1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  public:
  42   // Support for VM calls
  43   //
  44   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  45   // may customize this version by overriding it for its purposes (e.g., to save/restore
  46   // additional registers when doing a VM call).
  47 
  48   virtual void call_VM_leaf_base(
  49     address entry_point,               // the entry point
  50     int     number_of_arguments        // the number of arguments to pop after the call
  51   );
  52 
  53  protected:
  54   // This is the base routine called by the different versions of call_VM. The interpreter
  55   // may customize this version by overriding it for its purposes (e.g., to save/restore
  56   // additional registers when doing a VM call).
  57   //
  58   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  59   // returns the register which contains the thread upon return. If a thread register has been
  60   // specified, the return value will correspond to that register. If no last_java_sp is specified
  61   // (noreg) than rsp will be used instead.
  62   virtual void call_VM_base(           // returns the register containing the thread upon return
  63     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  64     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  65     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  66     address  entry_point,              // the entry point
  67     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  68     bool     check_exceptions          // whether to check for pending exceptions after return
  69   );
  70 
  71   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  72 
  73   // helpers for FPU flag access
  74   // tmp is a temporary register, if none is available use noreg
  75   void save_rax   (Register tmp);
  76   void restore_rax(Register tmp);
  77 
  78  public:
  79   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  80 
  81  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  82  // The implementation is only non-empty for the InterpreterMacroAssembler,
  83  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  84  virtual void check_and_handle_popframe(Register java_thread);
  85  virtual void check_and_handle_earlyret(Register java_thread);
  86 
  87   Address as_Address(AddressLiteral adr);
  88   Address as_Address(ArrayAddress adr);
  89 
  90   // Support for NULL-checks
  91   //
  92   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  93   // If the accessed location is M[reg + offset] and the offset is known, provide the
  94   // offset. No explicit code generation is needed if the offset is within a certain
  95   // range (0 <= offset <= page_size).
  96 
  97   void null_check(Register reg, int offset = -1);
  98   static bool needs_explicit_null_check(intptr_t offset);
  99   static bool uses_implicit_null_check(void* address);
 100 
 101   // Required platform-specific helpers for Label::patch_instructions.
 102   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 103   void pd_patch_instruction(address branch, address target, const char* file, int line) {
 104     unsigned char op = branch[0];
 105     assert(op == 0xE8 /* call */ ||
 106         op == 0xE9 /* jmp */ ||
 107         op == 0xEB /* short jmp */ ||
 108         (op & 0xF0) == 0x70 /* short jcc */ ||
 109         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 110         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 111         "Invalid opcode at patch point");
 112 
 113     if (op == 0xEB || (op & 0xF0) == 0x70) {
 114       // short offset operators (jmp and jcc)
 115       char* disp = (char*) &branch[1];
 116       int imm8 = target - (address) &disp[1];
 117       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d",
 118                 file == NULL ? "<NULL>" : file, line);
 119       *disp = imm8;
 120     } else {
 121       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 122       int imm32 = target - (address) &disp[1];
 123       *disp = imm32;
 124     }
 125   }
 126 
 127   // The following 4 methods return the offset of the appropriate move instruction
 128 
 129   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 130   int load_unsigned_byte(Register dst, Address src);
 131   int load_unsigned_short(Register dst, Address src);
 132 
 133   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 134   int load_signed_byte(Register dst, Address src);
 135   int load_signed_short(Register dst, Address src);
 136 
 137   // Support for sign-extension (hi:lo = extend_sign(lo))
 138   void extend_sign(Register hi, Register lo);
 139 
 140   // Load and store values by size and signed-ness
 141   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 142   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 143 
 144   // Support for inc/dec with optimal instruction selection depending on value
 145 
 146   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 147   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 148 
 149   void decrementl(Address dst, int value = 1);
 150   void decrementl(Register reg, int value = 1);
 151 
 152   void decrementq(Register reg, int value = 1);
 153   void decrementq(Address dst, int value = 1);
 154 
 155   void incrementl(Address dst, int value = 1);
 156   void incrementl(Register reg, int value = 1);
 157 
 158   void incrementq(Register reg, int value = 1);
 159   void incrementq(Address dst, int value = 1);
 160 
 161 #ifdef COMPILER2
 162   // special instructions for EVEX
 163   void setvectmask(Register dst, Register src);
 164   void restorevectmask();
 165 #endif
 166 
 167   // Support optimal SSE move instructions.
 168   void movflt(XMMRegister dst, XMMRegister src) {
 169     if (dst-> encoding() == src->encoding()) return;
 170     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 171     else                       { movss (dst, src); return; }
 172   }
 173   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 174   void movflt(XMMRegister dst, AddressLiteral src);
 175   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 176 
 177   void movdbl(XMMRegister dst, XMMRegister src) {
 178     if (dst-> encoding() == src->encoding()) return;
 179     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 180     else                       { movsd (dst, src); return; }
 181   }
 182 
 183   void movdbl(XMMRegister dst, AddressLiteral src);
 184 
 185   void movdbl(XMMRegister dst, Address src) {
 186     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 187     else                         { movlpd(dst, src); return; }
 188   }
 189   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 190 
 191   void incrementl(AddressLiteral dst);
 192   void incrementl(ArrayAddress dst);
 193 
 194   void incrementq(AddressLiteral dst);
 195 
 196   // Alignment
 197   void align(int modulus);
 198   void align(int modulus, int target);
 199 
 200   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 201   void fat_nop();
 202 
 203   // Stack frame creation/removal
 204   void enter();
 205   void leave();
 206 
 207   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 208   // The pointer will be loaded into the thread register.
 209   void get_thread(Register thread);
 210 
 211 
 212   // Support for VM calls
 213   //
 214   // It is imperative that all calls into the VM are handled via the call_VM macros.
 215   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 216   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 217 
 218 
 219   void call_VM(Register oop_result,
 220                address entry_point,
 221                bool check_exceptions = true);
 222   void call_VM(Register oop_result,
 223                address entry_point,
 224                Register arg_1,
 225                bool check_exceptions = true);
 226   void call_VM(Register oop_result,
 227                address entry_point,
 228                Register arg_1, Register arg_2,
 229                bool check_exceptions = true);
 230   void call_VM(Register oop_result,
 231                address entry_point,
 232                Register arg_1, Register arg_2, Register arg_3,
 233                bool check_exceptions = true);
 234 
 235   // Overloadings with last_Java_sp
 236   void call_VM(Register oop_result,
 237                Register last_java_sp,
 238                address entry_point,
 239                int number_of_arguments = 0,
 240                bool check_exceptions = true);
 241   void call_VM(Register oop_result,
 242                Register last_java_sp,
 243                address entry_point,
 244                Register arg_1, bool
 245                check_exceptions = true);
 246   void call_VM(Register oop_result,
 247                Register last_java_sp,
 248                address entry_point,
 249                Register arg_1, Register arg_2,
 250                bool check_exceptions = true);
 251   void call_VM(Register oop_result,
 252                Register last_java_sp,
 253                address entry_point,
 254                Register arg_1, Register arg_2, Register arg_3,
 255                bool check_exceptions = true);
 256 
 257   void get_vm_result  (Register oop_result, Register thread);
 258   void get_vm_result_2(Register metadata_result, Register thread);
 259 
 260   // These always tightly bind to MacroAssembler::call_VM_base
 261   // bypassing the virtual implementation
 262   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 263   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 264   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 265   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 266   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 267 
 268   void call_VM_leaf0(address entry_point);
 269   void call_VM_leaf(address entry_point,
 270                     int number_of_arguments = 0);
 271   void call_VM_leaf(address entry_point,
 272                     Register arg_1);
 273   void call_VM_leaf(address entry_point,
 274                     Register arg_1, Register arg_2);
 275   void call_VM_leaf(address entry_point,
 276                     Register arg_1, Register arg_2, Register arg_3);
 277 
 278   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 279   // bypassing the virtual implementation
 280   void super_call_VM_leaf(address entry_point);
 281   void super_call_VM_leaf(address entry_point, Register arg_1);
 282   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 283   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 284   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 285 
 286   // last Java Frame (fills frame anchor)
 287   void set_last_Java_frame(Register thread,
 288                            Register last_java_sp,
 289                            Register last_java_fp,
 290                            address last_java_pc);
 291 
 292   // thread in the default location (r15_thread on 64bit)
 293   void set_last_Java_frame(Register last_java_sp,
 294                            Register last_java_fp,
 295                            address last_java_pc);
 296 
 297   void reset_last_Java_frame(Register thread, bool clear_fp);
 298 
 299   // thread in the default location (r15_thread on 64bit)
 300   void reset_last_Java_frame(bool clear_fp);
 301 
 302   // jobjects
 303   void clear_jweak_tag(Register possibly_jweak);
 304   void resolve_jobject(Register value, Register thread, Register tmp);
 305 
 306   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 307   void c2bool(Register x);
 308 
 309   // C++ bool manipulation
 310 
 311   void movbool(Register dst, Address src);
 312   void movbool(Address dst, bool boolconst);
 313   void movbool(Address dst, Register src);
 314   void testbool(Register dst);
 315 
 316   void resolve_oop_handle(Register result, Register tmp = rscratch2);
 317   void resolve_weak_handle(Register result, Register tmp);
 318   void load_mirror(Register mirror, Register method, Register tmp = rscratch2);
 319   void load_method_holder_cld(Register rresult, Register rmethod);
 320 
 321   void load_method_holder(Register holder, Register method);
 322 
 323   // oop manipulations
 324   void load_klass(Register dst, Register src);
 325   void store_klass(Register dst, Register src);
 326 
 327   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 328                       Register tmp1, Register thread_tmp);
 329   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
 330                        Register tmp1, Register tmp2);
 331 
 332   // Resolves obj access. Result is placed in the same register.
 333   // All other registers are preserved.
 334   void resolve(DecoratorSet decorators, Register obj);
 335 
 336   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 337                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 338   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 339                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 340   void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
 341                       Register tmp2 = noreg, DecoratorSet decorators = 0);
 342 
 343   // Used for storing NULL. All other oop constants should be
 344   // stored using routines that take a jobject.
 345   void store_heap_oop_null(Address dst);
 346 
 347   void load_prototype_header(Register dst, Register src);
 348 
 349 #ifdef _LP64
 350   void store_klass_gap(Register dst, Register src);
 351 
 352   // This dummy is to prevent a call to store_heap_oop from
 353   // converting a zero (like NULL) into a Register by giving
 354   // the compiler two choices it can't resolve
 355 
 356   void store_heap_oop(Address dst, void* dummy);
 357 
 358   void encode_heap_oop(Register r);
 359   void decode_heap_oop(Register r);
 360   void encode_heap_oop_not_null(Register r);
 361   void decode_heap_oop_not_null(Register r);
 362   void encode_heap_oop_not_null(Register dst, Register src);
 363   void decode_heap_oop_not_null(Register dst, Register src);
 364 
 365   void set_narrow_oop(Register dst, jobject obj);
 366   void set_narrow_oop(Address dst, jobject obj);
 367   void cmp_narrow_oop(Register dst, jobject obj);
 368   void cmp_narrow_oop(Address dst, jobject obj);
 369 
 370   void encode_klass_not_null(Register r);
 371   void decode_klass_not_null(Register r);
 372   void encode_klass_not_null(Register dst, Register src);
 373   void decode_klass_not_null(Register dst, Register src);
 374   void set_narrow_klass(Register dst, Klass* k);
 375   void set_narrow_klass(Address dst, Klass* k);
 376   void cmp_narrow_klass(Register dst, Klass* k);
 377   void cmp_narrow_klass(Address dst, Klass* k);
 378 
 379   // Returns the byte size of the instructions generated by decode_klass_not_null()
 380   // when compressed klass pointers are being used.
 381   static int instr_size_for_decode_klass_not_null();
 382 
 383   // if heap base register is used - reinit it with the correct value
 384   void reinit_heapbase();
 385 
 386   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 387 
 388 #endif // _LP64
 389 
 390   // Int division/remainder for Java
 391   // (as idivl, but checks for special case as described in JVM spec.)
 392   // returns idivl instruction offset for implicit exception handling
 393   int corrected_idivl(Register reg);
 394 
 395   // Long division/remainder for Java
 396   // (as idivq, but checks for special case as described in JVM spec.)
 397   // returns idivq instruction offset for implicit exception handling
 398   int corrected_idivq(Register reg);
 399 
 400   void int3();
 401 
 402   // Long operation macros for a 32bit cpu
 403   // Long negation for Java
 404   void lneg(Register hi, Register lo);
 405 
 406   // Long multiplication for Java
 407   // (destroys contents of eax, ebx, ecx and edx)
 408   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 409 
 410   // Long shifts for Java
 411   // (semantics as described in JVM spec.)
 412   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 413   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 414 
 415   // Long compare for Java
 416   // (semantics as described in JVM spec.)
 417   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 418 
 419 
 420   // misc
 421 
 422   // Sign extension
 423   void sign_extend_short(Register reg);
 424   void sign_extend_byte(Register reg);
 425 
 426   // Division by power of 2, rounding towards 0
 427   void division_with_shift(Register reg, int shift_value);
 428 
 429   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 430   //
 431   // CF (corresponds to C0) if x < y
 432   // PF (corresponds to C2) if unordered
 433   // ZF (corresponds to C3) if x = y
 434   //
 435   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 436   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 437   void fcmp(Register tmp);
 438   // Variant of the above which allows y to be further down the stack
 439   // and which only pops x and y if specified. If pop_right is
 440   // specified then pop_left must also be specified.
 441   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 442 
 443   // Floating-point comparison for Java
 444   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 445   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 446   // (semantics as described in JVM spec.)
 447   void fcmp2int(Register dst, bool unordered_is_less);
 448   // Variant of the above which allows y to be further down the stack
 449   // and which only pops x and y if specified. If pop_right is
 450   // specified then pop_left must also be specified.
 451   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 452 
 453   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 454   // tmp is a temporary register, if none is available use noreg
 455   void fremr(Register tmp);
 456 
 457   // dst = c = a * b + c
 458   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 459   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 460 
 461   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 462   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 463   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 464   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 465 
 466 
 467   // same as fcmp2int, but using SSE2
 468   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 469   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 470 
 471   // branch to L if FPU flag C2 is set/not set
 472   // tmp is a temporary register, if none is available use noreg
 473   void jC2 (Register tmp, Label& L);
 474   void jnC2(Register tmp, Label& L);
 475 
 476   // Pop ST (ffree & fincstp combined)
 477   void fpop();
 478 
 479   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 480   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 481   void load_float(Address src);
 482 
 483   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 484   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 485   void store_float(Address dst);
 486 
 487   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 488   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 489   void load_double(Address src);
 490 
 491   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 492   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 493   void store_double(Address dst);
 494 
 495   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 496   void push_fTOS();
 497 
 498   // pops double TOS element from CPU stack and pushes on FPU stack
 499   void pop_fTOS();
 500 
 501   void empty_FPU_stack();
 502 
 503   void push_IU_state();
 504   void pop_IU_state();
 505 
 506   void push_FPU_state();
 507   void pop_FPU_state();
 508 
 509   void push_CPU_state();
 510   void pop_CPU_state();
 511 
 512   // Round up to a power of two
 513   void round_to(Register reg, int modulus);
 514 
 515   // Callee saved registers handling
 516   void push_callee_saved_registers();
 517   void pop_callee_saved_registers();
 518 
 519   // allocation
 520   void eden_allocate(
 521     Register thread,                   // Current thread
 522     Register obj,                      // result: pointer to object after successful allocation
 523     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 524     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 525     Register t1,                       // temp register
 526     Label&   slow_case                 // continuation point if fast allocation fails
 527   );
 528   void tlab_allocate(
 529     Register thread,                   // Current thread
 530     Register obj,                      // result: pointer to object after successful allocation
 531     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 532     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 533     Register t1,                       // temp register
 534     Register t2,                       // temp register
 535     Label&   slow_case                 // continuation point if fast allocation fails
 536   );
 537   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 538 
 539   // interface method calling
 540   void lookup_interface_method(Register recv_klass,
 541                                Register intf_klass,
 542                                RegisterOrConstant itable_index,
 543                                Register method_result,
 544                                Register scan_temp,
 545                                Label& no_such_interface,
 546                                bool return_method = true);
 547 
 548   // virtual method calling
 549   void lookup_virtual_method(Register recv_klass,
 550                              RegisterOrConstant vtable_index,
 551                              Register method_result);
 552 
 553   // Test sub_klass against super_klass, with fast and slow paths.
 554 
 555   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 556   // One of the three labels can be NULL, meaning take the fall-through.
 557   // If super_check_offset is -1, the value is loaded up from super_klass.
 558   // No registers are killed, except temp_reg.
 559   void check_klass_subtype_fast_path(Register sub_klass,
 560                                      Register super_klass,
 561                                      Register temp_reg,
 562                                      Label* L_success,
 563                                      Label* L_failure,
 564                                      Label* L_slow_path,
 565                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 566 
 567   // The rest of the type check; must be wired to a corresponding fast path.
 568   // It does not repeat the fast path logic, so don't use it standalone.
 569   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 570   // Updates the sub's secondary super cache as necessary.
 571   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 572   void check_klass_subtype_slow_path(Register sub_klass,
 573                                      Register super_klass,
 574                                      Register temp_reg,
 575                                      Register temp2_reg,
 576                                      Label* L_success,
 577                                      Label* L_failure,
 578                                      bool set_cond_codes = false);
 579 
 580   // Simplified, combined version, good for typical uses.
 581   // Falls through on failure.
 582   void check_klass_subtype(Register sub_klass,
 583                            Register super_klass,
 584                            Register temp_reg,
 585                            Label& L_success);
 586 
 587   void clinit_barrier(Register klass,
 588                       Register thread,
 589                       Label* L_fast_path = NULL,
 590                       Label* L_slow_path = NULL);
 591 
 592   // method handles (JSR 292)
 593   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 594 
 595   //----
 596   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 597 
 598   // Debugging
 599 
 600   // only if +VerifyOops
 601   // TODO: Make these macros with file and line like sparc version!
 602   void verify_oop(Register reg, const char* s = "broken oop");
 603   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 604 
 605   // TODO: verify method and klass metadata (compare against vptr?)
 606   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 607   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 608 
 609 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 610 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 611 
 612   // only if +VerifyFPU
 613   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 614 
 615   // Verify or restore cpu control state after JNI call
 616   void restore_cpu_control_state_after_jni();
 617 
 618   // prints msg, dumps registers and stops execution
 619   void stop(const char* msg);
 620 
 621   // prints msg and continues
 622   void warn(const char* msg);
 623 
 624   // dumps registers and other state
 625   void print_state();
 626 
 627   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 628   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 629   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 630   static void print_state64(int64_t pc, int64_t regs[]);
 631 
 632   void os_breakpoint();
 633 
 634   void untested()                                { stop("untested"); }
 635 
 636   void unimplemented(const char* what = "");
 637 
 638   void should_not_reach_here()                   { stop("should not reach here"); }
 639 
 640   void print_CPU_state();
 641 
 642   // Stack overflow checking
 643   void bang_stack_with_offset(int offset) {
 644     // stack grows down, caller passes positive offset
 645     assert(offset > 0, "must bang with negative offset");
 646     movl(Address(rsp, (-offset)), rax);
 647   }
 648 
 649   // Writes to stack successive pages until offset reached to check for
 650   // stack overflow + shadow pages.  Also, clobbers tmp
 651   void bang_stack_size(Register size, Register tmp);
 652 
 653   // Check for reserved stack access in method being exited (for JIT)
 654   void reserved_stack_check();
 655 
 656   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 657                                                 Register tmp,
 658                                                 int offset);
 659 
 660   // If thread_reg is != noreg the code assumes the register passed contains
 661   // the thread (required on 64 bit).
 662   void safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg);
 663 
 664   void verify_tlab();
 665 
 666   // Biased locking support
 667   // lock_reg and obj_reg must be loaded up with the appropriate values.
 668   // swap_reg must be rax, and is killed.
 669   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 670   // be killed; if not supplied, push/pop will be used internally to
 671   // allocate a temporary (inefficient, avoid if possible).
 672   // Optional slow case is for implementations (interpreter and C1) which branch to
 673   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 674   // Returns offset of first potentially-faulting instruction for null
 675   // check info (currently consumed only by C1). If
 676   // swap_reg_contains_mark is true then returns -1 as it is assumed
 677   // the calling code has already passed any potential faults.
 678   int biased_locking_enter(Register lock_reg, Register obj_reg,
 679                            Register swap_reg, Register tmp_reg,
 680                            bool swap_reg_contains_mark,
 681                            Label& done, Label* slow_case = NULL,
 682                            BiasedLockingCounters* counters = NULL);
 683   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 684 #ifdef COMPILER2
 685   void inc_om_ref_count(Register obj_reg, Register om_reg, Register temp_reg, Label& done);
 686   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 687   // See full desription in macroAssembler_x86.cpp.
 688   void fast_lock(Register obj, Register box, Register tmp,
 689                  Register scr, Register cx1, Register cx2,
 690                  BiasedLockingCounters* counters,
 691                  RTMLockingCounters* rtm_counters,
 692                  RTMLockingCounters* stack_rtm_counters,
 693                  Metadata* method_data,
 694                  bool use_rtm, bool profile_rtm);
 695   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 696 #if INCLUDE_RTM_OPT
 697   void rtm_counters_update(Register abort_status, Register rtm_counters);
 698   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 699   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 700                                    RTMLockingCounters* rtm_counters,
 701                                    Metadata* method_data);
 702   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 703                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 704   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 705   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 706   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 707                          Register retry_on_abort_count,
 708                          RTMLockingCounters* stack_rtm_counters,
 709                          Metadata* method_data, bool profile_rtm,
 710                          Label& DONE_LABEL, Label& IsInflated);
 711   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 712                             Register scr, Register retry_on_busy_count,
 713                             Register retry_on_abort_count,
 714                             RTMLockingCounters* rtm_counters,
 715                             Metadata* method_data, bool profile_rtm,
 716                             Label& DONE_LABEL);
 717 #endif
 718 #endif
 719 
 720   Condition negate_condition(Condition cond);
 721 
 722   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 723   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 724   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 725   // here in MacroAssembler. The major exception to this rule is call
 726 
 727   // Arithmetics
 728 
 729 
 730   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 731   void addptr(Address dst, Register src);
 732 
 733   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 734   void addptr(Register dst, int32_t src);
 735   void addptr(Register dst, Register src);
 736   void addptr(Register dst, RegisterOrConstant src) {
 737     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 738     else                   addptr(dst,       src.as_register());
 739   }
 740 
 741   void andptr(Register dst, int32_t src);
 742   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 743 
 744   void cmp8(AddressLiteral src1, int imm);
 745 
 746   // renamed to drag out the casting of address to int32_t/intptr_t
 747   void cmp32(Register src1, int32_t imm);
 748 
 749   void cmp32(AddressLiteral src1, int32_t imm);
 750   // compare reg - mem, or reg - &mem
 751   void cmp32(Register src1, AddressLiteral src2);
 752 
 753   void cmp32(Register src1, Address src2);
 754 
 755 #ifndef _LP64
 756   void cmpklass(Address dst, Metadata* obj);
 757   void cmpklass(Register dst, Metadata* obj);
 758   void cmpoop(Address dst, jobject obj);
 759   void cmpoop_raw(Address dst, jobject obj);
 760 #endif // _LP64
 761 
 762   void cmpoop(Register src1, Register src2);
 763   void cmpoop(Register src1, Address src2);
 764   void cmpoop(Register dst, jobject obj);
 765   void cmpoop_raw(Register dst, jobject obj);
 766 
 767   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 768   void cmpptr(Address src1, AddressLiteral src2);
 769 
 770   void cmpptr(Register src1, AddressLiteral src2);
 771 
 772   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 773   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 774   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 775 
 776   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 777   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 778 
 779   // cmp64 to avoild hiding cmpq
 780   void cmp64(Register src1, AddressLiteral src);
 781 
 782   void cmpxchgptr(Register reg, Address adr);
 783 
 784   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 785 
 786 
 787   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 788   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 789 
 790 
 791   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 792 
 793   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 794 
 795   void shlptr(Register dst, int32_t shift);
 796   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 797 
 798   void shrptr(Register dst, int32_t shift);
 799   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 800 
 801   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 802   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 803 
 804   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 805 
 806   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 807   void subptr(Register dst, int32_t src);
 808   // Force generation of a 4 byte immediate value even if it fits into 8bit
 809   void subptr_imm32(Register dst, int32_t src);
 810   void subptr(Register dst, Register src);
 811   void subptr(Register dst, RegisterOrConstant src) {
 812     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 813     else                   subptr(dst,       src.as_register());
 814   }
 815 
 816   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 817   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 818 
 819   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 820   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 821 
 822   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 823 
 824 
 825 
 826   // Helper functions for statistics gathering.
 827   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 828   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 829   // Unconditional atomic increment.
 830   void atomic_incl(Address counter_addr);
 831   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 832 #ifdef _LP64
 833   void atomic_incq(Address counter_addr);
 834   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 835 #endif
 836   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 837   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 838 
 839   void lea(Register dst, AddressLiteral adr);
 840   void lea(Address dst, AddressLiteral adr);
 841   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 842 
 843   void leal32(Register dst, Address src) { leal(dst, src); }
 844 
 845   // Import other testl() methods from the parent class or else
 846   // they will be hidden by the following overriding declaration.
 847   using Assembler::testl;
 848   void testl(Register dst, AddressLiteral src);
 849 
 850   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 851   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 852   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 853   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 854 
 855   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 856   void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); }
 857   void testptr(Register src1, Register src2);
 858 
 859   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 860   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 861 
 862   // Calls
 863 
 864   void call(Label& L, relocInfo::relocType rtype);
 865   void call(Register entry);
 866 
 867   // NOTE: this call transfers to the effective address of entry NOT
 868   // the address contained by entry. This is because this is more natural
 869   // for jumps/calls.
 870   void call(AddressLiteral entry);
 871 
 872   // Emit the CompiledIC call idiom
 873   void ic_call(address entry, jint method_index = 0);
 874 
 875   // Jumps
 876 
 877   // NOTE: these jumps tranfer to the effective address of dst NOT
 878   // the address contained by dst. This is because this is more natural
 879   // for jumps/calls.
 880   void jump(AddressLiteral dst);
 881   void jump_cc(Condition cc, AddressLiteral dst);
 882 
 883   // 32bit can do a case table jump in one instruction but we no longer allow the base
 884   // to be installed in the Address class. This jump will tranfers to the address
 885   // contained in the location described by entry (not the address of entry)
 886   void jump(ArrayAddress entry);
 887 
 888   // Floating
 889 
 890   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 891   void andpd(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
 892   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 893 
 894   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 895   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 896   void andps(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
 897 
 898   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 899   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 900   void comiss(XMMRegister dst, AddressLiteral src);
 901 
 902   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 903   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 904   void comisd(XMMRegister dst, AddressLiteral src);
 905 
 906   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 907   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 908 
 909   void fldcw(Address src) { Assembler::fldcw(src); }
 910   void fldcw(AddressLiteral src);
 911 
 912   void fld_s(int index)   { Assembler::fld_s(index); }
 913   void fld_s(Address src) { Assembler::fld_s(src); }
 914   void fld_s(AddressLiteral src);
 915 
 916   void fld_d(Address src) { Assembler::fld_d(src); }
 917   void fld_d(AddressLiteral src);
 918 
 919   void fld_x(Address src) { Assembler::fld_x(src); }
 920   void fld_x(AddressLiteral src);
 921 
 922   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 923   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 924 
 925   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 926   void ldmxcsr(AddressLiteral src);
 927 
 928 #ifdef _LP64
 929  private:
 930   void sha256_AVX2_one_round_compute(
 931     Register  reg_old_h,
 932     Register  reg_a,
 933     Register  reg_b,
 934     Register  reg_c,
 935     Register  reg_d,
 936     Register  reg_e,
 937     Register  reg_f,
 938     Register  reg_g,
 939     Register  reg_h,
 940     int iter);
 941   void sha256_AVX2_four_rounds_compute_first(int start);
 942   void sha256_AVX2_four_rounds_compute_last(int start);
 943   void sha256_AVX2_one_round_and_sched(
 944         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 945         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 946         XMMRegister xmm_2,     /* ymm6 */
 947         XMMRegister xmm_3,     /* ymm7 */
 948         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 949         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 950         Register    reg_c,      /* edi */
 951         Register    reg_d,      /* esi */
 952         Register    reg_e,      /* r8d */
 953         Register    reg_f,      /* r9d */
 954         Register    reg_g,      /* r10d */
 955         Register    reg_h,      /* r11d */
 956         int iter);
 957 
 958   void addm(int disp, Register r1, Register r2);
 959   void gfmul(XMMRegister tmp0, XMMRegister t);
 960   void schoolbookAAD(int i, Register subkeyH, XMMRegister data, XMMRegister tmp0,
 961                      XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3);
 962   void generateHtbl_one_block(Register htbl);
 963   void generateHtbl_eight_blocks(Register htbl);
 964  public:
 965   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 966                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 967                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 968                    bool multi_block, XMMRegister shuf_mask);
 969   void avx_ghash(Register state, Register htbl, Register data, Register blocks);
 970 #endif
 971 
 972 #ifdef _LP64
 973  private:
 974   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 975                                      Register e, Register f, Register g, Register h, int iteration);
 976 
 977   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 978                                           Register a, Register b, Register c, Register d, Register e, Register f,
 979                                           Register g, Register h, int iteration);
 980 
 981   void addmq(int disp, Register r1, Register r2);
 982  public:
 983   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 984                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 985                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
 986                    XMMRegister shuf_mask);
 987 private:
 988   void roundEnc(XMMRegister key, int rnum);
 989   void lastroundEnc(XMMRegister key, int rnum);
 990   void roundDec(XMMRegister key, int rnum);
 991   void lastroundDec(XMMRegister key, int rnum);
 992   void ev_load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask);
 993 
 994 public:
 995   void aesecb_encrypt(Register source_addr, Register dest_addr, Register key, Register len);
 996   void aesecb_decrypt(Register source_addr, Register dest_addr, Register key, Register len);
 997   void aesctr_encrypt(Register src_addr, Register dest_addr, Register key, Register counter,
 998                       Register len_reg, Register used, Register used_addr, Register saved_encCounter_start);
 999 
1000 #endif
1001 
1002   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
1003                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
1004                  Register buf, Register state, Register ofs, Register limit, Register rsp,
1005                  bool multi_block);
1006 
1007 #ifdef _LP64
1008   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1009                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1010                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1011                    bool multi_block, XMMRegister shuf_mask);
1012 #else
1013   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1014                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1015                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1016                    bool multi_block);
1017 #endif
1018 
1019   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1020                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1021                 Register rax, Register rcx, Register rdx, Register tmp);
1022 
1023 #ifdef _LP64
1024   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1025                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1026                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
1027 
1028   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1029                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1030                   Register rax, Register rcx, Register rdx, Register r11);
1031 
1032   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1033                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1034                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
1035 
1036   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1037                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1038                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1039                 Register tmp3, Register tmp4);
1040 
1041   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1042                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1043                 Register rax, Register rcx, Register rdx, Register tmp1,
1044                 Register tmp2, Register tmp3, Register tmp4);
1045   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1046                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1047                 Register rax, Register rcx, Register rdx, Register tmp1,
1048                 Register tmp2, Register tmp3, Register tmp4);
1049 #else
1050   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1051                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1052                 Register rax, Register rcx, Register rdx, Register tmp1);
1053 
1054   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1055                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1056                 Register rax, Register rcx, Register rdx, Register tmp);
1057 
1058   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1059                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1060                 Register rdx, Register tmp);
1061 
1062   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1063                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1064                 Register rax, Register rbx, Register rdx);
1065 
1066   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1067                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1068                 Register rax, Register rcx, Register rdx, Register tmp);
1069 
1070   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1071                         Register edx, Register ebx, Register esi, Register edi,
1072                         Register ebp, Register esp);
1073 
1074   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1075                          Register esi, Register edi, Register ebp, Register esp);
1076 
1077   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1078                         Register edx, Register ebx, Register esi, Register edi,
1079                         Register ebp, Register esp);
1080 
1081   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1082                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1083                 Register rax, Register rcx, Register rdx, Register tmp);
1084 #endif
1085 
1086   void increase_precision();
1087   void restore_precision();
1088 
1089 private:
1090 
1091   // these are private because users should be doing movflt/movdbl
1092 
1093   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1094   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1095   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1096   void movss(XMMRegister dst, AddressLiteral src);
1097 
1098   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1099   void movlpd(XMMRegister dst, AddressLiteral src);
1100 
1101 public:
1102 
1103   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1104   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1105   void addsd(XMMRegister dst, AddressLiteral src);
1106 
1107   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1108   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1109   void addss(XMMRegister dst, AddressLiteral src);
1110 
1111   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1112   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1113   void addpd(XMMRegister dst, AddressLiteral src);
1114 
1115   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1116   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1117   void divsd(XMMRegister dst, AddressLiteral src);
1118 
1119   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1120   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1121   void divss(XMMRegister dst, AddressLiteral src);
1122 
1123   // Move Unaligned Double Quadword
1124   void movdqu(Address     dst, XMMRegister src);
1125   void movdqu(XMMRegister dst, Address src);
1126   void movdqu(XMMRegister dst, XMMRegister src);
1127   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1128   // AVX Unaligned forms
1129   void vmovdqu(Address     dst, XMMRegister src);
1130   void vmovdqu(XMMRegister dst, Address src);
1131   void vmovdqu(XMMRegister dst, XMMRegister src);
1132   void vmovdqu(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1133   void evmovdquq(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1134   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1135   void evmovdquq(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1136   void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch);
1137 
1138   // Move Aligned Double Quadword
1139   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1140   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1141   void movdqa(XMMRegister dst, AddressLiteral src);
1142 
1143   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1144   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1145   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1146   void movsd(XMMRegister dst, AddressLiteral src);
1147 
1148   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1149   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1150   void mulpd(XMMRegister dst, AddressLiteral src);
1151 
1152   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1153   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1154   void mulsd(XMMRegister dst, AddressLiteral src);
1155 
1156   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1157   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1158   void mulss(XMMRegister dst, AddressLiteral src);
1159 
1160   // Carry-Less Multiplication Quadword
1161   void pclmulldq(XMMRegister dst, XMMRegister src) {
1162     // 0x00 - multiply lower 64 bits [0:63]
1163     Assembler::pclmulqdq(dst, src, 0x00);
1164   }
1165   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1166     // 0x11 - multiply upper 64 bits [64:127]
1167     Assembler::pclmulqdq(dst, src, 0x11);
1168   }
1169 
1170   void pcmpeqb(XMMRegister dst, XMMRegister src);
1171   void pcmpeqw(XMMRegister dst, XMMRegister src);
1172 
1173   void pcmpestri(XMMRegister dst, Address src, int imm8);
1174   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1175 
1176   void pmovzxbw(XMMRegister dst, XMMRegister src);
1177   void pmovzxbw(XMMRegister dst, Address src);
1178 
1179   void pmovmskb(Register dst, XMMRegister src);
1180 
1181   void ptest(XMMRegister dst, XMMRegister src);
1182 
1183   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1184   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1185   void sqrtsd(XMMRegister dst, AddressLiteral src);
1186 
1187   void roundsd(XMMRegister dst, XMMRegister src, int32_t rmode)    { Assembler::roundsd(dst, src, rmode); }
1188   void roundsd(XMMRegister dst, Address src, int32_t rmode)        { Assembler::roundsd(dst, src, rmode); }
1189   void roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register scratch_reg);
1190 
1191   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1192   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1193   void sqrtss(XMMRegister dst, AddressLiteral src);
1194 
1195   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1196   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1197   void subsd(XMMRegister dst, AddressLiteral src);
1198 
1199   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1200   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1201   void subss(XMMRegister dst, AddressLiteral src);
1202 
1203   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1204   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1205   void ucomiss(XMMRegister dst, AddressLiteral src);
1206 
1207   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1208   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1209   void ucomisd(XMMRegister dst, AddressLiteral src);
1210 
1211   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1212   void xorpd(XMMRegister dst, XMMRegister src);
1213   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1214   void xorpd(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1215 
1216   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1217   void xorps(XMMRegister dst, XMMRegister src);
1218   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1219   void xorps(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1220 
1221   // Shuffle Bytes
1222   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1223   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1224   void pshufb(XMMRegister dst, AddressLiteral src);
1225   // AVX 3-operands instructions
1226 
1227   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1228   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1229   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1230 
1231   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1232   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1233   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1234 
1235   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1236   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1237 
1238   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1239   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1240 
1241   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1242   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1243 
1244   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1245   void vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1246   void vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch);
1247 
1248   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1249   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1250   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1251 
1252   void vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len);
1253   void vpbroadcastw(XMMRegister dst, Address src, int vector_len) { Assembler::vpbroadcastw(dst, src, vector_len); }
1254 
1255   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1256 
1257   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1258 
1259   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1260   void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
1261 
1262   void vpmovmskb(Register dst, XMMRegister src);
1263 
1264   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1265   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1266 
1267   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1268   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1269 
1270   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1271   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1272 
1273   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1274   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1275 
1276   void evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1277   void evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1278 
1279   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1280   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1281 
1282   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1283   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1284 
1285   void vptest(XMMRegister dst, XMMRegister src);
1286 
1287   void punpcklbw(XMMRegister dst, XMMRegister src);
1288   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1289 
1290   void pshufd(XMMRegister dst, Address src, int mode);
1291   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1292 
1293   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1294   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1295 
1296   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1297   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1298   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1299 
1300   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1301   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1302   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1303 
1304   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1305   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1306   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1307 
1308   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1309   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1310   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1311 
1312   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1313   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1314   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1315 
1316   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1317   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1318   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1319 
1320   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1321   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1322   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1323 
1324   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1325   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1326   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1327 
1328   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1329   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1330 
1331   // AVX Vector instructions
1332 
1333   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1334   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1335   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1336 
1337   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1338   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1339   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1340 
1341   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1342     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1343       Assembler::vpxor(dst, nds, src, vector_len);
1344     else
1345       Assembler::vxorpd(dst, nds, src, vector_len);
1346   }
1347   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1348     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1349       Assembler::vpxor(dst, nds, src, vector_len);
1350     else
1351       Assembler::vxorpd(dst, nds, src, vector_len);
1352   }
1353   void vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1354 
1355   // Simple version for AVX2 256bit vectors
1356   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1357   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1358 
1359   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1360     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1361       Assembler::vinserti32x4(dst, dst, src, imm8);
1362     } else if (UseAVX > 1) {
1363       // vinserti128 is available only in AVX2
1364       Assembler::vinserti128(dst, nds, src, imm8);
1365     } else {
1366       Assembler::vinsertf128(dst, nds, src, imm8);
1367     }
1368   }
1369 
1370   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1371     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1372       Assembler::vinserti32x4(dst, dst, src, imm8);
1373     } else if (UseAVX > 1) {
1374       // vinserti128 is available only in AVX2
1375       Assembler::vinserti128(dst, nds, src, imm8);
1376     } else {
1377       Assembler::vinsertf128(dst, nds, src, imm8);
1378     }
1379   }
1380 
1381   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1382     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1383       Assembler::vextracti32x4(dst, src, imm8);
1384     } else if (UseAVX > 1) {
1385       // vextracti128 is available only in AVX2
1386       Assembler::vextracti128(dst, src, imm8);
1387     } else {
1388       Assembler::vextractf128(dst, src, imm8);
1389     }
1390   }
1391 
1392   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1393     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1394       Assembler::vextracti32x4(dst, src, imm8);
1395     } else if (UseAVX > 1) {
1396       // vextracti128 is available only in AVX2
1397       Assembler::vextracti128(dst, src, imm8);
1398     } else {
1399       Assembler::vextractf128(dst, src, imm8);
1400     }
1401   }
1402 
1403   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1404   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1405     vinserti128(dst, dst, src, 1);
1406   }
1407   void vinserti128_high(XMMRegister dst, Address src) {
1408     vinserti128(dst, dst, src, 1);
1409   }
1410   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1411     vextracti128(dst, src, 1);
1412   }
1413   void vextracti128_high(Address dst, XMMRegister src) {
1414     vextracti128(dst, src, 1);
1415   }
1416 
1417   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1418     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1419       Assembler::vinsertf32x4(dst, dst, src, 1);
1420     } else {
1421       Assembler::vinsertf128(dst, dst, src, 1);
1422     }
1423   }
1424 
1425   void vinsertf128_high(XMMRegister dst, Address src) {
1426     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1427       Assembler::vinsertf32x4(dst, dst, src, 1);
1428     } else {
1429       Assembler::vinsertf128(dst, dst, src, 1);
1430     }
1431   }
1432 
1433   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1434     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1435       Assembler::vextractf32x4(dst, src, 1);
1436     } else {
1437       Assembler::vextractf128(dst, src, 1);
1438     }
1439   }
1440 
1441   void vextractf128_high(Address dst, XMMRegister src) {
1442     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1443       Assembler::vextractf32x4(dst, src, 1);
1444     } else {
1445       Assembler::vextractf128(dst, src, 1);
1446     }
1447   }
1448 
1449   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1450   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1451     Assembler::vinserti64x4(dst, dst, src, 1);
1452   }
1453   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1454     Assembler::vinsertf64x4(dst, dst, src, 1);
1455   }
1456   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1457     Assembler::vextracti64x4(dst, src, 1);
1458   }
1459   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1460     Assembler::vextractf64x4(dst, src, 1);
1461   }
1462   void vextractf64x4_high(Address dst, XMMRegister src) {
1463     Assembler::vextractf64x4(dst, src, 1);
1464   }
1465   void vinsertf64x4_high(XMMRegister dst, Address src) {
1466     Assembler::vinsertf64x4(dst, dst, src, 1);
1467   }
1468 
1469   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1470   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1471     vinserti128(dst, dst, src, 0);
1472   }
1473   void vinserti128_low(XMMRegister dst, Address src) {
1474     vinserti128(dst, dst, src, 0);
1475   }
1476   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1477     vextracti128(dst, src, 0);
1478   }
1479   void vextracti128_low(Address dst, XMMRegister src) {
1480     vextracti128(dst, src, 0);
1481   }
1482 
1483   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1484     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1485       Assembler::vinsertf32x4(dst, dst, src, 0);
1486     } else {
1487       Assembler::vinsertf128(dst, dst, src, 0);
1488     }
1489   }
1490 
1491   void vinsertf128_low(XMMRegister dst, Address src) {
1492     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1493       Assembler::vinsertf32x4(dst, dst, src, 0);
1494     } else {
1495       Assembler::vinsertf128(dst, dst, src, 0);
1496     }
1497   }
1498 
1499   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1500     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1501       Assembler::vextractf32x4(dst, src, 0);
1502     } else {
1503       Assembler::vextractf128(dst, src, 0);
1504     }
1505   }
1506 
1507   void vextractf128_low(Address dst, XMMRegister src) {
1508     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1509       Assembler::vextractf32x4(dst, src, 0);
1510     } else {
1511       Assembler::vextractf128(dst, src, 0);
1512     }
1513   }
1514 
1515   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1516   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1517     Assembler::vinserti64x4(dst, dst, src, 0);
1518   }
1519   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1520     Assembler::vinsertf64x4(dst, dst, src, 0);
1521   }
1522   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1523     Assembler::vextracti64x4(dst, src, 0);
1524   }
1525   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1526     Assembler::vextractf64x4(dst, src, 0);
1527   }
1528   void vextractf64x4_low(Address dst, XMMRegister src) {
1529     Assembler::vextractf64x4(dst, src, 0);
1530   }
1531   void vinsertf64x4_low(XMMRegister dst, Address src) {
1532     Assembler::vinsertf64x4(dst, dst, src, 0);
1533   }
1534 
1535   // Carry-Less Multiplication Quadword
1536   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1537     // 0x00 - multiply lower 64 bits [0:63]
1538     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1539   }
1540   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1541     // 0x11 - multiply upper 64 bits [64:127]
1542     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1543   }
1544   void vpclmullqhqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1545     // 0x10 - multiply nds[0:63] and src[64:127]
1546     Assembler::vpclmulqdq(dst, nds, src, 0x10);
1547   }
1548   void vpclmulhqlqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1549     //0x01 - multiply nds[64:127] and src[0:63]
1550     Assembler::vpclmulqdq(dst, nds, src, 0x01);
1551   }
1552 
1553   void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1554     // 0x00 - multiply lower 64 bits [0:63]
1555     Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1556   }
1557   void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1558     // 0x11 - multiply upper 64 bits [64:127]
1559     Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1560   }
1561 
1562   // Data
1563 
1564   void cmov32( Condition cc, Register dst, Address  src);
1565   void cmov32( Condition cc, Register dst, Register src);
1566 
1567   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1568 
1569   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1570   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1571 
1572   void movoop(Register dst, jobject obj);
1573   void movoop(Address dst, jobject obj);
1574 
1575   void mov_metadata(Register dst, Metadata* obj);
1576   void mov_metadata(Address dst, Metadata* obj);
1577 
1578   void movptr(ArrayAddress dst, Register src);
1579   // can this do an lea?
1580   void movptr(Register dst, ArrayAddress src);
1581 
1582   void movptr(Register dst, Address src);
1583 
1584 #ifdef _LP64
1585   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1586 #else
1587   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1588 #endif
1589 
1590   void movptr(Register dst, intptr_t src);
1591   void movptr(Register dst, Register src);
1592   void movptr(Address dst, intptr_t src);
1593 
1594   void movptr(Address dst, Register src);
1595 
1596   void movptr(Register dst, RegisterOrConstant src) {
1597     if (src.is_constant()) movptr(dst, src.as_constant());
1598     else                   movptr(dst, src.as_register());
1599   }
1600 
1601 #ifdef _LP64
1602   // Generally the next two are only used for moving NULL
1603   // Although there are situations in initializing the mark word where
1604   // they could be used. They are dangerous.
1605 
1606   // They only exist on LP64 so that int32_t and intptr_t are not the same
1607   // and we have ambiguous declarations.
1608 
1609   void movptr(Address dst, int32_t imm32);
1610   void movptr(Register dst, int32_t imm32);
1611 #endif // _LP64
1612 
1613   // to avoid hiding movl
1614   void mov32(AddressLiteral dst, Register src);
1615   void mov32(Register dst, AddressLiteral src);
1616 
1617   // to avoid hiding movb
1618   void movbyte(ArrayAddress dst, int src);
1619 
1620   // Import other mov() methods from the parent class or else
1621   // they will be hidden by the following overriding declaration.
1622   using Assembler::movdl;
1623   using Assembler::movq;
1624   void movdl(XMMRegister dst, AddressLiteral src);
1625   void movq(XMMRegister dst, AddressLiteral src);
1626 
1627   // Can push value or effective address
1628   void pushptr(AddressLiteral src);
1629 
1630   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1631   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1632 
1633   void pushoop(jobject obj);
1634   void pushklass(Metadata* obj);
1635 
1636   // sign extend as need a l to ptr sized element
1637   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1638   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1639 
1640 #ifdef COMPILER2
1641   // Generic instructions support for use in .ad files C2 code generation
1642   void vabsnegd(int opcode, XMMRegister dst, XMMRegister src, Register scr);
1643   void vabsnegd(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr);
1644   void vabsnegf(int opcode, XMMRegister dst, XMMRegister src, Register scr);
1645   void vabsnegf(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr);
1646   void vextendbw(bool sign, XMMRegister dst, XMMRegister src, int vector_len);
1647   void vextendbw(bool sign, XMMRegister dst, XMMRegister src);
1648   void vshiftd(int opcode, XMMRegister dst, XMMRegister src);
1649   void vshiftd(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1650   void vshiftw(int opcode, XMMRegister dst, XMMRegister src);
1651   void vshiftw(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1652   void vshiftq(int opcode, XMMRegister dst, XMMRegister src);
1653   void vshiftq(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1654 #endif
1655 
1656   // C2 compiled method's prolog code.
1657   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b, bool is_stub);
1658 
1659   // clear memory of size 'cnt' qwords, starting at 'base';
1660   // if 'is_large' is set, do not try to produce short loop
1661   void clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, bool is_large);
1662 
1663   // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
1664   void xmm_clear_mem(Register base, Register cnt, XMMRegister xtmp);
1665 
1666 #ifdef COMPILER2
1667   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1668                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1669 
1670   // IndexOf strings.
1671   // Small strings are loaded through stack if they cross page boundary.
1672   void string_indexof(Register str1, Register str2,
1673                       Register cnt1, Register cnt2,
1674                       int int_cnt2,  Register result,
1675                       XMMRegister vec, Register tmp,
1676                       int ae);
1677 
1678   // IndexOf for constant substrings with size >= 8 elements
1679   // which don't need to be loaded through stack.
1680   void string_indexofC8(Register str1, Register str2,
1681                       Register cnt1, Register cnt2,
1682                       int int_cnt2,  Register result,
1683                       XMMRegister vec, Register tmp,
1684                       int ae);
1685 
1686     // Smallest code: we don't need to load through stack,
1687     // check string tail.
1688 
1689   // helper function for string_compare
1690   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1691                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1692                           Address::ScaleFactor scale2, Register index, int ae);
1693   // Compare strings.
1694   void string_compare(Register str1, Register str2,
1695                       Register cnt1, Register cnt2, Register result,
1696                       XMMRegister vec1, int ae);
1697 
1698   // Search for Non-ASCII character (Negative byte value) in a byte array,
1699   // return true if it has any and false otherwise.
1700   void has_negatives(Register ary1, Register len,
1701                      Register result, Register tmp1,
1702                      XMMRegister vec1, XMMRegister vec2);
1703 
1704   // Compare char[] or byte[] arrays.
1705   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1706                      Register limit, Register result, Register chr,
1707                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1708 
1709 #endif
1710 
1711   // Fill primitive arrays
1712   void generate_fill(BasicType t, bool aligned,
1713                      Register to, Register value, Register count,
1714                      Register rtmp, XMMRegister xtmp);
1715 
1716   void encode_iso_array(Register src, Register dst, Register len,
1717                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1718                         XMMRegister tmp4, Register tmp5, Register result);
1719 
1720 #ifdef _LP64
1721   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1722   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1723                              Register y, Register y_idx, Register z,
1724                              Register carry, Register product,
1725                              Register idx, Register kdx);
1726   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1727                               Register yz_idx, Register idx,
1728                               Register carry, Register product, int offset);
1729   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1730                                     Register carry, Register carry2,
1731                                     Register idx, Register jdx,
1732                                     Register yz_idx1, Register yz_idx2,
1733                                     Register tmp, Register tmp3, Register tmp4);
1734   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1735                                Register yz_idx, Register idx, Register jdx,
1736                                Register carry, Register product,
1737                                Register carry2);
1738   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1739                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1740   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1741                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1742   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1743                             Register tmp2);
1744   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1745                        Register rdxReg, Register raxReg);
1746   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1747   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1748                        Register tmp3, Register tmp4);
1749   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1750                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1751 
1752   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1753                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1754                Register raxReg);
1755   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1756                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1757                Register raxReg);
1758   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1759                            Register result, Register tmp1, Register tmp2,
1760                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1761 #endif
1762 
1763   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1764   void update_byte_crc32(Register crc, Register val, Register table);
1765   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1766   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1767   // Note on a naming convention:
1768   // Prefix w = register only used on a Westmere+ architecture
1769   // Prefix n = register only used on a Nehalem architecture
1770 #ifdef _LP64
1771   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1772                        Register tmp1, Register tmp2, Register tmp3);
1773 #else
1774   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1775                        Register tmp1, Register tmp2, Register tmp3,
1776                        XMMRegister xtmp1, XMMRegister xtmp2);
1777 #endif
1778   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1779                         Register in_out,
1780                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1781                         XMMRegister w_xtmp2,
1782                         Register tmp1,
1783                         Register n_tmp2, Register n_tmp3);
1784   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1785                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1786                        Register tmp1, Register tmp2,
1787                        Register n_tmp3);
1788   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1789                          Register in_out1, Register in_out2, Register in_out3,
1790                          Register tmp1, Register tmp2, Register tmp3,
1791                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1792                          Register tmp4, Register tmp5,
1793                          Register n_tmp6);
1794   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1795                             Register tmp1, Register tmp2, Register tmp3,
1796                             Register tmp4, Register tmp5, Register tmp6,
1797                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1798                             bool is_pclmulqdq_supported);
1799   // Fold 128-bit data chunk
1800   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1801   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1802   // Fold 8-bit data
1803   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1804   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1805   void fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1806 
1807   // Compress char[] array to byte[].
1808   void char_array_compress(Register src, Register dst, Register len,
1809                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1810                            XMMRegister tmp4, Register tmp5, Register result);
1811 
1812   // Inflate byte[] array to char[].
1813   void byte_array_inflate(Register src, Register dst, Register len,
1814                           XMMRegister tmp1, Register tmp2);
1815 
1816 #ifdef _LP64
1817   void cache_wb(Address line);
1818   void cache_wbsync(bool is_pre);
1819 #endif // _LP64
1820 };
1821 
1822 /**
1823  * class SkipIfEqual:
1824  *
1825  * Instantiating this class will result in assembly code being output that will
1826  * jump around any code emitted between the creation of the instance and it's
1827  * automatic destruction at the end of a scope block, depending on the value of
1828  * the flag passed to the constructor, which will be checked at run-time.
1829  */
1830 class SkipIfEqual {
1831  private:
1832   MacroAssembler* _masm;
1833   Label _label;
1834 
1835  public:
1836    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1837    ~SkipIfEqual();
1838 };
1839 
1840 #endif // CPU_X86_MACROASSEMBLER_X86_HPP