1 /*
   2  * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "logging/log.hpp"
  28 #include "logging/logStream.hpp"
  29 #include "jfr/jfrEvents.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/metaspaceShared.hpp"
  32 #include "memory/padded.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "memory/universe.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "runtime/atomic.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/handles.inline.hpp"
  40 #include "runtime/handshake.hpp"
  41 #include "runtime/interfaceSupport.inline.hpp"
  42 #include "runtime/mutexLocker.hpp"
  43 #include "runtime/objectMonitor.hpp"
  44 #include "runtime/objectMonitor.inline.hpp"
  45 #include "runtime/osThread.hpp"
  46 #include "runtime/safepointVerifiers.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "runtime/stubRoutines.hpp"
  49 #include "runtime/synchronizer.hpp"
  50 #include "runtime/thread.inline.hpp"
  51 #include "runtime/timer.hpp"
  52 #include "runtime/vframe.hpp"
  53 #include "runtime/vmThread.hpp"
  54 #include "utilities/align.hpp"
  55 #include "utilities/dtrace.hpp"
  56 #include "utilities/events.hpp"
  57 #include "utilities/preserveException.hpp"
  58 
  59 // The "core" versions of monitor enter and exit reside in this file.
  60 // The interpreter and compilers contain specialized transliterated
  61 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  62 // for instance.  If you make changes here, make sure to modify the
  63 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  64 //
  65 // -----------------------------------------------------------------------------
  66 
  67 #ifdef DTRACE_ENABLED
  68 
  69 // Only bother with this argument setup if dtrace is available
  70 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  71 
  72 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  73   char* bytes = NULL;                                                      \
  74   int len = 0;                                                             \
  75   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  76   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  77   if (klassname != NULL) {                                                 \
  78     bytes = (char*)klassname->bytes();                                     \
  79     len = klassname->utf8_length();                                        \
  80   }
  81 
  82 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  83   {                                                                        \
  84     if (DTraceMonitorProbes) {                                             \
  85       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  86       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  87                            (uintptr_t)(monitor), bytes, len, (millis));    \
  88     }                                                                      \
  89   }
  90 
  91 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
  92 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  93 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
  94 
  95 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  96   {                                                                        \
  97     if (DTraceMonitorProbes) {                                             \
  98       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  99       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
 100                                     (uintptr_t)(monitor), bytes, len);     \
 101     }                                                                      \
 102   }
 103 
 104 #else //  ndef DTRACE_ENABLED
 105 
 106 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 107 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 108 
 109 #endif // ndef DTRACE_ENABLED
 110 
 111 // This exists only as a workaround of dtrace bug 6254741
 112 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 113   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 114   return 0;
 115 }
 116 
 117 #define NINFLATIONLOCKS 256
 118 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 119 
 120 // global list of blocks of monitors
 121 PaddedObjectMonitor* volatile ObjectSynchronizer::g_block_list = NULL;
 122 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false;
 123 bool volatile ObjectSynchronizer::_is_special_deflation_requested = false;
 124 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0;
 125 
 126 // Global ObjectMonitor free list. Newly allocated and deflated
 127 // ObjectMonitors are prepended here.
 128 static ObjectMonitor* volatile g_free_list = NULL;
 129 // Global ObjectMonitor in-use list. When a JavaThread is exiting,
 130 // ObjectMonitors on its per-thread in-use list are prepended here.
 131 static ObjectMonitor* volatile g_om_in_use_list = NULL;
 132 // Global ObjectMonitor wait list. If HandshakeAfterDeflateIdleMonitors
 133 // is true, deflated ObjectMonitors wait on this list until after a
 134 // handshake or a safepoint for platforms that don't support handshakes.
 135 // After the handshake or safepoint, the deflated ObjectMonitors are
 136 // prepended to g_free_list.
 137 static ObjectMonitor* volatile g_wait_list = NULL;
 138 
 139 static volatile int g_om_free_count = 0;    // # on g_free_list
 140 static volatile int g_om_in_use_count = 0;  // # on g_om_in_use_list
 141 static volatile int g_om_population = 0;    // # Extant -- in circulation
 142 static volatile int g_om_wait_count = 0;    // # on g_wait_list
 143 
 144 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 145 
 146 
 147 // =====================> List Management functions
 148 
 149 // Return true if the ObjectMonitor's next field is marked.
 150 // Otherwise returns false.
 151 static bool is_next_marked(ObjectMonitor* om) {
 152   // Use load_acquire() since _next_om fields are updated with a
 153   // release_store().
 154   return ((intptr_t)Atomic::load_acquire(&om->_next_om) & 0x1) != 0;
 155 }
 156 
 157 // Mark an ObjectMonitor* and return it. Note: the om parameter
 158 // may or may not have been marked originally.
 159 static ObjectMonitor* mark_om_ptr(ObjectMonitor* om) {
 160   return (ObjectMonitor*)((intptr_t)om | 0x1);
 161 }
 162 
 163 // Mark the next field in an ObjectMonitor. If marking was successful,
 164 // then the unmarked next field is returned via parameter and true is
 165 // returned. Otherwise false is returned.
 166 static bool mark_next(ObjectMonitor* om, ObjectMonitor** next_p) {
 167   // Get current next field without any marking value.
 168   ObjectMonitor* next = (ObjectMonitor*)((intptr_t)om->_next_om & ~0x1);
 169   if (Atomic::cmpxchg(&om->_next_om, next, mark_om_ptr(next)) != next) {
 170     return false;  // Could not mark the next field or it was already marked.
 171   }
 172   *next_p = next;
 173   return true;
 174 }
 175 
 176 // Loop until we mark the next field in an ObjectMonitor. The unmarked
 177 // next field is returned.
 178 static ObjectMonitor* mark_next_loop(ObjectMonitor* om) {
 179   ObjectMonitor* next;
 180   while (true) {
 181     if (mark_next(om, &next)) {
 182       // Marked om's next field so return the unmarked value.
 183       return next;
 184     }
 185   }
 186 }
 187 
 188 // Set the next field in an ObjectMonitor to the specified value.
 189 // The caller of set_next() must be the same thread that marked the
 190 // ObjectMonitor.
 191 static void set_next(ObjectMonitor* om, ObjectMonitor* value) {
 192   Atomic::release_store(&om->_next_om, value);
 193 }
 194 
 195 // Mark the next field in the list head ObjectMonitor. If marking was
 196 // successful, then the mid and the unmarked next field are returned
 197 // via parameter and true is returned. Otherwise false is returned.
 198 static bool mark_list_head(ObjectMonitor* volatile * list_p,
 199                            ObjectMonitor** mid_p, ObjectMonitor** next_p) {
 200   while (true) {
 201     ObjectMonitor* mid = *list_p;
 202     if (mid == NULL) {
 203       return false;  // The list is empty so nothing to mark.
 204     }
 205     if (mark_next(mid, next_p)) {
 206       if (*list_p != mid) {
 207         // The list head changed so we have to retry.
 208         set_next(mid, *next_p);  // unmark mid
 209         continue;
 210       }
 211       // We marked next field to guard against races.
 212       *mid_p = mid;
 213       return true;
 214     }
 215   }
 216 }
 217 
 218 // Return the unmarked next field in an ObjectMonitor. Note: the next
 219 // field may or may not have been marked originally.
 220 static ObjectMonitor* unmarked_next(ObjectMonitor* om) {
 221   // Use load_acquire() since _next_om fields are updated with a
 222   // release_store().
 223   return (ObjectMonitor*)((intptr_t)Atomic::load_acquire(&om->_next_om) & ~0x1);
 224 }
 225 
 226 // Mark the next ObjectMonitor for traversal. The current ObjectMonitor
 227 // is unmarked after the next ObjectMonitor is marked. *cur_p and *next_p
 228 // are updated to their next values in the list traversal. *cur_p is set
 229 // to NULL when the end of the list is reached.
 230 static void mark_next_for_traversal(ObjectMonitor** cur_p, ObjectMonitor** next_p) {
 231   ObjectMonitor* prev = *cur_p;      // Save current for unmarking.
 232   if (*next_p == NULL) {             // Reached the end of the list.
 233     set_next(prev, NULL);            // Unmark previous.
 234     *cur_p = NULL;                   // Tell the caller we are done.
 235     return;
 236   }
 237   (void)mark_next_loop(*next_p);     // Mark next.
 238   set_next(prev, *next_p);           // Unmark previous.
 239   *cur_p = *next_p;                  // Update current.
 240   *next_p = unmarked_next(*cur_p);   // Update next.
 241 }
 242 
 243 // Prepend a list of ObjectMonitors to the specified *list_p. 'tail' is
 244 // the last ObjectMonitor in the list and there are 'count' on the list.
 245 // Also updates the specified *count_p.
 246 static void prepend_list_to_common(ObjectMonitor* list, ObjectMonitor* tail,
 247                                    int count, ObjectMonitor* volatile* list_p,
 248                                    volatile int* count_p) {
 249   while (true) {
 250     ObjectMonitor* cur = *list_p;
 251     // Prepend list to *list_p.
 252     ObjectMonitor* next = NULL;
 253     if (!mark_next(tail, &next)) {
 254       continue;  // failed to mark next field so try it all again
 255     }
 256     set_next(tail, cur);  // tail now points to cur (and unmarks tail)
 257     if (cur == NULL) {
 258       // No potential race with takers or other prependers since
 259       // *list_p is empty.
 260       if (Atomic::cmpxchg(list_p, cur, list) == cur) {
 261         // Successfully switched *list_p to the list value.
 262         Atomic::add(count_p, count);
 263         break;
 264       }
 265       // Implied else: try it all again
 266     } else {
 267       // Try to mark next field to guard against races:
 268       if (!mark_next(cur, &next)) {
 269         continue;  // failed to mark next field so try it all again
 270       }
 271       // We marked the next field so try to switch *list_p to the list value.
 272       if (Atomic::cmpxchg(list_p, cur, list) != cur) {
 273         // The list head has changed so unmark the next field and try again:
 274         set_next(cur, next);
 275         continue;
 276       }
 277       Atomic::add(count_p, count);
 278       set_next(cur, next);  // unmark next field
 279       break;
 280     }
 281   }
 282 }
 283 
 284 // Prepend a newly allocated block of ObjectMonitors to g_block_list and
 285 // g_free_list. Also updates g_om_population and g_om_free_count.
 286 void ObjectSynchronizer::prepend_block_to_lists(PaddedObjectMonitor* new_blk) {
 287   // First we handle g_block_list:
 288   while (true) {
 289     PaddedObjectMonitor* cur = g_block_list;
 290     // Prepend new_blk to g_block_list. The first ObjectMonitor in
 291     // a block is reserved for use as linkage to the next block.
 292     new_blk[0]._next_om = cur;
 293     if (Atomic::cmpxchg(&g_block_list, cur, new_blk) == cur) {
 294       // Successfully switched g_block_list to the new_blk value.
 295       Atomic::add(&g_om_population, _BLOCKSIZE - 1);
 296       break;
 297     }
 298     // Implied else: try it all again
 299   }
 300 
 301   // Second we handle g_free_list:
 302   prepend_list_to_common(new_blk + 1, &new_blk[_BLOCKSIZE - 1], _BLOCKSIZE - 1,
 303                          &g_free_list, &g_om_free_count);
 304 }
 305 
 306 // Prepend a list of ObjectMonitors to g_free_list. 'tail' is the last
 307 // ObjectMonitor in the list and there are 'count' on the list. Also
 308 // updates g_om_free_count.
 309 static void prepend_list_to_g_free_list(ObjectMonitor* list,
 310                                         ObjectMonitor* tail, int count) {
 311   prepend_list_to_common(list, tail, count, &g_free_list, &g_om_free_count);
 312 }
 313 
 314 // Prepend a list of ObjectMonitors to g_wait_list. 'tail' is the last
 315 // ObjectMonitor in the list and there are 'count' on the list. Also
 316 // updates g_om_wait_count.
 317 static void prepend_list_to_g_wait_list(ObjectMonitor* list,
 318                                         ObjectMonitor* tail, int count) {
 319   assert(HandshakeAfterDeflateIdleMonitors, "sanity check");
 320   prepend_list_to_common(list, tail, count, &g_wait_list, &g_om_wait_count);
 321 }
 322 
 323 // Prepend a list of ObjectMonitors to g_om_in_use_list. 'tail' is the last
 324 // ObjectMonitor in the list and there are 'count' on the list. Also
 325 // updates g_om_in_use_list.
 326 static void prepend_list_to_g_om_in_use_list(ObjectMonitor* list,
 327                                              ObjectMonitor* tail, int count) {
 328   prepend_list_to_common(list, tail, count, &g_om_in_use_list, &g_om_in_use_count);
 329 }
 330 
 331 // Prepend an ObjectMonitor to the specified list. Also updates
 332 // the specified counter.
 333 static void prepend_to_common(ObjectMonitor* m, ObjectMonitor* volatile * list_p,
 334                               int volatile * count_p) {
 335   while (true) {
 336     (void)mark_next_loop(m);  // mark m so we can safely update its next field
 337     ObjectMonitor* cur = NULL;
 338     ObjectMonitor* next = NULL;
 339     // Mark the list head to guard against A-B-A race:
 340     if (mark_list_head(list_p, &cur, &next)) {
 341       // List head is now marked so we can safely switch it.
 342       set_next(m, cur);  // m now points to cur (and unmarks m)
 343       *list_p = m;  // Switch list head to unmarked m.
 344       // mark_list_head() used cmpxchg() above, switching list head can be lazier:
 345       OrderAccess::storestore();
 346       set_next(cur, next);  // Unmark the previous list head.
 347       break;
 348     }
 349     // The list is empty so try to set the list head.
 350     assert(cur == NULL, "cur must be NULL: cur=" INTPTR_FORMAT, p2i(cur));
 351     set_next(m, cur);  // m now points to NULL (and unmarks m)
 352     if (Atomic::cmpxchg(list_p, cur, m) == cur) {
 353       // List head is now unmarked m.
 354       break;
 355     }
 356     // Implied else: try it all again
 357   }
 358   Atomic::inc(count_p);
 359 }
 360 
 361 // Prepend an ObjectMonitor to a per-thread om_free_list.
 362 // Also updates the per-thread om_free_count.
 363 static void prepend_to_om_free_list(Thread* self, ObjectMonitor* m) {
 364   prepend_to_common(m, &self->om_free_list, &self->om_free_count);
 365 }
 366 
 367 // Prepend an ObjectMonitor to a per-thread om_in_use_list.
 368 // Also updates the per-thread om_in_use_count.
 369 static void prepend_to_om_in_use_list(Thread* self, ObjectMonitor* m) {
 370   prepend_to_common(m, &self->om_in_use_list, &self->om_in_use_count);
 371 }
 372 
 373 // Take an ObjectMonitor from the start of the specified list. Also
 374 // decrements the specified counter. Returns NULL if none are available.
 375 static ObjectMonitor* take_from_start_of_common(ObjectMonitor* volatile * list_p,
 376                                                 int volatile * count_p) {
 377   ObjectMonitor* next = NULL;
 378   ObjectMonitor* take = NULL;
 379   // Mark the list head to guard against A-B-A race:
 380   if (!mark_list_head(list_p, &take, &next)) {
 381     return NULL;  // None are available.
 382   }
 383   // Switch marked list head to next (which unmarks the list head, but
 384   // leaves take marked):
 385   *list_p = next;
 386   Atomic::dec(count_p);
 387   // mark_list_head() used cmpxchg() above, switching list head can be lazier:
 388   OrderAccess::storestore();
 389   // Unmark take, but leave the next value for any lagging list
 390   // walkers. It will get cleaned up when take is prepended to
 391   // the in-use list:
 392   set_next(take, next);
 393   return take;
 394 }
 395 
 396 // Take an ObjectMonitor from the start of the global free-list. Also
 397 // updates g_om_free_count. Returns NULL if none are available.
 398 static ObjectMonitor* take_from_start_of_g_free_list() {
 399   return take_from_start_of_common(&g_free_list, &g_om_free_count);
 400 }
 401 
 402 // Take an ObjectMonitor from the start of a per-thread free-list.
 403 // Also updates om_free_count. Returns NULL if none are available.
 404 static ObjectMonitor* take_from_start_of_om_free_list(Thread* self) {
 405   return take_from_start_of_common(&self->om_free_list, &self->om_free_count);
 406 }
 407 
 408 
 409 // =====================> Quick functions
 410 
 411 // The quick_* forms are special fast-path variants used to improve
 412 // performance.  In the simplest case, a "quick_*" implementation could
 413 // simply return false, in which case the caller will perform the necessary
 414 // state transitions and call the slow-path form.
 415 // The fast-path is designed to handle frequently arising cases in an efficient
 416 // manner and is just a degenerate "optimistic" variant of the slow-path.
 417 // returns true  -- to indicate the call was satisfied.
 418 // returns false -- to indicate the call needs the services of the slow-path.
 419 // A no-loitering ordinance is in effect for code in the quick_* family
 420 // operators: safepoints or indefinite blocking (blocking that might span a
 421 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 422 // entry.
 423 //
 424 // Consider: An interesting optimization is to have the JIT recognize the
 425 // following common idiom:
 426 //   synchronized (someobj) { .... ; notify(); }
 427 // That is, we find a notify() or notifyAll() call that immediately precedes
 428 // the monitorexit operation.  In that case the JIT could fuse the operations
 429 // into a single notifyAndExit() runtime primitive.
 430 
 431 bool ObjectSynchronizer::quick_notify(oopDesc* obj, Thread* self, bool all) {
 432   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 433   assert(self->is_Java_thread(), "invariant");
 434   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 435   NoSafepointVerifier nsv;
 436   if (obj == NULL) return false;  // slow-path for invalid obj
 437   const markWord mark = obj->mark();
 438 
 439   if (mark.has_locker() && self->is_lock_owned((address)mark.locker())) {
 440     // Degenerate notify
 441     // stack-locked by caller so by definition the implied waitset is empty.
 442     return true;
 443   }
 444 
 445   if (mark.has_monitor()) {
 446     ObjectMonitor* const mon = mark.monitor();
 447     assert(mon->object() == obj, "invariant");
 448     if (mon->owner() != self) return false;  // slow-path for IMS exception
 449 
 450     if (mon->first_waiter() != NULL) {
 451       // We have one or more waiters. Since this is an inflated monitor
 452       // that we own, we can transfer one or more threads from the waitset
 453       // to the entrylist here and now, avoiding the slow-path.
 454       if (all) {
 455         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, self);
 456       } else {
 457         DTRACE_MONITOR_PROBE(notify, mon, obj, self);
 458       }
 459       int free_count = 0;
 460       do {
 461         mon->INotify(self);
 462         ++free_count;
 463       } while (mon->first_waiter() != NULL && all);
 464       OM_PERFDATA_OP(Notifications, inc(free_count));
 465     }
 466     return true;
 467   }
 468 
 469   // biased locking and any other IMS exception states take the slow-path
 470   return false;
 471 }
 472 
 473 
 474 // The LockNode emitted directly at the synchronization site would have
 475 // been too big if it were to have included support for the cases of inflated
 476 // recursive enter and exit, so they go here instead.
 477 // Note that we can't safely call AsyncPrintJavaStack() from within
 478 // quick_enter() as our thread state remains _in_Java.
 479 
 480 bool ObjectSynchronizer::quick_enter(oop obj, Thread* self,
 481                                      BasicLock * lock) {
 482   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 483   assert(self->is_Java_thread(), "invariant");
 484   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 485   NoSafepointVerifier nsv;
 486   if (obj == NULL) return false;       // Need to throw NPE
 487 
 488   while (true) {
 489     const markWord mark = obj->mark();
 490 
 491     if (mark.has_monitor()) {
 492       ObjectMonitorHandle omh;
 493       if (!omh.save_om_ptr(obj, mark)) {
 494         // Lost a race with async deflation so try again.
 495         assert(AsyncDeflateIdleMonitors, "sanity check");
 496         continue;
 497       }
 498       ObjectMonitor* const m = omh.om_ptr();
 499       assert(m->object() == obj, "invariant");
 500       Thread* const owner = (Thread *) m->_owner;
 501 
 502       // Lock contention and Transactional Lock Elision (TLE) diagnostics
 503       // and observability
 504       // Case: light contention possibly amenable to TLE
 505       // Case: TLE inimical operations such as nested/recursive synchronization
 506 
 507       if (owner == self) {
 508         m->_recursions++;
 509         return true;
 510       }
 511 
 512       // This Java Monitor is inflated so obj's header will never be
 513       // displaced to this thread's BasicLock. Make the displaced header
 514       // non-NULL so this BasicLock is not seen as recursive nor as
 515       // being locked. We do this unconditionally so that this thread's
 516       // BasicLock cannot be mis-interpreted by any stack walkers. For
 517       // performance reasons, stack walkers generally first check for
 518       // Biased Locking in the object's header, the second check is for
 519       // stack-locking in the object's header, the third check is for
 520       // recursive stack-locking in the displaced header in the BasicLock,
 521       // and last are the inflated Java Monitor (ObjectMonitor) checks.
 522       lock->set_displaced_header(markWord::unused_mark());
 523 
 524       if (owner == NULL && m->try_set_owner_from(self, NULL) == NULL) {
 525         assert(m->_recursions == 0, "invariant");
 526         return true;
 527       }
 528 
 529       if (AsyncDeflateIdleMonitors &&
 530           m->try_set_owner_from(self, DEFLATER_MARKER) == DEFLATER_MARKER) {
 531         // The deflation protocol finished the first part (setting owner),
 532         // but it failed the second part (making ref_count negative) and
 533         // bailed. Or the ObjectMonitor was async deflated and reused.
 534         // Acquired the monitor.
 535         assert(m->_recursions == 0, "invariant");
 536         return true;
 537       }
 538     }
 539     break;
 540   }
 541 
 542   // Note that we could inflate in quick_enter.
 543   // This is likely a useful optimization
 544   // Critically, in quick_enter() we must not:
 545   // -- perform bias revocation, or
 546   // -- block indefinitely, or
 547   // -- reach a safepoint
 548 
 549   return false;        // revert to slow-path
 550 }
 551 
 552 // -----------------------------------------------------------------------------
 553 // Monitor Enter/Exit
 554 // The interpreter and compiler assembly code tries to lock using the fast path
 555 // of this algorithm. Make sure to update that code if the following function is
 556 // changed. The implementation is extremely sensitive to race condition. Be careful.
 557 
 558 void ObjectSynchronizer::enter(Handle obj, BasicLock* lock, TRAPS) {
 559   if (UseBiasedLocking) {
 560     if (!SafepointSynchronize::is_at_safepoint()) {
 561       BiasedLocking::revoke(obj, THREAD);
 562     } else {
 563       BiasedLocking::revoke_at_safepoint(obj);
 564     }
 565   }
 566 
 567   markWord mark = obj->mark();
 568   assert(!mark.has_bias_pattern(), "should not see bias pattern here");
 569 
 570   if (mark.is_neutral()) {
 571     // Anticipate successful CAS -- the ST of the displaced mark must
 572     // be visible <= the ST performed by the CAS.
 573     lock->set_displaced_header(mark);
 574     if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) {
 575       return;
 576     }
 577     // Fall through to inflate() ...
 578   } else if (mark.has_locker() &&
 579              THREAD->is_lock_owned((address)mark.locker())) {
 580     assert(lock != mark.locker(), "must not re-lock the same lock");
 581     assert(lock != (BasicLock*)obj->mark().value(), "don't relock with same BasicLock");
 582     lock->set_displaced_header(markWord::from_pointer(NULL));
 583     return;
 584   }
 585 
 586   // The object header will never be displaced to this lock,
 587   // so it does not matter what the value is, except that it
 588   // must be non-zero to avoid looking like a re-entrant lock,
 589   // and must not look locked either.
 590   lock->set_displaced_header(markWord::unused_mark());
 591   ObjectMonitorHandle omh;
 592   inflate(&omh, THREAD, obj(), inflate_cause_monitor_enter);
 593   omh.om_ptr()->enter(THREAD);
 594 }
 595 
 596 void ObjectSynchronizer::exit(oop object, BasicLock* lock, TRAPS) {
 597   markWord mark = object->mark();
 598   // We cannot check for Biased Locking if we are racing an inflation.
 599   assert(mark == markWord::INFLATING() ||
 600          !mark.has_bias_pattern(), "should not see bias pattern here");
 601 
 602   markWord dhw = lock->displaced_header();
 603   if (dhw.value() == 0) {
 604     // If the displaced header is NULL, then this exit matches up with
 605     // a recursive enter. No real work to do here except for diagnostics.
 606 #ifndef PRODUCT
 607     if (mark != markWord::INFLATING()) {
 608       // Only do diagnostics if we are not racing an inflation. Simply
 609       // exiting a recursive enter of a Java Monitor that is being
 610       // inflated is safe; see the has_monitor() comment below.
 611       assert(!mark.is_neutral(), "invariant");
 612       assert(!mark.has_locker() ||
 613              THREAD->is_lock_owned((address)mark.locker()), "invariant");
 614       if (mark.has_monitor()) {
 615         // The BasicLock's displaced_header is marked as a recursive
 616         // enter and we have an inflated Java Monitor (ObjectMonitor).
 617         // This is a special case where the Java Monitor was inflated
 618         // after this thread entered the stack-lock recursively. When a
 619         // Java Monitor is inflated, we cannot safely walk the Java
 620         // Monitor owner's stack and update the BasicLocks because a
 621         // Java Monitor can be asynchronously inflated by a thread that
 622         // does not own the Java Monitor.
 623         ObjectMonitor* m = mark.monitor();
 624         assert(((oop)(m->object()))->mark() == mark, "invariant");
 625         assert(m->is_entered(THREAD), "invariant");
 626       }
 627     }
 628 #endif
 629     return;
 630   }
 631 
 632   if (mark == markWord::from_pointer(lock)) {
 633     // If the object is stack-locked by the current thread, try to
 634     // swing the displaced header from the BasicLock back to the mark.
 635     assert(dhw.is_neutral(), "invariant");
 636     if (object->cas_set_mark(dhw, mark) == mark) {
 637       return;
 638     }
 639   }
 640 
 641   // We have to take the slow-path of possible inflation and then exit.
 642   ObjectMonitorHandle omh;
 643   inflate(&omh, THREAD, object, inflate_cause_vm_internal);
 644   omh.om_ptr()->exit(true, THREAD);
 645 }
 646 
 647 // -----------------------------------------------------------------------------
 648 // Class Loader  support to workaround deadlocks on the class loader lock objects
 649 // Also used by GC
 650 // complete_exit()/reenter() are used to wait on a nested lock
 651 // i.e. to give up an outer lock completely and then re-enter
 652 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 653 //  1) complete_exit lock1 - saving recursion count
 654 //  2) wait on lock2
 655 //  3) when notified on lock2, unlock lock2
 656 //  4) reenter lock1 with original recursion count
 657 //  5) lock lock2
 658 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 659 intx ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 660   if (UseBiasedLocking) {
 661     BiasedLocking::revoke(obj, THREAD);
 662     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 663   }
 664 
 665   ObjectMonitorHandle omh;
 666   inflate(&omh, THREAD, obj(), inflate_cause_vm_internal);
 667   intptr_t ret_code = omh.om_ptr()->complete_exit(THREAD);
 668   return ret_code;
 669 }
 670 
 671 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 672 void ObjectSynchronizer::reenter(Handle obj, intx recursions, TRAPS) {
 673   if (UseBiasedLocking) {
 674     BiasedLocking::revoke(obj, THREAD);
 675     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 676   }
 677 
 678   ObjectMonitorHandle omh;
 679   inflate(&omh, THREAD, obj(), inflate_cause_vm_internal);
 680   omh.om_ptr()->reenter(recursions, THREAD);
 681 }
 682 // -----------------------------------------------------------------------------
 683 // JNI locks on java objects
 684 // NOTE: must use heavy weight monitor to handle jni monitor enter
 685 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) {
 686   // the current locking is from JNI instead of Java code
 687   if (UseBiasedLocking) {
 688     BiasedLocking::revoke(obj, THREAD);
 689     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 690   }
 691   THREAD->set_current_pending_monitor_is_from_java(false);
 692   ObjectMonitorHandle omh;
 693   inflate(&omh, THREAD, obj(), inflate_cause_jni_enter);
 694   omh.om_ptr()->enter(THREAD);
 695   THREAD->set_current_pending_monitor_is_from_java(true);
 696 }
 697 
 698 // NOTE: must use heavy weight monitor to handle jni monitor exit
 699 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 700   if (UseBiasedLocking) {
 701     Handle h_obj(THREAD, obj);
 702     BiasedLocking::revoke(h_obj, THREAD);
 703     obj = h_obj();
 704   }
 705   assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 706 
 707   ObjectMonitorHandle omh;
 708   inflate(&omh, THREAD, obj, inflate_cause_jni_exit);
 709   ObjectMonitor* monitor = omh.om_ptr();
 710   // If this thread has locked the object, exit the monitor. We
 711   // intentionally do not use CHECK here because we must exit the
 712   // monitor even if an exception is pending.
 713   if (monitor->check_owner(THREAD)) {
 714     monitor->exit(true, THREAD);
 715   }
 716 }
 717 
 718 // -----------------------------------------------------------------------------
 719 // Internal VM locks on java objects
 720 // standard constructor, allows locking failures
 721 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool do_lock) {
 722   _dolock = do_lock;
 723   _thread = thread;
 724   _thread->check_for_valid_safepoint_state();
 725   _obj = obj;
 726 
 727   if (_dolock) {
 728     ObjectSynchronizer::enter(_obj, &_lock, _thread);
 729   }
 730 }
 731 
 732 ObjectLocker::~ObjectLocker() {
 733   if (_dolock) {
 734     ObjectSynchronizer::exit(_obj(), &_lock, _thread);
 735   }
 736 }
 737 
 738 
 739 // -----------------------------------------------------------------------------
 740 //  Wait/Notify/NotifyAll
 741 // NOTE: must use heavy weight monitor to handle wait()
 742 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 743   if (UseBiasedLocking) {
 744     BiasedLocking::revoke(obj, THREAD);
 745     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 746   }
 747   if (millis < 0) {
 748     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 749   }
 750   ObjectMonitorHandle omh;
 751   inflate(&omh, THREAD, obj(), inflate_cause_wait);
 752   ObjectMonitor* monitor = omh.om_ptr();
 753 
 754   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 755   monitor->wait(millis, true, THREAD);
 756 
 757   // This dummy call is in place to get around dtrace bug 6254741.  Once
 758   // that's fixed we can uncomment the following line, remove the call
 759   // and change this function back into a "void" func.
 760   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 761   int ret_code = dtrace_waited_probe(monitor, obj, THREAD);
 762   return ret_code;
 763 }
 764 
 765 void ObjectSynchronizer::wait_uninterruptibly(Handle obj, jlong millis, TRAPS) {
 766   if (UseBiasedLocking) {
 767     BiasedLocking::revoke(obj, THREAD);
 768     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 769   }
 770   if (millis < 0) {
 771     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 772   }
 773   ObjectMonitorHandle omh;
 774   inflate(&omh, THREAD, obj(), inflate_cause_wait);
 775   omh.om_ptr()->wait(millis, false, THREAD);
 776 }
 777 
 778 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 779   if (UseBiasedLocking) {
 780     BiasedLocking::revoke(obj, THREAD);
 781     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 782   }
 783 
 784   markWord mark = obj->mark();
 785   if (mark.has_locker() && THREAD->is_lock_owned((address)mark.locker())) {
 786     return;
 787   }
 788   ObjectMonitorHandle omh;
 789   inflate(&omh, THREAD, obj(), inflate_cause_notify);
 790   omh.om_ptr()->notify(THREAD);
 791 }
 792 
 793 // NOTE: see comment of notify()
 794 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 795   if (UseBiasedLocking) {
 796     BiasedLocking::revoke(obj, THREAD);
 797     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 798   }
 799 
 800   markWord mark = obj->mark();
 801   if (mark.has_locker() && THREAD->is_lock_owned((address)mark.locker())) {
 802     return;
 803   }
 804   ObjectMonitorHandle omh;
 805   inflate(&omh, THREAD, obj(), inflate_cause_notify);
 806   omh.om_ptr()->notifyAll(THREAD);
 807 }
 808 
 809 // -----------------------------------------------------------------------------
 810 // Hash Code handling
 811 //
 812 // Performance concern:
 813 // OrderAccess::storestore() calls release() which at one time stored 0
 814 // into the global volatile OrderAccess::dummy variable. This store was
 815 // unnecessary for correctness. Many threads storing into a common location
 816 // causes considerable cache migration or "sloshing" on large SMP systems.
 817 // As such, I avoided using OrderAccess::storestore(). In some cases
 818 // OrderAccess::fence() -- which incurs local latency on the executing
 819 // processor -- is a better choice as it scales on SMP systems.
 820 //
 821 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 822 // a discussion of coherency costs. Note that all our current reference
 823 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 824 // x64, and SPARC.
 825 //
 826 // As a general policy we use "volatile" to control compiler-based reordering
 827 // and explicit fences (barriers) to control for architectural reordering
 828 // performed by the CPU(s) or platform.
 829 
 830 struct SharedGlobals {
 831   char         _pad_prefix[OM_CACHE_LINE_SIZE];
 832   // These are highly shared mostly-read variables.
 833   // To avoid false-sharing they need to be the sole occupants of a cache line.
 834   volatile int stw_random;
 835   volatile int stw_cycle;
 836   DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int) * 2);
 837   // Hot RW variable -- Sequester to avoid false-sharing
 838   volatile int hc_sequence;
 839   DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 840 };
 841 
 842 static SharedGlobals GVars;
 843 static int _forceMonitorScavenge = 0; // Scavenge required and pending
 844 
 845 static markWord read_stable_mark(oop obj) {
 846   markWord mark = obj->mark();
 847   if (!mark.is_being_inflated()) {
 848     return mark;       // normal fast-path return
 849   }
 850 
 851   int its = 0;
 852   for (;;) {
 853     markWord mark = obj->mark();
 854     if (!mark.is_being_inflated()) {
 855       return mark;    // normal fast-path return
 856     }
 857 
 858     // The object is being inflated by some other thread.
 859     // The caller of read_stable_mark() must wait for inflation to complete.
 860     // Avoid live-lock
 861     // TODO: consider calling SafepointSynchronize::do_call_back() while
 862     // spinning to see if there's a safepoint pending.  If so, immediately
 863     // yielding or blocking would be appropriate.  Avoid spinning while
 864     // there is a safepoint pending.
 865     // TODO: add inflation contention performance counters.
 866     // TODO: restrict the aggregate number of spinners.
 867 
 868     ++its;
 869     if (its > 10000 || !os::is_MP()) {
 870       if (its & 1) {
 871         os::naked_yield();
 872       } else {
 873         // Note that the following code attenuates the livelock problem but is not
 874         // a complete remedy.  A more complete solution would require that the inflating
 875         // thread hold the associated inflation lock.  The following code simply restricts
 876         // the number of spinners to at most one.  We'll have N-2 threads blocked
 877         // on the inflationlock, 1 thread holding the inflation lock and using
 878         // a yield/park strategy, and 1 thread in the midst of inflation.
 879         // A more refined approach would be to change the encoding of INFLATING
 880         // to allow encapsulation of a native thread pointer.  Threads waiting for
 881         // inflation to complete would use CAS to push themselves onto a singly linked
 882         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 883         // and calling park().  When inflation was complete the thread that accomplished inflation
 884         // would detach the list and set the markword to inflated with a single CAS and
 885         // then for each thread on the list, set the flag and unpark() the thread.
 886         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 887         // wakes at most one thread whereas we need to wake the entire list.
 888         int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
 889         int YieldThenBlock = 0;
 890         assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
 891         assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant");
 892         Thread::muxAcquire(gInflationLocks + ix, "gInflationLock");
 893         while (obj->mark() == markWord::INFLATING()) {
 894           // Beware: NakedYield() is advisory and has almost no effect on some platforms
 895           // so we periodically call self->_ParkEvent->park(1).
 896           // We use a mixed spin/yield/block mechanism.
 897           if ((YieldThenBlock++) >= 16) {
 898             Thread::current()->_ParkEvent->park(1);
 899           } else {
 900             os::naked_yield();
 901           }
 902         }
 903         Thread::muxRelease(gInflationLocks + ix);
 904       }
 905     } else {
 906       SpinPause();       // SMP-polite spinning
 907     }
 908   }
 909 }
 910 
 911 // hashCode() generation :
 912 //
 913 // Possibilities:
 914 // * MD5Digest of {obj,stw_random}
 915 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function.
 916 // * A DES- or AES-style SBox[] mechanism
 917 // * One of the Phi-based schemes, such as:
 918 //   2654435761 = 2^32 * Phi (golden ratio)
 919 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ;
 920 // * A variation of Marsaglia's shift-xor RNG scheme.
 921 // * (obj ^ stw_random) is appealing, but can result
 922 //   in undesirable regularity in the hashCode values of adjacent objects
 923 //   (objects allocated back-to-back, in particular).  This could potentially
 924 //   result in hashtable collisions and reduced hashtable efficiency.
 925 //   There are simple ways to "diffuse" the middle address bits over the
 926 //   generated hashCode values:
 927 
 928 static inline intptr_t get_next_hash(Thread* self, oop obj) {
 929   intptr_t value = 0;
 930   if (hashCode == 0) {
 931     // This form uses global Park-Miller RNG.
 932     // On MP system we'll have lots of RW access to a global, so the
 933     // mechanism induces lots of coherency traffic.
 934     value = os::random();
 935   } else if (hashCode == 1) {
 936     // This variation has the property of being stable (idempotent)
 937     // between STW operations.  This can be useful in some of the 1-0
 938     // synchronization schemes.
 939     intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3;
 940     value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random;
 941   } else if (hashCode == 2) {
 942     value = 1;            // for sensitivity testing
 943   } else if (hashCode == 3) {
 944     value = ++GVars.hc_sequence;
 945   } else if (hashCode == 4) {
 946     value = cast_from_oop<intptr_t>(obj);
 947   } else {
 948     // Marsaglia's xor-shift scheme with thread-specific state
 949     // This is probably the best overall implementation -- we'll
 950     // likely make this the default in future releases.
 951     unsigned t = self->_hashStateX;
 952     t ^= (t << 11);
 953     self->_hashStateX = self->_hashStateY;
 954     self->_hashStateY = self->_hashStateZ;
 955     self->_hashStateZ = self->_hashStateW;
 956     unsigned v = self->_hashStateW;
 957     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 958     self->_hashStateW = v;
 959     value = v;
 960   }
 961 
 962   value &= markWord::hash_mask;
 963   if (value == 0) value = 0xBAD;
 964   assert(value != markWord::no_hash, "invariant");
 965   return value;
 966 }
 967 
 968 intptr_t ObjectSynchronizer::FastHashCode(Thread* self, oop obj) {
 969   if (UseBiasedLocking) {
 970     // NOTE: many places throughout the JVM do not expect a safepoint
 971     // to be taken here, in particular most operations on perm gen
 972     // objects. However, we only ever bias Java instances and all of
 973     // the call sites of identity_hash that might revoke biases have
 974     // been checked to make sure they can handle a safepoint. The
 975     // added check of the bias pattern is to avoid useless calls to
 976     // thread-local storage.
 977     if (obj->mark().has_bias_pattern()) {
 978       // Handle for oop obj in case of STW safepoint
 979       Handle hobj(self, obj);
 980       // Relaxing assertion for bug 6320749.
 981       assert(Universe::verify_in_progress() ||
 982              !SafepointSynchronize::is_at_safepoint(),
 983              "biases should not be seen by VM thread here");
 984       BiasedLocking::revoke(hobj, JavaThread::current());
 985       obj = hobj();
 986       assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 987     }
 988   }
 989 
 990   // hashCode() is a heap mutator ...
 991   // Relaxing assertion for bug 6320749.
 992   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 993          !SafepointSynchronize::is_at_safepoint(), "invariant");
 994   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 995          self->is_Java_thread() , "invariant");
 996   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 997          ((JavaThread *)self)->thread_state() != _thread_blocked, "invariant");
 998 
 999   while (true) {
1000     ObjectMonitor* monitor = NULL;
1001     markWord temp, test;
1002     intptr_t hash;
1003     markWord mark = read_stable_mark(obj);
1004 
1005     // object should remain ineligible for biased locking
1006     assert(!mark.has_bias_pattern(), "invariant");
1007 
1008     if (mark.is_neutral()) {            // if this is a normal header
1009       hash = mark.hash();
1010       if (hash != 0) {                  // if it has a hash, just return it
1011         return hash;
1012       }
1013       hash = get_next_hash(self, obj);  // get a new hash
1014       temp = mark.copy_set_hash(hash);  // merge the hash into header
1015                                         // try to install the hash
1016       test = obj->cas_set_mark(temp, mark);
1017       if (test == mark) {               // if the hash was installed, return it
1018         return hash;
1019       }
1020       // Failed to install the hash. It could be that another thread
1021       // installed the hash just before our attempt or inflation has
1022       // occurred or... so we fall thru to inflate the monitor for
1023       // stability and then install the hash.
1024     } else if (mark.has_monitor()) {
1025       ObjectMonitorHandle omh;
1026       if (!omh.save_om_ptr(obj, mark)) {
1027         // Lost a race with async deflation so try again.
1028         assert(AsyncDeflateIdleMonitors, "sanity check");
1029         continue;
1030       }
1031       monitor = omh.om_ptr();
1032       temp = monitor->header();
1033       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1034       hash = temp.hash();
1035       if (hash != 0) {                  // if it has a hash, just return it
1036         return hash;
1037       }
1038       // Fall thru so we only have one place that installs the hash in
1039       // the ObjectMonitor.
1040     } else if (self->is_lock_owned((address)mark.locker())) {
1041       // This is a stack lock owned by the calling thread so fetch the
1042       // displaced markWord from the BasicLock on the stack.
1043       temp = mark.displaced_mark_helper();
1044       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1045       hash = temp.hash();
1046       if (hash != 0) {                  // if it has a hash, just return it
1047         return hash;
1048       }
1049       // WARNING:
1050       // The displaced header in the BasicLock on a thread's stack
1051       // is strictly immutable. It CANNOT be changed in ANY cases.
1052       // So we have to inflate the stack lock into an ObjectMonitor
1053       // even if the current thread owns the lock. The BasicLock on
1054       // a thread's stack can be asynchronously read by other threads
1055       // during an inflate() call so any change to that stack memory
1056       // may not propagate to other threads correctly.
1057     }
1058 
1059     // Inflate the monitor to set the hash.
1060     ObjectMonitorHandle omh;
1061     inflate(&omh, self, obj, inflate_cause_hash_code);
1062     monitor = omh.om_ptr();
1063     // Load ObjectMonitor's header/dmw field and see if it has a hash.
1064     mark = monitor->header();
1065     assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
1066     hash = mark.hash();
1067     if (hash == 0) {                    // if it does not have a hash
1068       hash = get_next_hash(self, obj);  // get a new hash
1069       temp = mark.copy_set_hash(hash);  // merge the hash into header
1070       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1071       uintptr_t v = Atomic::cmpxchg((volatile uintptr_t*)monitor->header_addr(), mark.value(), temp.value());
1072       test = markWord(v);
1073       if (test != mark) {
1074         // The attempt to update the ObjectMonitor's header/dmw field
1075         // did not work. This can happen if another thread managed to
1076         // merge in the hash just before our cmpxchg().
1077         // ObjectMonitor::install_displaced_markword_in_object()
1078         // does mark the header/dmw field as part of async deflation,
1079         // but that protocol cannot happen now due to the
1080         // ObjectMonitorHandle above.
1081         // If we add any new usages of the header/dmw field, this code
1082         // will need to be updated.
1083         hash = test.hash();
1084         assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value());
1085         assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash");
1086       }
1087     }
1088     // We finally get the hash.
1089     return hash;
1090   }
1091 }
1092 
1093 // Deprecated -- use FastHashCode() instead.
1094 
1095 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
1096   return FastHashCode(Thread::current(), obj());
1097 }
1098 
1099 
1100 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
1101                                                    Handle h_obj) {
1102   if (UseBiasedLocking) {
1103     BiasedLocking::revoke(h_obj, thread);
1104     assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now");
1105   }
1106 
1107   assert(thread == JavaThread::current(), "Can only be called on current thread");
1108   oop obj = h_obj();
1109 
1110   while (true) {
1111     markWord mark = read_stable_mark(obj);
1112 
1113     // Uncontended case, header points to stack
1114     if (mark.has_locker()) {
1115       return thread->is_lock_owned((address)mark.locker());
1116     }
1117     // Contended case, header points to ObjectMonitor (tagged pointer)
1118     if (mark.has_monitor()) {
1119       ObjectMonitorHandle omh;
1120       if (!omh.save_om_ptr(obj, mark)) {
1121         // Lost a race with async deflation so try again.
1122         assert(AsyncDeflateIdleMonitors, "sanity check");
1123         continue;
1124       }
1125       bool ret_code = omh.om_ptr()->is_entered(thread) != 0;
1126       return ret_code;
1127     }
1128     // Unlocked case, header in place
1129     assert(mark.is_neutral(), "sanity check");
1130     return false;
1131   }
1132 }
1133 
1134 // Be aware of this method could revoke bias of the lock object.
1135 // This method queries the ownership of the lock handle specified by 'h_obj'.
1136 // If the current thread owns the lock, it returns owner_self. If no
1137 // thread owns the lock, it returns owner_none. Otherwise, it will return
1138 // owner_other.
1139 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
1140 (JavaThread *self, Handle h_obj) {
1141   // The caller must beware this method can revoke bias, and
1142   // revocation can result in a safepoint.
1143   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
1144   assert(self->thread_state() != _thread_blocked, "invariant");
1145 
1146   // Possible mark states: neutral, biased, stack-locked, inflated
1147 
1148   if (UseBiasedLocking && h_obj()->mark().has_bias_pattern()) {
1149     // CASE: biased
1150     BiasedLocking::revoke(h_obj, self);
1151     assert(!h_obj->mark().has_bias_pattern(),
1152            "biases should be revoked by now");
1153   }
1154 
1155   assert(self == JavaThread::current(), "Can only be called on current thread");
1156   oop obj = h_obj();
1157 
1158   while (true) {
1159     markWord mark = read_stable_mark(obj);
1160 
1161     // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
1162     if (mark.has_locker()) {
1163       return self->is_lock_owned((address)mark.locker()) ?
1164         owner_self : owner_other;
1165     }
1166 
1167     // CASE: inflated. Mark (tagged pointer) points to an ObjectMonitor.
1168     // The Object:ObjectMonitor relationship is stable as long as we're
1169     // not at a safepoint and AsyncDeflateIdleMonitors is false.
1170     if (mark.has_monitor()) {
1171       ObjectMonitorHandle omh;
1172       if (!omh.save_om_ptr(obj, mark)) {
1173         // Lost a race with async deflation so try again.
1174         assert(AsyncDeflateIdleMonitors, "sanity check");
1175         continue;
1176       }
1177       ObjectMonitor* monitor = omh.om_ptr();
1178       void* owner = monitor->_owner;
1179       if (owner == NULL) return owner_none;
1180       return (owner == self ||
1181               self->is_lock_owned((address)owner)) ? owner_self : owner_other;
1182     }
1183 
1184     // CASE: neutral
1185     assert(mark.is_neutral(), "sanity check");
1186     return owner_none;           // it's unlocked
1187   }
1188 }
1189 
1190 // FIXME: jvmti should call this
1191 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
1192   if (UseBiasedLocking) {
1193     if (SafepointSynchronize::is_at_safepoint()) {
1194       BiasedLocking::revoke_at_safepoint(h_obj);
1195     } else {
1196       BiasedLocking::revoke(h_obj, JavaThread::current());
1197     }
1198     assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now");
1199   }
1200 
1201   oop obj = h_obj();
1202 
1203   while (true) {
1204     address owner = NULL;
1205     markWord mark = read_stable_mark(obj);
1206 
1207     // Uncontended case, header points to stack
1208     if (mark.has_locker()) {
1209       owner = (address) mark.locker();
1210     }
1211 
1212     // Contended case, header points to ObjectMonitor (tagged pointer)
1213     else if (mark.has_monitor()) {
1214       ObjectMonitorHandle omh;
1215       if (!omh.save_om_ptr(obj, mark)) {
1216         // Lost a race with async deflation so try again.
1217         assert(AsyncDeflateIdleMonitors, "sanity check");
1218         continue;
1219       }
1220       ObjectMonitor* monitor = omh.om_ptr();
1221       assert(monitor != NULL, "monitor should be non-null");
1222       owner = (address) monitor->owner();
1223     }
1224 
1225     if (owner != NULL) {
1226       // owning_thread_from_monitor_owner() may also return NULL here
1227       return Threads::owning_thread_from_monitor_owner(t_list, owner);
1228     }
1229 
1230     // Unlocked case, header in place
1231     // Cannot have assertion since this object may have been
1232     // locked by another thread when reaching here.
1233     // assert(mark.is_neutral(), "sanity check");
1234 
1235     return NULL;
1236   }
1237 }
1238 
1239 // Visitors ...
1240 
1241 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
1242   PaddedObjectMonitor* block = g_block_list;
1243   while (block != NULL) {
1244     assert(block->object() == CHAINMARKER, "must be a block header");
1245     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
1246       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
1247       ObjectMonitorHandle omh;
1248       if (!mid->is_free() && omh.set_om_ptr_if_safe(mid)) {
1249         // The ObjectMonitor* is not free and it has been made safe.
1250         if (mid->object() == NULL) {
1251           // Only process with closure if the object is set.
1252           continue;
1253         }
1254         closure->do_monitor(mid);
1255       }
1256     }
1257     // unmarked_next() is not needed with g_block_list (no next field
1258     // marking) and no load_acquire() needed because _next_om is
1259     // updated before g_block_list is changed with cmpxchg().
1260     block = (PaddedObjectMonitor*)block->_next_om;
1261   }
1262 }
1263 
1264 static bool monitors_used_above_threshold() {
1265   if (g_om_population == 0) {
1266     return false;
1267   }
1268   if (MonitorUsedDeflationThreshold > 0) {
1269     int monitors_used = g_om_population - g_om_free_count;
1270     if (HandshakeAfterDeflateIdleMonitors) {
1271       monitors_used -= g_om_wait_count;
1272     }
1273     int monitor_usage = (monitors_used * 100LL) / g_om_population;
1274     return monitor_usage > MonitorUsedDeflationThreshold;
1275   }
1276   return false;
1277 }
1278 
1279 // Returns true if MonitorBound is set (> 0) and if the specified
1280 // cnt is > MonitorBound. Otherwise returns false.
1281 static bool is_MonitorBound_exceeded(const int cnt) {
1282   const int mx = MonitorBound;
1283   return mx > 0 && cnt > mx;
1284 }
1285 
1286 bool ObjectSynchronizer::is_async_deflation_needed() {
1287   if (!AsyncDeflateIdleMonitors) {
1288     return false;
1289   }
1290   if (is_async_deflation_requested()) {
1291     // Async deflation request.
1292     return true;
1293   }
1294   if (AsyncDeflationInterval > 0 &&
1295       time_since_last_async_deflation_ms() > AsyncDeflationInterval &&
1296       monitors_used_above_threshold()) {
1297     // It's been longer than our specified deflate interval and there
1298     // are too many monitors in use. We don't deflate more frequently
1299     // than AsyncDeflationInterval (unless is_async_deflation_requested)
1300     // in order to not swamp the ServiceThread.
1301     _last_async_deflation_time_ns = os::javaTimeNanos();
1302     return true;
1303   }
1304   int monitors_used = g_om_population - g_om_free_count;
1305   if (HandshakeAfterDeflateIdleMonitors) {
1306     monitors_used -= g_om_wait_count;
1307   }
1308   if (is_MonitorBound_exceeded(monitors_used)) {
1309     // Not enough ObjectMonitors on the global free list.
1310     return true;
1311   }
1312   return false;
1313 }
1314 
1315 bool ObjectSynchronizer::needs_monitor_scavenge() {
1316   if (Atomic::load(&_forceMonitorScavenge) == 1) {
1317     log_info(monitorinflation)("Monitor scavenge needed, triggering safepoint cleanup.");
1318     return true;
1319   }
1320   return false;
1321 }
1322 
1323 bool ObjectSynchronizer::is_safepoint_deflation_needed() {
1324   if (!AsyncDeflateIdleMonitors) {
1325     if (monitors_used_above_threshold()) {
1326       // Too many monitors in use.
1327       return true;
1328     }
1329      return needs_monitor_scavenge();
1330   }
1331   if (is_special_deflation_requested()) {
1332     // For AsyncDeflateIdleMonitors only do a safepoint deflation
1333     // if there is a special deflation request.
1334     return true;
1335   }
1336   return false;
1337 }
1338 
1339 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() {
1340   return (os::javaTimeNanos() - _last_async_deflation_time_ns) / (NANOUNITS / MILLIUNITS);
1341 }
1342 
1343 void ObjectSynchronizer::oops_do(OopClosure* f) {
1344   // We only scan the global used list here (for moribund threads), and
1345   // the thread-local monitors in Thread::oops_do().
1346   global_used_oops_do(f);
1347 }
1348 
1349 void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
1350   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1351   list_oops_do(g_om_in_use_list, g_om_in_use_count, f);
1352 }
1353 
1354 void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
1355   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1356   list_oops_do(thread->om_in_use_list, thread->om_in_use_count, f);
1357 }
1358 
1359 void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, int count, OopClosure* f) {
1360   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1361   // The oops_do() phase does not overlap with monitor deflation
1362   // so no need to update the ObjectMonitor's ref_count for this
1363   // ObjectMonitor* use and no need to mark ObjectMonitors for the
1364   // list traversal.
1365   for (ObjectMonitor* mid = list; mid != NULL; mid = unmarked_next(mid)) {
1366     if (mid->object() != NULL) {
1367       f->do_oop((oop*)mid->object_addr());
1368     }
1369   }
1370 }
1371 
1372 
1373 // -----------------------------------------------------------------------------
1374 // ObjectMonitor Lifecycle
1375 // -----------------------
1376 // Inflation unlinks monitors from the global g_free_list and
1377 // associates them with objects.  Deflation -- which occurs at
1378 // STW-time -- disassociates idle monitors from objects.  Such
1379 // scavenged monitors are returned to the g_free_list.
1380 //
1381 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
1382 //
1383 // Lifecycle:
1384 // --   unassigned and on the global free list
1385 // --   unassigned and on a thread's private om_free_list
1386 // --   assigned to an object.  The object is inflated and the mark refers
1387 //      to the objectmonitor.
1388 
1389 
1390 // Constraining monitor pool growth via MonitorBound ...
1391 //
1392 // If MonitorBound is not set (<= 0), MonitorBound checks are disabled.
1393 //
1394 // When safepoint deflation is being used (!AsyncDeflateIdleMonitors):
1395 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
1396 // the rate of scavenging is driven primarily by GC.  As such,  we can find
1397 // an inordinate number of monitors in circulation.
1398 // To avoid that scenario we can artificially induce a STW safepoint
1399 // if the pool appears to be growing past some reasonable bound.
1400 // Generally we favor time in space-time tradeoffs, but as there's no
1401 // natural back-pressure on the # of extant monitors we need to impose some
1402 // type of limit.  Beware that if MonitorBound is set to too low a value
1403 // we could just loop. In addition, if MonitorBound is set to a low value
1404 // we'll incur more safepoints, which are harmful to performance.
1405 // See also: GuaranteedSafepointInterval
1406 //
1407 // When safepoint deflation is being used and MonitorBound is set, the
1408 // boundry applies to
1409 //     (g_om_population - g_om_free_count)
1410 // i.e., if there are not enough ObjectMonitors on the global free list,
1411 // then a safepoint deflation is induced. Picking a good MonitorBound value
1412 // is non-trivial.
1413 //
1414 // When async deflation is being used:
1415 // The monitor pool is still grow-only. Async deflation is requested
1416 // by a safepoint's cleanup phase or by the ServiceThread at periodic
1417 // intervals when is_async_deflation_needed() returns true. In
1418 // addition to other policies that are checked, if there are not
1419 // enough ObjectMonitors on the global free list, then
1420 // is_async_deflation_needed() will return true. The ServiceThread
1421 // calls deflate_global_idle_monitors_using_JT() and also calls
1422 // deflate_per_thread_idle_monitors_using_JT() as needed.
1423 
1424 static void InduceScavenge(Thread* self, const char * Whence) {
1425   assert(!AsyncDeflateIdleMonitors, "is not used by async deflation");
1426 
1427   // Induce STW safepoint to trim monitors
1428   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
1429   // More precisely, trigger a cleanup safepoint as the number
1430   // of active monitors passes the specified threshold.
1431   // TODO: assert thread state is reasonable
1432 
1433   if (Atomic::xchg(&_forceMonitorScavenge, 1) == 0) {
1434     VMThread::check_for_forced_cleanup();
1435   }
1436 }
1437 
1438 ObjectMonitor* ObjectSynchronizer::om_alloc(Thread* self,
1439                                            const InflateCause cause) {
1440   // A large MAXPRIVATE value reduces both list lock contention
1441   // and list coherency traffic, but also tends to increase the
1442   // number of ObjectMonitors in circulation as well as the STW
1443   // scavenge costs.  As usual, we lean toward time in space-time
1444   // tradeoffs.
1445   const int MAXPRIVATE = 1024;
1446 
1447   stringStream ss;
1448   for (;;) {
1449     ObjectMonitor* m;
1450 
1451     // 1: try to allocate from the thread's local om_free_list.
1452     // Threads will attempt to allocate first from their local list, then
1453     // from the global list, and only after those attempts fail will the
1454     // thread attempt to instantiate new monitors. Thread-local free lists
1455     // improve allocation latency, as well as reducing coherency traffic
1456     // on the shared global list.
1457     m = take_from_start_of_om_free_list(self);
1458     if (m != NULL) {
1459       guarantee(m->object() == NULL, "invariant");
1460       m->set_allocation_state(ObjectMonitor::New);
1461       prepend_to_om_in_use_list(self, m);
1462       return m;
1463     }
1464 
1465     // 2: try to allocate from the global g_free_list
1466     // CONSIDER: use muxTry() instead of muxAcquire().
1467     // If the muxTry() fails then drop immediately into case 3.
1468     // If we're using thread-local free lists then try
1469     // to reprovision the caller's free list.
1470     if (g_free_list != NULL) {
1471       // Reprovision the thread's om_free_list.
1472       // Use bulk transfers to reduce the allocation rate and heat
1473       // on various locks.
1474       for (int i = self->om_free_provision; --i >= 0;) {
1475         ObjectMonitor* take = take_from_start_of_g_free_list();
1476         if (take == NULL) {
1477           break;  // No more are available.
1478         }
1479         guarantee(take->object() == NULL, "invariant");
1480         if (AsyncDeflateIdleMonitors) {
1481           // We allowed 3 field values to linger during async deflation.
1482           // We clear header and restore ref_count here, but we leave
1483           // owner == DEFLATER_MARKER so the simple C2 ObjectMonitor
1484           // enter optimization can no longer race with async deflation
1485           // and reuse.
1486           take->set_header(markWord::zero());
1487           if (take->ref_count() < 0) {
1488             // Add back max_jint to restore the ref_count field to its
1489             // proper value.
1490             Atomic::add(&take->_ref_count, max_jint);
1491 
1492             DEBUG_ONLY(jint l_ref_count = take->ref_count();)
1493             assert(l_ref_count >= 0, "must not be negative: l_ref_count=%d, ref_count=%d",
1494                    l_ref_count, take->ref_count());
1495           }
1496         }
1497         take->Recycle();
1498         // Since we're taking from the global free-list, take must be Free.
1499         // om_release() also sets the allocation state to Free because it
1500         // is called from other code paths.
1501         assert(take->is_free(), "invariant");
1502         om_release(self, take, false);
1503       }
1504       self->om_free_provision += 1 + (self->om_free_provision / 2);
1505       if (self->om_free_provision > MAXPRIVATE) self->om_free_provision = MAXPRIVATE;
1506 
1507       if (!AsyncDeflateIdleMonitors &&
1508           is_MonitorBound_exceeded(g_om_population - g_om_free_count)) {
1509         // Not enough ObjectMonitors on the global free list.
1510         // We can't safely induce a STW safepoint from om_alloc() as our thread
1511         // state may not be appropriate for such activities and callers may hold
1512         // naked oops, so instead we defer the action.
1513         InduceScavenge(self, "om_alloc");
1514       }
1515       continue;
1516     }
1517 
1518     // 3: allocate a block of new ObjectMonitors
1519     // Both the local and global free lists are empty -- resort to malloc().
1520     // In the current implementation ObjectMonitors are TSM - immortal.
1521     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1522     // each ObjectMonitor to start at the beginning of a cache line,
1523     // so we use align_up().
1524     // A better solution would be to use C++ placement-new.
1525     // BEWARE: As it stands currently, we don't run the ctors!
1526     assert(_BLOCKSIZE > 1, "invariant");
1527     size_t neededsize = sizeof(PaddedObjectMonitor) * _BLOCKSIZE;
1528     PaddedObjectMonitor* temp;
1529     size_t aligned_size = neededsize + (OM_CACHE_LINE_SIZE - 1);
1530     void* real_malloc_addr = NEW_C_HEAP_ARRAY(char, aligned_size, mtInternal);
1531     temp = (PaddedObjectMonitor*)align_up(real_malloc_addr, OM_CACHE_LINE_SIZE);
1532     (void)memset((void *) temp, 0, neededsize);
1533 
1534     // Format the block.
1535     // initialize the linked list, each monitor points to its next
1536     // forming the single linked free list, the very first monitor
1537     // will points to next block, which forms the block list.
1538     // The trick of using the 1st element in the block as g_block_list
1539     // linkage should be reconsidered.  A better implementation would
1540     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1541 
1542     for (int i = 1; i < _BLOCKSIZE; i++) {
1543       temp[i]._next_om = (ObjectMonitor*)&temp[i + 1];
1544       assert(temp[i].is_free(), "invariant");
1545     }
1546 
1547     // terminate the last monitor as the end of list
1548     temp[_BLOCKSIZE - 1]._next_om = (ObjectMonitor*)NULL;
1549 
1550     // Element [0] is reserved for global list linkage
1551     temp[0].set_object(CHAINMARKER);
1552 
1553     // Consider carving out this thread's current request from the
1554     // block in hand.  This avoids some lock traffic and redundant
1555     // list activity.
1556 
1557     prepend_block_to_lists(temp);
1558   }
1559 }
1560 
1561 // Place "m" on the caller's private per-thread om_free_list.
1562 // In practice there's no need to clamp or limit the number of
1563 // monitors on a thread's om_free_list as the only non-allocation time
1564 // we'll call om_release() is to return a monitor to the free list after
1565 // a CAS attempt failed. This doesn't allow unbounded #s of monitors to
1566 // accumulate on a thread's free list.
1567 //
1568 // Key constraint: all ObjectMonitors on a thread's free list and the global
1569 // free list must have their object field set to null. This prevents the
1570 // scavenger -- deflate_monitor_list() or deflate_monitor_list_using_JT()
1571 // -- from reclaiming them while we are trying to release them.
1572 
1573 void ObjectSynchronizer::om_release(Thread* self, ObjectMonitor* m,
1574                                     bool from_per_thread_alloc) {
1575   guarantee(m->header().value() == 0, "invariant");
1576   guarantee(m->object() == NULL, "invariant");
1577   stringStream ss;
1578   guarantee((m->is_busy() | m->_recursions) == 0, "freeing in-use monitor: "
1579             "%s, recursions=" INTX_FORMAT, m->is_busy_to_string(&ss),
1580             m->_recursions);
1581   m->set_allocation_state(ObjectMonitor::Free);
1582   // _next_om is used for both per-thread in-use and free lists so
1583   // we have to remove 'm' from the in-use list first (as needed).
1584   if (from_per_thread_alloc) {
1585     // Need to remove 'm' from om_in_use_list.
1586     // We use the more complicated mark-cur_mid_in_use-and-mid-as-we-go
1587     // protocol because async deflation can do list deletions in parallel.
1588     ObjectMonitor* cur_mid_in_use = NULL;
1589     ObjectMonitor* mid = NULL;
1590     ObjectMonitor* next = NULL;
1591     bool extracted = false;
1592 
1593     if (!mark_list_head(&self->om_in_use_list, &mid, &next)) {
1594       fatal("thread=" INTPTR_FORMAT " in-use list must not be empty.", p2i(self));
1595     }
1596     while (true) {
1597       if (m == mid) {
1598         // We found 'm' on the per-thread in-use list so try to extract it.
1599         if (cur_mid_in_use == NULL) {
1600           // mid is the list head and it is marked. Switch the list head
1601           // to next which unmarks the list head, but leaves mid marked:
1602           self->om_in_use_list = next;
1603           // mark_list_head() used cmpxchg() above, switching list head can be lazier:
1604           OrderAccess::storestore();
1605         } else {
1606           // mid and cur_mid_in_use are marked. Switch cur_mid_in_use's
1607           // next field to next which unmarks cur_mid_in_use, but leaves
1608           // mid marked:
1609           Atomic::release_store(&cur_mid_in_use->_next_om, next);
1610         }
1611         extracted = true;
1612         Atomic::dec(&self->om_in_use_count);
1613         // Unmark mid, but leave the next value for any lagging list
1614         // walkers. It will get cleaned up when mid is prepended to
1615         // the thread's free list:
1616         set_next(mid, next);
1617         break;
1618       }
1619       if (cur_mid_in_use != NULL) {
1620         set_next(cur_mid_in_use, mid);  // umark cur_mid_in_use
1621       }
1622       // The next cur_mid_in_use keeps mid's marked next field so
1623       // that it is stable for a possible next field change. It
1624       // cannot be deflated while it is marked.
1625       cur_mid_in_use = mid;
1626       mid = next;
1627       if (mid == NULL) {
1628         // Reached end of the list and didn't find m so:
1629         fatal("must find m=" INTPTR_FORMAT "on om_in_use_list=" INTPTR_FORMAT,
1630               p2i(m), p2i(self->om_in_use_list));
1631       }
1632       // Mark mid's next field so we can possibly extract it:
1633       next = mark_next_loop(mid);
1634     }
1635   }
1636 
1637   prepend_to_om_free_list(self, m);
1638   guarantee(m->is_free(), "invariant");
1639 }
1640 
1641 // Return ObjectMonitors on a moribund thread's free and in-use
1642 // lists to the appropriate global lists. The ObjectMonitors on the
1643 // per-thread in-use list may still be in use by other threads.
1644 //
1645 // We currently call om_flush() from Threads::remove() before the
1646 // thread has been excised from the thread list and is no longer a
1647 // mutator. This means that om_flush() cannot run concurrently with
1648 // a safepoint and interleave with deflate_idle_monitors(). In
1649 // particular, this ensures that the thread's in-use monitors are
1650 // scanned by a GC safepoint, either via Thread::oops_do() (before
1651 // om_flush() is called) or via ObjectSynchronizer::oops_do() (after
1652 // om_flush() is called).
1653 //
1654 // With AsyncDeflateIdleMonitors, deflate_global_idle_monitors_using_JT()
1655 // and deflate_per_thread_idle_monitors_using_JT() (in another thread) can
1656 // run at the same time as om_flush() so we have to follow a careful
1657 // protocol to prevent list corruption.
1658 
1659 void ObjectSynchronizer::om_flush(Thread* self) {
1660   // This function can race with an async deflater thread. Since
1661   // deflation has to process the per-thread in-use list before
1662   // prepending the deflated ObjectMonitors to the global free list,
1663   // we process the per-thread lists in the same order to prevent
1664   // ordering races.
1665   int in_use_count = 0;
1666   ObjectMonitor* in_use_list = NULL;
1667   ObjectMonitor* in_use_tail = NULL;
1668   ObjectMonitor* next = NULL;
1669 
1670   // An async deflation thread checks to see if the target thread
1671   // is exiting, but if it has made it past that check before we
1672   // started exiting, then it is racing to get to the in-use list.
1673   if (mark_list_head(&self->om_in_use_list, &in_use_list, &next)) {
1674     // At this point, we have marked the in-use list head so an
1675     // async deflation thread cannot come in after us. If an async
1676     // deflation thread is ahead of us, then we'll detect that and
1677     // wait for it to finish its work.
1678     //
1679     // The thread is going away, however the ObjectMonitors on the
1680     // om_in_use_list may still be in-use by other threads. Link
1681     // them to in_use_tail, which will be linked into the global
1682     // in-use list g_om_in_use_list below.
1683     //
1684     // Account for the in-use list head before the loop since it is
1685     // already marked (by this thread):
1686     in_use_tail = in_use_list;
1687     in_use_count++;
1688     for (ObjectMonitor* cur_om = unmarked_next(in_use_list); cur_om != NULL;) {
1689       if (is_next_marked(cur_om)) {
1690         // This next field is marked so there must be an async deflater
1691         // thread ahead of us so we'll give it a chance to finish.
1692         while (is_next_marked(cur_om)) {
1693           os::naked_short_sleep(1);
1694         }
1695         // Refetch the possibly changed next field and try again.
1696         cur_om = unmarked_next(in_use_tail);
1697         continue;
1698       }
1699       if (cur_om->is_free()) {
1700         // cur_om was deflated and the allocation state was changed
1701         // to Free while it was marked. We happened to see it just
1702         // after it was unmarked (and added to the free list).
1703         // Refetch the possibly changed next field and try again.
1704         cur_om = unmarked_next(in_use_tail);
1705         continue;
1706       }
1707       in_use_tail = cur_om;
1708       in_use_count++;
1709       cur_om = unmarked_next(cur_om);
1710     }
1711     guarantee(in_use_tail != NULL, "invariant");
1712     int l_om_in_use_count = self->om_in_use_count;
1713     ADIM_guarantee(l_om_in_use_count == in_use_count, "in-use counts don't "
1714                    "match: l_om_in_use_count=%d, in_use_count=%d",
1715                    l_om_in_use_count, in_use_count);
1716     self->om_in_use_count = 0;
1717     // Clear the in-use list head (which also unmarks it):
1718     self->om_in_use_list = (ObjectMonitor*)NULL;
1719     // mark_list_head() used cmpxchg() above, clearing the disconnected list head can be lazier:
1720     OrderAccess::storestore();
1721     set_next(in_use_list, next);
1722   }
1723 
1724   int free_count = 0;
1725   ObjectMonitor* free_list = self->om_free_list;
1726   ObjectMonitor* free_tail = NULL;
1727   if (free_list != NULL) {
1728     // The thread is going away. Set 'free_tail' to the last per-thread free
1729     // monitor which will be linked to g_free_list below.
1730     stringStream ss;
1731     for (ObjectMonitor* s = free_list; s != NULL; s = unmarked_next(s)) {
1732       free_count++;
1733       free_tail = s;
1734       guarantee(s->object() == NULL, "invariant");
1735       guarantee(!s->is_busy(), "must be !is_busy: %s", s->is_busy_to_string(&ss));
1736     }
1737     guarantee(free_tail != NULL, "invariant");
1738     int l_om_free_count = self->om_free_count;
1739     ADIM_guarantee(l_om_free_count == free_count, "free counts don't match: "
1740                    "l_om_free_count=%d, free_count=%d", l_om_free_count,
1741                    free_count);
1742     self->om_free_count = 0;
1743     self->om_free_list = NULL;
1744     OrderAccess::storestore();  // Lazier memory is okay for list walkers.
1745   }
1746 
1747   if (free_tail != NULL) {
1748     prepend_list_to_g_free_list(free_list, free_tail, free_count);
1749   }
1750 
1751   if (in_use_tail != NULL) {
1752     prepend_list_to_g_om_in_use_list(in_use_list, in_use_tail, in_use_count);
1753   }
1754 
1755   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1756   LogStreamHandle(Info, monitorinflation) lsh_info;
1757   LogStream* ls = NULL;
1758   if (log_is_enabled(Debug, monitorinflation)) {
1759     ls = &lsh_debug;
1760   } else if ((free_count != 0 || in_use_count != 0) &&
1761              log_is_enabled(Info, monitorinflation)) {
1762     ls = &lsh_info;
1763   }
1764   if (ls != NULL) {
1765     ls->print_cr("om_flush: jt=" INTPTR_FORMAT ", free_count=%d"
1766                  ", in_use_count=%d" ", om_free_provision=%d",
1767                  p2i(self), free_count, in_use_count, self->om_free_provision);
1768   }
1769 }
1770 
1771 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1772                                        const oop obj,
1773                                        ObjectSynchronizer::InflateCause cause) {
1774   assert(event != NULL, "invariant");
1775   assert(event->should_commit(), "invariant");
1776   event->set_monitorClass(obj->klass());
1777   event->set_address((uintptr_t)(void*)obj);
1778   event->set_cause((u1)cause);
1779   event->commit();
1780 }
1781 
1782 // Fast path code shared by multiple functions
1783 void ObjectSynchronizer::inflate_helper(ObjectMonitorHandle* omh_p, oop obj) {
1784   while (true) {
1785     markWord mark = obj->mark();
1786     if (mark.has_monitor()) {
1787       if (!omh_p->save_om_ptr(obj, mark)) {
1788         // Lost a race with async deflation so try again.
1789         assert(AsyncDeflateIdleMonitors, "sanity check");
1790         continue;
1791       }
1792       ObjectMonitor* monitor = omh_p->om_ptr();
1793       assert(ObjectSynchronizer::verify_objmon_isinpool(monitor), "monitor is invalid");
1794       markWord dmw = monitor->header();
1795       assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value());
1796       return;
1797     }
1798     inflate(omh_p, Thread::current(), obj, inflate_cause_vm_internal);
1799     return;
1800   }
1801 }
1802 
1803 void ObjectSynchronizer::inflate(ObjectMonitorHandle* omh_p, Thread* self,
1804                                  oop object, const InflateCause cause) {
1805   // Inflate mutates the heap ...
1806   // Relaxing assertion for bug 6320749.
1807   assert(Universe::verify_in_progress() ||
1808          !SafepointSynchronize::is_at_safepoint(), "invariant");
1809 
1810   EventJavaMonitorInflate event;
1811 
1812   for (;;) {
1813     const markWord mark = object->mark();
1814     assert(!mark.has_bias_pattern(), "invariant");
1815 
1816     // The mark can be in one of the following states:
1817     // *  Inflated     - just return
1818     // *  Stack-locked - coerce it to inflated
1819     // *  INFLATING    - busy wait for conversion to complete
1820     // *  Neutral      - aggressively inflate the object.
1821     // *  BIASED       - Illegal.  We should never see this
1822 
1823     // CASE: inflated
1824     if (mark.has_monitor()) {
1825       if (!omh_p->save_om_ptr(object, mark)) {
1826         // Lost a race with async deflation so try again.
1827         assert(AsyncDeflateIdleMonitors, "sanity check");
1828         continue;
1829       }
1830       ObjectMonitor* inf = omh_p->om_ptr();
1831       markWord dmw = inf->header();
1832       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1833       assert(inf->object() == object, "invariant");
1834       assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1835       return;
1836     }
1837 
1838     // CASE: inflation in progress - inflating over a stack-lock.
1839     // Some other thread is converting from stack-locked to inflated.
1840     // Only that thread can complete inflation -- other threads must wait.
1841     // The INFLATING value is transient.
1842     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1843     // We could always eliminate polling by parking the thread on some auxiliary list.
1844     if (mark == markWord::INFLATING()) {
1845       read_stable_mark(object);
1846       continue;
1847     }
1848 
1849     // CASE: stack-locked
1850     // Could be stack-locked either by this thread or by some other thread.
1851     //
1852     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1853     // to install INFLATING into the mark word.  We originally installed INFLATING,
1854     // allocated the objectmonitor, and then finally STed the address of the
1855     // objectmonitor into the mark.  This was correct, but artificially lengthened
1856     // the interval in which INFLATED appeared in the mark, thus increasing
1857     // the odds of inflation contention.
1858     //
1859     // We now use per-thread private objectmonitor free lists.
1860     // These list are reprovisioned from the global free list outside the
1861     // critical INFLATING...ST interval.  A thread can transfer
1862     // multiple objectmonitors en-mass from the global free list to its local free list.
1863     // This reduces coherency traffic and lock contention on the global free list.
1864     // Using such local free lists, it doesn't matter if the om_alloc() call appears
1865     // before or after the CAS(INFLATING) operation.
1866     // See the comments in om_alloc().
1867 
1868     LogStreamHandle(Trace, monitorinflation) lsh;
1869 
1870     if (mark.has_locker()) {
1871       ObjectMonitor* m = om_alloc(self, cause);
1872       // Optimistically prepare the objectmonitor - anticipate successful CAS
1873       // We do this before the CAS in order to minimize the length of time
1874       // in which INFLATING appears in the mark.
1875       m->Recycle();
1876       m->_Responsible  = NULL;
1877       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1878 
1879       markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark);
1880       if (cmp != mark) {
1881         // om_release() will reset the allocation state from New to Free.
1882         om_release(self, m, true);
1883         continue;       // Interference -- just retry
1884       }
1885 
1886       // We've successfully installed INFLATING (0) into the mark-word.
1887       // This is the only case where 0 will appear in a mark-word.
1888       // Only the singular thread that successfully swings the mark-word
1889       // to 0 can perform (or more precisely, complete) inflation.
1890       //
1891       // Why do we CAS a 0 into the mark-word instead of just CASing the
1892       // mark-word from the stack-locked value directly to the new inflated state?
1893       // Consider what happens when a thread unlocks a stack-locked object.
1894       // It attempts to use CAS to swing the displaced header value from the
1895       // on-stack BasicLock back into the object header.  Recall also that the
1896       // header value (hash code, etc) can reside in (a) the object header, or
1897       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1898       // header in an ObjectMonitor.  The inflate() routine must copy the header
1899       // value from the BasicLock on the owner's stack to the ObjectMonitor, all
1900       // the while preserving the hashCode stability invariants.  If the owner
1901       // decides to release the lock while the value is 0, the unlock will fail
1902       // and control will eventually pass from slow_exit() to inflate.  The owner
1903       // will then spin, waiting for the 0 value to disappear.   Put another way,
1904       // the 0 causes the owner to stall if the owner happens to try to
1905       // drop the lock (restoring the header from the BasicLock to the object)
1906       // while inflation is in-progress.  This protocol avoids races that might
1907       // would otherwise permit hashCode values to change or "flicker" for an object.
1908       // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable.
1909       // 0 serves as a "BUSY" inflate-in-progress indicator.
1910 
1911 
1912       // fetch the displaced mark from the owner's stack.
1913       // The owner can't die or unwind past the lock while our INFLATING
1914       // object is in the mark.  Furthermore the owner can't complete
1915       // an unlock on the object, either.
1916       markWord dmw = mark.displaced_mark_helper();
1917       // Catch if the object's header is not neutral (not locked and
1918       // not marked is what we care about here).
1919       ADIM_guarantee(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1920 
1921       // Setup monitor fields to proper values -- prepare the monitor
1922       m->set_header(dmw);
1923 
1924       // Optimization: if the mark.locker stack address is associated
1925       // with this thread we could simply set m->_owner = self.
1926       // Note that a thread can inflate an object
1927       // that it has stack-locked -- as might happen in wait() -- directly
1928       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1929       if (AsyncDeflateIdleMonitors) {
1930         m->simply_set_owner_from(mark.locker(), NULL, DEFLATER_MARKER);
1931       } else {
1932         m->simply_set_owner_from(mark.locker(), NULL);
1933       }
1934       m->set_object(object);
1935       // TODO-FIXME: assert BasicLock->dhw != 0.
1936 
1937       omh_p->set_om_ptr(m);
1938 
1939       // Must preserve store ordering. The monitor state must
1940       // be stable at the time of publishing the monitor address.
1941       guarantee(object->mark() == markWord::INFLATING(), "invariant");
1942       object->release_set_mark(markWord::encode(m));
1943 
1944       // Once ObjectMonitor is configured and the object is associated
1945       // with the ObjectMonitor, it is safe to allow async deflation:
1946       assert(m->is_new(), "freshly allocated monitor must be new");
1947       m->set_allocation_state(ObjectMonitor::Old);
1948 
1949       // Hopefully the performance counters are allocated on distinct cache lines
1950       // to avoid false sharing on MP systems ...
1951       OM_PERFDATA_OP(Inflations, inc());
1952       if (log_is_enabled(Trace, monitorinflation)) {
1953         ResourceMark rm(self);
1954         lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1955                      INTPTR_FORMAT ", type='%s'", p2i(object),
1956                      object->mark().value(), object->klass()->external_name());
1957       }
1958       if (event.should_commit()) {
1959         post_monitor_inflate_event(&event, object, cause);
1960       }
1961       ADIM_guarantee(!m->is_free(), "inflated monitor to be returned cannot be free");
1962       return;
1963     }
1964 
1965     // CASE: neutral
1966     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1967     // If we know we're inflating for entry it's better to inflate by swinging a
1968     // pre-locked ObjectMonitor pointer into the object header.   A successful
1969     // CAS inflates the object *and* confers ownership to the inflating thread.
1970     // In the current implementation we use a 2-step mechanism where we CAS()
1971     // to inflate and then CAS() again to try to swing _owner from NULL to self.
1972     // An inflateTry() method that we could call from enter() would be useful.
1973 
1974     // Catch if the object's header is not neutral (not locked and
1975     // not marked is what we care about here).
1976     ADIM_guarantee(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT,mark.value());
1977     ObjectMonitor* m = om_alloc(self, cause);
1978     // prepare m for installation - set monitor to initial state
1979     m->Recycle();
1980     m->set_header(mark);
1981     // If we leave _owner == DEFLATER_MARKER here, then the simple C2
1982     // ObjectMonitor enter optimization can no longer race with async
1983     // deflation and reuse.
1984     m->set_object(object);
1985     m->_Responsible  = NULL;
1986     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
1987 
1988     omh_p->set_om_ptr(m);
1989 
1990     if (object->cas_set_mark(markWord::encode(m), mark) != mark) {
1991       m->set_header(markWord::zero());
1992       m->set_object(NULL);
1993       m->Recycle();
1994       omh_p->set_om_ptr(NULL);
1995       // om_release() will reset the allocation state from New to Free.
1996       om_release(self, m, true);
1997       m = NULL;
1998       continue;
1999       // interference - the markword changed - just retry.
2000       // The state-transitions are one-way, so there's no chance of
2001       // live-lock -- "Inflated" is an absorbing state.
2002     }
2003 
2004     // Once the ObjectMonitor is configured and object is associated
2005     // with the ObjectMonitor, it is safe to allow async deflation:
2006     assert(m->is_new(), "freshly allocated monitor must be new");
2007     m->set_allocation_state(ObjectMonitor::Old);
2008 
2009     // Hopefully the performance counters are allocated on distinct
2010     // cache lines to avoid false sharing on MP systems ...
2011     OM_PERFDATA_OP(Inflations, inc());
2012     if (log_is_enabled(Trace, monitorinflation)) {
2013       ResourceMark rm(self);
2014       lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark="
2015                    INTPTR_FORMAT ", type='%s'", p2i(object),
2016                    object->mark().value(), object->klass()->external_name());
2017     }
2018     if (event.should_commit()) {
2019       post_monitor_inflate_event(&event, object, cause);
2020     }
2021     ADIM_guarantee(!m->is_free(), "inflated monitor to be returned cannot be free");
2022     return;
2023   }
2024 }
2025 
2026 
2027 // We maintain a list of in-use monitors for each thread.
2028 //
2029 // For safepoint based deflation:
2030 // deflate_thread_local_monitors() scans a single thread's in-use list, while
2031 // deflate_idle_monitors() scans only a global list of in-use monitors which
2032 // is populated only as a thread dies (see om_flush()).
2033 //
2034 // These operations are called at all safepoints, immediately after mutators
2035 // are stopped, but before any objects have moved. Collectively they traverse
2036 // the population of in-use monitors, deflating where possible. The scavenged
2037 // monitors are returned to the global monitor free list.
2038 //
2039 // Beware that we scavenge at *every* stop-the-world point. Having a large
2040 // number of monitors in-use could negatively impact performance. We also want
2041 // to minimize the total # of monitors in circulation, as they incur a small
2042 // footprint penalty.
2043 //
2044 // Perversely, the heap size -- and thus the STW safepoint rate --
2045 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
2046 // which in turn can mean large(r) numbers of ObjectMonitors in circulation.
2047 // This is an unfortunate aspect of this design.
2048 //
2049 // For async deflation:
2050 // If a special deflation request is made, then the safepoint based
2051 // deflation mechanism is used. Otherwise, an async deflation request
2052 // is registered with the ServiceThread and it is notified.
2053 
2054 void ObjectSynchronizer::do_safepoint_work(DeflateMonitorCounters* counters) {
2055   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2056 
2057   // The per-thread in-use lists are handled in
2058   // ParallelSPCleanupThreadClosure::do_thread().
2059 
2060   if (!AsyncDeflateIdleMonitors || is_special_deflation_requested()) {
2061     // Use the older mechanism for the global in-use list or if a
2062     // special deflation has been requested before the safepoint.
2063     ObjectSynchronizer::deflate_idle_monitors(counters);
2064     return;
2065   }
2066 
2067   log_debug(monitorinflation)("requesting async deflation of idle monitors.");
2068   // Request deflation of idle monitors by the ServiceThread:
2069   set_is_async_deflation_requested(true);
2070   MonitorLocker ml(Service_lock, Mutex::_no_safepoint_check_flag);
2071   ml.notify_all();
2072 
2073   if (log_is_enabled(Debug, monitorinflation)) {
2074     // exit_globals()'s call to audit_and_print_stats() is done
2075     // at the Info level and not at a safepoint.
2076     // For safepoint based deflation, audit_and_print_stats() is called
2077     // in ObjectSynchronizer::finish_deflate_idle_monitors() at the
2078     // Debug level at a safepoint.
2079     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
2080   }
2081 }
2082 
2083 // Deflate a single monitor if not in-use
2084 // Return true if deflated, false if in-use
2085 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
2086                                          ObjectMonitor** free_head_p,
2087                                          ObjectMonitor** free_tail_p) {
2088   bool deflated;
2089   // Normal case ... The monitor is associated with obj.
2090   const markWord mark = obj->mark();
2091   guarantee(mark == markWord::encode(mid), "should match: mark="
2092             INTPTR_FORMAT ", encoded mid=" INTPTR_FORMAT, mark.value(),
2093             markWord::encode(mid).value());
2094   // Make sure that mark.monitor() and markWord::encode() agree:
2095   guarantee(mark.monitor() == mid, "should match: monitor()=" INTPTR_FORMAT
2096             ", mid=" INTPTR_FORMAT, p2i(mark.monitor()), p2i(mid));
2097   const markWord dmw = mid->header();
2098   guarantee(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
2099 
2100   if (mid->is_busy() || mid->ref_count() != 0) {
2101     // Easy checks are first - the ObjectMonitor is busy or ObjectMonitor*
2102     // is in use so no deflation.
2103     deflated = false;
2104   } else {
2105     // Deflate the monitor if it is no longer being used
2106     // It's idle - scavenge and return to the global free list
2107     // plain old deflation ...
2108     if (log_is_enabled(Trace, monitorinflation)) {
2109       ResourceMark rm;
2110       log_trace(monitorinflation)("deflate_monitor: "
2111                                   "object=" INTPTR_FORMAT ", mark="
2112                                   INTPTR_FORMAT ", type='%s'", p2i(obj),
2113                                   mark.value(), obj->klass()->external_name());
2114     }
2115 
2116     // Restore the header back to obj
2117     obj->release_set_mark(dmw);
2118     if (AsyncDeflateIdleMonitors) {
2119       // clear() expects the owner field to be NULL and we won't race
2120       // with the simple C2 ObjectMonitor enter optimization since
2121       // we're at a safepoint. DEFLATER_MARKER is the only non-NULL
2122       // value we should see here.
2123       mid->try_set_owner_from(NULL, DEFLATER_MARKER);
2124     }
2125     mid->clear();
2126 
2127     assert(mid->object() == NULL, "invariant: object=" INTPTR_FORMAT,
2128            p2i(mid->object()));
2129     assert(mid->is_free(), "invariant");
2130 
2131     // Move the deflated ObjectMonitor to the working free list
2132     // defined by free_head_p and free_tail_p. No races on this list
2133     // so no need for load_acquire() or store_release().
2134     if (*free_head_p == NULL) *free_head_p = mid;
2135     if (*free_tail_p != NULL) {
2136       // We append to the list so the caller can use mid->_next_om
2137       // to fix the linkages in its context.
2138       ObjectMonitor* prevtail = *free_tail_p;
2139       // Should have been cleaned up by the caller:
2140       // Note: Should not have to mark prevtail here since we're at a
2141       // safepoint and ObjectMonitors on the local free list should
2142       // not be accessed in parallel.
2143       assert(prevtail->_next_om == NULL, "must be NULL: _next_om="
2144              INTPTR_FORMAT, p2i(prevtail->_next_om));
2145       set_next(prevtail, mid);
2146     }
2147     *free_tail_p = mid;
2148     // At this point, mid->_next_om still refers to its current
2149     // value and another ObjectMonitor's _next_om field still
2150     // refers to this ObjectMonitor. Those linkages have to be
2151     // cleaned up by the caller who has the complete context.
2152     deflated = true;
2153   }
2154   return deflated;
2155 }
2156 
2157 // Deflate the specified ObjectMonitor if not in-use using a JavaThread.
2158 // Returns true if it was deflated and false otherwise.
2159 //
2160 // The async deflation protocol sets owner to DEFLATER_MARKER and
2161 // makes ref_count negative as signals to contending threads that
2162 // an async deflation is in progress. There are a number of checks
2163 // as part of the protocol to make sure that the calling thread has
2164 // not lost the race to a contending thread or to a thread that just
2165 // wants to use the ObjectMonitor*.
2166 //
2167 // The ObjectMonitor has been successfully async deflated when:
2168 // (owner == DEFLATER_MARKER && ref_count < 0)
2169 // Contending threads or ObjectMonitor* using threads that see those
2170 // values know to retry their operation.
2171 //
2172 bool ObjectSynchronizer::deflate_monitor_using_JT(ObjectMonitor* mid,
2173                                                   ObjectMonitor** free_head_p,
2174                                                   ObjectMonitor** free_tail_p) {
2175   assert(AsyncDeflateIdleMonitors, "sanity check");
2176   assert(Thread::current()->is_Java_thread(), "precondition");
2177   // A newly allocated ObjectMonitor should not be seen here so we
2178   // avoid an endless inflate/deflate cycle.
2179   assert(mid->is_old(), "must be old: allocation_state=%d",
2180          (int) mid->allocation_state());
2181 
2182   if (mid->is_busy() || mid->ref_count() != 0) {
2183     // Easy checks are first - the ObjectMonitor is busy or ObjectMonitor*
2184     // is in use so no deflation.
2185     return false;
2186   }
2187 
2188   if (mid->try_set_owner_from(DEFLATER_MARKER, NULL) == NULL) {
2189     // ObjectMonitor is not owned by another thread. Our setting
2190     // owner to DEFLATER_MARKER forces any contending thread through
2191     // the slow path. This is just the first part of the async
2192     // deflation dance.
2193 
2194     if (mid->_contentions != 0 || mid->_waiters != 0) {
2195       // Another thread has raced to enter the ObjectMonitor after
2196       // mid->is_busy() above or has already entered and waited on
2197       // it which makes it busy so no deflation. Restore owner to
2198       // NULL if it is still DEFLATER_MARKER.
2199       mid->try_set_owner_from(NULL, DEFLATER_MARKER);
2200       return false;
2201     }
2202 
2203     if (Atomic::cmpxchg(&mid->_ref_count, (jint)0, -max_jint) == 0) {
2204       // Make ref_count negative to force any contending threads or
2205       // ObjectMonitor* using threads to retry. This is the second
2206       // part of the async deflation dance.
2207 
2208       if (mid->owner_is_DEFLATER_MARKER()) {
2209         // If owner is still DEFLATER_MARKER, then we have successfully
2210         // signaled any contending threads to retry. If it is not, then we
2211         // have lost the race to an entering thread and the ObjectMonitor
2212         // is now busy. This is the third and final part of the async
2213         // deflation dance.
2214         // Note: This owner check solves the ABA problem with ref_count
2215         // where another thread acquired the ObjectMonitor, finished
2216         // using it and restored the ref_count to zero.
2217 
2218         // Sanity checks for the races:
2219         guarantee(mid->_contentions == 0, "must be 0: contentions=%d",
2220                   mid->_contentions);
2221         guarantee(mid->_waiters == 0, "must be 0: waiters=%d", mid->_waiters);
2222         guarantee(mid->_cxq == NULL, "must be no contending threads: cxq="
2223                   INTPTR_FORMAT, p2i(mid->_cxq));
2224         guarantee(mid->_EntryList == NULL,
2225                   "must be no entering threads: EntryList=" INTPTR_FORMAT,
2226                   p2i(mid->_EntryList));
2227 
2228         const oop obj = (oop) mid->object();
2229         if (log_is_enabled(Trace, monitorinflation)) {
2230           ResourceMark rm;
2231           log_trace(monitorinflation)("deflate_monitor_using_JT: "
2232                                       "object=" INTPTR_FORMAT ", mark="
2233                                       INTPTR_FORMAT ", type='%s'",
2234                                       p2i(obj), obj->mark().value(),
2235                                       obj->klass()->external_name());
2236         }
2237 
2238         // Install the old mark word if nobody else has already done it.
2239         mid->install_displaced_markword_in_object(obj);
2240         mid->clear_using_JT();
2241 
2242         assert(mid->object() == NULL, "must be NULL: object=" INTPTR_FORMAT,
2243                p2i(mid->object()));
2244         assert(mid->is_free(), "must be free: allocation_state=%d",
2245                (int) mid->allocation_state());
2246 
2247         // Move the deflated ObjectMonitor to the working free list
2248         // defined by free_head_p and free_tail_p. No races on this list
2249         // so no need for load_acquire() or store_release().
2250         if (*free_head_p == NULL) {
2251           // First one on the list.
2252           *free_head_p = mid;
2253         }
2254         if (*free_tail_p != NULL) {
2255           // We append to the list so the caller can use mid->_next_om
2256           // to fix the linkages in its context.
2257           ObjectMonitor* prevtail = *free_tail_p;
2258           // Should have been cleaned up by the caller:
2259           ObjectMonitor* next = mark_next_loop(prevtail);
2260           assert(unmarked_next(prevtail) == NULL, "must be NULL: _next_om="
2261                  INTPTR_FORMAT, p2i(unmarked_next(prevtail)));
2262           set_next(prevtail, mid);  // prevtail now points to mid (and is unmarked)
2263         }
2264         *free_tail_p = mid;
2265 
2266         // At this point, mid->_next_om still refers to its current
2267         // value and another ObjectMonitor's _next_om field still
2268         // refers to this ObjectMonitor. Those linkages have to be
2269         // cleaned up by the caller who has the complete context.
2270 
2271         // We leave owner == DEFLATER_MARKER and ref_count < 0
2272         // to force any racing threads to retry.
2273         return true;  // Success, ObjectMonitor has been deflated.
2274       }
2275 
2276       // The owner was changed from DEFLATER_MARKER so we lost the
2277       // race since the ObjectMonitor is now busy.
2278 
2279       // Add back max_jint to restore the ref_count field to its
2280       // proper value (which may not be what we saw above):
2281       Atomic::add(&mid->_ref_count, max_jint);
2282 
2283       DEBUG_ONLY(jint l_ref_count = mid->ref_count();)
2284       assert(l_ref_count >= 0, "must not be negative: l_ref_count=%d, ref_count=%d",
2285              l_ref_count, mid->ref_count());
2286       return false;
2287     }
2288 
2289     // The ref_count was no longer 0 so we lost the race since the
2290     // ObjectMonitor is now busy or the ObjectMonitor* is now is use.
2291     // Restore owner to NULL if it is still DEFLATER_MARKER:
2292     mid->try_set_owner_from(NULL, DEFLATER_MARKER);
2293   }
2294 
2295   // The owner field is no longer NULL so we lost the race since the
2296   // ObjectMonitor is now busy.
2297   return false;
2298 }
2299 
2300 // Walk a given monitor list, and deflate idle monitors.
2301 // The given list could be a per-thread list or a global list.
2302 //
2303 // In the case of parallel processing of thread local monitor lists,
2304 // work is done by Threads::parallel_threads_do() which ensures that
2305 // each Java thread is processed by exactly one worker thread, and
2306 // thus avoid conflicts that would arise when worker threads would
2307 // process the same monitor lists concurrently.
2308 //
2309 // See also ParallelSPCleanupTask and
2310 // SafepointSynchronize::do_cleanup_tasks() in safepoint.cpp and
2311 // Threads::parallel_java_threads_do() in thread.cpp.
2312 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor* volatile * list_p,
2313                                              int volatile * count_p,
2314                                              ObjectMonitor** free_head_p,
2315                                              ObjectMonitor** free_tail_p) {
2316   ObjectMonitor* cur_mid_in_use = NULL;
2317   ObjectMonitor* mid = NULL;
2318   ObjectMonitor* next = NULL;
2319   int deflated_count = 0;
2320 
2321   // We use the simpler mark-mid-as-we-go protocol since there are no
2322   // parallel list deletions since we are at a safepoint.
2323   if (!mark_list_head(list_p, &mid, &next)) {
2324     return 0;  // The list is empty so nothing to deflate.
2325   }
2326 
2327   while (true) {
2328     oop obj = (oop) mid->object();
2329     if (obj != NULL && deflate_monitor(mid, obj, free_head_p, free_tail_p)) {
2330       // Deflation succeeded and already updated free_head_p and
2331       // free_tail_p as needed. Finish the move to the local free list
2332       // by unlinking mid from the global or per-thread in-use list.
2333       if (cur_mid_in_use == NULL) {
2334         // mid is the list head and it is marked. Switch the list head
2335         // to next which unmarks the list head, but leaves mid marked:
2336         *list_p = next;
2337         // mark_list_head() used cmpxchg() above, switching list head can be lazier:
2338         OrderAccess::storestore();
2339       } else {
2340         // mid is marked. Switch cur_mid_in_use's next field to next
2341         // which is safe because we have no parallel list deletions,
2342         // but we leave mid marked:
2343         Atomic::release_store(&cur_mid_in_use->_next_om, next);
2344       }
2345       // At this point mid is disconnected from the in-use list so
2346       // its marked next field no longer has any effects.
2347       deflated_count++;
2348       Atomic::dec(count_p);
2349       // mid is current tail in the free_head_p list so NULL terminate it
2350       // (which also unmarks it):
2351       set_next(mid, NULL);
2352 
2353       // All the list management is done so move on to the next one:
2354       mid = next;
2355     } else {
2356       set_next(mid, next);  // unmark next field
2357 
2358       // All the list management is done so move on to the next one:
2359       cur_mid_in_use = mid;
2360       mid = next;
2361     }
2362     if (mid == NULL) {
2363       break;  // Reached end of the list so nothing more to deflate.
2364     }
2365     // Mark mid's next field so we can possibly deflate it:
2366     next = mark_next_loop(mid);
2367   }
2368   return deflated_count;
2369 }
2370 
2371 // Walk a given ObjectMonitor list and deflate idle ObjectMonitors using
2372 // a JavaThread. Returns the number of deflated ObjectMonitors. The given
2373 // list could be a per-thread in-use list or the global in-use list.
2374 // If a safepoint has started, then we save state via saved_mid_in_use_p
2375 // and return to the caller to honor the safepoint.
2376 //
2377 int ObjectSynchronizer::deflate_monitor_list_using_JT(ObjectMonitor* volatile * list_p,
2378                                                       int volatile * count_p,
2379                                                       ObjectMonitor** free_head_p,
2380                                                       ObjectMonitor** free_tail_p,
2381                                                       ObjectMonitor** saved_mid_in_use_p) {
2382   assert(AsyncDeflateIdleMonitors, "sanity check");
2383   assert(Thread::current()->is_Java_thread(), "precondition");
2384 
2385   ObjectMonitor* cur_mid_in_use = NULL;
2386   ObjectMonitor* mid = NULL;
2387   ObjectMonitor* next = NULL;
2388   ObjectMonitor* next_next = NULL;
2389   int deflated_count = 0;
2390 
2391   // We use the more complicated mark-cur_mid_in_use-and-mid-as-we-go
2392   // protocol because om_release() can do list deletions in parallel.
2393   // We also mark-next-next-as-we-go to prevent an om_flush() that is
2394   // behind this thread from passing us.
2395   if (*saved_mid_in_use_p == NULL) {
2396     // No saved state so start at the beginning.
2397     // Mark the list head's next field so we can possibly deflate it:
2398     if (!mark_list_head(list_p, &mid, &next)) {
2399       return 0;  // The list is empty so nothing to deflate.
2400     }
2401   } else {
2402     // We're restarting after a safepoint so restore the necessary state
2403     // before we resume.
2404     cur_mid_in_use = *saved_mid_in_use_p;
2405     // Mark cur_mid_in_use's next field so we can possibly update its
2406     // next field to extract a deflated ObjectMonitor.
2407     mid = mark_next_loop(cur_mid_in_use);
2408     if (mid == NULL) {
2409       set_next(cur_mid_in_use, NULL);  // unmark next field
2410       *saved_mid_in_use_p = NULL;
2411       return 0;  // The remainder is empty so nothing more to deflate.
2412     }
2413     // Mark mid's next field so we can possibly deflate it:
2414     next = mark_next_loop(mid);
2415   }
2416 
2417   while (true) {
2418     // The current mid's next field is marked at this point. If we have
2419     // a cur_mid_in_use, then its next field is also marked at this point.
2420 
2421     if (next != NULL) {
2422       // We mark next's next field so that an om_flush()
2423       // thread that is behind us cannot pass us when we
2424       // unmark the current mid's next field.
2425       next_next = mark_next_loop(next);
2426     }
2427 
2428     // Only try to deflate if there is an associated Java object and if
2429     // mid is old (is not newly allocated and is not newly freed).
2430     if (mid->object() != NULL && mid->is_old() &&
2431         deflate_monitor_using_JT(mid, free_head_p, free_tail_p)) {
2432       // Deflation succeeded and already updated free_head_p and
2433       // free_tail_p as needed. Finish the move to the local free list
2434       // by unlinking mid from the global or per-thread in-use list.
2435       if (cur_mid_in_use == NULL) {
2436         // mid is the list head and it is marked. Switch the list head
2437         // to next which is also marked (if not NULL) and also leave
2438         // mid marked:
2439         *list_p = next;
2440         // mark_list_head() used cmpxchg() above, switching list head can be lazier:
2441         OrderAccess::storestore();
2442       } else {
2443         ObjectMonitor* marked_next = mark_om_ptr(next);
2444         // mid and cur_mid_in_use are marked. Switch cur_mid_in_use's
2445         // next field to marked_next and also leave mid marked:
2446         Atomic::release_store(&cur_mid_in_use->_next_om, marked_next);
2447       }
2448       // At this point mid is disconnected from the in-use list so
2449       // its marked next field no longer has any effects.
2450       deflated_count++;
2451       Atomic::dec(count_p);
2452       // mid is current tail in the free_head_p list so NULL terminate it
2453       // (which also unmarks it):
2454       set_next(mid, NULL);
2455 
2456       // All the list management is done so move on to the next one:
2457       mid = next;  // mid keeps non-NULL next's marked next field
2458       next = next_next;
2459     } else {
2460       // mid is considered in-use if it does not have an associated
2461       // Java object or mid is not old or deflation did not succeed.
2462       // A mid->is_new() node can be seen here when it is freshly
2463       // returned by om_alloc() (and skips the deflation code path).
2464       // A mid->is_old() node can be seen here when deflation failed.
2465       // A mid->is_free() node can be seen here when a fresh node from
2466       // om_alloc() is released by om_release() due to losing the race
2467       // in inflate().
2468 
2469       // All the list management is done so move on to the next one:
2470       if (cur_mid_in_use != NULL) {
2471         set_next(cur_mid_in_use, mid);  // umark cur_mid_in_use
2472       }
2473       // The next cur_mid_in_use keeps mid's marked next field so
2474       // that it is stable for a possible next field change. It
2475       // cannot be modified by om_release() while it is marked.
2476       cur_mid_in_use = mid;
2477       mid = next;  // mid keeps non-NULL next's marked next field
2478       next = next_next;
2479 
2480       if (SafepointSynchronize::is_synchronizing() &&
2481           cur_mid_in_use != *list_p && cur_mid_in_use->is_old()) {
2482         // If a safepoint has started and cur_mid_in_use is not the list
2483         // head and is old, then it is safe to use as saved state. Return
2484         // to the caller before blocking.
2485         *saved_mid_in_use_p = cur_mid_in_use;
2486         set_next(cur_mid_in_use, mid);  // umark cur_mid_in_use
2487         if (mid != NULL) {
2488           set_next(mid, next);  // umark mid
2489         }
2490         return deflated_count;
2491       }
2492     }
2493     if (mid == NULL) {
2494       if (cur_mid_in_use != NULL) {
2495         set_next(cur_mid_in_use, mid);  // umark cur_mid_in_use
2496       }
2497       break;  // Reached end of the list so nothing more to deflate.
2498     }
2499 
2500     // The current mid's next field is marked at this point. If we have
2501     // a cur_mid_in_use, then its next field is also marked at this point.
2502   }
2503   // We finished the list without a safepoint starting so there's
2504   // no need to save state.
2505   *saved_mid_in_use_p = NULL;
2506   return deflated_count;
2507 }
2508 
2509 void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2510   counters->n_in_use = 0;              // currently associated with objects
2511   counters->n_in_circulation = 0;      // extant
2512   counters->n_scavenged = 0;           // reclaimed (global and per-thread)
2513   counters->per_thread_scavenged = 0;  // per-thread scavenge total
2514   counters->per_thread_times = 0.0;    // per-thread scavenge times
2515   OrderAccess::storestore();           // flush inits for worker threads
2516 }
2517 
2518 void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) {
2519   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2520 
2521   if (AsyncDeflateIdleMonitors) {
2522     // Nothing to do when global idle ObjectMonitors are deflated using
2523     // a JavaThread unless a special deflation has been requested.
2524     if (!is_special_deflation_requested()) {
2525       return;
2526     }
2527   }
2528 
2529   bool deflated = false;
2530 
2531   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged monitors
2532   ObjectMonitor* free_tail_p = NULL;
2533   elapsedTimer timer;
2534 
2535   if (log_is_enabled(Info, monitorinflation)) {
2536     timer.start();
2537   }
2538 
2539   // Note: the thread-local monitors lists get deflated in
2540   // a separate pass. See deflate_thread_local_monitors().
2541 
2542   // For moribund threads, scan g_om_in_use_list
2543   int deflated_count = 0;
2544   if (g_om_in_use_list != NULL) {
2545     // Update n_in_circulation before g_om_in_use_count is updated by deflation.
2546     Atomic::add(&counters->n_in_circulation, g_om_in_use_count);
2547 
2548     deflated_count = deflate_monitor_list(&g_om_in_use_list, &g_om_in_use_count, &free_head_p, &free_tail_p);
2549     Atomic::add(&counters->n_in_use, g_om_in_use_count);
2550   }
2551 
2552   if (free_head_p != NULL) {
2553     // Move the deflated ObjectMonitors back to the global free list.
2554     // No races on the working free list so no need for load_acquire().
2555     guarantee(free_tail_p != NULL && deflated_count > 0, "invariant");
2556     assert(free_tail_p->_next_om == NULL, "must be NULL: _next_om="
2557            INTPTR_FORMAT, p2i(free_tail_p->_next_om));
2558     prepend_list_to_g_free_list(free_head_p, free_tail_p, deflated_count);
2559     Atomic::add(&counters->n_scavenged, deflated_count);
2560   }
2561   timer.stop();
2562 
2563   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2564   LogStreamHandle(Info, monitorinflation) lsh_info;
2565   LogStream* ls = NULL;
2566   if (log_is_enabled(Debug, monitorinflation)) {
2567     ls = &lsh_debug;
2568   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2569     ls = &lsh_info;
2570   }
2571   if (ls != NULL) {
2572     ls->print_cr("deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2573   }
2574 }
2575 
2576 class HandshakeForDeflation : public HandshakeClosure {
2577  public:
2578   HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {}
2579 
2580   void do_thread(Thread* thread) {
2581     log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread="
2582                                 INTPTR_FORMAT, p2i(thread));
2583   }
2584 };
2585 
2586 void ObjectSynchronizer::deflate_idle_monitors_using_JT() {
2587   assert(AsyncDeflateIdleMonitors, "sanity check");
2588 
2589   // Deflate any global idle monitors.
2590   deflate_global_idle_monitors_using_JT();
2591 
2592   int count = 0;
2593   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2594     if (jt->om_in_use_count > 0 && !jt->is_exiting()) {
2595       // This JavaThread is using ObjectMonitors so deflate any that
2596       // are idle unless this JavaThread is exiting; do not race with
2597       // ObjectSynchronizer::om_flush().
2598       deflate_per_thread_idle_monitors_using_JT(jt);
2599       count++;
2600     }
2601   }
2602   if (count > 0) {
2603     log_debug(monitorinflation)("did async deflation of idle monitors for %d thread(s).", count);
2604   }
2605 
2606   log_info(monitorinflation)("async g_om_population=%d, g_om_in_use_count=%d, "
2607                              "g_om_free_count=%d, g_om_wait_count=%d",
2608                              g_om_population, g_om_in_use_count,
2609                              g_om_free_count, g_om_wait_count);
2610 
2611   // The ServiceThread's async deflation request has been processed.
2612   set_is_async_deflation_requested(false);
2613 
2614   if (HandshakeAfterDeflateIdleMonitors && g_om_wait_count > 0) {
2615     // There are deflated ObjectMonitors waiting for a handshake
2616     // (or a safepoint) for safety.
2617 
2618     // g_wait_list and g_om_wait_count are only updated by the calling
2619     // thread so no need for load_acquire() or release_store().
2620     ObjectMonitor* list = g_wait_list;
2621     ADIM_guarantee(list != NULL, "g_wait_list must not be NULL");
2622     int count = g_om_wait_count;
2623     g_om_wait_count = 0;
2624     g_wait_list = NULL;
2625     OrderAccess::storestore();  // Lazier memory sync is okay for list walkers.
2626 
2627     // Find the tail for prepend_list_to_common(). No need to mark
2628     // ObjectMonitors for this list walk since only the deflater
2629     // thread manages the wait list.
2630     int l_count = 0;
2631     ObjectMonitor* tail = NULL;
2632     for (ObjectMonitor* n = list; n != NULL; n = unmarked_next(n)) {
2633       tail = n;
2634       l_count++;
2635     }
2636     ADIM_guarantee(count == l_count, "count=%d != l_count=%d", count, l_count);
2637 
2638     // Will execute a safepoint if !ThreadLocalHandshakes:
2639     HandshakeForDeflation hfd_hc;
2640     Handshake::execute(&hfd_hc);
2641 
2642     prepend_list_to_common(list, tail, count, &g_free_list, &g_om_free_count);
2643 
2644     log_info(monitorinflation)("moved %d idle monitors from global waiting list to global free list", count);
2645   }
2646 }
2647 
2648 // Deflate global idle ObjectMonitors using a JavaThread.
2649 //
2650 void ObjectSynchronizer::deflate_global_idle_monitors_using_JT() {
2651   assert(AsyncDeflateIdleMonitors, "sanity check");
2652   assert(Thread::current()->is_Java_thread(), "precondition");
2653   JavaThread* self = JavaThread::current();
2654 
2655   deflate_common_idle_monitors_using_JT(true /* is_global */, self);
2656 }
2657 
2658 // Deflate the specified JavaThread's idle ObjectMonitors using a JavaThread.
2659 //
2660 void ObjectSynchronizer::deflate_per_thread_idle_monitors_using_JT(JavaThread* target) {
2661   assert(AsyncDeflateIdleMonitors, "sanity check");
2662   assert(Thread::current()->is_Java_thread(), "precondition");
2663 
2664   deflate_common_idle_monitors_using_JT(false /* !is_global */, target);
2665 }
2666 
2667 // Deflate global or per-thread idle ObjectMonitors using a JavaThread.
2668 //
2669 void ObjectSynchronizer::deflate_common_idle_monitors_using_JT(bool is_global, JavaThread* target) {
2670   JavaThread* self = JavaThread::current();
2671 
2672   int deflated_count = 0;
2673   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged ObjectMonitors
2674   ObjectMonitor* free_tail_p = NULL;
2675   ObjectMonitor* saved_mid_in_use_p = NULL;
2676   elapsedTimer timer;
2677 
2678   if (log_is_enabled(Info, monitorinflation)) {
2679     timer.start();
2680   }
2681 
2682   if (is_global) {
2683     OM_PERFDATA_OP(MonExtant, set_value(g_om_in_use_count));
2684   } else {
2685     OM_PERFDATA_OP(MonExtant, inc(target->om_in_use_count));
2686   }
2687 
2688   do {
2689     int local_deflated_count;
2690     if (is_global) {
2691       local_deflated_count = deflate_monitor_list_using_JT(&g_om_in_use_list, &g_om_in_use_count, &free_head_p, &free_tail_p, &saved_mid_in_use_p);
2692     } else {
2693       local_deflated_count = deflate_monitor_list_using_JT(&target->om_in_use_list, &target->om_in_use_count, &free_head_p, &free_tail_p, &saved_mid_in_use_p);
2694     }
2695     deflated_count += local_deflated_count;
2696 
2697     if (free_head_p != NULL) {
2698       // Move the deflated ObjectMonitors to the global free list.
2699       // No races on the working list so no need for load_acquire().
2700       guarantee(free_tail_p != NULL && local_deflated_count > 0, "free_tail_p=" INTPTR_FORMAT ", local_deflated_count=%d", p2i(free_tail_p), local_deflated_count);
2701       // Note: The target thread can be doing an om_alloc() that
2702       // is trying to prepend an ObjectMonitor on its in-use list
2703       // at the same time that we have deflated the current in-use
2704       // list head and put it on the local free list. prepend_to_common()
2705       // will detect the race and retry which avoids list corruption,
2706       // but the next field in free_tail_p can flicker to marked
2707       // and then unmarked while prepend_to_common() is sorting it
2708       // all out.
2709       assert(unmarked_next(free_tail_p) == NULL, "must be NULL: _next_om="
2710              INTPTR_FORMAT, p2i(unmarked_next(free_tail_p)));
2711 
2712       if (HandshakeAfterDeflateIdleMonitors) {
2713         prepend_list_to_g_wait_list(free_head_p, free_tail_p, local_deflated_count);
2714       } else {
2715         prepend_list_to_g_free_list(free_head_p, free_tail_p, local_deflated_count);
2716       }
2717 
2718       OM_PERFDATA_OP(Deflations, inc(local_deflated_count));
2719     }
2720 
2721     if (saved_mid_in_use_p != NULL) {
2722       // deflate_monitor_list_using_JT() detected a safepoint starting.
2723       timer.stop();
2724       {
2725         if (is_global) {
2726           log_debug(monitorinflation)("pausing deflation of global idle monitors for a safepoint.");
2727         } else {
2728           log_debug(monitorinflation)("jt=" INTPTR_FORMAT ": pausing deflation of per-thread idle monitors for a safepoint.", p2i(target));
2729         }
2730         assert(SafepointSynchronize::is_synchronizing(), "sanity check");
2731         ThreadBlockInVM blocker(self);
2732       }
2733       // Prepare for another loop after the safepoint.
2734       free_head_p = NULL;
2735       free_tail_p = NULL;
2736       if (log_is_enabled(Info, monitorinflation)) {
2737         timer.start();
2738       }
2739     }
2740   } while (saved_mid_in_use_p != NULL);
2741   timer.stop();
2742 
2743   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2744   LogStreamHandle(Info, monitorinflation) lsh_info;
2745   LogStream* ls = NULL;
2746   if (log_is_enabled(Debug, monitorinflation)) {
2747     ls = &lsh_debug;
2748   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2749     ls = &lsh_info;
2750   }
2751   if (ls != NULL) {
2752     if (is_global) {
2753       ls->print_cr("async-deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
2754     } else {
2755       ls->print_cr("jt=" INTPTR_FORMAT ": async-deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(target), timer.seconds(), deflated_count);
2756     }
2757   }
2758 }
2759 
2760 void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) {
2761   // Report the cumulative time for deflating each thread's idle
2762   // monitors. Note: if the work is split among more than one
2763   // worker thread, then the reported time will likely be more
2764   // than a beginning to end measurement of the phase.
2765   log_info(safepoint, cleanup)("deflating per-thread idle monitors, %3.7f secs, monitors=%d", counters->per_thread_times, counters->per_thread_scavenged);
2766 
2767   bool needs_special_deflation = is_special_deflation_requested();
2768   if (AsyncDeflateIdleMonitors && !needs_special_deflation) {
2769     // Nothing to do when idle ObjectMonitors are deflated using
2770     // a JavaThread unless a special deflation has been requested.
2771     return;
2772   }
2773 
2774   if (log_is_enabled(Debug, monitorinflation)) {
2775     // exit_globals()'s call to audit_and_print_stats() is done
2776     // at the Info level and not at a safepoint.
2777     // For async deflation, audit_and_print_stats() is called in
2778     // ObjectSynchronizer::do_safepoint_work() at the Debug level
2779     // at a safepoint.
2780     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
2781   } else if (log_is_enabled(Info, monitorinflation)) {
2782     log_info(monitorinflation)("g_om_population=%d, g_om_in_use_count=%d, "
2783                                "g_om_free_count=%d, g_om_wait_count=%d",
2784                                g_om_population, g_om_in_use_count,
2785                                g_om_free_count, g_om_wait_count);
2786   }
2787 
2788   Atomic::store(&_forceMonitorScavenge, 0);    // Reset
2789 
2790   OM_PERFDATA_OP(Deflations, inc(counters->n_scavenged));
2791   OM_PERFDATA_OP(MonExtant, set_value(counters->n_in_circulation));
2792 
2793   GVars.stw_random = os::random();
2794   GVars.stw_cycle++;
2795 
2796   if (needs_special_deflation) {
2797     set_is_special_deflation_requested(false);  // special deflation is done
2798   }
2799 }
2800 
2801 void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) {
2802   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
2803 
2804   if (AsyncDeflateIdleMonitors && !is_special_deflation_requested()) {
2805     // Nothing to do if a special deflation has NOT been requested.
2806     return;
2807   }
2808 
2809   ObjectMonitor* free_head_p = NULL;  // Local SLL of scavenged monitors
2810   ObjectMonitor* free_tail_p = NULL;
2811   elapsedTimer timer;
2812 
2813   if (log_is_enabled(Info, safepoint, cleanup) ||
2814       log_is_enabled(Info, monitorinflation)) {
2815     timer.start();
2816   }
2817 
2818   // Update n_in_circulation before om_in_use_count is updated by deflation.
2819   Atomic::add(&counters->n_in_circulation, thread->om_in_use_count);
2820 
2821   int deflated_count = deflate_monitor_list(&thread->om_in_use_list, &thread->om_in_use_count, &free_head_p, &free_tail_p);
2822   Atomic::add(&counters->n_in_use, thread->om_in_use_count);
2823 
2824   if (free_head_p != NULL) {
2825     // Move the deflated ObjectMonitors back to the global free list.
2826     // No races on the working list so no need for load_acquire().
2827     guarantee(free_tail_p != NULL && deflated_count > 0, "invariant");
2828     assert(free_tail_p->_next_om == NULL, "must be NULL: _next_om="
2829            INTPTR_FORMAT, p2i(free_tail_p->_next_om));
2830     prepend_list_to_g_free_list(free_head_p, free_tail_p, deflated_count);
2831     Atomic::add(&counters->n_scavenged, deflated_count);
2832     Atomic::add(&counters->per_thread_scavenged, deflated_count);
2833   }
2834 
2835   timer.stop();
2836   // Safepoint logging cares about cumulative per_thread_times and
2837   // we'll capture most of the cost, but not the muxRelease() which
2838   // should be cheap.
2839   counters->per_thread_times += timer.seconds();
2840 
2841   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2842   LogStreamHandle(Info, monitorinflation) lsh_info;
2843   LogStream* ls = NULL;
2844   if (log_is_enabled(Debug, monitorinflation)) {
2845     ls = &lsh_debug;
2846   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
2847     ls = &lsh_info;
2848   }
2849   if (ls != NULL) {
2850     ls->print_cr("jt=" INTPTR_FORMAT ": deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(thread), timer.seconds(), deflated_count);
2851   }
2852 }
2853 
2854 // Monitor cleanup on JavaThread::exit
2855 
2856 // Iterate through monitor cache and attempt to release thread's monitors
2857 // Gives up on a particular monitor if an exception occurs, but continues
2858 // the overall iteration, swallowing the exception.
2859 class ReleaseJavaMonitorsClosure: public MonitorClosure {
2860  private:
2861   TRAPS;
2862 
2863  public:
2864   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
2865   void do_monitor(ObjectMonitor* mid) {
2866     if (mid->owner() == THREAD) {
2867       (void)mid->complete_exit(CHECK);
2868     }
2869   }
2870 };
2871 
2872 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
2873 // ignored.  This is meant to be called during JNI thread detach which assumes
2874 // all remaining monitors are heavyweight.  All exceptions are swallowed.
2875 // Scanning the extant monitor list can be time consuming.
2876 // A simple optimization is to add a per-thread flag that indicates a thread
2877 // called jni_monitorenter() during its lifetime.
2878 //
2879 // Instead of No_Savepoint_Verifier it might be cheaper to
2880 // use an idiom of the form:
2881 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
2882 //   <code that must not run at safepoint>
2883 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
2884 // Since the tests are extremely cheap we could leave them enabled
2885 // for normal product builds.
2886 
2887 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
2888   assert(THREAD == JavaThread::current(), "must be current Java thread");
2889   NoSafepointVerifier nsv;
2890   ReleaseJavaMonitorsClosure rjmc(THREAD);
2891   ObjectSynchronizer::monitors_iterate(&rjmc);
2892   THREAD->clear_pending_exception();
2893 }
2894 
2895 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
2896   switch (cause) {
2897     case inflate_cause_vm_internal:    return "VM Internal";
2898     case inflate_cause_monitor_enter:  return "Monitor Enter";
2899     case inflate_cause_wait:           return "Monitor Wait";
2900     case inflate_cause_notify:         return "Monitor Notify";
2901     case inflate_cause_hash_code:      return "Monitor Hash Code";
2902     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
2903     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
2904     default:
2905       ShouldNotReachHere();
2906   }
2907   return "Unknown";
2908 }
2909 
2910 //------------------------------------------------------------------------------
2911 // Debugging code
2912 
2913 u_char* ObjectSynchronizer::get_gvars_addr() {
2914   return (u_char*)&GVars;
2915 }
2916 
2917 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() {
2918   return (u_char*)&GVars.hc_sequence;
2919 }
2920 
2921 size_t ObjectSynchronizer::get_gvars_size() {
2922   return sizeof(SharedGlobals);
2923 }
2924 
2925 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() {
2926   return (u_char*)&GVars.stw_random;
2927 }
2928 
2929 void ObjectSynchronizer::audit_and_print_stats(bool on_exit) {
2930   assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant");
2931 
2932   LogStreamHandle(Debug, monitorinflation) lsh_debug;
2933   LogStreamHandle(Info, monitorinflation) lsh_info;
2934   LogStreamHandle(Trace, monitorinflation) lsh_trace;
2935   LogStream* ls = NULL;
2936   if (log_is_enabled(Trace, monitorinflation)) {
2937     ls = &lsh_trace;
2938   } else if (log_is_enabled(Debug, monitorinflation)) {
2939     ls = &lsh_debug;
2940   } else if (log_is_enabled(Info, monitorinflation)) {
2941     ls = &lsh_info;
2942   }
2943   assert(ls != NULL, "sanity check");
2944 
2945   // Log counts for the global and per-thread monitor lists:
2946   int chk_om_population = log_monitor_list_counts(ls);
2947   int error_cnt = 0;
2948 
2949   ls->print_cr("Checking global lists:");
2950 
2951   // Check g_om_population:
2952   if (g_om_population == chk_om_population) {
2953     ls->print_cr("g_om_population=%d equals chk_om_population=%d",
2954                  g_om_population, chk_om_population);
2955   } else {
2956     // With lock free access to the monitor lists, it is possible for
2957     // log_monitor_list_counts() to return a value that doesn't match
2958     // g_om_population. So far a higher value has been seen in testing
2959     // so something is being double counted by log_monitor_list_counts().
2960     ls->print_cr("WARNING: g_om_population=%d is not equal to "
2961                  "chk_om_population=%d", g_om_population, chk_om_population);
2962   }
2963 
2964   // Check g_om_in_use_list and g_om_in_use_count:
2965   chk_global_in_use_list_and_count(ls, &error_cnt);
2966 
2967   // Check g_free_list and g_om_free_count:
2968   chk_global_free_list_and_count(ls, &error_cnt);
2969 
2970   if (HandshakeAfterDeflateIdleMonitors) {
2971     // Check g_wait_list and g_om_wait_count:
2972     chk_global_wait_list_and_count(ls, &error_cnt);
2973   }
2974 
2975   ls->print_cr("Checking per-thread lists:");
2976 
2977   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2978     // Check om_in_use_list and om_in_use_count:
2979     chk_per_thread_in_use_list_and_count(jt, ls, &error_cnt);
2980 
2981     // Check om_free_list and om_free_count:
2982     chk_per_thread_free_list_and_count(jt, ls, &error_cnt);
2983   }
2984 
2985   if (error_cnt == 0) {
2986     ls->print_cr("No errors found in monitor list checks.");
2987   } else {
2988     log_error(monitorinflation)("found monitor list errors: error_cnt=%d", error_cnt);
2989   }
2990 
2991   if ((on_exit && log_is_enabled(Info, monitorinflation)) ||
2992       (!on_exit && log_is_enabled(Trace, monitorinflation))) {
2993     // When exiting this log output is at the Info level. When called
2994     // at a safepoint, this log output is at the Trace level since
2995     // there can be a lot of it.
2996     log_in_use_monitor_details(ls);
2997   }
2998 
2999   ls->flush();
3000 
3001   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
3002 }
3003 
3004 // Check a free monitor entry; log any errors.
3005 void ObjectSynchronizer::chk_free_entry(JavaThread* jt, ObjectMonitor* n,
3006                                         outputStream * out, int *error_cnt_p) {
3007   stringStream ss;
3008   if (n->is_busy()) {
3009     if (jt != NULL) {
3010       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3011                     ": free per-thread monitor must not be busy: %s", p2i(jt),
3012                     p2i(n), n->is_busy_to_string(&ss));
3013     } else {
3014       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
3015                     "must not be busy: %s", p2i(n), n->is_busy_to_string(&ss));
3016     }
3017     *error_cnt_p = *error_cnt_p + 1;
3018   }
3019   if (n->header().value() != 0) {
3020     if (jt != NULL) {
3021       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3022                     ": free per-thread monitor must have NULL _header "
3023                     "field: _header=" INTPTR_FORMAT, p2i(jt), p2i(n),
3024                     n->header().value());
3025       *error_cnt_p = *error_cnt_p + 1;
3026     } else if (!AsyncDeflateIdleMonitors) {
3027       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
3028                     "must have NULL _header field: _header=" INTPTR_FORMAT,
3029                     p2i(n), n->header().value());
3030       *error_cnt_p = *error_cnt_p + 1;
3031     }
3032   }
3033   if (n->object() != NULL) {
3034     if (jt != NULL) {
3035       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3036                     ": free per-thread monitor must have NULL _object "
3037                     "field: _object=" INTPTR_FORMAT, p2i(jt), p2i(n),
3038                     p2i(n->object()));
3039     } else {
3040       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
3041                     "must have NULL _object field: _object=" INTPTR_FORMAT,
3042                     p2i(n), p2i(n->object()));
3043     }
3044     *error_cnt_p = *error_cnt_p + 1;
3045   }
3046 }
3047 
3048 // Check the global free list and count; log the results of the checks.
3049 void ObjectSynchronizer::chk_global_free_list_and_count(outputStream * out,
3050                                                         int *error_cnt_p) {
3051   int chk_om_free_count = 0;
3052   ObjectMonitor* cur = NULL;
3053   ObjectMonitor* next = NULL;
3054   if (mark_list_head(&g_free_list, &cur, &next)) {
3055     // Marked the global free list head so process the list.
3056     while (true) {
3057       chk_free_entry(NULL /* jt */, cur, out, error_cnt_p);
3058       chk_om_free_count++;
3059 
3060       mark_next_for_traversal(&cur, &next);
3061       if (cur == NULL) {
3062         break;
3063       }
3064     }
3065   }
3066   if (g_om_free_count == chk_om_free_count) {
3067     out->print_cr("g_om_free_count=%d equals chk_om_free_count=%d",
3068                   g_om_free_count, chk_om_free_count);
3069   } else {
3070     // With lock free access to g_free_list, it is possible for an
3071     // ObjectMonitor to be prepended to g_free_list after we started
3072     // calculating chk_om_free_count so g_om_free_count may not
3073     // match anymore.
3074     out->print_cr("WARNING: g_om_free_count=%d is not equal to "
3075                   "chk_om_free_count=%d", g_om_free_count, chk_om_free_count);
3076   }
3077 }
3078 
3079 // Check the global wait list and count; log the results of the checks.
3080 void ObjectSynchronizer::chk_global_wait_list_and_count(outputStream * out,
3081                                                         int *error_cnt_p) {
3082   int chk_om_wait_count = 0;
3083   ObjectMonitor* cur = NULL;
3084   ObjectMonitor* next = NULL;
3085   if (mark_list_head(&g_wait_list, &cur, &next)) {
3086     // Marked the global wait list head so process the list.
3087     while (true) {
3088       // Rules for g_wait_list are the same as of g_free_list:
3089       chk_free_entry(NULL /* jt */, cur, out, error_cnt_p);
3090       chk_om_wait_count++;
3091 
3092       mark_next_for_traversal(&cur, &next);
3093       if (cur == NULL) {
3094         break;
3095       }
3096     }
3097   }
3098   if (g_om_wait_count == chk_om_wait_count) {
3099     out->print_cr("g_om_wait_count=%d equals chk_om_wait_count=%d",
3100                   g_om_wait_count, chk_om_wait_count);
3101   } else {
3102     out->print_cr("ERROR: g_om_wait_count=%d is not equal to "
3103                   "chk_om_wait_count=%d", g_om_wait_count, chk_om_wait_count);
3104     *error_cnt_p = *error_cnt_p + 1;
3105   }
3106 }
3107 
3108 // Check the global in-use list and count; log the results of the checks.
3109 void ObjectSynchronizer::chk_global_in_use_list_and_count(outputStream * out,
3110                                                           int *error_cnt_p) {
3111   int chk_om_in_use_count = 0;
3112   ObjectMonitor* cur = NULL;
3113   ObjectMonitor* next = NULL;
3114   if (mark_list_head(&g_om_in_use_list, &cur, &next)) {
3115     // Marked the global in-use list head so process the list.
3116     while (true) {
3117       chk_in_use_entry(NULL /* jt */, cur, out, error_cnt_p);
3118       chk_om_in_use_count++;
3119 
3120       mark_next_for_traversal(&cur, &next);
3121       if (cur == NULL) {
3122         break;
3123       }
3124     }
3125   }
3126   if (g_om_in_use_count == chk_om_in_use_count) {
3127     out->print_cr("g_om_in_use_count=%d equals chk_om_in_use_count=%d",
3128                   g_om_in_use_count, chk_om_in_use_count);
3129   } else {
3130     // With lock free access to the monitor lists, it is possible for
3131     // an exiting JavaThread to put its in-use ObjectMonitors on the
3132     // global in-use list after chk_om_in_use_count is calculated above.
3133     out->print_cr("WARNING: g_om_in_use_count=%d is not equal to chk_om_in_use_count=%d",
3134                   g_om_in_use_count, chk_om_in_use_count);
3135   }
3136 }
3137 
3138 // Check an in-use monitor entry; log any errors.
3139 void ObjectSynchronizer::chk_in_use_entry(JavaThread* jt, ObjectMonitor* n,
3140                                           outputStream * out, int *error_cnt_p) {
3141   if (n->header().value() == 0) {
3142     if (jt != NULL) {
3143       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3144                     ": in-use per-thread monitor must have non-NULL _header "
3145                     "field.", p2i(jt), p2i(n));
3146     } else {
3147       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
3148                     "must have non-NULL _header field.", p2i(n));
3149     }
3150     *error_cnt_p = *error_cnt_p + 1;
3151   }
3152   if (n->object() == NULL) {
3153     if (jt != NULL) {
3154       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3155                     ": in-use per-thread monitor must have non-NULL _object "
3156                     "field.", p2i(jt), p2i(n));
3157     } else {
3158       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
3159                     "must have non-NULL _object field.", p2i(n));
3160     }
3161     *error_cnt_p = *error_cnt_p + 1;
3162   }
3163   const oop obj = (oop)n->object();
3164   const markWord mark = obj->mark();
3165   if (!mark.has_monitor()) {
3166     if (jt != NULL) {
3167       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3168                     ": in-use per-thread monitor's object does not think "
3169                     "it has a monitor: obj=" INTPTR_FORMAT ", mark="
3170                     INTPTR_FORMAT,  p2i(jt), p2i(n), p2i(obj), mark.value());
3171     } else {
3172       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
3173                     "monitor's object does not think it has a monitor: obj="
3174                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
3175                     p2i(obj), mark.value());
3176     }
3177     *error_cnt_p = *error_cnt_p + 1;
3178   }
3179   ObjectMonitor* const obj_mon = mark.monitor();
3180   if (n != obj_mon) {
3181     if (jt != NULL) {
3182       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
3183                     ": in-use per-thread monitor's object does not refer "
3184                     "to the same monitor: obj=" INTPTR_FORMAT ", mark="
3185                     INTPTR_FORMAT ", obj_mon=" INTPTR_FORMAT, p2i(jt),
3186                     p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
3187     } else {
3188       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
3189                     "monitor's object does not refer to the same monitor: obj="
3190                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
3191                     INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
3192     }
3193     *error_cnt_p = *error_cnt_p + 1;
3194   }
3195 }
3196 
3197 // Check the thread's free list and count; log the results of the checks.
3198 void ObjectSynchronizer::chk_per_thread_free_list_and_count(JavaThread *jt,
3199                                                             outputStream * out,
3200                                                             int *error_cnt_p) {
3201   int chk_om_free_count = 0;
3202   ObjectMonitor* cur = NULL;
3203   ObjectMonitor* next = NULL;
3204   if (mark_list_head(&jt->om_free_list, &cur, &next)) {
3205     // Marked the per-thread free list head so process the list.
3206     while (true) {
3207       chk_free_entry(jt, cur, out, error_cnt_p);
3208       chk_om_free_count++;
3209 
3210       mark_next_for_traversal(&cur, &next);
3211       if (cur == NULL) {
3212         break;
3213       }
3214     }
3215   }
3216   if (jt->om_free_count == chk_om_free_count) {
3217     out->print_cr("jt=" INTPTR_FORMAT ": om_free_count=%d equals "
3218                   "chk_om_free_count=%d", p2i(jt), jt->om_free_count,
3219                   chk_om_free_count);
3220   } else {
3221     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_free_count=%d is not "
3222                   "equal to chk_om_free_count=%d", p2i(jt), jt->om_free_count,
3223                   chk_om_free_count);
3224     *error_cnt_p = *error_cnt_p + 1;
3225   }
3226 }
3227 
3228 // Check the thread's in-use list and count; log the results of the checks.
3229 void ObjectSynchronizer::chk_per_thread_in_use_list_and_count(JavaThread *jt,
3230                                                               outputStream * out,
3231                                                               int *error_cnt_p) {
3232   int chk_om_in_use_count = 0;
3233   ObjectMonitor* cur = NULL;
3234   ObjectMonitor* next = NULL;
3235   if (mark_list_head(&jt->om_in_use_list, &cur, &next)) {
3236     // Marked the per-thread in-use list head so process the list.
3237     while (true) {
3238       chk_in_use_entry(jt, cur, out, error_cnt_p);
3239       chk_om_in_use_count++;
3240 
3241       mark_next_for_traversal(&cur, &next);
3242       if (cur == NULL) {
3243         break;
3244       }
3245     }
3246   }
3247   if (jt->om_in_use_count == chk_om_in_use_count) {
3248     out->print_cr("jt=" INTPTR_FORMAT ": om_in_use_count=%d equals "
3249                   "chk_om_in_use_count=%d", p2i(jt),
3250                   jt->om_in_use_count, chk_om_in_use_count);
3251   } else {
3252     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": om_in_use_count=%d is not "
3253                   "equal to chk_om_in_use_count=%d", p2i(jt),
3254                   jt->om_in_use_count, chk_om_in_use_count);
3255     *error_cnt_p = *error_cnt_p + 1;
3256   }
3257 }
3258 
3259 // Log details about ObjectMonitors on the in-use lists. The 'BHL'
3260 // flags indicate why the entry is in-use, 'object' and 'object type'
3261 // indicate the associated object and its type.
3262 void ObjectSynchronizer::log_in_use_monitor_details(outputStream * out) {
3263   stringStream ss;
3264   if (g_om_in_use_count > 0) {
3265     out->print_cr("In-use global monitor info:");
3266     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
3267     out->print_cr("%18s  %s  %7s  %18s  %18s",
3268                   "monitor", "BHL", "ref_cnt", "object", "object type");
3269     out->print_cr("==================  ===  =======  ==================  ==================");
3270     ObjectMonitor* cur = NULL;
3271     ObjectMonitor* next = NULL;
3272     if (mark_list_head(&g_om_in_use_list, &cur, &next)) {
3273       // Marked the global in-use list head so process the list.
3274       while (true) {
3275         const oop obj = (oop) cur->object();
3276         const markWord mark = cur->header();
3277         ResourceMark rm;
3278         out->print(INTPTR_FORMAT "  %d%d%d  %7d  " INTPTR_FORMAT "  %s",
3279                    p2i(cur), cur->is_busy() != 0, mark.hash() != 0,
3280                    cur->owner() != NULL, (int)cur->ref_count(), p2i(obj),
3281                    obj->klass()->external_name());
3282         if (cur->is_busy() != 0) {
3283           out->print(" (%s)", cur->is_busy_to_string(&ss));
3284           ss.reset();
3285         }
3286         out->cr();
3287 
3288         mark_next_for_traversal(&cur, &next);
3289         if (cur == NULL) {
3290           break;
3291         }
3292       }
3293     }
3294   }
3295 
3296   out->print_cr("In-use per-thread monitor info:");
3297   out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
3298   out->print_cr("%18s  %18s  %s  %7s  %18s  %18s",
3299                 "jt", "monitor", "BHL", "ref_cnt", "object", "object type");
3300   out->print_cr("==================  ==================  ===  =======  ==================  ==================");
3301   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
3302     ObjectMonitor* cur = NULL;
3303     ObjectMonitor* next = NULL;
3304     if (mark_list_head(&jt->om_in_use_list, &cur, &next)) {
3305       // Marked the global in-use list head so process the list.
3306       while (true) {
3307         const oop obj = (oop) cur->object();
3308         const markWord mark = cur->header();
3309         ResourceMark rm;
3310         out->print(INTPTR_FORMAT "  " INTPTR_FORMAT "  %d%d%d  %7d  "
3311                    INTPTR_FORMAT "  %s", p2i(jt), p2i(cur), cur->is_busy() != 0,
3312                    mark.hash() != 0, cur->owner() != NULL, (int)cur->ref_count(),
3313                    p2i(obj), obj->klass()->external_name());
3314         if (cur->is_busy() != 0) {
3315           out->print(" (%s)", cur->is_busy_to_string(&ss));
3316           ss.reset();
3317         }
3318         out->cr();
3319 
3320         mark_next_for_traversal(&cur, &next);
3321         if (cur == NULL) {
3322           break;
3323         }
3324       }
3325     }
3326   }
3327 
3328   out->flush();
3329 }
3330 
3331 // Log counts for the global and per-thread monitor lists and return
3332 // the population count.
3333 int ObjectSynchronizer::log_monitor_list_counts(outputStream * out) {
3334   int pop_count = 0;
3335   out->print_cr("%18s  %10s  %10s  %10s  %10s",
3336                 "Global Lists:", "InUse", "Free", "Wait", "Total");
3337   out->print_cr("==================  ==========  ==========  ==========  ==========");
3338   out->print_cr("%18s  %10d  %10d  %10d  %10d", "", g_om_in_use_count,
3339                 g_om_free_count, g_om_wait_count, g_om_population);
3340   pop_count += g_om_in_use_count + g_om_free_count;
3341   if (HandshakeAfterDeflateIdleMonitors) {
3342     pop_count += g_om_wait_count;
3343   }
3344 
3345   out->print_cr("%18s  %10s  %10s  %10s",
3346                 "Per-Thread Lists:", "InUse", "Free", "Provision");
3347   out->print_cr("==================  ==========  ==========  ==========");
3348 
3349   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
3350     out->print_cr(INTPTR_FORMAT "  %10d  %10d  %10d", p2i(jt),
3351                   jt->om_in_use_count, jt->om_free_count, jt->om_free_provision);
3352     pop_count += jt->om_in_use_count + jt->om_free_count;
3353   }
3354   return pop_count;
3355 }
3356 
3357 #ifndef PRODUCT
3358 
3359 // Check if monitor belongs to the monitor cache
3360 // The list is grow-only so it's *relatively* safe to traverse
3361 // the list of extant blocks without taking a lock.
3362 
3363 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
3364   PaddedObjectMonitor* block = g_block_list;
3365   while (block != NULL) {
3366     assert(block->object() == CHAINMARKER, "must be a block header");
3367     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
3368       address mon = (address)monitor;
3369       address blk = (address)block;
3370       size_t diff = mon - blk;
3371       assert((diff % sizeof(PaddedObjectMonitor)) == 0, "must be aligned");
3372       return 1;
3373     }
3374     // unmarked_next() is not needed with g_block_list (no next field
3375     // marking) and no load_acquire() needed because _next_om is
3376     // updated before g_block_list is changed with cmpxchg().
3377     block = (PaddedObjectMonitor*)block->_next_om;
3378   }
3379   return 0;
3380 }
3381 
3382 #endif