possibly changed next field and try again.
1713         cur_om = unmarked_next(in_use_tail);
1714         continue;
1715       }
1716       if (cur_om->is_free()) {
1717         // cur_om was deflated and the allocation state was changed
1718         // to Free while it was marked. We happened to see it just
1719         // after it was unmarked (and added to the free list).
1720         // Refetch the possibly changed next field and try again.
1721         cur_om = unmarked_next(in_use_tail);
1722         continue;
1723       }
1724       in_use_tail = cur_om;
1725       in_use_count++;
1726       cur_om = unmarked_next(cur_om);
1727     }
1728     guarantee(in_use_tail != NULL, "invariant");
1729     int l_om_in_use_count = self->om_in_use_count;
1730     ADIM_guarantee(l_om_in_use_count == in_use_count, "in-use counts don't "
1731                    "match: l_om_in_use_count=%d, in_use_count=%d",
1732                    l_om_in_use_count, in_use_count);
1733     self->om_in_use_count = 0;
1734     // Clear the in-use list head (which also unlocks it):
1735     Atomic::store(&self->om_in_use_list, (ObjectMonitor*)NULL);
1736     om_unlock(in_use_list);
1737   }
1738 
1739   int free_count = 0;
1740   ObjectMonitor* free_list = self->om_free_list;
1741   ObjectMonitor* free_tail = NULL;
1742   if (free_list != NULL) {
1743     // The thread is going away. Set 'free_tail' to the last per-thread free
1744     // monitor which will be linked to LVars.free_list below.
1745     stringStream ss;
1746     for (ObjectMonitor* s = free_list; s != NULL; s = unmarked_next(s)) {
1747       free_count++;
1748       free_tail = s;
1749       guarantee(s->object() == NULL, "invariant");
1750       guarantee(!s->is_busy(), "must be !is_busy: %s", s->is_busy_to_string(&ss));
1751     }
1752     guarantee(free_tail != NULL, "invariant");
1753     int l_om_free_count = self->om_free_count;
1754     ADIM_guarantee(l_om_free_count == free_count, "free counts don't match: "
1755                    "l_om_free_count=%d, free_count=%d", l_om_free_count,
1756                    free_count);
1757     self->om_free_count = 0;
1758     Atomic::store(&self->om_free_list, (ObjectMonitor*)NULL);
1759   }
1760 
1761   if (free_tail != NULL) {
1762     prepend_list_to_global_free_list(free_list, free_tail, free_count);
1763   }
1764 
1765   if (in_use_tail != NULL) {
1766     prepend_list_to_global_in_use_list(in_use_list, in_use_tail, in_use_count);
1767   }
1768 
1769   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1770   LogStreamHandle(Info, monitorinflation) lsh_info;
1771   LogStream* ls = NULL;
1772   if (log_is_enabled(Debug, monitorinflation)) {
1773     ls = &lsh_debug;
1774   } else if ((free_count != 0 || in_use_count != 0) &&
1775              log_is_enabled(Info, monitorinflation)) {
1776     ls = &lsh_info;
1777   }
1778   if (ls != NULL) {
1779     ls->print_cr("om_flush: jt=" INTPTR_FORMAT ", free_count=%d"
1780                  ", in_use_count=%d" ", om_free_provision=%d",
1781                  p2i(self), free_count, in_use_count, self->om_free_provision);
1782   }
1783 }
1784 
1785 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1786                                        const oop obj,
1787                                        ObjectSynchronizer::InflateCause cause) {
1788   assert(event != NULL, "invariant");
1789   assert(event->should_commit(), "invariant");
1790   event->set_monitorClass(obj->klass());
1791   event->set_address((uintptr_t)(void*)obj);
1792   event->set_cause((u1)cause);
1793   event->commit();
1794 }
1795 
1796 // Fast path code shared by multiple functions
1797 void ObjectSynchronizer::inflate_helper(ObjectMonitorHandle* omh_p, oop obj) {
1798   while (true) {
1799     markWord mark = obj->mark();
1800     if (mark.has_monitor()) {
1801       if (!omh_p->save_om_ptr(obj, mark)) {
1802         // Lost a race with async deflation so try again.
1803         assert(AsyncDeflateIdleMonitors, "sanity check");
1804         continue;
1805       }
1806       ObjectMonitor* monitor = omh_p->om_ptr();
1807       assert(ObjectSynchronizer::verify_objmon_isinpool(monitor), "monitor is invalid");
1808       markWord dmw = monitor->header();
1809       assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value());
1810       return;
1811     }
1812     inflate(omh_p, Thread::current(), obj, inflate_cause_vm_internal);
1813     return;
1814   }
1815 }
1816 
1817 void ObjectSynchronizer::inflate(ObjectMonitorHandle* omh_p, Thread* self,
1818                                  oop object, const InflateCause cause) {
1819   // Inflate mutates the heap ...
1820   // Relaxing assertion for bug 6320749.
1821   assert(Universe::verify_in_progress() ||
1822          !SafepointSynchronize::is_at_safepoint(), "invariant");
1823 
1824   EventJavaMonitorInflate event;
1825 
1826   for (;;) {
1827     const markWord mark = object->mark();
1828     assert(!mark.has_bias_pattern(), "invariant");
1829 
1830     // The mark can be in one of the following states:
1831     // *  Inflated     - just return
1832     // *  Stack-locked - coerce it to inflated
1833     // *  INFLATING    - busy wait for conversion to complete
1834     // *  Neutral      - aggressively inflate the object.
1835     // *  BIASED       - Illegal.  We should never see this
1836 
1837     // CASE: inflated
1838     if (mark.has_monitor()) {
1839       if (!omh_p->save_om_ptr(object, mark)) {
1840         // Lost a race with async deflation so try again.
1841         assert(AsyncDeflateIdleMonitors, "sanity check");
1842         continue;
1843       }
1844       ObjectMonitor* inf = omh_p->om_ptr();
1845       markWord dmw = inf->header();
1846       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1847       assert(inf->object() == object, "invariant");
1848       assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1849       return;
1850     }
1851 
1852     // CASE: inflation in progress - inflating over a stack-lock.
1853     // Some other thread is converting from stack-locked to inflated.
1854     // Only that thread can complete inflation -- other threads must wait.
1855     // The INFLATING value is transient.
1856     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1857     // We could always eliminate polling by parking the thread on some auxiliary list.
1858     if (mark == markWord::INFLATING()) {
1859       read_stable_mark(object);
1860       continue;
1861     }
1862 
1863     // CASE: stack-locked
1864     // Could be stack-locked either by this thread or by some other thread.
1865     //
1866     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1867     // to install INFLATING into the mark word.  We originally installed INFLATING,
1868     // allocated the objectmonitor, and then finally STed the address of the
1869     // objectmonitor into the mark.  This was correct, but artificially lengthened
1870     // the interval in which INFLATED appeared in the mark, thus increasing
1871     // the odds of inflation contention.
1872     //
1873     // We now use per-thread private objectmonitor free lists.
1874     // These list are reprovisioned from the global free list outside the
1875     // critical INFLATING...ST interval.  A thread can transfer
1876     // multiple objectmonitors en-mass from the global free list to its local free list.
1877     // This reduces coherency traffic and lock contention on the global free list.
1878     // Using such local free lists, it doesn't matter if the om_alloc() call appears
1879     // before or after the CAS(INFLATING) operation.
1880     // See the comments in om_alloc().
1881 
1882     LogStreamHandle(Trace, monitorinflation) lsh;
1883 
1884     if (mark.has_locker()) {
1885       ObjectMonitor* m = om_alloc(self, cause);
1886       // Optimistically prepare the objectmonitor - anticipate successful CAS
1887       // We do this before the CAS in order to minimize the length of time
1888       // in which INFLATING appears in the mark.
1889       m->Recycle();
1890       m->_Responsible  = NULL;
1891       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1892 
1893       markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark);
1894       if (cmp != mark) {
1895         // om_release() will reset the allocation state from New to Free.
1896         om_release(self, m, true);
1897         continue;       // Interference -- just retry
1898       }
1899 
1900       // We've successfully installed INFLATING (0) into the mark-word.
1901       // This is the only case where 0 will appear in a mark-word.
1902       // Only the singular thread that successfully swings the mark-word
1903       // to 0 can perform (or more precisely, complete) inflation.
1904       //
1905       // Why do we CAS a 0 into the mark-word instead of just CASing the
1906       // mark-word from the stack-locked value directly to the new inflated state?
1907       // Consider what happens when a thread unlocks a stack-locked object.
1908       // It attempts to use CAS to swing the displaced header value from the
1909       // on-stack BasicLock back into the object header.  Recall also that the
1910       // header value (hash code, etc) can reside in (a) the object header, or
1911       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1912       // header in an ObjectMonitor.  The inflate() routine must copy the header
1913       // value from the BasicLock on the owner's stack to the ObjectMonitor, all
1914       // the while preserving the hashCode stability invariants.  If the owner
1915       // decides to release the lock while the value is 0, the unlock will fail
1916       // and control will eventually pass from slow_exit() to inflate.  The owner
1917       // will then spin, waiting for the 0 value to disappear.   Put another way,
1918       // the 0 causes the owner to stall if the owner happens to try to
1919       // drop the lock (restoring the header from the BasicLock to the object)
1920       // while inflation is in-progress.  This protocol avoids races that might
1921       // would otherwise permit hashCode values to change or "flicker" for an object.
1922       // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable.
1923       // 0 serves as a "BUSY" inflate-in-progress indicator.
1924 
1925 
1926       // fetch the displaced mark from the owner's stack.
1927       // The owner can't die or unwind past the lock while our INFLATING
1928       // object is in the mark.  Furthermore the owner can't complete
1929       // an unlock on the object, either.
1930       markWord dmw = mark.displaced_mark_helper();
1931       // Catch if the object's header is not neutral (not locked and
1932       // not marked is what we care about here).
1933       ADIM_guarantee(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1934 
1935       // Setup monitor fields to proper values -- prepare the monitor
1936       m->set_header(dmw);
1937 
1938       // Optimization: if the mark.locker stack address is associated
1939       // with this thread we could simply set m->_owner = self.
1940       // Note that a thread can inflate an object
1941       // that it has stack-locked -- as might happen in wait() -- directly
1942       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1943       if (AsyncDeflateIdleMonitors) {
1944         m->simply_set_owner_from(mark.locker(), NULL, DEFLATER_MARKER);
1945       } else {
1946         m->simply_set_owner_from(mark.locker(), NULL);
1947       }
1948       m->set_object(object);
1949       // TODO-FIXME: assert BasicLock->dhw != 0.
1950 
1951       omh_p->set_om_ptr(m);
1952 
1953       // Must preserve store ordering. The monitor state must
1954       // be stable at the time of publishing the monitor address.
1955       guarantee(object->mark() == markWord::INFLATING(), "invariant");
1956       object->release_set_mark(markWord::encode(m));
1957 
1958       // Once ObjectMonitor is configured and the object is associated
1959       // with the ObjectMonitor, it is safe to allow async deflation:
1960       assert(m->is_new(), "freshly allocated monitor must be new");
1961       m->set_allocation_state(ObjectMonitor::Old);
1962 
1963       // Hopefully the performance counters are allocated on distinct cache lines
1964       // to avoid false sharing on MP systems ...
1965       OM_PERFDATA_OP(Inflations, inc());
1966       if (log_is_enabled(Trace, monitorinflation)) {
1967         ResourceMark rm(self);
1968         lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1969                      INTPTR_FORMAT ", type='%s'", p2i(object),
1970                      object->mark().value(), object->klass()->external_name());
1971       }
1972       if (event.should_commit()) {
1973         post_monitor_inflate_event(&event, object, cause);
1974       }
1975       ADIM_guarantee(!m->is_free(), "inflated monitor to be returned cannot be free");
1976       return;
1977     }
1978 
1979     // CASE: neutral
1980     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1981     // If we know we're inflating for entry it's better to inflate by swinging a
1982     // pre-locked ObjectMonitor pointer into the object header.   A successful
1983     // CAS inflates the object *and* confers ownership to the inflating thread.
1984     // In the current implementation we use a 2-step mechanism where we CAS()
1985     // to inflate and then CAS() again to try to swing _owner from NULL to self.
1986     // An inflateTry() method that we could call from enter() would be useful.
1987 
1988     // Catch if the object's header is not neutral (not locked and
1989     // not marked is what we care about here).
1990     ADIM_guarantee(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT,mark.value());
1991     ObjectMonitor* m = om_alloc(self, cause);
1992     // prepare m for installation - set monitor to initial state
1993     m->Recycle();
1994     m->set_header(mark);
1995     // If we leave _owner == DEFLATER_MARKER here, then the simple C2
1996     // ObjectMonitor enter optimization can no longer race with async
1997     // deflation and reuse.
1998     m->set_object(object);
1999     m->_Responsible  = NULL;
2000     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
2001 
2002     omh_p->set_om_ptr(m);
2003 
2004     if (object->cas_set_mark(markWord::encode(m), mark) != mark) {
2005       m->set_header(markWord::zero());
2006       m->set_object(NULL);
2007       m->Recycle();
2008       omh_p->set_om_ptr(NULL);
2009       // om_release() will reset the allocation state from New to Free.
2010       om_release(self, m, true);
2011       m = NULL;
2012       continue;
2013       // interference - the markword changed - just retry.
2014       // The state-transitions are one-way, so there's no chance of
2015       // live-lock -- "Inflated" is an absorbing state.
2016     }
2017 
2018     // Once the ObjectMonitor is configured and object is associated
2019     // with the ObjectMonitor, it is safe to allow async deflation:
2020     assert(m->is_new(), "freshly allocated monitor must be new");
2021     m->set_allocation_state(ObjectMonitor::Old);
2022 
2023     // Hopefully the performance counters are allocated on distinct
2024     // cache lines to avoid false sharing on MP systems ...
2025     OM_PERFDATA_OP(Inflations, inc());
2026     if (log_is_enabled(Trace, monitorinflation)) {
2027       ResourceMark rm(self);
2028       lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark="
2029                    INTPTR_FORMAT ", type='%s'", p2i(object),
2030                    object->mark().value(), object->klass()->external_name());
2031     }
2032     if (event.should_commit()) {
2033       post_monitor_inflate_event(&event, object, cause);
2034     }
2035     ADIM_guarantee(!m->is_free(), "inflated monitor to be returned cannot be free");
2036     return;
2037   }
2038 }
2039 
2040 
2041 // We maintain a list of in-use monitors for each thread.
2042 //
2043 // For safepoint based deflation:
2044 // deflate_thread_local_monitors() scans a single thread's in-use list, while
2045 // deflate_idle_monitors() scans only a global list of in-use monitors which
2046 // is populated only as a thread dies (see om_flush()).
2047 //
2048 // These operations are called at all safepoints, immediately after mutators
2049 // are stopped, but before any objects have moved. Collectively they traverse
2050 // the population of in-use monitors, deflating where possible. The scavenged
2051 // monitors are returned to the global monitor free list.
2052 //
2053 // Beware that we scavenge at *every* stop-the-world point. Having a large
2054 // number of monitors in-use could negatively impact performance. We also want
2055 // to minimize the total # of monitors in circulation, as they incur a small
2056 // footprint penalty.
2057 //
2058 // Perversely, the heap size -- and thus the STW safepoint rate --
2059 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
2060 // which in turn can mean large(r) numbers of ObjectMonitors in circulation.
2061 // This is an unfortunate aspect of this design.
2062 //
2063 // For async deflation:
2064 // If a special deflation request is made, then the safepoint based
2065 // deflation mechanism is used. Otherwise, an async deflation request
2066 // is registered with the ServiceThread and it is notified.
2067 
2068 void ObjectSynchronizer::do_safepoint_work(DeflateMonitorCounters* counters) {
2069   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2070 
2071   // The per-thread in-use lists are handled in
2072   // ParallelSPCleanupThreadClosure::do_thread().
2073 
2074   if (!AsyncDeflateIdleMonitors || is_special_deflation_requested()) {
2075     // Use the older mechanism for the global in-use list or if a
2076     // special deflation has been requested before the safepoint.
2077     ObjectSynchronizer::deflate_idle_monitors(counters);
2078     return;
2079   }
2080 
2081   log_debug(monitorinflation)("requesting async deflation of idle monitors.");
2082   // Request deflation of idle monitors by the ServiceThread:
2083   set_is_async_deflation_requested(true);
2084   MonitorLocker ml(Service_lock, Mutex::_no_safepoint_check_flag);
2085   ml.notify_all();
2086 
2087   if (log_is_enabled(Debug, monitorinflation)) {
2088     // exit_globals()'s call to audit_and_print_stats() is done
2089     // at the Info level and not at a safepoint.
2090     // For safepoint based deflation, audit_and_print_stats() is called
2091     // in ObjectSynchronizer::finish_deflate_idle_monitors() at the
2092     // Debug level at a safepoint.
2093     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
2094   }
2095 }
2096 
2097 // Deflate a single monitor if not in-use
2098 // Return true if deflated, false if in-use
2099 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
2100                                          ObjectMonitor** free_head_p,
2101                                          ObjectMonitor** free_tail_p) {
2102   bool deflated;
2103   // Normal case ... The monitor is associated with obj.
2104   const markWord mark = obj->mark();
2105   guarantee(mark == markWord::encode(mid), "should match: mark="
2106             INTPTR_FORMAT ", encoded mid=" INTPTR_FORMAT, mark.value(),
2107             markWord::encode(mid).value());
2108   // Make sure that mark.monitor() and markWord::encode() agree:
2109   guarantee(mark.monitor() == mid, "should match: monitor()=" INTPTR_FORMAT
2110             ", mid=" INTPTR_FORMAT, p2i(mark.monitor()), p2i(mid));
2111   const markWord dmw = mid->header();
2112   guarantee(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
2113 
2114   if (mid->is_busy() || mid->ref_count() != 0) {
2115     // Easy checks are first - the ObjectMonitor is busy or ObjectMonitor*
2116     // is in use so no deflation.
2117     deflated = false;
2118   } else {
2119     // Deflate the monitor if it is no longer being used
2120     // It's idle - scavenge and return to the global free list
2121     // plain old deflation ...
2122     if (log_is_enabled(Trace, monitorinflation)) {
2123       ResourceMark rm;
2124       log_trace(monitorinflation)("deflate_monitor: "
2125                                   "object=" INTPTR_FORMAT ", mark="
2126                                   INTPTR_FORMAT ", type='%s'", p2i(obj),
2127                                   mark.value(), obj->klass()->external_name());
2128     }
2129 
2130     // Restore the header back to obj
2131     obj->release_set_mark(dmw);
2132     if (AsyncDeflateIdleMonitors) {
2133       // clear() expects the owner field to be NULL and we won't race
2134       // with the simple C2 ObjectMonitor enter optimization since
2135       // we're at a safepoint. DEFLATER_MARKER is the only non-NULL
2136       // value we should see here.
2137       mid->try_set_owner_from(NULL, DEFLATER_MARKER);
2138     }
2139     mid->clear();
2140 
2141     assert(mid->object() == NULL, "invariant: object=" INTPTR_FORMAT,
2142            p2i(mid->object()));
2143     assert(mid->is_free(), "invariant");
2144 
2145     // Move the deflated ObjectMonitor to the working free list
2146     // defined by free_head_p and free_tail_p. No races on this list
2147     // so no need for load_acquire() or store_release().
2148     if (*free_head_p == NULL) *free_head_p = mid;
2149     if (*free_tail_p != NULL) {
2150       // We append to the list so the caller can use mid->_next_om
2151       // to fix the linkages in its context.
2152       ObjectMonitor* prevtail = *free_tail_p;
2153       // Should have been cleaned up by the caller:
2154       // Note: Should not have to lock prevtail here since we're at a
2155       // safepoint and ObjectMonitors on the local free list should
2156       // not be accessed in parallel.
2157       assert(prevtail->_next_om == NULL, "must be NULL: _next_om="
2158              INTPTR_FORMAT, p2i(prevtail->_next_om));
2159       set_next(prevtail, mid);
2160     }
2161     *free_tail_p = mid;
2162     // At this point, mid->_next_om still refers to its current
2163     // value and another ObjectMonitor's _next_om field still
2164     // refers to this ObjectMonitor. Those linkages have to be
2165     // cleaned up by the caller who has the complete context.
2166     deflated = true;
2167   }
2168   return deflated;
2169 }
2170 
2171 // Deflate the specified ObjectMonitor if not in-use using a JavaThread.
2172 // Returns true if it was deflated and false otherwise.
2173 //
2174 // The async deflation protocol sets owner to DEFLATER_MARKER and
2175 // makes ref_count negative as signals to contending threads that
2176 // an async deflation is in progress. There are a number of checks
2177 // as part of the protocol to make sure that the calling thread has
2178 // not lost the race to a contending thread or to a thread that just
2179 // wants to use the ObjectMonitor*.
2180 //
2181 // The ObjectMonitor has been successfully async deflated when:
2182 // (owner == DEFLATER_MARKER && ref_count < 0)
2183 // Contending threads or ObjectMonitor* using threads that see those
2184 // values know to retry their operation.
2185 //
2186 bool ObjectSynchronizer::deflate_monitor_using_JT(ObjectMonitor* mid,
2187                                                   ObjectMonitor** free_head_p,
2188                                                   ObjectMonitor** free_tail_p) {
2189   assert(AsyncDeflateIdleMonitors, "sanity check");
2190   assert(Thread::current()->is_Java_thread(), "precondition");
2191   // A newly allocated ObjectMonitor should not be seen here so we
2192   // avoid an endless inflate/deflate cycle.
2193   assert(mid->is_old(), "must be old: allocation_state=%d",
2194          (int) mid->allocation_state());
2195 
2196   if (mid->is_busy() || mid->ref_count() != 0) {
2197     // Easy checks are first - the ObjectMonitor is busy or ObjectMonitor*
2198     // is in use so no deflation.
2199     return false;
2200   }
2201 
2202   if (mid->try_set_owner_from(DEFLATER_MARKER, NULL) == NULL) {
2203     // ObjectMonitor is not owned by another thread. Our setting
2204     // owner to DEFLATER_MARKER forces any contending thread through
2205     // the slow path. This is just the first part of the async
2206     // deflation dance.
2207 
2208     if (mid->_contentions != 0 || mid->_waiters != 0) {
2209       // Another thread has raced to enter the ObjectMonitor after
2210       // mid->is_busy() above or has already entered and waited on
2211       // it which makes it busy so no deflation. Restore owner to
2212       // NULL if it is still DEFLATER_MARKER.
2213       mid->try_set_owner_from(NULL, DEFLATER_MARKER);
2214       return false;
2215     }
2216 
2217     if (Atomic::cmpxchg(&mid->_ref_count, (jint)0, -max_jint) == 0) {
2218       // Make ref_count negative to force any contending threads or
2219       // ObjectMonitor* using threads to retry. This is the second
2220       // part of the async deflation dance.
2221 
2222       if (mid->owner_is_DEFLATER_MARKER()) {
2223         // If owner is still DEFLATER_MARKER, then we have successfully
2224         // signaled any contending threads to retry. If it is not, then we
2225         // have lost the race to an entering thread and the ObjectMonitor
2226         // is now busy. This is the third and final part of the async
2227         // deflation dance.
2228         // Note: This owner check solves the ABA problem with ref_count
2229         // where another thread acquired the ObjectMonitor, finished
2230         // using it and restored the ref_count to zero.
2231 
2232         // Sanity checks for the races:
2233         guarantee(mid->_contentions == 0, "must be 0: contentions=%d",
2234                   mid->_contentions);
2235         guarantee(mid->_waiters == 0, "must be 0: waiters=%d", mid->_waiters);
2236         guarantee(mid->_cxq == NULL, "must be no contending threads: cxq="
2237                   INTPTR_FORMAT, p2i(mid->_cxq));
2238         guarantee(mid->_EntryList == NULL,
2239                   "must be no entering threads: EntryList=" INTPTR_FORMAT,
2240                   p2i(mid->_EntryList));
2241 
2242         const oop obj = (oop) mid->object();
2243         if (log_is_enabled(Trace, monitorinflation)) {
2244           ResourceMark rm;
2245           log_trace(monitorinflation)("deflate_monitor_using_JT: "
2246                                       "object=" INTPTR_FORMAT ", mark="
2247                                       INTPTR_FORMAT ", type='%s'",
2248                                       p2i(obj), obj->mark().value(),
2249                                       obj->klass()->external_name());
2250         }
2251 
2252         // Install the old mark word if nobody else has already done it.
2253         mid->install_displaced_markword_in_object(obj);
2254         mid->clear_using_JT();
2255 
2256         assert(mid->object() == NULL, "must be NULL: object=" INTPTR_FORMAT,
2257                p2i(mid->object()));
2258         assert(mid->is_free(), "must be free: allocation_state=%d",
2259                (int) mid->allocation_state());
2260 
2261         // Move the deflated ObjectMonitor to the working free list
2262         // defined by free_head_p and free_tail_p. No races on this list
2263         // so no need for load_acquire() or store_release().
2264         if (*free_head_p == NULL) {
2265           // First one on the list.
2266           *free_head_p = mid;
2267         }
2268         if (*free_tail_p != NULL) {
2269           // We append to the list so the caller can use mid->_next_om
2270           // to fix the linkages in its context.
2271           ObjectMonitor* prevtail = *free_tail_p;
2272           // Should have been cleaned up by the caller:
2273           om_lock(prevtail);
2274           assert(unmarked_next(prevtail) == NULL, "must be NULL: _next_om="
2275                  INTPTR_FORMAT, p2i(unmarked_next(prevtail)));
2276           set_next(prevtail, mid);  // prevtail now points to mid (and is unlocked)
2277         }
2278         *free_tail_p = mid;
2279 
2280         // At this point, mid->_next_om still refers to its current
2281         // value and another ObjectMonitor's _next_om field still
2282         // refers to this ObjectMonitor. Those linkages have to be
2283         // cleaned up by the caller who has the complete context.
2284 
2285         // We leave owner == DEFLATER_MARKER and ref_count < 0
2286         // to force any racing threads to retry.
2287         return true;  // Success, ObjectMonitor has been deflated.
2288       }
2289 
2290       // The owner was changed from DEFLATER_MARKER so we lost the
2291       // race since the ObjectMonitor is now busy.
2292 
2293       // Add back max_jint to restore the ref_count field to its
2294       // proper value (which may not be what we saw above):
2295       Atomic::add(&mid->_ref_count, max_jint);
2296 
2297 #ifdef ASSERT
2298       jint l_ref_count = mid->ref_count();
2299 #endif
2300       assert(l_ref_count >= 0, "must not be negative: l_ref_count=%d, ref_count=%d",
2301              l_ref_count, mid->ref_count());
2302       return false;
2303     }
2304 
2305     // The ref_count was no longer 0 so we lost the race since the
2306     // ObjectMonitor is now busy or the ObjectMonitor* is now is use.
2307     // Restore owner to NULL if it is still DEFLATER_MARKER:
2308     mid->try_set_owner_from(NULL, DEFLATER_MARKER);
2309   }
2310 
2311   // The owner field is no longer NULL so we lost the race since the
2312   // ObjectMonitor is now busy.
2313   return false;
2314 }
2315 
2316 // Walk a given monitor list, and deflate idle monitors.
2317 // The given list could be a per-thread list or a global list.
2318 //
2319 // In the case of parallel processing of thread local monitor lists,
2320 // work is done by Threads::parallel_threads_do() which ensures that
2321 // each Java thread is processed by exactly one worker thread, and
2322 // thus avoid conflicts that would arise when worker threads would
2323 // process the same monitor lists concurrently.
2324 //
2325 // See also ParallelSPCleanupTask and
2326 // SafepointSynchronize::do_cleanup_tasks() in safepoint.cpp and
2327 // Threads::parallel_java_threads_do() in thread.cpp.
2328 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** list_p,
2329                                              int* count_p,
2330                                              ObjectMonitor** free_head_p,
2331                                              ObjectMonitor** free_tail_p) {
2332   ObjectMonitor* cur_mid_in_use = NULL;
2333   ObjectMonitor* mid = NULL;
2334   ObjectMonitor* next = NULL;
2335   int deflated_count = 0;
2336 
2337   // We use the simpler lock-mid-as-we-go protocol since there are no
2338   // parallel list deletions since we are at a safepoint.
2339   if ((mid = get_list_head_locked(list_p)) == NULL) {
2340     return 0;  // The list is empty so nothing to deflate.
2341   }
2342   next = unmarked_next(mid);
2343 
2344   while (true) {
2345     oop obj = (oop) mid->object();
2346     if (obj != NULL && deflate_monitor(mid, obj, free_head_p, free_tail_p)) {
2347       // Deflation succeeded and already updated free_head_p and
2348       // free_tail_p as needed. Finish the move to the local free list
2349       // by unlinking mid from the global or per-thread in-use list.
2350       if (cur_mid_in_use == NULL) {
2351         // mid is the list head and it is locked. Switch the list head
2352         // to next which unlocks the list head, but leaves mid locked:
2353         Atomic::store(list_p, next);
2354       } else {
2355         // mid is locked. Switch cur_mid_in_use's next field to next
2356         // which is safe because we have no parallel list deletions,
2357         // but we leave mid locked:
2358         set_next(cur_mid_in_use, next);
2359       }
2360       // At this point mid is disconnected from the in-use list so
2361       // its lock no longer has any effects on the in-use list.
2362       deflated_count++;
2363       Atomic::dec(count_p);
2364       // mid is current tail in the free_head_p list so NULL terminate it
2365       // (which also unlocks it):
2366       set_next(mid, NULL);
2367     } else {
2368       om_unlock(mid);
2369       cur_mid_in_use = mid;
2370     }
2371     // All the list management is done so move on to the next one:
2372     mid = next;
2373     if (mid == NULL) {
2374       break;  // Reached end of the list so nothing more to deflate.
2375     }
2376     // Lock mid so we can possibly deflate it:
2377     om_lock(mid);
2378     next = unmarked_next(mid);
2379   }
2380   return deflated_count;
2381 }
2382 
2383 // Walk a given ObjectMonitor list and deflate idle ObjectMonitors using
2384 // a JavaThread. Returns the number of deflated ObjectMonitors. The given
2385 // list could be a per-thread in-use list or the global in-use list.
2386 // If a safepoint has started, then we save state via saved_mid_in_use_p
2387 // and return to the caller to honor the safepoint.
2388 //
2389 int ObjectSynchronizer::deflate_monitor_list_using_JT(ObjectMonitor** list_p,
2390                                                       int* count_p,
2391                                                       ObjectMonitor** free_head_p,
2392                                                       ObjectMonitor** free_tail_p,
2393                                                       ObjectMonitor** saved_mid_in_use_p) {
2394   assert(AsyncDeflateIdleMonitors, "sanity check");
2395   JavaThread* self = JavaThread::current();
2396 
2397   ObjectMonitor* cur_mid_in_use = NULL;
2398   ObjectMonitor* mid = NULL;
2399   ObjectMonitor* next = NULL;
2400   ObjectMonitor* next_next = NULL;
2401   int deflated_count = 0;
2402 
2403   // We use the more complicated lock-cur_mid_in_use-and-mid-as-we-go
2404   // protocol because om_release() can do list deletions in parallel.
2405   // We also lock-next-next-as-we-go to prevent an om_flush() that is
2406   // behind this thread from passing us.
2407   if (*saved_mid_in_use_p == NULL) {
2408     // No saved state so start at the beginning.
2409     // Lock the list head so we can possibly deflate it:
2410     if ((mid = get_list_head_locked(list_p)) == NULL) {
2411       return 0;  // The list is empty so nothing to deflate.
2412     }
2413     next = unmarked_next(mid);
2414   } else {
2415     // We're restarting after a safepoint so restore the necessary state
2416     // before we resume.
2417     cur_mid_in_use = *saved_mid_in_use_p;
2418     // Lock cur_mid_in_use so we can possibly update its
2419     // next field to extract a deflated ObjectMonitor.
2420     om_lock(cur_mid_in_use);
2421     mid = unmarked_next(cur_mid_in_use);
2422     if (mid == NULL) {
2423       om_unlock(cur_mid_in_use);
2424       *saved_mid_in_use_p = NULL;
2425       return 0;  // The remainder is empty so nothing more to deflate.
2426     }
2427     // Lock mid so we can possibly deflate it:
2428     om_lock(mid);
2429     next = unmarked_next(mid);
2430   }
2431 
2432   while (true) {
2433     // The current mid's next field is marked at this point. If we have
2434     // a cur_mid_in_use, then its next field is also marked at this point.
2435 
2436     if (next != NULL) {
2437       // We lock next so that an om_flush() thread that is behind us
2438       // cannot pass us when we unlock the current mid.
2439       om_lock(next);
2440       next_next = unmarked_next(next);
2441     }
2442 
2443     // Only try to deflate if there is an associated Java object and if
2444     // mid is old (is not newly allocated and is not newly freed).
2445     if (mid->object() != NULL && mid->is_old() &&
2446         deflate_monitor_using_JT(mid, free_head_p, free_tail_p)) {
2447       // Deflation succeeded and already updated free_head_p and
2448       // free_tail_p as needed. Finish the move to the local free list
2449       // by unlinking mid from the global or per-thread in-use list.
2450       if (cur_mid_in_use == NULL) {
2451         // mid is the list head and it is locked. Switch the list head
2452         // to next which is also locked (if not NULL) and also leave
2453         // mid locked:
2454         Atomic::store(list_p, next);
2455       } else {
2456         ObjectMonitor* locked_next = mark_om_ptr(next);
2457         // mid and cur_mid_in_use are locked. Switch cur_mid_in_use's
2458         // next field to locked_next and also leave mid locked:
2459         set_next(cur_mid_in_use, locked_next);
2460       }
2461       // At this point mid is disconnected from the in-use list so
2462       // its lock longer has any effects on in-use list.
2463       deflated_count++;
2464       Atomic::dec(count_p);
2465       // mid is current tail in the free_head_p list so NULL terminate it
2466       // (which also unlocks it):
2467       set_next(mid, NULL);
2468 
2469       // All the list management is done so move on to the next one:
2470       mid = next;  // mid keeps non-NULL next's locked next field
2471       next = next_next;
2472     } else {
2473       // mid is considered in-use if it does not have an associated
2474       // Java object or mid is not old or deflation did not succeed.
2475       // A mid->is_new() node can be seen here when it is freshly
2476       // returned by om_alloc() (and skips the deflation code path).
2477       // A mid->is_old() node can be seen here when deflation failed.
2478       // A mid->is_free() node can be seen here when a fresh node from
2479       // om_alloc() is released by om_release() due to losing the race
2480       // in inflate().
2481 
2482       // All the list management is done so move on to the next one:
2483       if (cur_mid_in_use != NULL) {
2484         om_unlock(cur_mid_in_use);
2485       }
2486       // The next cur_mid_in_use keeps mid's lock state so
2487       // that it is stable for a possible next field change. It
2488       // cannot be modified by om_release() while it is locked.
2489       cur_mid_in_use = mid;
2490       mid = next;  // mid keeps non-NULL next's locked state
2491       next = next_next;
2492 
2493       if (SafepointMechanism::should_block(self) &&
2494           cur_mid_in_use != Atomic::load(list_p) && cur_mid_in_use->is_old()) {
2495         // If a safepoint has started and cur_mid_in_use is not the list
2496         // head and is old, then it is safe to use as saved state. Return
2497         // to the caller before blocking.
2498         *saved_mid_in_use_p = cur_mid_in_use;
2499         om_unlock(cur_mid_in_use);
2500         if (mid != NULL) {
2501           om_unlock(mid);
2502         }
2503         return deflated_count;
2504       }
2505     }
2506     if (mid == NULL) {
2507       if (cur_mid_in_use != NULL) {
2508         om_unlock(cur_mid_in_use);
2509       }
2510       break;  // Reached end of the list so nothing more to deflate.
2511     }
2512 
2513     // The current mid's next field is locked at this point. If we have
2514     // a cur_mid_in_use, then it is also locked at this point.
2515   }
2516   // We finished the list without a safepoint starting so there's
2517   // no need to save state.
2518   *saved_mid_in_use_p = NULL;
2519   return deflated_count;
2520 }
2521 
2522 void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2523   counters->n_in_use = 0;              // currently associated with objects
2524   counters->n_in_circulation = 0;      // extant
2525   counters->n_scavenged = 0;           // reclaimed (global and per-thread)
2526   counters->per_thread_scavenged = 0;  // per-thread scavenge total
2527   counters->per_thread_times = 0.0;    // per-thread scavenge times
2528   OrderAccess::storestore();           // flush inits for worker threads
2529 }
2530 
2531 void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) {
2532   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2533 
2534   if (AsyncDeflateIdleMonitors) {
2535     // Nothing to do when global idle ObjectMonitors are deflated using
2536     // a JavaThread unless a special deflation has been requested.
2537     if (!is_special_deflation_requested()) {
2538       return;
2539     }
2540   }
2541 
2542   bool deflated = false;
2543 
2544   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged monitors
2545   ObjectMonitor* free_tail_p = NULL;
2546   elapsedTimer timer;
2547 
2548   if (log_is_enabled(Info, monitorinflation)) {
2549     timer.start();
2550   }
2551 
2552   // Note: the thread-local monitors lists get deflated in
2553   // a separate pass. See deflate_thread_local_monitors().
2554 
2555   // For moribund threads, scan LVars.in_use_list
2556   int deflated_count = 0;
2557   if (Atomic::load(&LVars.in_use_list) != NULL) {
2558     // Update n_in_circulation before LVars.in_use_count is updated by deflation.
2559     Atomic::add(&counters->n_in_circulation, Atomic::load(&LVars.in_use_count));
2560 
2561     deflated_count = deflate_monitor_list(&LVars.in_use_list, &LVars.in_use_count, &free_head_p, &free_tail_p);
2562     Atomic::add(&counters->n_in_use, Atomic::load(&LVars.in_use_count));
2563   }
2564 
2565   if (free_head_p != NULL) {
2566     // Move the deflated ObjectMonitors back to the global free list.
2567     // No races on the working free list so no need for load_acquire().
2568     guarantee(free_tail_p != NULL && deflated_count > 0, "invariant");
2569     assert(free_tail_p->_next_om == NULL, "must be NULL: _next_om="
2570            INTPTR_FORMAT, p2i(free_tail_p->_next_om));
2571     prepend_list_to_global_free_list(free_head_p, free_tail_p, deflated_count);
2572     Atomic::add(&counters->n_scavenged, deflated_count);
2573   }
2574   timer.stop();
2575 
2576   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2577   LogStreamHandle(Info, monitorinflation) lsh_info;
2578   LogStream* ls = NULL;
2579   if (log_is_enabled(Debug, monitorinflation)) {
2580     ls = &lsh_debug;
2581   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2582     ls = &lsh_info;
2583   }
2584   if (ls != NULL) {
2585     ls->print_cr("deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2586   }
2587 }
2588 
2589 class HandshakeForDeflation : public HandshakeClosure {
2590  public:
2591   HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {}
2592 
2593   void do_thread(Thread* thread) {
2594     log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread="
2595                                 INTPTR_FORMAT, p2i(thread));
2596   }
2597 };
2598 
2599 void ObjectSynchronizer::deflate_idle_monitors_using_JT() {
2600   assert(AsyncDeflateIdleMonitors, "sanity check");
2601 
2602   // Deflate any global idle monitors.
2603   deflate_global_idle_monitors_using_JT();
2604 
2605   int count = 0;
2606   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2607     if (jt->om_in_use_count > 0 && !jt->is_exiting()) {
2608       // This JavaThread is using ObjectMonitors so deflate any that
2609       // are idle unless this JavaThread is exiting; do not race with
2610       // ObjectSynchronizer::om_flush().
2611       deflate_per_thread_idle_monitors_using_JT(jt);
2612       count++;
2613     }
2614   }
2615   if (count > 0) {
2616     log_debug(monitorinflation)("did async deflation of idle monitors for %d thread(s).", count);
2617   }
2618 
2619   log_info(monitorinflation)("async global_population=%d, global_in_use_count=%d, "
2620                              "global_free_count=%d, global_wait_count=%d",
2621                              Atomic::load(&LVars.population), Atomic::load(&LVars.in_use_count),
2622                              Atomic::load(&LVars.free_count), Atomic::load(&LVars.wait_count));
2623 
2624   // The ServiceThread's async deflation request has been processed.
2625   set_is_async_deflation_requested(false);
2626 
2627   if (HandshakeAfterDeflateIdleMonitors && Atomic::load(&LVars.wait_count) > 0) {
2628     // There are deflated ObjectMonitors waiting for a handshake
2629     // (or a safepoint) for safety.
2630 
2631     ObjectMonitor* list = Atomic::load(&LVars.wait_list);
2632     ADIM_guarantee(list != NULL, "LVars.wait_list must not be NULL");
2633     int count = Atomic::load(&LVars.wait_count);
2634     Atomic::store(&LVars.wait_count, 0);
2635     Atomic::store(&LVars.wait_list, (ObjectMonitor*)NULL);
2636 
2637     // Find the tail for prepend_list_to_common(). No need to mark
2638     // ObjectMonitors for this list walk since only the deflater
2639     // thread manages the wait list.
2640     int l_count = 0;
2641     ObjectMonitor* tail = NULL;
2642     for (ObjectMonitor* n = list; n != NULL; n = unmarked_next(n)) {
2643       tail = n;
2644       l_count++;
2645     }
2646     ADIM_guarantee(count == l_count, "count=%d != l_count=%d", count, l_count);
2647 
2648     // Will execute a safepoint if !ThreadLocalHandshakes:
2649     HandshakeForDeflation hfd_hc;
2650     Handshake::execute(&hfd_hc);
2651 
2652     prepend_list_to_common(list, tail, count, &LVars.free_list, &LVars.free_count);
2653 
2654     log_info(monitorinflation)("moved %d idle monitors from global waiting list to global free list", count);
2655   }
2656 }
2657 
2658 // Deflate global idle ObjectMonitors using a JavaThread.
2659 //
2660 void ObjectSynchronizer::deflate_global_idle_monitors_using_JT() {
2661   assert(AsyncDeflateIdleMonitors, "sanity check");
2662   assert(Thread::current()->is_Java_thread(), "precondition");
2663   JavaThread* self = JavaThread::current();
2664 
2665   deflate_common_idle_monitors_using_JT(true /* is_global */, self);
2666 }
2667 
2668 // Deflate the specified JavaThread's idle ObjectMonitors using a JavaThread.
2669 //
2670 void ObjectSynchronizer::deflate_per_thread_idle_monitors_using_JT(JavaThread* target) {
2671   assert(AsyncDeflateIdleMonitors, "sanity check");
2672   assert(Thread::current()->is_Java_thread(), "precondition");
2673 
2674   deflate_common_idle_monitors_using_JT(false /* !is_global */, target);
2675 }
2676 
2677 // Deflate global or per-thread idle ObjectMonitors using a JavaThread.
2678 //
2679 void ObjectSynchronizer::deflate_common_idle_monitors_using_JT(bool is_global, JavaThread* target) {
2680   JavaThread* self = JavaThread::current();
2681 
2682   int deflated_count = 0;
2683   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged ObjectMonitors
2684   ObjectMonitor* free_tail_p = NULL;
2685   ObjectMonitor* saved_mid_in_use_p = NULL;
2686   elapsedTimer timer;
2687 
2688   if (log_is_enabled(Info, monitorinflation)) {
2689     timer.start();
2690   }
2691 
2692   if (is_global) {
2693     OM_PERFDATA_OP(MonExtant, set_value(Atomic::load(&LVars.in_use_count)));
2694   } else {
2695     OM_PERFDATA_OP(MonExtant, inc(target->om_in_use_count));
2696   }
2697 
2698   do {
2699     int local_deflated_count;
2700     if (is_global) {
2701       local_deflated_count = deflate_monitor_list_using_JT(&LVars.in_use_list, &LVars.in_use_count, &free_head_p, &free_tail_p, &saved_mid_in_use_p);
2702     } else {
2703       local_deflated_count = deflate_monitor_list_using_JT(&target->om_in_use_list, &target->om_in_use_count, &free_head_p, &free_tail_p, &saved_mid_in_use_p);
2704     }
2705     deflated_count += local_deflated_count;
2706 
2707     if (free_head_p != NULL) {
2708       // Move the deflated ObjectMonitors to the global free list.
2709       // No races on the working list so no need for load_acquire().
2710       guarantee(free_tail_p != NULL && local_deflated_count > 0, "free_tail_p=" INTPTR_FORMAT ", local_deflated_count=%d", p2i(free_tail_p), local_deflated_count);
2711       // Note: The target thread can be doing an om_alloc() that
2712       // is trying to prepend an ObjectMonitor on its in-use list
2713       // at the same time that we have deflated the current in-use
2714       // list head and put it on the local free list. prepend_to_common()
2715       // will detect the race and retry which avoids list corruption,
2716       // but the next field in free_tail_p can flicker to marked
2717       // and then unmarked while prepend_to_common() is sorting it
2718       // all out.
2719       assert(unmarked_next(free_tail_p) == NULL, "must be NULL: _next_om="
2720              INTPTR_FORMAT, p2i(unmarked_next(free_tail_p)));
2721 
2722       if (HandshakeAfterDeflateIdleMonitors) {
2723         prepend_list_to_global_wait_list(free_head_p, free_tail_p, local_deflated_count);
2724       } else {
2725         prepend_list_to_global_free_list(free_head_p, free_tail_p, local_deflated_count);
2726       }
2727 
2728       OM_PERFDATA_OP(Deflations, inc(local_deflated_count));
2729     }
2730 
2731     if (saved_mid_in_use_p != NULL) {
2732       // deflate_monitor_list_using_JT() detected a safepoint starting.
2733       timer.stop();
2734       {
2735         if (is_global) {
2736           log_debug(monitorinflation)("pausing deflation of global idle monitors for a safepoint.");
2737         } else {
2738           log_debug(monitorinflation)("jt=" INTPTR_FORMAT ": pausing deflation of per-thread idle monitors for a safepoint.", p2i(target));
2739         }
2740         assert(SafepointMechanism::should_block(self), "sanity check");
2741         ThreadBlockInVM blocker(self);
2742       }
2743       // Prepare for another loop after the safepoint.
2744       free_head_p = NULL;
2745       free_tail_p = NULL;
2746       if (log_is_enabled(Info, monitorinflation)) {
2747         timer.start();
2748       }
2749     }
2750   } while (saved_mid_in_use_p != NULL);
2751   timer.stop();
2752 
2753   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2754   LogStreamHandle(Info, monitorinflation) lsh_info;
2755   LogStream* ls = NULL;
2756   if (log_is_enabled(Debug, monitorinflation)) {
2757     ls = &lsh_debug;
2758   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2759     ls = &lsh_info;
2760   }
2761   if (ls != NULL) {
2762     if (is_global) {
2763       ls->print_cr("async-deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2764     } else {
2765       ls->print_cr("jt=" INTPTR_FORMAT ": async-deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(target), timer.seconds(), deflated_count);
2766     }
2767   }
2768 }
2769 
2770 void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2771   // Report the cumulative time for deflating each thread's idle
2772   // monitors. Note: if the work is split among more than one
2773   // worker thread, then the reported time will likely be more
2774   // than a beginning to end measurement of the phase.
2775   log_info(safepoint, cleanup)("deflating per-thread idle monitors, %3.7f secs, monitors=%d", counters->per_thread_times, counters->per_thread_scavenged);
2776 
2777   bool needs_special_deflation = is_special_deflation_requested();
2778   if (AsyncDeflateIdleMonitors && !needs_special_deflation) {
2779     // Nothing to do when idle ObjectMonitors are deflated using
2780     // a JavaThread unless a special deflation has been requested.
2781     return;
2782   }
2783 
2784   if (log_is_enabled(Debug, monitorinflation)) {
2785     // exit_globals()'s call to audit_and_print_stats() is done
2786     // at the Info level and not at a safepoint.
2787     // For async deflation, audit_and_print_stats() is called in
2788     // ObjectSynchronizer::do_safepoint_work() at the Debug level
2789     // at a safepoint.
2790     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
2791   } else if (log_is_enabled(Info, monitorinflation)) {
2792     log_info(monitorinflation)("global_population=%d, global_in_use_count=%d, "
2793                                "global_free_count=%d, global_wait_count=%d",
2794                                Atomic::load(&LVars.population), Atomic::load(&LVars.in_use_count),
2795                                Atomic::load(&LVars.free_count), Atomic::load(&LVars.wait_count));
2796   }
2797 
2798   Atomic::store(&_forceMonitorScavenge, 0);    // Reset
2799 
2800   OM_PERFDATA_OP(Deflations, inc(counters->n_scavenged));
2801   OM_PERFDATA_OP(MonExtant, set_value(counters->n_in_circulation));
2802 
2803   GVars.stw_random = os::random();
2804   GVars.stw_cycle++;
2805 
2806   if (needs_special_deflation) {
2807     set_is_special_deflation_requested(false);  // special deflation is done
2808   }
2809 }
2810 
2811 void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) {
2812   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2813 
2814   if (AsyncDeflateIdleMonitors && !is_special_deflation_requested()) {
2815     // Nothing to do if a special deflation has NOT been requested.
2816     return;
2817   }
2818 
2819   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged monitors
2820   ObjectMonitor* free_tail_p = NULL;
2821   elapsedTimer timer;
2822 
2823   if (log_is_enabled(Info, safepoint, cleanup) ||
2824       log_is_enabled(Info, monitorinflation)) {
2825     timer.start();
2826   }
2827 
2828   // Update n_in_circulation before om_in_use_count is updated by deflation.
2829   Atomic::add(&counters->n_in_circulation, thread->om_in_use_count);
2830 
2831   int deflated_count = deflate_monitor_list(&thread->om_in_use_list, &thread->om_in_use_count, &free_head_p, &free_tail_p);
2832   Atomic::add(&counters->n_in_use, thread->om_in_use_count);
2833 
2834   if (free_head_p != NULL) {
2835     // Move the deflated ObjectMonitors back to the global free list.
2836     // No races on the working list so no need for load_acquire().
2837     guarantee(free_tail_p != NULL && deflated_count > 0, "invariant");
2838     assert(free_tail_p->_next_om == NULL, "must be NULL: _next_om="
2839            INTPTR_FORMAT, p2i(free_tail_p->_next_om));
2840     prepend_list_to_global_free_list(free_head_p, free_tail_p, deflated_count);
2841     Atomic::add(&counters->n_scavenged, deflated_count);
2842     Atomic::add(&counters->per_thread_scavenged, deflated_count);
2843   }
2844 
2845   timer.stop();
2846   // Safepoint logging cares about cumulative per_thread_times and
2847   // we'll capture most of the cost, but not the muxRelease() which
2848   // should be cheap.
2849   counters->per_thread_times += timer.seconds();
2850 
2851   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2852   LogStreamHandle(Info, monitorinflation) lsh_info;
2853   LogStream* ls = NULL;
2854   if (log_is_enabled(Debug, monitorinflation)) {
2855     ls = &lsh_debug;
2856   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2857     ls = &lsh_info;
2858   }
2859   if (ls != NULL) {
2860     ls->print_cr("jt=" INTPTR_FORMAT ": deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(thread), timer.seconds(), deflated_count);
2861   }
2862 }
2863 
2864 // Monitor cleanup on JavaThread::exit
2865 
2866 // Iterate through monitor cache and attempt to release thread's monitors
2867 // Gives up on a particular monitor if an exception occurs, but continues
2868 // the overall iteration, swallowing the exception.
2869 class ReleaseJavaMonitorsClosure: public MonitorClosure {
2870  private:
2871   TRAPS;
2872 
2873  public:
2874   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
2875   void do_monitor(ObjectMonitor* mid) {
2876     if (mid->owner() == THREAD) {
2877       (void)mid->complete_exit(CHECK);
2878     }
2879   }
2880 };
2881 
2882 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
2883 // ignored.  This is meant to be called during JNI thread detach which assumes
2884 // all remaining monitors are heavyweight.  All exceptions are swallowed.
2885 // Scanning the extant monitor list can be time consuming.
2886 // A simple optimization is to add a per-thread flag that indicates a thread
2887 // called jni_monitorenter() during its lifetime.
2888 //
2889 // Instead of No_Savepoint_Verifier it might be cheaper to
2890 // use an idiom of the form:
2891 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
2892 //   <code that must not run at safepoint>
2893 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
2894 // Since the tests are extremely cheap we could leave them enabled
2895 // for normal product builds.
2896 
2897 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
2898   assert(THREAD == JavaThread::current(), "must be current Java thread");
2899   NoSafepointVerifier nsv;
2900   ReleaseJavaMonitorsClosure rjmc(THREAD);
2901   ObjectSynchronizer::monitors_iterate(&rjmc);
2902   THREAD->clear_pending_exception();
2903 }
2904 
2905 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
2906   switch (cause) {
2907     case inflate_cause_vm_internal:    return "VM Internal";
2908     case inflate_cause_monitor_enter:  return "Monitor Enter";
2909     case inflate_cause_wait:           return "Monitor Wait";
2910     case inflate_cause_notify:         return "Monitor Notify";
2911     case inflate_cause_hash_code:      return "Monitor Hash Code";
2912     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
2913     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
2914     default:
2915       ShouldNotReachHere();
2916   }
2917   return "Unknown";
2918 }
2919 
2920 //------------------------------------------------------------------------------
2921 // Debugging code
2922 
2923 u_char* ObjectSynchronizer::get_gvars_addr() {
2924   return (u_char*)&GVars;
2925 }
2926 
2927 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() {
2928   return (u_char*)&GVars.hc_sequence;
2929 }
2930 
2931 size_t ObjectSynchronizer::get_gvars_size() {
2932   return sizeof(SharedGlobals);
2933 }
2934 
2935 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() {
2936   return (u_char*)&GVars.stw_random;
2937 }
2938 
2939 void ObjectSynchronizer::audit_and_print_stats(bool on_exit) {
2940   assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant");
2941 
2942   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2943   LogStreamHandle(Info, monitorinflation) lsh_info;
2944   LogStreamHandle(Trace, monitorinflation) lsh_trace;
2945   LogStream* ls = NULL;
2946   if (log_is_enabled(Trace, monitorinflation)) {
2947     ls = &lsh_trace;
2948   } else if (log_is_enabled(Debug, monitorinflation)) {
2949     ls = &lsh_debug;
2950   } else if (log_is_enabled(Info, monitorinflation)) {
2951     ls = &lsh_info;
2952   }
2953   assert(ls != NULL, "sanity check");
2954 
2955   // Log counts for the global and per-thread monitor lists:
2956   int chk_om_population = log_monitor_list_counts(ls);
2957   int error_cnt = 0;
2958 
2959   ls->print_cr("Checking global lists:");
2960 
2961   // Check LVars.population:
2962   if (Atomic::load(&LVars.population) == chk_om_population) {
2963     ls->print_cr("global_population=%d equals chk_om_population=%d",
2964                  Atomic::load(&LVars.population), chk_om_population);
2965   } else {
2966     // With lock free access to the monitor lists, it is possible for
2967     // log_monitor_list_counts() to return a value that doesn't match
2968     // LVars.population. So far a higher value has been seen in testing
2969     // so something is being double counted by log_monitor_list_counts().
2970     ls->print_cr("WARNING: global_population=%d is not equal to "
2971                  "chk_om_population=%d", Atomic::load(&LVars.population), chk_om_population);
2972   }
2973 
2974   // Check LVars.in_use_list and LVars.in_use_count:
2975   chk_global_in_use_list_and_count(ls, &error_cnt);
2976 
2977   // Check LVars.free_list and LVars.free_count:
2978   chk_global_free_list_and_count(ls, &error_cnt);
2979 
2980   if (HandshakeAfterDeflateIdleMonitors) {
2981     // Check LVars.wait_list and LVars.wait_count:
2982     chk_global_wait_list_and_count(ls, &error_cnt);
2983   }
2984 
2985   ls->print_cr("Checking per-thread lists:");
2986 
2987   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2988     // Check om_in_use_list and om_in_use_count:
2989     chk_per_thread_in_use_list_and_count(jt, ls, &error_cnt);
2990 
2991     // Check om_free_list and om_free_count:
2992     chk_per_thread_free_list_and_count(jt, ls, &error_cnt);
2993   }
2994 
2995   if (error_cnt == 0) {
2996     ls->print_cr("No errors found in monitor list checks.");
2997   } else {
2998     log_error(monitorinflation)("found monitor list errors: error_cnt=%d", error_cnt);
2999   }
3000 
3001   if ((on_exit && log_is_enabled(Info, monitorinflation)) ||
3002       (!on_exit && log_is_enabled(Trace, monitorinflation))) {
3003     // When exiting this log output is at the Info level. When called
3004     // at a safepoint, this log output is at the Trace level since
3005     // there can be a lot of it.
3006     log_in_use_monitor_details(ls);
3007   }
3008 
3009   ls->flush();
3010 
3011   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
3012 }
3013 
3014 // Check a free monitor entry; log any errors.
3015 void ObjectSynchronizer::chk_free_entry(JavaThread* jt, ObjectMonitor* n,
3016                                         outputStream * out, int *error_cnt_p) {
3017   stringStream ss;
3018   if (n->is_busy()) {
3019     if (jt != NULL) {
3020       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3021                     ": free per-thread monitor must not be busy: %s", p2i(jt),
3022                     p2i(n), n->is_busy_to_string(&ss));
3023     } else {
3024       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
3025                     "must not be busy: %s", p2i(n), n->is_busy_to_string(&ss));
3026     }
3027     *error_cnt_p = *error_cnt_p + 1;
3028   }
3029   if (n->header().value() != 0) {
3030     if (jt != NULL) {
3031       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3032                     ": free per-thread monitor must have NULL _header "
3033                     "field: _header=" INTPTR_FORMAT, p2i(jt), p2i(n),
3034                     n->header().value());
3035       *error_cnt_p = *error_cnt_p + 1;
3036     } else if (!AsyncDeflateIdleMonitors) {
3037       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
3038                     "must have NULL _header field: _header=" INTPTR_FORMAT,
3039                     p2i(n), n->header().value());
3040       *error_cnt_p = *error_cnt_p + 1;
3041     }
3042   }
3043   if (n->object() != NULL) {
3044     if (jt != NULL) {
3045       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3046                     ": free per-thread monitor must have NULL _object "
3047                     "field: _object=" INTPTR_FORMAT, p2i(jt), p2i(n),
3048                     p2i(n->object()));
3049     } else {
3050       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
3051                     "must have NULL _object field: _object=" INTPTR_FORMAT,
3052                     p2i(n), p2i(n->object()));
3053     }
3054     *error_cnt_p = *error_cnt_p + 1;
3055   }
3056 }
3057 
3058 // Lock the next ObjectMonitor for traversal. The current ObjectMonitor
3059 // is unlocked after the next ObjectMonitor is locked. *cur_p and *next_p
3060 // are updated to their next values in the list traversal. *cur_p is set
3061 // to NULL when the end of the list is reached.
3062 static void lock_next_for_traversal(ObjectMonitor** cur_p, ObjectMonitor** next_p) {
3063   ObjectMonitor* prev = *cur_p;      // Save current for unlocking.
3064   if (*next_p == NULL) {             // Reached the end of the list.
3065     om_unlock(prev);                 // Unlock previous.
3066     *cur_p = NULL;                   // Tell the caller we are done.
3067     return;
3068   }
3069   om_lock(*next_p);                  // Lock next.
3070   om_unlock(prev);                   // Unlock previous.
3071   *cur_p = *next_p;                  // Update current.
3072   *next_p = unmarked_next(*cur_p);   // Update next.
3073 }
3074 
3075 // Check the global free list and count; log the results of the checks.
3076 void ObjectSynchronizer::chk_global_free_list_and_count(outputStream * out,
3077                                                         int *error_cnt_p) {
3078   int chk_om_free_count = 0;
3079   ObjectMonitor* cur = NULL;
3080   ObjectMonitor* next = NULL;
3081   if ((cur = get_list_head_locked(&LVars.free_list)) != NULL) {
3082     next = unmarked_next(cur);
3083     // Marked the global free list head so process the list.
3084     while (true) {
3085       chk_free_entry(NULL /* jt */, cur, out, error_cnt_p);
3086       chk_om_free_count++;
3087 
3088       lock_next_for_traversal(&cur, &next);
3089       if (cur == NULL) {
3090         break;
3091       }
3092     }
3093   }
3094   if (Atomic::load(&LVars.free_count) == chk_om_free_count) {
3095     out->print_cr("global_free_count=%d equals chk_om_free_count=%d",
3096                   Atomic::load(&LVars.free_count), chk_om_free_count);
3097   } else {
3098     // With lock free access to LVars.free_list, it is possible for an
3099     // ObjectMonitor to be prepended to LVars.free_list after we started
3100     // calculating chk_om_free_count so LVars.free_count may not
3101     // match anymore.
3102     out->print_cr("WARNING: global_free_count=%d is not equal to "
3103                   "chk_om_free_count=%d", Atomic::load(&LVars.free_count), chk_om_free_count);
3104   }
3105 }
3106 
3107 // Check the global wait list and count; log the results of the checks.
3108 void ObjectSynchronizer::chk_global_wait_list_and_count(outputStream * out,
3109                                                         int *error_cnt_p) {
3110   int chk_om_wait_count = 0;
3111   ObjectMonitor* cur = NULL;
3112   ObjectMonitor* next = NULL;
3113   if ((cur = get_list_head_locked(&LVars.wait_list)) != NULL) {
3114     next = unmarked_next(cur);
3115     // Marked the global wait list head so process the list.
3116     while (true) {
3117       // Rules for LVars.wait_list are the same as of LVars.free_list:
3118       chk_free_entry(NULL /* jt */, cur, out, error_cnt_p);
3119       chk_om_wait_count++;
3120 
3121       lock_next_for_traversal(&cur, &next);
3122       if (cur == NULL) {
3123         break;
3124       }
3125     }
3126   }
3127   if (Atomic::load(&LVars.wait_count) == chk_om_wait_count) {
3128     out->print_cr("global_wait_count=%d equals chk_om_wait_count=%d",
3129                   Atomic::load(&LVars.wait_count), chk_om_wait_count);
3130   } else {
3131     out->print_cr("ERROR: global_wait_count=%d is not equal to "
3132                   "chk_om_wait_count=%d", Atomic::load(&LVars.wait_count), chk_om_wait_count);
3133     *error_cnt_p = *error_cnt_p + 1;
3134   }
3135 }
3136 
3137 // Check the global in-use list and count; log the results of the checks.
3138 void ObjectSynchronizer::chk_global_in_use_list_and_count(outputStream * out,
3139                                                           int *error_cnt_p) {
3140   int chk_om_in_use_count = 0;
3141   ObjectMonitor* cur = NULL;
3142   ObjectMonitor* next = NULL;
3143   if ((cur = get_list_head_locked(&LVars.in_use_list)) != NULL) {
3144     next = unmarked_next(cur);
3145     // Marked the global in-use list head so process the list.
3146     while (true) {
3147       chk_in_use_entry(NULL /* jt */, cur, out, error_cnt_p);
3148       chk_om_in_use_count++;
3149 
3150       lock_next_for_traversal(&cur, &next);
3151       if (cur == NULL) {
3152         break;
3153       }
3154     }
3155   }
3156   if (Atomic::load(&LVars.in_use_count) == chk_om_in_use_count) {
3157     out->print_cr("global_in_use_count=%d equals chk_om_in_use_count=%d",
3158                   Atomic::load(&LVars.in_use_count), chk_om_in_use_count);
3159   } else {
3160     // With lock free access to the monitor lists, it is possible for
3161     // an exiting JavaThread to put its in-use ObjectMonitors on the
3162     // global in-use list after chk_om_in_use_count is calculated above.
3163     out->print_cr("WARNING: global_in_use_count=%d is not equal to chk_om_in_use_count=%d",
3164                   Atomic::load(&LVars.in_use_count), chk_om_in_use_count);
3165   }
3166 }
3167 
3168 // Check an in-use monitor entry; log any errors.
3169 void ObjectSynchronizer::chk_in_use_entry(JavaThread* jt, ObjectMonitor* n,
3170                                           outputStream * out, int *error_cnt_p) {
3171   if (n->header().value() == 0) {
3172     if (jt != NULL) {
3173       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3174                     ": in-use per-thread monitor must have non-NULL _header "
3175                     "field.", p2i(jt), p2i(n));
3176     } else {
3177       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
3178                     "must have non-NULL _header field.", p2i(n));
3179     }
3180     *error_cnt_p = *error_cnt_p + 1;
3181   }
3182   if (n->object() == NULL) {
3183     if (jt != NULL) {
3184       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3185                     ": in-use per-thread monitor must have non-NULL _object "
3186                     "field.", p2i(jt), p2i(n));
3187     } else {
3188       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
3189                     "must have non-NULL _object field.", p2i(n));
3190     }
3191     *error_cnt_p = *error_cnt_p + 1;
3192   }
3193   const oop obj = (oop)n->object();
3194   const markWord mark = obj->mark();
3195   if (!mark.has_monitor()) {
3196     if (jt != NULL) {
3197       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3198                     ": in-use per-thread monitor's object does not think "
3199                     "it has a monitor: obj=" INTPTR_FORMAT ", mark="
3200                     INTPTR_FORMAT,  p2i(jt), p2i(n), p2i(obj), mark.value());
3201     } else {
3202       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
3203                     "monitor's object does not think it has a monitor: obj="
3204                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
3205                     p2i(obj), mark.value());
3206     }
3207     *error_cnt_p = *error_cnt_p + 1;
3208   }
3209   ObjectMonitor* const obj_mon = mark.monitor();
3210   if (n != obj_mon) {
3211     if (jt != NULL) {
3212       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3213                     ": in-use per-thread monitor's object does not refer "
3214                     "to the same monitor: obj=" INTPTR_FORMAT ", mark="
3215                     INTPTR_FORMAT ", obj_mon=" INTPTR_FORMAT, p2i(jt),
3216                     p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
3217     } else {
3218       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
3219                     "monitor's object does not refer to the same monitor: obj="
3220                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
3221                     INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
3222     }
3223     *error_cnt_p = *error_cnt_p + 1;
3224   }
3225 }
3226 
3227 // Check the thread's free list and count; log the results of the checks.
3228 void ObjectSynchronizer::chk_per_thread_free_list_and_count(JavaThread *jt,
3229                                                             outputStream * out,
3230                                                             int *error_cnt_p) {
3231   int chk_om_free_count = 0;
3232   ObjectMonitor* cur = NULL;
3233   ObjectMonitor* next = NULL;
3234   if ((cur = get_list_head_locked(&jt->om_free_list)) != NULL) {
3235     next = unmarked_next(cur);
3236     // Marked the per-thread free list head so process the list.
3237     while (true) {
3238       chk_free_entry(jt, cur, out, error_cnt_p);
3239       chk_om_free_count++;
3240 
3241       lock_next_for_traversal(&cur, &next);
3242       if (cur == NULL) {
3243         break;
3244       }
3245     }
3246   }
3247   if (jt->om_free_count == chk_om_free_count) {
3248     out->print_cr("jt=" INTPTR_FORMAT ": om_free_count=%d equals "
3249                   "chk_om_free_count=%d", p2i(jt), jt->om_free_count,
3250                   chk_om_free_count);
3251   } else {
3252     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_free_count=%d is not "
3253                   "equal to chk_om_free_count=%d", p2i(jt), jt->om_free_count,
3254                   chk_om_free_count);
3255     *error_cnt_p = *error_cnt_p + 1;
3256   }
3257 }
3258 
3259 // Check the thread's in-use list and count; log the results of the checks.
3260 void ObjectSynchronizer::chk_per_thread_in_use_list_and_count(JavaThread *jt,
3261                                                               outputStream * out,
3262                                                               int *error_cnt_p) {
3263   int chk_om_in_use_count = 0;
3264   ObjectMonitor* cur = NULL;
3265   ObjectMonitor* next = NULL;
3266   if ((cur = get_list_head_locked(&jt->om_in_use_list)) != NULL) {
3267     next = unmarked_next(cur);
3268     // Marked the per-thread in-use list head so process the list.
3269     while (true) {
3270       chk_in_use_entry(jt, cur, out, error_cnt_p);
3271       chk_om_in_use_count++;
3272 
3273       lock_next_for_traversal(&cur, &next);
3274       if (cur == NULL) {
3275         break;
3276       }
3277     }
3278   }
3279   if (jt->om_in_use_count == chk_om_in_use_count) {
3280     out->print_cr("jt=" INTPTR_FORMAT ": om_in_use_count=%d equals "
3281                   "chk_om_in_use_count=%d", p2i(jt),
3282                   jt->om_in_use_count, chk_om_in_use_count);
3283   } else {
3284     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_in_use_count=%d is not "
3285                   "equal to chk_om_in_use_count=%d", p2i(jt),
3286                   jt->om_in_use_count, chk_om_in_use_count);
3287     *error_cnt_p = *error_cnt_p + 1;
3288   }
3289 }
3290 
3291 // Log details about ObjectMonitors on the in-use lists. The 'BHL'
3292 // flags indicate why the entry is in-use, 'object' and 'object type'
3293 // indicate the associated object and its type.
3294 void ObjectSynchronizer::log_in_use_monitor_details(outputStream * out) {
3295   stringStream ss;
3296   if (Atomic::load(&LVars.in_use_count) > 0) {
3297     out->print_cr("In-use global monitor info:");
3298     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
3299     out->print_cr("%18s  %s  %7s  %18s  %18s",
3300                   "monitor", "BHL", "ref_cnt", "object", "object type");
3301     out->print_cr("==================  ===  =======  ==================  ==================");
3302     ObjectMonitor* cur = NULL;
3303     ObjectMonitor* next = NULL;
3304     if ((cur = get_list_head_locked(&LVars.in_use_list)) != NULL) {
3305       next = unmarked_next(cur);
3306       // Marked the global in-use list head so process the list.
3307       while (true) {
3308         const oop obj = (oop) cur->object();
3309         const markWord mark = cur->header();
3310         ResourceMark rm;
3311         out->print(INTPTR_FORMAT "  %d%d%d  %7d  " INTPTR_FORMAT "  %s",
3312                    p2i(cur), cur->is_busy() != 0, mark.hash() != 0,
3313                    cur->owner() != NULL, (int)cur->ref_count(), p2i(obj),
3314                    obj->klass()->external_name());
3315         if (cur->is_busy() != 0) {
3316           out->print(" (%s)", cur->is_busy_to_string(&ss));
3317           ss.reset();
3318         }
3319         out->cr();
3320 
3321         lock_next_for_traversal(&cur, &next);
3322         if (cur == NULL) {
3323           break;
3324         }
3325       }
3326     }
3327   }
3328 
3329   out->print_cr("In-use per-thread monitor info:");
3330   out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
3331   out->print_cr("%18s  %18s  %s  %7s  %18s  %18s",
3332                 "jt", "monitor", "BHL", "ref_cnt", "object", "object type");
3333   out->print_cr("==================  ==================  ===  =======  ==================  ==================");
3334   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
3335     ObjectMonitor* cur = NULL;
3336     ObjectMonitor* next = NULL;
3337     if ((cur = get_list_head_locked(&jt->om_in_use_list)) != NULL) {
3338       next = unmarked_next(cur);
3339       // Marked the global in-use list head so process the list.
3340       while (true) {
3341         const oop obj = (oop) cur->object();
3342         const markWord mark = cur->header();
3343         ResourceMark rm;
3344         out->print(INTPTR_FORMAT "  " INTPTR_FORMAT "  %d%d%d  %7d  "
3345                    INTPTR_FORMAT "  %s", p2i(jt), p2i(cur), cur->is_busy() != 0,
3346                    mark.hash() != 0, cur->owner() != NULL, (int)cur->ref_count(),
3347                    p2i(obj), obj->klass()->external_name());
3348         if (cur->is_busy() != 0) {
3349           out->print(" (%s)", cur->is_busy_to_string(&ss));
3350           ss.reset();
3351         }
3352         out->cr();
3353 
3354         lock_next_for_traversal(&cur, &next);
3355         if (cur == NULL) {
3356           break;
3357         }
3358       }
3359     }
3360   }
3361 
3362   out->flush();
3363 }
3364 
3365 // Log counts for the global and per-thread monitor lists and return
3366 // the population count.
3367 int ObjectSynchronizer::log_monitor_list_counts(outputStream * out) {
3368   int pop_count = 0;
3369   out->print_cr("%18s  %10s  %10s  %10s  %10s",
3370                 "Global Lists:", "InUse", "Free", "Wait", "Total");
3371   out->print_cr("==================  ==========  ==========  ==========  ==========");
3372   out->print_cr("%18s  %10d  %10d  %10d  %10d", "", Atomic::load(&LVars.in_use_count),
3373                 Atomic::load(&LVars.free_count), Atomic::load(&LVars.wait_count), Atomic::load(&LVars.population));
3374   pop_count += Atomic::load(&LVars.in_use_count) + Atomic::load(&LVars.free_count);
3375   if (HandshakeAfterDeflateIdleMonitors) {
3376     pop_count += Atomic::load(&LVars.wait_count);
3377   }
3378 
3379   out->print_cr("%18s  %10s  %10s  %10s",
3380                 "Per-Thread Lists:", "InUse", "Free", "Provision");
3381   out->print_cr("==================  ==========  ==========  ==========");
3382 
3383   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
3384     out->print_cr(INTPTR_FORMAT "  %10d  %10d  %10d", p2i(jt),
3385                   jt->om_in_use_count, jt->om_free_count, jt->om_free_provision);
3386     pop_count += jt->om_in_use_count + jt->om_free_count;
3387   }
3388   return pop_count;
3389 }
3390 
3391 #ifndef PRODUCT
3392 
3393 // Check if monitor belongs to the monitor cache
3394 // The list is grow-only so it's *relatively* safe to traverse
3395 // the list of extant blocks without taking a lock.
3396 
3397 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
3398   PaddedObjectMonitor* block = Atomic::load(&g_block_list);
3399   while (block != NULL) {
3400     assert(block->object() == CHAINMARKER, "must be a block header");
3401     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
3402       address mon = (address)monitor;
3403       address blk = (address)block;
3404       size_t diff = mon - blk;
3405       assert((diff % sizeof(PaddedObjectMonitor)) == 0, "must be aligned");
3406       return 1;
3407     }
3408     // unmarked_next() is not needed with g_block_list (no locking
3409     // used with with block linkage _next_om fields).
3410     block = (PaddedObjectMonitor*)Atomic::load(&block->_next_om);
3411   }
3412   return 0;
3413 }
3414 
3415 #endif