1 /*
   2  * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "jfr/jfrEvents.hpp"
  28 #include "jfr/support/jfrThreadId.hpp"
  29 #include "logging/log.hpp"
  30 #include "logging/logStream.hpp"
  31 #include "memory/allocation.inline.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "oops/markWord.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "runtime/atomic.hpp"
  36 #include "runtime/handles.inline.hpp"
  37 #include "runtime/interfaceSupport.inline.hpp"
  38 #include "runtime/mutexLocker.hpp"
  39 #include "runtime/objectMonitor.hpp"
  40 #include "runtime/objectMonitor.inline.hpp"
  41 #include "runtime/orderAccess.hpp"
  42 #include "runtime/osThread.hpp"
  43 #include "runtime/safepointMechanism.inline.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/stubRoutines.hpp"
  46 #include "runtime/thread.inline.hpp"
  47 #include "services/threadService.hpp"
  48 #include "utilities/dtrace.hpp"
  49 #include "utilities/macros.hpp"
  50 #include "utilities/preserveException.hpp"
  51 #if INCLUDE_JFR
  52 #include "jfr/support/jfrFlush.hpp"
  53 #endif
  54 
  55 #ifdef DTRACE_ENABLED
  56 
  57 // Only bother with this argument setup if dtrace is available
  58 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  59 
  60 
  61 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  62   char* bytes = NULL;                                                      \
  63   int len = 0;                                                             \
  64   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  65   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  66   if (klassname != NULL) {                                                 \
  67     bytes = (char*)klassname->bytes();                                     \
  68     len = klassname->utf8_length();                                        \
  69   }
  70 
  71 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  72   {                                                                        \
  73     if (DTraceMonitorProbes) {                                             \
  74       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  75       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  76                            (monitor), bytes, len, (millis));               \
  77     }                                                                      \
  78   }
  79 
  80 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  81 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  82 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  83 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  84 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  85 
  86 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  87   {                                                                        \
  88     if (DTraceMonitorProbes) {                                             \
  89       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  90       HOTSPOT_MONITOR_##probe(jtid,                                        \
  91                               (uintptr_t)(monitor), bytes, len);           \
  92     }                                                                      \
  93   }
  94 
  95 #else //  ndef DTRACE_ENABLED
  96 
  97 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
  98 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
  99 
 100 #endif // ndef DTRACE_ENABLED
 101 
 102 // Tunables ...
 103 // The knob* variables are effectively final.  Once set they should
 104 // never be modified hence.  Consider using __read_mostly with GCC.
 105 
 106 int ObjectMonitor::Knob_SpinLimit    = 5000;    // derived by an external tool -
 107 
 108 static int Knob_Bonus               = 100;     // spin success bonus
 109 static int Knob_BonusB              = 100;     // spin success bonus
 110 static int Knob_Penalty             = 200;     // spin failure penalty
 111 static int Knob_Poverty             = 1000;
 112 static int Knob_FixedSpin           = 0;
 113 static int Knob_PreSpin             = 10;      // 20-100 likely better
 114 
 115 DEBUG_ONLY(static volatile bool InitDone = false;)
 116 
 117 // -----------------------------------------------------------------------------
 118 // Theory of operations -- Monitors lists, thread residency, etc:
 119 //
 120 // * A thread acquires ownership of a monitor by successfully
 121 //   CAS()ing the _owner field from null to non-null.
 122 //
 123 // * Invariant: A thread appears on at most one monitor list --
 124 //   cxq, EntryList or WaitSet -- at any one time.
 125 //
 126 // * Contending threads "push" themselves onto the cxq with CAS
 127 //   and then spin/park.
 128 //
 129 // * After a contending thread eventually acquires the lock it must
 130 //   dequeue itself from either the EntryList or the cxq.
 131 //
 132 // * The exiting thread identifies and unparks an "heir presumptive"
 133 //   tentative successor thread on the EntryList.  Critically, the
 134 //   exiting thread doesn't unlink the successor thread from the EntryList.
 135 //   After having been unparked, the wakee will recontend for ownership of
 136 //   the monitor.   The successor (wakee) will either acquire the lock or
 137 //   re-park itself.
 138 //
 139 //   Succession is provided for by a policy of competitive handoff.
 140 //   The exiting thread does _not_ grant or pass ownership to the
 141 //   successor thread.  (This is also referred to as "handoff" succession").
 142 //   Instead the exiting thread releases ownership and possibly wakes
 143 //   a successor, so the successor can (re)compete for ownership of the lock.
 144 //   If the EntryList is empty but the cxq is populated the exiting
 145 //   thread will drain the cxq into the EntryList.  It does so by
 146 //   by detaching the cxq (installing null with CAS) and folding
 147 //   the threads from the cxq into the EntryList.  The EntryList is
 148 //   doubly linked, while the cxq is singly linked because of the
 149 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 150 //
 151 // * Concurrency invariants:
 152 //
 153 //   -- only the monitor owner may access or mutate the EntryList.
 154 //      The mutex property of the monitor itself protects the EntryList
 155 //      from concurrent interference.
 156 //   -- Only the monitor owner may detach the cxq.
 157 //
 158 // * The monitor entry list operations avoid locks, but strictly speaking
 159 //   they're not lock-free.  Enter is lock-free, exit is not.
 160 //   For a description of 'Methods and apparatus providing non-blocking access
 161 //   to a resource,' see U.S. Pat. No. 7844973.
 162 //
 163 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 164 //   detaching thread.  This mechanism is immune from the ABA corruption.
 165 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 166 //
 167 // * Taken together, the cxq and the EntryList constitute or form a
 168 //   single logical queue of threads stalled trying to acquire the lock.
 169 //   We use two distinct lists to improve the odds of a constant-time
 170 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 171 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 172 //   A key desideratum is to minimize queue & monitor metadata manipulation
 173 //   that occurs while holding the monitor lock -- that is, we want to
 174 //   minimize monitor lock holds times.  Note that even a small amount of
 175 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 176 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 177 //   locks and monitor metadata.
 178 //
 179 //   Cxq points to the set of Recently Arrived Threads attempting entry.
 180 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 181 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 182 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 183 //
 184 //   The EntryList is ordered by the prevailing queue discipline and
 185 //   can be organized in any convenient fashion, such as a doubly-linked list or
 186 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 187 //   to operate in constant-time.  If we need a priority queue then something akin
 188 //   to Solaris' sleepq would work nicely.  Viz.,
 189 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 190 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 191 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 192 //   EntryList accordingly.
 193 //
 194 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 195 //   somewhat similar to an elevator-scan.
 196 //
 197 // * The monitor synchronization subsystem avoids the use of native
 198 //   synchronization primitives except for the narrow platform-specific
 199 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 200 //   the semantics of park-unpark.  Put another way, this monitor implementation
 201 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 202 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 203 //   underlying OS manages the READY<->RUN transitions.
 204 //
 205 // * Waiting threads reside on the WaitSet list -- wait() puts
 206 //   the caller onto the WaitSet.
 207 //
 208 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 209 //   either the EntryList or cxq.  Subsequent exit() operations will
 210 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 211 //   it's likely the notifyee would simply impale itself on the lock held
 212 //   by the notifier.
 213 //
 214 // * An interesting alternative is to encode cxq as (List,LockByte) where
 215 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 216 //   variable, like _recursions, in the scheme.  The threads or Events that form
 217 //   the list would have to be aligned in 256-byte addresses.  A thread would
 218 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 219 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 220 //   Note that is is *not* word-tearing, but it does presume that full-word
 221 //   CAS operations are coherent with intermix with STB operations.  That's true
 222 //   on most common processors.
 223 //
 224 // * See also http://blogs.sun.com/dave
 225 
 226 
 227 void* ObjectMonitor::operator new (size_t size) throw() {
 228   return AllocateHeap(size, mtInternal);
 229 }
 230 void* ObjectMonitor::operator new[] (size_t size) throw() {
 231   return operator new (size);
 232 }
 233 void ObjectMonitor::operator delete(void* p) {
 234   FreeHeap(p);
 235 }
 236 void ObjectMonitor::operator delete[] (void *p) {
 237   operator delete(p);
 238 }
 239 
 240 // -----------------------------------------------------------------------------
 241 // Enter support
 242 
 243 void ObjectMonitor::enter(TRAPS) {
 244   jint l_ref_count = ref_count();
 245   ADIM_guarantee(l_ref_count > 0, "must be positive: l_ref_count=%d, ref_count=%d", l_ref_count, ref_count());
 246 
 247   // The following code is ordered to check the most common cases first
 248   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 249   Thread * const Self = THREAD;
 250 
 251   void* cur = try_set_owner_from(NULL, Self);
 252   if (cur == NULL) {
 253     assert(_recursions == 0, "invariant");
 254     return;
 255   }
 256 
 257   if (cur == Self) {
 258     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 259     _recursions++;
 260     return;
 261   }
 262 
 263   if (Self->is_lock_owned((address)cur)) {
 264     assert(_recursions == 0, "internal state error");
 265     _recursions = 1;
 266     set_owner_from_BasicLock(cur, Self);  // Convert from BasicLock* to Thread*.
 267     return;
 268   }
 269 
 270   if (AsyncDeflateIdleMonitors &&
 271       try_set_owner_from(DEFLATER_MARKER, Self) == DEFLATER_MARKER) {
 272     // The deflation protocol finished the first part (setting owner),
 273     // but it failed the second part (making ref_count negative) and
 274     // bailed. Or the ObjectMonitor was async deflated and reused.
 275     // Acquired the monitor.
 276     assert(_recursions == 0, "invariant");
 277     return;
 278   }
 279 
 280   // We've encountered genuine contention.
 281   assert(Self->_Stalled == 0, "invariant");
 282   Self->_Stalled = intptr_t(this);
 283 
 284   // Try one round of spinning *before* enqueueing Self
 285   // and before going through the awkward and expensive state
 286   // transitions.  The following spin is strictly optional ...
 287   // Note that if we acquire the monitor from an initial spin
 288   // we forgo posting JVMTI events and firing DTRACE probes.
 289   if (TrySpin(Self) > 0) {
 290     assert(_owner == Self, "must be Self: owner=" INTPTR_FORMAT, p2i(_owner));
 291     assert(_recursions == 0, "must be 0: recursions=" INTX_FORMAT, _recursions);
 292     assert(((oop)object())->mark() == markWord::encode(this),
 293            "object mark must match encoded this: mark=" INTPTR_FORMAT
 294            ", encoded this=" INTPTR_FORMAT, ((oop)object())->mark().value(),
 295            markWord::encode(this).value());
 296     Self->_Stalled = 0;
 297     return;
 298   }
 299 
 300   assert(_owner != Self, "invariant");
 301   assert(_succ != Self, "invariant");
 302   assert(Self->is_Java_thread(), "invariant");
 303   JavaThread * jt = (JavaThread *) Self;
 304   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 305   assert(jt->thread_state() != _thread_blocked, "invariant");
 306   assert(this->object() != NULL, "invariant");
 307   assert(_contentions >= 0, "must not be negative: contentions=%d", _contentions);
 308 
 309   // Keep track of contention for JVM/TI and M&M queries.
 310   Atomic::inc(&_contentions);
 311 
 312   JFR_ONLY(JfrConditionalFlushWithStacktrace<EventJavaMonitorEnter> flush(jt);)
 313   EventJavaMonitorEnter event;
 314   if (event.should_commit()) {
 315     event.set_monitorClass(((oop)this->object())->klass());
 316     event.set_address((uintptr_t)(this->object_addr()));
 317   }
 318 
 319   { // Change java thread status to indicate blocked on monitor enter.
 320     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 321 
 322     Self->set_current_pending_monitor(this);
 323 
 324     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 325     if (JvmtiExport::should_post_monitor_contended_enter()) {
 326       JvmtiExport::post_monitor_contended_enter(jt, this);
 327 
 328       // The current thread does not yet own the monitor and does not
 329       // yet appear on any queues that would get it made the successor.
 330       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 331       // handler cannot accidentally consume an unpark() meant for the
 332       // ParkEvent associated with this ObjectMonitor.
 333     }
 334 
 335     OSThreadContendState osts(Self->osthread());
 336     ThreadBlockInVM tbivm(jt);
 337 
 338     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 339     for (;;) {
 340       jt->set_suspend_equivalent();
 341       // cleared by handle_special_suspend_equivalent_condition()
 342       // or java_suspend_self()
 343 
 344       EnterI(THREAD);
 345 
 346       if (!ExitSuspendEquivalent(jt)) break;
 347 
 348       // We have acquired the contended monitor, but while we were
 349       // waiting another thread suspended us. We don't want to enter
 350       // the monitor while suspended because that would surprise the
 351       // thread that suspended us.
 352       //
 353       _recursions = 0;
 354       _succ = NULL;
 355       exit(false, Self);
 356 
 357       jt->java_suspend_self();
 358     }
 359     Self->set_current_pending_monitor(NULL);
 360 
 361     // We cleared the pending monitor info since we've just gotten past
 362     // the enter-check-for-suspend dance and we now own the monitor free
 363     // and clear, i.e., it is no longer pending. The ThreadBlockInVM
 364     // destructor can go to a safepoint at the end of this block. If we
 365     // do a thread dump during that safepoint, then this thread will show
 366     // as having "-locked" the monitor, but the OS and java.lang.Thread
 367     // states will still report that the thread is blocked trying to
 368     // acquire it.
 369   }
 370 
 371   Atomic::dec(&_contentions);
 372   assert(_contentions >= 0, "must not be negative: contentions=%d", _contentions);
 373   Self->_Stalled = 0;
 374 
 375   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 376   assert(_recursions == 0, "invariant");
 377   assert(_owner == Self, "invariant");
 378   assert(_succ != Self, "invariant");
 379   assert(((oop)(object()))->mark() == markWord::encode(this), "invariant");
 380 
 381   // The thread -- now the owner -- is back in vm mode.
 382   // Report the glorious news via TI,DTrace and jvmstat.
 383   // The probe effect is non-trivial.  All the reportage occurs
 384   // while we hold the monitor, increasing the length of the critical
 385   // section.  Amdahl's parallel speedup law comes vividly into play.
 386   //
 387   // Another option might be to aggregate the events (thread local or
 388   // per-monitor aggregation) and defer reporting until a more opportune
 389   // time -- such as next time some thread encounters contention but has
 390   // yet to acquire the lock.  While spinning that thread could
 391   // spinning we could increment JVMStat counters, etc.
 392 
 393   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 394   if (JvmtiExport::should_post_monitor_contended_entered()) {
 395     JvmtiExport::post_monitor_contended_entered(jt, this);
 396 
 397     // The current thread already owns the monitor and is not going to
 398     // call park() for the remainder of the monitor enter protocol. So
 399     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 400     // event handler consumed an unpark() issued by the thread that
 401     // just exited the monitor.
 402   }
 403   if (event.should_commit()) {
 404     event.set_previousOwner((uintptr_t)_previous_owner_tid);
 405     event.commit();
 406   }
 407   OM_PERFDATA_OP(ContendedLockAttempts, inc());
 408 }
 409 
 410 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 411 // Callers must compensate as needed.
 412 
 413 int ObjectMonitor::TryLock(Thread * Self) {
 414   void * own = _owner;
 415   if (own != NULL) return 0;
 416   if (try_set_owner_from(NULL, Self) == NULL) {
 417     assert(_recursions == 0, "invariant");
 418     return 1;
 419   }
 420   // The lock had been free momentarily, but we lost the race to the lock.
 421   // Interference -- the CAS failed.
 422   // We can either return -1 or retry.
 423   // Retry doesn't make as much sense because the lock was just acquired.
 424   return -1;
 425 }
 426 
 427 // Install the displaced mark word (dmw) of a deflating ObjectMonitor
 428 // into the header of the object associated with the monitor. This
 429 // idempotent method is called by a thread that is deflating a
 430 // monitor and by other threads that have detected a race with the
 431 // deflation process.
 432 void ObjectMonitor::install_displaced_markword_in_object(const oop obj) {
 433   // This function must only be called when (owner == DEFLATER_MARKER
 434   // && ref_count <= 0), but we can't guarantee that here because
 435   // those values could change when the ObjectMonitor gets moved from
 436   // the global free list to a per-thread free list.
 437 
 438   guarantee(obj != NULL, "must be non-NULL");
 439   if (object() != obj) {
 440     // ObjectMonitor's object ref no longer refers to the target object
 441     // so the object's header has already been restored.
 442     return;
 443   }
 444 
 445   markWord dmw = header();
 446   if (dmw.value() == 0) {
 447     // ObjectMonitor's header/dmw has been cleared so the ObjectMonitor
 448     // has been deflated and taken off the global free list.
 449     return;
 450   }
 451 
 452   // A non-NULL dmw has to be either neutral (not locked and not marked)
 453   // or is already participating in this restoration protocol.
 454   assert(dmw.is_neutral() || (dmw.is_marked() && dmw.hash() == 0),
 455          "failed precondition: dmw=" INTPTR_FORMAT, dmw.value());
 456 
 457   markWord marked_dmw = markWord::zero();
 458   if (!dmw.is_marked() && dmw.hash() == 0) {
 459     // This dmw has not yet started the restoration protocol so we
 460     // mark a copy of the dmw to begin the protocol.
 461     // Note: A dmw with a hashcode does not take this code path.
 462     marked_dmw = dmw.set_marked();
 463 
 464     // All of the callers to this function can be racing with each
 465     // other trying to update the _header field.
 466     dmw = (markWord) Atomic::cmpxchg(&_header, dmw, marked_dmw);
 467     if (dmw.value() == 0) {
 468       // ObjectMonitor's header/dmw has been cleared so the object's
 469       // header has already been restored.
 470       return;
 471     }
 472     // The _header field is now marked. The winner's 'dmw' variable
 473     // contains the original, unmarked header/dmw value and any
 474     // losers have a marked header/dmw value that will be cleaned
 475     // up below.
 476   }
 477 
 478   if (dmw.is_marked()) {
 479     // Clear the mark from the header/dmw copy in preparation for
 480     // possible restoration from this thread.
 481     assert(dmw.hash() == 0, "hashcode must be 0: dmw=" INTPTR_FORMAT,
 482            dmw.value());
 483     dmw = dmw.set_unmarked();
 484   }
 485   assert(dmw.is_neutral(), "must be neutral: dmw=" INTPTR_FORMAT, dmw.value());
 486 
 487   // Install displaced mark word if the object's header still points
 488   // to this ObjectMonitor. All racing callers to this function will
 489   // reach this point, but only one can win.
 490   obj->cas_set_mark(dmw, markWord::encode(this));
 491 
 492   // Note: It does not matter which thread restored the header/dmw
 493   // into the object's header. The thread deflating the monitor just
 494   // wanted the object's header restored and it is. The threads that
 495   // detected a race with the deflation process also wanted the
 496   // object's header restored before they retry their operation and
 497   // because it is restored they will only retry once.
 498 }
 499 
 500 // Convert the fields used by is_busy() to a string that can be
 501 // used for diagnostic output.
 502 const char* ObjectMonitor::is_busy_to_string(stringStream* ss) {
 503   ss->print("is_busy: contentions=%d, waiters=%d, ", _contentions, _waiters);
 504   if (!AsyncDeflateIdleMonitors) {
 505     ss->print("owner=" INTPTR_FORMAT, p2i(_owner));
 506   } else if (_owner != DEFLATER_MARKER) {
 507     ss->print("owner=" INTPTR_FORMAT, p2i(_owner));
 508   } else {
 509     // We report NULL instead of DEFLATER_MARKER here because is_busy()
 510     // ignores DEFLATER_MARKER values.
 511     ss->print("owner=" INTPTR_FORMAT, NULL);
 512   }
 513   ss->print(", cxq=" INTPTR_FORMAT ", EntryList=" INTPTR_FORMAT, p2i(_cxq),
 514             p2i(_EntryList));
 515   return ss->base();
 516 }
 517 
 518 #define MAX_RECHECK_INTERVAL 1000
 519 
 520 void ObjectMonitor::EnterI(TRAPS) {
 521   jint l_ref_count = ref_count();
 522   ADIM_guarantee(l_ref_count > 0, "must be positive: l_ref_count=%d, ref_count=%d", l_ref_count, ref_count());
 523 
 524   Thread * const Self = THREAD;
 525   assert(Self->is_Java_thread(), "invariant");
 526   assert(((JavaThread *) Self)->thread_state() == _thread_blocked, "invariant");
 527 
 528   // Try the lock - TATAS
 529   if (TryLock (Self) > 0) {
 530     assert(_succ != Self, "invariant");
 531     assert(_owner == Self, "invariant");
 532     assert(_Responsible != Self, "invariant");
 533     return;
 534   }
 535 
 536   if (AsyncDeflateIdleMonitors &&
 537       try_set_owner_from(DEFLATER_MARKER, Self) == DEFLATER_MARKER) {
 538     // The deflation protocol finished the first part (setting owner),
 539     // but it failed the second part (making ref_count negative) and
 540     // bailed. Or the ObjectMonitor was async deflated and reused.
 541     // Acquired the monitor.
 542     assert(_succ != Self, "invariant");
 543     assert(_Responsible != Self, "invariant");
 544     return;
 545   }
 546 
 547   assert(InitDone, "Unexpectedly not initialized");
 548 
 549   // We try one round of spinning *before* enqueueing Self.
 550   //
 551   // If the _owner is ready but OFFPROC we could use a YieldTo()
 552   // operation to donate the remainder of this thread's quantum
 553   // to the owner.  This has subtle but beneficial affinity
 554   // effects.
 555 
 556   if (TrySpin(Self) > 0) {
 557     assert(_owner == Self, "invariant");
 558     assert(_succ != Self, "invariant");
 559     assert(_Responsible != Self, "invariant");
 560     return;
 561   }
 562 
 563   // The Spin failed -- Enqueue and park the thread ...
 564   assert(_succ != Self, "invariant");
 565   assert(_owner != Self, "invariant");
 566   assert(_Responsible != Self, "invariant");
 567 
 568   // Enqueue "Self" on ObjectMonitor's _cxq.
 569   //
 570   // Node acts as a proxy for Self.
 571   // As an aside, if were to ever rewrite the synchronization code mostly
 572   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 573   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 574   // as well as eliminate a subset of ABA issues.
 575   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 576 
 577   ObjectWaiter node(Self);
 578   Self->_ParkEvent->reset();
 579   node._prev   = (ObjectWaiter *) 0xBAD;
 580   node.TState  = ObjectWaiter::TS_CXQ;
 581 
 582   // Push "Self" onto the front of the _cxq.
 583   // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 584   // Note that spinning tends to reduce the rate at which threads
 585   // enqueue and dequeue on EntryList|cxq.
 586   ObjectWaiter * nxt;
 587   for (;;) {
 588     node._next = nxt = _cxq;
 589     if (Atomic::cmpxchg(&_cxq, nxt, &node) == nxt) break;
 590 
 591     // Interference - the CAS failed because _cxq changed.  Just retry.
 592     // As an optional optimization we retry the lock.
 593     if (TryLock (Self) > 0) {
 594       assert(_succ != Self, "invariant");
 595       assert(_owner == Self, "invariant");
 596       assert(_Responsible != Self, "invariant");
 597       return;
 598     }
 599   }
 600 
 601   // Check for cxq|EntryList edge transition to non-null.  This indicates
 602   // the onset of contention.  While contention persists exiting threads
 603   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 604   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 605   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 606   // arrange for one of the contending thread to use a timed park() operations
 607   // to detect and recover from the race.  (Stranding is form of progress failure
 608   // where the monitor is unlocked but all the contending threads remain parked).
 609   // That is, at least one of the contended threads will periodically poll _owner.
 610   // One of the contending threads will become the designated "Responsible" thread.
 611   // The Responsible thread uses a timed park instead of a normal indefinite park
 612   // operation -- it periodically wakes and checks for and recovers from potential
 613   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 614   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 615   // be responsible for a monitor.
 616   //
 617   // Currently, one of the contended threads takes on the added role of "Responsible".
 618   // A viable alternative would be to use a dedicated "stranding checker" thread
 619   // that periodically iterated over all the threads (or active monitors) and unparked
 620   // successors where there was risk of stranding.  This would help eliminate the
 621   // timer scalability issues we see on some platforms as we'd only have one thread
 622   // -- the checker -- parked on a timer.
 623 
 624   if (nxt == NULL && _EntryList == NULL) {
 625     // Try to assume the role of responsible thread for the monitor.
 626     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 627     Atomic::replace_if_null(&_Responsible, Self);
 628   }
 629 
 630   // The lock might have been released while this thread was occupied queueing
 631   // itself onto _cxq.  To close the race and avoid "stranding" and
 632   // progress-liveness failure we must resample-retry _owner before parking.
 633   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 634   // In this case the ST-MEMBAR is accomplished with CAS().
 635   //
 636   // TODO: Defer all thread state transitions until park-time.
 637   // Since state transitions are heavy and inefficient we'd like
 638   // to defer the state transitions until absolutely necessary,
 639   // and in doing so avoid some transitions ...
 640 
 641   int nWakeups = 0;
 642   int recheckInterval = 1;
 643 
 644   for (;;) {
 645 
 646     if (TryLock(Self) > 0) break;
 647     assert(_owner != Self, "invariant");
 648 
 649     // park self
 650     if (_Responsible == Self) {
 651       Self->_ParkEvent->park((jlong) recheckInterval);
 652       // Increase the recheckInterval, but clamp the value.
 653       recheckInterval *= 8;
 654       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 655         recheckInterval = MAX_RECHECK_INTERVAL;
 656       }
 657     } else {
 658       Self->_ParkEvent->park();
 659     }
 660 
 661     if (TryLock(Self) > 0) break;
 662 
 663     if (AsyncDeflateIdleMonitors &&
 664         try_set_owner_from(DEFLATER_MARKER, Self) == DEFLATER_MARKER) {
 665       // The deflation protocol finished the first part (setting owner),
 666       // but it failed the second part (making ref_count negative) and
 667       // bailed. Or the ObjectMonitor was async deflated and reused.
 668       // Acquired the monitor.
 669       break;
 670     }
 671 
 672     // The lock is still contested.
 673     // Keep a tally of the # of futile wakeups.
 674     // Note that the counter is not protected by a lock or updated by atomics.
 675     // That is by design - we trade "lossy" counters which are exposed to
 676     // races during updates for a lower probe effect.
 677 
 678     // This PerfData object can be used in parallel with a safepoint.
 679     // See the work around in PerfDataManager::destroy().
 680     OM_PERFDATA_OP(FutileWakeups, inc());
 681     ++nWakeups;
 682 
 683     // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 684     // We can defer clearing _succ until after the spin completes
 685     // TrySpin() must tolerate being called with _succ == Self.
 686     // Try yet another round of adaptive spinning.
 687     if (TrySpin(Self) > 0) break;
 688 
 689     // We can find that we were unpark()ed and redesignated _succ while
 690     // we were spinning.  That's harmless.  If we iterate and call park(),
 691     // park() will consume the event and return immediately and we'll
 692     // just spin again.  This pattern can repeat, leaving _succ to simply
 693     // spin on a CPU.
 694 
 695     if (_succ == Self) _succ = NULL;
 696 
 697     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 698     OrderAccess::fence();
 699   }
 700 
 701   // Egress :
 702   // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 703   // Normally we'll find Self on the EntryList .
 704   // From the perspective of the lock owner (this thread), the
 705   // EntryList is stable and cxq is prepend-only.
 706   // The head of cxq is volatile but the interior is stable.
 707   // In addition, Self.TState is stable.
 708 
 709   assert(_owner == Self, "invariant");
 710   assert(object() != NULL, "invariant");
 711   // I'd like to write:
 712   //   guarantee (((oop)(object()))->mark() == markWord::encode(this), "invariant") ;
 713   // but as we're at a safepoint that's not safe.
 714 
 715   UnlinkAfterAcquire(Self, &node);
 716   if (_succ == Self) _succ = NULL;
 717 
 718   assert(_succ != Self, "invariant");
 719   if (_Responsible == Self) {
 720     _Responsible = NULL;
 721     OrderAccess::fence(); // Dekker pivot-point
 722 
 723     // We may leave threads on cxq|EntryList without a designated
 724     // "Responsible" thread.  This is benign.  When this thread subsequently
 725     // exits the monitor it can "see" such preexisting "old" threads --
 726     // threads that arrived on the cxq|EntryList before the fence, above --
 727     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 728     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 729     // non-null and elect a new "Responsible" timer thread.
 730     //
 731     // This thread executes:
 732     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 733     //    LD cxq|EntryList               (in subsequent exit)
 734     //
 735     // Entering threads in the slow/contended path execute:
 736     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 737     //    The (ST cxq; MEMBAR) is accomplished with CAS().
 738     //
 739     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 740     // exit operation from floating above the ST Responsible=null.
 741   }
 742 
 743   // We've acquired ownership with CAS().
 744   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 745   // But since the CAS() this thread may have also stored into _succ,
 746   // EntryList, cxq or Responsible.  These meta-data updates must be
 747   // visible __before this thread subsequently drops the lock.
 748   // Consider what could occur if we didn't enforce this constraint --
 749   // STs to monitor meta-data and user-data could reorder with (become
 750   // visible after) the ST in exit that drops ownership of the lock.
 751   // Some other thread could then acquire the lock, but observe inconsistent
 752   // or old monitor meta-data and heap data.  That violates the JMM.
 753   // To that end, the 1-0 exit() operation must have at least STST|LDST
 754   // "release" barrier semantics.  Specifically, there must be at least a
 755   // STST|LDST barrier in exit() before the ST of null into _owner that drops
 756   // the lock.   The barrier ensures that changes to monitor meta-data and data
 757   // protected by the lock will be visible before we release the lock, and
 758   // therefore before some other thread (CPU) has a chance to acquire the lock.
 759   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 760   //
 761   // Critically, any prior STs to _succ or EntryList must be visible before
 762   // the ST of null into _owner in the *subsequent* (following) corresponding
 763   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 764   // execute a serializing instruction.
 765 
 766   return;
 767 }
 768 
 769 // ReenterI() is a specialized inline form of the latter half of the
 770 // contended slow-path from EnterI().  We use ReenterI() only for
 771 // monitor reentry in wait().
 772 //
 773 // In the future we should reconcile EnterI() and ReenterI().
 774 
 775 void ObjectMonitor::ReenterI(Thread * Self, ObjectWaiter * SelfNode) {
 776   jint l_ref_count = ref_count();
 777   ADIM_guarantee(l_ref_count > 0, "must be positive: l_ref_count=%d, ref_count=%d", l_ref_count, ref_count());
 778 
 779   assert(Self != NULL, "invariant");
 780   assert(SelfNode != NULL, "invariant");
 781   assert(SelfNode->_thread == Self, "invariant");
 782   assert(_waiters > 0, "invariant");
 783   assert(((oop)(object()))->mark() == markWord::encode(this), "invariant");
 784   assert(((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 785   JavaThread * jt = (JavaThread *) Self;
 786 
 787   int nWakeups = 0;
 788   for (;;) {
 789     ObjectWaiter::TStates v = SelfNode->TState;
 790     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
 791     assert(_owner != Self, "invariant");
 792 
 793     if (TryLock(Self) > 0) break;
 794     if (TrySpin(Self) > 0) break;
 795 
 796     if (AsyncDeflateIdleMonitors &&
 797         try_set_owner_from(DEFLATER_MARKER, Self) == DEFLATER_MARKER) {
 798       // The deflation protocol finished the first part (setting owner),
 799       // but it failed the second part (making ref_count negative) and
 800       // bailed. Or the ObjectMonitor was async deflated and reused.
 801       // Acquired the monitor.
 802       break;
 803     }
 804 
 805     // State transition wrappers around park() ...
 806     // ReenterI() wisely defers state transitions until
 807     // it's clear we must park the thread.
 808     {
 809       OSThreadContendState osts(Self->osthread());
 810       ThreadBlockInVM tbivm(jt);
 811 
 812       // cleared by handle_special_suspend_equivalent_condition()
 813       // or java_suspend_self()
 814       jt->set_suspend_equivalent();
 815       Self->_ParkEvent->park();
 816 
 817       // were we externally suspended while we were waiting?
 818       for (;;) {
 819         if (!ExitSuspendEquivalent(jt)) break;
 820         if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 821         jt->java_suspend_self();
 822         jt->set_suspend_equivalent();
 823       }
 824     }
 825 
 826     // Try again, but just so we distinguish between futile wakeups and
 827     // successful wakeups.  The following test isn't algorithmically
 828     // necessary, but it helps us maintain sensible statistics.
 829     if (TryLock(Self) > 0) break;
 830 
 831     // The lock is still contested.
 832     // Keep a tally of the # of futile wakeups.
 833     // Note that the counter is not protected by a lock or updated by atomics.
 834     // That is by design - we trade "lossy" counters which are exposed to
 835     // races during updates for a lower probe effect.
 836     ++nWakeups;
 837 
 838     // Assuming this is not a spurious wakeup we'll normally
 839     // find that _succ == Self.
 840     if (_succ == Self) _succ = NULL;
 841 
 842     // Invariant: after clearing _succ a contending thread
 843     // *must* retry  _owner before parking.
 844     OrderAccess::fence();
 845 
 846     // This PerfData object can be used in parallel with a safepoint.
 847     // See the work around in PerfDataManager::destroy().
 848     OM_PERFDATA_OP(FutileWakeups, inc());
 849   }
 850 
 851   // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 852   // Normally we'll find Self on the EntryList.
 853   // Unlinking from the EntryList is constant-time and atomic-free.
 854   // From the perspective of the lock owner (this thread), the
 855   // EntryList is stable and cxq is prepend-only.
 856   // The head of cxq is volatile but the interior is stable.
 857   // In addition, Self.TState is stable.
 858 
 859   assert(_owner == Self, "invariant");
 860   assert(((oop)(object()))->mark() == markWord::encode(this), "invariant");
 861   UnlinkAfterAcquire(Self, SelfNode);
 862   if (_succ == Self) _succ = NULL;
 863   assert(_succ != Self, "invariant");
 864   SelfNode->TState = ObjectWaiter::TS_RUN;
 865   OrderAccess::fence();      // see comments at the end of EnterI()
 866 }
 867 
 868 // By convention we unlink a contending thread from EntryList|cxq immediately
 869 // after the thread acquires the lock in ::enter().  Equally, we could defer
 870 // unlinking the thread until ::exit()-time.
 871 
 872 void ObjectMonitor::UnlinkAfterAcquire(Thread *Self, ObjectWaiter *SelfNode) {
 873   assert(_owner == Self, "invariant");
 874   assert(SelfNode->_thread == Self, "invariant");
 875 
 876   if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 877     // Normal case: remove Self from the DLL EntryList .
 878     // This is a constant-time operation.
 879     ObjectWaiter * nxt = SelfNode->_next;
 880     ObjectWaiter * prv = SelfNode->_prev;
 881     if (nxt != NULL) nxt->_prev = prv;
 882     if (prv != NULL) prv->_next = nxt;
 883     if (SelfNode == _EntryList) _EntryList = nxt;
 884     assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
 885     assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
 886   } else {
 887     assert(SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant");
 888     // Inopportune interleaving -- Self is still on the cxq.
 889     // This usually means the enqueue of self raced an exiting thread.
 890     // Normally we'll find Self near the front of the cxq, so
 891     // dequeueing is typically fast.  If needbe we can accelerate
 892     // this with some MCS/CHL-like bidirectional list hints and advisory
 893     // back-links so dequeueing from the interior will normally operate
 894     // in constant-time.
 895     // Dequeue Self from either the head (with CAS) or from the interior
 896     // with a linear-time scan and normal non-atomic memory operations.
 897     // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 898     // and then unlink Self from EntryList.  We have to drain eventually,
 899     // so it might as well be now.
 900 
 901     ObjectWaiter * v = _cxq;
 902     assert(v != NULL, "invariant");
 903     if (v != SelfNode || Atomic::cmpxchg(&_cxq, v, SelfNode->_next) != v) {
 904       // The CAS above can fail from interference IFF a "RAT" arrived.
 905       // In that case Self must be in the interior and can no longer be
 906       // at the head of cxq.
 907       if (v == SelfNode) {
 908         assert(_cxq != v, "invariant");
 909         v = _cxq;          // CAS above failed - start scan at head of list
 910       }
 911       ObjectWaiter * p;
 912       ObjectWaiter * q = NULL;
 913       for (p = v; p != NULL && p != SelfNode; p = p->_next) {
 914         q = p;
 915         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
 916       }
 917       assert(v != SelfNode, "invariant");
 918       assert(p == SelfNode, "Node not found on cxq");
 919       assert(p != _cxq, "invariant");
 920       assert(q != NULL, "invariant");
 921       assert(q->_next == p, "invariant");
 922       q->_next = p->_next;
 923     }
 924   }
 925 
 926 #ifdef ASSERT
 927   // Diagnostic hygiene ...
 928   SelfNode->_prev  = (ObjectWaiter *) 0xBAD;
 929   SelfNode->_next  = (ObjectWaiter *) 0xBAD;
 930   SelfNode->TState = ObjectWaiter::TS_RUN;
 931 #endif
 932 }
 933 
 934 // -----------------------------------------------------------------------------
 935 // Exit support
 936 //
 937 // exit()
 938 // ~~~~~~
 939 // Note that the collector can't reclaim the objectMonitor or deflate
 940 // the object out from underneath the thread calling ::exit() as the
 941 // thread calling ::exit() never transitions to a stable state.
 942 // This inhibits GC, which in turn inhibits asynchronous (and
 943 // inopportune) reclamation of "this".
 944 //
 945 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 946 // There's one exception to the claim above, however.  EnterI() can call
 947 // exit() to drop a lock if the acquirer has been externally suspended.
 948 // In that case exit() is called with _thread_state == _thread_blocked,
 949 // but the monitor's ref_count is > 0, which inhibits reclamation.
 950 //
 951 // 1-0 exit
 952 // ~~~~~~~~
 953 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 954 // the fast-path operators have been optimized so the common ::exit()
 955 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock().
 956 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 957 // greatly improves latency -- MEMBAR and CAS having considerable local
 958 // latency on modern processors -- but at the cost of "stranding".  Absent the
 959 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 960 // ::enter() path, resulting in the entering thread being stranding
 961 // and a progress-liveness failure.   Stranding is extremely rare.
 962 // We use timers (timed park operations) & periodic polling to detect
 963 // and recover from stranding.  Potentially stranded threads periodically
 964 // wake up and poll the lock.  See the usage of the _Responsible variable.
 965 //
 966 // The CAS() in enter provides for safety and exclusion, while the CAS or
 967 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 968 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding.
 969 // We detect and recover from stranding with timers.
 970 //
 971 // If a thread transiently strands it'll park until (a) another
 972 // thread acquires the lock and then drops the lock, at which time the
 973 // exiting thread will notice and unpark the stranded thread, or, (b)
 974 // the timer expires.  If the lock is high traffic then the stranding latency
 975 // will be low due to (a).  If the lock is low traffic then the odds of
 976 // stranding are lower, although the worst-case stranding latency
 977 // is longer.  Critically, we don't want to put excessive load in the
 978 // platform's timer subsystem.  We want to minimize both the timer injection
 979 // rate (timers created/sec) as well as the number of timers active at
 980 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 981 // the integral of the # of active timers at any instant over time).
 982 // Both impinge on OS scalability.  Given that, at most one thread parked on
 983 // a monitor will use a timer.
 984 //
 985 // There is also the risk of a futile wake-up. If we drop the lock
 986 // another thread can reacquire the lock immediately, and we can
 987 // then wake a thread unnecessarily. This is benign, and we've
 988 // structured the code so the windows are short and the frequency
 989 // of such futile wakups is low.
 990 
 991 void ObjectMonitor::exit(bool not_suspended, TRAPS) {
 992   Thread* const Self = THREAD;
 993   void* cur = Atomic::load(&_owner);
 994   if (THREAD != cur) {
 995     if (THREAD->is_lock_owned((address)cur)) {
 996       assert(_recursions == 0, "invariant");
 997       set_owner_from_BasicLock(cur, Self);  // Convert from BasicLock* to Thread*.
 998       _recursions = 0;
 999     } else {
1000       // Apparent unbalanced locking ...
1001       // Naively we'd like to throw IllegalMonitorStateException.
1002       // As a practical matter we can neither allocate nor throw an
1003       // exception as ::exit() can be called from leaf routines.
1004       // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
1005       // Upon deeper reflection, however, in a properly run JVM the only
1006       // way we should encounter this situation is in the presence of
1007       // unbalanced JNI locking. TODO: CheckJNICalls.
1008       // See also: CR4414101
1009 #ifdef ASSERT
1010       LogStreamHandle(Error, monitorinflation) lsh;
1011       lsh.print_cr("ERROR: ObjectMonitor::exit(): thread=" INTPTR_FORMAT
1012                     " is exiting an ObjectMonitor it does not own.", p2i(THREAD));
1013       lsh.print_cr("The imbalance is possibly caused by JNI locking.");
1014       print_debug_style_on(&lsh);
1015 #endif
1016       assert(false, "Non-balanced monitor enter/exit!");
1017       return;
1018     }
1019   }
1020 
1021   if (_recursions != 0) {
1022     _recursions--;        // this is simple recursive enter
1023     return;
1024   }
1025 
1026   // Invariant: after setting Responsible=null an thread must execute
1027   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
1028   _Responsible = NULL;
1029 
1030 #if INCLUDE_JFR
1031   // get the owner's thread id for the MonitorEnter event
1032   // if it is enabled and the thread isn't suspended
1033   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
1034     _previous_owner_tid = JFR_THREAD_ID(Self);
1035   }
1036 #endif
1037 
1038   for (;;) {
1039     assert(THREAD == _owner, "invariant");
1040 
1041     // Drop the lock.
1042     // release semantics: prior loads and stores from within the critical section
1043     // must not float (reorder) past the following store that drops the lock.
1044     // Uses a storeload to separate release_store(owner) from the
1045     // successor check. The try_set_owner() below uses cmpxchg() so
1046     // we get the fence down there.
1047     release_clear_owner(Self);
1048     OrderAccess::storeload();
1049 
1050     if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1051       return;
1052     }
1053     // Other threads are blocked trying to acquire the lock.
1054 
1055     // Normally the exiting thread is responsible for ensuring succession,
1056     // but if other successors are ready or other entering threads are spinning
1057     // then this thread can simply store NULL into _owner and exit without
1058     // waking a successor.  The existence of spinners or ready successors
1059     // guarantees proper succession (liveness).  Responsibility passes to the
1060     // ready or running successors.  The exiting thread delegates the duty.
1061     // More precisely, if a successor already exists this thread is absolved
1062     // of the responsibility of waking (unparking) one.
1063     //
1064     // The _succ variable is critical to reducing futile wakeup frequency.
1065     // _succ identifies the "heir presumptive" thread that has been made
1066     // ready (unparked) but that has not yet run.  We need only one such
1067     // successor thread to guarantee progress.
1068     // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
1069     // section 3.3 "Futile Wakeup Throttling" for details.
1070     //
1071     // Note that spinners in Enter() also set _succ non-null.
1072     // In the current implementation spinners opportunistically set
1073     // _succ so that exiting threads might avoid waking a successor.
1074     // Another less appealing alternative would be for the exiting thread
1075     // to drop the lock and then spin briefly to see if a spinner managed
1076     // to acquire the lock.  If so, the exiting thread could exit
1077     // immediately without waking a successor, otherwise the exiting
1078     // thread would need to dequeue and wake a successor.
1079     // (Note that we'd need to make the post-drop spin short, but no
1080     // shorter than the worst-case round-trip cache-line migration time.
1081     // The dropped lock needs to become visible to the spinner, and then
1082     // the acquisition of the lock by the spinner must become visible to
1083     // the exiting thread).
1084 
1085     // It appears that an heir-presumptive (successor) must be made ready.
1086     // Only the current lock owner can manipulate the EntryList or
1087     // drain _cxq, so we need to reacquire the lock.  If we fail
1088     // to reacquire the lock the responsibility for ensuring succession
1089     // falls to the new owner.
1090     //
1091     if (try_set_owner_from(NULL, Self) != NULL) {
1092       return;
1093     }
1094 
1095     guarantee(_owner == THREAD, "invariant");
1096 
1097     ObjectWaiter * w = NULL;
1098 
1099     w = _EntryList;
1100     if (w != NULL) {
1101       // I'd like to write: guarantee (w->_thread != Self).
1102       // But in practice an exiting thread may find itself on the EntryList.
1103       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1104       // then calls exit().  Exit release the lock by setting O._owner to NULL.
1105       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1106       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1107       // release the lock "O".  T2 resumes immediately after the ST of null into
1108       // _owner, above.  T2 notices that the EntryList is populated, so it
1109       // reacquires the lock and then finds itself on the EntryList.
1110       // Given all that, we have to tolerate the circumstance where "w" is
1111       // associated with Self.
1112       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1113       ExitEpilog(Self, w);
1114       return;
1115     }
1116 
1117     // If we find that both _cxq and EntryList are null then just
1118     // re-run the exit protocol from the top.
1119     w = _cxq;
1120     if (w == NULL) continue;
1121 
1122     // Drain _cxq into EntryList - bulk transfer.
1123     // First, detach _cxq.
1124     // The following loop is tantamount to: w = swap(&cxq, NULL)
1125     for (;;) {
1126       assert(w != NULL, "Invariant");
1127       ObjectWaiter * u = Atomic::cmpxchg(&_cxq, w, (ObjectWaiter*)NULL);
1128       if (u == w) break;
1129       w = u;
1130     }
1131 
1132     assert(w != NULL, "invariant");
1133     assert(_EntryList == NULL, "invariant");
1134 
1135     // Convert the LIFO SLL anchored by _cxq into a DLL.
1136     // The list reorganization step operates in O(LENGTH(w)) time.
1137     // It's critical that this step operate quickly as
1138     // "Self" still holds the outer-lock, restricting parallelism
1139     // and effectively lengthening the critical section.
1140     // Invariant: s chases t chases u.
1141     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1142     // we have faster access to the tail.
1143 
1144     _EntryList = w;
1145     ObjectWaiter * q = NULL;
1146     ObjectWaiter * p;
1147     for (p = w; p != NULL; p = p->_next) {
1148       guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1149       p->TState = ObjectWaiter::TS_ENTER;
1150       p->_prev = q;
1151       q = p;
1152     }
1153 
1154     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1155     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1156 
1157     // See if we can abdicate to a spinner instead of waking a thread.
1158     // A primary goal of the implementation is to reduce the
1159     // context-switch rate.
1160     if (_succ != NULL) continue;
1161 
1162     w = _EntryList;
1163     if (w != NULL) {
1164       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1165       ExitEpilog(Self, w);
1166       return;
1167     }
1168   }
1169 }
1170 
1171 // ExitSuspendEquivalent:
1172 // A faster alternate to handle_special_suspend_equivalent_condition()
1173 //
1174 // handle_special_suspend_equivalent_condition() unconditionally
1175 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1176 // operations have high latency.  Note that in ::enter() we call HSSEC
1177 // while holding the monitor, so we effectively lengthen the critical sections.
1178 //
1179 // There are a number of possible solutions:
1180 //
1181 // A.  To ameliorate the problem we might also defer state transitions
1182 //     to as late as possible -- just prior to parking.
1183 //     Given that, we'd call HSSEC after having returned from park(),
1184 //     but before attempting to acquire the monitor.  This is only a
1185 //     partial solution.  It avoids calling HSSEC while holding the
1186 //     monitor (good), but it still increases successor reacquisition latency --
1187 //     the interval between unparking a successor and the time the successor
1188 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1189 //     If we use this technique we can also avoid EnterI()-exit() loop
1190 //     in ::enter() where we iteratively drop the lock and then attempt
1191 //     to reacquire it after suspending.
1192 //
1193 // B.  In the future we might fold all the suspend bits into a
1194 //     composite per-thread suspend flag and then update it with CAS().
1195 //     Alternately, a Dekker-like mechanism with multiple variables
1196 //     would suffice:
1197 //       ST Self->_suspend_equivalent = false
1198 //       MEMBAR
1199 //       LD Self_>_suspend_flags
1200 
1201 bool ObjectMonitor::ExitSuspendEquivalent(JavaThread * jSelf) {
1202   return jSelf->handle_special_suspend_equivalent_condition();
1203 }
1204 
1205 
1206 void ObjectMonitor::ExitEpilog(Thread * Self, ObjectWaiter * Wakee) {
1207   assert(_owner == Self, "invariant");
1208 
1209   // Exit protocol:
1210   // 1. ST _succ = wakee
1211   // 2. membar #loadstore|#storestore;
1212   // 2. ST _owner = NULL
1213   // 3. unpark(wakee)
1214 
1215   _succ = Wakee->_thread;
1216   ParkEvent * Trigger = Wakee->_event;
1217 
1218   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1219   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1220   // out-of-scope (non-extant).
1221   Wakee  = NULL;
1222 
1223   // Drop the lock.
1224   // Uses a fence to separate release_store(owner) from the LD in unpark().
1225   release_clear_owner(Self);
1226   OrderAccess::fence();
1227 
1228   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1229   Trigger->unpark();
1230 
1231   // Maintain stats and report events to JVMTI
1232   OM_PERFDATA_OP(Parks, inc());
1233 }
1234 
1235 
1236 // -----------------------------------------------------------------------------
1237 // Class Loader deadlock handling.
1238 //
1239 // complete_exit exits a lock returning recursion count
1240 // complete_exit/reenter operate as a wait without waiting
1241 // complete_exit requires an inflated monitor
1242 // The _owner field is not always the Thread addr even with an
1243 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1244 // thread due to contention.
1245 intx ObjectMonitor::complete_exit(TRAPS) {
1246   Thread * const Self = THREAD;
1247   assert(Self->is_Java_thread(), "Must be Java thread!");
1248   JavaThread *jt = (JavaThread *)THREAD;
1249 
1250   assert(InitDone, "Unexpectedly not initialized");
1251 
1252   void* cur = Atomic::load(&_owner);
1253   if (THREAD != cur) {
1254     if (THREAD->is_lock_owned((address)cur)) {
1255       assert(_recursions == 0, "internal state error");
1256       set_owner_from_BasicLock(cur, Self);  // Convert from BasicLock* to Thread*.
1257       _recursions = 0;
1258     }
1259   }
1260 
1261   guarantee(Self == _owner, "complete_exit not owner");
1262   intx save = _recursions; // record the old recursion count
1263   _recursions = 0;        // set the recursion level to be 0
1264   exit(true, Self);           // exit the monitor
1265   guarantee(_owner != Self, "invariant");
1266   return save;
1267 }
1268 
1269 // reenter() enters a lock and sets recursion count
1270 // complete_exit/reenter operate as a wait without waiting
1271 void ObjectMonitor::reenter(intx recursions, TRAPS) {
1272   Thread * const Self = THREAD;
1273   assert(Self->is_Java_thread(), "Must be Java thread!");
1274   JavaThread *jt = (JavaThread *)THREAD;
1275 
1276   guarantee(_owner != Self, "reenter already owner");
1277   enter(THREAD);
1278   // Entered the monitor.
1279   guarantee(_recursions == 0, "reenter recursion");
1280   _recursions = recursions;
1281 }
1282 
1283 // Checks that the current THREAD owns this monitor and causes an
1284 // immediate return if it doesn't. We don't use the CHECK macro
1285 // because we want the IMSE to be the only exception that is thrown
1286 // from the call site when false is returned. Any other pending
1287 // exception is ignored.
1288 #define CHECK_OWNER()                                                  \
1289   do {                                                                 \
1290     if (!check_owner(THREAD)) {                                        \
1291        assert(HAS_PENDING_EXCEPTION, "expected a pending IMSE here."); \
1292        return;                                                         \
1293      }                                                                 \
1294   } while (false)
1295 
1296 // Returns true if the specified thread owns the ObjectMonitor.
1297 // Otherwise returns false and throws IllegalMonitorStateException
1298 // (IMSE). If there is a pending exception and the specified thread
1299 // is not the owner, that exception will be replaced by the IMSE.
1300 bool ObjectMonitor::check_owner(Thread* THREAD) {
1301   void* cur = Atomic::load(&_owner);
1302   if (cur == THREAD) {
1303     return true;
1304   }
1305   if (THREAD->is_lock_owned((address)cur)) {
1306     set_owner_from_BasicLock(cur, THREAD);  // Convert from BasicLock* to Thread*.
1307     _recursions = 0;
1308     return true;
1309   }
1310   THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(),
1311              "current thread is not owner", false);
1312 }
1313 
1314 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1315                                     ObjectMonitor* monitor,
1316                                     jlong notifier_tid,
1317                                     jlong timeout,
1318                                     bool timedout) {
1319   assert(event != NULL, "invariant");
1320   assert(monitor != NULL, "invariant");
1321   event->set_monitorClass(((oop)monitor->object())->klass());
1322   event->set_timeout(timeout);
1323   event->set_address((uintptr_t)monitor->object_addr());
1324   event->set_notifier(notifier_tid);
1325   event->set_timedOut(timedout);
1326   event->commit();
1327 }
1328 
1329 // -----------------------------------------------------------------------------
1330 // Wait/Notify/NotifyAll
1331 //
1332 // Note: a subset of changes to ObjectMonitor::wait()
1333 // will need to be replicated in complete_exit
1334 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1335   Thread * const Self = THREAD;
1336   assert(Self->is_Java_thread(), "Must be Java thread!");
1337   JavaThread *jt = (JavaThread *)THREAD;
1338 
1339   assert(InitDone, "Unexpectedly not initialized");
1340 
1341   CHECK_OWNER();  // Throws IMSE if not owner.
1342 
1343   EventJavaMonitorWait event;
1344 
1345   // check for a pending interrupt
1346   if (interruptible && jt->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1347     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1348     if (JvmtiExport::should_post_monitor_waited()) {
1349       // Note: 'false' parameter is passed here because the
1350       // wait was not timed out due to thread interrupt.
1351       JvmtiExport::post_monitor_waited(jt, this, false);
1352 
1353       // In this short circuit of the monitor wait protocol, the
1354       // current thread never drops ownership of the monitor and
1355       // never gets added to the wait queue so the current thread
1356       // cannot be made the successor. This means that the
1357       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1358       // consume an unpark() meant for the ParkEvent associated with
1359       // this ObjectMonitor.
1360     }
1361     if (event.should_commit()) {
1362       post_monitor_wait_event(&event, this, 0, millis, false);
1363     }
1364     THROW(vmSymbols::java_lang_InterruptedException());
1365     return;
1366   }
1367 
1368   assert(Self->_Stalled == 0, "invariant");
1369   Self->_Stalled = intptr_t(this);
1370   jt->set_current_waiting_monitor(this);
1371 
1372   // create a node to be put into the queue
1373   // Critically, after we reset() the event but prior to park(), we must check
1374   // for a pending interrupt.
1375   ObjectWaiter node(Self);
1376   node.TState = ObjectWaiter::TS_WAIT;
1377   Self->_ParkEvent->reset();
1378   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1379 
1380   // Enter the waiting queue, which is a circular doubly linked list in this case
1381   // but it could be a priority queue or any data structure.
1382   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1383   // by the the owner of the monitor *except* in the case where park()
1384   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1385   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1386 
1387   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1388   AddWaiter(&node);
1389   Thread::SpinRelease(&_WaitSetLock);
1390 
1391   _Responsible = NULL;
1392 
1393   intx save = _recursions;     // record the old recursion count
1394   _waiters++;                  // increment the number of waiters
1395   _recursions = 0;             // set the recursion level to be 1
1396   exit(true, Self);                    // exit the monitor
1397   guarantee(_owner != Self, "invariant");
1398 
1399   // The thread is on the WaitSet list - now park() it.
1400   // On MP systems it's conceivable that a brief spin before we park
1401   // could be profitable.
1402   //
1403   // TODO-FIXME: change the following logic to a loop of the form
1404   //   while (!timeout && !interrupted && _notified == 0) park()
1405 
1406   int ret = OS_OK;
1407   int WasNotified = 0;
1408 
1409   // Need to check interrupt state whilst still _thread_in_vm
1410   bool interrupted = interruptible && jt->is_interrupted(false);
1411 
1412   { // State transition wrappers
1413     OSThread* osthread = Self->osthread();
1414     OSThreadWaitState osts(osthread, true);
1415     {
1416       ThreadBlockInVM tbivm(jt);
1417       // Thread is in thread_blocked state and oop access is unsafe.
1418       jt->set_suspend_equivalent();
1419 
1420       if (interrupted || HAS_PENDING_EXCEPTION) {
1421         // Intentionally empty
1422       } else if (node._notified == 0) {
1423         if (millis <= 0) {
1424           Self->_ParkEvent->park();
1425         } else {
1426           ret = Self->_ParkEvent->park(millis);
1427         }
1428       }
1429 
1430       // were we externally suspended while we were waiting?
1431       if (ExitSuspendEquivalent (jt)) {
1432         // TODO-FIXME: add -- if succ == Self then succ = null.
1433         jt->java_suspend_self();
1434       }
1435 
1436     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1437 
1438     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1439     // from the WaitSet to the EntryList.
1440     // See if we need to remove Node from the WaitSet.
1441     // We use double-checked locking to avoid grabbing _WaitSetLock
1442     // if the thread is not on the wait queue.
1443     //
1444     // Note that we don't need a fence before the fetch of TState.
1445     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1446     // written by the is thread. (perhaps the fetch might even be satisfied
1447     // by a look-aside into the processor's own store buffer, although given
1448     // the length of the code path between the prior ST and this load that's
1449     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1450     // then we'll acquire the lock and then re-fetch a fresh TState value.
1451     // That is, we fail toward safety.
1452 
1453     if (node.TState == ObjectWaiter::TS_WAIT) {
1454       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1455       if (node.TState == ObjectWaiter::TS_WAIT) {
1456         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1457         assert(node._notified == 0, "invariant");
1458         node.TState = ObjectWaiter::TS_RUN;
1459       }
1460       Thread::SpinRelease(&_WaitSetLock);
1461     }
1462 
1463     // The thread is now either on off-list (TS_RUN),
1464     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1465     // The Node's TState variable is stable from the perspective of this thread.
1466     // No other threads will asynchronously modify TState.
1467     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1468     OrderAccess::loadload();
1469     if (_succ == Self) _succ = NULL;
1470     WasNotified = node._notified;
1471 
1472     // Reentry phase -- reacquire the monitor.
1473     // re-enter contended monitor after object.wait().
1474     // retain OBJECT_WAIT state until re-enter successfully completes
1475     // Thread state is thread_in_vm and oop access is again safe,
1476     // although the raw address of the object may have changed.
1477     // (Don't cache naked oops over safepoints, of course).
1478 
1479     // post monitor waited event. Note that this is past-tense, we are done waiting.
1480     if (JvmtiExport::should_post_monitor_waited()) {
1481       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1482 
1483       if (node._notified != 0 && _succ == Self) {
1484         // In this part of the monitor wait-notify-reenter protocol it
1485         // is possible (and normal) for another thread to do a fastpath
1486         // monitor enter-exit while this thread is still trying to get
1487         // to the reenter portion of the protocol.
1488         //
1489         // The ObjectMonitor was notified and the current thread is
1490         // the successor which also means that an unpark() has already
1491         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1492         // consume the unpark() that was done when the successor was
1493         // set because the same ParkEvent is shared between Java
1494         // monitors and JVM/TI RawMonitors (for now).
1495         //
1496         // We redo the unpark() to ensure forward progress, i.e., we
1497         // don't want all pending threads hanging (parked) with none
1498         // entering the unlocked monitor.
1499         node._event->unpark();
1500       }
1501     }
1502 
1503     if (event.should_commit()) {
1504       post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1505     }
1506 
1507     OrderAccess::fence();
1508 
1509     assert(Self->_Stalled != 0, "invariant");
1510     Self->_Stalled = 0;
1511 
1512     assert(_owner != Self, "invariant");
1513     ObjectWaiter::TStates v = node.TState;
1514     if (v == ObjectWaiter::TS_RUN) {
1515       enter(Self);
1516     } else {
1517       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1518       ReenterI(Self, &node);
1519       node.wait_reenter_end(this);
1520     }
1521 
1522     // Self has reacquired the lock.
1523     // Lifecycle - the node representing Self must not appear on any queues.
1524     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1525     // want residual elements associated with this thread left on any lists.
1526     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1527     assert(_owner == Self, "invariant");
1528     assert(_succ != Self, "invariant");
1529   } // OSThreadWaitState()
1530 
1531   jt->set_current_waiting_monitor(NULL);
1532 
1533   guarantee(_recursions == 0, "invariant");
1534   _recursions = save;     // restore the old recursion count
1535   _waiters--;             // decrement the number of waiters
1536 
1537   // Verify a few postconditions
1538   assert(_owner == Self, "invariant");
1539   assert(_succ != Self, "invariant");
1540   assert(((oop)(object()))->mark() == markWord::encode(this), "invariant");
1541 
1542   // check if the notification happened
1543   if (!WasNotified) {
1544     // no, it could be timeout or Thread.interrupt() or both
1545     // check for interrupt event, otherwise it is timeout
1546     if (interruptible && jt->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1547       THROW(vmSymbols::java_lang_InterruptedException());
1548     }
1549   }
1550 
1551   // NOTE: Spurious wake up will be consider as timeout.
1552   // Monitor notify has precedence over thread interrupt.
1553 }
1554 
1555 
1556 // Consider:
1557 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1558 // then instead of transferring a thread from the WaitSet to the EntryList
1559 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1560 
1561 void ObjectMonitor::INotify(Thread * Self) {
1562   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1563   ObjectWaiter * iterator = DequeueWaiter();
1564   if (iterator != NULL) {
1565     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1566     guarantee(iterator->_notified == 0, "invariant");
1567     // Disposition - what might we do with iterator ?
1568     // a.  add it directly to the EntryList - either tail (policy == 1)
1569     //     or head (policy == 0).
1570     // b.  push it onto the front of the _cxq (policy == 2).
1571     // For now we use (b).
1572 
1573     iterator->TState = ObjectWaiter::TS_ENTER;
1574 
1575     iterator->_notified = 1;
1576     iterator->_notifier_tid = JFR_THREAD_ID(Self);
1577 
1578     ObjectWaiter * list = _EntryList;
1579     if (list != NULL) {
1580       assert(list->_prev == NULL, "invariant");
1581       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1582       assert(list != iterator, "invariant");
1583     }
1584 
1585     // prepend to cxq
1586     if (list == NULL) {
1587       iterator->_next = iterator->_prev = NULL;
1588       _EntryList = iterator;
1589     } else {
1590       iterator->TState = ObjectWaiter::TS_CXQ;
1591       for (;;) {
1592         ObjectWaiter * front = _cxq;
1593         iterator->_next = front;
1594         if (Atomic::cmpxchg(&_cxq, front, iterator) == front) {
1595           break;
1596         }
1597       }
1598     }
1599 
1600     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1601     // move the add-to-EntryList operation, above, outside the critical section
1602     // protected by _WaitSetLock.  In practice that's not useful.  With the
1603     // exception of  wait() timeouts and interrupts the monitor owner
1604     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1605     // on _WaitSetLock so it's not profitable to reduce the length of the
1606     // critical section.
1607 
1608     iterator->wait_reenter_begin(this);
1609   }
1610   Thread::SpinRelease(&_WaitSetLock);
1611 }
1612 
1613 // Consider: a not-uncommon synchronization bug is to use notify() when
1614 // notifyAll() is more appropriate, potentially resulting in stranded
1615 // threads; this is one example of a lost wakeup. A useful diagnostic
1616 // option is to force all notify() operations to behave as notifyAll().
1617 //
1618 // Note: We can also detect many such problems with a "minimum wait".
1619 // When the "minimum wait" is set to a small non-zero timeout value
1620 // and the program does not hang whereas it did absent "minimum wait",
1621 // that suggests a lost wakeup bug.
1622 
1623 void ObjectMonitor::notify(TRAPS) {
1624   CHECK_OWNER();  // Throws IMSE if not owner.
1625   if (_WaitSet == NULL) {
1626     return;
1627   }
1628   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1629   INotify(THREAD);
1630   OM_PERFDATA_OP(Notifications, inc(1));
1631 }
1632 
1633 
1634 // The current implementation of notifyAll() transfers the waiters one-at-a-time
1635 // from the waitset to the EntryList. This could be done more efficiently with a
1636 // single bulk transfer but in practice it's not time-critical. Beware too,
1637 // that in prepend-mode we invert the order of the waiters. Let's say that the
1638 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1639 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1640 
1641 void ObjectMonitor::notifyAll(TRAPS) {
1642   CHECK_OWNER();  // Throws IMSE if not owner.
1643   if (_WaitSet == NULL) {
1644     return;
1645   }
1646 
1647   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1648   int tally = 0;
1649   while (_WaitSet != NULL) {
1650     tally++;
1651     INotify(THREAD);
1652   }
1653 
1654   OM_PERFDATA_OP(Notifications, inc(tally));
1655 }
1656 
1657 // -----------------------------------------------------------------------------
1658 // Adaptive Spinning Support
1659 //
1660 // Adaptive spin-then-block - rational spinning
1661 //
1662 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1663 // algorithm.  On high order SMP systems it would be better to start with
1664 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1665 // a contending thread could enqueue itself on the cxq and then spin locally
1666 // on a thread-specific variable such as its ParkEvent._Event flag.
1667 // That's left as an exercise for the reader.  Note that global spinning is
1668 // not problematic on Niagara, as the L2 cache serves the interconnect and
1669 // has both low latency and massive bandwidth.
1670 //
1671 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1672 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1673 // (duration) or we can fix the count at approximately the duration of
1674 // a context switch and vary the frequency.   Of course we could also
1675 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1676 // For a description of 'Adaptive spin-then-block mutual exclusion in
1677 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1678 //
1679 // This implementation varies the duration "D", where D varies with
1680 // the success rate of recent spin attempts. (D is capped at approximately
1681 // length of a round-trip context switch).  The success rate for recent
1682 // spin attempts is a good predictor of the success rate of future spin
1683 // attempts.  The mechanism adapts automatically to varying critical
1684 // section length (lock modality), system load and degree of parallelism.
1685 // D is maintained per-monitor in _SpinDuration and is initialized
1686 // optimistically.  Spin frequency is fixed at 100%.
1687 //
1688 // Note that _SpinDuration is volatile, but we update it without locks
1689 // or atomics.  The code is designed so that _SpinDuration stays within
1690 // a reasonable range even in the presence of races.  The arithmetic
1691 // operations on _SpinDuration are closed over the domain of legal values,
1692 // so at worst a race will install and older but still legal value.
1693 // At the very worst this introduces some apparent non-determinism.
1694 // We might spin when we shouldn't or vice-versa, but since the spin
1695 // count are relatively short, even in the worst case, the effect is harmless.
1696 //
1697 // Care must be taken that a low "D" value does not become an
1698 // an absorbing state.  Transient spinning failures -- when spinning
1699 // is overall profitable -- should not cause the system to converge
1700 // on low "D" values.  We want spinning to be stable and predictable
1701 // and fairly responsive to change and at the same time we don't want
1702 // it to oscillate, become metastable, be "too" non-deterministic,
1703 // or converge on or enter undesirable stable absorbing states.
1704 //
1705 // We implement a feedback-based control system -- using past behavior
1706 // to predict future behavior.  We face two issues: (a) if the
1707 // input signal is random then the spin predictor won't provide optimal
1708 // results, and (b) if the signal frequency is too high then the control
1709 // system, which has some natural response lag, will "chase" the signal.
1710 // (b) can arise from multimodal lock hold times.  Transient preemption
1711 // can also result in apparent bimodal lock hold times.
1712 // Although sub-optimal, neither condition is particularly harmful, as
1713 // in the worst-case we'll spin when we shouldn't or vice-versa.
1714 // The maximum spin duration is rather short so the failure modes aren't bad.
1715 // To be conservative, I've tuned the gain in system to bias toward
1716 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1717 // "rings" or oscillates between spinning and not spinning.  This happens
1718 // when spinning is just on the cusp of profitability, however, so the
1719 // situation is not dire.  The state is benign -- there's no need to add
1720 // hysteresis control to damp the transition rate between spinning and
1721 // not spinning.
1722 
1723 // Spinning: Fixed frequency (100%), vary duration
1724 int ObjectMonitor::TrySpin(Thread * Self) {
1725   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1726   int ctr = Knob_FixedSpin;
1727   if (ctr != 0) {
1728     while (--ctr >= 0) {
1729       if (TryLock(Self) > 0) return 1;
1730       SpinPause();
1731     }
1732     return 0;
1733   }
1734 
1735   for (ctr = Knob_PreSpin + 1; --ctr >= 0;) {
1736     if (TryLock(Self) > 0) {
1737       // Increase _SpinDuration ...
1738       // Note that we don't clamp SpinDuration precisely at SpinLimit.
1739       // Raising _SpurDuration to the poverty line is key.
1740       int x = _SpinDuration;
1741       if (x < Knob_SpinLimit) {
1742         if (x < Knob_Poverty) x = Knob_Poverty;
1743         _SpinDuration = x + Knob_BonusB;
1744       }
1745       return 1;
1746     }
1747     SpinPause();
1748   }
1749 
1750   // Admission control - verify preconditions for spinning
1751   //
1752   // We always spin a little bit, just to prevent _SpinDuration == 0 from
1753   // becoming an absorbing state.  Put another way, we spin briefly to
1754   // sample, just in case the system load, parallelism, contention, or lock
1755   // modality changed.
1756   //
1757   // Consider the following alternative:
1758   // Periodically set _SpinDuration = _SpinLimit and try a long/full
1759   // spin attempt.  "Periodically" might mean after a tally of
1760   // the # of failed spin attempts (or iterations) reaches some threshold.
1761   // This takes us into the realm of 1-out-of-N spinning, where we
1762   // hold the duration constant but vary the frequency.
1763 
1764   ctr = _SpinDuration;
1765   if (ctr <= 0) return 0;
1766 
1767   if (NotRunnable(Self, (Thread *) _owner)) {
1768     return 0;
1769   }
1770 
1771   // We're good to spin ... spin ingress.
1772   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1773   // when preparing to LD...CAS _owner, etc and the CAS is likely
1774   // to succeed.
1775   if (_succ == NULL) {
1776     _succ = Self;
1777   }
1778   Thread * prv = NULL;
1779 
1780   // There are three ways to exit the following loop:
1781   // 1.  A successful spin where this thread has acquired the lock.
1782   // 2.  Spin failure with prejudice
1783   // 3.  Spin failure without prejudice
1784 
1785   while (--ctr >= 0) {
1786 
1787     // Periodic polling -- Check for pending GC
1788     // Threads may spin while they're unsafe.
1789     // We don't want spinning threads to delay the JVM from reaching
1790     // a stop-the-world safepoint or to steal cycles from GC.
1791     // If we detect a pending safepoint we abort in order that
1792     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1793     // this thread, if safe, doesn't steal cycles from GC.
1794     // This is in keeping with the "no loitering in runtime" rule.
1795     // We periodically check to see if there's a safepoint pending.
1796     if ((ctr & 0xFF) == 0) {
1797       if (SafepointMechanism::should_block(Self)) {
1798         goto Abort;           // abrupt spin egress
1799       }
1800       SpinPause();
1801     }
1802 
1803     // Probe _owner with TATAS
1804     // If this thread observes the monitor transition or flicker
1805     // from locked to unlocked to locked, then the odds that this
1806     // thread will acquire the lock in this spin attempt go down
1807     // considerably.  The same argument applies if the CAS fails
1808     // or if we observe _owner change from one non-null value to
1809     // another non-null value.   In such cases we might abort
1810     // the spin without prejudice or apply a "penalty" to the
1811     // spin count-down variable "ctr", reducing it by 100, say.
1812 
1813     Thread * ox = (Thread *) _owner;
1814     if (ox == NULL) {
1815       ox = (Thread*)try_set_owner_from(NULL, Self);
1816       if (ox == NULL) {
1817         // The CAS succeeded -- this thread acquired ownership
1818         // Take care of some bookkeeping to exit spin state.
1819         if (_succ == Self) {
1820           _succ = NULL;
1821         }
1822 
1823         // Increase _SpinDuration :
1824         // The spin was successful (profitable) so we tend toward
1825         // longer spin attempts in the future.
1826         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
1827         // If we acquired the lock early in the spin cycle it
1828         // makes sense to increase _SpinDuration proportionally.
1829         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1830         int x = _SpinDuration;
1831         if (x < Knob_SpinLimit) {
1832           if (x < Knob_Poverty) x = Knob_Poverty;
1833           _SpinDuration = x + Knob_Bonus;
1834         }
1835         return 1;
1836       }
1837 
1838       // The CAS failed ... we can take any of the following actions:
1839       // * penalize: ctr -= CASPenalty
1840       // * exit spin with prejudice -- goto Abort;
1841       // * exit spin without prejudice.
1842       // * Since CAS is high-latency, retry again immediately.
1843       prv = ox;
1844       goto Abort;
1845     }
1846 
1847     // Did lock ownership change hands ?
1848     if (ox != prv && prv != NULL) {
1849       goto Abort;
1850     }
1851     prv = ox;
1852 
1853     // Abort the spin if the owner is not executing.
1854     // The owner must be executing in order to drop the lock.
1855     // Spinning while the owner is OFFPROC is idiocy.
1856     // Consider: ctr -= RunnablePenalty ;
1857     if (NotRunnable(Self, ox)) {
1858       goto Abort;
1859     }
1860     if (_succ == NULL) {
1861       _succ = Self;
1862     }
1863   }
1864 
1865   // Spin failed with prejudice -- reduce _SpinDuration.
1866   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
1867   // AIMD is globally stable.
1868   {
1869     int x = _SpinDuration;
1870     if (x > 0) {
1871       // Consider an AIMD scheme like: x -= (x >> 3) + 100
1872       // This is globally sample and tends to damp the response.
1873       x -= Knob_Penalty;
1874       if (x < 0) x = 0;
1875       _SpinDuration = x;
1876     }
1877   }
1878 
1879  Abort:
1880   if (_succ == Self) {
1881     _succ = NULL;
1882     // Invariant: after setting succ=null a contending thread
1883     // must recheck-retry _owner before parking.  This usually happens
1884     // in the normal usage of TrySpin(), but it's safest
1885     // to make TrySpin() as foolproof as possible.
1886     OrderAccess::fence();
1887     if (TryLock(Self) > 0) return 1;
1888   }
1889   return 0;
1890 }
1891 
1892 // NotRunnable() -- informed spinning
1893 //
1894 // Don't bother spinning if the owner is not eligible to drop the lock.
1895 // Spin only if the owner thread is _thread_in_Java or _thread_in_vm.
1896 // The thread must be runnable in order to drop the lock in timely fashion.
1897 // If the _owner is not runnable then spinning will not likely be
1898 // successful (profitable).
1899 //
1900 // Beware -- the thread referenced by _owner could have died
1901 // so a simply fetch from _owner->_thread_state might trap.
1902 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
1903 // Because of the lifecycle issues, the _thread_state values
1904 // observed by NotRunnable() might be garbage.  NotRunnable must
1905 // tolerate this and consider the observed _thread_state value
1906 // as advisory.
1907 //
1908 // Beware too, that _owner is sometimes a BasicLock address and sometimes
1909 // a thread pointer.
1910 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
1911 // with the LSB of _owner.  Another option would be to probabilistically probe
1912 // the putative _owner->TypeTag value.
1913 //
1914 // Checking _thread_state isn't perfect.  Even if the thread is
1915 // in_java it might be blocked on a page-fault or have been preempted
1916 // and sitting on a ready/dispatch queue.
1917 //
1918 // The return value from NotRunnable() is *advisory* -- the
1919 // result is based on sampling and is not necessarily coherent.
1920 // The caller must tolerate false-negative and false-positive errors.
1921 // Spinning, in general, is probabilistic anyway.
1922 
1923 
1924 int ObjectMonitor::NotRunnable(Thread * Self, Thread * ox) {
1925   // Check ox->TypeTag == 2BAD.
1926   if (ox == NULL) return 0;
1927 
1928   // Avoid transitive spinning ...
1929   // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
1930   // Immediately after T1 acquires L it's possible that T2, also
1931   // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
1932   // This occurs transiently after T1 acquired L but before
1933   // T1 managed to clear T1.Stalled.  T2 does not need to abort
1934   // its spin in this circumstance.
1935   intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1));
1936 
1937   if (BlockedOn == 1) return 1;
1938   if (BlockedOn != 0) {
1939     return BlockedOn != intptr_t(this) && _owner == ox;
1940   }
1941 
1942   assert(sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant");
1943   int jst = SafeFetch32((int *) &((JavaThread *) ox)->_thread_state, -1);;
1944   // consider also: jst != _thread_in_Java -- but that's overspecific.
1945   return jst == _thread_blocked || jst == _thread_in_native;
1946 }
1947 
1948 
1949 // -----------------------------------------------------------------------------
1950 // WaitSet management ...
1951 
1952 ObjectWaiter::ObjectWaiter(Thread* thread) {
1953   _next     = NULL;
1954   _prev     = NULL;
1955   _notified = 0;
1956   _notifier_tid = 0;
1957   TState    = TS_RUN;
1958   _thread   = thread;
1959   _event    = thread->_ParkEvent;
1960   _active   = false;
1961   assert(_event != NULL, "invariant");
1962 }
1963 
1964 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
1965   JavaThread *jt = (JavaThread *)this->_thread;
1966   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
1967 }
1968 
1969 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
1970   JavaThread *jt = (JavaThread *)this->_thread;
1971   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
1972 }
1973 
1974 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
1975   assert(node != NULL, "should not add NULL node");
1976   assert(node->_prev == NULL, "node already in list");
1977   assert(node->_next == NULL, "node already in list");
1978   // put node at end of queue (circular doubly linked list)
1979   if (_WaitSet == NULL) {
1980     _WaitSet = node;
1981     node->_prev = node;
1982     node->_next = node;
1983   } else {
1984     ObjectWaiter* head = _WaitSet;
1985     ObjectWaiter* tail = head->_prev;
1986     assert(tail->_next == head, "invariant check");
1987     tail->_next = node;
1988     head->_prev = node;
1989     node->_next = head;
1990     node->_prev = tail;
1991   }
1992 }
1993 
1994 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
1995   // dequeue the very first waiter
1996   ObjectWaiter* waiter = _WaitSet;
1997   if (waiter) {
1998     DequeueSpecificWaiter(waiter);
1999   }
2000   return waiter;
2001 }
2002 
2003 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2004   assert(node != NULL, "should not dequeue NULL node");
2005   assert(node->_prev != NULL, "node already removed from list");
2006   assert(node->_next != NULL, "node already removed from list");
2007   // when the waiter has woken up because of interrupt,
2008   // timeout or other spurious wake-up, dequeue the
2009   // waiter from waiting list
2010   ObjectWaiter* next = node->_next;
2011   if (next == node) {
2012     assert(node->_prev == node, "invariant check");
2013     _WaitSet = NULL;
2014   } else {
2015     ObjectWaiter* prev = node->_prev;
2016     assert(prev->_next == node, "invariant check");
2017     assert(next->_prev == node, "invariant check");
2018     next->_prev = prev;
2019     prev->_next = next;
2020     if (_WaitSet == node) {
2021       _WaitSet = next;
2022     }
2023   }
2024   node->_next = NULL;
2025   node->_prev = NULL;
2026 }
2027 
2028 // -----------------------------------------------------------------------------
2029 // PerfData support
2030 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL;
2031 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL;
2032 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL;
2033 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL;
2034 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL;
2035 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL;
2036 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL;
2037 
2038 // One-shot global initialization for the sync subsystem.
2039 // We could also defer initialization and initialize on-demand
2040 // the first time we call ObjectSynchronizer::inflate().
2041 // Initialization would be protected - like so many things - by
2042 // the MonitorCache_lock.
2043 
2044 void ObjectMonitor::Initialize() {
2045   assert(!InitDone, "invariant");
2046 
2047   if (!os::is_MP()) {
2048     Knob_SpinLimit = 0;
2049     Knob_PreSpin   = 0;
2050     Knob_FixedSpin = -1;
2051   }
2052 
2053   if (UsePerfData) {
2054     EXCEPTION_MARK;
2055 #define NEWPERFCOUNTER(n)                                                \
2056   {                                                                      \
2057     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
2058                                         CHECK);                          \
2059   }
2060 #define NEWPERFVARIABLE(n)                                                \
2061   {                                                                       \
2062     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2063                                          CHECK);                          \
2064   }
2065     NEWPERFCOUNTER(_sync_Inflations);
2066     NEWPERFCOUNTER(_sync_Deflations);
2067     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2068     NEWPERFCOUNTER(_sync_FutileWakeups);
2069     NEWPERFCOUNTER(_sync_Parks);
2070     NEWPERFCOUNTER(_sync_Notifications);
2071     NEWPERFVARIABLE(_sync_MonExtant);
2072 #undef NEWPERFCOUNTER
2073 #undef NEWPERFVARIABLE
2074   }
2075 
2076   DEBUG_ONLY(InitDone = true;)
2077 }
2078 
2079 ObjectMonitorHandle::~ObjectMonitorHandle() {
2080   if (_om_ptr != NULL) {
2081     _om_ptr->dec_ref_count();
2082     _om_ptr = NULL;
2083   }
2084 }
2085 
2086 // Save the ObjectMonitor* associated with the specified markWord and
2087 // increment the ref_count. This function should only be called if
2088 // the caller has verified mark.has_monitor() == true. The object
2089 // parameter is needed to verify that ObjectMonitor* has not been
2090 // deflated and reused for another object.
2091 //
2092 // This function returns true if the ObjectMonitor* has been safely
2093 // saved. This function returns false if we have lost a race with
2094 // async deflation; the caller should retry as appropriate.
2095 //
2096 bool ObjectMonitorHandle::save_om_ptr(oop object, markWord mark) {
2097   // is_marked() is a superset of has_monitor() so make sure we
2098   // are called with the proper markWord value.
2099   guarantee(mark.has_monitor() && !mark.is_marked(), "sanity check: mark="
2100             INTPTR_FORMAT, mark.value());
2101 
2102   ObjectMonitor* om_ptr = mark.monitor();
2103   om_ptr->inc_ref_count();
2104 
2105   if (AsyncDeflateIdleMonitors) {
2106     // Race here if monitor is not owned! The above ref_count bump
2107     // will cause subsequent async deflation to skip it. However,
2108     // previous or concurrent async deflation is a race.
2109     if (om_ptr->owner_is_DEFLATER_MARKER() && om_ptr->ref_count() <= 0) {
2110       // Async deflation is in progress and our ref_count increment
2111       // above lost the race to async deflation. Attempt to restore
2112       // the header/dmw to the object's header so that we only retry
2113       // once if the deflater thread happens to be slow.
2114       om_ptr->install_displaced_markword_in_object(object);
2115       om_ptr->dec_ref_count();
2116       return false;
2117     }
2118     if (om_ptr->ref_count() <= 0) {
2119       // Async deflation is in the process of bailing out, but has not
2120       // yet restored the ref_count field so we return false to force
2121       // a retry. We want a positive ref_count value for a true return.
2122       om_ptr->dec_ref_count();
2123       return false;
2124     }
2125     // The ObjectMonitor could have been deflated and reused for
2126     // another object before we bumped the ref_count so make sure
2127     // our object still refers to this ObjectMonitor.
2128     const markWord tmp = object->mark();
2129     if (!tmp.has_monitor() || tmp.monitor() != om_ptr) {
2130       // Async deflation and reuse won the race so we have to retry.
2131       // Skip object header restoration since that's already done.
2132       om_ptr->dec_ref_count();
2133       return false;
2134     }
2135   }
2136 
2137   ADIM_guarantee(_om_ptr == NULL, "sanity check: _om_ptr=" INTPTR_FORMAT,
2138                  p2i(_om_ptr));
2139   _om_ptr = om_ptr;
2140   return true;
2141 }
2142 
2143 // For internal use by ObjectSynchronizer::inflate().
2144 // This function is only used when we don't have to worry about async
2145 // deflation of the specified ObjectMonitor*.
2146 void ObjectMonitorHandle::set_om_ptr(ObjectMonitor* om_ptr) {
2147   if (_om_ptr == NULL) {
2148     ADIM_guarantee(om_ptr != NULL, "cannot clear an unset om_ptr");
2149     om_ptr->inc_ref_count();
2150     _om_ptr = om_ptr;
2151   } else {
2152     ADIM_guarantee(om_ptr == NULL, "can only clear a set om_ptr");
2153     _om_ptr->dec_ref_count();
2154     _om_ptr = NULL;
2155   }
2156 }
2157 
2158 // Save the specified ObjectMonitor* if it is safe, i.e., not being
2159 // async deflated.
2160 //
2161 // This function returns true if the ObjectMonitor* has been safely
2162 // saved. This function returns false if the specified ObjectMonitor*
2163 // is NULL or if we have lost a race with async deflation; the caller
2164 // can retry as appropriate.
2165 bool ObjectMonitorHandle::set_om_ptr_if_safe(ObjectMonitor* om_ptr) {
2166   if (om_ptr == NULL) {
2167     return false;  // Nothing to save if input is NULL
2168   }
2169 
2170   om_ptr->inc_ref_count();
2171 
2172   if (AsyncDeflateIdleMonitors) {
2173     if (om_ptr->owner_is_DEFLATER_MARKER() && om_ptr->ref_count() <= 0) {
2174       // Async deflation is in progress and our ref_count increment
2175       // above lost the race to async deflation.
2176       om_ptr->dec_ref_count();
2177       return false;
2178     }
2179     if (om_ptr->ref_count() <= 0) {
2180       // Async deflation is in the process of bailing out, but has not
2181       // yet restored the ref_count field so we return false to force
2182       // a retry. We want a positive ref_count value for a true return.
2183       om_ptr->dec_ref_count();
2184       return false;
2185     }
2186     // Unlike save_om_ptr(), we don't have context to determine if
2187     // the ObjectMonitor has been deflated and reused for another
2188     // object.
2189   }
2190 
2191   ADIM_guarantee(_om_ptr == NULL, "sanity check: _om_ptr=" INTPTR_FORMAT,
2192                  p2i(_om_ptr));
2193   _om_ptr = om_ptr;
2194   return true;
2195 }
2196 
2197 // Unset the _om_ptr field and decrement the ref_count field.
2198 void ObjectMonitorHandle::unset_om_ptr() {
2199   ADIM_guarantee(_om_ptr != NULL, "_om_ptr must not be NULL");
2200   _om_ptr->dec_ref_count();
2201   _om_ptr = NULL;
2202 }
2203 
2204 void ObjectMonitor::print_on(outputStream* st) const {
2205   // The minimal things to print for markWord printing, more can be added for debugging and logging.
2206   st->print("{contentions=0x%08x,waiters=0x%08x"
2207             ",recursions=" INTX_FORMAT ",owner=" INTPTR_FORMAT "}",
2208             contentions(), waiters(), recursions(),
2209             p2i(owner()));
2210 }
2211 void ObjectMonitor::print() const { print_on(tty); }
2212 
2213 #ifdef ASSERT
2214 // Print the ObjectMonitor like a debugger would:
2215 //
2216 // (ObjectMonitor) 0x00007fdfb6012e40 = {
2217 //   _header = 0x0000000000000001
2218 //   _object = 0x000000070ff45fd0
2219 //   _allocation_state = Old
2220 //   _pad_buf0 = {
2221 //     [0] = '\0'
2222 //     ...
2223 //     [43] = '\0'
2224 //   }
2225 //   _owner = 0x0000000000000000
2226 //   _previous_owner_tid = 0
2227 //   _pad_buf1 = {
2228 //     [0] = '\0'
2229 //     ...
2230 //     [47] = '\0'
2231 //   }
2232 //   _ref_count = 1
2233 //   _pad_buf2 = {
2234 //     [0] = '\0'
2235 //     ...
2236 //     [47] = '\0'
2237 //   }
2238 //   _next_om = 0x0000000000000000
2239 //   _recursions = 0
2240 //   _EntryList = 0x0000000000000000
2241 //   _cxq = 0x0000000000000000
2242 //   _succ = 0x0000000000000000
2243 //   _Responsible = 0x0000000000000000
2244 //   _Spinner = 0
2245 //   _SpinDuration = 5000
2246 //   _contentions = 0
2247 //   _WaitSet = 0x0000700009756248
2248 //   _waiters = 1
2249 //   _WaitSetLock = 0
2250 // }
2251 //
2252 void ObjectMonitor::print_debug_style_on(outputStream* st) const {
2253   st->print_cr("(ObjectMonitor*) " INTPTR_FORMAT " = {", p2i(this));
2254   st->print_cr("  _header = " INTPTR_FORMAT, header().value());
2255   st->print_cr("  _object = " INTPTR_FORMAT, p2i(_object));
2256   st->print("  _allocation_state = ");
2257   if (is_free()) {
2258     st->print("Free");
2259   } else if (is_old()) {
2260     st->print("Old");
2261   } else if (is_new()) {
2262     st->print("New");
2263   } else {
2264     st->print("unknown=%d", _allocation_state);
2265   }
2266   st->cr();
2267   st->print_cr("  _pad_buf0 = {");
2268   st->print_cr("    [0] = '\\0'");
2269   st->print_cr("    ...");
2270   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf0) - 1);
2271   st->print_cr("  }");
2272   st->print_cr("  _owner = " INTPTR_FORMAT, p2i(_owner));
2273   st->print_cr("  _previous_owner_tid = " JLONG_FORMAT, _previous_owner_tid);
2274   st->print_cr("  _pad_buf1 = {");
2275   st->print_cr("    [0] = '\\0'");
2276   st->print_cr("    ...");
2277   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf1) - 1);
2278   st->print_cr("  }");
2279   st->print_cr("  _ref_count = %d", ref_count());
2280   st->print_cr("  _pad_buf2 = {");
2281   st->print_cr("    [0] = '\\0'");
2282   st->print_cr("    ...");
2283   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf1) - 1);
2284   st->print_cr("  }");
2285   st->print_cr("  _next_om = " INTPTR_FORMAT, p2i(next_om()));
2286   st->print_cr("  _recursions = " INTX_FORMAT, _recursions);
2287   st->print_cr("  _EntryList = " INTPTR_FORMAT, p2i(_EntryList));
2288   st->print_cr("  _cxq = " INTPTR_FORMAT, p2i(_cxq));
2289   st->print_cr("  _succ = " INTPTR_FORMAT, p2i(_succ));
2290   st->print_cr("  _Responsible = " INTPTR_FORMAT, p2i(_Responsible));
2291   st->print_cr("  _Spinner = %d", _Spinner);
2292   st->print_cr("  _SpinDuration = %d", _SpinDuration);
2293   st->print_cr("  _contentions = %d", _contentions);
2294   st->print_cr("  _WaitSet = " INTPTR_FORMAT, p2i(_WaitSet));
2295   st->print_cr("  _waiters = %d", _waiters);
2296   st->print_cr("  _WaitSetLock = %d", _WaitSetLock);
2297   st->print_cr("}");
2298 }
2299 #endif